4
<r
=
<

Measurement of the In-flight Antiproton
Annihilation Cross Section

on Carbon at 100 MeV/c

(100 MeV/c 2B 5 KT - RE
JF- RIS T AR D HIE)

SR 28 4E 12 A 1l (B HGES

HRR KB RIA R
PyB
B E VT






il

Abstract

The ASACUSA collaboration at the Antiproton Decelerator of CERN per-
formed a measurement of the in-flight antiproton (p) annihilation cross sec-
tion on carbon at a momentum of 100 MeV/c for the antiproton. This experi-
ment aims to study anomalous enhancements of antineutron (1) annihilation
cross sections on C, Al, Cu and Pb nuclei below 500 MeV/c.

We developed a new experimental setup which determined the cross sec-
tion relative to the elastic scattering cross section. A pulsed beam of 100
MeV/c transversed a carbon foil of thickness ~1 um, and charged particles
emerging from annihilations were detected by plastic scintillation bars. In a
different run, we positioned a circler ring downstream of the target. Some
antiprotons scattered elastically on the target and annihilated on the frame.
The resulting charged particles were detected to determine the elastic scat-
tering cross section. By comparing the numbers of detected particles with
and without the frame, the annihilation cross section was derived.

To monitor the relative intensity of the beam to normalize the signals
with and without the ring, we developed a Cherenkov counter with photo-
diode readout. We measured the photon yields of five crystals and selected
lead fluoride crystals, which had a high refractive index of 1.84. Avalanche
photodiodes were used to minimize the background caused by the nuclear
counter effect. The detector was placed close to the beam dump, and mea-
sured the relative intensities of the beam with a precision of ~ 2%.

The p-annihilation cross section on carbon targets at a momentum of 100
MeV/c was determined as 1.2140.31 barn. The result is consistent with a
calculation based on the generalized optical potential within 1o, and so no
large enhancement like for the nn data was observed. The mass dependence
of the cross sections at 100 MeV/c was studied using the past experimental

data of Ni, Sn and Pt. The results follow theoretical calculations.
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Chapter 1

Introduction

In this thesis, a measurement of the annihilation cross section of antiprotons
on carbon targets at an antiproton momentum of 100 MeV/c is described.
This data will be compared with those of antineutron annihilations in the
same momentum region [1]. In this chapter, the n-annihilation cross sec-
tions, past experiments of p-annihilation cross sections and theoretical cal-

culations used to describe them are presented.

1.1 Annihilation cross sections of antinucleon

Antiprotons (p) and antineutrons (1) are antiparticles of protons and neu-
trons. Past experiments show that when antiprotons and antineutrons strike
a target nucleus, they annihilate with surface nucleons, in a way they makes
the target behaves like a complete black disk [1]. The antinucleon-annihilation
cross sections have been used to construct optical potentials between them
[2].

Recent studies revealed that the n-annihilation cross sections on some
nuclei (C, Al, Cu and Pb) at momenta ~ 100 MeV/c show anomalous behav-
iors when compared to theoretical calculations of p-annihilation cross sec-
tions. Due to lack of the enhancement caused by Coulomb focusing effects,
the p-annihilation cross sections were expected to be consistently larger than
the n-annihilation cross sections for the same target and energy of the in-
cident particle. However the n-cross sections measured by the OBELIX
experiment [3] were larger than the expected values based on the gener-

alized optical potential model [2], and in fact behaved like p-annihilation
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cross sections. In Fig. 1.1 the black circles represent the n-annihilation
cross sections, dashed and solid lines represent theoretical calculations for
P and n-annihilation cross sections. The difference between the experimen-
tal data and n-calculations were more than 5o, the data was closer to the
p-calculations. It has been discussed whether the enhancement had some

physics reason or was caused by other experimental issues, but so far this

deviation is not understood.
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FIGURE 1.1: Annihilation cross sections of antineutrons on
C, Al, Cu and Pb targets (black circles). Dashed lines in-
dicate theoretical curve of p-nuclei annihilation cross sec-
tions, solid lines antineutron cross sections. These figures
were taken from Ref. [1].

One possible reason for this enhancement is an existence of resonance
states. Fig. 1.2 shows experimental data of the antineutron-proton annihi-

lation cross section in the momentum region below 450 MeV/c [4]. They
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measured total (indicated by black rectangle points) and annihilation (in-
dicated by black circler points) cross sections of antineutron on a proton
target. Theoretical calculations of the annihilation cross section (solid line)
and total cross section (dashed line) are shown together. There is a small
excess around 180 MeV/c, which was suspected to be caused by a near-

threshold resonance [5]. The existence of such resonance are controversial.
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FIGURE 1.2: m-annihilation cross sections (filled circles)
and total gross sections (squares) on proton targets measured
by the OBELIX. Theoretical calculations for the annihila-
tion cross section (solid curves) and the the total cross sec-
tion (dashed curves) are shown together. This figure is taken
from Ref. [4].

In cases of heavier nuclei, the annihilations with the surface nucleon
were affected by the Fermi motion of the nucleon. The resonance state
disappeared and only a broad enhancement appeared to remain, but so far
there is no explanation for the continuous enhancement seen in Fig. 1.1.
Fig. 1.3 shows the cross sections of antineutrons on Cu, Sn and Pb as a

function of the incoming momentum of an antiproton. In order to study the
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dependence of cross sections on the momenta pg, the data were fit with the

simple function.

oo = a+ b/ps (1.1)

where a and b denote some parameters. The function (Fig. 1.3) reproduces
the results for Cu, Sn and Pb targets well, and so that the annihilation cross
section of antineutrons also obey the 1/v law like for antiprotons while we

observed broad enhancements in Fig. 1.1.
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FIGURE 1.3: Cross sections of m on Cu, Sn and Pb. The
data was fit by Eq. 1.1. This figure is taken from Ref. [3].

The generalized optical potential model used to fit the data of Fig. 1.1
has been used over a wide momentum region, to reproduce the width and
shift of the antiproton-nuclei bound states (below the threshold), and scatter-
ing and annihilations with nuclei (above threshold) [6]. The fi-anninhilation
cross section was obtained by setting the electric charge of the potential to

zero. As antiprotons and antineutrons have isoscalar symmetry, it is difficult



1.1. Annihilation cross sections of antinucleon 5

to understand why the optical potential cannot reproduce the experimental

data of n-annihilation cross sections.

1.1.1 Setup of experiments using antineutrons

Since an antineutron has no charge, it can not be transported the antineu-
trons from a production target of an accelerator facility. Instead a liquid gas
target was installed just upstream of experimental apparatus, and antineu-

trons were produced via the charge exchange reaction,

P+p—a+n (1.2)

FIGURE 1.4: A schematic view of the OBELIX spectrome-
ter. In order to reconstruct vertex of the annihilation-point,
internal (I) and external (IIl) scintillator barrels, a jet drift
chamber (I) and an electromagnetic calorimeter (IV) were
used. This figure is taken from Ref. [7].

The measurements using antineutrons were carried out by the OBELIX
collaboration at CERN with the experimental setup shown in Fig. 1.4.
OBELIX was developed as a general purpose magnetic spectrometer sur-

rounding a solid angle of ~ 37 seen from the experimental target. The
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emitted antineutrons were tagged by measuring the energy and position of
an associated neutron emitted in the reaction of Eqn. 1.2. By calculating
two-body kinematics of the reaction, the four-momentum of n was derived.
A lead collimator was installed downstream of the LH5 volume which de-
fined the antineutron beams. The production rate of antineutrons against
the incident antiprotons was ~107%. Details of the OBELIX experiment
are described in Appendix. A. Due to this experimental apparatus, there
was difficulty in tracking the emerging particle, and they suffered from low

statistics.

1.1.2 Annihilation cross sections of antiprotons

Direct comparisons of experimental p- and h-annihilation cross sections
were performed for only p and Sn targets because these were the only data
sets available.

As shown in Fig. 1.5, the p-annihilation cross sections on the proton tar-
get are consistently larger than the 1 cross sections at the same momentum.
In this region no enhancement of the type shown in Fig. 1.1 was observed.

Among the four target nuclei used for nn experiments in Fig. 1.1, the
corresponding data for p exists only for Sn (Fig. 1.6). The p cross sec-
tions were well described by the theoretical curve, and was smaller than
n-annihilation cross sections. If the enhancements shown in Fig. 1.1 are
real, this implies that n-annihilation cross sections are larger than the cor-
responding p-annihilation cross sections for heavier target nuclei, i.e. the

behavior inverts.
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1.1.3 Studies using antiprotons

We may summarize the above discussion in the following way.

* The experimental n-annihilation cross sections were much (50) larger
than the theoretical values, which are based on the generalized optical
potential of antiprotons in the momentum region from 100 MeV/c to
500 MeV/c. On the other hand the potential reproduced the experi-
mental data at momenta above 1 GeV/c and the region of bound states

and nuclei where the total energy was negative.

* Antineutrons must be produced by the charge exchange reaction and

require tracking for particle identification.

* Direct comparisons of experimental data of antiprotons and antineu-
trons were carried out for only two types of targets. The experimental
data of n-annihilation cross sections were smaller than for the antipro-
tons with a proton target, while they became larger in the case of a Sn
one. This implies that at a certain mass number the fi-annihilation

cross section becomes larger than the antiproton values.

There is a general lack of p experimental data which can be compared
with the existing 1 data. Of particular importance is the measurement of four
types of nuclei which should enable the direct comparison with the corre-
sponding experimental data of antineutrons. As the possible enhancement
and inversion of p and 1 annihilation cross sections apparently depends on

the mass number, it is necessary to measure them with various nuclei.
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1.2 Past measurements of antiproton-nuclei an-
nihilation cross sections

We next review the existing data and theories of antiproton annihilations on

various target nuclei.

1.2.1 Past experiments using antiprotons

Measurements of antiproton-nucleus annihilation cross sections were car-
ried out since the 1980s by various methods. The cross sections of of H [9—
12], D [13-15], 3He [16], *He [17] and Ne [18] targets have been measured
in the momentum region p > 40 MeV/c at the Low Energy Antiproton Ring
(LEAR), where a continuous beam of 10° s~! antiprotons was produced.

The annihilation cross section of antiprotons on proton targets have been
measured over a wide momentum region from 10 MeV/c to 1 GeV/c. The
initial purpose of the experiments was to discover any resonance or bound
states of pp which relate to new particles, such as glueballs [19, 20]. The
experiments counted the number of charged pions emerging from the anni-
hilations in a liquid hydrogen target by using scintillator hodoscopes [9-11],
which identified the events by the timings and energy loss of the pions. In
the other measurements a streamer chamber was used to detect the charged
particles [17].

Measurements of *He and “He were carried out using a helium gas tar-
get and plastic scintillator hodoscopes which tracked the trajectories of sec-
ondary particles emerging from antiproton annihilations in the target [9].
In an other experiment, a drift chamber and stereocamera were used for
measurements of the cross sections [13, 16]. Annihilation cross sections
of deuterium in the momentum region from 300 to 600 MeV/c were mea-
sured using a bubble-chamber [15]. The OBELIX experiment carried out
measurements of deuterium targets in the momentum region from 36 to 70
MeV/c [7]. The spectrometer consisted internal and external scintillator bar-

rels, jet drift chamber and an electromagnetic calorimeter to reconstruct the
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vertex point of the position of an antiproton-nucleus annihilation. A bubble
chamber was also used for the measurement using a deuterium gas target
[13].

The annihilation cross section on C, Al and Cu nuclei were measured in
the momentum region from 470 to 880 MeV/c [21]. The experiments were
carried out in the low-momentum separated beam (K3) produced by the 12-
GeV proton synchrotron at the National Laboratory for the High Energy
Physics (KEK), BNL and LEAR at CERN.

For these heavier nuclei, the tracking method applied for the measure-
ments of H, *He, *He and deuterium could not be used due to the high mul-
tiplicities. Therefore transmission methods which compared the incident
and transmitted antiprotons were used. In the measurement, the annihila-
tion cross sections were determined by using the relationship, Nj,e™#7ani
= Niranss Where p denotes the density of the target. The trajectories of in-
coming and outgoing charged particles were measured by multi-wire pro-
portional chambers (MWPC’s). The outgoing charged particles were also
detected by scintillator detectors. A Cherenkov counter surrounding the tar-
get was also used.

In the momentum region ~ 500 MeV/c, the cross sections on C, Ca
and Pb were measured [22]. Using a magnetic spectrometer called SPES II.
Inelastic and elastic scattering differential cross sections were measured to
construct an optical potential between them. A Schroedinger equation was
then solved to derive the cross section.

Using the Antiproton Decelerator (AD) [23], the annihilation cross sec-
tions on Mylar, Ni, Sn and Pt were measured at 100 MeV/c by the ASACUSA
(Atomic Spectroscopy And Collisions Using Slow Antiproton) in 2011 [8].
The main backgrounds in the momentum region of 100 MeV/c were anni-
hilations of antiprotons at rest in the target. Therefore thin target foils of
~ 1 pum were used. The foils were installed in a vacuum chamber, and a
vertex detector consisting of scintillation fibers was positioned around the

vessel and the target. The detector consisted of two cylindrical shells, and
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each shells was made of 3 layers of scintillators which tracked the charged

particles from antiproton-nucleus annihilations.
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Annihilatiion cross section (mbarn)
—
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w

Momentum (MeV/c)

FIGURE 1.7: Annihilation cross sections of antiprotons on
various target nuclei at momenta below 500 MeV/c. It is
known that the behavior of each cross section can be de-
scribed by the usual 1/v law and the Coulomb focusing ef-
fect. This figure is taken from Ref. [8].
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1.2.2 Black disk model

The interactions of low-energy antiprotons with nuclei can be expressed
by a simple tp potential (Appendix. D). The potential was constructed to
reproduce the annihilation cross sections in Section. 1.2.1 and the data sets
of X-ray spectroscopy of the antiprotonic atoms [6, 24]. The results show

two main features which describe the characteristics of the interactions.

* The imaginary part of the ¢p potential is large and the real part is neg-
ligible.This means that the incident antiproton is completely absorbed
if its impact parameter is smaller than the radius of the target nucleus.
The target nucleus can be assumed to be a black body for the antipro-

ton, i.e. the so called "black disk model".

* The annihilation cross section of antiprotons can be describe by two
effects. One is the usual 1/v law which relates to the Black disk
model, and the other is the Coulomb focusing effect. Coulomb fo-
cusing causes antiprotons whose impact parameter is larger than the
radius of the radius of the target nucleus. This effect in the low en-
ergy region can be described by a semiclassical approach proposed by
Blair [25].

Based on the characteristics above, the annihilation cross section of an

antiproton o,,,; on a nucleus can be written as a following (see Ref. [2]).

(1.3)

Oarni = 7R? (1 + Zozhc)

ER

where R and Z are the radius and electrical charge of the target nucleus, £
is the energy of the incident antiproton. The first term in Eqn. 1.3 repre-
sents a geometrical cross section seen from the antiproton. The second term
represents the Coulomb focusing effect.

This equation has been used to describe the annihilation cross section of

an antiproton in a wide momentum range. For example, if the energy of the
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incident antiproton is enough large, the second term in Eqn. 1.3 is negligible

comparing to the first one, and it can be changed as a following.

Oanni — TR?

x A

win

(1.4)

where A is the mass number of the target nucleus, and we used R ~ As,
On the other hand, the Coulomb focusing effect becomes dominant and the

equation becomes as below in the low momentum region.

Zahe
anni R2 °
o - 7 il
x RZ
x As (1.5)

Here we used Z ~ %A. Therefore by plotting the cross section of various
nuclei with their mass numbers, and fit to see the A dependence, it is pos-
sible to understand if this naive assumption of the Black disk model, which
had been used in a wide momentum range, can also apply to the lower mo-
mentum region we are discussing now.

