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Abstract

Rotation is an intriguing subject not only from the academic viewpoint but also in the practical

investigation of quantum matter. For Quantum Chromodynamics (QCD), the rotational e↵ect

is much crucial because rapid rotation actually exists in quark-hadron systems: rotating hot

matter created in non-central relativistic heavy-ion collisions and rotating neutron stars. In

this thesis, we analyze the QCD thermodynamics in rotating systems. First, we briefly review

the relativistic scalar theory in a rotating frame. Then we find that for rotating systems the

boundary condition plays a quite important role to correctly define the low-energy structure.

Next we argue the thermodynamics of rotating fermionic matter. We prove that the rotational

e↵ect is invisible in the vacuum as long as the boundary condition is properly taken into account.

In other words, rotation a↵ects macroscopic quantities only if there is other external source,

e.g. temperature, magnetic field. We show that in such environments, the rotational e↵ect

on the chiral symmetry breaking is quite similar to the finite-density e↵ect. Especially for a

magnetized rotating system, we discover that the interplay between magnetic field and rotation

leads to the “rotational magnetic inhibition”; chiral symmetry for rotating fermions is restored

by magnetic field. This is a novel phenomenon analogous to the inverse magnetic catalysis in a

finite-density magnetized system. Finally, we qualitatively discuss that this phenomenon plays

a crucial role to determine the chiral structure in the realistic systems.
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Chapter 1

Introduction

1.1 Chiral symmetry breaking in QCD

Quantum Chromodynamics (QCD) is the fundamental theory to describe the physics of the

strong interaction. In principle thus, all of the dynamics of quarks and gluons is determined

only from the QCD Lagrangian

L = �1

2
tr[Fµ⌫F

µ⌫ ] +  ̄(i�µDµ �m) , (1.1)

where Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ] is the field strength of gluon,  is the quark field, and

Dµ = @µ + igAµ is the covariant derivative. One of the important features of QCD is the

asymptotic freedom [1, 2]; the QCD running coupling constant ↵s(Q) is weaken as the energy

scale Q increases. At the one-loop level in the perturbation theory, the running coupling is

calculated as ↵s(Q) ⇠ ⇥

ln(Q2/⇤2

QCD

)
⇤�1

, where ⇤
QCD

' 200MeV is the QCD energy scale.

Because of this property, the perturbative QCD works very well for the physics in high-energy

nuclear collision experiments [3]. On the other hand at low energy or short distance, the

dynamics of quark and gluons is dominated by the nonperturbative e↵ects, which lead to the

quite complicated vacuum structure of QCD. For example, quarks and gluons are confined

inside hadrons at low energy scale, unlike the ones in the high energy limit. This is so-called

quark confinement. To investigate such an infrared phenomenon in QCD, we should employ

nonperturbative frameworks.

The dynamical breaking of chiral symmetry is also one of the representative properties

underlying in the nonperturbative vacuum structure of QCD. For the massless QCD with N
f

flavors, the Lagrangian (1.1) is invariant under the transformation  ! ei✓V or  ! ei�5✓A .

That is, chiral symmetry SU
L

(N
f

) ⇥ SU
R

(N
f

) holds. However this symmetry is dynamically

broken through the strong interactions; SU
L

(N
f

) ⇥ SU
R

(N
f

) ! SU
L+R

(N
f

). The spontanous

breaking of chiral symmetry is manifested by the existence of (approximately) massless scalars,

i.e. the Nambu–Goldstone bosons [4–6]. As a result of this, quarks acquire an additional mass

of order of ⇠ ⇤
QCD

. Since the chiral symmetry breaking is a nonperturbative phenomenon, it

is much challenging problem to explain the dynamical mechanism from Eq. (1.1) (although the

1



2 Chapter 1. Introduction

chiral symmetry breaking itself is confirmed with the lattice QCD simulation). It was suggested

by Nambu and Jona-Lasinio, however, that such a low-energy dynamics can be understood in

the analogous manner to superconductivity [7, 8]; the dynamical mass is generated because

of the condensate formed by a quark-antiquark pair (i.e. chiral condensate), similarly to the

metallic superconducting energy gap coming from the condensate of the Cooper pair [9].

The analogy between the QCD vacuum and superconductor indicates that the phase transi-

tion in terms of the chiral symmetry is induced by external parameters (e.g. temperature),

as well as the superconducting phase transition. In fact, chiral symmetry is restored at

T & ⇤
QCD

' 1012 K, which corresponds to the temperature in early universe. The thermo-

dynamic properties of the chiral symmetry breaking have been actively investigated by many

nonperturbative analyses: the e↵ective model studies [10–12], the remomalization group method

for the Ginzburg–Landau function [13, 14]. Besides a lattice QCD simulation at finite temper-

ature declares that the chiral phase transition is crossover in the practical case [15] (see also

Ref. [16] as a review). On the other hand, the study for the chiral structure in finite-density

systems is also be important for compact stars, which mostly consist of quarks and hadrons.

An e↵ective model analysis shows that the crossover chiral phase transition could be changed

into the first-order one at finite density [17] (see also Ref [18]). Unfortunately, no firm verifi-

cation for this suggestion has been given because lattice QCD does not work at finite chemical

potential, which is known as the sign problem for the Monte-Calro simulation. To confirm the

existence of this critical point at finite density (so-called the QCD critical point), we have to

rely on heavy-ion collision experiments. Thus the thermodynamics of the QCD chiral structure

is a much attractive subject not only theoretically but also experimentally [19, 20].

As well as temperature and chemical potential, several environmental sources modify the

chiral structure in realistic systems. For example, external magnetic backgrounds exist in

relativistic systems governed by the dynamics of chiral fermions; the early universe [21–23], in

central cores of neutron stars (or magnetars) with eB ' 1015 G [24], and heavy-ion collisions

with eB ⇠ m2

⇡ ' 1018 G [25–27]. The crucial role of external magnetic field is the magnetic

catalysis for the chiral symmetry breaking. Namely the chiral condensate in magnetic field is

enhanced, and fermions always acquire the dynamical mass. The magnetic catalysis is confirmed

from various theoretical approaches: the NJL model [28–31], the quark-meson model [32], the

MIT bag model [33], the lattice QCD simulation [34], the holographic model [35] (see also

Refs. [36,37] and references therein). This phenomenon is also applicable to condensed matter

with quasi-relativistic dispersions, i.e. the graphene [38,39] and the Weyl semimetals [40].

More interestingly, the magnetic response of the chiral symmetry is drastically changed in a

finite-density system. Contrary to magnetic backgrounds, density conduces to the restoration

of chiral symmetry. Thus it näıvely seems that the chiral condensate in a magnetized finite-

density system is simply determined through the competition between the enhancement by

magnetic field and the suppression by chemical potential. However the interplay between these

two e↵ects realizes a more fruitful chiral structure. That is, at a finite chemical potential,
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the chiral condensate is abolished by magnetic field. This curious magnetic response, which

is so-called the inverse magnetic catalysis, is originally suggested from the analysis of a chiral

model [31], and also this is rediscovered with a holographic QCD analysis [41, 42].

1.2 Rotational e↵ects on quantum theory

As a external source, rotation leads to interesting physics in many quantum systems. An in-

triguing feature of rotation is to play a role of magnetic background. By rotating an atomic

gas in a harmonic trap very rapidly, we can experimentally realize this correspondence [43–45].

Thus the Landau quantization and other magnetic phenomena are expected to be observable

in rotating media: The quantum Hall e↵ect is also induced by rotation instead of an external

magnetic field [46]. A quantum vortex is generated by applying a magnetic field to the Bose-

Einstein condensate or by rotating it [47, 48]. Besides the correspondence between magnetism

and rotation is applied to non-central heavy-ion collisions; the experimental generation of rotat-

ing quark-gluon plasma is indicated by a global spin polarization [49–54]. In the leading order

contribution of the derivative expansion of hydrodynamics, the vorticity appears as a fictitious

magnetic field. Hence the chiral magnetic e↵ect [55,56] and the chiral vortical e↵ect [57,58] are

categorized as similar transport phenomena in quark-gluon plasma (see Ref. [59] for a recent

review for the anomalous transport phenomena). We note that the magnetic aspect underlying

in rotation is not steady without an external source or an approximation. Indeed contrary to

these cases, the relation between magnetism and rotation becomes unclear in relativistic field

theory [60].

It is also important that rotation resembles density, and that this analogy is more ubiquitous

than the one between rotation and magnetic field. In nonrelativistic theory, such an analogy is

much clear in the sense that the Hamiltonian in rotating systems H�⌦ ·L may be regarded as

that with an e↵ective chemical potential µ
e↵

= ⌦ ·L. It might seem that the similarity between

rotation and density should hold for relativistic theories. However, this is not so trivial because

according to general relativity, an influence of acceleration is regarded as a deformation of

spacetime geometry. Thus the rotating quark-hadrons systems (heavy-ion collision, compact

star, etc.) should be investigated based on the quantum field theory in curved spacetime [61],

which is also utilized for the gravitational influence of the QCD vacuum structure [62–72] (see

also Refs. [73–75] for quantum lattice simulations). If the analogy between rotation and density

is found even in relativistic field theory, the QCD vacuum (especially the chiral structure)

should be modified by rotation, as well as the density e↵ect. From this motivation, in Ref. [76]

(one of the main parts in this thesis), the author and collaborators have first manifested the

rotational e↵ect on chiral symmetry. Subsequently to this work, the rotational e↵ect on the

QCD matter has received more considerable attention [77–80]. In this thesis, we treat rotation

as a thermodynamic source, and discuss the chiral symmetry breaking in rotating systems.

Furthermore motivated by the finite-density inverse magnetic catalysis, we analyze the chiral
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symmetry breaking in the presence of both magnetic field and rotation.

1.3 Boundary in rotating systems

In rotating systems, arbitrary spacetime point should rotate with keeping the causality con-

straint. This means that the thermodynamic limit (i.e. taking the infinitely large system size) is

not permitted for rotating systems; otherwise the velocity on the edge would exceed the speed

of light. Thus we should properly take into account the boundary e↵ect, which is inevitable

under the presence of rotation.

Here let us intuitively see how the boundary e↵ect is related to the rotational e↵ect on

fermionic systems. For simplicity we consider the zero temperature case of the rotating cylinder

with radius R and angular velocity ⌦ = ⌦ẑ. For a fermion with j (the z-component of the

total angular momentum), the e↵ective chemical potential reads ⌦j. Thus a mode with the

energy lower than ⌦j cannot be excited, and so it näıvely seems that the condensation of

fermionic paired states disappears at much large ⌦. However this is the case without considering

the boundary e↵ect. The transverse momentum is discretized in finite-size systems, and the

infrared mode has a finite energy gap as ⇠ 1/R. Furthermore such a gap depends on j, which

is understood as follows. A particle with large j possesses a wide orbital motion, which yields

a strong centrifugal force. Hence a larger energy cost is required to confine the particle in the

cylinder, and so each energy level (even the infrared gap) is pushed up as j grows. As a result,

we need to consider the competition between these two contributions: the e↵ective chemical

potential and the infrared energy gap. In this thesis, we prove that this infrared energy gap

always defeats the e↵ective chemical potential. This means that the rotational e↵ect is invisible

unless temperature exceeds the e↵ective chemical potential.

We note that the rotational e↵ect is visible in some environments. One of the examples

is finite temperature because the thermal screening for T � 1/R enables us to neglect the

boundary e↵ect. In this thesis from a numerical calculation, we confirm that the dynamical

mass are a↵ected by rotation at finite temperature. This is consistent with the fact that a

fermionic thermal radiation is induced by rotation at high temperature [81–83]. The second

example is the magnetic background. Once a magnetic field is applied, the wave function

of charged particles is localized with the width ⇠ `B ⌘ 1/
p
eB. At strong magnetic field

as `B ⌧ R, it is expected that the particles do not receive the existence of the boundary.

Therefore even at zero temperature, the rotational e↵ect is realized by a strong magnetic field.

In this thesis, we investigate the chiral structure in a magnetized rotating system. Also from

the viewpoint of the analogy between density and rotation, we expect that rotation could lead

to an inverse phenomenon of the magnetic catalysis. We name this novel phenomenon the

“rotational magnetic inhibition”.

We emphasize that the proper treatment of the boundary condition is quite important

for the analysis of rotating systems, which has first been pointed out by the auther and the
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collaborators [80]. If we took infinitely large radius, then the e↵ective chemical potential could

be larger than the energy gap. Indeed due to taking the thermodynamic limit for a rotating

system, the authors in Ref. [77] have arrived at the incorrect result that angular velocity leads

to phase transitions even at zero temperature.

1.4 Outline of this thesis

Chapter 2

We review the rotational e↵ect in quantum theory, utilizing the case of rotating scalar

particles. First we see how the rotational e↵ect appears in nonrelativistic theory. Also based

on quantum field theory in curved spacetime, we discuss the rotational e↵ect in the relativistic

case. Here we find that the boundary e↵ect is important to determine the energy spectrum of

rotating particles.

Chapter 3

We study the Dirac equation in the rotating cylinder, and discuss the discretization of the

radial momentum for rotating fermions. With the solutions, we construct the Dirac propaga-

tor to analyze the dynamical breaking of chiral symmetry in rotating systems. We explicitly

show that rotation never changes the thermodynamic quantities at zero temperature. Moreover

within the NJL model, we compute the dynamical mass in a finite-size cylinder at zero tem-

perature. We also calculate the dynamical mass in a rotating cylinder at finite temperature.

We find that high temperature enables rotation to lead to the chiral restoration.

Chapter 4

We investigate the Dirac equation with both rotation and magnetic field. We find that the

solution of the Dirac equation indicates that the modified Landau levels with rotation have

nondegenerate spectrum with angular momentum dependence. Based on the resulting energy

dispersion relation, we analyze the NJL model coupled with both magnetic field and rotation

at zero temperature. Then we find that the chiral restoration is driven by increasing magnetic

field. In other word, we obtain the inverse phenomenon of the magnetic catalysis induced

by rotation, which we shall name “rotational magnetic inhibition”. Also we discuss possible

physical implications of our results.

Chapter 5

We summarize this thesis and mention the outlooks.
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Appendix A

We solve the Dirac equation for rotating fermions without magnetic field, Eq. (3.6), and

obtain the eigenfunction to construct the Dirac propagator. Also we solve the Dirac equation

for rotating fermions with magnetic field, Eq. (4.9), and discuss only the energy spectrum,

which enable us to analyze the dynamical symmetry breaking in Chapter 4 even without the

eigenfunctions.

Appendix B

We discuss the Landau degeneracy factor in the cylindrical coordinate. From this, we

identify the momentum phase space for rotating magnetized fermionic systems, Eq. (4.15).

Appendix C

We briefly review the NJL model, which we employ in Chapters 3 and 4.



Chapter 2

Basics of rotating systems

The dynamics of quantum systems is modified by rotation, as well as the classical mechanics.

For the main purpose of this thesis, in this chapter, we briefly argue how the rotational e↵ect

should be treated quantum-mechanically. We review the nonrelativistic case, and based on this

we consider the relativistic rotating scalar.

