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Abstract

Graphene, a single atomic layer of carbon atoms forming a honeycomb lattice structure,
hosts a unique two-dimensional electron system consisting of massless relativistic par-
ticles, i.e., massless Dirac fermions, originating from the linear energy dispersion in
the low-energy regime. When a strong magnetic field (B) is applied perpendicularly
to graphene, in sharp contrast to the equidistant Landau levels (LLs) in ordinary two-
dimensional electron gas (2DEG), the energy spectrum is separated into non-equidistant
LLs with the

√
B-proportional energy spacing in the terahertz (THz) and mid-infrared

range. In addition to the peculiar transport properties such as half-integer quantum Hall
effect (HIQHE), the optical responses of Landau-quantized graphene have attracted great
interest. For instance, magneto-optical spectroscopy studies have revealed intriguing lin-
ear magneto-optical responses in the THz and mid-infrared range such as the unusual
optical transition selection rule between the LLs, and quantum Faraday and Kerr effects
in quantum Hall regime which are the optical analogue of HIQHE. Recently, in addition
to the magneto-optical properties in the linear response regime, the non-equilibrium dy-
namics of the LLs in graphene such as the carrier relaxation has been investigated by
means of pump-probe spectroscopy.

The optical transition dipole moments between LLs are characterized by elB, where
lB is the magnetic length, and become so large that the extreme nonlinear optics regime,
where the maximum Rabi frequency exceeds the carrier frequency of the light pulse, can
be realized with feasible electric field strength. In such a non-perturbative light-matter
interaction regime, a number of fascinating phenomena are expected such as carrier-
wave Rabi flopping and high-order harmonic generation. However, in the ordinary 2DEG
system, the optical nonlinearity is absent due to the harmonic energy spectrum of the
equidistant LLs. In this sense, in addition to its peculiar linear optical responses, Landau-
quantized graphene is expected to be a very fascinating nonlinear optical material with
its inherent anharmonicity according to the non-equidistant energy spectrum arising from
the relativistic nature of electrons.

In this dissertation, we first perform single pulse transmission experiments with in-
tense THz pulses on a monolayer epitaxial graphene under strong magnetic fields. From
the measurements of the Faraday rotation angle and ellipticity spectra, the suppression
of the Faraday rotation is observed with increasing the intensity of the incident THz
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pulse. To further investigate the nonlinear THz responses of the non-equidistant LLs
in graphene, we perform THz pump-THz probe magneto-optical spectroscopy and ob-
serve the ultrafast suppression and recovery of the Faraday rotation under the intense
off-resonant THz pulse excitation, where the maximum Rabi frequency far exceeds the
carrier wave frequency of the excitation THz pulse and even larger than the relevant LL
transition frequency. In order to analyze the experimental results, we perform numerical
simulations of the nonlinear responses of the LLs based on the master equation for the
density matrix elements without using rotating-wave approximation and discuss the mi-
croscopic mechanism of the THz nonlinearity observed in the pump-probe experiments.
Finally, we propose the higher harmonic generation from Landau-quantized graphene,
which emerges in the extreme nonlinear optics regime, based on the numerical simula-
tions and examine the feasibility of the experiments.
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Chapter 1

Introduction

1.1 Large optical nonlinearity of graphene under zero
magnetic field

Electrons in graphene, one atomic layer of carbon atoms forming a honeycomb lattice
structure, behave like massless relativistic particles, i.e., massless Dirac fermions, due to
the linear energy dispersion in the low-energy regime. The Dirac electron nature gives rise
to a number of fascinating phenomena such as Klein tunnelling [1,2] and the half-integer
quantum Hall effect [3, 4]. In addition to these unique transport properties, graphene has
attracted growing interests from photonics and optoelectronics because of its intriguing
optical responses [5, 6]. In particular, graphene is expected to host a large optical nonlin-
earity in the mid-infrared to the visible [7, 8] and the terahertz (THz) [9] ranges, which
arises from the linear energy dispersion of the relativistic electrons. Because the linear
band structure makes the interband optical transitions resonant over a wide range of pho-
ton energy corresponding to the mid-infrared to the visible range, the third-order optical
nonlinearity becomes remarkably large, which has been experimentally observed by the
measurements of the coherent nonlinear optical responses such as four-wave mixing [7]
and third-harmonic generation [10, 11] as schematically shown in Fig. 1.1.

The large optical nonlinearity is also expected to appear in the THz range, where the
intraband response plays a dominant role, because the linear band dispersion makes the
intraband response anharmonic unlike the quadratic dispersion. This nonlinearity can be
intuitively understood in a simplified picture as follows [9] (Fig. 1.2). Considering the
Newton equation of motion dpx/dt = −eEx(t) (e is the elementary charge) with the
external electric field Ex(t) = E0 cosΩt, we obtain px = −(eE0/Ω) sinΩt. In graphene,
the velocity vx is written by

vx = vF
px√

p2x + p2y
, (1.1)

where vF is the Fermi velocity. Equation (1.1) is reduced to vx ∼ vFpx/|px| = vFsgn(px)
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1.2 Magneto-optical spectroscopy of graphene

THG FWM

ε

p

Figure 1.1: Band structure of graphene with resonant photon energies (arrows) appear-
ing in energy-level diagrams describing third-harmonic generation (THG) and four-wave
mixing (FWM).

when we assume py ∼ 0. Therefore, the ac electric current jx = −envx (n is the area
density of carriers) can be written by

jx(t) = envFsgn(sinΩt)

= envF
4

π

(
sinΩt+

1

3
sin 3Ωt+

1

5
sin 5Ωt+ . . .

)
, (1.2)

which clearly shows nonlinear nature of graphene showing up in the low frequency THz
range.

Recently, the nonlinear optical responses to intense THz light have been intensively
investigated both theoretically [12–14] and experimentally [15–18]. The observation
of the third- and fifth-harmonic generation has been reported for a 45-layer graphene
sample [15], whereas other high-field THz spectroscopies on single [16–18] and ∼10-
layer [16] graphene samples have detected no harmonic generation and observed the non-
linear suppression of the optical conductivity. The suppression of the optical conductivity
has recently been found to be described by statistically determined thermodynamic pic-
ture because of fast electron thermalization [18]. Therefore, further studies are expected
to clarify when the coherent process dominates over the fast thermalization effect in the
nonlinear optical responses in the THz frequency range.
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Figure 1.2: Schematic of the anharmonic intraband dynamics of Dirac electrons in the
vicinity of py = 0.