Fig. 1.8 shows annihilation cross sections at various momenta as a func-
tion of the mass number of the target nuclei.To see the mass dependence
described above, the data points were fit with a function ¢ = g9 A* which
is represented by solid lines. The results shows that av ~ 2/3. This value is
compared with classical view of the target being a black disk, where all inci-
dent particles are absorbed when they hit the target nucleus. Therefore, it is
essential to see the mass dependence of the p annihilation cross sections at
a certain incoming momentum to study if the black disk model works well

in the given region.
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FIGURE 1.8: Annihilation cross sections of antiprotons
on Be, C, Al, Fe, Cu, Cd and Pb as a function of their
mass numbers. The cross sections at momenta of 0.7,
0.95, 1.26, 1.53, 1.76 and 2.5 GeV/c are shown. The
data were fitted by o0 = 09A%. The value of « at 0.7,
0.95, 1.26, 1.53, 1.76 and 2.5 GeV/c were determined to
0.700+0.028, 0.650+0.019, 0.636+0.016, 0.645+0.014,
0.646+£0.014 and 0.653+£0.009. The value of « is consis-
tent with 2/3, which corresponds to the geometrical size of
the target nucleus. These data are taken from Ref. [26].
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1.2.3 Experimental challenge

There were some technical challenges in carrying out this experiment. In
order not to make antiprotons slow down and coming to rest in the foil, the
thickness of the target had to be thin (less than 1um). Manufacturing such a
thin foil was difficult, and its precise thickness can not be measured easily.

In our experiment we decided to use a carbon target due to some exper-
imental reasons. As mentioned above an experiment of antiprotons at 100
MeV/c needs a thin foil less than 1 pm to reduce the energy loss in the foils.
Especially foils made of heavier nuclei like Ni, Sn Pt are needed to be ~ 100
nm, and such thin foils are not self-supporting. They will be deposited on a
solid material, and a carbon foil of ~ 1 um is used for the reason since the
carbon is rigid. Therefore cross sections of Ni, Sn and Pt will be measured
with the cross section of carbon, and will be derived by subtracting the car-
bon’s cross section. For these reasons, a precise measurement of carbon’s
Cross section is necessary.

The probability of signal annihilations in the target foil is low (~ 107°).
Most of the antiprotons transversed and scattered at the foils. The antipro-
tons which hit the experimental apparatus made inevitable backgrounds.
Past experiments used a tracking detector to solve this problem, but due
to difficulties in tracking the particles, the measured p-annihilation cross
sections of Ni, Sn and Pt had experimental uncertainties of ~ 50 %, and it
was difficult to compare the results with the black disk model.

Experiment of antiprotons at 100 MeV/c can be an unique approach to
study the enhancement of the antineutron data. The past study comparing
the antiproton and antineutron annihilation cross sections on proton target
revealed that the difference of two cross sections becomes larger in the low
momentum region due to the Coulomb focusing effects. We expect that the
difference between the antineutron and antiprotons can be observed clearly
in the low momentum region, thus comparisons at 100 MeV/c, which had
not be measured with enough accuracy, will show the difference and effects

of enhancement clearly. In terms of the physics of antiprotons, no method to
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measure the annihilation cross section at 100 MeV/c has developed. There-
fore the annihilation cross section measurement at 100 MeV/c has a mean-

ing to supplement the general lacks of antiproton data at the region.

1.2.4 Thesis objective

In this thesis, the measurement of p-annihilation cross section at 100 MeV/c
with a carbon target, which is one of the nuclei under discussion (see Fig.
1.1), is described.

The experiment was carried out with the INFN group and members from
the Max Planck Institute in the ASACUSA (Atomic Spectroscopy And Col-
lisions Using Slow Antiprotons) collaboration of CERN. The conceptional
design was proposed by the INFN group and the author. We performed
a new experiment specialized to cross section measurement. This was ex-
plained in Chapter 2. A new Cherenkov counter was developed for our mea-
surement. The responsibility of the constructions belongs to the author and
described in detail in the same Chapter. Data analysis and discussions were
carried out by the INFN group and the author. In Chapter 3, we present the
data analysis to determine the cross section. Then in Chapter 4, the obtained
cross section was compared to the past n data and theoretical calculations.
The mass dependence of the cross sections at 100 MeV/c was also studied
there. Finally a conclusion and a future outlook were given in Chapter 5.

The author’s main contributions and achievements are as follows.
* Proposal of an experiment specialized to cross section measurements.

* Development of a Cherenkov counter which monitored the relative

beam intensities with a precision of ~2%.
* Installation of experimental apparatus in the beam line.

* QOperation of the experiment during the beam time. For this experi-
ment the full width of the antiproton pulsed beam was tuned to ~50

ns to reduce inevitable background events.
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* Development of the analysis programs.

* Determination of the p-annihilation cross section on carbon at 100
MeV/c with a precision of ~10%. The precision was improved by a

factor of five comparing to past values with other nuclei targets.

* Obtainment of a future outlook to determine the annihilation cross
sections on other nuclei with enough accuracy, which will be neces-

sary to deepen the discussion.
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Chapter 2

Experimental method

2.1 Principle of the experiment

In past experiments, the annihilation cross sections were derived from the

following equation,

S Ninflight .1
PNy

where 0,,,,; denotes the antiproton-annihilation cross section on a target nu-
cleus, Niusigns the number of antiprotons that annihilated in the target, p the
density of the target in atom/cm? and N the number of incident antipro-
tons. Values for Ni,qine and Ny were determined during the experiment, but
due to low statistics, difficulties of tracking the emerging particles and par-
ticle identification, it was difficult to determine those values with sufficient
accuracy.

In this new measurement we measured two kinds of signals, annihila-
tions on the target and elastic scatterings on the same target. The cross sec-
tions of elastic scattering can be derived numerically by using the Ruther-
ford scattering formula. The p-annihilation cross section was calculated
with respect to the elastic scattering cross section.

The experimental setup is shown in Fig. 2.1. The incident antiproton
beam of p = 100 MeV/c, which corresponds to 5 ( = v/c where v and c are
velocities of an antiproton and light) ~ 0.1, was allowed to transverse the
target foil. Some (3~4) charged particles were emitted per an annihilation.

To determine the number of annihilations in the target, the emerging charged
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particles were detected (N,,,;). These had velocities 5 ~ 1, and hit the
detector immediately after the annihilation occurred. This creates the peak
indicated by the red solid line in Fig. 2.1.

The elastic scattering of antiprotons was measured by a method called
"2nd ring method". A circular ring was positioned downstream of the tar-
get. Some antiprotons underwent Rutherford scattering in the target and
annihilated on the frame. The resulting peak indicated by the red dashed
line contains events originating from annihilations in the target and on the
frame. By subtracting the annihilation counts measured using only the tar-
get, the contribution from the elastic scattering (Ng,) was derived.

By using these values the annihilation cross section (c,,,;) can be de-

rived using a equation,

Oanni _ Nanni 2.2)
ORuth NRuth
where ogryn denotes the elastic scattering cross section calculated by the
Rutherford scattering formula. In this formula there is no dependence on
the thickness of the target foil.

Most of the antiprotons transversed the foil and annihilated at the beam
dump. The charged particles produced here were detected and is represented
by the blue solid line in Fig. 2.1. The background peak can be discriminated
from the signals of annihilations at the target position using the time-of-
flight method.

For this experiment, the following issues were considered.

* In order to reduce the effect of the small difference of solid angles
seen from the target position and the 2nd ring, distances from these
positions to the detectors should be large. This is also important to
guarantee identical efficiencies of detectors seen from the target and

2nd ring, which depend on the incident angle of the charged particles.
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Target chamber Target 2nd ring
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» time

FIGURE 2.1: Overview of the experimental setup. The an-
tiproton pulsed beam passed through a target carbon foil.
Some antiproton annihilated in the target and the secondary
particles were detected as signals of the annihilations (solid
red peak). Some antiprotons underwent Rutherford scatter-
ing in the foil and annihilated on the 2nd ring (dashed red
peadk). Resulting events are shown by a dashed red line.
Most of antiprotons passed through target and annihilated at
the beam dump (blue peak).
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» Some antiprotons scattered and annihilated on the lateral wall of the
target chamber, and produced backgrounds. This background was

estimated by simulations.

* Two runs with and without the 2nd ring were carried out. Each spec-
trum was normalized by the beam intensity. The charged particles
emerging from the beam dump (correspond to the blue spectrum in
Fig. 2.1) contains the information of the beam intensity. However
due to a large difference of the numbers of annihilations at the tar-
get position (~10 events per antiproton pulse) and at the beam dump
(~106 events), the charged particles from the beam dump saturated
the detectors and can not be used to monitor the relative intensities
of the beam. Therefore, a Cherenkov counter was placed close to the
beam dump additionally to monitor relative intensities of the beam.
In order to determine the cross section with a precision of 10 %, the
linearity of the detector against the intensity of the beam had to be
within a few percent. The details of this detector are discussed in

Section. 2.5.

2.2 CERN and the Antiproton Decelerator

The Antiproton Decelerator (AD) is the only facility which provides a pure
antiproton beam of momentum 100 MeV/c [27]. Itis a 188-m-circumference
synchrotron (Fig. 2.2). Antiprotons were produced by colliding a bunch
containing 1.5 x 10* protons of 26 GeV/c from the CERN proton Syn-
chrotron (PS) with an iridium or tungsten target. The antiprotons were cre-

ated via the following reaction,

p(Beam) + p(Target) - p+p+p+D- (2.3)

The antiprotons of 3.5 GeV/c were captured by a magnetic horn so that
5x 107 antiprotons were produced per proton bunch. Those antiprotons were

decelerated to 100 MeV/c after they passed through the AD. Since during
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FIGURE 2.2: Schematic layout of CERN’s accelerator com-
plex (not to scale). The LINAC2 provided pulsed proton
beam of 50 MeV produced from Hydrogen gas source. Pro-
ton Synchrotron Booster (PSB) accelerated the beam up to
1.4 GeV and injected it to Proton Synchrotron (PS) which
accelerated the beam to 26 GeV/c. For this measurement
the beam was sent to the AD where it smashed an iridium
target and produced antiproton pulsed beam. This figure is
taken from Ref. [28]
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deceleration the beam the geometrical size of the beam increases due to
conservation of phase space, stochastic [29] and electron cooling [30] were
used to compensate for the increase of the emittance. A schematic diagram
of the AD is shown in Fig. 2.3.

In Fig 2.4 a typical deceleration cycle of the AD is shown. The emittance
and momentum spread of the beam at 3.5 GeV/c were initially ~ 200 7
mm-mrad and ~ 6 %. After deceleration and coolings they were reduced to
~ 0.3 m mm-mrad and ~ 0.01 % at 100 MeV/c. Finally the AD provided
antiproton pulsed beams containing 3 x ~107 antiprotons at a repetition
rate of 0.01 Hz (see Table. 2.1).

X X Stoachastic cooling kicker
Antiproton production target

Injection/ejection elements

Radiofrequency g e ATRAP1/2
quadrupole i
decelerator

ALPHA

ASACUSA

Electron cooler y "
Deceleration / bunching RF cavities

FIGURE 2.3: Schematic top view of the Antiproton Decel-
erator (AD) in 2012. The antiprotons emerging from the
production target are injected into the AD and decelerated
to 100 MeV/c with a repetition rate is ~ 100s. Antipro-
tons at 5.3 MeV(correspond to 100 MeV/c) are injected to
the experimental area of the ASACUSA. Overviews of each
experiment are written in [23], and this figure is also taken
from Ref. [23].
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FIGURE 2.4: Typical machine cycle of Antiproton Deceler-
ator, showing the momentum of an antiproton as a function
of time elapsed. The timings and durations of the stochastic
and electron cooling are indicated.

Momentum Transverse emittance Ap/p Cooling time
(GeV/c) (7 mm mrad) (%) (s)
3.5 200 — 5 1.5—0.1 17
2.0 9—5 0.18 — 0.03 6.6
0.3 33 52 0.2 — 0.1 16
0.1 6—1 0.3 — 0.01 8

TABLE 2.1: Stochastic and Electron cooling steps at AD.
Antiprotons of 3.5 GeV/c were decelerated by using two
stochastic and electron coolings, and antiprotons of 100
MeV/c were produced every 100 seconds.
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2.3 Apparatus in the ASACUSA area

2.3.1 Beam line

Fig. 2.5 shows beamline in the ASACUSA area. Three GEM based profile
monitors [31] measured the position of the beam. Since they were destruc-
tive detectors, the first and second monitors were inserted when they mon-
itored the beam, and removed for the cross section measurement. The last
detector was operated during the actual measurements, and functioned as a
beam dump. Between the first and the second GEM detectors, quadrupole
magnets were placed to focus and guide the antiproton beam to the target
position.

Target chambers were placed between the second and third GEM detec-
tors. Inside the chambers target foils were installed. Details of the target
system are described in Section 2.4.3.

In this experiment, four kinds of detectors were operated. The GEM
detector was used for the beam steeling. The annihilations at the target
positions were detected by plastic scintillation counters set besides the target
chamber. A Cherenkov counter was set close to the beam dump to monitor
relative intensities of the beams. An another Cherenkov counter was under
the target chamber. Before the experiment we stopped all antiprotons at
the target position, and resulting charged particles were detected by this
Cherenkov counter to monitor the time width of the beam. The beam width
was adjusted to ~ 50 ns by changing the kicker timing of the AD and by
monitoring the beam profile with this Cherenkov counter. Details of these

Cherenkov counter are described in the following sections.
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FIGURE 2.5: Experimental setup in the ASACUSA area.
Three GEM-based beam profile monitors [31] (described
details in the next subsection) were used to steer the beam
through the center of the chamber. Dipole and quadrupole
magnets were used to modify its trajectory. The last beam
profile monitor functions as a beam dump, and a Cherenkov
counter was placed close to it.

2.3.2 Beam monitor

Three Gas Electron Multiplier (GEM) beam profile monitors were installed
in the beam line to guide the antiproton pulsed beam to the target foil. The
first, second and third GEM counters in Fig. 2.5 from the upstream of the
beam line were called GEM28, GEM45 and GEM47.

The active area of the detector was 10x 10cm?. The argon-dimethylether
(DME) in the proportion 90-10 was used as a gas buffer. The antiproton hit
the cathode plane and produced electrons, and the number of electrons was
multiplied with a gain of a few hundreds. The transverse beam profile was
measured by the XY-readout. The cross section of the detector is shown in
Fig. 2.6.

The beam profile was strongly influenced by the multiple scattering and
secondary particles produced at the window of the GEM counter. The early

study showed that the beam of ¢ = 3 mm became 10 mm when the beam
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profile was measured with this GEM counter. Therefore when we discuss
distributions of the beams their upper limit was used.

The GEM counter completely stopped the beam when it monitored the
beam profile. Therefore, the beam was put in and out during the beam steer-
ing. At the beginning of the steering, the profile at GEM27 was adjusted to
the central position so that its central mean value became within 1 mm.
In the next step GEM45 was installed and also steered the beam to its cen-
ter. The GEM47 was used to monitor the relative positions of the beams to

check fluctuations of the beam positions.
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FIGURE 2.6: Beam profile measured by the GEM detector

with various applied voltages. This figure was taken from
Ref. [31].
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2.3.3 Target chamber and target system

Some details of the target chambers are illustrated in Fig. 2.7. In order to
insert sufficient distance between the target and beam dump, two stainless
steel chambers of diameters d = 1.2 m and 0.6 m, and lengths /[=1.7 m and
1.3 m, were connected together. The thicknesses of their walls were ~ 5
mm.