2.1 Nonrelativistic theory

First to catch a brief picture of the rotational e↵ect on quantum particles, we see the non-

relativistic theory in a rotating system [47]. Let us consider the classical viscous fluid in a

container, and define the nonrotating Hamiltonian as H(x,p) (for instance, H(p) = p

2/(2m)

in the case without the interaction between particles). Once the container rotates with angular

velocity ⌦, this fluid also rotates with the same ⌦ due to the rotating wall of the container.

This means that the dynamics is described by H
rot

(x,p), which includes all the influence of

rotation. Since the rotating wall is a time-dependent external potential for the fluid, the prob-

lem is easily solved not in the rest frame (x,p) but in the frame co-rotating with the wall,

(x0,p0). Under the presence of rotation, the energy observed in the rest frame is the sum of the

energy observed in the rotating frame and the rotational energy shift. Namely the Hamiltonian

H
rot

(x0,p0) is given by [84]

H
rot

(x0,p0) = H(x0,p0)�⌦ ·L(x0,p0), (2.1)

where L = x

0⇥p

0 is angular momentum in the rotating frame. For the observer in the rotating

frame, the rotational e↵ect appears only in the rotational energy shift. We emphasize that this

comes from the coordinate transformation to the external potential of the wall seems stationary.

From this Hamiltonian, we find the following important properties of rotation.

(I) Inhomogeneity induced by rotation

In the case without the interaction term, the Hamiltonian in the rotating frame with⌦ = ⌦ẑ

7



8 Chapter 2. Basics of rotating systems

can be written as

H
rot

=
1

2m
(p�m⌦ẑ ⇥ x)2 � 1

2
m⌦2(x2 + y2) , (2.2)

where coordinate x and momentum p are redefined as the valuables in the rotating frame

(hereafter we drop the prime symbol). The second term corresponds to the potential leading

to the centrifugal force:

r


1

2
m⌦2(x2 + y2)

�

= m⌦⇥ �⌦⇥ x

�

. (2.3)

Namely in rotating systems, the potential in Eq. (2.2) realizes an inhomogeneity along the

direction perpendicular to the rotating axis. Because of such an inhomogeneity, the local free

energy is dependent on the radial coordinate r =
p

x2 + y2. Besides for a theory involving

a spontaneous symmetry breaking, the energy gap becomes a function of r. In this thesis,

within the Nambu–Jona-Lasinio model in rotating frames, we discuss the inhomogeneity of the

dynamical mass.

On the other hand, the first term in Eq. (2.2) is not irrelevant to the inhomogeneity. To

understand this, we consider the charged nonrelativistic particle in a constant magnetic field

B = Bẑ. If we adopt the gauge A = Bẑ ⇥ x/2, the corresponding Hamiltonian reads

H
mag

=
1

2m
(p� eBẑ ⇥ x/2)2 , (2.4)

which is equivalent to the first term in Eq. (2.2) under the replacement

eB $ 2m⌦ . (2.5)

This gives the classical correspondence between the Coriolis force F

Coriolis

= 2mẋ ⇥ ⌦ and

the Lorentz force F

Lorentz

= eẋ ⇥ B. The magnetized Hamiltonian (2.4) seems to break the

translational invariance on the xy-plane. However, magnetic field B = Bẑ does not lead

to the inhomogeneity as long as the system size is much larger than the magnetic length

scale `B ⌘ 1/
p
eB. Therefore, the kinetic term of rotating particles does not generate to an

inhomogeneity if angular velocity keeps the following condition:

1/
p
m⌦ ⌧ R , (2.6)

where R is the system size scale on the xy-plane. Indeed the above inequality is always satisfied

in the nonrelativistic limit; m⌦ = mc2 ⇥ ⌦/c = m⌦c ! 1, where c is the speed of light.

Furthermore the correspondence (2.5) implies that rotation could lead to magnetic phe-

nomena. In fact, rotation plays the role of magnetic field if the centrifugal force potential is

experimentally cancelled out by applying the external trapping potential

V
trap

=
1

2
m⌦2(x2 + y2) . (2.7)
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As a result the spectra for the motion on the xy-plane become the Landau levels. In this way,

a rotating Bose-Einstein condensate realizes the quantum Hall e↵ect [46] or forms quantum

vortex [47, 48]. Also in the study of heavy-ion collision, the rotational e↵ect is regarded as a

fictitious magnetic field. In the hydrodynamic description, a vorticity (i.e. the angular velocity

for local rotation) is defined as the derivative of fluid velocity. In the leading order level of

the derivative expansion, the higher order terms of the vorticity, such as the second term in

Eq. (2.4), do not appear. Thus magnetic field and vortex lead to similar anomalous transport

phenomena in quark-gluon plasma; j / B and j / ⌦, which are so-called the chiral magnetic

e↵ect [55, 56] and the chiral vortical e↵ect [57, 58], respectively.

(II) Analogy between rotation and density

From Eq. (2.1), we find that rotation resembles density rather than magnetic field. This

analogy is easily understood by identifying the rotational energy shift as an e↵ective chemical

potential:

µ` ⌘ ⌦` , (2.8)

where ` represents the quantum number for Lz (the z-component of L). Thus thermodynamic

quantities of rotating particles would be calculated similarly to that in finite-density systems.

For example, it is näıvely expected that the Bose-Einstein distribution function for the mode

with angular momentum ` is given by

n
BE

=
1

e�("�⌦`) � 1
, (2.9)

where " is the energy observed in the rest frame. The physical meaning of Eq. (2.9) is explained

as follows. Because of the centrifugal force, a particle tend to rotate at a large distance from

the rotation axis, and thus it possesses large angular momentum. As a result, for given ", the

distribution of modes with large ` is greater.

We should mention the exponent in Eq. (2.9). In finite-density systems, chemical potential

cannot be larger than the energy of particles so that the distribution function can be positive

at arbitrary temperature. On the other hands, it seems that the e↵ective chemical potential

could exceed the particle energy as ⌦ increases. Such a pathological situation necessarily occurs

because the nonrelativistic discussion is available only for small ⌦ = ⌦/c. Therefore for large

⌦, rotation should be treated based on general relativity. More precisely, we should employ the

quantum theory in non-flat spacetime that is called quantum field theory in curved spacetime.

Indeed in this framework, we derive that Eq. (2.9) is always positive, namely, " > ⌦` for

arbitrary `.
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2.2 Relativistic theory

We here consider relativistic particles confined in the system that has rotating boundary. As we

discussed in the previous section, the rotating frame is more appropriate in this case than the

inertial frame. From the relativistic viewpoint, thus we need quantum field theory in curved

spacetime. Compared with the flat (Minkowski) spacetime case, the major di↵erences are the

following three.

(I) Metric tensor

As the generalization of quantum field theory in flat spacetime, the contraction of indices

in vectors and tensors is taken with the corresponding metric. Besides the e↵ects of spacetime

geometry are introduced not only by the metric but also vierbein. These two are related as

gµ⌫ = ⌘ijeµi e
⌫
j , (2.10)

where ⌘ij is the Minkowski metric. Here Greek (Latin) indices, µ = t, x, y, z (i = 0, 1, 2, 3),

denote coordinate (tangent) space. We note that vierbein is not determined uniquely even if

a metric is designated. Indeed the representation of rotating Dirac fermions depends on the

choice of vierbein [85, 86].

(II) Covariant derivative

In gauge theory, the gauge-invariance of a derivative term is remained by introducing the

covariant derivative, i.e. @µ ! Dµ. Similarly to keep the invariance under the general coordinate

transformation, a corresponding covariant derivative is necessary:

@µ ! rµ . (2.11)

The specific expression ofrµ is dependent on what the derivative acts on, such as scalar, spinor,

and so on.

(III) Fock space

In general, the coordinate transformation changes not only operators but also the Fock

space, and thus the expectation value of physical quantities is dependent on the coordinate of

observer. Because of this, even if a field is observed as a particle (i.e. the positive-energy mode)

in the Minkowski coordinate, it can be observed as an antiparticle (i.e. the negative-energy

mode) in a di↵erent frame. This is mathematically described as the Bogoliubov transformation

of the creation and annihilation operators. Once the Bogoliubov coe�cient becomes nonzero,

a particle production takes place. Indeed, such a phenomenon in a black hole and in a linearly

accelerating frame are called the Hawking and Unruh radiation, respectively. It should be

mentioned that both cases possesses a horizon (a fictitious horizon), and that the existence of
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it plays the essential role to change the vacuum state. Therefore this is not the case for the

transformation to rotating frames (at least as long as the causality constraint holds), as we

discuss in a later part of the section.

Now let us see the free real scalar theory. The action is described by

S� =

Z

d4x
p

| det g|
h

gµ⌫@µ� @⌫�+m2�2

i

, (2.12)

where the covariant derivative for scalar is given by rµ = @µ. The generalized four dimensional

volume factor d4x
p| det g| is invariant under the general coordinate transformation. From the

action (2.12), the classical equation of motion for �(x) is obtained as
"

1
p| det g| @µ

p

| det g| gµ⌫@⌫ +m2

#

�(x) = 0 . (2.13)

When we consider an infinitely long rotating cylinder with angular velocity ⌦ = ⌦ẑ with ⌦ > 0

(see Fig. 2.1), the corresponding metric tensor reads

gµ⌫ =

0

B

B

B

@

1� (x2 + y2)⌦2 y⌦ �x⌦ 0

y⌦ �1 0 0

�x⌦ 0 �1 0

0 0 0 �1

1

C

C

C

A

. (2.14)

Since we are interested in a physically possible rotating system, the relativistic causality in

terms of rotation should be respected everywhere in the system. Thus it is necessary that the

velocity on the edge of the cylinder cannot be grater than the speed of light:

v
edge

= R⌦  1 , (2.15)

where the radius of the cylinder is defined as R (see Fig. 2.1).

In the rotating frame (2.14), the Klein–Gordon equation (2.13) is reduced to


n

@
0

+ ⌦(x@y � y@x)
o

2

� @2
1

� @2
2

� @2
3

+m2

�

�(x) = 0 . (2.16)

The product of the angular velocity and angular momentum corresponds to the rotational

energy, and for ⌦ = 0 this is the same as the equation in the Minkowski spacetime. The

equation is a natural form because the energy of particles in a rotating frame is shifted by the

rotational energy; H ! H �⌦ ·L.

If we adopt the cylindrical coordinate, the solution for Eq. (2.16) is easily found as

� = e�iEt+ipzz+i`✓J`(p?r) (2.17)

with the Bessel function J`(p?r). Also the energy spectrum is obtained as

E = ±"� ⌦` , (2.18)
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Figure 2.1: Rotating cylindrical system. Because of the relativistic causality, the velocity on

the edge of the cylinder cannot exceed the speed of light; v
edge

= R⌦  1

where the radial momentum p? is defined by " =
p

p2? + p2z +m2. We note that " is the energy

of rotating particles observed in the Minkowski coordinate, and thus E corresponds to the

energy seen by the co-rotating observer.

Since the angular momentum ` can be arbitrary integer, the spectrum (2.18) seems un-

bounded. This problem comes from the invalid assumption that the system size is infinitely

large. If we consider the rotating system that dose not violate the causality constraint, the

radius of the rotating cylinder R cannot be infinite because of R  1/⌦ < 1. As a result,

the radial momentum p? should be discretized unlike pz (we here suppose an infinitely long

cylinder along the z-direction).

Here let us impose the Dirichlet boundary condition, i.e. J(p?R) = 0. Then the discrete

momentum is obtained as

p? ⌘ p`,k = ⇠`,k/R , (2.19)

where ⇠`,k represents the kth zero of J`(z). This discretized momentum ensures that the spec-

trum (2.18) is definitely bounded, as follows. First the lower bound of E = "�⌦` is determined

as

E � ⇠`,1
R

� ⌦` =
1

R
(⇠`,1 �R⌦`) . (2.20)

Also the lowest zeros satisfy ⇠`,1 > |`|, which follows from the following inequalities [87]:

⇠`,1 = 2.40483 for ` = 0 ,

⇠`,1 > `+ 1.855757`1/3 + 0.5`�1/3 for ` � 1 .
(2.21)

Therefore E = "� ⌦` is lower-bounded as long as causality is kept (i.e. R⌦  1). Similarly, it

is proved that the negative-sign spectrum is upper-bounded; E = �"�⌦` < 0. In Fig. 2.2, we

plot the lowest positive-sign spectrum for pz = m = 0, i.e. E = ⇠`,1/R � ⌦`. This plot shows

that the ground state is always ` = 0 even for ⌦ > 0.
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Figure 2.2: Positive-sign spectrum in Eq. (2.18) with pz = m = 0 and p`,k = p`,1 = ⇠`,1/R [60].

The ` = 0 mode always corresponds to the ground state. In rotating frames (⌦ 6= 0), the

positive ` modes are more energetically-favorable than the ` modes.

We should here mention the Fock space in the rotating coordinate. As discussed above,

the sign of E coincidences with that of ", and thus the positive- and negative-energy are never

mixed even under the transformation between the Minkowski and rotating coordinate. Hence

the rotating vacuum is equivalent to the Minkowski one, and the creation and annihilation

operators are also the same in both frames; |0
M

i = |0
R

i ⌘ |0i, and a†
M

= a†
R

⌘ a†. Because of

this, the zero temperature field theory is unchanged regardless whether rotation is applied or

not. In other words, rotation cannot be realized in the vacuum.

Contrary to the zero temperature case, rotation definitely a↵ects the system at finite tem-

perature. As discussed in Ref. [84], the rotational e↵ect on thermodynamics is introduced

through the density operator

⇢ = e��(H�⌦·L)/ tr
⇥

e��(H�⌦·L)

⇤

, (2.22)

where H is the Hamiltonian corresponding to the energy observed in the Minkowski frame.

Hence the thermodynamics in rotating systems is constructed in the imaginary-time formalism,

similarly to the one in the flat spacetime. For example the Bose-Einstein distribution function

for a rotating particle is obtained as

n
BE

(`, k, pz) ⌘ ha†`,k,pza`,k,pzi�
=

1

e�("�⌦`) � 1

(2.23)

with " =
q

p2`,k + p2z +m2. Here the thermal expectation value is defined as hOi� ⌘ tr[⇢O]. The

inequality " > ⌦` for arbitrary ` ensures that the expectation value in the rotating Minkowski
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frame is reproduced from Eq. (2.23) in the zero temperature limit:

ha†`,k,pza`,k,pzi� �!
�!1

h0|a†`,k,pza`,k,pz |0i = 0 . (2.24)

Therefore the distribution for rotating bosons is thermodynamically well-defined, as mentioned

in the previous section.

We emphasize again that the boundary e↵ect is most essential in the above argument. If

we permitted an infinitely large R, the radial momentum p? would be continuous valuable

independent of angular momentum `. In this case, since "  ⌦` could be allowed for a large `,

we would not arrive at Eq. (2.24). Similarly such an undesirable situation emerges for rotating

fermions unless we properly treat the boundary e↵ect. We also note that such a boundary

condition is physically necessary because we assume that the rotation of relativistic particles

is driven due to the rotating wall of the cylindrical system. The same is true for fermionic

matter. Unfortunately the boundary condition for spinors in rotating systems is not so trivial

as scalars. In the following chapter, we discuss the boundary condition for rotating fermions in

a finite-size cylinder, and then obtain a discretized momentum similar to Eq. (2.19).



Chapter 3

Chiral symmetry with rotation

Chiral symmetry is one of the most important concepts to identify the state of the QCD matter.