1.2 Magneto-optical spectroscopy of graphene
When a strong magnetic field is applied perpendicularly to graphene, unlike the equidis-
tant Landau levels (LLs) in ordinary two-dimensional electron gas (2DEG), the energy
spectrum is separated into LLs with non-equidistant energy spacing covering the THz
and mid-infrared ranges. The non-equidistant LL energies are given by

ϵn = sgn(n)vF
√

2|e|h̄B|n|, (1.3)

where n (n = 0,±1,±2 · · · ) is the LL index and B is the magnetic field [19]. The peculiar
electronic properties have attracted great interest to study magneto-optical responses of
graphene and the unique optical responses in the THz and mid-infrared ranges have been
revealed in the linear response regime [20–25]. In the linear response regime, the induced
surface current density j is proportional to the driving electric field E:

ji = σijEj, (1.4)

where the subscripts i and j denote Cartesian components and σij is the linear optical
conductivity which is independent of the driving electric field. In a high-doped monolayer
graphene sample with the Fermi energy of EF ∼ 350 meV, Crassee et al. observed giant
Faraday rotation with the maximum Faraday rotation angle of > 100 mrad for just a
single atomic layer [20], which was well explained by the Drude model. In addition to
such magneto-optical responses in the classical regime, where the separation between
the LLs is not clearly established due to the LL broadening, the THz responses in the
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Figure 1.3: (a) Absorption spectrum of epitaxially-grown monolayer graphene at zero
magnetic field in the THz frequency range. The red curve is the Drude fit with EF = 56
meV. (b) Cyclotron frequencies as a function of the applied magnetic field obtained from
the Drude fits to the Faraday rotation spectra under weak magnetic fields as shown in the
inset. The red solid line is calculated with EF = 60 meV. Inset: The Faraday rotation
spectra at B = 0.3, 0.5, and 0.7 T with the Drude fits (solid curves). (c)Magnetic field
dependence of the Faraday rotation angle at the photon energy of 4 meV (∼ 1 THz). The
dashed and solid curves are calculated by the Drude model and the exact diagonalization
method, respectively, both of which are multiplied by a reduction factor of 0.7. From
ref. [21].
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quantum Hall regime have been observed by Shimano et al. with a monolayer graphene
epitaxially grown on the Si face of a SiC substrate [21]. The Fermi energy of the sample
was estimated to be EF = 56 meV from the Drude fit of the absorption spectrum measured
at zero magnetic field as shown in Fig. 1.3 (a). As shown in the inset of Fig. 1.3 (b), the
Faraday rotation spectra under weak magnetic fields are also well fitted by the Drude
model. From the slope of the linear dependence of the obtained cyclotron frequencies on
the applied magnetic field above 0.4 T (the deviation below 0.3 T is most likely attributed
to the existence of the magnetoplasmons [26]) EF is estimated to be 60 meV, which agrees
well with the value obtained from the Drude fit to the THz transmittance spectrum under
zero magnetic field. In this low-doped sample, the quantum Hall regime was realized
above 3 T. The plateau structure is observed in the magnetic field dependence of the
Faraday rotation angle at the photon energy of 4 meV (∼ 1 THz) as shown in Fig. 1.3
(c). The plateau region corresponds to the filling factor of ν = 2, and the rotation angle
is defined by the fine structure constant. The magnetic field dependence of the Faraday
rotation angle is well reproduced by an exact diagonalization method which takes into
account the localization effect. The absolute value of the rotation angle is multiplied by a
factor of 0.7 in order to fit to the experimental results, which is most likely attributed to a
∼ 80% coverage of monolayer graphene.

In addition to the linear magneto-optical spectroscopy, time-resolved spectroscopies
have been performed and the carrier relaxation dynamics of LLs in graphene has been
investigated [27–29]. Plochocka et al. performed a degenerate pump-probe experiment
with 800-nm-wavelength laser pulses. They observed the increase of the relaxation time
for LLs with a high LL index (n ∼ 100), which was attributed to the suppression of Auger
relaxation processes [27], arising from the energy mismatch δϵ in the Auger processes
between the adjacent LLs described by

δϵ = sgn(n)vF
√
2|e|h̄B(2

√
n−

√
n+m−

√
n−m), (1.5)

with n,m > 0, which is schematically shown in Fig. 1.4. In addition to the above
study [27] of carrier dynamics in the high-n-LLs with the non-equidistant spacing, the in-
vestigation on the carrier dynamics has been made by Mittendorff et al. [29]. They studied
the carrier dynamics of low LLs (n = 0,±1), which can be considered to be decoupled
from the other LLs in their experiment, by degenerate THz pump-probe spectroscopy us-
ing a free-electron laser light source with a frequency of 18 THz. From the differential
transmission signals, they observed strong Auger processes between the equidistant LLs
with n = −1, 0 and 1. In contrast to such studies on the population dynamics of carri-
ers in the LLs, the coherent nonlinear optical responses in the Landau-quantized regime
remain unexplored.
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∆ε = εn - εn-m

∆ε = εn - εn+m

Figure 1.4: Schematic of the energy mismatch for the Auger processes between (n−m)-
th, n-th and (n+m)-th LLs.

1.3 Motivation
In 2DEG systems, the cyclotron orbits are confined within the two-dimensional plane
with the radii on the order of the magnetic length lB. Therefore, the optical transition
dipole moments between LLs are characterized by elB [30] and become so large that the
extreme nonlinear optics regime, where the Rabi frequency ΩR = µE/h̄ (µ is the tran-
sition dipole moment and E is the electric field strength) exceeds the carrier frequency
of the light pulse, can be realized with feasible electric field strength in the THz range.
In such a strong light-matter coupling regime, the perturbation theory breaks down and a
number of fascinating phenomena emerge such as carrier-wave Rabi flopping [31], high-
order harmonic generation (HHG), and attosecond pulse generation [32]. Recent develop-
ments of carrier-envelope-phase-locked intense THz and mid-infrared light sources have
enabled such a study even in solid states, as exemplified by sub-cycle coherent control of
electrons [33] and HHG in semiconductors [34,35]. In these experiments, however, ultra-
intense electric fields of ∼ 10 MV/cm were needed to explore such nonlinear optical phe-
nomena. In this sense, a Landau-quantized 2DEG system may offer a unique condensed-
matter playground to study the non-perturbative light-matter interaction phenomena with
relatively weak electric fields owing to the large dipole moments. However, in ordinary
2DEG systems with equidistant LLs, the optical nonlinearity is absent unless one intro-
duces anharmonicity into the system, e.g., the non-parabolic electron band dispersion and
electron-ion interaction effect [36]. In contrast, the LLs in graphene intrinsically show
anharmonicity according to the non-equidistant energy spectrum, reflecting the relativis-
tic nature of electrons. Indeed, the coherent nonlinear optical responses of graphene in
the Landau-quantized regime have attracted many theoretical interests [37–39].