The target foils were attached to a ring frame of diameter d = 12 cm. The
2nd ring, with inner and outer diameters of 6 cm and 11 cm respectively,
was placed 15 cm downstream from the target position. The rings were
large enough to make the annihilations on them caused by any beam halo
negligible. The foils were suspended by rotational manipulation arms of
thickness 1.5 mm. Annihilations on the arms were also negligible. The
target was placed 60 cm from the entrance of the chamber. Its position was
controlled by positioning the arms with a precision of =1 mm. A picture
of the target folder and manipulation arms are shown in Fig. 2.9. A turbo
pump and an ion pump evacuated the system to a pressure of 10~7 mb.

Details of the scintillation planes will be described in the following sec-
tion, but geometrical setup of the planes are shown in fig. 2.8. We used
three scintillation planes named P6, P8 and P13. They covered ~30% of
the total solid angle. A picture of the experimental setup is shown in Fig.
2.10. Scintillation detectors (black plates in the figure) surrounded the target

chamber.

2.3.4 Cherenkov counter under the target chamber

An acrylic Cherenkov counter of 48x16x2 cm?® made of Bicron BC-800
was set under the target chamber. The distance was 40 cm from the target
position and the solid angle seen from the target position was 1%. This was
used to measure the time width of the beam before the data taking. For the
purpose we stopped all antiprotons at the target position by using a blank
target. Charged particles emerging from the annihilations were detected by

this Cherenkov counter, and the time information of the beam was obtained.
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FIGURE 2.7: Experimental layout of the target chambers.
Two chambers were connected together to ensure a suffi-
cient the time of flight of an antiproton from the target to
the beam dump. Target foils and 2nd ring were moved by
manipulation arms. View seen from the beam line axis, and
details of positions of the target system are shown together.
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FIGURE 2.8: Exact positions of each scintillation plane.
Back and top views are shown. The planes covered more
than 30% of the total solid angle.
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FIGURE 2.9: Photos of a target and a manipulation arm.
The inside the target chamber is shown.

FIGURE 2.10: Photos of the target chamber, beam profile
monitors and detectors.
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We monitored to beam profile by changing the kicker timing of the AD and
derived correct AD timing to make the full pulse width of ~50 ns.

The refractive index of the Cherenkov material was 1.49 and detected
charged particles of 8 > 0.7. The readout of the signal was done by a pho-
tomultiplier tube (PMT, R5505G-ASSY) originally developed for the an-
tiprotonic helium experiment [32]. Inside the PMT 15 fine mesh dynodes
were installed. The photocathode connected to a high voltage power supply
with a low output impedance, and it supplied 15 V. A diagram of the voltage
divider of the PMT is shown in Fig. 2.11.

The obtained waveform was recorded using an oscilloscope with a band-
width of 1GHz. After the steeling we obtained a spectrum like in Fig. 2.12
which showed that the full time-width of the beam was less than 50 ns.
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FIGURE 2.11: A diagram of the voltage of the fine-mesh
photomultiplier (R5005G-ASSY). This figure was taken
from Ref. [32].
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FIGURE 2.12: Time profile of the beam used for this experi-
ment. The spectrum was measured by the acrylic Cherenkov
counter.

2.4 Scintillation detectors

The scintillation detectors were constructed and operated by collaborators
from INFN (Istituto Nazionale di Fisica Nucleare)'. The detector had been
used for antiproton-nucleus annihilation cross section measurement [33,
34], and its details are described in Ref. [35].

Three planes composed of scintillation bars were used in the experi-
ment. Two had a sensitive area of ~ 1 m? and composed of 62 scintillation
bars, whereas one had a size of ~ 0.5 m? and consisted of 32 bars. Those
scintillation bars were manufactured at Fermi lab?, and they are shown in
Fig. 2.13. They are composed of Polystyrene Dow Styron 663 W + 1 %
and PPO + 0.03 % POPOP and white TiO, coating. Scintillation light was
collected and read out using Kuraray® wavelength shifting (WLS) fibers of
Imm diameter. A hole of 1.5 mm diameter was made for each scintillation
bar, and the fibers were installed in them. The size of each bar was 96 cm?
and 1.5 x 1.9 cm? [36].

Thttp://home.infn.it/it/
http://www.fnal.gov/
3http://www.kuraray.co.jp/en/
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The WLS fibers were read out by several multi-anode Hamamatsu 64
channel H7546-B PMTs. In order to reduce the cross talks, each channels
was read out by two PMTs. The signal readout was carried out by a cus-
tom front-end board (FEB) with a MAROC3 ASIC. On the FEB board two
FPGAs (Altera Cyclone II) and a 12 bit ADC were installed, and the digital
signals were sampled by FPGAs with its 300 MHz sampling time.

The scheme of the data taking is shown schematically in Fig. 2.14.
When the DAQ system was triggered from the AD’s starting signal, signals
from the PMTs were sampled with a sampling rate of 300 MHz and pro-
vided 0/1 signals when the signal was below or above a certain threshold.
The starting point (when the pulse exceeded the threshold) and the length
of the signals (which were assumed to be proportional to the pulse height)
were used to count the number of hits.

The positions of each plane are shown in Fig. 2.8. The detectors covered
more than 30% of a total solid angle. Since one annihilation emitted ~ 3
charged particles, this setup enabled us to detect at least 1 of those particles

per annihilation.

2.4.1 Efficiency of the scintillation counter

Efficiencies of the scintillation counters were measured at T9 beam line of
CERN. The proton bunch from PS collided with a target to produce vari-
eties of secondary particles to be used for the measurement. The process
produced electrons, positrons, muons, pions, kaons and (anti) protons. The
particle had momenta from 0.5 to 10 GeV, those were typical values of the
charged particles (mostly pions) [32]. The maximum rate of the beam was
106 particles per second. In the beam line, gas jet Cherenkov counters were
used to identify the particle, and timing was measured by plastic scintillators
set upstream and downstream of the detector to be tested. The test revealed

that the efficiency of the scintillation counters were better than 90%. The
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FIGURE 2.13: Right top: the scintillator bars used in the
detector. Right bottom: Each WLS fibers were collected by
using an aluminum plate. Left: a scintillator plane made of
62 bars. These photos were taken from Ref. [34]
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FIGURE 2.14: Details of the digital acquisition scheme on
the FEB. String data set of 0 or 1 was stored when the signal
was above or below the threshold. This figure was taken
from Ref. [34].
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applied voltage of -750 V was used for this experiment, and the same value
was applied also for this experiment.

The timing resolution of the scintillation counter is critical since we
identify the hit of the particle by only the timing information. The tim-
ing resolution of the whole system was calculated using the experimental

data, which will be discussed in the analysis part of this thesis.

2.4.2 Cherenkov counter at the beam dump

The Cherenkov counter for the normalizations of the spectra was positioned
30 cm below the beam dump (Fig. 2.15 and in Fig. 2.16). In order to de-
termine the cross section with a precision of ~ 10%, we needed to monitor
the relative beam intensities with a precision of a few percent. For that rea-
son we developed a Cherenkov counter consisting lead fluoride crystals and
avalanche photodiodes.

The AD generated a master trigger signal every ~ 100 seconds, which
started the waveform acquisition over a 2 ps interval. A VME64X bus was
used with a controller connected to a PC in which the data was acquired. We

tested some types of radiators, types of photodiodes and their combinations.
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FIGURE 2.15: Position of the Cherenkov counter are shown
in centimeters. It was placed 30 cm away from the target
position. Views along the beam axis and from the side are
shown.
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FIGURE 2.16: Photos of the Cherenkov counter. It was
placed under GEM47 which functioned as a beam dump.



2.4. Scintillation detectors 39

2.4.3 Target foil

The largest backgrounds were caused by annihilations of antiprotons on the
lateral walls of the target chamber. The antiprotons that scattered on the
target reached the lateral wall before the antiprotons that reached the beam
dump. The solid angle seen from the lateral wall is larger than the one seen
from the target position.

In order to visualize the effects of the shape of the beam to the analysis,
we carried out toy Monte-Carlo simulations. The results are shown in Fig.

2.17. The process of the simulation was as followings.

* When antiprotons were injected to the target some antiprotons scat-

tered and annihilated at the lateral wall.

* The resulting charged particles hit the detector. The branching ratios
of the emitted charged particles were implemented into the simulation

to reproduce the past data of antiproton annihilations [32].

* In this simulation we just count the timing of hits, and no particle

identifications were done.

* We assume that the cross section of the antiproton annihilation on
carbon at 100 MeV/c should be 1 barn to follow the theoretical calcu-

lations. The cross section was also implemented.

* The obtained spectrum contains both the background and signals from

the target positions.

* We tested the pulse width of 200 ns and 300 ns. 200 ns is a typical

pulse width of the beam from the antiproton decelerator.

In Fig. 2.17 (a) the background was simulated with the expected anni-
hilation spectrum in the target. The solid line represents signals caused by
annihilations at the target position. The annihilation cross section was as-

sumed to be 1.0 barn. The background from the lateral wall is represented
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by a dashed line. A pulsed beam containing ~ 10® antiprotons full width
at half maximum of 200 ns was simulated. The antiprotons took > 20 ns
to reach the lateral wall. This fiducial region which was indicated by the
dashed lines in Fig. 2.17 (a) and (b), was used to count the annihilation
signals in the target.

However if the pulsed antiprotons had a larger slope in time, it would
be hard to select the 20 ns interval correctly. In Fig 2.17 (b) shows results
when we used a 300 ns long pulsed beam. In this case it would be necessary
to expand the range of integration taking into account the backgrounds.

Two issues are here important. The first is the reduction of background
events from the lateral wall. Since the number of scattered antiprotons is
smaller for targets of low mass number, we decided to use a carbon target.
Thin carbon foils of 700 nm and 1000 nm were used to minimize the effects
of energy loss (~10 keV for 5.3 MeV/c antiprotons [37]). We also tuned the
timing of the kicker and reduced the pulse width of the antiproton beam to
~ 50 ns.
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FIGURE 2.17: Simulated background events caused by an-
nihilations on the lateral wall of the target chamber. A car-
bon foil of 1 um thickness and incident 10® antiprotons par-
ticles were assumed. Solid lines in both figures show signals
of antiproton-annihilations in the target foil. The dashed his-
togram corresponds to background caused by annihilations
on the lateral wall. Area defined by vertical lines represents
the no-background regions. Different pulse lengths of the
antiproton beam (200 ns in Fig (a) and 300 ns in Fig (b))
were used.
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2.4.4 Extraction of the beam

In order to reduce the beam intensity per antiproton pulse, the AD was op-
erated in the so called "multiple extraction" mode. In the usual mode of
operation, the AD decelerates a single bunch containing 3 x 107 antipro-
tons every 100s. In multiple extraction mode the bunch was divided into six
pulses each containing 5x 10° antiprotons. The pulse width was adjusted
to ~ 50 ns with a rise time of ~ 15 ns by tuning the timing of the kicker

magnet in AD.

2.4.5 Material of the 2nd ring

For target nuclei of large mass number, charged pions emerging from an-
tiproton annihilations are absorbed in the nuclei with a high probability.
This caused a difference of multiplicities depending on whether the antipro-
ton annihilated in the target (carbon) or in the stainless steel (SUS304).

D. Polster et.al observed a decrease of the number of detected charged
pions when the mass number of the target was increased [38]. The multi-
plicity of carbon target was 4.5 % larger than with Fe target (Fe is a main
component of the stainless steel (see Appendix E).

This difference of multiplicities of antiproton-nucleon annihilation on
various nuclei was studied by J. Cugnon et.al. They studied the absorp-
tion mechanism of pions, produced by an antiproton-nucleon annihilation
but absorbed before they were emitted outside of the target nucleus [39].
A simple model in which a target nucleus is assumed to be a black disk
reproduced the experimental multiplicity well [40].

In order to avoid this multiplicity problem, carbon fibers manufactured
by MICROCOMPOSIT * of thickness 1.5 mm were used for a material of
the 2nd ring. Since the fiber contained small amount of other materials,

small corrections of multiplicity were applied as systematic errors.

“http://www.microcompositi.it/
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2.5 Construction of a Cherenkov counter

2.5.1 Overview of the Cherenkov counter

In order to determine the cross section with a precision of ~10%, it was
necessary to monitor the relative intensities of the beam with a precision of
a few percents. For this purpose, a Cherenkov counter using photodiodes
was constructed.

In past measurements of annihilation cross sections, an acrylic Cherenkov
counter read out by a photomultiplier tube (PMT) was used [32]. For this
measurement, we used photodiodes due to their compact size, high linearity
and high gain stability. Linearities and backgrounds of two types of p-i-
n photodiodes and an avalanche photodiode against the pulsed antiproton
beam were studied. The photon yields of five types of radiators and their
combinations with photodiodes were also tested.

To maximize the Cherenkov photon yield, lead fluoride crystals (PbF2),
which have a high refractive index of 1.89 was used [13, 41-44].

The main backgrounds of the photodiodes against the pulsed antiproton
beam were caused by direct hits of pions to their depletion layers. This is
called the nuclear counter effect [45]. In order to reduce the backgrounds,
avalanche photodiodes, with depletion layer thickness of a few um, were

used.

2.5.2 Apparatus

Fig. 2.18 shows a schematic view of the Cherenkov counter. Five radiators
of size 3 cm X3 cmx 16 cm were installed in a 25 cmx30 cm X 16 cm
aluminum box of wall thickness 5 mm. The box was hermetically sealed
and put with nitrogen to avoid moisture condensation on the cooled photo-
diode. The radiators were covered by two layers of reflectors (Immobilon-P
Membrane, IPVH00010°%). Each crystal was read out by a photodiode. The

photodiodes were mounted on a copper block.

Shttp://www.tgk.co.jp/info/0719233707 .html
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FIGURE 2.18: Schematic view of the Cherenkov counter.
All components were installed inside hermetically alu-
minum box. (b)Details of the Cherenkov counter. The
Cherenkov photons were readout by photodiodes. They
were attached to a copper block together with two Peltier
units and an electrical circuit board.
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FIGURE 2.19: Circuit diagram for the readout of the detec-
tor. Cf, Rf and OP represent feedback capacitors, feedback
resistors and an operational amplifier. Their types were op-
timized for each photodiode.
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The readout electronics are schematically shown in Fig. 2.19. The cath-
odes of the photodiodes were biased through 100-kS2 resistors and 1-nF stor-
age capacitors. The anode signals from each photodiode was read out by a
transimpedance preamplifier. The output signals of the five preamplifiers
were summed using a resistor network, before being further amplified by an
operational amplifier (Analog Devices AD829AR) with a bipolar transistor
input stage, which was used as a non-inverting follower of gain 2. The five
photodiodes, six amplifiers, direct current (DC) linear voltage regulators,
and high voltage biasing circuits were mounted on a single 4-layer printed
circuit board (PCB) of size 30 mm x 200 mm and thickness 1.6 mm made
of Panasonic Electronic Works R1705 type glass epoxy.

For the avalanche and larger-sized p-i-n photodiodes which produced
relatively large signal amplitudes, we used transimpedance amplifiers that
contained an operational amplifier (Texas Instruments OPA8421DB) with a
bipolar transistor input stage and an open-loop gain bandwidth product of
f» = 200 MHz. As the capacitance of the detectors were relatively large C'p,
at low values of the feedback resistor (RRy =1 k€2 for S8664-1010 and 3 k{2
for S3590-08) the output signal showed excessive ringing and oscillation.
This was reduced by introducing a compensating feedback capacitor (C'; =
22 pF for S8664-1010 and 12 pF for S3590-80). For the smaller-area p-i-n
photodiode with a faster timing response and smaller signal amplitude, an
amplifier (OPA843IDB) of larger open-gain bandwidth product f, = 800
MHz in conjunction with a larger feedback resistor R; = 3 k() and smaller
capacitor C'y = 2 pF were used.