Its breaking structure is quite sensitive to environmental sources, such as temperature, density,

and electromagnetic backgrounds. In this chapter, from the viewpoint of the analogy to the

density e↵ect, we discuss the rotational e↵ect of the chiral symmetry breaking.

3.1 Dirac equation

The Dirac theory in the curved spacetime reads

S =

Z

d4x
p

| det g|  ̄⇥i�µ(@µ + �µ)�m
⇤

 , (3.1)

Gamma matrices in flat spacetime and the one in curved spacetime are related as �µ = �ieµi .

The covariant derivative rµ = @µ + �µ is defined with

a�ne connetcion : �µ = � i

4
!µij�

ij ,

spin connetcion : !µij = g↵�e
↵
i (@µe

�
j + ��µ⌫e

⌫
j ) ,

spin matrix : �ij =
i

2
[�i, �j] ,

(3.2)

where �↵µ⌫ denotes the Christo↵el symbol. From the fermion action (3.1), the Dirac equation

in a curved spacetime is given by

⇥

i�µ(@µ + �µ)�m
⇤

 = 0 . (3.3)

Now let us assume that fermions confined in a rotating cylindrical container with angular

velocity ⌦ = ⌦ẑ (see Fig. 2.1). Namely we assume that a rigid rotation is realized in a fermionic

fluid system. Although realistic rotating QCD systems might not be so simple, such a ideal

picture should be quite useful to pick up typical features of rotating fermions. For example,

for the rotating matter generated in the ultrarelativistic heavy-ion collisions, the transverse

size scale of it corresponds to the radius R in the cylinder (see Figure 3.1). Also the angular

15
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Figure 3.1: Schematic picture of the rotating matter produced in heavy-ion collision experi-

ment. Noncentral heavy-ion collisions on the xy-plane produces the hot QCD matter with a

finite angular momentum along the z-direction. The rotating cylinder depicted in Fig. 2.1 is

the simplest version of this system.

velocity of the boundary of the rotating cylinder is replaced with the one driven externally by

the colliding heavy-ions.

The corresponding metric is hence the same as Eq. (2.14):

gµ⌫ =

0

B

B

B

@

1� (x2 + y2)⌦2 y⌦ �x⌦ 0

y⌦ �1 0 0

�x⌦ 0 �1 0

0 0 0 �1

1

C

C

C

A

. (3.4)

In this thesis we adopt the vierbein as

et
0

= ex
1

= ey
2

= ez
3

= 1, ex
0

= y⌦, ey
0

= �x⌦ , (3.5)

and zero for other components. From the above metric and vierbein, we reduce the Dirac

equation in the rotating frame to the following form:
"

i�0
⇢

@
0

+ ⌦

✓

x@
2

� y@
1

+
i

2
�12

◆�

+ i�1@
1

+ i�2@
2

+ i�3@
3

�m

#

 = 0 . (3.6)

As well as in scalar theory, rotation here appears only through the rotational energy shift,

H ! H � ⌦(Lz + Sz). Namely the Dirac fermions in rotating frames behave as if they were

put at the finite-density systems with a chemical potential

µ = ⌦(`+ sz) , (3.7)

where the quantum number ` and sz denote the eigenvalue for Lz and Sz, respectively. We

should note that due to this similarity, the fermions under rotation also involve the sign problem

for Monte Carlo simulations [73].
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In the Dirac representation, the positive-energy solution with positive and negative helicity

for the Dirac equation (3.6) are obtained as follows:

u
+

=
e�iEt+ipzz

p
"+m

0

B

B

B

@

("+m)�`,k
0

pz �`,k
ip`,k '`,k

1

C

C

C

A

, u� =
e�iEt+ipzz

p
"+m

0

B

B

B

@

0

("+m)'`,k
�ip`,k �`,k
�pz '`,k

1

C

C

C

A

, (3.8)

where " ⌘ |E +⌦(`+ 1/2)| is the energy observed in the Minkowski frame, and the transverse

momentum is defined with p2`,k = "2 � p2z � m2. The quantum number k is determined from

the boundary condition that we discuss later, and so this k is slightly di↵erent from that for

rotating scalars, i.e. Eq. (2.19). The solution in the above expressions is not normalized, but

the normalization factors are properly given once the momentum phase space with respect to

` and k is identified. In the above solutions we introduce the scalar functions

�`,k ⌘ ei`✓J`(p`,kr) , '`,k ⌘ ei(`+1)✓J`+1

(p`,kr) , (3.9)

where J`(x) is the `th Bessel function of the first kind. From the charge conjugation v± = i�2u⇤
±,

the negative-energy antiparticle solutions are also obtained as

v
+

=
eiEt�ipzz

p
"+m

0

B

B

B

@

�ip`,k '
⇤
`,k

�pz �
⇤
`,k

0

("+m)�⇤
`,k

1

C

C

C

A

, v� =
eiEt�ipzz

p
"+m

0

B

B

B

@

�pz '
⇤
`,k

�ip`,k �
⇤
`,k

�("+m)'⇤
`,k

0

1

C

C

C

A

. (3.10)

The detail of the calculation is shown in Appendix A.1.

Here we should mention the spin of u±. Since the z-component of the total angular momen-

tum is a good quantum number, u± is an eigenfunction for it. Indeed the azimuthal angular

momentum of spin-up and -down are related to each other as ` = `
+

= `� � 1 so that both of

the up and down spin states has the same total angular momentum; `
+

+ 1/2 = `� � 1/2 ⌘ j.

For the same reason, the solution u± consists of �`,k and '`,k, which correspond to the `
+

and

`� state, respectively.

3.2 Momentum discretization

In rotating systems, the boundary e↵ect should be properly taken into account because of

R  1/⌦ < 1. In the scalar case, the momentum discretization is easily obtained with

the Dirichlet boundary condition. Unfortunately such a trivial condition is not applicable to

rotating fermions [83]. Instead it is necessary to find a di↵erent boundary condition for rotating

fermions.
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Here we adopt the boundary condition about the fermionic current. If the vector current

jµ =  ̄�µ is conserved in a curved spacetime, the following equation holds:

1
p| det g|@µ(

p

| det g| jµ) = 0 . (3.11)

This is equivalent to the boundary condition that there is no incoming flux of the fermions:
Z

V

dV @↵(
p

| det g|  ̄�↵ ) =
Z

@V

d⌃↵

p

| det g|  ̄�↵ = 0 , (3.12)

where ↵ stands for the spatial components x, y, z in coordinate space. In the rotating coordinate

defined by Eq. (3.4), the above equation is reduced to

R

Z 1

�1
dz

Z

2⇡

0

d✓  ̄�r 
�

�

�

r=R
= 0 . (3.13)

Here we introduced �r ⌘ �1 cos ✓ + �2 sin ✓ that follows from �1@
1

+ �2@
2

= �r@r + r�1�✓@✓.

Expanding  (x) with the complete set of u±(x) and v±(x), Eq. (3.13) gives the boundary

condition at r = R for the arbitrary solution of Eq. (3.6). Namely after performing the ✓-

integral, Eq. (3.13) are represented only with the liner combination of the following products:

J`(p`,kR)J`+1

(p`,k0R) , J`+1

(p`,kR)J`(p`,k0R) ,

J`(p`,kR)J`+1

(p�`�1,k0R) , J`+1

(p`,kR)J`(p�`�1,k0R) .

In order to realize the no-flux condition for the arbitrary solution of Eq. (3.6), it is necessary

to vanish all of the four simultaneously. Therefore the radial momentum should be discretized

as follows [88, 89]:

p`,k =

8

<

:

⇠`,k/R for ` = 0, 1, . . .

⇠�`�1, k/R for ` = �1,�2, . . .

= ⇠|j|�1/2,k/R .

(3.14)

This expression is consistent with the fact that the total angular momentum j = ` + 1/2 is a

good quantum number.

Let us discuss the momentum phase space in the cylindrical systems. The modification of

the phase space is obtained from the normalization for u± and v±. Because of the discretiza-

tion (3.14), the inner products of �`,k and '`,k is calculated as

Z R

0

rdr

Z

2⇡

0

d✓ �⇤
`,k�`0k0 =

Z R

0

rdr

Z

2⇡

0

d✓ '⇤
`,k'`0k0 = ⇡R2J`+1

(p`,kR)2�``0�kk0 . (3.15)

Here we used the following relation:

Z R

0

dr r J`(p`,kr)J`(p`k0r) =

Z R

0

dr r J`+1

(p`,kr)J`+1

(p`k0r) =
R2

2
�kk0J`+1

(p`,kR)2 . (3.16)
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Therefore in the cylindrical coordinate, the integration of the momentum phase space is changed

as
Z

dpxdpy
(2⇡)2

I(px, py) ! 1

⇡R2

1
X

`=�1

1
X

k=0

1

J`+1

(p`,kR)2
I(`, k) . (3.17)

We note that for ⌦ = 0 and R ! 1, this modified phase space should become the one in the

flat Minkowski spacetime. In other words, as R increases, the `- and k-sum involving these

factors is approximately reduced as the integral of the radial momentum:

1

⇡R2

X

k

1

J`+1

(p`,kR)2
⇡ 1

2⇡

X

k

p`,k �p`,k �!
R!1

Z

dp?

(2⇡)2
, (3.18)

where�p`,k ⌘ p`,k+1

�p`,k. We have numerically confirmed that this approximation is applicable

for not too large ` ; for example, the deviation at ` = 100 and k = 10 is around one percent,

and the precision grows for smaller `.

3.3 NJL model

To compute the chiral condensate in rotating frames, we first construct the Dirac propagator for

rotating fermions. From u±(x) and v±(x), which build  (x) and  ̄(x), the following propagator

is straightforwardly obtained:

S↵�F (x, x0) = i

Z

dp0dpz
(2⇡)2

1
X

`=�1

1
X

k=1

1

⇡R2J`+1

(p`,kR)2

⇥ e�ip0(t�t0)+ipz(z�z0)

(p0 + ⌦j)2 � "2 + i✏
S ↵�(p; r, ✓, r0, ✓0) .

(3.19)

Here we defined the spinor matrix as

S =

0

B

B

B

@

(p
0

+m)�`,k�0
`,k 0 �pz�`,k�0

`,k ip`,k�`,k'0
`,k

0 (p
0

+m)'`,k'0
`,k �ip`,k'`,k�0

`,k pz'`,k'0
`,k

�pz�`,k�0
`,k �ip`,k�`,k'0

`,k (�p
0

+m)�`,k�0
`,k 0

ip`,k'`,k�0
`,k pz'`,k'0

`,k 0 (�p
0

+m)'`,k'0
`,k

1

C

C

C

A

, (3.20)

where we used simpler notations for the matrix elements; �`,k(r, ✓) ⌘ �`,k, �`,k(r0, ✓0) ⌘ �0
`,k,

and so on. For ⌦ = 0 and R ! 1, this propagator should be the one in the flat Minkowski
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spacetime:

SF (x, x
0)
�

�

⌦=0,R!1

= i

Z

d4p

(2⇡)4
e�ip0(t�t0)+ipz(z�z0)

(p0)2 � "2 + i✏

"

(�0p0 � �3pz +m)J
0

(p?|r � r

0|)

� i
n

(r cos ✓ � r0 cos ✓0)�1 + (r sin ✓ � r0 sin ✓0)�2
op?J1(p?|r � r

0|)
|r � r

0|

#

= i

Z

d4p

(2⇡)4
�µpµ +m

(p0)2 � "2 + i✏
e�ip·(x�x0

)

=

Z

d4p

(2⇡)4
i

�µpµ �m+ i✏
e�ip·(x�x0

) .

(3.21)

Here the k-sum is replaced as Eq. (3.18), and for the `-sum we use the following summation

formula:

1
X

`=�1

ei(`+⌫)✓J`+⌫(p?r)e
�i`✓0J`(p?r

0) =

✓

rei✓ � r0ei✓
0

|r � r

0|
◆⌫

J⌫(p?|r � r

0|) . (3.22)

For the ideal framework to analyze the rotational response to chiral condensate, we employ

the Nambu–Jona-Lasinio model [7,8], which is an e↵ective model including only the contribution

of the leading order in the large N
c

limit. In a rotating frame, this e↵ective Lagrangian reads

L
NJL

=  ̄ i�µ(@µ + �µ) +
G

2

⇥

( ̄ )2 + ( ̄i�
5

 )2
⇤

. (3.23)

At the one-loop order in the mean-field approximation, the e↵ective thermodynamic potential

at zero temperature is obtained by introducing the covariant derivative �µ to Eq. (C.5) with

N
f

= N
c

= 1, m
0

= 0 and � ! 1:

�
e↵

[m(r)] =
1

V
4

Z

d4x
m(r)2

2G
� 1

V
4

Tr ln
⇥

@µ + �µ �m(r)
⇤

, (3.24)

where V
4

is the volume factor in four dimensional spacetime, i.e. V
4

= ⇡R2⇥(area of the tz-plan).

Since rotation involves the centrifugal force, we here assume the thermodynamic potential with

the inhomogeneity along the radial direction. We note that such an assumption is necessary

even without rotation because the radial size of the cylindrical systems is finite. To determine

the dynamical mass (or chiral condensate), we have to self-consistently solve the gap equation

that corresponds to the optimization condition of the e↵ective potential, ��
e↵

[m(r)]/�m(r) = 0.

For such a functional gap equation, however, it is technically di�cult to find the exact solu-

tion [90]. In our analysis, we utilize the local density approximation; we suppose that the

spatial fluctuation of the dynamical mass are negligible compared with the mass itself, namely,

@rm ⌧ m2 [77]. Under this approximation, the Dirac operator can be diagonalized with the
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complete set of the eigenfunctions u±(x) and v±(x), as well as in the homogeneous case. Then

the e↵ective potential in the local density approximation is obtained as the decomposed form

of the vacuum part and the rotational part:

�
e↵

[m(r)] =
1

V
4

Z

d4x
m(r)2

2G
+ �

0

[m(r)] + �
⌦

[m(r)] , (3.25)

with

�
0

=� 1

V
4

Z

d4x
1
X

`=�1

1
X

k=1

J`(p`,kr)2 + J`+1

(p`,kr)2

⇡R2J`+1

(p`,kR)2

⇥
Z 1

�1

dpz
2⇡

q

p2z + "2
tr

,

(3.26)

�
⌦

=� 1

V
4

Z

d4x
1
X

`=�1

1
X

k=1

J`(p`,kr)2 + J`+1

(p`,kr)2

⇡R2J`+1

(p`,kR)2
✓ (⌦|`+ 1/2|� "

tr

)

⇥
Z q`,k

�q`,k

dpz
2⇡

"

⌦|`+ 1/2|�
q

p2z + "2
tr

#

.

(3.27)

Here q`,k ⌘
q

⌦2(`+ 1/2)2 � p2`,k �m(r)2 is an e↵ective Fermi momentum along the radial

direction, and "
tr

=
q

p2`,k +m(r)2 is the transverse energy. In the above expressions, the

terms proportional to J`(p`,kr)2 and J`+1

(p`,kr)2 correspond to the spin-up (`
+

= `) and spin-

down (`� = ` + 1) modes, respectively. From the radial momentum discretization (3.14),

we confirm that each ingredient in the momentum sum is unchanged under the replacement

`$ �`� 1, or equivalently j $ �j. Therefore the contributions of fermions (the j > 0 states)

and antifermions (the j < 0 states) are equivalently included in �
⌦

, and rotation a↵ects particle

and antiparticle similarly. This is a big di↵erence from the real density e↵ect, which works to

fermions and antifermions oppositely.