In spite of such large optical nonlinearities, the coherent nonlinear optical responses
of Landau-quantized graphene still remain unexplored. In this dissertation, we aim to
reveal the nonlinear optical responses in the THz range under strong light-matter coupling
regime and propose the possibility to study the extreme nonlinear optics phenomena in
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1.4 Structure of the dissertation

solid state materials with relatively weak electric fields on the order of several tens of
kV/cm.

We developed a THz pump-THz probe magneto-optical spectroscopy system under
the strong magnetic fields. We studied the ultrafast nonlinear magneto-optical responses
of Landau-quantized graphene under the irradiation of intense off-resonant THz pulse,
where the maximum Rabi frequency far exceeds the carrier wave frequency of the pump
THz pulse and even larger than the relevant LL transition frequency. To analyze the exper-
imental results, we performed numerical simulations of the nonlinear optical responses of
the LLs based on the density matrix formalism without using rotating-wave approxima-
tion. Finally, with using the simulations, we investigated the experimental feasibility for
the detection of the higher harmonic generation from the non-equidistant LLs in graphene
under the irradiation of multicycle THz pulses.

1.4 Structure of the dissertation
This dissertation is structured as follows. In chapter 2, we review the electronic proper-
ties of graphene with and without an external magnetic field and then introduce the unique
optical properties of the non-equidistant LLs in graphene. Chapter 3 contains the basic
principles of THz time-domain spectroscopy, e.g., THz generation and detection methods,
and polarization-resolved THz spectroscopy for the investigation of the magneto-optical
responses of graphene. Chapter 4 describes our experimental details in a single pulse
transmission experiment and a THz pump-THz probe experiment, including the descrip-
tion of the sample, intense THz pulse generation techniques and the data taking method
for the pump-probe signals. Chapter 5 presents the experimental results observed in the
single pulse transmission experiments and the THz pump-THz probe measurements. Ul-
trafast nonlinear magneto-optical responses of Landau-quantized graphene under the irra-
diation of intense off-resonant THz pulse are discussed. Chapter 6 provides the numerical
simulations based on the density matrix formalism without using the rotating-wave ap-
proximation and we discuss the microscopic origin and mechanism of the nonlinear THz
responses observed in our experiments. The feasibility for the detection of the higher
harmonic generation from the non-equidistant LLs in graphene is also discussed. Finally,
chapter 7 contains a brief summary of our findings and future prospects.
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Chapter 2

Properties of graphene

Electrons in graphene behave like relativistic particles, i.e., massless Dirac fermions, due
to the linear energy dispersion in the low-energy regime. Its unique electronic properties
arising from the Dirac electron nature manifest themselves in carrier transports and var-
ious optical responses, and have attracted widespread interests. In this chapter, we first
introduce the electronic properties of graphene without external electromagnetic fields
and then review the intriguing electronic properties under a static magnetic field: the
non-equidistant LLs. Finally, we review the peculiar optical properties of the LLs in
graphene [19, 40].

2.1 Electronic properties of graphene
Graphene consists of carbon atoms with the honeycomb lattice structure, which is not a
Bravais lattice and is constructed from two different sublattices called A and B sublattices
as shown in Fig. 2.1 (a). The three vectors connecting a site on the A sublattice with
nearest-neighbor sites on the B sublattice are given by

δ1 =
a

2

(
ex +

√
3ey

)
, δ2 =

a

2

(
ex −

√
3ey

)
, δ3 = −aex, (2.1)

where ex and ey are the unit vectors in the x- and y-directions, respectively, and a = 0.142
nm is the distance between nearest-neighbor atoms [19, 40]. Because the Bravais lattice
is spanned by the basis vectors of

a1 =
a

2

(
3ex +

√
3ey

)
,

a2 =
a

2

(
3ex −

√
3ey

)
, (2.2)
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Figure 2.1: (a) Honeycomb lattice structure of carbon atoms. (b) First Brillouin zone in
the momentum space.

the reciprocal lattice is spanned by the vectors of

a∗
1 =

2π

3a

(
ex +

√
3ey

)
,

a∗
2 =

2π

3a

(
ex −

√
3ey

)
. (2.3)

The first Brillouin zone (BZ) is shown as a shaded area in Fig. 2.1 (b), the six vertexes of
which consist of two sets of inequivalent points of K and K ′, which cannot be connected
with each other by the reciprocal lattice vectors.

Taking into account the electron hoppings to the nearest- and next-nearest-neighbor
atoms, which are characterized by the nearest-neighbor hopping energy t ∼ 2.8 eV and
the next-nearest-neighbor hopping energy t′ ∼ 0.1 eV [41], respectively, we can obtain
the energy dispersion of graphene within the tight-binding model as given by

ϵλ(k) = λt
√
3 + f(k)− t′f(k), (2.4)

where λ represents + for the upper band and − for the lower band and

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
. (2.5)

Because t′ ≪ t, we can neglect the second term on the right-hand side of Eq. (2.4) and
ϵλ(k) becomes zero when k = K and k = K ′, where

K =
2π

3a

(
ex +

1
√
3
ey

)
, K ′ =

2π

3a

(
ex −

1
√
3
ey

)
. (2.6)
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Figure 2.2: Schematic of linear energy dispersion around K and K ′ points.

This shows that the zero-energy points, named Dirac points, are located at K and K ′

points with the electron-hole symmetric energy dispersion of ϵλ(k) = −ϵ−λ(k). In the
low-energy regime close to the Dirac points, where k = K(K ′) + q with |q| ≪ |K|, the
energy dispersion can be expanded to

ϵλ(q) ∼ λh̄vF|q|+O[(q/K)2], (2.7)

where q is the momentum measured from the Dirac points and the Fermi velocity vF
is given by vF = 3ta/2h̄ ∼ 1.02 × 106 m/s. In the low-energy excitation region, it is
convenient to introduce the effective tight-binding Hamiltonian given by

HK = h̄vFσ · q (2.8)

and
HK′ = h̄vFσ

∗ · q (2.9)

around K and K ′ points, respectively, where σ = (σx, σy) is the Pauli matrix vector with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (2.10)

Figure 2.2 shows the band structure of graphene, where the two bands linearly crosses at
the K and K ′ points with a formation of the Dirac points, the apexes of the Dirac cones.