Two Peltier units (MELCOR, CP1.0-63-05) and temperature sensors
(Analog Devices, ADS90MH) were mounted to the copper block to monitor
and control the temperature of photodiodes. The maximum current for the
Peltier unit were 3.9 A, and its cooling power 16.6 W. The summed signal
was read out via a sma feedthrough connected to one side of the chamber.
Temperature sensors and Peltier units were controlled through the second
feedthrough.
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2.5.3 Types of radiators

The photon yields of five types of radiators (Lead fluoride, fused silica (T-
4040), acrylic (CLAREX) a lead glass (SFSTHTTULTRA) and an eco-glass
(S-TIH53W) were tested. The dfferences of photon yields against various
directions of the incident particles entering the detector were studied. The
types of radiators, their refractive indexes and densities are summarized in
Table. 2.2.

Radiator Material Refractive index | density[g/cm?]
Lead Fluoride 1.89 8.45
Eco Glass (S-TIH53W) 1.84 3.54
Lead Glass (SF57HHT ULTRA) 1.84 7.77
Fused Silica (T-4040) 1.49 1.18
Acrylic (CLAREX) 1.46 2.20

TABLE 2.2: Five types of radiators and their refractive in-
dexes and densities.

Lead fluoride (PbF2) crystals have been used in nuclear physics exper-
iment as Cherenkov counters and calorimeters [46, 47]. It has a very high
refractive index of 1.84, and density (8.45 g/cm?), a short radiation length
(9.3 mm) and a small Moliere radius (22 mm).

A Cherenkov counter with PbF2 crystals was used for positron annihi-
lation life time spectroscopy (PALS) [48] by detecting the  rays emitted
from the annihilation. Initially the experiments used PbWO, crystals (lead
tungsten) as a scintillator radiator, but the timing resolution was limited to
the decay time of its scintillation around 20 ns. In the case of a Cherenkov
counter, a timing resolution of ~ 3.5 ns was achieved.

The H1 collaboration at DESY (Deutsches Elektronen-Synchrotron) stud-
ied its optical properties, radiation hardness, position resolution and spatial
homogeneity against pion and electron beams [47]. The efficient separation
of electromagnetic and hadronic showers was demonstrated. The A4 collab-
oration studied PbF2 crystals for use in a Cherenkov calorimeter in a parity

violation experiment at MAMI [41, 49]. The number of photoelectron (p.e.)
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per MeV read by a hybrid photomultiplier tube (HPMT) was between 1.7
and 1.9. Anderson et.al.[50] showed that PbF2 had a higher radiation resis-
tantance than usual lead glass, and the p.e. response almost fully recovered
after a short exposure to UV light.

The g-2 experiment at Fermilab, studied an electromagnetic calorime-
ter which consisted of an array of 54 PbF2 Cherenkov crystals read by
large-area silicon photomultipliers (SiPM) [51]. The response against 2.0
- 4.5 GeV electrons under a variety of using beam, impact position, an-
gle and wrapping of crystals was studied. They found that using white-
diffused wrapping, an energy resolution o/F of (3.440.1) % / E/GeV was
achieved.

On the other hand, some cracks and defects were reported on the sur-
faces of the PbF2 crystals due to its brittleness. These defects became worse
in larger sized crystals. The A4 experiment investigated photon scatterings,
absorption and surface damages of 1000 crystals [44]. Ren et.al. reported
that contamination, mainly oxygen, affected the light yield, transmission
[42] and growth of the crystal by using the non-vacuum Bridgman method
[43].

Some other radiation materials that were tested are listed in Table. 2.2.
S-TIH53W was an artificial glass with a high refractive index of 1.84 and
a small Abbe number of 23.8. Schott SFSTHHT-ULTRA, which improved
transmission comparing to SF57HHT, and its transmission is almost 100 %
for wave lengths between 400 to 700 nm. , has been previously used for
electromagnetic calorimeters. Due to restrictions on the use of lead in com-
mercial products, so-called unleaded "eco glass" having similar refractive
indexes and Abbe numbers as traditional leaded glass such as S-TIH53W
were developed. Those eco glasses suffered from poor transmission in the
blue regime, but S-TIHS53. It has almost same refractive index of PbF2 but
a slightly lower density.
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The compositions of lead fluoride crystals (PbF2), lead glass (Pb-O-
Si03) and acrylic is well known, but a composition of the eco glass (S-
TIH53W) was not documented. We measured the composition using X-
ray photoelectron spectroscopy (XPS). The results of the measurement are
described in Appendix. F. We found that the glass consisted of Ba, Ti and
Nb.

In past ASACUSA experiments, an acrylic Cherenkov counter was used
[32]. It was positioned under the target position and detected charged pions
emerging from antiproton annihilations. Its refractive index was 1.46 and
its density 1.18. The acrylic Cherenkov counter detected charged particles
whose /3 was larger than 0.7.

A crystal of fused silica manufactured by CoorsTek KK was also tested.

It has a refractive index of 1.46 and density 2.20.

2.5.4 Transmission measurement

To have the highest photon yield, the wavelength and position dependences
of the optical transmission of each crystal was measured. The measurement
was carried out using a spectrometer of the CMS group at CERN.

The measurement scheme is shown in Fig. 2.20. A light beam was
fired thorough a sample crystal. A PMT was placed at the injection po-
sition and monitored its intensity. At the other side of the crystal another
PMT was measured the transmitted light. The wavelength of the light was
scanned from 305 nm to 750 nm in 5 nm steps. We measured the longitu-
dinal transmission by injecting the light along the long crystal axis. Three
transverse transmissions, at positions 2 cm, 8 cm and 14 cm from the edges
were measured to study the spacial dependence. The transmissions includes
the contributions from surface reflections.

Fig. 2.21 shows the transmissions of the fused silica crystal (T-4040).
The longitudinal and transverse transmissions were both around 94%, which

was higher than the other crystals.
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FIGURE 2.20: Schematic layout of the transmission mea-
surement. A probe beam of wavelength from 300 nm to 700
nm was transmitted through the sample crystal, and the light
that reached the other end was detected. Intensities of both
incident and transmitted light were measured by PMTs. We
measured one longitudinal and three transverse points.
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FIGURE 2.21: Transmissions of fused silica (T-4040). One
longitudinal and three transverse transmissions were mea-
sured.
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FIGURE 2.22:  Transmissions of an acrylic plate
(CLAREX). One longitudinal and three transverse transmis-
sions were measured.
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transmissions were measured.
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FIGURE 2.24: Transmissions of an eco glass crystal
(STIH53W). One longitudinal and three transverse trans-
missions were measured.

Lead Fluoride : Longitudinal Lead Fluoride : Vertical 1
100 : 100
80 &
60 S
3
40 =
20 é
0 = H : ‘ H
300 400 500 600 700
Wave length (nm) Wave length (nm)
Lead Fluoride : Vertical 2 Lead Fluoride : Vertical 3
100 1001
& 80}
S 60
3
€ 40
é 20|
0 : ' : ' : ~ 0-. .......... ‘ : 4444444444444 ' ............. :
300 400 500 600 700 300 400 500 600 700
Wave length (nm) Wave length (nm)

FIGURE 2.25: Transmissions of lead fluoride crystal. One
longitudinal and three transverse transmissions were mea-
sured. White circles in the left bottom figure represent trans-
verse transmissions measured 1 cm from the crystal center.
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Fig. 2.22 shows transmissions of the acrylic plate (CLAREX). The lon-
gitudinal transmission was 90% in a wavelength region from 400 nm to 700
nm. When the wavelength became smaller than 400 nm the transmission
was gradually reduced and reached 0% at 305 nm. The vertical transmis-
sions were 80% at wavelengths above 400 nm and 35% at 305 nm.

The Transmission of the lead glass (SFS7THTULTRA) are shown in Fig.
2.23. The longitudinal transmission was 85% above 600 nm, and became
0% at 370 nm. The vertical transmissions started to reduce below 470 nm
and reached 0% at 360 nm.

In Fig. 2.24, the data of eco glass (STIH53W) are shown. The longitu-
dinal transmission was around 85% at wavelength > 650 nm, decreased to
0% at 380 nm. The vertical transmissions was 85% at lambda > 600 nm
and decreased to 0% at 370 nm.

The transmissions of the lead fluoride crystals are shown in Fig. 2.25.
Its longitudinal transmission was ~ 80% at 700 nm, and decreased continu-
ously. The minimal value was 60% at 305 nm. The transverse transmissions
had a strong positional dependence, which was assumed occur during man-
ufacturing. At position 1 and 3 transmissions were ~74% and 78% at 305
nm. At point 2, we observed poor transmissions of 35 % at 305 nm, which
was about half of the corresponding transmissions of at position 1 and po-
sition 3. We measured another point which was 1 cm off from the center
of the crystal as a reference. The data points are shown by white points in
the same figure. The transmissions were 8% higher than at the center. We
assume that these were due to imperfections either on the surface or interior

of the crystal.

2.5.5 Setup of photon yields measurements

The yields of Cherenkov photons against antiproton annihilations were mea-
sured using the setup of Fig. 2.26 [52, 53].

The AD provided a 200 ns long pulsed beam containing (2~3)x 107 an-
tiprotons with a kinetic energy of 5.3 MeV and a repetition rate of 0.01 Hz.
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FIGURE 2.26: Experimental setup to measure responses
of crystals against antiproton annihilations (not to scale).
Dashed lines show trajectory of the antiproton beam. The
incident beam was decelerated from 5.3 MeV to 70 keV, and
transported by an achromatic analyzer to the target volume
filled with liquid helium. In order to study differences when
secondary particles came into the crystal from the largest
and the smallest side, the tests were carried out at two dif-
ferent positions (case 1 and case 2 in this figure).

About 30 % of the beam was decelerated when it passed through the radio
frequency quadrupole decelerator (RFQD). The analyzer consisting of three
1-T solenoid magnets was used to select only the 70 keV antiprotons. The
~70% undecelerated antiprotons annihilated on the wall of the analyzer.
The trajectory of the beam was measured by microwire secondary electron
emission detectors [54, 55].

The beam was transported to a target chamber filled with *He gas at
temperature 7' ~ 15K and pressure p ~ 1 mbar. Most of the antiprotons an-
nihilated immediately when they arrived at the target volume. The resulting
charged pions were used to investigate the photon yields of radiators against
the antiproton beam.

A fine-mesh photodiode (Hamamatsu, R5505GX-ASSYIl) was used for
this test. The directional dependences according to the incoming charged
particles were tested by changing the angle of the radiators relative to the
target volume. In case 1 in Fig. 2.26, the short axis of the crystal pointed
to the center of the target chamber. In case 2, a smallest side (3 cmx3 cm)

pointed to the center of the target chamber. The distance from the center of
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the target volume to the entrance surface of the crystal was 15 cm in both
cases.

Measurements with and without a transparent rubber sheet made of two-
component silicone (Shinetsu Silicone CAT-103 and KE-103) were carried
out in case 1. The rubber sheet was placed between the crystal and photo-
multiplier to reduce the difference of refractive indexes. The rubber sheets
were not used for the case 2.

An acrylic Cherenkov counter (sub Cherenkov counter) was also posi-
tioned to monitor the relative intensity and to be used for normalization of

the signal strength.

2.5.6 Results of photon yields measurements

Fig. 2.27 (a) shows signal intensities measured for each radiator, normal-
ized by using the signals of the auxiliary Cherenkov counter. For case 1, the
number of Cherenkov photons in the PbF2 crystals was the highest due to
its high refractive index. The yields for the fused silica and the acrylic plate
were about one third of PbF2. The photon yield for the glasses (S-TIH53W
and SF57THTULTRA) were less than one fifth compared to the yields in
PbF2. The white circles represent the results the same measurements car-
ried out with the transparent rubber, for which no significant difference was
observed.

Fig. 2.27 (b) shows the results in case 2. The yields in the fused silica
were almost the same as for PbF2. This is due to the lower photon trans-
mission in PbF2. In the experiment of the antiproton-nucleus annihilation
cross section measurements, it was necessary to cover a large solid angle.
Therefore the short axis of the crystal (3 cmx 16 cm) pointed to the center

of the beam dump as in case 1.
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The crystal was positioned as, (a) for case 1 or (b) for case
2 (see text). The signals were normalized by a different
Cherenkov counter. White points shows relative intensities,
and black points results show results of same measurement
but with rubber transparent sheet. Results of measurement
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in the case of Figure (a).
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2.5.7 Types of photodiodes

The two p-i-n photodiodes and an avalanche photodiode tested in this study
are listed in Table. 2.3.

Photodiodes \ Size [mmxmm] \ Depletion layer [um]
p-i-n photodiode (S3204-08) 18x18 300
p-i-n photodiode (S3590-08) 10x10 300
avalanche photodiode (S8664-1010) 10x10 5

TABLE 2.3: Three types of photodiodes, their sizes and
thicknesses of the depletion layers

A schematic cross section of a p-i-n photodiode is shown in Fig. 2.28
(a). When a reversed bias is applied to the P and N layers the depletion
layer thickness enlarges to typically ~ 300 um, and so its capacitance C,
decreased. The timing response f, of the photodiode increases since it is in-
versely proportional to the capacitance. The fast timing would be an advan-
tage during the annihilation cross section measurement in which a number
of particles (~10°%) would hit the detector in a short time duration (~ 200
ns).

We tested the S3204-08 (Hamamatsu Photonics) p-i-n photodiode. It
had an active area of 18 mm x 18 mm with a surface covered by epoxy
resin. Its C; and fc was 130 pF and 20 MHz. The sensitive spectral range
As was from 340 to 1100 nm, and its peak sensitivity was at 960 nm. The
other p-i-n photodiode S3090-08 had a smaller active area of 10 mm x 10
mm. Its C; and f¢ was 40 pF and 40 MHz. Its sensitive wavelengths \s was
also from 340 to 1100 nm, and its peak sensitivity was at 960 nm. In both
cases the thicknesses of depletion layers were 300 um.

An avalanche photodiode, S8664-1010, was also tested. It multiplies
the carriers generated by incident photons (Fig. 2.28 (b)). An electron and a
hole were collected to the N and the P layer. The drift speed of the electron
increased with the supplied voltage. At a certain voltage, the probability to

hit lattices in the avalanche layer increases and the drift speed was saturated.
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If the applied voltage becomes higher, the carrier produced another electron-
hole pair via ionization when it hit the lattice, which leads to the avalanche
multiplication. This called ionization. It is possible to make this process
repeat itself with even higher voltage. The multiplication is called avalanche
multiplication. Avalanche photodiodes therefore achieve better signal to
noise ratio (S/N ratio) than for p-i-n photodiodes. Since the gain of the
avalanche photodiode depends on their temperatures (see Appendix. G),
it is essential to control the temperature with a precision of 1 degrees to

make the systematic error less than 5 %.
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FIGURE 2.28: (a) Schematic cross sectional view of the
p-i-n photodiode. This figure was taken from a handbook
of Hamamatsu photonics [56]. (b) Schematic view of an
avalanche photodiode taken from a handbook of Hama-
matsu Photonics [57].
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2.5.8 Linearities of photodiodes

The linearities of the photodiodes were measured using the setup shown in
Fig. 2.29. This method is called double aperture method [58, 59].

