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Abstract

Linearly scaling methods for the density functional theory (DFT) are powerful tools
for the simulation of large systems such as nanostructured materials, biological systems,
etc. The existing methods typically focus on the total energy, the electron density, and the
forces in the systems. However, evaluation of the electronic state requires a numerically
demanding post-processing procedure for these methods.

In this thesis, we present an efficient post-processing method for the electronic state
calculation of general materials based on the divide-and-conquer (DC) DFT, which is
one of the linear scaling algorithm for DFT. In DC-DFT, a huge system is divided into
small fragments and the electron density of the total system is obtained by patching the
fragment densities. To calculate the electronic state, we reuse the fragment orbitals used
for this density evaluation. We first organize a basis set by clipping the core domain of the
fragment orbitals. Eliminating redundant information, we can further reduce the basis set
size. The Kohn-Sham Hamiltonian matrix defined with the basis set is constructed simply
by calculating the inner products among the orbitals in the neighboring fragments. As a
result, the present method yields fast and accurate description of the orbital energies and
the orbital wave functions of general large systems. Remarkably, our scheme enables us
to implement an efficient algorithm for the calculation with the exact exchange.

We analyze the parameter dependence of our method, which gives us a guide for
proper selection of the parameters in applications. We also perform benchmark tests to
show that our method can substantially reduce the computational cost with reasonable
accuracy. In our method, the number of the basis functions per atom becomes roughly
4–10 depending on configurations of the fragments.

We present computational results of our method for P-doped Si, P-doped Ge and In-
GaN/GaN super-lattice systems. In these results, we show that our scheme can represent
wave functions delocalized in the total system.
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Chapter 1

Introduction

1.1 First-principles simulations for large systems

First principles calculations based on the density functional theory (DFT) [1,2] have been
widely used for investigating material properties and phenomena in condensed matter
physics. While calculations with hundreds of atoms are currently routine, there is a de-
mand for simulations of larger systems. However, the computational cost of the conven-
tional DFT calculations rapidly grows as the order of N cubed, where N is the number
of atoms contained in a target system. Thus the first principles calculations for large
systems require massive computational effort which is often impossible to realize. This
problem was a motivation to develop the linear-scaling or O(N) methods [3, 4], whose
computational cost increase moderately as the order of N.

Let us start with an overview for the computational cost of the standard DFT calcu-
lations. In Kohn-Sham DFT, which will be reviewed in Sec. 2.1, a problem for many
interacting electrons is mapped into a set of effective Schrödinger equations for single-
electron, called Kohn-Sham equations. The main contribution to the computational time
is that for the diagonalization of these equations. We shall see how the diagonalization
cost grows with system size for each class of basis set [3].

1.1.1 Plane-wave basis set

The plane-wave basis set is most widely used in the DFT calculations. Let us consider a
target system with a large periodic unit cell. Each orbital wavefunction ψi(r), an eigen-
vector of the Kohn-Sham equation, is expanded as follows:

ψi(r) =
∑
|G|<Gmax

ci(G)exp(iG · r), (1.1)

where i is the band index and G is the reciprocal lattice vector for the unit cell. Gmax is
a cutoff parameter restricting the number of the reciprocal lattice vectors NG. Here we
omitted the wave number k since the Brillouin zone is small for the large system.
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The eigenvalue problem of the equations is solved by the iterative method such as the
conjugate gradient method. The orbital wavefunctions for the valence electrons are only
required to evaluate the electron density ρ(r), the key component of DFT (see Sec. 2.1):

ρ(r) =
occ∑

i

|ψi(r)|2, (1.2)

where the sum is only taken over the valence electrons. Thus the number of the wavefunc-
tions to be solved, Nband, is slightly larger than that of the valence electrons. Generally,
Nband is roughly 100 times smaller than NG.

There are two computationally expensive parts: the calculation of the density Eq. (1.2)
and the orthonormalization of the orbitals. The computational cost of the former becomes
O(NbandNGlog(NG)), where NGlog(NG) comes from the fast Fourier transformation (FFT)
for each orbital: ci(G)→ ψi(r). The cost for the latter is O(N2

bandNG) since the calculation
includes the inner-product operation for all pairs of index i. For large systems, the former
becomes a significant bottleneck due to the inefficiency of FFT for parallel computation,
and the latter becomes the most expensive part with O(N2

bandNG) = O(N3) cost.
The main advantages of the plane-wave basis set are accuracy and universality thanks

to its apparent completeness. The accuracy can be improved systematically with increas-
ing one parameter, Gmax. Additionally, the basis set can be easily applied to general
condensed matter because it is independent of properties or positions of atoms.

1.1.2 Real-space basis set
The real-space basis set can be classified roughly into two types. The real-space grid, or
finite difference method [5–7], represents the orbitals on the grid-point basis set {|r⟩}. The
kinetic term in the Kohn-Sham equation is practically represented as the finite differences
such as,

∂2

∂x2ψ(x, y, z) ≈
M∑

m=−M

Cmψ(x + mh, y, z), (1.3)

where h is the grid spacing and M is the order of the expansion. Cm means the coefficient
of the finite difference. The parameters controlling the accuracy are h and M, which play a
similar role of Gmax. As the plane wave case, the accuracy can be improved systematically
with these parameters.

The other real-space basis set is the local real-space basis set such as the finite element
[8], the wavelet [9], the Lagrange functions [10], etc. In these methods, the orbitals are
expanded with spatially localized functions. The size of the basis set is generally smaller
than NG but larger than that of the atomic-like basis set referred to in the next subsection.

In both cases, the sparsity of the Hamiltonian matrix thanks to the locality of the basis
set yields efficient parallelization. Moreover, the density evaluation does not require FFT
for the orbitals since the orbitals are expressed in the real space. In the finite differences
method, the Poisson equation for the Hartree potential can be solved by the multi-grid
method [11] without FFT for the density. Nonetheless, the O(N3) orthonormalization for
the orbitals is needed as the plane-wave case.
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1.1.3 Atomic-like basis set
The atomic-like basis set is categorized into the numerical atomic orbitals [12] for all-
electron calculations and the pseudo-atomic orbitals [13] for calculations with pseudopo-
tentials. These basis functions mimic the wavefunctions of atoms:

χnlm(r) = Rnl(r)Ylm(r̂), (1.4)

where Rnl(r) and Ylm(r̂) are a radial function and a spherical harmonic, respectively. This
expression enables analytic inner-product operations for the spherical part, which facili-
tate the calculation of the Hamiltonian and the overlap matrix.

The main advantages of the basis set is its locality and relatively small size of the basis
set. With the former advantage, the cost for the construction of the Hamiltonian matrix is
O(N) thanks to the sparsity of the matrix. The orthonormalization cost is O(N2

bandNbasis),
where the number of the basis functions Nbasis is far smaller than NG.

The disadvantage of the basis set is the unsystematic nature of its convergence. There
are neither clear rule for how to increase their radial and angular freedom nor comprehen-
sible parameter such as Gmax which controls the accuracy.

1.2 Linear scaling methods
The various linear-scaling, or O(N) methods have been proposed to overcome the problem
of the computational cost [3,4]. These methods avoid the time-consuming diagonalization
for global electronic states and evaluate the electron density without such wavefunctions.

The majority of O(N) methods rely on the sparsity of the density matrix. Here, the
density matrix is defined with ψi(r) as

ρ(r, r′) =
occ∑

i

ψi(r)ψ∗i (r′). (1.5)

The electron density can be obtained as r = r′. The density matrix is localized in broad
classes of systems [14–16]. For T = 0 insulators and T > 0 metals, the density matrix
exponentially decays:

ρ(r, r′) ∼ exp(−γ|r − r′|), |r − r′| −→ ∞. (1.6)

For T = 0 metals, the decay obeys a power low. With localized basis functions {χi(r)} such
as the atomic-like or the local real-space basis set, the density matrix can be represented
with a sparse matrix {Ki j}:

ρ(r, r′) =
∑

i j

χi(r) Ki j χ j(r′). (1.7)

There are several methods for obtaining the sparse density matrix with O(N) cost (for
detailed review, see [3, 4, 12]).
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The other group of O(N) methods evaluate the electron density through the Green’s
function Ĝ(E) = (E − Ĥ)−1,

ρ(r) =
∮

C

dE
2πi
⟨r|Ĝ(E)|r⟩, (1.8)

where C is a contour in the complex-energy plane enclosing the eigenenergies of the
valence states. The wavefunctions do not appear in this expression of ρ(r). The Krylov
subspace method [17–21] utilizes the atomic-like basis set and the Lanczos or Arnoldi
iteration for the Kohn-Sham Hamiltonian matrix to calculate the Green’s function. The
method of Ref. [22] uses the orbitals of overlapping subsystems as the basis functions to
calculate the Green’s function. The contour integral of Eq. (1.8) can be calculated with
O(N) cost.

The simplest and most intuitive approach is the divide-and-conquer approach to den-
sity functional theory (DC-DFT) [20, 23–31]. In DC-DFT, the whole system is divided
into overlapping subsystems, which we call fragments. The total energy is minimized by
an iterative procedure of two steps: (i) Solving the Kohn-Sham equation for each frag-
ment separately, and (ii) gathering the electron densities of the fragments to evaluate the
Kohn-Sham potential. DC-DFT utilizes neither the density matrix nor the Green’s func-
tion and relies only on the nearsighted principle of the electron density (Sec. 2.2.1). The
time-consuming calculations such as FFT of the orbitals in the plane-wave case are simply
done within each fragment, so that the computational cost becomes O(N).

DC-DFT has attractive characters such as robust convergence properties and ease of
implementation. Especially, DC-DFT allows us to use broad classes of the basis set in-
cluding the plane-wave basis set [28, 29, 31]. DC-DFT with the plane-wave basis set is
highly attractive because this approach can establish both the O(N) cost and the mature
handling of the plane-wave basis set. The plane-wave DC-DFT has high accuracy and
universality stemming from the plane wave. For these reasons, we focus only on this
method in the present thesis.

1.3 Electronic state calculation with linear scaling meth-
ods

As seen above, O(N) methods avoid the diagonalization for the electronic state to achieve
the O(N) cost. However, this becomes an obstacle for direct access to quantities or prop-
erties related with the electronic state such as the density of states. There is interest in
the electronic state calculation for large systems. Generally, the electronic state calcu-
lation is needed to investigate properties related with the density of states, a mechanism
of the chemical reactions, etc. For example, with their O(N3) finite difference code [32],
Ref. [33] investigated the twisted bilayer graphene with various twist angles, where the
largest cell consists of 22708 atoms. They found a localization of the Dirac electrons be-
low a critical twist angle and an interesting behavior of the Fermi velocity with respect to
the twist angle, and these analyses require the orbital wavefunctions of the entire systems.
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Thus it is important to evaluate the electronic state whose properties crucially relies
on the hugeness of systems. This goal can be achieved if we can accelerate the O(N3)
diagonalization step on the basis of the O(N) method.

The diagonalization for the total system needs a very large basis set and a numer-
ically demanding computation for the Hamiltonian matrix elements. With the former
problem, there is a method for constructing a small basis set from the atomic-like ba-
sis functions [34, 35]. The latter problem originates from the explicit treatment of the
Hamiltonian operator in the matrix-elements calculations. For DC-DFT, this computation
seems redundant since the Kohn-Sham Hamiltonian for each overlapping fragment has al-
ready been diagonalized in the DC-DFT calculation. Namely, in principle, the orbitals of
the fragments contain information of the total Hamiltonian. We desire a post-processing
method for adopting the fragment orbitals to accelerate the Hamiltonian diagonalization
for the total system.