2.2 Landau quantization of Dirac electrons in graphene
The peculiar electronic properties originating from the relativistic nature also show up
under the magnetic fields [19]. To investigate the electronic properties under the static
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2.2 Landau quantization of Dirac electrons in graphene

magnetic fields, we introduce the Peierls substitution

p → p+ eA(r), (2.11)

where p is the electron momentum vector and A(r) is the vector potential related to the
magnetic field through B = ∇×A(r). Then, we can obtain the Hamiltonian around K
point in the presence of the magnetic field, which is given by

HK = vFσ · (p+ eA(r)) . (2.12)

Here, we neglect the coupling between K and K ′ points, which allows us to treat each
point separately, and omit the subscript of K hereinafter. To solve the eigenvalue problem
of the Hamiltonian, it is convenient to introduce ladder operators

â =
lB√
2h̄

(πx − iπy),

â† =
lB√
2h̄

(πx + iπy), (2.13)

where (πx, πy) = π = p+ eA(r) and the magnetic length lB is described by

lB =

√
h̄

eB
. (2.14)

Because πx and πy satisfy the commutation relation of

[πx, πy] = −i
h̄2

l2B
, (2.15)

the ladder operators â and â† fulfill the usual commutation relation

[â, â†] = 1 . (2.16)

With Eqs. (2.12) and (2.13), the Hamiltonian under the magnetic field is rewritten by

H =
√
2
h̄vF

lB

(
0 â
â† 0

)
(2.17)

in terms of the ladder operators. Solving the eigenvalue equation

H

(
un

vn

)
= ϵn

(
un

vn

)
, (2.18)
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Figure 2.3: Non-equidistant LL energy spectrum of graphene.

we obtain the eigenenergy ϵn and eigenstate Ψn of the Hamiltonian as follows:

ϵn = sgn(n)
h̄vF

lB

√
2n, (2.19)

Ψ0 =

(
0

|n = 0⟩

)
, (2.20)

and Ψn̸=0 =
1
√
2

(
sgn(n)||n| − 1⟩

| |n| ⟩

)
, (2.21)

where the states of ||n|⟩ is the eigenstate of the number operator â†â satisfying â†â||n|⟩ =
|n|| |n|⟩. As clearly seen in Eq. (2.19), the LL energy spectrum formed by Dirac electrons
in graphene shows the peculiar properties; the

√
B- and

√
n-energy dependence and the

existence of the zero-energy level. The non-equidistant LLs are depicted in Fig. 2.3,
which is in sharp contrast to the usual equidistant LLs appearing in ordinary 2DEG.

Each LL has a large degeneracy, originating from the fact that the electron energy
does not depend on the guiding-center position of the cyclotron motion. The guiding-
center operator R = (X,Y ) is defined by decomposing the position operator r = (x, y)
through the relation

r = R+ η, (2.22)

where η = (ηx, ηy) is the cyclotron variable describing the relative motion as shown in
Fig. 2.4, which is given by (ηx, ηy) = (πy/eB,−πx/eB). Because the guiding-center
components X and Y satisfy the commutation relation

[X,Y ] = −[ηx, ηy] = il2B, (2.23)
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2.2 Landau quantization of Dirac electrons in graphene

R

r

η

B

Figure 2.4: Schematic of the semi-classical cyclotron motion. The gray-shaded area rep-
resents the uncertainty of the guiding center.

we can define the ladder operators in the same manner as those in Eq. (2.13)

b̂ =
1

√
2lB

(X + iY ),

b̂† =
1

√
2lB

(X − iY ), (2.24)

satisfying the commutation relation of [b̂, b̂†] = 1. Then, the eigenstates described by Eqs.
(2.20) and (2.21) are rewritten into the complete quantum states by

Ψn=0,m =

(
0

|n = 0,m⟩

)
, (2.25)

Ψn ̸=0,m =
1
√
2

(
sgn(n)||n| − 1,m⟩

| |n| ,m⟩

)
, (2.26)

where m(≥ 0) and |m⟩ are the eigenvalue and the eigenstate of the number operator b̂†b̂,
respectively. Because the eigenenergy ϵn does not depend on m, the complete eigenstates
including m show the large LL degeneracy. With the uncertainty area of the guiding-
center position ∆X∆Y = 2πl2B derived from the commutation relation of X and Y
(shaded area in Fig. 2.4), the LL degeneracy NLL is given by 4eB/h, where the factor of
4 represents the two-fold spin and two-fold valley degeneracies.
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2.3 Optical properties of the non-equidistant LLs in graphene

2.3 Optical properties of the non-equidistant LLs in
graphene

2.3.1 Optical transition selection rule
To study the optical responses of the LLs in graphene, we consider the light-matter in-
teraction Hamiltonian with the help of the Peierls substitution introduced in the previous
section [23, 42]. The light-matter interaction in Landau-quantized graphene is described
by the total Hamiltonian

H = H0 +Hint, (2.27)

where the non-interacting Hamiltonian H0 and the light-matter interaction Hamiltonian
Hint are given by

H0 = vFσ · (p+ eAB(r)) , (2.28)
Hint = evFσ ·Aopt(t), (2.29)

where AB(r) generates the static magnetic field and Aopt(t) describes the optical electric
field with E(t) = − ∂

∂t
Aopt(t). Using the Fermi’s golden rule, we can evaluate the optical

transition rate from the n-th to m-th LL, Wnm, in the case of no LL broadenings as
follows:

Wnm =
2π

h̄
|⟨m|Hint|n⟩|2δ(h̄ω − (ϵm − ϵn)), (2.30)

where |n⟩ and ϵn are the eigenstate and the eigenenergy of H0. When we choose the
Landau gauge such as AB(r) = (0, Bx), the eigenstate can be described as follows [43]:

Ψn,ky(r) =
Cn√
L
exp(−ikyy)

(
sgn(n)i|n|−1ϕ|n|−1

i|n|ϕ|n|

)
(2.31)

with

Cn =


1 (n = 0)

1
√
2

(n ̸= 0)
(2.32)

and

ϕ|n| =
1√

2|n||n|!
√
πlB

exp

−1

2

(
x− l2Bky

lB

)2
H|n|

(
x− l2Bky

lB

)
, (2.33)

where L2 is the area of the system and Hn(x) is the Hermite polynomial. If we define
the left- and right-handed circular polarization vectors as êL = (x̂ − iŷ)/

√
2 and êR =

14
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n = -2

n = -3

BB

Figure 2.5: Optical transition selection rule of the non-equidistant LL transitions in
graphene.