A light emitted diode (LED, ROHM SLI-506) produced a 100 ns long
light pulse of emission wavelength 470nm, and emission angle 40 degrees.
A neutral density filter wheel (NDC-100C-4M) of diameter 100 mm and an
optical density range d = 0.0~4.0 was used to adjust the light intensity. A
50 mm diameter integral sphere (Thorlabs IS200) with an internal surface
reflectivity of 99% was placed just downstream of the filter. Its internal
sphere was covered with a white diffusive coating, where the incident light
underwent multiple scatterings, randomizing its direction and polarization.

Part of the light was extracted from the sphere using two optical fiber
bundles made of fused silica. The coupling positions and angles of each
bundle inside the chamber was identical to produce similar beams. The sig-
nal produced by the photodiode was read by the same setup in Fig. 2.18.
The analog signal was measured using an oscilloscope. The detected wave-
form was recorded, and the total intensities (S) was obtained by integrating
it.

We then blocked one of two light beams using a rubber sheet and the
intensity (S;) recorded. We next removed the sheet and blocked the other
incident beam instead, recording the resulting signal S. If the signal is
linear against a certain intensity of the incident light, S should be the sum of
two signals, i.e. S = S; + S2. But if the photodiodes were saturated it leads
toS<S; + Ss.

Results of linearity measurements are shown in Fig. 2.30. In the hori-
zontal axis, intensities of the incident photons in pC are shown. The vertical
axis ratio describes S/(S;+S2). The upper, middle, lower figures represent
the results with a large p-i-n photodiode (S3509-08), a small p-i-n photodi-
ode (S3204-08) and the avalanche photodiode (S8664-1010). The avalanche
photodiode saturated at 40 pC. For the p-i-n photodiodes, saturation could
not be observed up to > 200 pC.
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FIGURE 2.29: Setup of the measurement of the linearity of
the photodiodes. Light from a blue LED enters an integral
sphere after it passed through an iris. The output from the
sphere was transmitted along a pair of optical fiber bundles.
The light irradiated the photodiode. The obtained signal was
read by a digital oscilloscope.
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FIGURE 2.30: Results of linearity measurements. Horizon-
tal axis indicates intensities of the incident light in pC. In
the vertical axis, the ratio S/(S1+S2), is shown. Triangles
indicate the results of APD, A black circles the small p-i-n
photodiodes (S-3590-08), white circles the large p-i-n pho-
todiodes (S3204-08).
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2.5.9 Responses of photodiodes against the antiproton pulsed
beam

We measured the nuclear counter effect (NCE) against antiproton annihi-
lations, for the three types of photodiodes in Table. 2.3. The background
measurements were carried out with and without crystals for each photodi-
ode.

Fig. 2.31 shows spectra obtained with PbF2 crystals. Spectra with and
without the PbF2 crystals are indicated by black and red lines. The left,
middle and right figures correspond to the result with large p-i-n photo-
diodes (S3509-08), small p-i-n photodiodes (S3204-08) and an avalanche
photodiodes (S8664-1010). For p-i-n photodiodes, most of the signals orig-
inated from NCE. This is caused by direct hits of charged particles on the
300 um depletion layer [45]. The avalanche photodiode has a relatively thin
depletion layer of ~ 3 um, so that the NCE is reduced. Its intensity was ~
15 % of the total signal measured with PbF2 crystals.

Fig.2.32 show the results of background measurements with plastic scin-
tillators (EJ-200). The black spectra were obtained with scintillators, and
red spectra were measured without them. Two p-i-n photodiodes (S3509-08
and S3204-08) and an avalanche photodiode (S8664-1010) were also tested.
Due to the larger photon yield of the scintillators, the contributions of the

NCE became much smaller.
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FIGURE 2.31: Measurements of NCE backgrounds of pho-
todiodes. Black lines are spectra with PbF2 crystals and red
spectra show results of background measurements with no
crystal.
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FIGURE 2.32: Measurements of NCE backgrounds of pho-
todiodes. Black lines are spectra with scintillators (EJ200)
and red spectra show results of background measurements.
with no scintillators
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We decided to use avalanche photodiodes to reduce the NCE and the
PbF?2 crystals as radiators to maximize the photon yield. The ratio between
the signal and NCE could be increased by the applied voltage. We measured
this effects under a same experimental setup in Fig. 2.26.

The white circles of Fig. 2.33 indicate the signals of NCE measurements
without any radiator for anode voltages of 50 V to 400 V applied to the
photodiode. The black circle indicate the results with the PbF2 crystals.
White triangles are data with the scintillators. The signals were normalized
by the spectra obtained by the auxillary Cherenkov counter as in Section.
2.5.5.

The NCE effect was linear to the antiproton intensity. It however intro-
duces a background whose statistical fluctuations differs relative to the case
of NCE = 0. The NCE/signal ratio was 15 % at 400 V, and 60 % at 50 V.
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FIGURE 2.33: Normalized Cherenkov signal as a function
of the anode voltage applied to the avalanche photodiode.
The Cherenkov counter used in the antiprotonic helium was
also used to normalize the signals. Triangles indicate results
when scintillation bars were used. Black circles indicate sig-
nal strength of PbF2 radiators, white points the background
measurements with no radiator.
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Data analysis

As shown in Eqn. 2.2, the ratio between N,,,; and Ny, 1.€. ,the number
of hits from the target and from the 2nd ring, are necessary to derive the
annihilation cross section. They were measured in different experimental
runs, and the data normalized by the beam intensities.

The absolute value of the elastic scattering cross section (Ogyn) was
derived numerically, and systematic errors caused by the beam shape and
uncertainties of the positions of the experimental apparatus were estimated.

Data was measured over three shifts. Since the thicknesses of the target
foils, beam were varied daily, we derived the annihilation cross section for

each day and calculated the weighted mean value.

3.1 Data set

The measured data sets and the configuration of targets are shown in Table
3.1. Nghot o Nerot and Nije! represent the number of antiproton shots mea-
sured with a target and the 2nd ring, with only a target, and with an empty
ring of inner diameter of 4 cm. The diameter was smaller than for the 2nd
ring and frame for the target, so that any backgrounds caused by the halo of
the beam could be measured. Two thicknesses of carbon foils (700 nm and

1 um) were used.
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Date Ng©b . N&°t N9 Thickness of target

Nov18 68 57 12 I pym
Nov19 51 60 16 700 nm
Nov22 35 85 22 I ym

TABLE 3.1: Data sets used for the analysis. They are
shown with the numbers of antiproton pulses, types of tar-

gets. Nghot . Nehot and N%g(zf(ground represent the number

of pulses with the target and 2nd ring, with only the target,
and with the ring whose inner diameter of 4 cm for back-
ground measurements respectively.

3.2 Time spectra of antiproton annihilations

Time spectra of antiproton annihilations were obtained by counting timings
of the hits on each scintillator bar. Fig. 3.1 shows the raw time spectra
obtained on Nov22 by summing all the hits detected by each bar.

Fig. 3.1 (a) is a spectrum measured with the target and 2nd ring. Around
500 ~ 570 ns, there is a peak which corresponds to the annihilations of an-
tiprotons in the target and 2nd ring. The peak is clearly separated from the
large signal starting from 600 ns, which was generated by annihilations at
the beam dump. The signal was saturated due to a large number of annihi-
lations (~10°) there.

Fig. 3.1 (b) shows the time spectrum with a target but without the 2nd
ring. Signals in the target can be observed as well. After the peak, there is a
continuous spectrum between the two peaks. This corresponds to annihila-
tions of antiprotons at the lateral wall.

Fig. 3.1 (c) shows a result of a background measurement using the
empty ring. No annihilations were observed at the target position. Therefore

we concluded that the effect of the beam halos was negligible.
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FIGURE 3.1: Spectra obtained by plastic scintillators. Fig-
ure (a) shows a spectrum when a carbon foil of 1000 nm
thickness and 2nd ring were used. Figure (b) shows a spec-
trum without 2nd ring but with the same foil. Figure (c) is a
background measurement.
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3.2.1 Analysis of signals detected by scintillation planes
3.2.2 Scintillation planes

Since the signals at the target position was well separated from the back-
grounds, no analysis to reconstruct the vertex of the annihilation point was
necessary. Therefore, in this analysis we used only the hits on scintillator
P6, P8 and P13 (see Fig. 2.8) were placed along the sides of the target
chamber and covered solid angles of 8%, 5% and 10%. When a scintillation
bar counted the hit, the DAQ scheme recorded the timing when O changed
to 1. We assume that this timing corresponds to the time when a particle hit
the counter. We summed all the timings of hits of P6, P8 and P13 and made
time spectra.

In this process to count the hits, the following corrections were neces-

sary to be taken into account.

3.2.3 Corrections for the numbers of hits

The dead time of each scintillation bar was ~50 ns. Therefore if one scin-
tillation bar accept one hit it was not possible to take the second hit within
the integration range of 15 ns, which is explained in the following section.
In order to calculate the actual number of hits from the number of detected
particles, Monte-Carlo simulations were carried out by the INFN group and
occupancy correction factors were estimated.

In the simulation, not only the saturation effects but also the probability
of a single pion being doubly counted by neighboring bars was estimated.
Since each bar closed to each other one charged particle may pass the two
bars at the same time. For these reasons the occupancy corrections were
calculated for each plane.

The Monte-Carlo simulation was carried out as followings.

* The geometries of each plane P6, P8 and P13 were generated to repro-
duce the real experimental setup as shown in Fig. 2.7. They covered
8%, 5% and 13% of the total solid angles.
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e P6, P8 and P13 consisted of 56, 62 and 62 scintillation bars.

* A given number of annihilations was generated and six pions were
generated per one annihilation. We assume these pions are isotrop-
ically generated, thus the number of pions which hit the detector is

exactly determined by the detectors’ solid angles.

* If a pion hit the detector, it does on a random position (= random bar
number). If a bar is hit, also the next bar is hit 20% of the cases. This
is due to the fact that the detector has 3d-dimentsional bars which

cause a crossing pion to pass through more than one bar.

* Once a bar counted the hit it can not take the next hit, which represents

the saturation effects.

* The numbers of annihilations and resulting charged particles were
changed by hand. We plot the numbers of the actual hits and detected

hits. The results are shown in Fig. 3.2.

e In Fig. 3.2, the number of annihilations at the target position is de-
scribed in the horizontal axis. The red and blue lines correspond to
the number of actual hits on the planes and the number of detected

particles.

e In order to convert the detected number to the actual number, a coeffi-
cient (occupancy correction number) was calculated for each number
of detected particles. Factors to calculate the number of actual hits
(red) from the number of detected particles (blue line) were calcu-

lated for each number of detected particles.

» Same procedures were carried out for P6, P8 and P13. Therefore we

obtain three occupancy corrections for each plane.

Fig. 3.3 shows results of correction coefficients for each plane. In the

horizontal axis the number of detected hits on the scintillators is shown. The
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vertical axis represents the actual number of hits estimated by Monte-Calro
simulations. When the number of hits on a plane is smaller than ~ 15, the
number of hits needed to be decreased due to eliminate events which caused
multiple hits. On the other hand when the number of hits becomes large the
effect of saturation becomes large and the actual number is larger than the
detected one. This simulation was carried out for P6, P8 and P13.

Those corrections were applied for the data shot by shot. We found that
the number of hits when we used both the target and 2nd ring was estimated
to be lower. This is because of the additional annihilations on the ring.
Comparing to the data with only the target, the number of hits with the
target and with the 2nd ring needed to be increased by 9%,7% and 11%.
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FIGURE 3.2: ctions for the numbers of hits for each scin-
tillator plane. The coefficient numbers to derive the number
of actual hits from the number of detected particles during
the experiment are shown. The correction coefficients are
simulated for each plane.
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FIGURE 3.4: Typical spectrum of the antiproton pulsed
beam measured by the Cherenkov counter. The relative in-
tensity of the beam was measured by integrating this spec-
trum.

Fig. 3.4 shows a typical time spectrum obtained by the Cherenkov
counter for an antiproton pulse. The weighed center of the signal was de-
termined by fitting the following formula which represents both rising and

falling edges of the signal.

i+ Ao —x>
V20

A >
flz:p,o ) = 56%(2#_‘—)\0 —22) erfc( 3.1)
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where A and o denote parameters. Here ;. denotes the mean of the Gaussian
distribution which is close to the time where the signal height is maximized.

The erfc in Eqn. eqn:EMG is a complementary error function.

erfc(z) = j% /Oo e P dt (3.2)

The signal intensity was obtained by integrating the spectrum from x-50
ns to x+100 ns. Small contributions from its DC offset was estimated and
included in the errors of the obtained signal strength.

Fig. 3.5 shows the intensities of each antiproton pulse during the exper-
iment in pC. We rejected events when the beam intensity was less than 1 pC
due to issues of the accelerator.

The statistical error due to the number of particles which hit the de-
tector was 0.3%. Shifts in the gains of photodiodes caused by a temper-
ature fluctuations (= 0.5 degrees) caused an error of 1.9%. Resolution of
a digital oscilloscope (0.3%), reading errors of the linearity-measurement
(0.3%), contributions from the DC offset (~ 0.8%) and a linearity of the
pre-amplifiers (0.1%) were taken into account.

The uncertainties of intensity caused by NCE was dominated by the
statistical error. The avalanche photodiode detect ~ 400 charged particles,
and its statistical error was 5%. The component from NCE was ~15% of
the total intensity, and the error caused by the NCE was derived to ~0.8%
to the total intensity.

The errors are summarized in the Table. 3.2.

Selections of data with and without the ring are shown in Fig. 3.5. Those
intensities were summed and used to normalize the spectra. In Table. 3.3

sums of the Cherenkov intensities during each measurement are listed.
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Gain shift due to fluctuations of temperature 1.9 %
Statistical error (the number of pion” hits) 0.3 %

DC offset 0.3 %

Resolution of a digital oscilloscope 0.2 %
Reading error of linearity measurements 0.2 %
Linearity of preamplifier 0.1 %
Nuclear counter effect 0.8 %

Total 23 %

TABLE 3.2: Typical errors contribute to the total error of
the beam intensity are listed. Gain shift of the avalanche
photodiode was estimated to 1.9 % using the data book of
Hamamatsu-photonics (see Appendix G). Statistical errors
were derived by the number of hits of charged particles. DC
offset was evaluated from the spectrum during the beam tun-
ing as ~ 0.5 pC. Other small contributions, a reading error
of the linearity measurement, resolution of the oscilloscope
and a linearity of the preamplifier (OPA842) are listed. This
value was estimated for the case when the intensity was 14
pC.

Nov18 Nov19 Nov22

C+2nd (pC) 945.60(2.64) 704.20(2.27)  463.3(1.83)
COnly (pC) 785.41(2.39) 840.12(2.50) 1003.06(2.59)

TABLE 3.3: Beam intensities for each day. The date and
intensities of the beam are listed together.
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FIGURE 3.5: The beam intensity for each antiproton pulse.
The first 25 shots were used for a beam tuning. Form shot 27
to shot 63, a carbon target of 1 um thickness and 2nd frame
were inserted. From shot 64 to shot 69, only the second
frame was used for the background measurement. From shot
70 to 241, only a target foil was used. The last 6 shots from
251 to 256 were used for a background measurement again
to study the reproducibility.
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FIGURE 3.6: Intensities of antiproton beams with and with-
out the 2nd ring on each day measured by the Cherenkov

counter.
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3.4 Normalized spectra

The spectra of each day after normalization are shown in Fig. 3.7. The solid
line correspond to data with only the target, and the dashed line represents
a spectrum with the target and the 2nd ring.

A ratio of N,,,; and Ng,n can be derived as,

Nanni - T

= 3.3
Npwn F-—-T 3-3)

where T denotes the number of counts caused by annihilations at the target,
which can be derived by integrating the spectra shown in solid lines in the
corresponding range, F' the counts from the target and the 2nd ring obtained
by integrating the spectra indicated by dashed lines. T” denotes the counts

from the target which was included in F.

