
学位論文

Analyses of neural population

dynamics generating distinct behaviors

of Drosophila larvae

(シシショョョウウウジジジョョョウウウバババエエエ幼幼幼虫虫虫ののの様様様々々々ななな行行行動動動ををを生生生

成成成すすするるる神神神経経経細細細胞胞胞集集集団団団活活活動動動ダダダイイイナナナミミミクククスススののの

解解解析析析)

平成２８年１２月博士（理学）申請

東京大学大学院理学系研究科

物理学専攻

尹　永択

Abstract

The way in which the central nervous system (CNS) governs animal move-

ment is complex and almost impossible to solve solely from the movement

pattern. We tackle this problem by observing the activity pattern of a large

population of neurons in the CNS in Drosophila. Drosophila larvae show vari-

ous behaviors, including forward locomotion, backward locomotion, and turn-

ing. We focused on these three behaviors and analyzed the neural activity of

the larval CNS corresponding to these behaviors.

We recorded calcium imaging movie of isolated Drosophila larval CNS un-

dergoing fictive locomotion using light-sheet microscopy which allows acquisi-

tion of neural activities in a large volume at a fast frame rate. After recording

the movies, we executed preprocessing to eliminate artifacts. Since the size of

the data was large and contained a lot of information, we compressed the data

in an automated manner.

We then analyzed the neural activity of the CNS at a circuit level. The

principal component analysis showed the circuit generates at least two distinct

activity patterns. Also, by applying hidden Markov model to the activity

of neural population, more detailed classification of the activity pattern was

made. Using information of the circuit state at each time, we found neurons

which exhibit circuit state-specific activity. Also, we found neurons in the ante-

rior CNS, which were active at the beginning of the fictive forward locomotion

and thus were good candidates for triggers of forward locomotion.