(x̂ + iŷ)/
√
2, respectively, the optical matrix element appearing in Eq. (2.30) is written

by

⟨m|Hint|n⟩ =
√
2evFCmCn(−1)|m|−1i|m|+|n|−1

×(sgn(m)δ|m|−1,|n|êL − sgn(n)δ|m|,|n|−1êR) ·Aopt(t) (2.34)

with using the expression of the eigenstate in Eq. (2.31). Because Eq. (2.34) takes a finite
value when |m| = |n| ± 1, this equation shows the optical transition selection rule of the
LLs in graphene

∆|n| = ±1, (2.35)

which has been experimentally confirmed in the far-infrared transmission experiment
[22]. Furthermore, considering the relations of the inner product, êL(R) · ê∗L(R) = 1 and
êL(R) · ê∗R(L) = 0, we find that the absorption of left-handed circularly polarized light
occurs for the n(< 0)-th to the ±(|n| − 1)-th LL transitions and that of right-handed
circularly polarized light is allowed for the n-th to the (|n| + 1)-th LL transitions. This
unique optical transition selection rule is illustrated in Fig. 2.5.

2.3.2 Giant dipole moment matrix elements between LLs
Next, we derive the expression of the dipole moment matrix elements of the LL transitions
in graphene. The dipole moment matrix is defined as µ = er̂, where r̂ is the position
operator. First, we evaluate the following commutator

[r̂, H0] = [r̂, vFσ · p̂] + [r̂, vFσ ·AB(r)] . (2.36)
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Figure 2.6: Magnetic field dependence of the typical magnitude of the transition dipole
moments between LLs, elB.

Because the second term on the right-hand side is zero due to the fact that AB is a function
of r, Eq. (2.36) becomes

[r̂, H0] = vFσ · [r̂, p̂] = ih̄vFσ. (2.37)

Because the matrix element of the commutator on the left side of Eq. (2.36) is described
by

⟨m|[r̂, H0]|n⟩ = ⟨m|r̂H0|n⟩+ ⟨m|H0r̂|n⟩ = (ϵn − ϵm)⟨m|r̂|n⟩ (2.38)

in the basis of the eigenstates of H0, by combining Eqs. (2.37) and (2.38), the dipole
moment matrix elements are written by

µmn = e⟨m|r̂|n⟩ =
ih̄e

ϵn − ϵm
⟨m|vFσ|n⟩ . (2.39)

Substituting the expression of the eigenstate described by Eq. (2.31) into Eq. (2.39), we
finally obtain the analytic expression for the dipole moment matrix elements as follows
[42]:

µmn =
ih̄evFCmCn(−1)|m|−1i|m|+|n|−1

ϵn − ϵm
×(sgn(m)δ|m|−1,|n|(x̂− iŷ)− sgn(n)δ|m|,|n|−1(x̂+ iŷ)). (2.40)

Because the magnitude of the transition dipole moments between the LLs is on the order
of elB as shown by

|µmn| ∼
eh̄vF

ϵn − ϵm
=

elB√
2(sgn(n)

√
n− sgn(m)

√
m)

∝ elB, (2.41)
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2.3 Optical properties of the non-equidistant LLs in graphene

the dipole moments become very large in Landau-quantized graphene (Fig. 2.6). We also
note that the dipole moment matrix elements are nonzero when |m| = |n|± 1, which also
exhibits the optical transition selection rule explained in Eq. (2.35).
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Chapter 3

Principles of polarization-resolved THz
spectroscopy

3.1 Terahertz time-domain spectroscopy (THz-TDS)
The THz frequency region (1 THz ∼ 4.14 meV) is located in a very intriguing frequency
range both from the aspect of application like the THz imaging [44] and from fundamental
physics research. In condensed matter physics, the THz range attracts many interests be-
cause it enables direct access to intraband responses and covers fascinating energy scales
such as the exciton binding energy in semiconductors, the BCS gap energy in supercon-
ductors, and the LL energy spacing in 2DEG.

Recent development of the broadband laser sources have enabled the generation and
detection of coherent THz pulses and opened up new spectroscopic techniques. Here, we
introduce the so-called terahertz time-domain spectroscopy (THz-TDS) based on fem-
tosecond pulse laser sources. Unlike the far-infrared interferometric techniques like FTIR
(Fourier transform infrared spectroscopy), the THz-TDS directly detects the waveform of
the THz electric field in the time domain. The direct access to the electric field leads to
the simultaneous determination of the amplitude and phase of the field component in the
frequency domain, which allows us to detect the complex response function of samples
without Kramers-Kronig transform. In this section, we describe the basic principles of
the THz-TDS: the THz generation and detection with electro-optic crystals, which have
been intensively studied [45–48] and are commonly used.

3.1.1 THz generation
Several methods for THz pulse generation have been developed with a variety of sources
such as photoconductive antenna on semiconductors, electro-optic crystals, and air-
plasma induced by strong ultrafast laser pulses. Here, we describe the mechanism of THz
generation from commonly used (110) zinc-blende electro-optic crystals such as ZnTe
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3.1 Terahertz time-domain spectroscopy (THz-TDS)

and GaP [48, 49]. Compared to the photoconductive antenna, the THz electric field emit-
ted from the electro-optic crystals can contain high-frequency components indispensable
to the study of LLs in graphene. Unlike the plasma method, the THz pulse can be easily
generated even by a weak optical pulse.

Because of the lack of the inversion symmetry, the (110) zinc-blende electro-optic
crystals possess the second-order nonlinear response to a driving optical pulse. Optical
rectification, one of the second-order nonlinear processes, generates low-frequency elec-
tric field in the THz frequency corresponding to the frequency difference within spectral
components of a single optical pulse. For this method, a ZnTe crystal is very useful
since the phase-matching condition is well satisfied for the optical pulse with the 800-nm
wavelength from Ti:sapphire-based femtosecond laser sources. A GaP crystal is another
representative electro-optic crystal for the broadband THz pulse generation up to 7 THz
owing to the high-frequency phonon modes compared to ZnTe.