3.4 Rotation at zero temperture

Because of the step function in �
⌦

, which originates from the zero-temperature distribution

function with the e↵ective chemical potential µ` ⌘ ⌦(`+1/2), only energy modes that satisfies

"
tr

< ⌦|`+1/2| gives a rotational contribution. In the competition between ⌦|`+1/2| and "
tr

,

it is quite crucial whether the cylinder radius is finite.

Let us first consider nonnegative ` modes with m(r) = 0. If we took the infinite volume

limit, R ! 1, the radial momentum could be continuous and there would exist a zero mode.

In cylindrical systems with a finite radius, however, the energy dispersion has the nonzero lower

bound as

"
tr

= p`,k � ⇠`,1/R > 0 . (3.28)
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Figure 3.2: Infrared dispersions of rotating fermions. Since j = ` + 1/2 is a good quantum

number, the spectra are symmetric with respect to ` = �1/2, as shown in Eq. (3.14). The

` = 0 (i.e. j = 1/2) and ` = �1 (i.e. j = �1/2) mode are the lowest energy states.

From this relation we obtain

"
tr

� ⌦|`+ 1/2| � 1

R

h

⇠`,1 � ⌦R(`+ 1/2)
i

� 1

R

h

⇠`,1 � (`+ 1/2)
i

> 0 ,
(3.29)

which follows from the property of the Bessel zero in Eq. (2.21). Similarly it can be checked

that "
tr

> ⌦|` + 1/2| is true for arbitrary ` < 0. In Figure 3.2, we plot the infrared spectra

p`1 � ⌦|` + 1/2| as a function of l. Therefore regardless of the magnitude of angular velocity,

rotation never contributes to the e↵ective thermodynamic potential, which means �
⌦

= 0. We

should emphasize again that this consequence results from the causality constraint R⌦  1 and

the boundary e↵ect leading to the infrared gap ⇠ 1/R.

To clarify the role of the boundary gap for rotation, it is worthwhile to refer the thermo-

dynamics at finite density. In a system with finite chemical potential, microscopic quantities

(e.g. the Dirac eigenvalue) should be modified even at zero temperature. This is not the case

for macroscopic quantities. Because of the distribution function ✓(µ � "), the density e↵ects

on thermodynamics never emerge at zero temperature unless the chemical potential is lager

than the infrared threshold, i.e. fermion mass. In the finite-density QCD, this is known as the

Silver Blaze problem [91]. We see a similar situation in rotating systems. It näıvely seems that

rotation induces the alignment of the angular momentum. If so, chiral condensate with zero

total angular momentum is no longer most favored. However the e↵ective chemical potential

⌦(` + 1/2) cannot exceed the infrared threshold p`,k = ⇠`1/R (see Figure 3.3). Hence the ro-

tational e↵ect on chiral condensate is never realized at zero temperature, as we have discussed
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Figure 3.3: Schematic picture of the rotational e↵ect on fermionic matter at zero temperature.

In the finite-size cylinder with radius R, fermions possess the infrared energy gap (the left

figure). If the number of occupied modes were changed for finite ⌦, then rotation would

a↵ect thermodynamic quantities (the right figure). However, the e↵ective chemical potential

⌦(` + 1/2) never exceed the infrared energy gap ⇠`,1/R, no matter how large ⌦ is (the middle

figure). Therefore the rotational e↵ect does not appear at zero temperature. This is similar

to the density case with a chemical potential smaller than the lowest energy gap i.e. the mass

threshold.

above.

3.5 Dynamical mass at zero temperature

We discuss the chiral symmetry breaking in finite-size systems at zero temperature. Due to the

absence of the rotational e↵ect, the spatial profile of the dynamical mass is computed as the

solution for the gap equation

m(r)

G
= m(r)

Z 1

�1

dpz
2⇡

1
X

`=�1

1
X

k=1

f(p ;⇤, �⇤)

⇡R2J`+1

(p`,kR)2
J`(p`,kr)

2 + J`+1

(p`,kr)
2

q

p2`,k + p2z +m(r)2
, (3.30)

which follows from ��
0

[m(r)]/�m(r) = 0. Here to remove the ultraviolet divergence, we intro-

duced the cuto↵ function

f(p ;⇤, �⇤) =
sinh(⇤/�⇤)

cosh(p/�⇤) + cosh(⇤/�⇤)
(3.31)

with p ⌘
q

p2`,k + p2z. In the numerical calculation, we adopt the parameters in Table 3.1. Here

Gc = 19.65⇤�2 is the critical value of G for R ! 1 and �⇤/⇤ = 0.05. For ⇤ ' 1GeV (the

standard choice in QCD), the smaller radius in Table 3.1 corresponds to the typical radial scale

of heavy ion; R = 30⇤�1 ' 6 fm.

We numerically solve Eq. (3.30) and show the r-dependence of its solution in Figure 3.4.

In the region with small r, we see the plateau independent o↵ the system size. On the other

hand, as r grows there appears the boundary e↵ect that suppresses the dynamical mass. The

vanishing of the mass at r = R results from the boundary condition (3.13). We note that
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Figure 3.4: Inhomogeneous dynamical mass as a function of the radial coordinate r [80]. In

the region expect for the vicinity of the boundary r ' R, the local density approximation is

legitimate. At the boundary r = R, the mass should be zero because of the condition (3.13).

For large R, the oscillation behavior becomes smaller, and it eventually disappears in the

thermodynamic limit R ! 1.

our analysis is valid only for not too large r because the local density approximation is valid

only for |@rm| ⌧ m2. In Fig. 3.4, we also see that the dynamical mass has an oscillational

behavior at r ' 0.9R, which is a cuto↵ artifact in the discrete sum of ` and k. Such an

oscillation should completely disappear in the limit of R ! 1 where the discrete sum becomes

continuous. Indeed we confirm that the oscillation for R = 100⇤�1 is smaller and comes closer

to the boundary than the one for R = 30⇤�1. Contrary to this, the boundary e↵ect is generally

enhanced for small R, as shown in Fig. 3.4. At the same time, the cuto↵ artifact in the `- and

k-sum becomes larger (more badly oscillating) because the spacing in discrete p`,k grows as R

decreases. Furthermore although the magnitude of the dynamical mass is quite sensitive to the

coupling G, the boundary e↵ect is irrelevant to the coupling. From numerical calculation with

di↵erent G, we have actually confirmed that the structures of the spatial profile, i.e. both the

plateau at 0  r . 0.8R and the oscillational behavior at r & 0.8R are unchanged even if G is

Table 3.1: Parameters in the numerical calculation for Eq. (3.30)

In Fig. 3.4 R [⇤�1] G [Gc] �⇤ [⇤]

red line 30 0.61 0.05

blue line 100 0.61 0.05
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changed.

3.6 Environments a↵ected by rotation

So far we have seen that rotation does not a↵ect macroscopic (i.e. thermodynamic) quantities.

This conclusion essentially stems from the fact that the physical scale of wave functions is

characterized only by radius R, which cannot be greater than ⌦�1 because of the causality

constraint R⌦  1. Because of this, the infrared energy gap (⇠ R�1) is always larger than the

rotational energy shift (⇠ ⌦). The situation should be changed, however, if other physical scale

enters into theory. In other words, a parameter much stronger than R�1 enables us to neglect

the boundary e↵ect, and thus rotation can contribute to thermodynamics. In what follows, we

see two possible situations where the rotational e↵ect is visible.

Finite temperature

The first is the finite-temperature case. In this case, we employ the Fermi distribution

function
⇥

e�{"�⌦(`+1/2)} + 1
⇤�1

instead of ✓
�

⌦(` + 1/2) � "
�

, and then the rotational e↵ect is

visible even for " > ⌦(` + 1/2). Therefore, the dynamical mass is obtained as the solution for

the following gap equation:

m(r)

G
= m(r)

Z 1

�1

dpz
2⇡

1
X

`=�1

1
X

k=1

1

⇡R2J`+1

(p`,kR)2

⇥ J`(p`,kr)
2 + J`+1

(p`,kr)
2

q

p2`,k + p2z +m(r)2

"

f(p ;⇤, �⇤)� 2

e�{"�⌦(`+1/2)} + 1

#

,

(3.32)

Here we should insert the cuto↵ function for the vacuum contribution, while the thermal con-

tribution does not require it. The factor 2 of the Fermi distribution function comes from the

fact that fermions and antifermions are not distinguished for the rotational e↵ect.

In Figure 3.5, we plot the numerical solution for the above equation with T = 0.2⇤, R =

30⇤�1, and G, �⇤ in Table 3.1. In Fig. 3.5 rotation leads to decreasing the dynamical mass

for a fixed r. Thus we confirm that the rotational energy shift plays the role of an e↵ective

chemical potential. For a fixed ⌦, the suppression becomes strong at large r. This stems from

the enhancement of the centrifugal force for large r. The oscillations of the dynamical mass is

the cuto↵ artifact same as that in Fig. 3.4. Indeed both in Figs. 3.4 and 3.5, such behaviors

emerge at r ' 0.9R. For small ⌦, the damping of the mass is not so large except for the vicinity

of the boundary r = R. For example, for ⌦R = 0.3 (the blue line), we find that |@rm(r)| is
less than 5% of m2(r) within 0  r . 0.4R. Therefore our analysis with the local density

approximation is more reliable for small ⌦. On the other hand, for ⌦R = 0.5 (the yellow line),

the derivative terms of m(r) should be taken into account. This is quite natural because the

rotational e↵ect with large ⌦ generates more intense inhomogeneity.
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Figure 3.5: The rotational e↵ect on the dynamical mass as the solution for Eq. (3.32). The

dynamical mass is more suppressed when the e↵ective chemical potential or angular momentum

⌦ becomes large. The oscillation at r ' 0.9R is the cuto↵ artifact similar to that in the zero

temperature calculation (see Fig. 3.4)

Besides, a rotating system at finite temperature is related to the recent topic of the QCD

physics. Let us consider a high-temperature system with T � R�1 � ⌦. In such a case, the

bulk constraint at the boundary is no longer relevant because of the thermal screening. In

fact, for rotating right-handed fermions with small ⌦, we analytically derive the following axial

current:

j

CVE

A

=
T 2⌦

12
+

⌦2⌦

48⇡2

+O(⌦R�2) for T � R�1 � ⌦ , (3.33)

which is originally discussed for the neutrino radiation in a rotating black hole [81–83]. Nowa-

days this current is investigated in the context of the transport phenomenon coupled with the

vorticity generated in non-central heavy-ion collisions. The vorticity generated after the colli-

sion is evaluated as ⌦ ' 1MeV [54], which is much smaller scale compared with the temperature

T ⇠ ⇤
QCD

. Therefore the vortex in the collisions satisfies T � ⌦ � R�1 with the vortex size R.

The current generation by vortex in the heavy-ion collision is called the chiral vortical e↵ect.

An interesting aspect of the chiral vortical e↵ect is that it is strongly connected to quantum

anomaly. Independently of Ref. [81], the same expression is obtained with the gauge-gravity

duality [92, 93]. and then it is discussed that the coe�cient of the current is yielded by the

chiral anomaly coupled with Riemann tensors. However, this seems a contradiction with the

current calculated in rotating frames, which has zero Riemann tensor. Hence we should clarify

how the anomalous aspect of the chiral vortical current is extracted from the Dirac field theory

in rotating frames [94].
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Figure 3.6: Di↵erence between the radial parts of the wave function without/with magnetic

field. In general, the Bessel function does not converge even at infinity (although it is known

that J`(z) ⇠ 1/z for z � |`2 � 1/4| [95]). On the other hand, the Landau wave function is

localized with the width characterized by the magnetic length `B = 1/
p
eB. If magnetic field

is quite large as `B ⌧ R, hence, magnetized fermionic matter is a↵ected by rotation even at

zero temperature.

Magnetic field

The second environment that rotation a↵ects is magnetized systems. Under a strong mag-

netic field, the Landau wave-function is localized with the length scale ⇠ `B = 1/
p
eB (see

Figure 3.6). If this wave function is much squeezed than system size, i.e.
p
eB � R�1, then the

boundary e↵ects are essentially irrelevant to dynamics. Also in this case, the radial momentum

is characterized by the Landau level, which is independent of angular momentum. This is dif-

ferent from the rotating systems without magnetic field, where the radial momentum depends

on `, as we have seen in Eq. (3.14). Therefore there always exist exited modes that exceed

the e↵ective chemical potential. Namely a strong magnetic field supports the rotational e↵ect

to be visible even at zero temperature. Following this argument, in Chapter 4 we discuss the

magnetic response of the dynamical mass in a rotating system.

Intriguingly the magnetized rotating systems are also related to an anomalous phenomenon,

as well as the rotating system at finite temperature. We know that a strong magnetic back-

ground triggers intriguing transport phenomena involving a P- and CP-odd current and den-

sity [55–58,96–99] (see also Refs. [51,59,100,101]). From the viewpoint of the analogy between

density and rotation, such phenomena are expected to take place in rotating magnetized sys-

tems. Indeed we can analytically obtain the anomalous number density as

n
total

=
eB⌦

4⇡2

(N + 1) , (3.34)

where N = beBR2/2c is the Landau degeneracy factor. In Refs. [78, 102], the similar relation

to Eq. (3.34) is derived. However their anomalous density picks up only the second term,

which corresponds to the spin part. If we employ the thermodynamic potential in magnetized

rotating systems, it is concluded that the total angular momentum (i.e., both the orbital and

spin angular momentum) contribute this anomalous e↵ect (see Section 4.3).

We note that the above induced density comes from the imbalance of the contributions

of fermions and antifermions. In other words, magnetic field creates an energetically favored
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modulus of the total angular momentum for rotating charged particle. Indeed, if magnetic field

is not applied, rotation does not distinguishes j > 0 and j < 0 modes, as seen in Eq. (3.26),

and thus the number density should be zero. Also rotation is necessary for the density because

particles with j > 0 and antiparticle with j < 0 has same energy dispersions only with magnetic

field.

Finally we again stress the analysis of the rotational e↵ect becomes complicated if external

sources are not much stronger than the scale of energy gap ⇠ R�1. In such cases, we properly

take into account the boundary e↵ect, as we have done for solving Eq. (3.32). Then there

appears an infrared energy gap, which plays the essential role to determine the dynamics of

rotating fermions. Fortunately, this is not the case in most QCD systems of interest: T � R�1

in a quark-gluon plasma or
p
eB � R�1 in a neutron star. However for an applications to

table-top experiments, more precise treatment of the boundary e↵ect would be important.



Chapter 4

Chiral symmetry with rotation and

magnetic field

Magnetic field is a useful probe for various intriguing phenomena in QCD since many systems

with a gigantic magnetic field could be realized; the early unverse [21–23], compact stars [24],

and heavy-ion collision experiments [25–27]. Especially a magnetic field produces the com-

plicated but rich chiral structure. In this chapter, we discuss the rotating and magnetized

fermionic system. After constructing the fundamental framework, we investigate the rotational

e↵ect on chiral symmetry. Then we obtain the inverse phenomenon of the magnetic catalysis

induced by rotation, which we term the rotational magnetic inhibition.