Here we see a successful example in a previous study. The fragment molecular orbital
(FMO) method [36] is a particular DC method specialized for biological molecules (for
details, see Sec. 2.2.4). There are several post-processing methods of FMO to compute
the electronic state of the whole molecule by using information of the fragments [37–
41]. In particular, the FMO linear combination of molecular orbitals (LCMO) method
[40, 41] is a highly efficient method. In this post-processing method, the one-electron
Hamiltonian matrix is constructed by utilizing the molecular orbitals of the fragments as
basis functions. Each molecular orbital of the total molecule is expressed as an LCMO of
the fragments without the redundant recalculation. This method can reduce the basis set
size and the computational cost for calculating the matrix elements. However, this method
cannot be applied to general materials straightforwardly because FMO essentially relies
on the specific features of the sp3 orbitals of carbon atoms.

1.4 Purpose of the study and outline of the thesis
The purpose of our study is to develop a new post-processing method of DC-DFT, which
enables us to calculate the electronic state for general materials by using the fragment
orbitals derived from the DC-DFT calculation. To this end, we use DC-DFT with plane-
wave basis set, especially the lean divide-and-conquer (LDC) DFT [31], that can be ap-
plied to general materials with a systematic procedure. In our method, a small number
of basis functions are constructed by reducing the fragment orbitals. The total Hamil-
tonian matrix defined by the localized basis set is calculated easily from the fragment
orbitals and their orbital energies in the manner of FMO-LCMO. Each wave function of
the whole system is represented by a linear combination of the fragment orbitals (LCFO).
The diagonalization process can be performed with little computational cost thanks to the
reduced number of the basis functions. Thus our procedure, called DC-LCFO hereafter,
has advantages of a low cost and versatility.

This thesis is organized as follows. Chapter 2 outlines DFT and DC-DFT. Chapter 3
describes a formulation and implementation of our DC-LCFO. In chapter 4, we analyze
the parameter dependence for results of our method and the feasibility of the matrix-size
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reduction of the Hamiltonian. Chapter 5 presents examples of application. We compare
the eigenenergies and the wave functions with those of the conventional method in P-
doped Si, P-doped Ge, and InGaN/GaN superlattice systems. Finally, conclusion is given
in Chapter 6. In appendix A, we compare the formulation of DC-LCFO with that of FMO-
LCMO. Appendix B describes an extension of our method for calculating the electronic
state with the k-point sampling.

Table 1.1: List of acronyms used in this thesis.

Acronym Meaning
DFT Density Functional Theory
KS Kohn Sham
DC Divide and Conquer
DC-DFT DC approach to DFT
LDC-DFT Lean Divide-and-Conquer DFT
DC-LCFO DC Linear Combination of Fragment Orbitals
RMS Root Mean Square
MAE Maximum Absolute Error
FMO Fragment Molecular Orbital
FMO-LCMO FMO Linear Combination of Molecular Orbitals
LS3DF Linearly Scaling 3 Dimensional Fragment
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Chapter 2

Density functional theory and
divide-and-conquer method

2.1 Density functional theory
We first review the density functional theory (DFT) [1,2]. The statement of the Hohenberg-
Kohn Theorem is as follows: If N interacting electrons move in an external potential
Vext(r), the electron density of the ground state minimizes the functional,

E[ρ] = F[ρ] +
∫

d3rVext(r)ρ(r), (2.1)

where F[ρ] is a universal functional of the electron density ρ(r) and the minimum value of
the functional E[ρ] is equal to the exact ground-state energy of the electrons. Moreover,
such electron density is uniquely determined.

Kohn and Sham established a practical scheme for calculating the ground state density
[2]. They defined the functional E[ρ] as

E[ρ] = T [ρ] +
∫

d3rVext(r)ρ(r) +
1
2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)
|r − r′| + Exc[ρ], (2.2)

where T [ρ] is the kinetic energy of virtual non-interacting electrons,

T [ρ] =
N∑

i=1

∫
d3r ψ∗i (r)

(
−1

2
∇2

)
ψi(r), (2.3)

and the density distribution is identical to that of the non-interacting electrons,

ρ(r) =
N∑

i=1

|ψi(r)|2. (2.4)

The equation for ψi(r), called Kohn-Sham (KS) equation, is derived from the minimiza-
tion condition δE[ρ]/δψ∗i (r) = 0,[

−1
2
∇2 + V̂KS[ρ]

]
ψi(r) = εiψi(r), (2.5)
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where the energy eigenvalue εi originates from the Lagrange multiplier corresponding to
the orthonormal condition of {ψi}. Here, the KS potential V̂KS[ρ] is defined as follows:

V̂KS[ρ] ≡ δ

δρ(r)

[∫
d3rVext(r)ρ(r) +

1
2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)
|r − r′| + Exc[ρ]

]
= Vext(r̂) + VH(r̂) + Vxc(r̂). (2.6)

Eq. (2.5) is the Schrödinger-like equation but the potential V̂KS[ρ] depends on the density
ρ(r). Therefore it is necessary to iteratively solve Eq. (2.5) in the self consistent manner.

The exchange-correlation functional Exc[ρ] is the difference between the functional of
the interacting electrons and that of the virtual non-interacting electrons for the kinetic
energy plus the electron-electron interaction. However, the exact formula of Exc[ρ] has
been unknown.

A reasonable approximation is that the functional Exc[ρ] depends solely upon the value
of the electron density at each point (local density approximations, or LDA [2,42]). In the
LDA, the functional form of Exc[ρ] is derived from that of the homogeneous electron gas.
The generalized gradient approximations (GGA) are variants of the LDA that include the
gradient of the density in order to account for the non-homogeneity of the electron density.
In the present paper, we mostly employ the PBE functional [43], which is a kind of the
GGA functionals.

The hybrid functionals are more sophisticated schemes which represent Exc[ρ] as a
hybrid of the LDA (or GGA) and the Hartree-Fock approximation. For example, the
PBE0 hybrid functional [44] is given as follows:

EPBE0
xc =

1
4

EHF
x +

3
4

EPBE
x + EPBE

c , (2.7)

where EPBE
x and EPBE

c are the exchange part and the correlation part of the GGA-PBE
functional, respectively, and EHF

x is the exact exchange energy functional,

EHF
x = −

1
2

N∑
i, j=1

∫
d3r

∫
d3r′

ψ∗i (r)ψ∗j(r
′)ψi(r′)ψ j(r)

|r − r′| . (2.8)

The exact (or Hartree-Fock) exchange potential operator is given by

[V̂HF
x ψi](r) =

δEHF
x

δψ∗i (r)
= −

N∑
j=1

ψ j(r)
∫

d3r′
ψ∗j(r

′)ψi(r′)
|r − r′| . (2.9)

In the above formulations, we discussed only the T = 0 case. For general cases [45],
the occupation of the electrons is determined by the chemical potential µ, such as

ρ(r) =
∑

i

f (εi − µ)|ψi(r)|2, (2.10)

where f is the Fermi-Dirac distribution function.
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Figure 2.1: Schematic of the nearsightedness principle. v(r) (= Vext(r) in the text) is
the unperturbed external potential, w(r) (= ∆V(r) in the text) is the perturbing potential
outside a sphere of radius R, which is centered on the point of interest r0. “footprint”
means to a region that w(r) has a nonzero value. Reprinted the figure from Ref. [46].
Copyright (2005) by the National Academy of Sciences.

2.2 Divide-and-conquer approach to density functional
theory

2.2.1 Quantum nearsightedness
The nearsightedness principle explains why O(N) methods can exist. The concept of
nearsightedness of electronic matter (NEM) has been established by W. Kohn and E.
Prodan [46, 47], where “electronic matter” means a system of many interacting electrons
in the thermal equilibrium in an external potential Vext(r). Let us consider the change of
the electron density ρ(r0) at a point r0 under the action of a potential perturbation ∆V(r),
which vanishes inside a sphere of radius R centered at r0 (see Fig. 2.1). We also assume
that the chemical potential µ is held fixed in this perturbation. NEM is a statement that
the density change ∆ρ(r0) at r0 due to ∆V(r) is bounded by a maximum magnitude ∆ρ,
which decays monotonically as a function of R,

∆ρ(r0) ≤ ∆ρ(r0; R) −→ 0 (R −→ ∞), (2.11)

for broad classes of systems. Prodan and Kohn showed that the decay follows power lows
in ordered gapless systems, while the decay is exponential in ordered gapped systems and
disordered systems [46]. For a given r0 and ∆ρ, we can solve for R in ∆ρ(r0; R) = ∆ρ
and define the “nearsightedness range” R(r0;∆ρ). With any perturbation ∆V(r) beyond
the distance R(r0;∆ρ), the density change at r0 cannot exceed ∆ρ.

NEM implies the possibility of the linearly scaling methods. To evaluate the electron
density within a certain region, it is possible to separate a subsystem with a sufficiently

15
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Figure 2.2: Schematic 2D image of the DC algorithm. The whole systemΩ is represented
as a union of non-overlapping core domains {Ωα0 }. Physical quantities of Ωα0 are evaluated
on the fragment Ωα = Ωα0

∪
Γα , where Γα is a buffer layer whose thickness is b.

large buffer zone, since the electron density cannot feel any potential perturbation beyond
R(r;∆ρ) within an accuracy ∆ρ. Thus we can divide a system into subsystems and obtain
the total electron density by summing those of the subsystems calculated separately. This
is the physical basis of linearly scaling methods, called the divide-and-conquer methods.

2.2.2 Divide-and-conquer method

As explained in Sec. 1.1, the computational cost of the DFT calculation grows rapidly
with system size. Nonetheless, the nearsightedness principle enables the linear scaling
of the computational cost. We shall consider a large system enclosed in a physical space
Ω. Let us represent Ω as a union of non-overlapping core domains, Ω =

∪
αΩ

α
0 , where

Ωα0
∩
Ω
β
0 = ∅ (α , β). With the nearsightedness principle, the electron density in each

core domain can be approximately evaluated from a calculation for a subsystem, called a
fragment, Ωα = Ωα0

∪
Γα, where Γα is the buffer zone surrounding Ωα0 (Fig. 2.2). Ideally,

the thickness b of Γα is dictated by the nearsightedness range R(r;∆ρ) for an intended
accuracy ∆ρ: b is chosen so that ∆ρ(r) ≤ ∆ρ, where r is any point on the boundary of Ωα0
and ∆ρ(r) is the error due to the artificial boundary of the fragment. In reality, this b de-
termination requires prior knowledge of a target system, and therefore b is usually chosen
by heuristics. The above approach for DFT is called the divide-and-conquer approach to
density functional theory (DC-DFT) [20, 23–31]. We now review the detailed formalism
of this approach.
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In DC-DFT, the electron density of the entire system (total density) is represented as
the sum of those for Ωα0 :

ρ(r) =
∑
α

ρ̄α(r), ρα(r) =
∑

i

f (εαi − µ)|ϕαi (r)|2, (2.12)

where ϕαi (r) and εαi are the orbital wave function of the α-th fragment and corresponding
orbital energy, respectively, and ρ̄α(r) is the density in the core domain Ωα0 clipped from
the density of the fragment ρα(r):

ρ̄α(r) =

ρα(r) (r ∈ Ωα0 )
0 (r < Ωα0 )

. (2.13)

The chemical potential µ in Eq. (2.12) must be fixed as that of the total system, and
therefore µ is determined by the electron number condition of the whole system,

N =
∫

d3rρ(r). (2.14)

The orbital wave functions {ϕαi (r), r ∈ Ωα} and corresponding orbital energies {εαi } for
each fragment are derived from the Kohn-Sham (KS) equation for the fragment,

Ĥα|ϕαi ⟩ ≡
[
−1

2
∇2 + V̂KS + v̂αbc

]
|ϕαi ⟩ = εαi |ϕαi ⟩, (2.15)

where V̂KS = V̂KS[ρ] is the KS potential with the total density and vαbc(r) is the boundary
potential representing effects of the artificial fragment boundary ∂Ωα.