3.4.1 Start timing of integration

Antiprotons that annihilated at the beam dump saturated the detectors. The
time-of-flight between the target position and the beam dump was 80 ns,
from which the arrival time of the antiprotons at the target was derived.
The timing was determined by fitting the slope of the saturation by a lin-
ear function indicated by a solid line in Fig. 3.8. It shows that the detectors
saturated at 600 ns (Z4ump), and the timing when the pulsed beam reached at

the target (f1arget) Was estimated to be 520 ns.

3.4.2 Integration range to count the number of hits

We integrated a 15 ns time window for the 50 ns long antiproton pulsed
beam to avoid counting background events from the lateral wall. The rea-

sons for selecting 15 ns was as follows.

* It took at least 20 ns for the scattered antiprotons to reach the lateral

wall. The time range of integration has to be smaller than this.
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FIGURE 3.7: Time spectra obtained by the scintillation de-
tectors. They are normalized by the beam intensities. The
solid line indicates signals with only the carbon target, and
the dashed line represents signals with the target and the 2nd
ring. Three spectra for each day are shown.
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FIGURE 3.8: Method to determine the start timing of the
integration. A linear function was used to fit the slope of
the histogram and derive the timing when the beam reached
the beam dump. The time when the front edge of the pulsed
beam reached the target was calculated.
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* The second frame was positioned 15 cm downstream of the target.
This corresponds to a time-of-flight 5 ns. In order to count the num-
ber of hits on the 2nd ring, the time range of integration needs to be
extended 5 ns backwards with respect to the target only runs (¢,in, in
Fig. 3.8).

* To derive T we integrated the spectrum in a same time range used
to count I'. Since this range starts 5 ns later than #;,5e¢, @ 15 ns time

region avoids counting the hits from the lateral wall.

3.5 Uncertainties of the timings

In this experiment we identify the particles by using only the timing infor-
mation. Therefore it is important to consider the dependences of the ratios
on the timing uncertainties, and we need to put correct systematic errors. In
order to evaluate them, we took care of two issues. One is the uncertainties
of the starting point of the integrations, and the other is the synchronization

of two histograms with and without the 2nd ring.

3.5.1 Uncertainties of the start timing

In Fig. 3.8 the 4.,y Was evaluated from the time of flight of antiprotons
from the target position to the beam dump, however the %, had some
uncertainties caused by the timing resolution of the scintillation counters as
a whole. A rough estimation of the resolution was done by using the peak
structures obtained by the scintillation counters and a time-profile of the
beam measured by the acrylic Cherenkov counter.

Fig. 3.9 shows the comparison. The FWHM measured by the Cherenkov
counter was 16 ns (FWHM1), but in the case of the spectrum obtained by the
scintillation counters it became 18 ns (FWHM) due to its timing resolution.
Therefore, the resolution of the detector (T getector) a5 @ Whole was derived

by the following equation.
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Gaetector = \VFWHM2?2 — FWHM12/2.35 = 3.5ns. (3.4)

As a uncertainty of the start timing, we decide to put 5 ns uncertainty
conventionally. When we change the %.,« we moved it earlier timing. In
the region the statistics would be decreased while the contributions of the
backgrounds would also be smaller. The scanning to the earlier timing will
enabled us to make a good reference in the low statistic region. There we
changed the start timing from 515 ns to 520 ns and studied the fluctuations

of the ratio.

Cherenkov counter #1 Scintillation counter
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FIGURE 3.9: Time profiles of the beams measured by the
Cherenkov counter under the target volume (left) and scin-
tillation counters (right). The dashed lines were shown to
indicate positions of FWHMs.

3.5.2 Synchronization of the spectra

We discuss the timing difference of the spectra with and without the 2nd
ring here. This systematics is necessary to be taken into account since we
focused on the rising edge of the spectra, and it changed drastically day by

day and time to time. In Fig. 3.10 the normalized spectra in a long scale
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are shown, and they showed that the shapes of the rising edged are different
day by day. We assume that this is caused by the kicker timing of the AD
and trajectories of the beams. In order to guarantee the same shapes of the
beam with and without the 2nd ring on each day, synchronizations of the
spectra were important especially at the rising edge since at the rising edge
the changes of the slope will change the number of counts drastically.

To study the uncertainties of the synchronizations, we fit the peaks at
the target positions and at the beam dump with and without the 2nd ring by
the gaussian functions. By comparing the mean values with and without the
2nd ring, the accuracy of the synchronizations were evaluated. In Table. 3.4
shows the results of fit. This reveals that the synchronization was guaranteed
within 1 ns. Therefore we assumed that the synchronization was guaranteed
within 1 ns conservatively.

In order to study effects of the difference of 1 ns, we carried out a fol-
lowing analysis. We fix the timing of the solid spectra (run with only the
target) and changed the timing criteria of the dashed spectra (run with the
2nd ring) + 1 ns and calculated the ratios in a same way as described above.

The difference of the synchronization is estimated as systematic errors.

Nov18 Nov19 Nov22
T+2nd (Target position) 540.7(0.5) 540.3(0.6) 540.1(0.5)
T only (Target position) 539.5(0.8) 538.9(0.9) 539.2(0.8)
T+2nd (beam dump)  620.1(0.2) 620.8(0.4) 623.7(0.2)
T only (beam dump)  620.3(0.3) 620.3(0.5) 623.9(0.3)

TABLE 3.4: Peak positions at the target and beam dump
on each day. The peaks at the beam dump and at the target
position were fit by the gaussian functions and their mean
values are listed to study the synchronization of spectra with
(T+2nd) and without the 2nd ring (T only).

3.5.3 Derivation of ratios for each day

Summarizing above we carried out following studies. We changed the start

timing (fstart) from 515 to 520 ns. At each time we changed the criteria of
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FIGURE 3.10: Normalized spectra in log scale to emphasize
the rising edge of the spectra for each day
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the dashed spectra for -1, O and +1 ns. Therefore we had three ratios for
each timing, thus 18 points were calculated to study those uncertainties.

Fig. 3.11, 3.12 and 3.13 show the results. The horizontal axis shows the
tstart, the vertical axis represents the ratios (Napni/Ngrutn) on Nov18, Nov19
and Nov22. We found that the synchronization of £ 1 ns changed the ratio
to a different value which can not be explained by its statistics. For example
in Fig. 3.11, when the start timing was ., was 517 ns the blue point and
the other two points were not consistent within 1 ¢. This is assumed to be
caused by the unstable rising edge.

We evaluated the systematic error conservatively. For each day we took
a mean value of these 18 points evaluated in a statistical way. In addition,
we evaluated the difference of the ratio from the mean value to the farthest
point. The difference was added as a systematical error. This made system-

atic error of ~ 10% in maximum. In Table. 3.5 we represent the ratios for

each day.
3
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FIGURE 3.11: Fluctuations of the ratios (Nanni/NRuth) on
Novl18.
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FIGURE 3.12: Fluctuations of the ratios (Nanni/NRyuth) On
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FIGURE 3.13: Fluctuations of the ratios (Nanni/NRuth) on
Nov22.
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Ratio
Nov18 0.94£0.10(stat)£0.09(sys)

Nov19 0.98+0.10(stat)£0.08(sys)
Nov22 0.6240.09(stat)£0.08(sys)

TABLE 3.5: The ratios of numbers of hits caused by annihi-
lations on the 2nd ring (Ng1,) and on the target (Napni).

3.6 Antiprotons annihilated on the 2nd ring

The cross section of antiprotons scattered to the ring (oryn) Was derived by

the equation.

°F (3.5)

2
Zohe) lcos@ +4/1— (ﬂ)251n29]
a
ORuth = ( ) > s
sin*0,/1 — (2)°sin?0

M

In this equation, m and M represent masses of an antiproton and the carbon
nucleus. Due to its symmetry around the axis of the beam trajectory, the

formula can be rewritten as,

2
Zohic\2 201 [cos@ + /1 — (A”})Qsinzel
ORuth = | —op 27msinfdl
2E 11.3 4 m 22
: sin“6y/1 — (§7) sin“0

= 1.46(barn) (3.6)

The integration region for our experimental setup (distance from the target
to the ring was 15 cm, and its inner diameter and outer diameter were 6 cm

and 11 cm) was from 11.3 to 20.1 degrees.
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FIGURE 3.14: orun can be derived numerically, but spatial
distribution of the beam, uncertainties of positions of the
target and the 2nd ring affected the og,t, and introduced a
systematic uncertainty.

3.7 Uncertainties associated to the elastic scat-
tering

3.7.1 Spacial distribution of the beam

Eqgn. 3.6 assumes a beam of small diameter passing through the center of
the target. The actual beam has a finite size and may not pass through the
target axis (Fig. 3.14). In order to evaluate this effect, spatial distributions
of the beams were varied in a Monte-Carlo simulation, and changes of the
number of hits on the ring were studied.

The spatial distributions measured by a GEM detector appear larger than
they actually are due to multiple scattering of low energy ions in the vacuum
window. The spatial resolution was tested by injecting a beam collimated to
3 mm; measured profile was 10 mm FWHM.

The spacial distribution of the beam which came into the target foil was

measured by GEM45, which was just upstream of the target. Fig. 3.15
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shows the horizontal and vertical distributions of the beam measured by
GEM45. The distributions were fit with a Gaussians, the results of which
are shown in Table. 3.6. The obtained standard deviations (sigmas) were
typically 6 ~ 7 mm, which implies that an actual size was ¢ > 3 mm. In
addition the target position was downstream of GEM45, at the target posi-
tion the sigma should be smaller since we focused the beam on the target
position. Therefore we set the upper limit of the sigma of the beam to 3 mm

and included it into simulations.
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—_ —
adro
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0.4
0.2

Signal Strength (a.u)

-40 -20 0 20 40
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FIGURE 3.15: Horizontal and vertical positions and distri-
butions measured by GEM45, which is just upstream of the
entrance of the target chamber.



90 Chapter 3. Data analysis

shot num H-center (mm) Ho (mm) V-center (mm) Vo (mm)

shotl -0.17 6.78 -0.29 6.22
shot2 0.33 7.14 0.03 6.47
shot3 0.08 7.09 0.27 6.8
shot4 -2.6 6.43 4.0 7.2
shot5 -3.23 6.56 3.36 7.5
shot6 -2.7 6.56 3.14 7.37

TABLE 3.6: Measured positions and sigmas of the beam. H
and V represent horizontal and vertical positions, and their
one standard deviations (o) were derived by fitting the ob-
tained spectrum with a Gaussian function.

3.7.2 Validity of the Monte-Carlo simulation

The simulation was based on the Geant4 package [60]. At first we tested its
validity and used it for the error estimations.

Geant4 has two libraries describing processes of the elastic scattering.
One is G4MultipleScattering which describes the multiple scatterings. The
library includes effects of the size of the target nucleus. As a comparison,
the number of antiprotons scattered was calculated by using a simple for-
mula of the Rutherford scattering (Eqn. 3.6). In the simulation a carbon
target of 1 um with the density of 2.0 g/cm?® was used.

Those values are listed in Table. 3.7. Results with G4CoulombScattering
follow the formula of the Rutherford scattering, while the number of hits
with G4Multiple scattering do not since too few collisions would occur in a
thin target of ~ 1 um. G4CoulombScattering was implemented to describe

the elastic scatterings.

3.7.3 Estimation of uncertainties of the elastic scattering
cross section

In the Monte-Carlo simulation the target and 2nd ring were reproduced and
the beam which had a certain distribution was strike the target. The number

of antiprotons scattered to the 2nd ring was investigated by changing the size
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Implemented library  the number of hits on the ring (/10°p)

G4MultipleScattering 1826
G4CoulombScattering 1489
Theoretical calculation 1484

TABLE 3.7: The number of antiprotons that scattered off
the foil and strike on the 2nd ring. These values were es-
timated by simulations based on Geant4. Two types of li-
braries which describes the scatterings were compared.

in sigma of the beam from O to 3 mm, and changing the distance between
a target and the 2nd ring from 14.86 cm to 15.14 cm. Table. 3.8 shows
the maximum upper and lower uncertainties estimated in this way. The
maximum upper error was obtained when the distance was 15.14 cm, and
the sigma of the beam radius was 3 mm. The lower error was derived when
the distance was 14.86 cm and the sigma was 0 mm. The derived error (6

%) was evaluated as an error associated to oryp-

Distance (cm) Sigma (mm) the number of hits (/10%ps)

14.86 0.0 1446
15.14 3.0 1579
15 0.0 1489

TABLE 3.8: The number of antiprotons that elastically scat-
tered and struck on the 2nd ring. The relationship between
the number of hits on the ring and sigma(mm) of the Gaus-
sian beam is shown.

3.7.4 Effects of scatterings via strong interactions

In the above sections we took care of only the Rutherford scattering, how-
ever we need to consider the contributions of the nuclear scatterings. How-
ever, the effects were assumed to be small comparing to the Rutherford
scattering, especially in the case of scatterings at relatively forward angles.
This is due to the fact that the imaginary part of the optical potential is

larger than the real part, and the real part is almost negligible. For example
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the black disk model, in which the target nucleus was treated as a complete
black disk, does not the allow the nuclear scattering at the forward angle
since when it close to the target nucleus it always absorbed the antiproton.
Therefore we can assume that when antiprotons interact with nuclei via a
strong interaction, they annihilate with surface nucleons for almost all the
time.

A calculation of the nuclear scattering of an antiproton at 80 MeV/c on
Be target was done by Andrea Bianconi in INFN. The result is shown in Fig.
3.16. The blue line represents differential cross section of the Rutherford
scattering, and the blue line includes the scattering via the strong interaction
additionally. The In the forward angle between 10 to 20 degrees like in our
experiment, the contribution of the nuclear scattering was less than 1% thus
it was negligible when it was compared to contributions from the Rutherford
scatterings.

The calculation was carried out with the Be and one with a carbon target
has not done. However, the optical potential used so far revealed that the real
parts of the potential were negligibly small and almost same for all types of
the target nuclei universally [2]. Therefore we expect that the contributions
of nuclear scatterings would be small in the case of the carbon target too. In
our experiment, we used the carbon target at the momentum of 100 MeV/c,
therefore if we take into account the dependences of the Rutherford scatter-
ing on the momentum of the incident particle and the mass numbers of the
target, the contributions of the nuclear scatterings becomes smaller in the
case of the carbon target comparing to the beryillium target.

For these reasons, we concluded that the nuclear scatterings can be neg-

ligible and used only the Rutherford scattering formula to derive the ogty-
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FIGURE 3.16: Rutherford and nuclear scattering of antipro-
tons at 80 MeV/c on Be target The blue line shows differen-
tial cross sections of the Rutherford scattering, and the red
line represents both the Rutherford and nuclear scattering.
This calculation was done by Andrea Bianconi in INFN.
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3.8 Derivation of the cross section

The cross sections can now be derived by a following equation.

Nanni o O anni
NRuth ORuth
Nanni 3
Oanni N * ORuth ( 7)
Ruth

N.nn; and Nryn are listed in Table. 3.5. The elastic cross section was de-
rived to 1.46(0.09) barn. These values were substituted in Eqn. 3.7, and the
annihilation cross sections derived for each day are shown in Table. 3.9. In
Table. 3.10 sources of the errors of the cross sections are listed. The error
of normalizations by the Cherenkov signals was 2.3%, statistical error of
Nonni and Nyt Was 6%. Distributions of the beam caused an error 6% to
the total error. The uncertainty of the ¢, and synchronizations caused a
systematic error of 10%.