4.1 Magnetic response of chiral condensate

Magnetic catalysis

Before our discussion of the rotational e↵ects on the dynamical symmetry breaking, we see

an intuitive picture of the magnetic catalysis. Let us focus on the fermionic modes with zero

angular momentum. Namely we only consider the condensate of the paired state with zero

total orbital angular momentum (L
tot

= 0). Since chiral condensate is a scalar condensate,

which has zero total angular momentum (J
tot

= 0), it should be constructed by fermion and

antifermion with opposite individual spins so that the total spin can be zero (S
tot

= 0). In

the magnetized system, the spin of a positive-charged (negative-charged) particle tends to be

aligned parallelly (antiparallelly) to magnetic field (see Figure 4.1). Therefore such a paired

state is energetically stable under a magnetic field, and its condensation is enhanced by the

magnetic field.

In order to understand more precisely how magnetic field a↵ects chiral condensate or the

dynamical mass, let us see the infrared energy spectra for magnetized fermions [36]. In a strong

29
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Figure 4.1: Schematic figure for chiral condensate in a strong magnetic field. Each arrow of a

charged particle denotes the direction of its spin. Chiral condensate can be formed by particles

with oppositely aligned spins. The number of the possible paired state increases due to the

Zeeman flip.

magnetic field, the dispersion of fermions is discretized as

E
3+1D

=
p

eB(2n+ 1� 2sz) + p2z +m2 , (4.1)

where the integer n runs from zero to infinity. It is clear that the lowest mode n = 0 dominates

in the strong eB limit. Namely the dynamics is described only by spin-up fermions with the

e↵ective 1+1-dimensional spectrum: E
1+1D

=
p

p2z +m2. In the NJL model with an attractive

interaction, such a reduction of dimension leads to the following equation for the dynamical

mass:
1

G
=

eB

2⇡

1
X

n=0

↵n

Z

⇤

0

dpz
2⇡

1
p

2neB + p2z +m2

' eB

2⇡

Z

⇤

0

dpz
2⇡

1
p

p2z +m2

, (4.2)

with ↵n = 2 � �n0. This is the magnetized version of Eq. (C.10) with N
c

= N
f

= 1. We

shall revisit Eq. (4.2) later (although the regularization scheme is di↵erent). The solution is

analytically obtained as

m ⇠ ⇤ exp



�(2⇡)2

GeB

�

, (4.3)

which exponentially increase as eB increases. The above solution shows that the dynamical

symmetry breaking is realized even for an infinitesimally small interaction. From the viewpoint

of the analogy to superconductivity, this is nothing but the Cooper instability. Indeed in the

Bardeen–Cooper–Schrie↵er theory, the superconducting energy-gap � is determined from the

following gap equation:

1

G
= ⇢(0)

Z ~!D

0

d"p
"2 +�2

. (4.4)

where ⇢(0) denotes the density of states on the Fermi surface, and !
D

represents the Debye
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Figure 4.2: Spectrum without/with magnetic field. The Landau degeneracy amplifies the

dominant contribution for the dynamical mass generation.

frequency. Since this is mathematically equivalent to Eq. (4.2), the solution is readily given by

� ⇠ ~!
D

exp



� 1

G⇢(0)

�

. (4.5)

Thus the Cooper instability is realized due to the finite density of states on the Fermi surface;

the gap is vanished for ⇢(0) = 0. On the other hand in Eq. (4.2), eB/2⇡ plays the role of the

density of states. Indeed this coe�cient is the Landau degeneracy factor, which corresponds to

the density of states for the lowest Landau level n = 0. Therefore the essential concept of the

magnetic catalysis is that the density of states for the infrared mode becomes finite due to the

Landau quantization (see Figure 4.2).

Inverse magnetic catalysis

In finite-density systems, the magnetic response is drastically changed; magnetic field de-

creases chiral condensate, and eventually restores chiral symmetry, which is named the inverse

magnetic catalysis. This phenomenon is understood as follows. For simplicity, we see the

zero temperature case. The thermodynamic potential at finite chemical potential µ is decom-

posed into the vacuum and density contribution, as well as the one at finite angular velocity,

Eq. (3.27). Namely the dynamical mass is determined by the competition between these two.

The density contribution comes from the prohibition of the low energy excitation due to the

shift of the Fermi surface (see Figure 3.3). The strength of the density contribution is thus

characterized by the volume of Fermi sphere. Without magnetic field, this volume is typically

obtained as
Z

|p|<µ

d3p ⇠ µ3 . (4.6)

On the other hand, since only the lowest Landau level survives in strong magnetic fields, the
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Figure 4.3: Density e↵ect without/with magnetic field. Shaded parts represents the modes

that cannot be excited. Because of the Landau degenerate, more modes cannot be exited in a

strong magnetic field, and thus the dynamical mass is suppressed as magnetic field increases.

phase space becomes
eB

2⇡

Z µ

�µ

dp ⇠ µ eB . (4.7)

We find for eB & µ2, the density contribution with magnetic field is larger than that without

magnetic field (see Figure 4.3). In other word, the dynamical mass is more suppressed because

of a strong magnetic field. In fact, the results from the NJL model or the holographic QCD

agree that the inverse magnetic catalysis becomes visible for µ ⇠ p
eB [41]. Here we note that

the vacuum contribution is also changed by magnetic field. For this reason, the actual vacuum

structure with magnetic field and density is determined more complicatedly. For exmaple,

the dynamical mass oscillates as a function of eB/µ2, which is called the de Haas-van Alphen

oscillation [103,104]. Even from the above simple argument, however, we find that the density

of states for the lowest Landau mode plays the crucial role to lead to the inverse magnetic

catalysis, as well as magnetic catalysis. The analogy between density and rotation implies a

possibility that rotation induces a similar phenomenon to the inverse magnetic catalysis. In

this chapter, we discuss the magnetic response of the chiral condensate in rotating systems,

and obtain such a novel phenomenon, i.e. the rotational magnetic inhibition.

4.2 Dirac equation

We first find the energy dispersion of rotating fermions interacting with magnetic fields. In the

presence of gauge field, the modification of the Dirac theory in curved spacetime is replacing @µ
with the covariant derivative Dµ = @µ + ieAµ. Then the Dirac equation (3.3) is changed into

⇥

i�µ(Dµ + �µ)�m
⇤

 = 0 , (4.8)

and the definition of �µ and �µ are the same as without gauge field. We consider the system

with the constant magnetic field parallel to the rotation axis; B = Bẑ and ⌦ = ⌦ẑ. This
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corresponds to the system depicted in Fig. 2.1 under the background magnetic field. Let us

choose the symmetric gauge in the inertial frame as Ai = (0, By/2,�Bx/2, 0). The above Dirac

equation is reduced into
"

i�0
⇢

@
0

� ⌦

✓

x@
2

� y@
1

+
i

2
�12

◆�

+ i�1
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@
1

+ i
eBy

2

◆

+ i�2
✓

@
2

� i
eBx

2

◆

+ i�3@
3

�m

#

 = 0 .

(4.9)

The linear term of ⌦ here appears as e↵ective chemical potential, as well as without magnetic

field, Eq. (3.6). Solving the above Dirac equation, the energy dispersion for eB > 0 is obtained

as
h

E + ⌦(`+ sz)
i

2

= p2z + (2n+ 1� 2sz)eB +m2 . (4.10)

where ` and sz denote the eigenvalues for Lz and Sz, respectively. If we realize that E+⌦(`+sz)

as the energy eigenvalue in the inertial frame, this can be obtained from the ordinary dispersion

for the charged spin-s particle coupled with an external magnetic field, i.e.

E2 = p2z + (2n+ 1� 2sz)eB +m2 . (4.11)

We also obtain the eigenfunction for Eq. (4.9) as explained in Appendix A.2, but only the

energy spectrum is su�cient in our discussion about the dynamical symmetry breaking. In

what follows we discuss several features of magnetized Dirac fermions in rotating frames.

(I) Lorentz force in rotating frame

The gauge field in rotating frames, Aµ = Aieµi , leads to an electric field

eE = �erAt = �er(�B⌦r2/2) = eB⌦(x, y, 0) . (4.12)

This is identified as the Lorentz force induced by rotation because the velocity vector at (x, y, 0)

caused by rotation is v = ⌦⇥x = ⌦(x, y, 0). However, there appears no coupling term between

rotation and magnetic field in Eq. (4.9) because the gamma matrix �t = �ieti cancels it out.

Therefore rotation never induce any electromagnetic e↵ect. In this point, we see the analogy

between rotation and density.

(II) Momentum phase space

Let us focus on the motion in the xy-plane. In the ordinary Landau quantization, the

energy level is designated only by an integer n instead of (px, py), as seen in Eq. (4.11). Namely

one degree of freedom that characterizes the motion in the xy-plane disappears here, and each

Landau level is degenerate with the Landau degeneracy factor given by

N =

�

eBS

2⇡

⌫

, (4.13)
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where S is the area of the xy-plane. This factor N is gauge-independent, but the degree of

freedom that gives the Landau degeneracy is di↵erent for each specific gauge choice. In the

cylindrical coordinates, for example, the degenerate quantum number is the canonical angular

momentum `, and thus it should take N di↵erent integer. As explained in Appendix B, the

Landau quantization imposes the lower bound of ` as ` � �n. For the nth Landau level, hence,

the possible range of ` should be

� n  `  N � n . (4.14)

(Here we implicitly assume N � 1 with su�ciently strong magnetic field.) This possible range

holds even for ` in Eq. (4.10), as shown in Appendix B. Therefore the spectrum in Eq. (4.10)

is not degenerate. The integration in the pxpy-space becomes the double sum with respect to

n and `. For instance, for spin-1/2 fermions with up spin, we should rewrite the phase space

sum into

Magnetic field + Rotation:

Z

dpxdpy
(2⇡)2

I(px, py) ! 1

S

1
X

n=0

N�n
X

`=�n

I(n, `) . (4.15)

If the function I is independent of `, the phase space sum is reduced to the well-known form

in a magnetic field:

Magnetic field:

Z

dpxdpy
(2⇡)2

I(px, py) ! 1

S

1
X

n=0

N�n
X

`=�n

I(n) = eB

2⇡

1
X

n=0

I(n) . (4.16)

(III) Necessary condition for the Landau quantization in rotating frames

For quantization in harmonic oscillators, the system size should be large enough as com-

pared to typical scales of the problem. Thus to realize the Landau quantization, which is

mathematically the same as the one in harmonic oscillators, the system size scale should be

larger than the magnetic length, namely R � lB = 1/
p
eB in the cylindrical systems (see

Appendix A.2). Without rotation, the thermodynamic limit, i.e. R ! 1 can always be taken

validly. In rotating frames, however, we cannot consider systems with infinitely large radius

because of the causality constraint R  1/⌦ [105, 106]. Therefore, our discussion about the

Landau quantization in rotating frames is legitimate only if the following condition is imposed:

1/
p
eB ⌧ R  1/⌦ . (4.17)

We note that N � 1 follows from the above condition.

(IV) Realization of zero-modes

The Landau quantization drastically changes the structure of the energy spectrum of ro-

tating fermions. The dispersion (4.10) shows that there exist the Landau zero modes n = 0
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Figure 4.4: Rotational e↵ect without/with magnetic field. In the case without magnetic field,

the infrared energy gap always exceed the e↵ective chemical potential, and thus the rotational

e↵ect is invisible at zero temperature. On the other hand, the Landau quantization enables

rotating fermions to take the zero mode that is independent o↵ angular momentum `. Therefore

rotation a↵ect magnetized fermionic systems even at zero temperature.

independent of the angular momentum `. Such lowest modes always receives the rotational

e↵ect (see Figure 4.4). Thus, the strongly magnetized fermionic matter should be a↵ected by

rotation even at zero temperature.

4.3 NJL model

To study the vacuum structure in the presence of rotation and magnetic field, we analyze the

NJL model defined by

L
NJL

=  ̄ i�µ(Dµ + �µ) +
G

2

⇥

( ̄ )2 + ( ̄�
5

 )2
⇤

. (4.18)

Let us suppose that chiral condensate is homogeneous in the current setup (we shall briefly

discuss about the validity of this assumption later). In the mean field approximation, the

e↵ective thermodynamic potential is obtained in the same manner for Eq. (C.5):

�
e↵

(m) =
m2

2G
� 1

�S

Z 1

�1

dpz
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(4.19)

Here we note that the number density (3.34) is derived from the above potential. To confirm

this, we replace ⌦(` + sz) with ⌦(` + sz) + µ. For T = m = 0, the derivative @�
e↵

/@µ in the

lowest Landau approximation gives the following number density:

n
total

' ⌦

⇡2R2

N
X

`=0

(`+ 1/2) =
eB⌦

4⇡2

(N + 1) . (4.20)

It is obvious that the first and second term are the contribution of orbital angular momentum

and spin, respectively. Thus the total angular momentum a↵ects this anomalous density, as we

have mentioned in Section 3.6.
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Now we return to the analysis of the dynamical symmetry breaking. Similarly to the case

without magnetic field, at zero temperature this can be decomposed into the pure-magnetic

and rotational contributions:

�
e↵

(m) =
m2

2G
+ �

0

(m) + �
⌦

(m) , (4.21)

with

�
0

= �eB
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1
X

n=0
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Z 1

�1

dpz
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q
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tr

, (4.22)
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where "2
tr

= 2neB + m2, and q`,n ⌘ p

⌦2(`+ 1/2)2 � "2
tr

. Here ↵n = 2 � �n0 stems from the

sum with respect to spin: only the up-spin mode can be the lowest Landau level, as seen

in Eqs. (4.10) and (4.11). We note that �
⌦

corresponds to the counterpart of the density

contribution: if an e↵ective chemical potential ⌦|` + 1/2| is replaced with an actual chemical

potential µ, the thermodynamic potential �
e↵

is same the one in finite-density systems.

To regularize the ultraviolet momentum in the e↵ective thermodynamic potential (4.21), we

adopt the same cuto↵ function as without magnetic field, namely,

f(p;⇤, �⇤) =
sinh(⇤/�⇤)

cosh(p/�⇤) + cosh(⇤/�⇤)
(4.24)

with p ⌘pp2z + 2neB. Since a näıve cuto↵ function actually breaks the gauge transformation,

the proper-time method [107] and the Pauli-Villars regularization are usually utilized for the

usual magnetized NJL model. For instance, in the derivations of the magnetic catalysis in

Refs. [28,29], the proper-time method is used to regularize the pure-magnetic potential (4.22).

It is known however that such a näıve cuto↵ scheme could give a qualitatively correct result

as long as the parameter �⇤ is not too small [108]. Also the ultraviolet divergent structure is

the same even if rotation is induced except for the `-sum. For these reasons, f(p;⇤, �⇤) should

lead to results that physically make sense in our analysis.