The fragment orbitals {ϕαi (r)} are locally orthonormal:∫
Ωα

d3rϕα∗i (r)ϕαi′(r) = δii′ . (2.16)

The boundary conditions of {ϕαi (r)} at the fragment boundary ∂Ωα will be discussed in
Sec. 2.2.3.

The minimization of the total energy E[ρ] with respect to {ϕαi (r)} is performed through
the following iterative procedure:

(1) Calculate the KS potential V̂KS[ρ] using the total density of the previous step or
the initial value (for first iteration). Especially, the Hartree potential, representing the
long-range electrostatic influence, is derived from the global Poisson equation.

(2) Solve the fragment KS equations independently.
(3) Aggregate the fragment densities obtained by the fragment orbitals to calculate the

total density.
(4) Determine the chemical potential µ so that N =

∫
d3rρ(r), where N is the number

of the valence electrons.
(5) Calculate the new total density ρ(r).
In the step 1 (or the step 5), it is required to update the potential (density) by the

potential-mixing (charge-mixing) scheme.
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The computational cost for this procedure is linear scaling with the system size. To
minimize the cost, the edge size of each “cubic” core region (which we call a) is chosen
as follows: The total time of the computation Ttotal is given by Nfragment · Tfragment, where
Nfragment =(volume of Ω)/ad is the number of the fragments in d-dimension. The time of
the electronic structure calculation for each fragment Tfragment is proportional to (a+2b)dν,
where ν is the order of the calculation (=2–3 for DFT) and the buffer thickness b is fixed
as the nearsightedness range. Thus,

Ttotal = Nfragment · Tfragment ∝
1
ad (a + 2b)dν. (2.17)

Differentiating Ttotal with a, we obtain the optimized edge length of the core domain,

a =
2b
ν − 1

. (2.18)

For DC-DFT, this indicates the edge length of each core domain Ωα0 is assume as the
same or twice the buffer thickness b. If the hybrid functionals were used, more small a is
required for the cost of the DC calculation since ν is higher than 3. Nonetheless, we put
a = b even in this case because the Hamiltonian matrix of our method becomes sparse
with such a (see Sec. 3.3).

Note that we clipped the density of Ωα0 with the step wise manner in Eq. (2.13), while
many DC-DFT papers utilized the continuous weight function,∑

α

pα(r) = 1, (2.19)

for the density summation:
ρ(r) =

∑
α

pα(r)ρα(r). (2.20)

However, these weight functions {pα(r)} induce difficulty for the Hamiltonian reconstruc-
tion in our method. Namely, if the basis functions of our method (will be discussed in
Sec. 3.2) were defined by using the clipping with {pα(r)}, an overlap matrix of the basis
functions should be required to diagonalize the total Hamiltonian, because the basis func-
tions of the respective fragments overlap each other. Thus we simply utilize the step wise
projection as Eq. (2.13).

2.2.3 Fragment boundaries
We shall discuss about the boundary conditions of {ϕαi (r)} at the fragment boundary ∂Ωα.
The most often used conditions are the “hard wall” boundary conditions, which restrict
the fragment orbitals as ϕαi (r) = 0 (r ∈ ∂Ωα). The boundary potential vαbc(r) corresponding
to the hard wall is given by,

vαbc(r) =

0 (r ∈ Ωα)
∞ (r < Ωα)

. (2.21)
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The basis set suitable for the hard wall conditions is the atomic-like basis [20, 24, 26] or
the real-space basis such as the real-space grid basis (finite differences method) [27, 30]
or the Lagrange basis [22].

The periodic boundary conditions are another choice, which correspond to the Γ-point
(k = 0 point) calculations with the unit cell Ωα. These conditions enable us to utilize the
plane-wave basis for the calculation of the fragments [28, 29, 31]. In the present thesis,
we use the plane-wave basis in all the calculations.

We note another aspect of the boundary potential vαbc(r). Ref. [30] introduced the
“density-template” potential defined as

vαbc(r) =
ρα(r) − ρ(r)

ξ
, (2.22)

where ξ > 0 is an adjustable parameter. This potential reduces the discrepancy ∆ρα(r) =
ρα(r) − ρ(r) at the boundary, and therefore brings about the fast convergence in the SCF
iteration. LDC-DFT [31] applied the plane-wave basis and the density-template potential
for the fragments.

2.2.4 Related methods

Here we refer to the methods related to DC-DFT which appear in this thesis. The frag-
ment molecular orbital (FMO) method [36] is one of the DC methods specialized for bi-
ological molecules such as proteins. The difference between FMO and conventional DC-
DFT is that FMO utilizes two types of the fragments: small pieces of a whole molecule
(monomers) and the unions of two monomers (dimers). Sometimes the unions of three
monomers (trimers) are also used for more precise calculations. Fig. 2.3 shows the ex-
ample of the fragmentation for chignolin molecule [41]. In FMO, the total energy E of
the whole molecule is obtained by patching the monomer energies {EI} and the inter-
monomer energies across two monomers that given with the dimer energies {EIJ}:

E =
∑

I

EI +
∑
I>J

(EIJ − EI − EJ) , (2.23)

where I and J are the monomer indices. The last two terms in the parenthesis cancel
the double-counting terms. The summation form of Eq. (2.23) is the basic idea for the
Hamiltonian expansion of FMO-LCMO.

The boundary of the fragments is cut with a projection of the carbon sp3 orbitals to
purify dangling bonds. Hence the boundary conditions or the boundary potential vαbc(r) of
the fragments cannot be described straightforwardly.

The linearly-scaling 3-dimensional fragment (LS3DF) method [28,29] is closely rerated
with FMO, but can be applied to large semiconductor systems. As FMO, this method uti-
lizes several types of differently sized fragments. In 2D systems, for simplicity, 4 kinds
of fragments are defined as Fig. 2.4: small square pieces (1 × 1); two types of rectangular
pieces (1 × 2, 2 × 1); large square pieces (2 × 2). Generally 2d kinds of fragments are

19



used in d-dimensional systems. The total electron density is evaluated by summing up the
fragment densities with differing signs:

ρ(r) =
∑

F

αFρF(r), (2.24)

where F is a fragment index and αF is a sign factor: αF = + for 1 × 1 and 2 × 2, = − for
1 × 2 and 2 × 1. We note that effects from the buffer regions are canceled out between the
different types of fragments, so that the clipping of the core domain as Eq. (2.13) is not
required. The fragment boundary is imposed the periodic boundary conditions, however,
with an artificial vacuum layer inserted into the buffer region. The dangling bonds at the
artificial surface of the fragments are passivated with the pseudo-Hydrogen atoms. The
summation formula Eq. (2.24) will be related to the Hamiltonian reconstruction of our
method (see Appendix A).
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Figure 2.3: A schematic of the FMO fragmentation for chignolin molecule with the
monomer indices. Reprinted the figure from Ref. [41]. Copyright (2013) by the American
Institute of Physics.

Figure 2.4: A schematic 2D view of the LS3DF fragments. The dashed line denotes the
area of the 2 × 2 fragment with the buffer region. Reprinted the figure from Ref. [28].
Copyright (2008) by the American Physical Society.
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Chapter 3

Formalism

3.1 Strategy

Here we briefly describe our strategy and basic ideas to develop a versatile method,
dubbed as DC-LCFO (Ref: Yamada et al. [48]). There are several methods for DC-DFT
with different basis functions and different ways of handling the boundary effects of the
fragments: their accuracy depends on the target systems. In the present thesis, we adopt
LDC-DFT [31] as the basis, which utilizes the density template potential [30] as vαbc(r)
and the periodic boundary conditions at ∂Ωα on the fragment KS orbitals. This method
is suitable for calculations of condensed matter since it has relatively small overhead and
convenient buffer configurations for calculations (see Sec. 3.3). Note that we use the step-
wise projection in Eq. (2.12) for simplicity [30], though continuous weight functions are
used in the original LDC-DFT paper.

Our fundamental assumption is that the eigenstates near the Fermi level can be well
represented by patching a small number of fragment orbitals in the corresponding energy
region [40, 41]. Thereby we shall first develop an algorithm to generate basis functions
from the fragment orbitals {ϕαi } within the low-energy region.

As the next step, we shall introduce a method to construct the total Hamiltonian ma-
trix using the basis functions and the fragment Hamiltonians {Ĥα} defined in Eq. (2.15).
The matrix elements of the Hamiltonian can be constructed simply by inner products
among the fragment orbitals. Hence the Hamiltonian matrix can be obtained without
time-consuming calculations even when the exact exchange potential is taken into ac-
count.

The resultant basis functions are defined on each core domain Ωα0 and therefore it is
not necessary to consider the total overlap matrix of the whole system. Moreover, the
Hamiltonian matrix has a far smaller dimension than the plane-wave basis case because
the new basis functions are made of the fragment orbitals in the low-energy region. No-
tably, a typical number of the basis functions per atom for practical accuracy is roughly
10–20, which is comparable to the atomic-like basis case [3]. However the latter case has
drawbacks such as the lack of systematic convergence.

There is a similar approach that utilizes the KS orbitals of subsystems as a basis set
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for evaluating the Green’s functions, though the method is specialized for a quasi-1D
system [22]. In contrast, our scheme is the post-processing method of DC-DFT for a
direct diagonalization of the Hamiltonian matrix. DC-DFT can be systematically applied
to general 3D systems.

3.2 Basis set

The basis functions of the present method are constructed as follows. We introduce a
cutoff energy εcut for the energy eigenvalues of the fragment orbitals in order to restrict
the number of the fragment orbitals used for constructing the basis set:

ϕαi (r), (i = 1, · · · ,Nα), (3.1)

where Nα is the number of the fragment orbitals satisfying εαi < εcut, and i is the orbital
index.

In order to eliminate a redundant contribution from the buffer region, we project the
fragment wave functions onto Ωα0 ,

|ϕαi ⟩ −→ |ϕ̄αi ⟩ =
∫

r∈Ωα0
d3r|r⟩⟨r|ϕαi ⟩. (3.2)

To avoid overcompleteness with the projected orbitals, we construct a smaller set of or-
bitals from them. Namely, we define an overlap matrix within each fragment α,

S α
i j = ⟨ϕ̄αi |ϕ̄αj ⟩, (i, j = 1, · · · ,Nα). (3.3)

Next, we diagonalize it,

S α −→ (Uα)†S αUα = diag(λα1 , λ
α
2 , · · · , λαMα

, 0, 0, · · · ), (3.4)

where Uα and λαi are the transformation matrix and the eigenvalue of S α, respectively, and
Mα ≡ rank S α is the number of the linearly independent eigenvectors. Practically, we set
a sufficiently small cutoff parameter λcut for the eigenvalues λαi (> λcut) in order to control
Mα .