2

Contents

1 Introduction 9

1.1 Behavior and Nervous System 9

1.2 Acqusition of Activity of Neural Circuit 10

1.3 Calcium Imaging Technique . 11

1.4 Model Animal: Drosophila larvae 13

1.4.1 Behaviors . 13

1.4.2 Nervous System . 13

2 Methods 18

2.1 Drosophila melanogaster strains 18

2.2 Calcium Imaging . 20

2.2.1 Preparation . 20

2.2.2 Light-sheet Microscopy 20

3

2.2.3 Imaging Protocol . 21

2.3 Preprocessing . 22

2.3.1 Drift Correction . 22

2.3.2 Morphology Detection 23

2.3.3 Cell Detection . 26

2.3.4 Normalization . 28

2.4 Circuit State Detection . 29

2.4.1 Hidden Markov Model 30

2.5 Other Numerical Methods . 32

2.5.1 K-means Clustering . 32

3 Results 34

3.1 Distribution of Neurons in the CNS 34

3.2 Calcium Imaging Movie . 36

3.2.1 Dynamics Movie . 36

3.2.2 Intermediate Movie and Reference Movie 38

3.3 Drift Correction . 41

3.3.1 Application . 46

3.3.2 Validation . 51

3.4 Normalization . 60

4

3.5 Circuit State Detection . 64

3.5.1 Application . 67

3.6 Activity Profiles of Cells . 68

3.6.1 Motor Activity-dependent Neurons 68

4 Discussion 90

A Numerical Data 102

A.1 Circuit State Detection . 102

B Codes 105

B.1 image.registration . 109

B.2 models . 123

B.3 signal . 138

5

List of Figures

1.1 Mechanism of GCaMP . 12

1.2 Behaviors of Drosophila larvae 14

1.3 Muscles of Drosophila larvae . 15

1.4 Example of calcium imaging . 17

2.1 Gal4-UAS system . 19

2.2 Example of Sobel-Feldman operator 25

3.1 Immunostaining of whole CNS 35

3.2 Activity patterns in movie . 37

3.3 Reference movie and intermediate movie 40

3.4 Feature detection . 43

3.5 Feature point searching (all scan) 44

3.6 Movement estimation . 45

3.7 Feature point searching (efficient scan) 45

6

3.8 Result of drift correction on sample movie 47

3.9 Velocity of drift of sample . 48

3.10 Comparison using mean-stack of movie 50

3.11 Result of drift correction of artificial movie (linear drift) 52

3.12 Velocity of drift of artificial movie (linear drift) 54

3.13 Result of drift correction of artificial movie (sine drift 1) 55

3.14 Velocity of drift of artificial movie (sine drift 1) 56

3.15 Result of drift correction of artificial movie (sine drift 2) 58

3.16 Velocity of drift of artificial movie (sine drift 2) 59

3.17 Normalization process . 61

3.18 Example of normalization . 63

3.19 State transition diagram . 66

3.20 Principal component analysis of sample 67

3.21 Viterbi path of sample . 68

3.22 Activity score . 70

3.23 Distribution of F-B scores . 71

3.24 Possible distribution of scores 72

3.25 Populations of circuit state dependent neurons 74

3.26 Distribution of forward wave specific neurons 76

7

3.27 Distribution of forward wave specific neurons in posterior CNS . 78

3.28 Activity profiles of forward wave specific neurons in posterior

CNS . 79

3.29 Distribution of forward wave specific neurons in anterior CNS . 81

3.30 Activity profiles of forward wave specific neurons in anterior CNS 82

3.31 Candidates of forward wave triggering neurons 83

3.32 Distribution of candidates of forward wave triggering neurons . . 84

3.33 Distribution of backward wave specific neurons 86

3.34 Distribution of backward wave specific neurons in posterior CNS 88

3.35 Activity profiles of backward wave specific neurons in posterior

CNS . 89

8

Chapter 1

Introduction

1.1 Behavior and Nervous System

Animals actively respond to external stimuli and adapt well to the surrounding

environment. The stimulus is converted into electrical signals by the sensory

neurons, and the electric signals excite the motor neurons in a specific pattern

via a complicated circuit composed of the interneurons. The muscles contract

according to the specific pattern of motor neuronal activity, thereby eliciting

reactions appropriate for the stimulation.

We define behavior as a series of muscle contractions. We further catego-

rize behavior by its spatio-temporal pattern: different behaviors show distinct

spatio-temporal patterns of muscle contraction. An animal uses one muscle in

9

various behaviors, which means a motor neuron innervating a particular mus-

cle could be activated in various behaviors. Hence, the circuits corresponding

to each behavior at least merge in the final layer (motor layer). Even if behav-

iors don’t share motor neurons, the underlying circuits could be interconnected

with each other, provided the behaviors are functionally related [23].

The nervous system of an animal which shows various behaviors contains

multiple neural circuits. And the circuits are interconnected with each other.

Thus, to truly understand the neural circuit dynamics, one has to observe the

whole-brain activities.

1.2 Acqusition of Activity of Neural Circuit

Various techniques have been developed to investigate function of neural cir-

cuit. Electrophysiological methods which enable us to measure the activity

of individual neurons, have the disadvantage that while it is possible to accu-

rately measure membrane potential or ionic current crossing a cell’s membrane,

the number of cells that can be examined at the same time is extremely lim-

ited. Other neuroimaging methods like positron emission tomography (PET)

and functional magnetic resonance imaging (fMRI) have been used to mea-

sure activity pattern of the whole nervous system in a non-invasive manner.

10

Although these techniques allow one to record neural activities in people and

primates, also have a disadvantage of poor spatial resolution, so functional

analysis at a cellular level is almost impossible. However, with the develop-

ment of fluorescent probes and measuring instruments over the past decade,

it has become possible to measure the activity dynamics of neural popula-

tions. Several studies using the technique of whole-brain functional imaging

in verterbrates have been reported [1, 30, 25]. In this study, we performed the

whole-brain functional imaging of Drosophila larvae and analyze the neural

population dynamics of the circuit.