The condition to minimize the e↵ective potential, @�
e↵

/@m = 0, leads to the gap equation:

m

G
=

m

⇡

�

F
0

� F
⌦

�

, (4.25)

where the pure-magnetic term and the rotational term are respectively given by

F
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We note that F
⌦

can be reduced to a simpler form if q`,n is negligibly small compared with ⇤

and
p
eB (fortunately, this is the case for our analysis with a small G in Section 4.4). In this

case, since the pz-integral is irrelevant to the ultraviolet divergence, the cuto↵ function in F
⌦

can be replace with f(
p
2neB;⇤, �⇤). Such a simplification is a significant advantage for the

analytical investigation: after the pz-integral, Eq. (4.27) is then reduced to

F
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1
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Instead of Eq. (4.25), in finite-density systems, the dynamical mass is determined from

m

G
=

m

⇡

�

F
0

� Fµ

�

(4.29)

with

Fµ =
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1
X
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↵n ✓(|µ|� "
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) ln

✓ |µ|+
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tr

"
tr

◆
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which is the same as F
⌦

under the replacement ⌦(` + 1/2) ! µ. Since the step function

✓(|µ|� "
tr

) truncates the sum in terms of n, an ultraviolet regularization is unnecessary for Fµ.

Namely the density e↵ects on chiral condensate comes only from the infrared physics. This

implies that F
⌦

is also not really sensitive to the regularization scheme if S is large enough.

We comment about the inhomogeneity of chiral condensate. Regardless whether chiral

condensate is homogeneous or inhomogeneous, the dynamical mass is obtained from the gap

equation

m = G tr[S(x, x)] , (4.31)

which is a general form of Eq. (4.25). From this equation, it is self-consistently verified that

m should also be homogeneous if the Dirac propagator S(x, y) is homogeneous. Under the

condition (4.17), the eigenfunction for Eq. (4.9) is the same as without rotation (i.e the Landau

wave function), as shown in Appendix A.2. Since this eigenfunction leads to the spatially

homogeneous Dirac propagator, the mass in the local density approximation has no spatial

dependence, unlike that without magnetic field. As the same time, there is no inhomogeneity

in the thermodynamic potential, which is determined by the dynamical mass.

Within the above setup, we investigate the magnetic response for the dynamical symmetry

breaking in rotating frames. In the finite-density NJL model coupled with magnetic field, we

obtain the magnetic catalysis for a weak coupling (G < Gc) and the inverse magnetic catalysis

for a strong coupling (G > Gc), where Gc is the critical coupling for the onset of the chiral

condensate in the vacuum (i.e. ⌦ =
p
eB = 0). Following the discussion in finite-density

systems, we calculate the dynamical mass in these two cases. Although the former is not

a practical case, this is convenient to confirm the analogy between density and rotation. The
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numerical calculation is performed with the parameters in Table 4.1. It is easily checked that eB,

R and ⌦ in these choices satisfy Eq. (4.17) so that the analysis based on the Landau quantization

in a rotating frame is justified. We have numerically confirmed that �⇤ is qualitatively irrelevant

to our results.

4.4 Dynamical mass for weak coupling

Let us discuss the weak coupling case. The numerical results are shown in dimensionless unit

in terms of

m
dyn

= 1.25⇥ 10�2 ⇤ , (4.32)

which is the solution of the gap equation with eB = 0.2⇤2 and ⌦ = 0. We plot Figure 4.5,

where the red line corresponds to the solution for Eq. (4.25) as a function of ⌦. The horizontal

axis represents an e↵ective chemical potential

µN ⌘ ⌦N . (4.33)

Also in Fig. 4.5, the blue line is the solution for Eq. (4.29) with µ = µN . From the comparison

between Eqs. (4.28) and (4.30), we find that this µN = ⌦N is the maximum counterpart of µ.

Figure 4.6 is a 3D plot for the solution of Eq. (4.25) as a function of ⌦ and eB. From this 3D

plot, we can calculate the critical value ⌦c (i.e. the onset value of of angular velocity for chiral

symmetry breaking), which is plotted as a function of magnetic field in Figure 4.7. Here are

some remarks on these numerical results.

(I) Comparison between density and rotation

When the angular velocity exceeds ⌦ ' m
dyn

/N , the rotational e↵ects become visible with

the smooth damping of the dynamical mass (see the red line in Fig. 4.5). On the other hand,

the density e↵ect appears as the sharp damping of the dynamical mass, and thus this is the

first order phase transition (see the blue line in Fig. 4.5). Such a di↵erence is understood from

the viewpoint of the number of relevant modes to the suppression. Let us focus only on the

lowest Landau level n = 0 (although the following argument is also applicable even including

Table 4.1: Parameters in the numerical calculations for Eqs. (4.25) and (4.29). Here Gc is the

critical coupling obtained with ⌦ =
p
eB = 0 and �⇤ = 0.05⇤.

G [Gc] ⌦ [⇤] eB [⇤2] R [⇤�1] �⇤ [⇤]

Weak coupling 0.62 0 � 2⇥ 10�7 0.01 � 0.02 103 0.05

Strong coupling 1.11 0 � 10�5 0.1 � 0.2 103 0.05
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Figure 4.5: Dynamical mass for eB = 0.2⇤2 as the solution for Eq. (4.25) (red line) and

Eq. (4.29) with µ = µN (blue line) [76].

higher Landau levels); for F
⌦

and Fµ with the parameter in Table 4.1 the lowest Landau level

approximation is valid. Because of the step function in F
⌦

, only the modes with ` > m/⌦�1/2

are relevant. Indeed the red line in Fig. 4.5 begins decreasing at N⌦ = m
dyn

, which corresponds

to the threshold that F
⌦

becomes finite. On the other hand, the step function in Fµ says that

all N modes simultaneously start contributing for µ > m. As a result, the finite-density e↵ect

arises suddenly when µ exceeds a critical value.

For the comparison between the red and the blue lines in Fig. 4.5, it is useful to approximate

the `-sum as an integration. Suppose that ⌦ is small enough to treat ⌦(`+1/2) as a continuous

variable. Since N is a su�ciently large integer (N ⇠ O(104) in Table 4.1), the `-sum in F
⌦

can

be represented as

N�n
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This means that the rotational contribution in Eq. (4.25) is reduced to

F
⌦

= Fµ(µ = µN)� eB

2⇡

1
X

n=0

↵n

s

1� "2
tr

µ2

N

✓(µN � "
tr

) . (4.35)

Namely the rotational contribution F
⌦

has the density-like e↵ect as the first term Fµ. The

second term with negative sign is a di↵erence from the density contribution. Due to this extra,

the chiral restoration by rotation is weaker than that by density. Therefore the suppression of
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Figure 4.6: Dynamical mass as a function of ⌦ and eB at weak coupling [76]. For small ⌦ the

dynamical mass is exponentially enhanced with 1/eB (i.e. the magnetic catalysis).

the dynamical mass in the rotating system (the red line in Fig. 4.5) is more gradually than

that in the finite-density system (the blue line in Fig. 4.5). Additionally, from Eq. (4.35) we

find F
⌦

< Fµ for a fixed µN . Thus the chiral restoration by rotation need larger µN than that

by finite density, as shown in Fig. 4.5.

(II) Critical value of angular velocity

From Eq. (4.35), we can analytically obtain the critical angular velocity above which the

dynamical mass vanishes. Since the dynamical mass generation stems from the physics of the

infrared modes, the regularization scheme should be irrelevant. If we utilized the proper time

regularization [107], we would obtain the following gap equation, instead of Eq. (4.25):
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(4.36)

where �
EM

is the Euler-Mascheroni constant, �(z) denotes the gamma function, and ⇤
PT

stands

for the cuto↵ parameter in the proper-time regularization. The last two terms in the second

line result from the contribution of the n = 0 mode in Eq. (4.35). From the above gap equation

in the limit of m ! 0, we analytically obtain the following critical ⌦:

⌦c(eB) =

p
⇡

S
p
eB

exp



�2⇡2

eB

✓

1

G
� 1

Gc

◆

+ 1

�

' 1.53⇥ 10�6

p
eB

exp

✓

�0.610⇤2

eB

◆

, (4.37)

where Gc = 4⇡/⇤2

PT

is the critical coupling calculated without rotation and magnetic field. The

last expression in Eq. (4.37) is obtained with substituting the parameters in Table 4.1. On the
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Figure 4.7: eB-dependence of ⌦c for 0.1⇤2  eB  0.2⇤2 [76].

other hand, from the eB-dependence of ⌦c shown in Fig. 4.7, we perform numerically evaluate

the critical value as

⌦c(eB) ' 1.58⇥ 10�6

p
eB

exp

✓

�0.609⇤2

eB

◆

. (4.38)

This fitting result ensures that the integral representation (4.34) is a good approximation for

the parameters in Table 4.1.

4.5 Dynamical mass for strong coupling

Let us see the strong coupling case. In Figure 4.8 we show the numerical results. Here are

discussions about the numerical results.

(I) Magnetic suppression of the dynamical mass in rotating systems

It is obvious that the magnetic response in Fig. 4.8 is di↵erent from that in Fig. 4.6. For

small angular velocity, the dynamical mass is almost independent of ⌦ and eB. For large

⌦, the dynamical mass is suppressed as magnetic field increases. This is thus a counterpart

of the finite-density inverse magnetic catalysis. We name such a magnetic suppression of the

dynamical mass the “rotational magnetic inhibition” [76]. We find also that the damping starts

at µN = ⌦N ⇠ p
eB. This is similar to the finite-density inverse magnetic catalysis, which is

observed at µ ⇠ p
eB [41].

We note that such a drastic di↵erence between Figs. 4.6 and 4.8 originates in the contribution

of higher Landau levels to the dynamics. In the weak coupling case only a few lower Landau

levels is relevant to the gap equation. On the other hand many more Landau levels get involved



42 Chapter 4. Chiral symmetry with rotation and magnetic field

Figure 4.8: Dynamical mass as a function of ⌦ and eB at strong coupling [76]. At large ⌦,

chiral symmetry is restored by eB, which is the rotational magnetic inhibition.

for the strong coupling. This is essential for the realization of the rotational magnetic inhibition,

as well as of the inverse magnetic catalysis at finite density.

(II) de Haas-van Alphen oscillation

We compare more precisely the finite-density inverse magnetic catalysis and the rotational

magnetic inhibition. It is known that for strong coupling G > Gc, the interplay between µ

and eB generates many local minima in the QCD vacuum [31], due to the de Haas-van Alphen

oscillation [103, 104]. In other words, the dynamical mass becomes an oscillational function of

µ2/eB. In contrast, the mass in Fig. 4.8 does not show such a structure. To clarify the reason

of this, we first review the original argument of the de Haas-van Alphen oscillation. Let us

investigate the profile of the following function:

F (m) =
1

G
� 1

⇡
(F

0

� Fµ) , (4.39)

whose zero corresponds to the nontrivial solution in Eq. (4.29). This function itself is continuous

for any m, but its derivative is not:
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The second term in Eq. (4.41) positively diverges at

m = �n ⌘
p

µ2 � 2neB . (4.42)
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and Eq. (4.41) becomes zero if m is slightly larger than �n. Namely we find

dF (m)

dm

�

�

�

�

m!�n�0

= �1 ,
dF (m)
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�

�

�

�

m!�n+0

> 0 , (4.43)

which shows the nonmonotonicity of F (m). This behavior in the vicinity of m = �n is the

direct origin of the de Haas-van Alphen oscillation for the dynamical mass [31].

On the other hand, at least in rotating systems with our parameter choice, such an oscillating

profile does not appears. Since in the case with rotation, we replace Fµ with F
⌦

defined in

Eq. (4.27), the singular part of dF (m)/dm is obtained as
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where the cuto↵ function is additionally involved, similarly to that in Eq. (4.27). However for

µN = ⌦N . ⇤, we can practically remove the cuto↵ function from the third term in Eq. (4.44).

Then the `-sum is approximately written by an integration, as well as in Eq. (4.34):
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(4.45)

which is finite even at m =
p

µ2

N � 2neB. For µN > ⇤, taking the replacement µN ! ⇤, we can

similarly confirm the absence of the singularity in Eq. (4.44). Hence F (m) in our analysis can

be regarded as a monotonic function, which does not lead to the de Haas-van Alphen oscillation

in Fig. 4.8.

(III) Rotational magnetic inhibition in realistic systems

Our result for the rotational magnetic inhibition could be applied to realistic systems. First

let us estimate the necessary angular velocity in a condensed matter system involving pseudo-

relativistic fermionic modes, such as graphene or 3D Dirac semimetals. We consider the system

with the radius R = 10 cm in the magnetic field B = 1.7⇥104 G. Since the rotational magnetic

inhibition becomes visible at µN = ⌦N ⇠ p
eB (see Fig. 4.8), we find that the rotational

magnetic inhibition is observed at ⌦ ⇠ p
eBvF/N ' 2.5⇥ 103 s�1, which is an experimentally

possible value [109]. Here we employ vF = 106 m/s, which is a typical value of the Fermi velocity

in graphene [110]. Therefore in a table-top experiment, we should confirm the realization of

the rotational magnetic inhibition.

A more interesting environment is neutron stars. For a millisecond pulsar with ⌦ ⇠ 103 s�1

and R ⇠ 104 m, the velocity on the edge of star reads ⌦R ⇠ O(10�1). The numerical result in
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Fig. 4.8 suggests that chiral symmetry should be restored at small eB. In other words, this novel

phenomenon could a↵ect the equation of state (EoS) for neutron stars; the rotational magnetic

inhibition sti↵ens the neutron star EoS through the chiral symmetry restoration. Actually to

obtain the quantitative suggestion, it is necessary to analyze the chiral symmetry breaking

in a system with R ' 104 m, which is larger than the radius we chose in the current study.

Although such a evaluation could be our future task, we emphasize that the chiral condensate

in larger rotating system is more sensitive to rotation because the e↵ective chemical potential

µN is proportional to R2. Thus, the rotational magnetic inhibition should be a significant e↵ect

for the neutron star physics.
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Summary

In Chapter 2, we gave a brief review of the quantum physics in rotating systems. Rotation

has two aspects analogous to environmental sources: magnetic field and density. The former

is reflected in the mathematical correspondence between the Lorentz force and the Coriolis

force. As a result, rotation leads to several magnetic-like phenomena, such as the vortex of

the Bose-Einstein condensate, the quantum Hall e↵ect, and the chiral vortical e↵ect. In the

realization of them, we need to cancel out the centrifugal force with a trapping potential, or to

take the approximation to neglect higher order terms of angular velocity (or vorticity). This

means that in relativistic field theory, rotation with large angular velocity cannot solely create

the magnetic environment.

We can also regard rotating systems as a fictitious finite-density system. This is a more

ubiquitous analogy that does not require any extra source or any approximation, unlike that

to magnetism. The analogy between density and rotation is readily understood if it is noticed

that the rotational energy shift plays the role of an e↵ective chemical potential. Namely we

expect that the thermodynamics in rotating systems is easily formulated in the same way to the

density case. For rotating bosons, however, we immediately conflict a pathological problem:

for large angular velocity, the distribution function seems negative, and so ill-defined. Such

an unexpected situation emerges as long as rotation is treated in relativity. In other word, to

keep the relativistic causality in terms of rotation, we should properly take into account the

boundary e↵ect. Indeed we explicitly confirmed that the Dirichlet boundary condition for a

rotating cylinder leads to the well-defined Bose-Einstein distribution function. At the same

time, this means that the vacuum in the rotating frames is the same as in the Minkowski

spacetime, and thus rotation does not a↵ect the bosonic thermodynamics at zero temperature.