The new basis functions are defined as,

|λαi ⟩ =
1√
λαi

Nα∑
j=1

|ϕ̄αj ⟩Uα
ji, (i = 1, · · · ,Mα). (3.5)

It is notable that these basis functions are orthonormal:

⟨λαi |λ
β
j⟩ = δα,βδi, j. (3.6)
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Figure 3.1: 2D schematic of the Hamiltonian matrix construction. To truncate the Hamil-
tonian, we introduce the projection operator P̂α corresponding to Ω̃α. The buffer thickness
b′ of Ω̃α is restricted in 0 ≤ b′ ≤ b.
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Figure 3.2: 2D schematic of the Hamiltonian matrix construction. (a) The projection
operator P̂α is inserted in ⟨λα′i′ |Ĥ|λαi ⟩, where α and α′ are the first-nearest-neighbor frag-
ments. (b) The projection operator P̂β is inserted in ⟨λα′i′ |Ĥ|λαi ⟩, where α and α′ are the
second-nearest-neighbor fragments in the 2D system, and β is the fragment overlapping
with both α and α′.
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3.3 Hamiltonian matrix
We shall construct the Hamiltonian matrix Hα′i′,αi ≡ ⟨λα

′

i′ |Ĥ|λαi ⟩, where Ĥ = −1
2∇2 +

V̂KS is the conventional KS Hamiltonian operator of the total system. A straightfor-
ward approach to this calculation is real-space integeration, for example, ⟨λα′i′ |V̂ local

KS |λαi ⟩ =∫
d3r⟨λα′i′ |r⟩V local

KS (r)⟨r|λαi ⟩, etc. In the below, however, we show the Hamiltonian matrix
elements can be evaluated from the fragment orbital energies without the numerically
demanding integration.

The local part of the Hamiltonian has only diagonal blocks (α′ = α) because of the
non-overlapping nature of |λαi ⟩. On the other hand, the nonzero off-diagonal blocks (α′ ,
α) come from the kinetic term − 1

2∇2 and the non-local potential term. In the DC scheme,
it is assumed that the non-local terms decay within the buffer region Γα. It means that the
terms decay within neighbor core domains, because the thickness of Γα is assumed as the
same or the half length of each core domain Ωα0 (Sec. 2.2.2). Following this assumption,
we consider only the diagonal blocks (α′ = α) and the off-diagonal blocks (α′ , α)
between the face-, edge- and corner-sharing neighboring core domains.

We shall obtain an approximate expression for the Hamiltonian matrix, which is rep-
resented by the KS orbitals and eigenenergies of a certain fragment overlapping with the
core domains Ωα0 and Ωα

′

0 . The apparent absence of the Hamiltonian operator in the re-
sulting expression allows us a consistent treatment regardless of whether or not whether
numerically demanding non-local operators (e.g., exact exchange operator) are consid-
ered in the calculation within each fragment. The pivotal approximation is that the basis
function |λαi ⟩ does not spill far out of the core domain through the Hamiltonian operation.

Now we define a projection operator for the Hamiltonian decomposition,

P̂α =

∫
r∈Ω̃α

d3r|r⟩⟨r|, (3.7)

where Ω̃α is a region to truncate the spillage of the basis functions upon the Hamiltonian
operation (Fig. 3.3). Using the projection operator, we get the following exact expression,

Ĥ|λαi ⟩ = P̂αĤ|λαi ⟩ + Q̂αĤ|λαi ⟩
= P̂αĤP̂α|λαi ⟩ + Q̂αĤ|λαi ⟩, (3.8)

where Q̂α = 1̂ − P̂α. Furthermore, the projected total Hamiltonian P̂αĤP̂α can be con-
verted to the fragment Hamiltonian P̂αĤαP̂α due to a feature of vαbc(r) that vanishes at the
core domain Ωα0 . The second term is presumably small if the range of Ω̃α is sufficiently
larger than Ωα0 . Therefore the Hamiltonian Ĥ acting on the vector |λαi ⟩ can be reasonably
approximated as P̂αĤαP̂α.

Thus we get to the following approximate form of the Hamiltonian matrix element,

Hα′i′,αi ≈ ⟨λα
′

i′ |P̂αĤαP̂α|λαi ⟩. (3.9)

From the range of the projector P̂α, it is obviously nonzero only for α′ whose core do-
main Ωα

′

0 is overlapping with Ω̃α (Fig. 3.2a). Since the fragment Hamiltonian Ĥα can be

25



represented through the fragment orbitals {ϕαi }∞i=1, we obtain,

⟨λα′i′ |P̂αĤαP̂α|λαi ⟩ = ⟨λα
′

i′ |P̂α

 ∞∑
j=1

εαj |ϕαj ⟩⟨ϕαj |
 P̂α|λαi ⟩

=

∞∑
j=1

εαj ⟨λα
′

i′ |ϕ̃αj ⟩⟨ϕ̃αj |λαi ⟩

≈
Nα∑
j=1

εαj ⟨λα
′

i′ |ϕ̃αj ⟩⟨ϕ̃αj |λαi ⟩, (3.10)

where ϕ̃αj ≡ P̂αϕαj . Here, we reduced the high-energy region (> εcut) for approximation.

While we introduced P̂αĤαP̂α as explained above, we mention here that Eq. (3.9) can
be generalized as follows:

Hα′i′,αi ≈ ⟨λα
′

i′ |P̂βĤβP̂β|λαi ⟩, (3.11)

where β is an arbitrary fragment satisfying Ω̃α
′ ∩ Ω̃α ⊂ Ω̃β (for example, see Fig. 3.2b).

We have found that the choice of P̂βĤβP̂β has quantitatively no effect on results.
Combining Eq. (3.9) and Eq. (3.10), we can represent the matrix elements of the total

Hamiltonian with the fragment orbitals {ϕαi } and the eigenenergies {εαi }, namely the output
of DC-DFT. Note that the controllable parameters in our eigenstate calculation method are
εcut, λcut, and the buffer thickness b′ of Ω̃α (0 ≤ b′ ≤ b, see Fig. 3.3).

We need some consideration for the optimum thicknesses b′ and b. The thickness b
is dictated by the nearsightedness principle [46, 47] in the conventional DC algorithms
(Sec. 2.2.1). On the other hand, the thickness b′ is determined by the decay range of the
non-local term of the KS Hamiltonian. Although large value of b and b′ may improve
results of the calculation, there is a possibility that the b′ → b limit degrade the accuracy
because of the artificial boundary conditions at ∂Ωα. Thus it seems that accuracy require-
ments for our method demand a large b value which can fully contain the nearsightedness
range (conventional b) plus the Hamiltonian decay range (b′). However, following results
show this is not the case. In fact, for the LDC-DFT-based scheme, the b′ = b limit leads
to the best results in eigenstate calculations (see Sec. 4.1.2). This might be attributed
to the fact that the uniform kinetic-energy term is the main factor of the non-local part.
Moreover, we can deduce that the periodic boundary conditions at the fragment bound-
aries ∂Ωα also improve the accuracy of the eigenstates in condensed matter. If we utilized
other boundary conditions (e.g. insertion of artificial vacuum regions [28, 29]), the accu-
racy for the eigenstates might require an optimization of the b′ value.

In the above argument, the Hamiltonian matrix has the periodicity of the whole su-
percell. Namely, the electronic state derived from DC-LCFO corresponds to that of the
Γ-point calculation in the total system. Also we can evaluate the electronic state with the
k-point sampling by using modified DC-LCFO Hamiltonian (see Appendix. B). Hence we
can calculate, for example, energy bands without the recalculation of the electron density.
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3.4 Exact exchange potential
The exact exchange, or Hartree-Fock, potential Eq. (2.9) can be also contained in the total
Hamiltonian as a non-local term. This operator can be rewrite as,

[V̂HF
x ψi](r) = −

occ∑
j

ψ j(r)
∫

d3r′
ψ∗j(r

′)ψi(r′)
|r − r′|

= −
∫

d3r′
ρ(r, r′)ψi(r′)
|r − r′| , (3.12)

where {ψi(r)} are orbital wavefunctions of the total system and ρ(r, r′) is the density matrix
Eq. (1.5). As mentioned in Sec. 1.2, the density matrix is localized with respect to |r − r′|
in many cases. Therefore we can take into account only the short-range part of V̂HF

x and
adopt the DC scheme in such cases. It is expected that our method allows high-speed
eigenstate calculations within hybrid functionals. In a naive implementation of the exact
exchange, the computational cost is proportional to the fourth power of the system size.
On the other hand, in the present method, the computational cost of the Hamiltonian
construction is negligible and the cost of the diagonalization is proportional to the third
power of the small matrix dimension as explained in Sec. 3.1.

In Sec. 4.2, we perform the simple DC-LCFO calculations with the hybrid functional
to demonstrate the performance of our method. Namely, after doing the conventional
calculation including the exact exchange in each fragment independently, we construct
the basis set {|λαi ⟩} and the Hamiltonian matrix {Hα′i′,αi} from the orbitals derived by these
calculations. The result of this calculation shows that use of hybrid functionals makes
no difference to the computational time for DC-LCFO. In Sec. 5.1 and Sec. 5.2, we see
that the DC-LCFO calculation with the exact exchange yields reasonable accuracy for the
defect state.

3.5 Unphysical zero eigenvalues

3.5.1 Avoidance of unphysical zero eigenvalues
In Sec. 3.2, we presented the method for removing overcompleteness in the basis set.
However, we have found that the Hamiltonian matrix defined by the basis functions
Eq. (3.5) has enormous zero eigenvalues. This indicates that the Hamiltonian matrix
contains unphysical eigenvectors in spite of absence of overcompleteness in the basis set.
We need a technique to avoid the zero eigenvalues in the resultant eigenenergies or to
remove the unphysical eigenvectors. The latter technique will be discussed in the next
subsection, and we shall argue the former technique in this subsection.

To avoid the zero eigenvalues, we shift the energy origin as εαi −→ εαi − εcut. Namely,
Eq. (3.10) is changed as

Hα′i′,αi ≈
Nα∑
j=1

(εαj − εcut)⟨λα
′

i′ |ϕ̃αj ⟩⟨ϕ̃αj |λαi ⟩. (3.13)
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The negative eigenvalues {εi} of the matrix {Hα′i′,αi} coincide with the physical eigenen-
ergies of the total system. Needless to say, the true eigenenergies can be obtained by the
pullback: εi −→ εi + εcut. The unphysical zero eigenvalues are then accumulated at the
vicinity of εcut. With this technique, the unphysical vectors does not affect the accuracy
on the low-energy electronic properties (see Fig.4.7 and Fig. 4.8).

3.5.2 Further reduction of the basis set size
In Sec. 3.2, we formulated the basis set from the fragment orbitals,

{ |ϕi⟩ | εi < εcut} −→ { |λi⟩ }. (3.14)

As mentioned in the preceding section, the Hamiltonian matrix contains many unphysical
eigenvectors and has a large dimension. Let us argue a procedure for further reduction
of the basis set size. In this section, we discuss within a specific fragment and omit the
fragment index α of the fragment orbitals and their orbital energies for brevity.