To view the THz generation process by the optical rectification, we introduce the
second-order polarization in the time domain P̃

(2)
i (t) as follows:

P̃
(2)
i (t) = ϵ0

∫ ∞

0

dτ1

∫ ∞

0

dτ2
∑
jk

R
(2)
ijk(τ1, τ2)Ej(t− τ1)Ek(t− τ2), (3.1)

where the indices i, j, k represent the Cartesian components, R(2)
ijk is the second-order

response function satisfying the causality condition that R(2)
ijk(τ1, τ2) = 0 if τ1 < 0 or

τ2 < 0, ϵ0 is the permittivity of free space, and Ei(t) is the i-component of the applied
electric field. Equation (3.1) can be rewritten with Fourier components of the electric field
by

P̃
(2)
i (t) = ϵ0

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

∑
jk

χ
(2)
ijk(ω1 + ω2;ω1, ω2)

× Ej(ω1)Ek(ω2)e
−i(ω1+ω2)t, (3.2)

with
χ
(2)
ijk(ω1 + ω2;ω1, ω2) =

∫ ∞

0

dτ1

∫ ∞

0

dτ2R
(2)
ijk(τ1, τ2)e

i(ω1τ1+ω2τ2), (3.3)

where χ
(2)
ijk is the second-order susceptibility and E(−ω) = E∗(ω). Because the electric

field emitted by the second-order polarization is given by

E(t) ∝ ∂2

∂t2
P(2)(t), (3.4)

the frequency of the emitted electric field is ω1 + ω2. When an ultrashort optical pulse,
which contains broad spectral components, is used to irradiate the zinc-blende electro-
optic crystals, frequency mixing between ω1 and −ω2 included in the optical pulse gener-
ates an ω1 − ω2 frequency electric field from the crystals via the second-order nonlinear
process, which corresponds to electric field in the THz frequency range.
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3.1 Terahertz time-domain spectroscopy (THz-TDS)

3.1.2 THz detection
Linear electro-optic effect: Pockels effect

The refractive index of the zinc-blende electro-optic materials can be changed under the
electric field through the first-order electro-optic effect, which is referred to as the Pockels
effect. The THz electric field can be detected by using the refractive index change for
ultrafast optical pulses. Because the Pockels effect can be regarded as the reverse process
of the optical rectification, the THz detection mechanism can be explained in terms of
the second-order nonlinear process by a complete frequency-domain description [50].
However, for its simplicity, here we introduce an alternative approach with the notion of
the index ellipsoid to describe the Pockels effect and the THz detection technique [48,49].

In the case of a (110) zinc-blende electro-optic crystal under the THz electric field
irradiation perpendicular to the [110] axis of the crystal, the index ellipsoid is described
in (x, y, z) coordinate system, shown in Fig. 3.1, by

x2 + y2 + z2

n2
0

+ 2r41E
THz
x yz + 2r41E

THz
y zx+ 2r41E

THz
z xy = 1, (3.5)

where n0 is the refractive index of the zinc-blende crystal, r41 is the electro-optic co-
efficient of the crystal and ETHz

i is the i-component of the applied THz electric field.
Rewriting Eq. (3.5) in (x′, y′, z′ = z) coordinate system (Fig. 3.1) and setting x′ = 0, we
obtain the equation of the index ellipse on the (110) plane(

1

n2
0

− r41E
THz cosϕ

)
y′2 +

z′2

n2
0

+
(
2r41E

THz sinϕ
)
y′z′ = 1. (3.6)

Transformation of Eq. (3.6) to (y′′, z′′) coordinate system (Fig. 3.1) gives the equation[
1

n2
0

+
1

2
r41E

THz

(
− cosϕ+

√
1 + 3 sin2 ϕ

)]
y”2 +[

1

n2
0

+
1

2
r41E

THz

(
− cosϕ−

√
1 + 3 sin2 ϕ

)]
z”2 = 1. (3.7)

From Eq. (3.7), we obtain the refractive indices in y′′- and z′′- directions as follows:

1

n2
y′′

=

[
1

n2
0

+
1

2
r41E

THz

(
− cosϕ+

√
1 + 3 sin2 ϕ

)]

⇒ ny” ≈ n0 +
n3
0r41E

THz

4

(
cosϕ−

√
1 + 3 sin2 ϕ

)
(3.8)
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Figure 3.1: Definition of coordinate systems and the angles θ and ϕ on the (110) plane of
the zinc-blende electro-optic crystal.

and

1

n2
z′′

=

[
1

n2
0

+
1

2
r41E

THz

(
− cosϕ−

√
1 + 3 sin2 ϕ

)]

⇒ nz” ≈ n0 +
n3
0r41E

THz

4

(
cosϕ+

√
1 + 3 sin2 ϕ

)
. (3.9)

Finally, we can find that the refractive index difference between the indices in y′′- and z′′-
directions is proportional to the amplitude of the applied THz electric field and is given
by

∆n ≡ (nz” − ny”) =
n3
0r41E

THz
√
1 + 3 sin2 ϕ

2
. (3.10)

Electro-optic sampling with balanced detection technique

As given in Eq. (3.10), the sign and the amplitude of the THz electric field are related to
the refractive index difference and therefore can be measured by the electro-optic sam-
pling technique with an ultrashort near-infrared pulse, which we call a gate pulse. As
schematically shown in Fig. 3.2, the gate pulse linearly polarized along the y′-direction
experiences the phase difference Γ between y′′- and z′′-components of the gate pulse in-
duced by the THz electric field during propagation in the electro-optic crystal with the
thickness d. The phase difference Γ is given by Γ = (2πd/λ)∆n, where λ is the central
wavelength of the gate pulse. Because of the phase difference, the gate pulse is elliptically
polarized after passing through the crystal.
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Time

E
THz THz electric field

Time

Gate pulse

EO crystal EO crystal

Time

EO crystal

Figure 3.2: Schematic of electro-optic sampling method. Green arrows indicate the po-
larization states of the gate pulse before and after the electro-optic (EO) crystal.

As a method to measure the phase difference Γ, here we explain the balanced detec-
tion technique as shown in Fig. 3.3. A gate pulse linearly polarized in the y′-direction
obtains the phase difference from an (110) zinc-blende electro-optic crystal. After pass-
ing through the crystal, the gate pulse propagates through a λ/4 plate which creates the
phase shift between the fast and the slow axes by π/2. After the λ/4 plate, it is divided
into y′- and z-components by a Wollaston prism. The intensity difference ∆I of the two
components is measured by a balanced photo-detector. Without the THz electric field,
the λ/4 plate makes the intensities balanced and ∆I = 0. Under the THz irradiation, the
intensity difference between the two beams becomes nonzero and it is proportional to the
amplitude of the THz electric field.

To take a further look at the principle of the balanced detection, we introduce Jones
matrix formalism. For simplicity, we define that the incident gate pulse is linearly polar-
ized in the y′-direction, described by

Ein =

(
E
0

)
. (3.11)

The Jones matrices of the zinc-blende crystal and λ/4 plate are described by

Jxtal =

(
cos θ − sin θ
sin θ cos θ

)(
eiγy” 0
0 eiγz”

)(
cos θ sin θ
− sin θ cos θ

)
(3.12)

and

Jλ/4 =

(
cos π

4
− sin π

4

sin π
4

cos π
4

)(
e−iπ

4 0
0 ei

π
4

)(
cos π

4
sin π

4

− sin π
4

cos π
4

)
, (3.13)

respectively, where
γy” ≡ (2πd/λ)ny”, γz” ≡ (2πd/λ)nz”. (3.14)
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Figure 3.3: Schematic of the balanced electro-optic detection. The letters f and s depicted
in the λ/4 plate represent fast and slow axes, respectively.