In Chapter 3, we constructed the fundamental framework for the analysis of rotating

fermionic matter, including the chiral symmetry breaking in the presence of rotation. Based on

the argument of the quantum field theory in curved spacetime, we solved the Dirac equation for

free fermions in a finite-size rotating cylinder. As well as rotating scalars, a proper treatment

of the boundary is necessary to investigate rotating fermionic matter, but the Dirichlet-type

condition is not applicable to fermions. Instead, imposing the boundary condition in terms of

45
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the fermionic flux, we obtained the energy spectrum with an infrared energy gap. By using the

solutions for the Dirac equation, we analyzed the NJL model in rotating systems at zero tem-

perature. From the resulting NJL gap equation, we analytically found that the finite infrared

energy gap prohibits rotation a↵ecting thermodynamic at zero temperature. Therefore rota-

tion cannot a↵ect thermodynamic at zero temperature. This would be understood as a similar

situation to the finite-density system with a chemical potential less than mass threshold. In

other words, we showed that the boundary of systems should plays the most important role for

rotating matter. If the thermodynamic limit is taken in rotating systems, we could arrived at

the incorrect result that rotation solely induces a phase transition [77]. This suggestion should

be the basis of QCD with rotation, which is applied to the future investigation of relativistic

rotating systems, such as non-central heavy-ion collisions and compact stars. Also we numeri-

cally computed the spatial profile of the dynamical mass in the cylinder at zero temperature.

From this result, we confirmed the validity of the local density approximation to numerically

evaluate the inhomogeneous dynamical mass.

Although the rotational e↵ect is invisible at zero temperature, we can see it in the case

that the boundary e↵ect can be neglected somehow. The first case is a high-temperature

system because the thermal screening permits us to neglect the boundary e↵ect. Indeed from

the numerical calculation, we confirmed that rotation induces the chiral restoration at finite

temperature. This is consistent with the argument that an axial current is induced by rotation

at high temperature in Ref. [81–83]. This current are related to quantum anomaly, as suggested

by the analysis with the gauge-gravity duality. The topological structure is however unclear in

the original derivation within the Dirac field theory in rotating systems. From the viewpoint

of the recent study of the transport phenomena in a quark-gluon plasm, we should need more

deep understanding for anomalous aspects of rotating matter.

The second case is a strongly magnetized system. In a strong magnetic field, wave functions

are tightly localized, and thus the particles cannot feel the existence of the boundary. We

also mentioned that even at zero chemical potential, rotation leads to a finite number density,

which is provided by the interplay between magnetic field and rotation. This is an actual

manifestation of the analogy between density and rotation. Interestingly, we found that the

number density induced by rotation contains an anomalous contribution. Thus the dynamics

of rotating matter is fundamentally connected to quantum anomaly, which comes out through

combining with temperature or magnetic field.

In Chapter 4, we first reviewed the basic idea of the magnetic response of chiral condensate.

Both in the magnetic catalysis and the inverse magnetic catalysis, the crucial concept is that

through the Landau quantization, the density of states for the infrared mode (i.e. the lowest

Landau level) becomes large. Therefore, the chiral structure is expected to be unchanged even

with rotation as long as energy levels are Landau-quantized.

Next we analyzed the Dirac equation both with magnetic field and rotation. Due to the

localization of the wave functions, the boundary e↵ect is irrelevant to dynamics in a strong
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magnetic field. For this reason, we solved the Dirac equation without considering the boundary

condition, and showed that rotation modify the Landau levels and resolve the Landau degen-

eracy. We also investigated the chiral structure in a rotating magnetized system. In the weak

coupling case (where chiral symmetry is not yet broken in the vacuum), the dynamical mass

is generated and enhanced by the magnetic field, which is nothing but the magnetic catalysis.

Together with rotation, we found that the dynamical mass is suppressed with increasing angu-

lar velocity. In the strong coupling case (where chiral symmetry breaking is already broken in

the vacuum), we discovered the opposite magnetic response of the dynamical mass; at a finite

angular velocity, the dynamical mass decreases with increasing magnetic field. Such a chiral

restoration induced by magnetic field is an inverse phenomenon of the conventional magnetic

catalysis. As an analogous phenomenon to the inverse magnetic catalysis at finite density, we

named this novel phenomenon the “rotational magnetic inhibition.”

We also suggested possible applications of the rotational magnetic inhibition. We could

discuss the realization of this phenomenon, e.g. in condensed matter systems, in the cores of

the neutron star, and in noncentral relativistic heavy-ion collision experiments [111]. For the

heavy-ion collision the estimate of ⌦ is still unclear, and it is di�cult to make any decisive

statement (although the vorticity could be computed [54]). For a condensed matter system,

we confirmed from a brief estimate that the rotational magnetic inhibition should be observed

in a table-top experiment. For the neutron star, angular velocity itself is much smaller than

the QCD scale. However rotation contributes to the dynamics through the combination with

angular momentum, namely the rotational energy shift or the e↵ective chemical potential. For

this reason, our results showed that the rotation should give a sizable modification to the

dynamical mass through an e↵ective chemical potential µN = ⌦N / R2. This suggested that

we should consider the rotational e↵ect on the neutron star EoS; its angular velocity has seemed

too small to a↵ect the QCD dynamics, and only a global e↵ect of rotaiton has been considered

in the construction EoS [112] (see also Refs. [113–116]).

Our framework constructed in this thesis is obviously applicable to the system with other

environmental parameters. For instance, since finite chemical potential shifts the Fermi surface,

the rotational e↵ect should be visible in the real finite-density system, even at zero temperature.

For the neutron star physics, it is most necessary to investigate rotating matter with finite

chemical potential. In this case, it is expected that the necessary angular velocity for the

rotational magnetic inhibition decreases due to the support of the real chemical potential.

In rotating systems, it is important to analyze spatial inhomogeneity [90]. Intuitively the

chiral condensate could decrease as r (the radial distance from the rotational axis) increases

because the geometry in rotating frames is more deformed with larger r. Nevertheless for the

analysis for magnetized rotating matter in Chapter 4, we assumed a homogeneous condensate.

For this reason we obtained our numerical results dependent on the system size R, not on the

local coordinate r. Such an assumption is useful for the manifestation of the analogy between

rotation and density, but including this spatial inhomogeneity should be necessary for more
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precise discussion.

Finally we comment about the realistic rotating systems. In this thesis, we treat the rota-

tional e↵ect as follows. In a rotating container with angular velocity ⌦, the confined classical

viscous fluid also rotates with the same ⌦ since the fluid interacts with the microscopically

rough wall (boundary) of the container. In this case, through the coordinate transformation to

the rotating frame, the rotational e↵ect could be taken into account as the rotational energy

shift, which plays the role of an e↵ective chemical potential. This is the basis of the discussion

for a rotating Bose-Einstein condensate. Also for rigidly rotating systems, e.g. compact stars,

the argument with homogeneous rotation should be usable (although it is necessary to consider

a spherical rotating frame with gravity).

On the other hand, for fluid with small viscosity, each particle in the rotating container can-

not possess the same angular velocity immediately. From the viewpoint of the field theory, such

a fluid corresponds to strongly interacting systems, where the mean free pass is short. Thus

the above brief argument might be not simply applicable to quark-gluon plasma, which can be

regarded as a perfect fluid with much small viscosity [117]. In other words, if the relaxation

time after externally driving rotation is short enough compared with the typical time scale,

then the picture as the rigid-body rotation is much reliable. Contrary if not, the hydrodynamic

description should be utilized instead of the field theory in rotating frames. For example, in

Refs. [118–122], the hydrodynamics has been employed to describe the thermodynamics in ro-

tating systems through the Poincaré algebra. (We note that the chiral symmetry breaking has

not been discussed there.) Furthermore not only more quantitative discussion with phenomeno-

logical analysis but also the experimental estimation of the angular momentum of hot matter

in heavy-ion collisions should be required to clarify the rotational e↵ect on QCD.
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Appendix A

Dirac equation in a rotating frame

A.1 Solution without magnetic field

We solve the Dirac equation in the presence of rotation. From Eq. (3.6) we obtain the equation

in the cylindrical coordinate:

0 = [i�µ(@µ + �µ) +m][i�µ(@µ + �µ)�m] 

=

"

✓

i@
0

� i⌦@✓ + ⌦
�12

2

◆

2

+ @2r +
1

r
@r +

1

r2
@2✓ + @2

3

�m2

#

 .
(A.1)

A positive energy solution for this equation can be represented as

 = u± = e�iEt+ipzz

 

⌘±
�±

!

. (A.2)

where

⌘±(r, ✓) = ei`±✓⌘̃±(r)�± , �3�± = ±�± , (A.3)

and �± is obtained from ⌘±. Because of the rotational invariance in Eq. (A.1), the solution ⌘

should be the eigenfunction of the total angular momentum Ĵz = L̂z + �3/2. This means that

`
+

+ 1/2 = `� � 1/2 , i.e. `
+

= `� � 1 ⌘ ` . (A.4)

With such an ansatz, Eq. (A.1) is reduced to the equation for the scalar function '±:


@2r +
1

r
@r � `2±

r2
� p2`,k

�

⌘̃± = 0 , (A.5)

where the transverse momentum is defined as p2`,k =
⇥

E + ⌦(` + 1/2)
⇤

2 � p2z � m2. For this

di↵erential equation, the nonsingular solution at r = 0 is given by the Bessel function of the

first kind, i.e. ⌘̃±(r) = J`±(p?r), and thus we arrive at

⌘̃
+

(r, ✓) = ei`✓J`(p`,kr)�+

⌘ �`,k(r, ✓)�+

,

⌘̃�(r, ✓) = ei(`+1)✓J`+1

(p`,kr)�� ⌘ '`,k(r, ✓)�� .
(A.6)
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Now � is determined from Eq. (3.6) with the above ⌘. In the Dirac representation, u± takes

the following form:

u± =
e�iEt+ipzz

p
"+m

 

("+m)⌘±
�i�i@i⌘±

!

=
e�iEt+ipzz

p
"+m

 

("+m)⌘±
(�+p̂

+

+ ��p̂� + �3p̂z)⌘±

!

(A.7)

with " = |E + ⌦(` + 1/2)|, �± = �1 ± �2, and p̂± = �i(@
1

± @
2

). We note that p̂± play the

role of the ladder operators with respect to `. Indeed using the recursion relation of the Bessel

function
h

±@x + x�1(`± 1)
i

J`±1

(x) = J`(x) , (A.8)

we find that the scalar functions �`,k and '`,k are interchanged each other:

p̂
+

�`,k = �iei✓(@r + ir�1@✓)�`,k = ip`,k'`,k ,

p̂�'`,k = �ie�i✓(@r � ir�1@✓)'`,k = �ip`,k�`,k .
(A.9)

Finally we obtain the positive energy solution (3.8):

u
+

=
e�iEt+ipzz

p
"+m

0

B

B

B

@

("+m)�`,k
0

pz �`,k
ip`,k '`,k

1

C

C

C

A

, u� =
e�iEt+ipzz

p
"+m

0

B

B

B

@

0

("+m)'`,k
�ip`,k �`,k
�pz '`,k

1

C

C

C

A

. (A.10)

From v± = i�2u⇤
± we also obtain the negative energy solution (3.10).

A.2 Solution with a magnetic field

We solve the Dirac equation in the presence of rotation and magnetic field. Then we show

that the solution is the Landau wave function, and that the quantum number ` is the same as

without rotation.

First the Dirac equation (4.9) leads to the following equation:

0 = [i�µ(Dµ + �µ) +m][i�µ(Dµ + �µ)�m] 

=

"

✓

i@
0

� i⌦@✓ + ⌦
�12

2

◆

2

+ @2r +
1

r
@r +

1

r2
@2✓

+ eB(�i@✓ + �12)�
✓

eBr

2

◆

2

+ @2
3

�m2

#

 .

(A.11)

The last line is written with the cylindrical coordinate xµ = (t, r, ✓, z). As well as without

magnetic field, we have an ansatz of the positive energy solution for this equation:

 = u± = e�iEt+ipzz

 

⌘±
�±

!

, (A.12)
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with

⌘±(r, ✓) = ei`±✓⌘̃±(r)�± , (A.13)

where `± is an integer and �± is the spin eigenstate; �3�± = ±�±. The rotational invariance

imposes the condition between `
+

and `�, i.e. Eq. (A.4). We note that Eq. (A.4) is the only

constraint for ` at this stage. From this ansatz, we find that ⌘̃± is the determined by the

following equation:

"

n

E + ⌦(`± ± 1/2)
o

2

+ @2r +
1

r
@r � `2±

r2

+ eB(`± ± 1)� (eBr/2)2 � p2z �m2

#

⌘̃± = 0 .

(A.14)

The general solution for this equation is given by the following form with the confluent hyper-

geometric functions:

⌘̃± = r|`±|e�eBr2/4



c
1

M(a, |`±|+ 1,eBr2/2)

+ c
2

(eBr2/2)�|`±|M(a� |`±|, 1� |`±|, eBr2/2)

�

,

(A.15)

where c
1

and c
2

denote integral constants, and a is defined as

a =
1

2eB



eB
⇣

|`±|⌥ 1� `± + 1
⌘

�
n

E + ⌦(`± ± 1/2)
o

2

+ p2z +m2

�

. (A.16)

Let us identify the solution that respects boundary conditions. Here ⌘̃± should be normalizable,

and so be finite at arbitrary r. The finiteness of ⌘̃±(r ! 0) requires c
2

= 0. Besides ⌘̃±(r ! 1)

has no singularity only if a is a nonpositive integer:

np ⌘ �a = 0, 1, 2, · · · . (A.17)

In this case, this hypergeometric function is reduced to an associated Laguerre polynomial:

M(�np, |`±|+ 1, eBr2/2) / L|`±|
np

(eBr2/2) . (A.18)

From Eq. (A.17), we find that the energy dispersion relation is quantized:

h

E + ⌦(`± ± 1/2)
i

2

= eB(2np + |`±|� `± + 1⌥ 1) + p2z +m2 . (A.19)

This dispersion can be reduced to Eq. (4.10) if we introduce the new integers defined by

n = n
+

= n� + 1,

n± ⌘ np +
1

2

⇣

|`±|� `± + 1⌥ 1
⌘

.
(A.20)
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We note that these equations imply the lower bounds for `±:

` = `
+

= `� � 1 � �n . (A.21)

Finally using the property of the Laguerre function,

L�`
n+`(x

2) / x2`L`n(x
2) ( for `  0 ) , (A.22)

we obtain the eigenfunction as the following simpler form:

⌘̃n,`(r) / r`e�eBr2/4L`n(eBr2/2) . (A.23)

We mention that the solution is derived similarly even for ⌦ = 0, and so the quantum

number ` is the same as without rotation. Therefore the possible range of ` in a rotating frame

is also defined by Eq. (4.14) (see in the discussion in Appendix B).