We define a fragment Hamiltonian matrix H′ (do not confuse this with the total Hamil-
tonian of the whole system) as follows:

H′i j =

Nα∑
k=1

⟨λi|ϕk⟩(εk − εcut)⟨ϕk|λ j⟩

=

Nα∑
k=1

⟨λi|ϕ̄k⟩(εk − εcut)⟨ϕ̄k|λ j⟩

=
1√
λiλ j

Nα∑
k=1

(εk − εcut)[U†S ]ik[S U]k j

=
1√
λiλ j

Nα∑
k=1

(εk − εcut)[S U]∗ki[S U]k j, (3.15)

where i, j = 1, · · · ,Mα and we used Eq. (3.5). S and U are Nα × Nα matrices defined
in Eq. (3.3) and Eq. (3.4), respectively. The matrix H′ is identical to the block matrix
separated from the total Hamiltonian. The matrix is diagonalized as

U′†H′U′ = diag(ε′1, · · · , ε′Mα
). (3.16)

We set a new controllable parameter ε′cut (≤ εcut) and take the eigenvectors of H′ whose
eigenvalue is smaller than ε′cut. A new basis vectors are defined as,

|λ′i⟩ =
Mα∑
j=1

|λ j⟩U′ji, (i = 1, · · · ,M′α), (3.17)

where M′α is the number of the eigenvalues ε′i satisfying

ε′i + εcut < ε
′
cut. (3.18)
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When ε′cut = εcut, Eq. (3.17) is the unitary transformation, so that this procedure yields no
change for the results.

The above procedure is analogous to the reduction procedure in Sec. 3.2, with a re-
placement |ϕ̄i⟩ −→ |λi⟩, S −→ −H′, U −→ U′ and λcut −→ εcut − ε′cut. With this analogy,
the unphysical eigenvectors of the total Hamiltonian matrix is understood as the overcom-
pleteness of the “overlap matrix” −H′. Furthermore, we can deduce that a large value of
εcut − ε′cut may degrade the accuracy of the resultant eigenstates. In other words, there is a
tradeoff between the accuracy and the basis set size in a similar way to λcut.

3.6 Implementations

3.6.1 Implementation of the LDC-DFT code
We have implemented LDC-DFT [31] in the xTAPP code [49]. The program is paral-
lelized using the message passing interface (MPI) library with two levels of parallelism.
In the first level, each fragment is assigned a number of MPI processes and these process
groups are separated each other by MPI COMM SPLIT subroutine. In the second level,
the electronic state calculations for each fragment are parallelized with MPI processes
which have their respective reciprocal-space grid points in the fragment.

The fragment orbitals are diagonalized by the standard plane-wave calculation and
the fast Fourier transformations (FFT) within each fragment. The orbitals correspond
to the Bloch states at Γ-point in unit cell Ωα. The calculation of the global chemical
potential µ requires the real-space integration of the fragment orbitals within the core
domain. The electron densities for the fragments are combined with MPI ALLREDUCE
subroutine. To calculate the local potential, the global FFT process for the total density
is required. The Hartree potential is obtained globally by solving the Poisson equation in
the reciprocal space. The update of the potential is performed by the Anderson potential
mixing method [50].

3.6.2 Implementation of the DC-LCFO code
We have also implemented DC-LCFO in the preceding code. The fragment orbitals are
transformed into the real functions in the real space by FFT. To perform our method,
we use the grid points of FFT for the projection and the inner-product operations for the
fragment orbitals (Sec. 3.2).

The overlap matrix and the Hamiltonian matrix are defined as real-symmetric matri-
ces. The operations to generate the basis functions and the diagonal blocks of the total
Hamiltonian matrix are completely parallelized, while the calculation for the off-diagonal
blocks requires MPI point-to-point communications using MPI SEND and MPI IRECV
subroutines. The matrix elements of the total Hamiltonian are assembled in the root pro-
cess with MPI GATHER subroutine. Finally the total Hamiltonian matrix is diagonalized
by a serial computation. All the diagonalizations of the matrices are done with DSYEV
subroutine of LAPACK library.
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The orbital wavefunctions of the whole system are obtained from the basis functions
and the unitary matrix of the diagonalization for the total Hamiltonian. For this calcula-
tion, the basis functions in the respective fragments are gathered in the root process with
MPI GATHER subroutine.

3.6.3 Computational details
In the following calculations, we used the plane-wave basis (for calculations in each
fragment), the norm-conserving pseudopotentials, and PBE exchange-correlation func-
tional [43] except some calculations with the exact exchange, in which PBE0 hybrid func-
tional [44] was used. For the PBE0 calculation, we used a cutoff parameter Rc [51,52] for
truncating the Coulomb potential 1/|r − r′| in the exact exchange Eq. (2.9):

v(r) =

1/|r| (|r| ≤ Rc)
0 (|r| > Rc)

. (3.19)

Needless to say, Rc should be set as Rc < b′ for DC-LCFO.
All the calculations were carried out in the paramagnetic case. For comparison we

also performed the conventional DFT calculations, where we sampled the Brillouin zone
at the Γ point (k = 0 point).
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Chapter 4

Analysis of parameter dependence and
Benchmark tests

4.1 Parameter dependence

4.1.1 Introduction
We shall analyze a parameter dependence for the eigenenergies calculated with our method
on b′, λcut and εcut. We also examine the ε′cut dependence for the reduction scheme de-
scribed in Sec. 3.5.2. The parameter dependence analyzed in this section gives a guide
for proper selection of the parameters in applications.

We use two systems: SiC 512-atom 4 × 4 × 4 supercells with the zinc-blende struc-
ture and “amorphous” structures (Fig. 4.1). The latter structure was obtained by a high-
temperature MD simulation (with the microcanonical ensemble, T=8000 K). In this MD
simulation, we omitted the cooling process since our purpose is simply to examine the
eigenstate of a disordered system. We divide the systems into 64 fragments with 4× 4× 4
configurations, respectively. The edge lengths of each cubic core domain and the buffer
thickness b are fixed as a = 4.39 Å (experimental lattice constant) so that the fragment is
3 × 3 × 3 cell. The plane-wave cutoff is 30 Ry and the number of the FFT mesh points is
equal to 16 × 16 × 16 in each core domain.

We shall show and discuss the root mean square (RMS) errors of the occupied eigenen-
ergies with respect to the results of the conventional caluculations. Here, RMS error of n
eigenenergies is defined as follows:

RMS error =

√√
1
n

n∑
i

(εi − ε0
i )2, (4.1)

where εi and ε0
i are the eigenenergy for the total system obtained by our method and the

conventional DFT calculation, respectively. In Sec. 4.1.2–4.1.4, we analyze the parameter
dependence on b′, λcut and εcut without the reduction scheme. In Sec. 4.1.5, we show an
effectiveness of the reduction scheme.
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(a) (b)

Figure 4.1: Atomic configurations of 512-atom SiC supercells with (a) the zinc-blende
and (b) amorphous structures, depicted with VESTA [53].

4.1.2 b′ dependence
Figure 4.2 shows the relation between the thicknesses b′ and RMS errors, where the other
parameters are fixed as εcut − µ = 10.88 eV (0.4 Hartree) and λcut = 10−3.

This figure suggests that b′ = b leads to the best results. The behavior of the error in
the zinc-blende structure can be easily accepted as the periodic structure of the fragments.
On the other hand, the behavior for the disordered structure indicates that effects of the
artificial boundary may not be harmful for the accuracy of the eigenstate (see the last
paragraph of Sec. 3.3). With these results, we set b′ = b in all the following calculations.

We also point out the relation between b′ and the Laplacian of the finite difference
method. The leading term in non-local parts of the Hamiltonian is the kinetic term, or
the Laplacian term. In the finite differences method, recalling Eq. (1.3), the range of the
Laplacian is given by the grid spacing h and the order of expansion M. Our b′ = b value
in this section sufficiently exceeds the Laplacian range for the practical finite-differences
calculations (see Fig. 2 in Ref. [32]).

4.1.3 λcut dependence
Let us change λcut value from 10−1 to 10−5 and analyze the relation between the errors
and the matrix size. Figure 4.3 is the RMS errors plotted against the number of the basis
functions (

∑
α Mα) per atom with the parameter εcut − µ = 10.88 eV (0.4 Hartree). The

figure suggests the speed-accuracy tradeoff relation and indicates that the RMS errors are
saturated at nearly 16 basis functions per atom when λcut = 10−3.

4.1.4 εcut dependence
Figure 4.4 illustrates the εcut dependence of the RMS errors with the same conditions,
where the energy origin is fixed at the chemical potential µ (= the conduction band mini-
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Figure 4.2: RMS error of the occupied eigenenergies as a function of a ratio b′/b for SiC
systems with zinc-blende structure and amorphous structure, where each system contains
512 atoms in a cubic 4×4×4 supercell. The other parameters are fixed as εcut−µ = 10.88
eV (0.4 Hartree) and λcut = 10−3.
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Figure 4.3: RMS errors plotted against a number of the basis functions per atom for the
same systems as Fig. 4.2, where b′ = b and εcut − µ = 10.88 eV (0.4 Hartree). These
points correspond to λcut = 10−1, 10−2, 10−3, 10−4, and 10−5 respectively from left to right.
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Figure 4.4: εcut dependence of the RMS errors for the same systems as Fig. 4.2, where
the energy origin is fixed at the Fermi energy µ. The other parameters are fixed as b′ = b
and λcut = 10−3.
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Figure 4.5: Relation between εcut and the number of the basis functions per atom for the
same systems as Fig. 4.2. Here, b′ = b and λcut = 10−3. The energy origin is fixed at the
chemical potential µ.
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Figure 4.6: RMS errors against to the number of the basis functions per atom by changing
ε′cut for the same systems as Fig. 4.2. These points correspond to εcut − ε′cut = 10−1, 10−1.5,
10−2, 10−2.5 and 0 (in Hartree) respectively from left to right. Here, b′ = b, λcut = 10−3

and εcut − µ = 10.88 eV (0.4 Hartree).

mum in a gapped system).
In the amorphous structure, the eigenenergies of the occupied states are accurately

evaluated with a large εcut value. On the other hand, the error for the zinc-blende structure
indicates weak dependence on εcut probably due to the band gap. In a gapped state, we
can deduce that it is sufficient to utilize the occupied fragment orbitals for representing
the occupied states of the total system.

We also show the relation between εcut and the number of the basis functions per atom
(Fig. 4.5), where λcut = 10−3. The basis size grows proportional to εcut as might have been
supposed.

4.1.5 Further reduction: ε′cut dependence

Finally we examine the effectiveness of the reduction scheme of Sec. 3.5.2. The parame-
ters are fixed as εcut − µ = 10.88 eV (0.4 Hartree) and λcut = 10−3. Figure 4.6 shows the
basis size dependence of the RMS errors by changing the ε′cut value. The points in Fig. 4.6
correspond to εcut − ε′cut = 10−1, 10−1.5, 10−2, 10−2.5 and 0 (in Hartree) respectively from
left to right. In the ε′cut = εcut case, the reduction is not performed.