Fig. 3.17 shows cross sections for each three day. The inner error repre-
sents statistical error and the outer error corresponds to the systematic error.
A weighted average of three cross sections was applied to merge the data
for statistic error, and the systematic error was just added to the total error.

The cross section was derived to

Canni = 1.21(0.31)barn. (3.8)

Cross section (barn)

Novl18 1.37£0.15(stat)£0.24(sys)
Nov19 1.4340.15(stat)£0.23(sys)
Nov22 0.91£0.13(stat)£0.23(sys)

TABLE 3.9: The ratios of numbers of hits caused by annihi-
lations on the 2nd ring (Ng1,) and on the target (Nappi).
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Annihilation cross section (barn)

Source Uncertainty
Normalization of the spectra 2 %
Distribution of the beam 6%
Statistical error 6%
Uncertainties of ¢arge¢ and synchronization 10%
Total 25%

TABLE 3.10: Sources of uncertainties of the annihilation
cross section to derive cross sections for each day. The main
source of the error was caused was caused by the uncertainty
of ttarget Which related to the integration regions.

n
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o

o
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FIGURE 3.17: Annihilation cross sections derived for each
day of the experiment. Exact values of each point are listed
in Table. 3.9. The inner and outer error correspond to the
statistical and statistical errors.
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Chapter 4

Results and discussion

4.1 Annihilation cross section on carbon
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FIGURE 4.1: The p-annihilation cross section on car-
bon at 100 MeV/c, and comparisons to corresponding n-
annihilation cross sections and theoretical calculations. The
black circles represents the p-annihilation cross section, the
white circles are i-annihilation cross sections, and theoreti-
cal calculation of p-annihilation cross section (a solid curve)
and n-annihilation cross section (a dashed curve) are shown.

Fig. 4.1 represents the p-annihilation cross section (opc) on carbon at
100 MeV, and comparisons to corresponding n-annihilation cross sections

(0ac) and theoretical calculations. The black circles in Fig. 4.1 shows the
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theoreticcal p-annihilation cross section on carbon obtained in this mea-
surement. The white circles are n-annihilation cross sections. The solid
line shows the theoretical p-annihilation cross sections based on the gen-
eralized optical potential. The dashed line corresponds to the theoretical
n-annihilation cross section, which is also based on the same potential but
without the Coulomb focusing effect.

The obtained opc of 1.21 barn was consistent to the theoretical calcula-
tion within 1o, and the optical potential well describes the result.

The opc data is smaller than the 11 data. This implies that the inversion
observed in the case of Sn (Fig. 1.6) must also exist in the case of carbon.
In the case of the antineutron, the theoretical calculation differ from the
experimental by 5¢.

In this experiment, the obtained cross section had a large error of 30%,
however within the error bar the cross section was consistent to the the-
oretical calculations. If the large enhancement of the antineutron data was
caused by the strong interaction, it would be possible to see a same phenom-
ena in the case of the our experiment since the antiproton and antineutron
are isospin symmetry particles. This means that the p cross section would
be ~ 5 barn. However the obtained cross section of the antiproton was 1.21
barn and differ from the such enhancement. It would be necessary to con-
struct theories which just does not impose the reason of the enhancement to
the strong interaction, but deals with the difference between the antiproton
and antineutron, i.e, the difference of the charge. It is also necessary to take
the antineutron data with different methods to confirm correctnesses of the
past data.

The annihilation cross sections calculated by the optical potential, by
the Black disk model and experimental data are shown in Table. 4.1. The
theories agree with each other within 30%, and are consistent with the data
obtained in this experiment. This also means that the assumption of the

Black disk model in valid in this momentum region.
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Optical potential Black disk Experimental result
1.10 barn 0.80 barn 1.21(0.31) barn

TABLE 4.1: The annihilation cross section of antiprotons
on a carbon target at 100 MeV/c. Two different calculations
based on the optical potential and the black disk model are
shown. They are compared to the experimental value which
was measured in this experiment.

4.2 Mass dependence of cross sections

The mass dependence of the p-annihilation cross sections at 100 Mev/c was
studied by using the previous data the new result with carbon. For this the
formula of the Black disk model of Eqn. 1.3 was used. Since Eqn. 1.3
derived by the Black disk model depends on the momentum of the incident
antiproton, it becomes a geometrical cross section of the target nucleus in
the high energy region.

In past studies, the mass dependence was studied by fitting the obtained
data with the function o = 0y A%, where oy and o were parameters. However
at 100 MeV/c, the contribution from the geometrical cross section and the
Coulomb focusing effects are similar, and it is not possible to observe a clear
A-dependence. Therefore the calculation with the Black disk model was di-
rectly compared to the experimental values. In order to describe the diffuse-
ness of the target nucleus the radius of the target nucleus was parametrized
asR=1.84 + 1.12 A3[2].

The mass dependence is shown in Fig. 4.2. Annihilation cross sections
of Ni, Sn and Pt at 100 MeV/c [8] were indicated with white circles. The
latest result of carbon was plotted together with a black circle. The dashed
line corresponds to the calculation of the Black disk model. The past data
had large errors of ~ 50%, but the theoretical calculation describes the mass

dependence well.
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FIGURE 4.2: Mass dependence of p annihilation cross sec-
tions at momentum 100 MeV/c. The cross section on carbon
measured in this experiment is shown with a black circle.
The data of Ni, Sn and Pt were taken from Ref. [8] and indi-
cated by white circles. The cross section on carbon obtained
in this experiment is also plotted, and they are compared to
the theoretical curve according to the Black disk model.
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4.3 Future outlook

The large systematic error of ~ 25% was caused by the stabilities of the
beam during the experiment. In order to deepen the discussion in this mo-
mentum region it is necessary to reduce the contribution.

The shape of the beam depended on the kicker timing, the lamp up tim-
ing of the AD and the super cycle of CERN. Especially at the rising edge,
its shape and the amount of halo were affected by those effects strongly.
Improvements of the beam shapes themselves will be difficult, and in spite
of them the experimental method should be modified.

We propose to improve the target system to reduce the background. The
manipulation arms used in this experiment needs ~ 30 minutes to move in
and out the target foils and 2nd ring for each operation. If we improve the
system which can be operated automatically from the outside of the exper-
imental area, and take the data with and without the 2nd ring one by one,
the fluctuations of the beam shape during the data taking will be uniformed.
This will reduce the systematic error about 10%.

The other systematic error was caused by the distributions of the beam
and fluctuations of positions of each pulsed beam, and it was necessary to
monitor it to obtain correct parameters to be input into Monte-Carlo simula-
tions. However we used GEM based detector which made the distributions
wider, and we had to use upper limits of the fluctuations and distributions as
the input parameters, thus the systematic error is overestimated now. New
non-destructive monitors, like ones used in the other ASACUSA experi-
ment, will monitor the beam distributions with better resolutions. This will
reduce the systematic error of 6 %.

Under these new conditions a measurement of the cross section with
a precision better than 10% will be possible. Systematic data taking with
other nuclei targets with such better accuracy will enable us to deepen the

discussion of the antiproton annihilation cross sections at 100 MeV/c.
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Chapter 5

Conclusion

A measurement of the p-annihilation cross section on carbon at 100 MeV/c
was performed to study anomalous enhancement of the i-annihilation cross
sections on some nuclei below 500 MeV/c. This experiment makes direct
comparisons of experimental data of an antiproton and an antineutron pos-
sible.

Past measurements of p-annihilation cross sections were carried out with
a tracking detector, but it suffered from difficulties of tracking the events
correctly, and they had low statistics. At 100 MeV/c the annihilation cross
sections on Ni, Sn and Pt were carried out but the errors associated to the
obtained cross sections were ~ 50 %. In our measurement we developed a
method called "2nd frame method" which was dedicated to the cross section
determination. A ring whose inner and outer diameters were 6¢cm and 11 cm
was positioned downstream of the target foil. Some antiproton were scat-
tered on the target and annihilated on the ring. Since the number of scattered
antiprotons can be calculated by the usual Rutherford scattering formula, it
is possible to derive the p-annihilation cross section from the ratio of the
elastic scattering cross section measured in the same experimental setup.
The emerging particles were detected with scintillation detectors developed
and operated by a group of INFN in Italy.

The experiment was performed at the Antiproton Decelerator(AD) at
CERN. For this experiment, the time width of the beam had to be narrower
than usual ~ 200 ns in order to reduce the background events caused by the

annihilations at the lateral wall of the target chamber. A multiple extraction
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mode was operated during the experiment, and by changing the timing of
an AD’s kicker a pulse width of ~ 50 ns was achieved.

In order to normalize the spectra obtained with and without the 2nd
ring, a Cherenkov counter was positioned close to the beam dump. It mon-
itored the relative intensities of the antiproton beam. We developed a novel
Cherenkov counter which aimed to monitor the intensities with a precision
of a few percent. Photon yields of five types of radiators were studied and
PbF2 crystals, which had the highest refractive index of 1.89 among those
crystals, was selected. We tested two p-i-n photodiodes and an avalanche
photodiode to study those behaviors against the antiproton pulsed beam. We
found that the p-i-n photodiodes were saturated due to the nuclear counter
effect which was caused by direct hits of charged particles to its depletion
layers. Since the avalanche photodiode had a thinner depletion layer of ~ 3
pm, and it had a function to multiply the number of Cherenkov photons via
the avalanche amplification, the NCE was highly reduced.

The cross section of p annihilation on carbon was derived as
Camni = 1.21 £ 0.31(barn).

The p-annihilation cross section was consistent to theoretical calcula-
tions based on both the generalized optical potential and the Black disk
model. The mass dependence of the cross section at 100 MeV/c was stud-
ied using the past data of Ni, Sn and Pt. Comparisons with the calculation
based on the black disk model showed that it can reproduce the mass de-
pendence at 100 MeV/c. However cross sections in the past experiment had
large errors, so further study with data with better precisions is desired.

The error of the obtained cross section was improved by a factor of two
comparing to the past measurements, and it is possible to apply the second
frame method to other nuclei. Future experiments will be able to determine
the cross sections with better precision, and the data will enable us to deepen

the discussion of the comparisons and the study of its mass dependence.
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Appendix A
OBELIX experiment

In this appendix, details setup of the OBELIX experiment are described. Its
experimental setup is shown in Fig. A.l, and they measured annihilation
cross section measurements of the antineutron listed in Fig. 1.1.

The OBELIX spectrometer was built as a multi-purpose detector used
to detect both charged and neutral particles produced in antiproton-nucleus
annihilations. It had been operated at CERN LEAR from 1991 to 1996. Ex-
periments with this detector aimed to investigate antinecleon-nucleon dy-
namics and meson spectroscopy in the low momentum region [7, 61].

The detector in Fig. 1.4 consisted of 4 components. The most inner
part was a barrel-shape array of 3 scintillators, 80 x 3 x 1 cm3. The other
charged particles (7*,K*) produced in the annihilations were identified with
a set of two Jet Drift Chamber (JDC), which tracked the charged particles
and determined the annihilations’ positions. An external barrel of scintil-
lators identify the particle, especially neutrons by Time-Of-Flight (TOF)
method. More details of the detector are shown in Ref. [7].

Inside the spectrometer a liquid hydrogen (LLH>) target was placed, and
the antineutron was produced via a charge exchange reaction shown in the
Eqn. 1.2. A sectional view of the target inside the OBELIX detector is
shown in Fig. A.1. The LH; vessel was made by a cylinder of mylar, 175
um thickness, with a diameter of 60 mm which was supported by a ring of
stainless steel. The length of the target was 400 mm. As a result antineu-
trons which had continuous momenta were produced. A lead collimator

selected only the antineutron which was emitted forward the target position.
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A production rate of an antineutron was ~ 36 1is/10°ps. This low produc-
tion rate makes the experiment more difficult statistically comparing to the

measurements using antiprotons. Its momentum also have to be identified.

FIGURE A.1: A sectional view of the detector used for the
OBELIX experiments. A cylindrical chamber represents a
LH, target used for a production of 1 beam via the charge
exchange reaction. This figure is taken from Ref. [7].

The detector claims that contamination of antiprotons is not possible
since they are stopped in the production target. In addition to that, they put
additional materials (6 mm of scintillators, 5 mm of Pb and the reaction
target) and it was hard to think that antiprotons could pass through all these
materials. Other candidates making its background were 7% and photons
from ¥ decay, but its rate was estimated to 1074,

The momenta of the resulting antineutrons were from 80 MeV/c, which
is a threshold momentum for the charge exchange reaction, to 400 MeV/c.
Fig. A.2 shows the experimental momentum spectrum of antineutrons via

the charge exchange reaction.
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FIGURE A.2: Momentum distribution of the antineutrons
obtained and measured by the OBELIX detector. Fig (a)
shows a spectrum after corrections including resolutions and
apparatus of the detector. Fig (b) shows raw spectrum. This
figure is taken from Ref. [7].
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Appendix B
Black disk model

The low energy Coulomb scattering was derived by Blair [25] which calcu-
lated a a-particle resonance. For strongly absorbed particle like antiprotons,
the cross section can be approximately described by 72, which is a geo-
metrical radius of the target. In addition, some partial waves which focused
to the target nucleus by the Coulomb focusing effects are absorbed.

The equation of motion of antiprotons absorbed by the target nucleus

can be written as a following.

mu? 12 et 7

E= .z
2 * 2mr?  4dmey r

(B.1)

In Eqn. B.1, £ is the energy of the incident antiproton, m is the mass of an
antiproton, v, is the velocity toward the target, [ is the angular momentum,
e is elementary charge, €, is permittivity of vacuum, Z is the charge of the
target nucleus and 7 is the distance between the antiproton and the target.
In quantum physics, the square of the angular momentum can be substi-
tuted by 2?[(l + 1). When the distance r becomes R which is the distance
of closest approach, the v, becomes 0. The angular momentum [ becomes
l;maz» Which is the largest number of angular momenta which is absorbed.
lmax 18 typically ~ 10 when we calculate the cross section. Therefore, the

Eqgn. B.1 can be modified as below.
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E

lmax (lmax + 1)

In this equation we used £ = Rk and o =

Appendix B. Black disk model
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On the other hand, the relationship between the annihilation cross sec-

tion (0,npn;) and the angular momentum is a following [62][63].

lmax

Oanni = % Z(Ql + 1) =
=0

(B.3)

1 l _|_1 :
kQ max 2

By using Eqn. B.2 and Eqn. B.3 the 0,,,; can be written as a following.

O anni

2
1
') (lmax + 2>
T 1
_ 1 _
k2 (lmax(lmax + ) + 4>
m
@lmaac(lmax + ]-)
1 Zahe
k2 ER
Zahe
ER

(kR)? <1 +

(B4)

TR? (1 +

The first term describes the geometrical cross section of the target nucleus,

and the second term corresponds to the Coulomb focusing effect. In the

momentum region above 100 MeV/c the cross section is dominated by the

first term, and in the lower momentum region the second term becomes

dominant.
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In Eqn. B.4, the characteristics of nuclear density such as diffuseness
and half radius are not included. They are taken into account by modifying

the R in Eqn. B.4. The radius is calculated by using the following formula.

JW(r)|ip(r)Prdr
JWr)|p(r)[2dr

where ¢(7) denotes the p-nucleus scattering wave function scattering wave

R = (B.5)

function as below.

Y(r)=> (20 + 1)MPZ<COS(9) (B.6)

r

where v;(r) is a partial wave function and P, is Legendre polynomial [2].
W (r) is a function calculated by the optical potential as W (r) = —Im V(7).
The point is that we need to modify R by using the optical potential.
Therefore the optical potential approach and the semi classical approach
become identical at that point. The R calculated by using the Eqn. B.7 is

described as a following.