We obtain the intensity difference between the detected y′- and z-components of the gate
pulse through the relation of Etr = Jλ/4JxtalEin, where Etr is the electric field before the
Wollaston prism. The intensity difference is given by

∆I = |E|2 sin Γ sin 2θ

≈ |E|2Γ sin 2θ = |E|2
πdn3

0r41E
THz
√

1 + 3 sin2 ϕ

λ
sin 2θ, (3.15)

where ϕ is the angle between THz electric field and z axis defined in Fig. 3.1. Especially,
when we set ϕ = π/2 and θ = π/4, the THz electric field can be written by

ETHz =
∆I

I

λ

2πdn3
0r41

, (3.16)

which clearly shows that the THz electric field is detected by measuring ∆I .

3.1.3 Experimental setup for THz-TDS
To explain the details of THz-TDS, we show the typical experimental setup in Fig. 3.4.
The output pulse of the femtosecond laser system is divided into two beams by a beam
splitter (BS), one of which is used for the gate pulse of the THz detection and the other
is for the THz generation. The gate pulse is reflected by a pair of mirrors mounted on a
mechanical delay stage (DS) to vary the delay time of the gate pulse to the THz pulse,
which we call the gate delay time tgate. After the reflection from the mirrors on the DS, the
gate pulse passes through a linear polarizer, which sets the polarization of the incoming
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Figure 3.4: Experimental setup for THz-TDS. BS, DS and PM denote beam splitter, delay
stage, and parabolic mirror, respectively.

gate pulse linear, and is used to irradiate an electro-optic crystal for the electro-optic
sampling. The THz electric field waveform is obtained by changing the gate delay time
and detecting the THz electric fields at every point in the THz pulse as shown in Fig. 3.5.

Another beam divided from the output of the laser system for the THz generation is
modulated by an optical chopper before the irradiation onto the electro-optic crystal in or-
der to perform the lock-in detection. The femtosecond optical pulse transmitted through
the THz generation crystal is blocked by a high-resistivity Si wafer which transmits the
generated THz pulse without absorption. The amplitude of the THz electric field is re-
duced to ∼ 70% after the Si wafer due to the Fresnel reflection loss of the wafer. The
generated THz beam is collimated by the parabolic mirror 1 (PM1) and focused onto a
sample by the PM2. After the sample, the THz beam is again collimated and focused
onto the electro-optic crystal for the THz detection. The electric signal detected by the
balanced photo-detector is sent to a lock-in amplifier with a reference signal from the op-
tical chopper. The space where the THz pulse propagates is purged by dry air, as indicated
by a Purge Box in Fig. 3.4, in order to avoid water vapor absorption of the THz radiation.
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tgate

gate

THz

Figure 3.5: Schematic of the measurement of a THz electric field waveform by changing
the gate delay time tgate.

3.2 THz magneto-optical spectroscopy

3.2.1 Faraday rotation and description of polarization state
As the incident light linearly polarized in the x-direction propagates in the z-direction
through a material under a magnetic field applied in the direction of the light propagation,
the polarization axis rotates from the incident one and also becomes elliptical, which is
known as the Faraday effect (Fig. 3.6). This phenomenon originates from the difference
between complex refractive indices for the right- and left-handed circularly polarized
light, which is induced by the violation of time-reversal symmetry due to the applied
magnetic field.

In general, the polarization state of the light can be described by using rotation an-
gle θ and ellipticity η [51]. If we define R(ω) = Ey(ω)/Ex(ω) = [E0

y(ω)/E
0
x(ω)]e

iδ,
where Ex(y)(ω) = E0

x(y)(ω)e
iδx(y) is the Fourier component of the x(y)-component of the

elliptically polarized electric field Ex(y)(t) and δ = δy − δx, the rotation angle θ and the
ellipticity η can be described by using R(ω) as follows:

θ(ω) = 1
2
tan−1

2ReR(ω)

1− |R(ω)|2

η(ω) = tan

[
1
2
sin−1

2ImR(ω)

1 + |R(ω)|2

]
.

(3.17)

The ellipticity η is related to the half-lengths of the major and minor axes of the ellipse,
a and b, respectively, through the relation of η = tan−1(±b/a) (Fig. 3.7). The sign of η
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Figure 3.6: Schematic of Faraday effect. θF represents the Faraday rotation angle.

corresponds to + for sin δ > 0 and − for sin δ < 0. In the small rotation angle limit, Eq.
(3.17) is rewritten by {

θ(ω) ≈ ReR(ω)

η(ω) ≈ ImR(ω).
(3.18)

3.2.2 Faraday rotation in graphene
Next, we consider the relation between the Faraday rotation and the optical conductivity
for the case of graphene [52]. From the Maxwell’s equations, the wave equation describ-
ing the propagation of electromagnetic waves reads

∂2E

∂z2
=

ω2ϵ

c2
E − ωµ0jδ(z), (3.19)

where c is the speed of light, ϵ is the dielectric constant, µ0 is the vacuum permeability,
and j is the surface current density vector. We assume that graphene is surrounded by
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Figure 3.7: Polarization state of the elliptically polarized light. a and b represent the
half-lengths of the major and minor axes of the ellipse, respectively, and θ is the rotation
angle.

two lossless dielectric materials with the dielectric constants of ϵ1 and ϵ0 and located at
the position of z = 0 as shown in Fig. 3.8. The electric field propagates in the direction
of z. The incident, reflected and transmitted electric fields, denoted by Ei, Er and Et,
respectively, are described by

Ei = Ei
0 exp(iωt− iq0z) (z < 0)

Er = Ei
0 exp(iωt+ iq0z) (z < 0)

Et = Ei
0 exp(iωt− iq1z) (z > 0), (3.20)

where q0,1 = n0,1ω/c with the refractive index of n0,1 =
√
ϵ0,1. By integrating Eq. (3.19)

from z = 0− to z = 0+, we obtain a boundary condition at z = 0 given by

−iq1E
t + iq0(E

i −Er) = ωµ0j. (3.21)

In addition to this boundary condition, the tangential component of the electric fields must
be continuous, written by

Et = Ei +Er. (3.22)

If we introduce circularly polarized coordinates and define E± = Ex ∓ iEy and j± =
jx ∓ ijy, we can obtain the equation relating the incident and transmitted electric fields,
satisfying the relation