Figure 4.6 resembles the λcut dependence Fig. 4.3, which is expected in the last para-
graph of Sec. 3.5.2. The reduction scheme decreases the basis size without compromise
of the accuracy when εcut − ε′cut = 10−2.5 Hartree. In this case, the numbers of the basis
functions are reduced to two-thirds of the case without the reduction scheme.
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4.1.6 Summary
In summary, the practical accuracy for the eigenstate requires the parameter values for
b′ = b, λcut ≈ 10−3, and a sufficiently large εcut value compared to the desired energy
range. These conditions provide the accuracy comparable with FMO-LCMO [40, 41].
Moreover, the reduction scheme of Sec. 3.5.2 can reduce the number of the basis functions
to two-third of the original basis set without compromise of the accuracy when εcut−ε′cut =

10−2.5 Hartree.
Before closing this section, we point out that our method can also describe the unoccu-

pied states. Figure 4.7 and 4.8 illustrate the density of states for the zinc-blende structure
and the disordered structure, respectively. Here the energy origin is fixed at the chemical
potential µ. The disordered structure is metallized by the rough MD simulation. In the
εcut = 10.88 eV (0.4 Hartree) case, the unoccupied states agree well with the conventional
results. With this εcut value, the 3 highest occupied and the 3 lowest unoccupied orbitals
are illustrated in Fig. 4.9 (Fig. 4.11) and Fig. 4.10 (Fig. 4.12) for the zinc-blende (dis-
ordered) structure, respectively. Here, we also describe the overlap integral between the
corresponding orbitals obtained with DC-LCFO and the conventional calculation.

In the zinc-blende structure case, however, the DC-LCFO wavefunctions ({ψLCFO
i })

seem to disagree with those of the conventional case ({ψconv.
i }). This discrepancy comes

from the hybridization of the degenerate states. We can resolve the hybridization with a
following unitary transformation:

|ψLCFO
i ⟩ →

∑
j

|ψLCFO
j ⟩⟨ψLCFO

j |ψconv.
i ⟩, (4.2)

where the summation is over the degenerate states. We confirm the transformed states
agree with the conventional results (see (g)–(i) of Fig. 4.9 and Fig. 4.10). These results
show that DC-LCFO can reproduce not only occupied states but also unoccupied states
with reasonable accuracy.

We also comment on the unphysical zero eigenvalues. In the εcut = 5.44 eV case of
Fig. 4.7 and 4.8, unphysical states appear in the vicinity of εcut. These states correspond
to the unphysical zero eigenvalues mentioned in Sec. 3.5.
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Figure 4.7: Density of states for the zinc-blende structure SiC. The energy origin is fixed
at the chemical potential µ and the broadening of the Lorentzian function is 0.08 eV.
DC-LCFO with εcut = 5.44 eV (blue-dashed line) indicates emergence of the unphysical
eigenvalues in vicinity of εcut.
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Figure 4.8: Same as Fig. 4.7, but for the amorphous structure. The system is metalized by
the rough MD process (see the text).
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(a) (b) (c)

(d) (e) (f)

(g) [0.999] (h) [0.999] (i) [0.999]

Figure 4.9: Wave functions of the 3 degenerate highest occupied states for the zinc-blende
structure SiC. (a), (b) and (c) show DC-LCFO results without the unitary transformation.
(d), (e) and (f) are the conventional results. (g), (h) and (i) are the unitary transformed
wavefunctions of DC-LCFO, see Eq. (4.2). Here (g)–(i) are attached the value of the
overlap with the corresponding conventional result (in square bracket).
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(a) (b) (c)

(d) (e) (f)

(g) [1.000] (h) [1.000] (i) [1.000]

Figure 4.10: Wave functions of the 3 degenerate lowest unoccupied states for the zinc-
blende structure SiC. (a), (b) and (c) show DC-LCFO results without the unitary trans-
formation. (d), (e) and (f) are the conventional results. (g), (h) and (i) are the unitary
transformed wavefunctions of DC-LCFO, with the value of the overlap with the corre-
sponding conventional result (in square bracket).
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(a) [0.916] (b) [0.934] (c) [0.943]

(d) (e) (f)

Figure 4.11: Wave functions of the 3 highest occupied states for the amouphous structure
SiC. (a), (b) and (c) show DC-LCFO results. (d), (e) and (f) are the conventional results.
The DC-LCFO results are attached the value of the overlap with the corresponding con-
ventional result (in square bracket).

(a) [0.962] (b) [0.931] (c) [0.903]

(d) (e) (f)

Figure 4.12: Wave functions of the 3 lowest unoccupied states for the amorphous struc-
ture SiC. (a), (b) and (c) show DC-LCFO results. (d), (e) and (f) are the conventional
results. The DC-LCFO results are attached the value of the overlap with the correspond-
ing conventional result (in square bracket).
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Figure 4.13: Computational cost of the Hamiltonian diagonalization (per iteration for the
conventional cases) with different supercells, where the exchange-correlation functional
is PBE or PBE0. LCFO indicates our method , while PW corresponds to the conventional
plane-wave calculation. The computation is done on a 24-cores 2.5 GHz Intel Xeon clus-
ter with 144 nodes.

4.2 Benchmark tests for the Hamiltonian diagonalization

We performed benchmark tests of the DC-LCFO method using Si 96-atom (12 × 1 × 1),
216-atom (27 × 1 × 1), and 432-atom (54 × 1 × 1) supercells to see the computational
efficiency of DC-LCFO. The systems are divided into 12, 27, and 54 fragments along the
x direction, respectively. We set b = a (lattice constant) in the x direction and b = 0 in
the y-z plane so that each fragment is equal to 3 × 1 × 1 supercell. The basis set {|λαi ⟩}
and the Hamiltonian matrix {Hα′i′,αi} are derived from copied wave functions, which are
obtained by the conventional calculation in the 3 × 1 × 1 cell, where we used PBE and
PBE0 functionals. We fixed the parameters as b′ = b, λcut = 10−3, and Nα = 56 (=
occupied + 8 orbitals, instead of εcut). For PBE0 calculation, we set the cutoff parameter
of Eq. (3.19) as Rc = 8 a.u. < b′.

Figure 4.13 shows the computational time for the construction and diagonalization of
the Hamiltonian (per iteration for the conventional cases), where the reduction scheme
(Sec. 3.5.2) does not performed. This result indicates that our method enables a high-
speed computation of the eigenstate, and the exact exchange potential makes no difference
for the computational cost in DC-LCFO.
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In Table 4.1, we show the details of the computational time for 54 × 1 × 1 cell with
also the reduction scheme case (εcut − ε′cut = 10−2.5 Hartree). The cost for the basis set
construction becomes larger with the reduction scheme since it takes labor. However
the diagonalization cost is reduced thanks to the small size of basis set (see Table 4.2).
Note that the basis-set cost is O(N) and not significant for large systems. In Table 4.2,
we also describe the RMS error and the maximum absolute error (MAE) of the occupied
eigenenergies, and the error of the band gap for 54 × 1 × 1 cell.

Table 4.1: Details of the computational time (in seconds) for the Si 54× 1× 1 cell. “full”
and “reduced” indicate the case with and without the reduction scheme of Sec. 3.5.2.
The exchange-correlation functional is PBE or PBE0. Total time consists of the time for
constructing the basis set, the time for diagonalizing the Hamiltonian matrix, and residual
time such as the inner-product operation or MPI communications. The parameters setup
is given in the text.

Basis set Diagonalization Total
PBE (full) 3.01×10−2 6.04 6.13
PBE (reduced) 9.66×10−2 1.74 1.94
PBE0 (full) 2.48×10−2 5.25 5.35
PBE0 (reduced) 5.31×10−2 3.43 3.54

Table 4.2: RMS error, MAE and error of the band gap (in eV) with respect to the con-
ventional results for Table 4.1, where RMS error and MAE are calculated for occupied
states. Nbasis/Natom indicates the number of basis functions per atom.

RMS (occ) MAE (occ) Error of Gap Nbasis/Natom

PBE (full) 0.020 0.104 0.087 4.75
PBE (reduced) 0.022 0.112 0.082 3.38
PBE0 (full) 0.034 0.118 0.029 4.62
PBE0 (reduced) 0.035 0.124 -0.026 4.00
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Chapter 5

Applications

5.1 Phosphorus doped Silicon

We shall demonstrate that our method can describe defect states with a spatially extended
wave functions with satisfactory accuracy. To this end, we perform a calculation for a
P-doped Si crystal that contains 512 atoms (one P atom included). The crystal structure
of the 4 × 4 × 4 supercell is determined as follows: Using the conventional xTAPP code,
we optimized the structure of 3 × 3 × 3 cell containing one P atom. Next, we attached the
unoptimized Si unit cells around this 3 × 3 × 3 cell.

We divide the system into 64 fragments with the 4×4×4 configuration, where the side
lengths of each core domain and the buffer thickness are fixed to a = 5.43 Å (experimental
lattice constant). We perform the calculations with the GGA-PBE functional and the
PBE0 hybrid functional. The cutoff parameter for the exact exchange potential Rc is set to
8 a.u. = 4.23 Å. The plane-wave cutoff is 30 Ry and the number of the FFT mesh points
is equal to 18 × 18 × 18 in each core domain.

The controllable parameters of the eigenstate calculation are set as b′ = b, λcut = 10−3,
and εcut − µ = 8.163 eV (0.3 Hartree) for the PBE calculation. We put εcut − µ = 1.361
eV (0.05 Hartree) for the PBE0 calculation to economize the computational time. The
parameter for the reduction scheme is set as εcut − ε′cut = 10−2.5 Hartree.

Table 5.1 shows RMS error and MAE for the occupied eigenenergies ({εi}1024
i=1 ) and

the unoccupied eigenenergies ({εi}1100
i=1026) obtained from the PBE calculation. Here i is the

orbital index for the total system. The absolute error for the energy level of the half filled
donor state (i = 1025) is 0.004 eV. With the reduction scheme, the basis set size is reduced
to two-third of the original basis set without compromise of the accuracy as described in
Sec. 4.1.5. For the PBE0 hybrid functional, we note that RMS error and MAE for the
occupied energy levels are 0.034 eV and 0.118 eV, respectively, and the absolute error for
the donor state is 0.107 eV.

The binding energy of the donor state can be simply estimated from the eigenenergies:
Eb = εi=1026 − εi=1025. Table 5.2 shows Eb for P-doped Si, where we compare the results
of the conventional and DC-LCFO calculations for PBE and PBE0 functionals with the
experimental value. Here we also compare the band gap Eg = εi=1026 − εi=1024 and the
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valence-band width W = εi=1024 − εi=1 obtained from our calculations with those of the
experimental values for the bulk Si. The experimental values are taken from Ref. [52]
and Ref. [54]. The PBE (PBE0) results underestimate (overestimate) these values and the
difference between the conventional and DC-LCFO is not significant.

Figure 5.1 illustrates the wave function of the donor state with our method and the
conventional method for comparison. Here, we show the GGA-PBE result, with the re-
duction scheme for DC-LCFO. Notably, the donor state with DC-LCFO agrees well with
that of the conventional case.

In Fig. 5.2, the 3 highest occupied states of DC-LCFO ({ψLCFO
i }1024

i=1022) disagree with
those of the conventional case ({ψconv.

i }1024
i=1022). This discrepancy comes from the hybridiza-

tion of the degenerate 3 states. We perform a unitary transformation to resolve the hy-
bridization in a similar way to Eq. (4.2), and confirm these states agree with the conven-
tional results (see Fig. 5.2g–5.2i).

Similarly, Fig. 5.3 shows the 3 lowest unoccupied states (i = 1026–1028). These 3
states also degenerate and hybridize with each other. The unitary transformation yields
reasonable shape of the wavefunctions (Fig. 5.3g–5.3i). From these results it can be seen
that DC-LCFO can properly represent the wave function extended over fragments.
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Table 5.1: RMS error and MAE (in eV) for occupied and unoccupied states of P-doped Si
with the PBE functional (see the text for details of the parameters). “full” and “reduced”
indicate the case with and without the reduction scheme of Sec. 3.5.2. Nbasis/Natom is the
number of basis functions per atom.