R =1.840 + 1.120A"3fm. (B.7)
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Secondary particles
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Branching ratios (%) for p + p

270 0.0693+0.0043
n® (n>1) 4.1_ot02
Tt + 0.307£0.013
at 4+ a4 a 5.82+0.43
at 47 4 270 9.3+£3.0
7t + 7 4 3n° 23.3£3.0
7t + 7 4+ 4n° 2.840.7
2t + 21~ 6.940.6
ot 427~ + 70 19.64+0.7
2t 4 27~ + 270 16.6+1
2t 4+ 27~ + 370 4.2+1
3nt + 37~ + 70 1.85+0.15
3nt + 31~ + nn® 0.3£0.1
(n>2)
K*¥+K~ +K° 0.237+0.016
K*¥ + K™ + 70 0.23740.015
K+ + KO+ 77 0.46+0.07
K¥+ KO+ 7T +7° 0.47+0.06
3nt + 37~ + 70 0.3+0.1
K™+ K~ 0.09940.005

TABLE C.1: Secondary particles produced in a p + p reac-
tion,and their experimental branching ratios shown in per-
centages [32].
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Branching ratios (%) for p + n

7 + nmd 16.440.5
(n>1)
n~ + 70 ~0.8
21~ + 7t + nn® 59.7+1.2
(n>0)

2 + 7t 3.440.2
2~ + 7t 4 70 1742
3n~ 4+ 21t + nad 23.440.7

(n>1)
3~ + 27" 4.240.2
3r~ + 27t +7° 15.1£1.0
47~ + 37t 4 na 0.39+0.07
(n>0)

TABLE C.2: Secondary particles produced in a P + n reac-
tion, and their experimental branching ratios shown in per-
centages. [32].
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Appendix D

Optical potential

D.0.1 tp potential

An optical potential, so-called called tp potential, has been used to dis-

cuss interactions between nucleus and hadrons, such as antiproton, pion and

kaon. The potential is derived as followings. When a plane wave e is

scattered by a particle which has no size (assuming that the size of the target
is negligibly small), a wave function can be written as

ezkr

¥ ="+ f(6)—, (D.1)

r

where 1) is the wave function, f() is a scattering amplitude, r is the distance
from the target position in the center of the mass frame. In the low energy
region, the scattering amplitude can be substituted by s-wave scattering am-
plitude f,. We next consider a scattering of a particle by medium consisting
more than one particle, such as nucleus.By using an effective wave function
Vest, Which is an wave function at the scattering center perturbed by all sur-
rounding scattering centers, the overall wave function can be written as a

following.

ikr
wzéh+/Mﬂﬁhi¢ﬁWL (D2)

r'|

where p denotes the density of the scattering center. Applying V? to
both side of Eq. D.2 and using the formula V2 ——. = -476(x — x), the

] =

following equation can be obtained.
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(V2 + E2)U(r) = =47 fop(r)theg (1) (D.3)

When only s-wave scattering is taken into account, the scattering ampli-
tude fy can be substituted by a s-wave scattering length ay. The effective
wave function 1. can be substituted by the incident wave function 1) in the
Born approximation. If a modification g from 1) can be put to the scatter-
ing length, the modified scattering length is named as a, we obtain agi.s

= agly). Then Eq. D.3 can be written as a following.

(V2 + B2)(r) = —4mag" p(r)y(r) (D.4)
& (V2 + k2 +4madp(r))y(r) = 0. (D.5)

In Eq. D.5, the term 4magip(r) is a potential assuming that af is a
complex scattering length. This equation can be changed to the form of an
usual Schroedinger equation can be obtained by dividing both sides of Eq.
D.5 with 5,

h €
Vipt = —47rﬂaoﬁp(r). (D.6)

The potential V,,, is called tp potential. This potential was extended

to the form below in order to discuss isoscalar and isovector term of the

potential.

A-1
201 Vopt(r) = —dm (1 + AZA> [bo(pn + pp) + b1(pn — pp)] (D7)

where (1 is the reduced mass of the antiproton, p, and p,, are the neutron and
proton density distributions normalized by the number of neutrons N and
protons Z, A = N + Z, and M is the mass of the nucleon. (1 + ﬁ%) is

a factor to convert the system frame from the two-body CM system to the
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p-nucleus CM system. Earlier works showed that absorption of an antipro-
ton is much larger than usual scattering, in other words the real part of the
potential is negligibly small. An antiproton does not distinguish whether it
annihilated with a proton or a neutron, this means that the isovector term,
which related to a difference between a proton density distribution and a

neutron’s is negligible [6]. The Eqn. D.7 can be changed to

A
2uVop(r) = —4m (1 + MA) bo(pn + pp))- (D.8)

In order to describe p, and p,,, a folded nuclear density distribution writ-

ten as a following was used.

B (7‘77‘/)2

2
a
3/1 € G

P (1) = Ppmo / dr'— TR)a (D.9)
7(2@% 1+ elr—R)/

where a; 1s a range parameter, 1 is the half radius of Woods-Saxon function
and a is a diffuseness of the Woods-Saxon potential. p(, o is a normaliza-
tion factor determined by [ d®rp,, = A, where A is the mass number of

the target nucleus.

D.0.2 Validity of the potential

At first, the optical potential described above was applied for the antipro-
tonic atoms, where the total energy E<O0, since there are sufficient data set.
Then it was extracted to the scattering region where E>0 in order to calcu-
late the annihilation cross sections of an antiproton. The parameters were
adjusted to reproduce the results of the PS209 collaboration at CERN]6,
64].

It is known that a difference between proton and neutron radii affects
strong-interaction level shifts and widths of p atoms. Assuming that the

differences are parametrized by the following equation.

N—-Z
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where «y represents parameter describing dependence of the excess neutron
skin. 7, and 7, correspond to radii of proton and neutron distributions. In

order to describe p, and p,,, two-parameter Fermi distributions are used [6,

Results of global fits to 90 data points obtained in the spectroscopy ex-
periments of p atom are shown in Fig. D.1. The ¢ in Eq. D.10 was set
to -0.035 fm. Three parameters, Reby, Imby and ag were adjusted for each

value of the parameter v of Eq. D.10, where a¢ is the range parameter of a
Gaussian.

230 ——————————

X? for 90 points

220 |
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200 |

190 L . | . | . | . | . |
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Y (fm)

FIGURE D.1: Top: x? values for 90 target nuclei as a func-
tion of ~ (see text), bottom: Parameters Imby and ag ob-
tained in this analysis. This figure is taken from Ref. [1].

1.6
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D.0.3 Calculation of antiproton-annihilation cross sections

The annihilation cross sections of antiprotons were derived by calculating
the phase shift §; for several partial waves which contributed to the total

cross section. The annihilation cross section can be written as below.

oo = % S (21 + 1T, (D.11)

where k is the c.m. [ is the number of a partial wave, and the transmission

T} 1s given by

T, =1 — exp(—4Imd;). (D.12)

Therefore in order to derive the annihilation cross section, the phase
shift §; is necessary to be calculated. This ¢; is calculated numerically by
using two Schrodinger equations. One is a Schrodinger equation in which
a nuclear force derived by the optical potential affects a waveform. It is

written as a following.

d I(l+1)

dr? 72

- VCoulomb(r) - ‘/;)pt + kQ] X[(T) = 0. (D13)

where V,; represents the coulomb potential as described below.

r 1 r/
vCoulomb(r> = _77]0/ drlﬁ/o 47Tx2pcharge(x) (D14)

where 1 denote the reduced mass of an antiproton and target nucleus. The
equation was solved numerically and a numerical solution yNumerical jg de-
rived.

When the wave function is at 7., where it is far enough not to be
influenced by strong force of the target nucleus, the wavefunction can be
solved analytically. A Schrodinger equation in this region is described as a

following,
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di(l+1)

dr2 72

- VCoulomb<r> + kZ Xl('r) =0. (D15)

This equation can be solved analytically and the solution is described as

a following,
X = aj (Fi(r)cosd] + Gi(r)sind;) (D.16)

where cofluent hypergeometric functions F;(r) and G,(r), a; complex con-
stant, §; is a complex phase shift and xj"* is an analytical solution. By con-
necting these two solutions smoothly via the following equation, the phase

shift can be derived.

1 dXNumerical 1 anna

- r=Tmax T=Tm: D.17
XNumerlcal dr | max Xana dr | max ( )

Once parameters in the optical potential were determined at certain values,
the phase shift and the annihilation cross section were determined automat-
ically. Therefore, the annihilation cross section at a certain momentum re-
gion was derived by tuning those parameters in the optical potential to de-
scribe the cross sections in other momentum region, and extended it to a

purpose region.

D.0.4 Annihilation cross section on carbon

At first, the parameters by, ag were adjusted to reproduce the results of
elastic scatterings of an 48 MeV antiproton on 2C, “°Ca and 2*®Pb. As an
example, differential cross section of an antiproton on *°Ca fitted by the
optical potential is shown in Fig. D.2. The resulting parameters were Rebg
= (0.40 £ 0.04) fm, Imby = (1.25 £ 0.05) fm and ag = (1.34 £ 0.05) fm.
The value of v was set to 0.9 fm. potential was applied to 100 MeV/c where
the experimental data of antineutrons exist, and Fig. 1.1 was made.

The tests of the calculations in the momentum region ~ 100 MeV/c were
carried out by using the existing data of antiprotons. Table. D.1 shows an-

nihilation cross sections on Ne with corresponding momenta of the incident
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antiprotons. Table. D.2 shows comparisons of annihilation cross sections on

Ni, Sn, and Pt in the momentum region of 100 MeV/c with the calculation.

In both tables the calculations well reproduce the experimental results.
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FIGURE D.2: Comparison between a calculation and ex-
perimental data of the elastic scattering of antiprotons of 48
MeV/c on the Ca target. This figure is taken from Ref. [1]
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Piar (MeV/c) 57 192.8 306.2 607.9
Oeap (Mb) 221041105 956447 771428 623421 /
Ocale (Mb) 2760 1040 865 676

TABLE D.1: p-annihilation cross section on Ne at various
momenta
Target Ni Sn Pt
Oezp (mb) 33001500 4200£900 860044100
Ocale (Mb) 3170 5560 8620

TABLE D.2: p-annihilation cross section on some nuclei at
100 MeV/e.
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Appendix E
Multiplicity

A multiplicity is a type and the number of charged particles emerging from
an antiproton-annihilation. In our measurement, the number of annihila-
tions with a carbon target and with a stainless steel were necessary to be
compared. The differences of each multiplicity needed to be compared.

The experiment was carried out by LEAR(Low Energy Antiproton Ring)
at CERN. Antiprotons with a momentum of 200 MeV/c and an intensity of
about 2~35 x 10* antiprotons/s were injected and stopped in following solid
targets, 12C, 27Al, 23Si, “°Ca, %Cu, 2Mo, Mo, 1%Ag, , 65Ho, 181Ta,
97 Ay, 299Bj and 23%U. They used 5 scintillators positioned 144~271 c¢cm
from the target in order to detect charged particles. They also used other
scintillators before and after the target. The time-of-flight from the target
positions to the scintillators were used to monitor the energy of the beam.
They detected emitted pions, kaons, protons, deuterons, tritons and neu-
trons.

The multiplicity of pions (7%) is shown in Fig. E.1. Due to absorptions
of emitted charged particles in the target, the multiplicity became smaller
when the mass number increased. The multiplicities of other charged par-
ticles(kaons, protons, deuterons and tritons) also obeys to this behavior as
shown in [40].

As shown in [39], the number of charged particles absorbed by a target
can be parametrized by the solid angle of the target nucleus seen from the
annihilation point. Eqn. E.1 describes the solid angle €2(A) seen from the

annihilation point. A is the mass number, ¢ = 2.3 fm is the diffuseness of the
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FIGURE E.1: Multiplicity for charged pions. Those data
and this figure are taken from Ref. [38].

surface. ry is radius of the target, and it was assumed that the annihilation

occurd at ro A3 + 30.

Q(A)
= E.1
= (E.1)
Using this solid angle the multiplicity < M,y > is given by
TiMm Q
< My >=< MY <1 - 4) > (E.2)
s

with < MP™™ > =31 is the number of particles emitted when an an-

tiproton annihilated with a nucleon.
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Appendix F

X-ray Photoelectron
Spectroscopy

The composite of the eco-glass (S-TIH53W) was investigated by using a
method called X-ray Photoelectron Spectroscopy (XPS) [66]. The experi-
mental setup is schematically shown in Fig. F.1.

The XPS was carried out by injecting high energy X-ray to a sample
material. The X-ray excite an electron at a certain energy level. The excited
electron was emitted and we could observe an existence of a certain atom.
The numbers of each atom can be identified by counting the numbers of
emerging electrons, and observing their energies.

The XPS equipment in this measurement (JPS-9010MC) used K« ray
(hv=1253.6 eV) of Mg as the incident X-ray. An incident electron was
emitted from a heated filament and hit a magnesium foil. The emerging K «
ray was used to excite the atoms in the sample material. When they de-excite
an electron with a characteristic energy was emitted. The energies of those
electrons were identified by an analyzer consisted of electrodes. Electrons
were detected by a multi-pixel photon counter. By changing the voltage
applied to the analyzer, the binding energy of the atoms were obtained.

We measured a composite of the eco-glass (S-TIHS3W). As a reference
the composite of an acrylic plate (CLAREX) was also shown. The acrylic
plate is mainly made of carbon and oxygen, and clearly seen in Fig. F.2.
The eco-glass was made of some other composites. It contained Ba, Ti and

Nb not like the other usual artificial glasses.
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FIGURE F.1: Schematic layout of the X-ray Photoelectron
Spectroscopy (XPS). This figure is taken from Ref. [66].
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FIGURE F.2: Composites of CLAREX measured by the X-
ray photoelectron spectroscopy.
Eco glass : STIH53W
40000 EKVV 44444 B a3d5/2 ................................................................................
Auger Ba3d,; o
Ti LMM gu';';'r‘ *
30000 e e e e
" Ba MNN
'E Auger
3 20000 (-
© Ti2p3/21§/2
Nb Cp |
10000 |- I oy . PSS——
: 305312
Bé4 Ba"d
0 D S U TR SR AR

1000 900 800 700 600 500 400 300 200 100 O

Binding energy (eV)

FIGURE F.3: Composites of the eco-glass (S-TIH53W)
measured by the X-ray photoelectron spectroscopy.
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Appendix G

Gain shift of the avalanche
photodiode

Errors associated to the intensities measured by the Cherenkov counter were
discussed in Chapter. 3. Here some plots which were used to determine each
error were shown.

Fig. G.1 shows the relation ship between a temperature of the avalanche
photodiode used in this experiment (S8664-1010) and its gain. Tis figure
corresponds to the data when the avalanche photodiode was biased with 330
V. The black points were taken from a handbook of Hamamatsu-photonics
G.1. The points were fitted by an exponential function which is described
with a black solid line.

The temperature was controlled at 20 degrees with a fluctuation of 0.2
degrees, but a fluctuation of + 0.5 degrees was used to estimate the error
conservatively. The gain at 20 degree was 26.7, and it becomes 27.3 and
26.7 when the temperature becomes 19.5 degrees and 20.5 degrees. The

error of 0.19 % was included in the total error of the beam intensity.
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FIGURE G.1: Gain shift due to fluctuations of APDs’ tem-
peratures. The horizontal axis shows a temperature of an
avalanche photodiode in this measurement (S8664-1010)
and the vertical points show gain of each temperature. The
black points were taken from a catalog of Hamamatsu-
photonics [57]. The black points were fitted by an expo-
nential function.
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