1.3 Calcium Imaging Technique

Calcium imaging is a method of indirectly measuring the activity of neurons

using the phenomenon that intracellular calcium concentration rises when neu-

rons are active. When a neuron excites, it releases a neurotransmitter at the

end of the axon to convey the signal to the next cell. The signaling occurs as

a result of electrical signal transmission through the axon to the cell terminal.

As the voltage-dependent calcium channel opens, the extracellular calcium ion

flows into the cell and the calcium concentration in the cell rises. If the calcium

concentration could be measured, one would know that the neuron had been

11

active.

GCaMP [24] is a genetically encoded calcium indicator (GECI) made by

fusion of circularly permuted green fluorescent protein (cpGFP), calmodulin

(CaM), and M13. In the presence of calcium ions, CaM undergoes a confor-

mational change and M13 binds to the hinge. This changes the structure of

cpGFP and results in bright fluorescence.

CaM

M13

CaM

M13
Ca2+

Ca2+-free Ca2+-saturated

reversible

Figure 1.1: Mechanism of GCaMP. left: low calcium ion concentration. right:
high calcium ion concentration.

Variants of GCaMP with improved performance such as GCaMP3 [28],

GCaMP5 [2] have been developed so far. In this study, we use GCaMP6f

which is one of the GCaMP6 [7] family (f for fast kinetics).

12

1.4 Model Animal: Drosophila larvae

1.4.1 Behaviors

Animals respond to changes in the environment by taking various behaviors.

Drosophila larvae also show various behaviors [11, 19], including forward loco-

motion, backward locomotion, turning, rearing, and borrowing.

Drosophila larvae have 8 abdominal segments, and there are corresponding

neuromeres in the CNS. During the forward locomotion (Figure 1.2a), the

larvae contract the muscles of the abdominal segments of the body wall from

the tail (A8) to the head (A1) [14]. During the backward locomotion, the

direction of the propagation of the muscle contraction is opposite, from the

segment A1 to segment A8. When the larvae change direction, they execute

turning behavior (Figure 1.2b), contracting their muscles of only one side of

the head.

1.4.2 Nervous System

The nervous system of a Drosophila larva is composed of thousands of cells, and

the larval CNS is divided into two parts, the brain and the ventral nerve cord

(VNC). The VNC, corresponding to the spinal cord in vertebrates, undertakes

13

a b

Figure 1.2: Behaviors of Drosophila larvae. (a) Forward locomotion. (b)
Turning. Modified from Berni et al., 2012 [5].

various neural processing and sends the signals through motor nerves, resulting

in movement of the larva.

Like the segmental structure of the body wall of the larva, the VNC also

is divided into several neuromeres (Figure 1.3). Since motor neurons in each

neuromere innervate muscles in the corresponding segment of the body wall,

the patterns of neural activity of the motor neurons in the VNC reflect those of

muscle contraction during the larval behaviors [9]. Therefore, it is possible to

infer the actual larval behavior from the activity pattern of the motor neurons

in the CNS.

Many of the functions of the neural circuit of Drosophila larvae have not

14

Figure 1.3: Drosophila larvae dissected along the dorsal midline and flatted
to expose the muscles and the ventral nerve cord (VNC). Motor neurons (red
circles), in each neuromere of the ventral nerve cord, innervate muscles in the
corresponding segment of the body wall (red arrows). Modified from Kohsaka
et al., 2012 [17].

been clarified. However, despite the complexity of the circuit, there are several

reports on the motor circuit of Drosophila larvae at a module level. A class

of segmentally arrayed local interneurons called PMSIs (period-positive me-

dian segmental interneurons) regulates the speed of locomotion in Drosophila

larvae [18]. A class of glutamatergic interneurons called GVLIs (glutamater-

gic ventrolateral interneurons) is activated when the front of a forward motor

wave reaches the second or third anterior segment [15]. Putative excitatory

premotor interneurons, termed CLIs (cholinergic lateral interneurons) directly

15

activate motor neurons sequentially along the segments during larval locomo-

tion [13]. The excitatory neurons called A27hs which are premotor and active

only during forward locomotion, and the inhibitory neurons called GDLs which

are necessary for both forward and backward locomotion [10]. However, the

connection between the modules, where they are apparently controls the same

motor neurons, remains unclear.