RMS (occ) MAE (occ) RMS (unocc) MAE (unocc) Nbasis/Natom

full 0.013 0.084 0.061 0.133 17.67
reduced 0.014 0.108 0.049 0.113 10.63

Table 5.2: Binding energy of the donor state Eb for P-doped Si. We compare the results
of the conventional and DC-LCFO calculations for PBE and PBE0 functionals with the
experimental values. We also compare the band gap Eg and the valence-band width W
obtained from our calculations with those of the experimental values for the bulk Si (in
parentheses). The parameter εcut is set to εcut − µ = 8.163 eV (0.3 Hartree) for PBE, and
εcut − µ = 1.361 eV (0.05 Hartree) for PBE0. The experimental values are taken from
Ref. [52] and Ref. [54].

Conv.(PBE) LCFO(PBE) Conv.(PBE0) LCFO(PBE0) Expt.
Eb (meV) 30.79 38.60 64.21 53.95 45.59
Eg (eV) 0.634 0.609 1.680 1.724 (1.12)
W (eV) 12.56 12.69 14.08 14.25 (12.5 ± 0.6)

(a) [0.995] (b)

Figure 5.1: (a) DC-LCFO wave function of the donor state for the P-doped Si, with the
value of the overlap with the conventional result (in square bracket). The system contains
511 Si atoms and 1 P atom in a cubic 4 × 4 × 4 supercell. (b) The conventional result for
comparison.

45



(a) (b) (c)

(d) (e) (f)

(g) [0.995] (h) [0.994] (i) [0.994]

Figure 5.2: Wavefunctions of the 3 degenerate highest occupied states for P-doped Si.
(a), (b) and (c) show DC-LCFO results without the unitary transformation. (d), (e) and
(f) are the conventional results. (g), (h) and (i) are the unitary transformed wavefunctions
of DC-LCFO, see Eq. (4.2). Here (g)–(i) are attached the value of the overlap with the
corresponding conventional result (in square bracket).
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(a) (b) (c)

(d) (e) (f)

(g) [0.982] (h) [0.979] (i) [0.989]

Figure 5.3: Same as Fig. 5.2, but for the 3 degenerate lowest unoccupied states for P-
doped Si. (a), (b) and (c) show DC-LCFO results without the unitary transformation. (d),
(e) and (f) are the conventional results. (g), (h) and (i) are the unitary transformed wave-
functions of DC-LCFO, with the value of the overlap with the corresponding conventional
result (in square bracket).

47



5.2 Phosphorus doped Germanium
We also perform a calculation with the PBE0 hybrid functional for a P-doped Ge crystal
containing 512 atoms. The calculation conditions are almost the same for the case of
Sec. 5.1. Namely, we divide the system into 4× 4× 4 fragments and set the parameters as
follows: b′ = b = a, λcut = 10−3, εcut − µ = 0.25 Hartree, and εcut − ε′cut = 10−2.5 Hartree.
Here, the lattice constant a is set to the experimental value 5.66 Å. The cutoff parameter
for the exact exchange potential Rc is set to 8 a.u. = 4.23 Å < b′. The plane-wave cutoff
is 32.5 Ry and the number of the FFT mesh points is equal to 20 × 20 × 20 in each core
domain.

RMS error and MAE for the occupied eigenenergies are 0.025 eV and 0.127 eV, re-
spectively, and the absolute error for the donor state is 0.062 eV.

Table 5.3 shows the binding energy of the donor state Eb, band gap Eg, and valence-
band width W. While our calculations overestimate these value due to the nature of the
PBE0 functional, the difference between the conventional and DC-LCFO is not signifi-
cant.

Figuer 5.4 illustrates the wavefunction of the donor state. We see that our method
reproduces well the spatially extended state in a similar way to the case of P-doped Si.

Table 5.3: Binding energy of the donor state Eb, band gap Eg, and valence-band width W
for P-doped Ge. We compare the results of the conventional and DC-LCFO calculations
for the PBE0 functional with the experimental values, where Eg and W are the values
for the bulk Ge (in parentheses). The experimental values are taken from Ref. [52] and
Ref. [54].

Conv. LCFO Expt.
Eb (meV) 103.8 66.58 12.88
Eg (eV) 1.455 1.354 (0.66)
W (eV) 14.07 14.19 (12.9 ± 0.2)
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(a) [0.973] (b)

Figure 5.4: (a) DC-LCFO wave function of the donor state for the P-doped Ge, with the
value of the overlap with the conventional result (in square bracket). The system contains
511 Ge atoms and 1 P atom in a cubic 4 × 4 × 4 supercell. (b) The conventional result for
comparison.
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5.3 InGaN/GaN superlattice
We applied our method to a superlattice system with the band-bending structure. The
heterostructures of the wurtzite III-V nitrides with [0001] epitaxial alignments have the
polar interface which induces the band bending [55, 56]. This polarization is due to the
low-symmetry structure of the wurtzite III-V nitrides [55]. Here we focus on the In-
GaN/GaN superlattice [57], which has many practical applications in devices such as the
light emitting diode (LED).

We shall show results of the eigenstates calculation for (In0.5Ga0.5N)24/(GaN)24 super-
lattice which contains 768 atoms in a rectangular cell of side lengths, 12.89×5.58×131.06
(in Å). The structure of each GaN or InGaN layer is depicted in Fig. 5.5. The lattice pa-
rameters in the x-y plane (orthogonal to [0001] direction) are set to those of the bulk
GaN, whereas, the lattice parameters along z ([0001]) direction for GaN and InGaN are
set to 5.239 Å and 5.683 Å, respectively, which are determined by the strain condition
(Sec. II of Ref. [57]). Here, we utilize the unoptimized crystal structure since we are only
interested in calculation of the electronic state.

The system is divided into 12 fragments with 1D (1 × 1 × 12) configurations. The
buffer thickness b is equal to the length of each core domain along the z direction, while
the x-y plane is not divided so b = 0 in the x-y plane. The electron temperature is set
to 316 K (= 0.001 Hartree/kB). The parameters for the eigenstate calculation are fixed
as b′ = b, λcut = 10−3, and εcut − µ = 8.163 eV (0.3 Hartree). The parameter for the
reduction scheme is set as εcut − ε′cut = 10−2.5 Hartree. The plane-wave cutoff is 50 Ry and
the number of the FFT mesh points is equal to 60 × 24 × 48 in each core domain.

Table 5.4 shows the RMS error and MAE for the occupied eigenenergies ({εi}1536
i=1 ) and

the unoccupied eigenenergies ({εi}1700
i=1537). The number of the basis functions is extremely

small even before performing the reduction. The reduction scheme yields no substantial
effect and these small basis sets give sufficient accuracy because of the 1D configuration
of the fragments where each fragment has only two buffer regions in contrast to 26 in
case of 3D configuration. We can deduce that the unphysical zero eigenvalues (Sec. 3.5)
originate from the buffer regions.

Figure 5.6 shows the local density of states (LDOS) with our method and the conven-
tional method, where the [0001] axis coincides with the horizontal direction of the text.
This result demonstrates that our method can reproduce a large-scale band structure such
as the band bending in good agreement with conventional calculations.
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Figure 5.5: Wurtzite unit cell containing 2 GaN layers, 32 atoms. [0001] direction coin-
cides z axis.

Table 5.4: RMS error and MAE (in eV) for occupied and unoccupied states of In-
GaN/GaN superlattice (see the text). “full” and “reduced” indicate the case with and
without the reduction scheme of Sec. 3.5.2. Nbasis/Natom is the number of basis functions
per atom.

RMS (occ) MAE (occ) RMS (unocc) MAE (unocc) Nbasis/Natom

full 0.031 0.186 0.027 0.084 4.30
reduced 0.030 0.181 0.027 0.081 3.66
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Figure 5.6: (a) DC-LCFO result of the local density of states (LDOS) for the InGaN/GaN
superlattice system, which is composed of 24 InGaN layers and 24 GaN layers, where
each layer contains 16 atoms. The system is divided into 12 fragments along the z-
direction. (b) The conventional result for comparison.
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Chapter 6

Conclusion

In this thesis, we developed a method for accelerating the electronic structure calculations
within the divide-and-conquer (DC) approach to DFT. The method is shown to allow us to
efficiently calculate the wavefunctions (Kohn-Sham orbitals) although the DC-DFT has
been incapable of doing this in general. This study was motivated by the fact that the
conventional first-principles electronic structure calculations using the semi-local density
functionals have been seriously bottlenecked by the O(N3

basis) scaling versus the basis-set
size Nbasis. The situation is made more serious when performing more accurate first-
principles calculations using numerically demanding non-local operators, such as the ex-
act exchange potential. In this context, FMO-LCMO was previously developed on the
basis of DC approach. In this method, however, the whole system is decomposed into
non-overlapping fragments by cutting the covalent bond, so that it is applicable only to
covalently bonded systems like biological molecules. This problem can be overcome
by decomposing the whole space into overlapping fragments; however, the decomposi-
tion becomes less unambiguous and, moreover, method to handle buffer regions (overlap
regions) of the fragments has been unknown thus far. To overcome this problem, we de-
veloped a scheme to manage the overlapping fragments by properly removing or utilizing
information of the buffer regions depending on the objective.

The key of the formulation is in the construction of the basis functions and in the
calculation of the Hamiltonian matrix elements. The basis function is derived from the
orbitals of the respective fragments including the buffer region, but buffer’s contribution is
spatially removed: In doing so, it is crucially important to remove the linearly dependent
functions. By this procedure, the basis-set size is significantly reduced. In addition, the
Hamiltonian matrix elements can be partitioned into parts, which can be calculated at
each fragment independently from others. The inter-fragment (off-diagonal) elements
of the Hamiltonian matrix are represented by the orbitals of the corresponding fragment
including the buffer region. The remaining task is to calculate the inner products among
the fragment orbitals, but the calculation is not so time-consuming.

The construction of the basis set and the Hamiltonian matrix can be performed with
O(N) cost. Also, the diagonalization of the Hamiltonian matrix requires modest O(N3

basis)
cost thanks to the small matrix dimension Nbasis. In addition, the scaling of the com-
putational cost is the same whether or not using the numerically demanding non-local
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operators within each fragment. This means that, calculations with the exact exchange
potential is greatly facilitated by our method. Thus we have established a high-speed and
versatile computation method for electronic states.

We have examined specific conditions for achieving reliable results and demonstrated
efficiency of our method. While we used LDC-DFT as the basis of our research, our novel
basis set and Hamiltonian construction method can be applied to general DC approaches.
This study paves the way for large-scale electronic state calculations in a broad class of
research fields.

In Chapter 2, we reviewed the fundamental formulation of DFT and DC-DFT. We also
mentioned the nearsighted principle for electronic matter, which is the physical basis of
the DC approach.

In Chapter 3, we presented the formalism of our method. We explained the detailed
procedure for the construction of the basis functions and the Hamiltonian matrix, and
discussed the advantages of our method. Moreover, we mentioned the existence of the
unphysical zero eigenvalues originating from the buffer regions, and proposed the tech-
nique for further reduction of the basis-set size in which the unphysical eigenvectors are
eliminated with a simple algorithm.