Et
±(ω) =

2n0

n1 + n0

× Ei
±(ω)−

Z0

n1 + n0

× j±(ω), (3.23)
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graphene
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Figure 3.8: Configuration of graphene and dielectric materials with the dielectric con-
stants of ϵ1 (the right-hand side of graphene: gray-shaded area) and ϵ0 (the left-hand side
of graphene).

where Z0 is the vacuum impedance.
By using the optical conductivities of graphene, the surface current density can be

described by (
jx(ω)
jy(ω)

)
=

(
σxx(ω) σxy(ω)
σyx(ω) σyy(ω)

)(
Ex(ω)
Ey(ω)

)
, (3.24)

where σxx(ω) and σyy(ω) are the optical longitudinal conductivities and σxy(ω) and
σyx(ω) are the optical Hall conductivities. In graphene, σyy(ω) = σxx(ω) and σyx(ω) =
−σxy(ω) due to the isotropy of the system. When we define σ±(ω) = σxx(ω)± iσxy(ω),
we can write the surface current density in the circularly polarized coordinates as

j±(ω) = σ±(ω)E±(ω). (3.25)

Substituting Eq. (3.25) into Eq. (3.23), we obtain Et
±(ω)/E

i
±(ω) ≡ t± = 2n0/(n0 +

n1 + Z0σ±(ω)). Rewriting Eq. (3.17) with E±, we obtain the expression for the Fara-
day rotation angle θF(ω) and the ellipticity ηF(ω) in the case of graphene with optical
conductivities given by 

θF(ω) = −
1

2
arg

(
t+

t−

)
ηF(ω) =

|t+| − |t−|
|t−|+ |t+|

.

(3.26)

28



3.2 THz magneto-optical spectroscopy

Especially, when 1 >> Z0σ±/(n0 + n1), Eq. (3.26) can be expressed by
θF(ω) ≈

Z0

n0 + n1

Reσxy(ω)

ηF(ω) ≈
Z0

n0 + n1

Imσxy(ω).

(3.27)

Equation (3.27) shows that the Faraday rotation angle and the ellipticity are proportional
to the real and imaginary parts of the optical Hall conductivity of graphene, respectively.

3.2.3 Polarization detection technique
As shown in Eq. (3.17), we have to measure the electric field waveforms of x- and y-
components of the transmitted THz electric field, Et

x(t) and Et
y(t), respectively, to eval-
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Figure 3.9: Configurations of wire-grid polarizers (WGPs) for the polarization-resolved
THz detection in the case of the measurement of the transmitted THz electric field com-
ponent parallel (a) or orthogonal (b) to the incident THz polarization.
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uate the Faraday rotation angle and the ellipticity. We use three wire-grid polarizers
(WGPs) for the polarization-resolved THz detection as shown in Fig. 3.9. Before the
sample, we set a WGP, depicted as WGP1 in Fig. 3.9, to confirm that the incident THz
pulse is linearly polarized in the x-direction. After the sample, we put two WGPs, which
we call WGP2 and WGP3 hereinafter. WGP2 is set parallel (x) or orthogonal (y) to the
incident THz polarization, as shown in Fig. 3.9 (a) and (b), respectively, so that only
the x- or y-components of the transmitted THz pulse can transmit through WGP2 and be
detected. After WGP2, we put WGP3 oriented at 45◦ to the incident THz polarization
to fix the polarization dependence of THz detection resulting from the angle-dependent
balanced detection signal explained in Eq. (3.15).

Because we need to measure the very small Faraday rotation angle on the order of
mrad, the background signals have to be eliminated. Therefore, we measure Et

y(t) at both
the positive and the negative magnetic fields, Et

y(+B) and Et
y(−B), respectively, and

subtract each other Et
y(t) = (Et

y(+B) − Et
y(−B))/2. Since the background signals do

not change with respect to the sign reversal of the applied magnetic field, whereas Faraday
rotation does change its sign, we can obtain the Et

y(t) signal only from the sample.
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E. H. Hároz, A. Rustagi, C. J. Stanton, Z. Jin, Z. Sun, Z. Yan, J. M. Tour, and J.
Kono, Circular polarization dependent cyclotron resonance in large-area graphene
in ultrahigh magnetic fields. Phys. Rev. B 85, 205407 (2012).

88



REFERENCES

[24] M. Orlita, I. Crassee, C. Faugeras, A. B. Kuzmenko, F. Fromm, M. Ostler, Th.
Seyller, G. Martinez, M. Polini, and M. Potemski, Classical to quantum crossover of
the cyclotron resonance in graphene: a study of the strength of intraband absorption.
New J. Phys. 14, 095008 (2012).

[25] I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, Th. Seyller, and A. B.
Kuzmenko, Multicomponent magneto-optical conductivity of multilayer graphene
on SiC. Phys. Rev. B 84, 035103 (2011).

[26] I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko,
J. Chen, and A. B. Kuzmenko, Intrinsic terahertz plasmons and magnetoplasmons
in large scale monolayer graphene. Nano Lett. 12, 2470-2474 (2012).

[27] P. Plochocka, P. Kossacki, A. Golnik, T. Kazimierczuk, C. Berger, W. A. de Heer,
and M. Potemski, Slowing hot-carrier relaxation in graphene using a magnetic field.
Phys. Rev. B 80, 245415 (2009).

[28] M. Mittendorff, M. Orlita, M. Potemski, C. Berger, W. A. de Heer, H. Schneider, M.
Helm, and S. Winnerl, Intraband carrier dynamics in Landau-quantized multilayer
epitaxial graphene. New J. Phys. 16, 123021 (2014).

[29] M. Mittendorff, F. Wendler, E. Malic, A. Knorr, M. Orlita, M. Potemski, C. Berger,
W. A. de Heer, H. Schneider, M. Helm, and S. Winnerl, Carrier dynamics in
Landau-quantized graphene featuring strong Auger scattering. Nature Phys. 11, 75-
81 (2015).

[30] D. Hagenmüller, S. De Liberato, and C. Ciuti, Ultrastrong coupling between a cavity
resonator and the cyclotron transition of a two-dimensional electron gas in the case
of an integer filling factor. Phys. Rev. B 81, 235303 (2010).

[31] S. Hughes, Breakdown of the Area Theorem: Carrier-Wave Rabi Flopping of Fem-
tosecond Optical Pulses. Phys. Rev. Lett. 81, 3363-3366 (1998).

[32] F. Krausz, and M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163-234 (2009).

[33] F. Junginger, B. Mayer, C. Schmidt, O. Schubert, S. Mährlein, A. Leitenstorfer, R.
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