We here emphasize that the essential requirement for the Landau quantization is the bound-

ary condition at r ! 1; the wave function should converge at infinity. Therefore the energy

dispersion for charged particles is Landau-quantized only if the size of system is infinite. In

other words for the Landau quantization in the cylindrical system, its radius is large enough

compared with the magnetic length, i.e. R � lB = 1/
p
eB, as discussed in Section 4.2. In the

system with a size comparable to or smaller than `B, we should properly take into account the

boundary condition, as well as in Chapter 3. In such a case, np is di↵erently quantized from

Eq. (A.17).
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Landau degeneracy in cylinders

Based on the Klein�Gordon equation for charged scalars in external magnetic field, we briefly

show that the Landau degeneracy factor in the cylindrical coordinate is the same as in Cartesian

coordinate. As a result we find that the range of the quantum number ` for the nth Landau

level is given by Eq. (4.14).

B.1 Landau quantization for general gauges

For general gauge we prepare the Landau quantization. In a magnetic field B = Bẑ (i.e.

Bi = ✏ijk@jAk) the Klein–Gordon equation for charged scalar particles reads

⇣

@2
0

� @2
3

+m2 �D2

1

�D2

2

⌘

� = 0 (B.1)

with Di = @i + ieAi. Since the solution is given by � = e�i"t+ipzz�(x, y), this equation is then

reduced to

Ĥ� = �� (B.2)

with Ĥ = �(D2

1

+ D2

2

) and � = "2 � p2z �m2. Under the gauge condition Bi = ✏ijk@jAk, the

operator Ĥ can be written with

Ĥ = eB(2a†a+ 1) , (B.3)

where we define the ladder operators

a ⌘ ip
2eB

(D
1

+ iD
2

) , a† ⌘ ip
2eB

(D
1

� iD
2

) , (B.4)

which satisfy [a, a†] = 1. Namely the eigenstates for Eq. (B.2) are |ni / (a†)n|0i, and the

corresponding eigenvalue is obtained as the Landau energy levels; � = eB(2n + 1). Therefore

the energy dispersion is given by

" = ±
p

eB(2n+ 1) + p2z +m2 . (B.5)
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B.2 Landau quantization for symmetric gauge

When we utilize the cylindrical coordinate, the symmetric gauge Aµ = (0, By/2,�Bx/2, 0) is

most useful because the Hamiltonian in Eq. (B.2) respects the rotational symmetry. Instead of

(r, ✓), we use the complex coordinate defined by

z ⌘ x+ iy , z̄ ⌘ x� iy . (B.6)

and we introduce the new notations for the derivatives @ ⌘ @/@z and @̄ ⌘ @/@z̄. Then the

ladder operators are also rewritten with them:

a =
�ip
2eB

✓

2@̄ +
eB

2
z

◆

, a† =
�ip
2eB

✓

2@ � eB

2
z̄

◆

. (B.7)

The ground state is defined with the condition a|0i = 0:

hz, z̄|a|0i = �i
1p
2eB

✓

2@̄ +
eB

2
z

◆

�(z, z̄) = 0 . (B.8)

The solution is given by

�(z, z̄) = �̃(z)e�eBzz̄/4 , (B.9)

where �̃(z) denotes a function of z. In principle, we have no condition for the choice of �̃(z),

except for the analyticity. Such an ambiguity of �̃(z) comes from assuming an infinitely large

system in our calculation. In other words, the eigenvalue equation of the harmonic oscillator

cannot be solved in finite-size systems (see Appendix A.2).

In order to find �̃(z), we analyze another quantum number, i.e. the canonical angular mo-

mentum. Because of the rotational invariance of the Hamiltonian, the corresponding eigenstate

can be also the eigenstate of the angular momentum L̂z = xpy�ypx = z@� z̄@̄. Let us introduce

the new ladder operators:

b ⌘ 1p
2eB

✓

2@ +
eB

2
z̄

◆

, b† ⌘ 1p
2eB

✓

�2@̄ +
eB

2
z

◆

, (B.10)

which satisfy [b, b†] = 1. We represent the angular momentum as the ladder operators:

L̂z = b†b� a†a . (B.11)

We define the simultaneous eigenstates for a†a and b†b:

a†a|n, npi = n|n, npi, b†b|n, npi = np|n, npi , (B.12)

for n, np = 0, 1, · · · . Instead of np, we designate these eigenstates by the new quantum number

` = np � n:

hz, z̄|n, npi = �nnp(z, z̄) ⌘  n`(z, z̄) ,

L̂z n` = (b†b� a†a) n` = ` n` .
(B.13)
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We note that the non-negativities of n and np lead to the lower bound of `:

` � �n . (B.14)

We produce a ground state by the operation of ladder operator b†:

 
0`(z, z̄) / (b†)` 

00

(z, z̄)

/ z`e�eBzz̄/4 .
(B.15)

From this eigenstate, we find that ` corresponds to the degenerate quantum number, which is

irrelevant to the energy level. Thus the possible range of ` is nothing but the Landau degeneracy

factor. In order to calculate the degeneracy factor, we focus on the following equation:

d

dr
(2⇡r| 

0`|2) = 0 , (B.16)

which determines the radius that gives the maximum value of this distribution. If we consider

the system to be the cylinder with radius R, the solution for Eq. (B.16) should be smaller than

R, which leads to the upper bound of `:

`  eBR2

2
=

eBS

2⇡
. (B.17)

Therefore from this upper bound and the lower bound ` � �n = 0, the degeneracy factor in

the cylindrical coordinate is given by Eq. (4.13).

Higher excited states with n � 1 are calculated in a similar way to ground states:

 n`(z, z̄) / (a†)n(b†)n+` 
00

(z, z̄)

/ z`e�eBzz̄/4L`n(eBzz̄/2) ,
(B.18)

which is the same as Eq. (A.23) if we use z = rei✓ and z̄ = re�i✓. The upper bound of ` for

exited states cannot directly be found from Eq. (B.18) while the one for the ground state is

derived from the wave function (B.15). Nevertheless the upper bound of ` for exited states is

obviously N � n because the degeneracy factor N is a common quantity for all Landau levels.

From this and the lower bound ` � �n, we obtain Eq. (4.14).
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Nambu–Jona-Lasinio model

In this chapter, we review the basics of the Nambu–Jona-Lasinio (NJL) model, which is the

fundamental framework in this thesis. For the clarification of the correspondence between

this e↵ective model and the original QCD, we here focus on the two-flavor NJL model. (The

following argument is similarly applicable to the one-flavor NJL model, which be utilized in

Chapters 3 and 4.)

In the two-flavor NJL model, the corresponding Lagrangian is given by

L
NJL

=  ̄ (i�µ@µ �M
0

) +
G

2

⇥

( ̄ )2 + ( ̄i�
5

 )2
⇤

, (C.1)

with  = (u, d)T . The first part is the Dirac Lagrangian for free fermions with the current

mass M
0

= diag(mu,md). The second denotes the four-fermi interaction vortex. Here G is

the dimensionful coupling constant, which is one of the parameters of the NJL model. For

mu = md = 0, the above Lagrangian is invariant under the transformation

 ! ei✓V ,  ! ei�5✓A . (C.2)

Hence chiral symmetry SU
L

(2)⇥SU
R

(2) is unbroken in the classical (tree) level of Eq. (C.1), as

well as the original Lagrangian of QCD (1.1). However the NJL model realizes the dynamical

breaking of chiral symmetry, and the following order parameter becomes finite:

hq̄qi = � 1

�V

@ lnZ
NJL

@mq

( for q = u, d ) , (C.3)

which is called chiral condensate.

To see this, we analyze the thermodynamics of the NJL model. Employing the imaginary

time formalism, the partition function reads

Z
NJL

=

Z

D ̄D exp



�
Z �

0

d⌧

Z

d3xL
NJL

( ,  ̄)

�

. (C.4)

The functional integration for fermion fields is calculated with the Hubbard–Stranovich trans-

formation; the integration with respect to  and  ̄ are replaced with that of the auxiliary field
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⌃ = � + i�
5

⌧ · ⇡. For the degenerate two-flavor case with mu = md = m
0

, we obtain the

following expression:

Z
NJL

=

Z

D⌃ e��V �e↵[⌃] ,

�
e↵

[⌃] =
G

2�V

Z �
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d3x |⌃(x)|2 � N
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N
c

�V
Tr ln

⇥�i�
4

@⌧ � i� ·r+m
0

+G⌃(x)
⇤

,

(C.5)

where we define �0 = �i�
4

, and Tr represents the traces in terms of the spinor and momentum

phase space. We now calculate the e↵ective action in the mean-field approximation. Namely,

we assume that the dominant contribution of the ⌃-integration comes from the stationary point

that is the solution for ��
e↵

/�⌃(x) = 0. Besides let us take the homogeneous real solution:

⌃(x) = ⌃†(x) = �̄. In this case, the logarithmic term is calculated in the same manner as that

for free fermions. As a result, the e↵ective potential is reduced to

�
e↵

(m) =
(m�m

0

)2

2G
� 4N

f

N
c

Z

d3p

(2⇡)3

"

p

p2 +m2

2
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✓

1 + e��
p

p2+m2

◆

#

(C.6)

with m = m
0

+ G�̄. We note that the factor 4N
f

N
c

corresponds to the internal degrees

of freedom for quarks: fermion/antifermion, spin-up/spin-down, flavor (N
f

= 2), and color

(N
c

= 3). As is well-known, the first and second term in the integrand are the vacuum and

the thermal contribution, respectively. From Eq. (C.6), we confirm that the constituent quark

mass is generated through the chiral symmetry breaking, as follows:

h ̄ i = � 1

�V

@ lnZ
NJL

@m
0

=
@�

e↵

@m
0

= �m�m
0

G
. (C.7)

As well as the stationary point �̄, the dynamical mass m is determined from

@�
e↵

(m)

@m
= 0 , (C.8)

which is so-called the gap equation. In the present case, this equation is equivalent to the

condition that the dynamical mass m gives a local minimum of the e↵ective thermodynamic

potential �
e↵

. The gap equation is analytically reduced to

m�m
0

G
= 4N

f

N
c

m

Z

d3p

(2⇡)3
1

p

p2 +m2

"

1

2
� 1

e�
p

p2+m2
+ 1

#

, (C.9)

and especially for m
0

= T = 0, the equation to determine the nonzero dynamical mass is

written as
1

G
= 2N

f

N
c

Z

d3p

(2⇡)3
1

p

p2 +m2

. (C.10)

Once the momentum integral is regularized with a cuto↵ scheme (see the following discussion

in IV), the right hand side is a monotonically decreasing function of m. Therefore there exists

a nontrivial solution only if G is larger than the following critical value:

Gc =



2N
f

N
c

Z

d3p

(2⇡)3
1

p

��1

. (C.11)
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If the nontrivial solution m 6= 0 satisfies �
e↵

(m) < �
e↵

(0), it is the dynamical mass that we

seek, and then we find that the chiral broken phase is the ground state. In fact, a nonzero

solution for Eq. (C.10) is always the global minimum of �
e↵

(m), which implies to the second

order chiral phase transition. In finite-density systems, it is known that the phase transition

becomes first order. We here mention several remarks about the above argument.

(I) Vafa–Witten theorem

For the stationary condition ��
e↵

/�⌃ = 0, we consider only the scalar condensate; � = �̄ and

⇡ = 0. Within the framework of the NJL model, there is no restriction for the emergence of the

pseudoscalar condensate. Indeed the scalar and pseudoscalar solutions interchanges each other

through an axial rotation. However the pseudoscalar condensation cannot take place because

of the Vafa-Witten theorem [123]; vector-like symmetries cannot be spontaneously broken in a

vector-like theory (e.g. QCD). We note that the positivity of the Dirac determinant is required

for the Vafa-Witten theorem. For this reason, this theorem is not applicable to the system with

chemical potential, ✓-angle, or electric field, where the lattice QCD simulation su↵ers from the

sign problem. Also for rotation, the pseudoscalar condensate can generally becomes nonzero

because the rotational energy shift plays the role of an e↵ective chemical potential. In this

thesis we investigate only the scalar condensate in rotating systems, and we leave the analysis

of the pseudoscalar condensation induced by rotation as a future work.

(II) Axial anomaly

Since the baryon number should also be conserved due to the Vafa-Witten theorem, the

original flavor symmetry in QCD is broken down as follows:

U
L

(N
f

)⇥ U
R

(N
f

) ' SU
L

(N
f

)⇥ SU
R

(N
f

)⇥ U
V

(1)⇥ U
A

(1) �! SU
V

(N
f

)⇥ U
V

(1) . (C.12)

Here U
A

(1) is explicitly (not dynamically) broken through a quantum anomaly. In the present

NJL model, we do not consider the breaking of the U
A

(1) symmetry. For this point, the NJL

model is modified with introducing the following new term:

L
KMT

= K



det  ̄(1 + �
5

) + det  ̄(1 + �
5

) 

�

, (C.13)

which is called the Kobayashi–Masukawa–’t Hooft (KMT) term [124, 125]. In the NJL model,

this new term explains the origin of the large mass of ⌘0. Since the main purpose in this thesis is

to clarify the dynamical breaking of chiral symmetry, the KMT vortex is not taken into account

in Chapters 3 and 4.

(III) Large Nc limit and mean-field approximation

Here let us consider the large N
c

limit. In the model Lagrangian (C.1), the coupling G

should be O(1/N
c

) so that the interaction term is O(N
c

), as well as the kinetic part. This
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means that the 1-loop contribution dominates Z
NJL

in the large N
c

limit. Therefore the above

analysis under the mean-field approximation is equivalent to the one in the large N
c

limit. In

Chapters 3 and 4, we also consider only such a leading order contribution.

(IV) Cuto↵ scheme

Since the mass-dimension of the four-fermi interaction part is six, the NJL model is un-

renormalizable. Indeed in Eq. (C.9), the momentum integration of the vacuum contribution

includes diverges in the ultraviolet region. This implies that the dynamical mass depends on

the choice of the momentum cuto↵ scheme. First let us adopt the three-dimensional cuto↵

scheme with ⇤. Namely, we rewrite the gap equation (C.10) into

1

G
= 2N

f

N
c

4⇡

(2⇡)3

Z

⇤

0

dp p2
p

p2 +m2

, (C.14)

where the momentum integral can be performed analytically at zero temperature. The dynam-

ical mass is obtained by solving the above equation self-consistently. Practically, to analyze the

chiral symmetry breaking based on Eq. (C.1), the model parameters G and ⇤ are adopted so

that they reproduce physical quantities. For example, when the pion mass m⇡ = 138MeV and

the pion decay constant f⇡ = 93MeV are chosen as the fixed physical quantities, we obtain

⇤ = 631MeV and G/2 = 0.214 fm2 for (mu +md)/2 = 5.5MeV [10].

From the viewpoint of the numerical calculation, such a simple cuto↵ can lead to an unde-

sirable artifact if the momentum integration is substituted with the discrete sum. This is the

case with rotation or magnetic field, as we discuss in Chapters 3 and 4. For this reason, in this

thesis, we employ the following function:

f(p ;⇤, �⇤) =
sinh(⇤/�⇤)

cosh(p/�⇤) + cosh(⇤/�⇤)
, (C.15)

where p is the modulus of the momentum. The parameter �⇤ represents the smoothness of

the cuto↵ function f(p ;⇤, �⇤). In the limit of �⇤ ! 0, for example, f(p ;⇤, �⇤) becomes the

shape cuto↵ function, i.e. ✓(⇤2 � p2). To avoid severe artifacts, the smoothness of f(p ;⇤, �⇤)

is much important in our calculation.
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