In Chapter 4, we investigated the parameter dependence of our method and performed
the benchmark test. The former results revealed reasonable parameter conditions. In
particular, the buffer thickness b′ (truncation range of the Hamiltonian operator) is not
required to optimize and is uniquely determined as b′ = b (buffer thickness of the DC
calculation). This implies a hidden advantage of LDC-DFT: the periodic boundary con-
ditions imposed at the fragment boundary alleviate the drawback by the artificial bound-
aries. We also referred to the other parameters controlling the accuracy and their tradeoff
relation between the accuracy and the computational cost. In the benchmark test, we
showed that our method can substantially reduce the computational time for the Hamilto-
nian construction and diagonalization, regardless of the inclusion of the exact exchange
potential.

In Chapter 5, we applied our method to the defect structure and the superlattice struc-
ture with the band bending. For P-doped Si crystal, we performed the calculations with
the GGA exchange-correlation functional and the hybrid functional. We compared the
binding energy, the band gap, and the valence band width obtained from these calcula-
tions with those of the experimental values. We also performed the PBE0 calculation for
P-doped Ge crystal, where the conventional LDA and GGA calculations incorrectly yield
metallic state. For InGaN/GaN superlattice, we confirmed that our method can represent
the global band structure such as the band bending. With these results, we found that the
number of the basis functions per atom can be reduced down to roughly 4–10 depending
on configurations of the fragments with keeping practical accuracy. Actually, it seems
that the size of the buffer region around the core domain determines the basis set size.
This indicates the unphysical eigenvectors within the Hamiltonian matrix originate from
the buffer regions. The complete removal of the remaining unphysical eigenvectors is a
problem left for the future.

We conclude this thesis by making some remarks on future prospects of the present
method. Our method is a powerful tool for studying the nature of electronic states for large
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systems. Particularly, the electronic state calculations for general disordered materials can
be much facilitated by our method thanks to their short correlation length. While ordered
metallic systems require large buffer regions due to their long correlation length, our
method can be in principles applicable.

With the universality of DC approach, the present method offers many possibilities
of application to various fields. For example, our scheme can be extended to more gen-
eral Hamiltonians including short-range exchange-correlation terms such as the GW self-
energy operator [58–60] in principle. The other possibility is an extension to the time-
dependent density functional theory (TD-DFT). There is a method for facilitating the
TD-DFT calculation by employing the static KS orbitals of subsystems as a basis set [61],
which is related to the Green’s function method referred to in the last of Sec. 3.1. Ref. [62]
has showed that a basis set consists of the occupied and few unoccupied KS orbitals and
the occupied orbitals with the shifted k points yields the high-speed TD-DFT calculation
thanks to the small basis-set size. Our Hamiltonian construction based on the fragment
electronic states is obviously applicable to these methods, which could provide a new
real-time method for TD-DFT with our basis set.
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Appendix A

Comparison with FMO-LCMO

⌦̃↵

⌦↵
0

⌦↵
0

F, ↵F = +

F 000, ↵F 000 = + F 00, ↵F 00 = �

F 0, ↵F 0 = �

Figure A.1: LS3DF-like decomposition of the fragment Hamiltonian Ĥα. Compare with
Fig. 2.4.

In Sec. 3.3, we formulated the approximate expression for the Hamiltonian matrix,
starting from the consideration of the Hamiltonian operation on the basis functions. In
FMO-LCMO, on the other hand, the approximate Hamiltonian is represented as a decom-
posed operator which consists of the fragment Hamiltonian operators. Let us discuss the
relation between these two formulations.

FMO-LCMO applies the FMO summation formula Eq. (2.23) to the Hamiltonian op-
erator. Namely, the total Hamiltonian is decomposed into the fragment monomer and
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fragment dimer terms as follows [40, 41]:

Ĥ =
∑

I

ĤI +
∑
I>J

(
ĤIJ − ĤI − ĤJ

)
, (A.1)

where we omit the higher terms such as the fragment trimer (FMO2 level). I and J
are indices of the fragment monomers and ĤI denotes the Hamiltonian for the fragment
monomer I. ĤIJ represents the Hamiltonian for the fragment dimer IJ. The second term
represents the non-local effects across the monomers, while the first term indicates the
monomer effects.

One can construct a representation analogous to Eq. (A.1) for the Hamiltonian oper-
ator so that its matrix elements agree with Eq. (3.11). This representation is formulated
by the summation of the fragment Hamiltonians in a similar way to the density summa-
tion formula Eq. (2.24) of LS3DF. For simplicity, we consider only a case of 2D systems.
Here, each Ω̃α is divided into 4 small fragments and they are assigned new indices F. For
each fragment F, we assign a sign factor αF = ± depending on the layout of the fragment
(Fig. A.1). The approximated Hamiltonian operator of the whole system can be expressed
as,

Ĥapprox. =
∑

F

αF ĤF , (A.2)

where ĤF = P̂F ĤαP̂F is a projected Hamiltonian for the small fragment F.
With the above Ĥapprox., the matrix elements are completely identical to ⟨λα′i′ |P̂βĤβP̂β|λαi ⟩

with a proper configuration of the fragment β. Specifically, we put β = α (α′) if the frag-
ment α is located at the north/north-east/east (south/south-west/west) of the fragment α′

in 2D systems, while β indicates the other fragment overlapping with both α and α′ if the
fragment α is located at the north-west/south-east of the fragment α′ as Fig. 3.2b.
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Appendix B

k-point sampling with DC-LCFO

DC-LCFO gives us eigenstates corresponding to the Γ point in the Brillouin zone. How-
ever, the energy band calculations for a large system is often required. For example,
Ref. [33] utilized an energy band of 13468-atom supercell (Fig. 3c in Ref. [33]) to inves-
tigate properties of the Dirac electron in the twisted bilayer graphene.

In this appendix, we describe an extension of DC-LCFO for calculating the eigenstates
with the k-point sampling. We shall start with a review for the Bloch states. In Sec. B.2,
we will present a method for calculating the Hamiltonian matrix elements for the Bloch
states using the basis set derived from DC-LCFO. This argument explains why DC-LCFO
could generate the eigenenergies of N×1×1 cell (N =12, 27, 54) from the wavefunctions
of 3 × 1 × 1 in Sec. 4.2.

B.1 Hamiltonian matrix for Bloch states
For simplicity, we consider a 1-dimensional periodic system with the size of L = Nka,
where Nk is a integer and a is a period of the Hamiltonian. The plane waves {|k⟩} are
defined as

⟨x|k⟩ = eikx/
√

L, k = 2πn/L (n ∈ Z). (B.1)

The Hamiltonian is written as

Ĥ = −1
2
∂2

∂x2 + V(x̂), V(x) =
∑

G

V(G)eiGx, (B.2)

where G = 2πn/a (n ∈ Z) is the reciprocal lattice vector corresponding to the periodicity
V(x + a) = V(x).

The Nk Bloch states are given as follows:

|ψkn⟩ =
∑

G

Ckn(G)|k +G⟩, (B.3)

where k = 2πn/L (n = 0, 1, · · · ,Nk − 1) means the independent k-vector in the Brillouin
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zone, and Ckn is the expansion coefficient. These wavefunctions can be rewritten as

|ψkn⟩ = eikx̂|ukn⟩, |ukn⟩ =
∑

G

Ckn(G)|G⟩, (B.4)

where ukn(x) is the periodic function: ukn(x + a) = ukn(x). Thus the Bloch states at each
k-point can be obtained by diagonalizing the Hamiltonian e−ikx̂Ĥeikx̂ with periodic basis
functions {|χi⟩}: χi(x + a) = χi(x).

B.2 Bloch states in DC-LCFO
Let us consider that [0, a] is divided into n f fragments. Each core domain Ωα0 is equal to
[(α − 1) a

n f
, α a

n f
], where α = 1, · · · , n f . If a is sufficiently large such that the non-local

terms of the Hamiltonian have no double counting by periodicity, the Hamiltonian in the
supercell [0, a] can be obtained by DC-LCFO. Namely,

Ĥ[0,a] =

n f∑
α′=1

Mα′∑
j′=1

n f∑
α=1

Mα∑
j=1

|λα′j′ ⟩Hα′ j′,α j⟨λαj |, (B.5)

where the off-diagonal block {Hn f , j′; 1, j} is nonzero due to the periodicity at x = 0 and
x = a.

We can obtain the Bloch states at the k-point by simply diagonalizing the matrix

Hα′ j′,α j(k) = ⟨λα′j′ |e−ikx̂Ĥ[0,a]eikx̂|λαj ⟩exp
(
ika δn f−1,|α′−α|

α′ − α
n f − 1

)
. (B.6)

Here, the integration interval for the inner product is [0, a]. The phase factor exp(· · · )
becomes eika (e−ika) if α′ = n f and α = 1 (α′ = 1 and α = n f ), and exp(· · · ) = 1 for
otherwise. Needless to say, the case of k = 0 corresponds to the DC-LCFO calculation.

This expression can be justified as follows: Let us enlarge the cell [0, a] to [0,Nka].
With the translation operator T̂ ≡ exp(−iap̂) = exp(−a ∂

∂x ), we can construct a basis set
for the enlarged cell from {|λαj ⟩},

{ |λα⟩, T̂ |λα⟩, T̂ 2|λα⟩, · · · , T̂ Nk−1|λα⟩}, (B.7)

where we omit the orbital index j for brevity. The Hamiltonian for [0,Nka] is defined as

Ĥ =
n f∑

α′,α=1

Nk−1∑
m′,m=0

T̂ m′ |λα′⟩H′m′α′; mα⟨λα|T̂ m†, (B.8)

where H′m′α′; mα is equal to the corresponding Hα′,α, which is given in Eq. (B.5), for the
basis functions at the same or neighboring positions. Here, we put H′m−1,n f ; m,1 = Hn f ,1 and
H′m,n f ; m,1 = 0 with the consideration of the periodicity. This Hamiltonian construction is
analogous to that of Sec. 4.2 with n f = 1 and Nk = N (N = 12, 27, 54).
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The periodic basis functions can be obtained as

|χα⟩ =
1
√

Nk

Nk−1∑
m=0

T̂ m|λα⟩. (B.9)

Using this basis set, we can describe the matrix elements of e−ikx̂Ĥeikx̂ as

⟨χα′ |e−ikx̂Ĥeikx̂|χα⟩ =
1
Nk

∑
m m′m1m2

∑
α1α2

⟨λα′ |T̂ m′†e−ikx̂T̂ m1 |λα1⟩H′m1α1; m2α2
⟨λα2 |T̂ m2†eikx̂T̂ m|λα⟩

=
1
Nk

∑
m′m

⟨λα′ |T̂ m′†e−ikx̂T̂ m′ |λα′⟩H′m′α′; mα⟨λα|T̂ m†eikx̂T̂ m|λα⟩

=
1
Nk

∑
m′m

H′m′α′; mαe−ika(m′−m)⟨λα′ |e−ikx̂|λα′⟩⟨λα|eikx̂|λα⟩, (B.10)

where we used T̂ m†eikx̂T̂ m = eimkaeikx̂. In the case of that H′m′α′; mα has a nonzero value if
and only if m′ = m,

(B.10) =
1
Nk

Hα′,αNk⟨λα
′ |e−ikx̂|λα′⟩⟨λα|eikx̂|λα⟩, (B.11)

and this agrees with Eq. (B.6). In the case of that α′ = n f and α = 1, then m′ = m − 1, the
matrix element can be rewritten as

(B.10) = eikaHn f ,1⟨λn f |e−ikx̂|λn f ⟩⟨λ1|eikx̂|λ1⟩, (B.12)

and identical to Eq. (B.6). The phase factor eika cannot be removed due to the periodicity
of the system.
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