To analyze the neural circuit of the larvae at a circuit level, we measured

neural activities of the CNS of Drosophila using the calcium imaging movies

(Figure 1.4). Also, we developed both preprocessing program and analysis pro-

gram so that we could handle large volumes of data objectively and efficiently.

16

Figure 1.4: An example of calcium imaging. From the activity pattern of the
motor neurons, one can infer the larval VNC is under the forward locomotion
state. (a) Region of interests (ROIs) in the larval VNC. (b) The time series of
the fluorescence intensity in the ROIs. Modified from Kohsaka et al., 2012 [17].

17

Chapter 2

Methods

2.1 Drosophila melanogaster strains

The Gal4-UAS system [6] is a genetic tool for Drosophila, which can be used

to express specific genes to a certain group of cells. Suppose that there are flies

of a Gal4 line to target a cell group and flies of a UAS line carrying a specific

gene. By crossing these two lines, in the offspring GAL4 proteins expressed

only in the specific cell group binds to UAS and drives the expression of the

specific gene. In this way, by combining a Gal4 line and a UAS line, it is not

necessary to prepare a gene construct for each group of cells to be expressed

from the beginning.

In this study, the flies of elav-Gal4, UAS-GCaMP6f, UAS-mCherry.nls

18

Figure 2.1: Gal4-UAS system. By crossing the flies of X-Gal4 and UAS-Y,
one can obtain the flies having both X-Gal4 and UAS-Y, which express Y in
tissue-specific manner.

are obtained by crossing two fly strains, one carrying elav-Gal4 and UAS-

GCaMP6f, and the other carrying UAS-mCherry.nls. The elav-Gal4 line ex-

presses the GAL4 protein in all the neurons, and the GAL4 protein binds to

the UAS sequence, thereby expressing GCaMP6f and mCherry.nls.

19

2.2 Calcium Imaging

2.2.1 Preparation

We selected first instar larvae (21 ∼ 30 hours after egg laying), isolated the

larval CNS (central nervous system) from the body so that motion by muscle

contractions would not interfere calcium imaging. To prevent the isolated

CNS from moving during the recording, the CNS was placed on the MAS

(Matsunami adhesive silane)-coated slide glass (Matsunami, Osaka, Japan)

and submerged in the TES buffer (Table 2.1).

Table 2.1: Composition of the buffers

TES Buffer
TES 5 mM
NaCl 135 mM
KCl 5 mM

CaCl2 2 mM
MgCl2 4 mM
Sucrose 36 mM

2.2.2 Light-sheet Microscopy

Light-sheet microscopy is a method that captures fluorescence with a confocal

microscope with illuminating a sample with sheeted light, thereby acquiring

only fluorescence from a specified plane. We used ezDSLM [27], a digital

20

scanned light-sheet microscopy (DSLM) that utilized the illumination optics

from a conventional confocal laser-scanning microscope (CLSM). Using the

ezDSLM, we could record calcium imaging movie containing multiple focal

planes (∼ 30) in fast (∼ 0.6 s/volume) frame rate.

2.2.3 Imaging Protocol

First, we recorded neural dynamics of the larval CNS (called the dynamics

movie). In the dynamics movie, GCaMP6f fluorescence from fewer (32 planes),

and sparser (2.485 µm/plane) focal planes are acquired so as to achieve high

temporal resolution.

After recording the dynamics movie, we scanned the larval CNS for mCherry

and GCaMP6f fluorescence to detect the positions of the neurons more pre-

cisely. We created two movies (an intermediate movie and a reference movie)

from the scanning, which were recorded together using more (1000 planes),

and denser (0.146 µm/plane) focal planes. These two movies were taken in

a interleaved manner, using lasers of different wavelengths 488nm and 561nm

for the intermediate movie and the reference movie respectively, so there is no

need of spatial alignment between the intermediate movie and the reference

movie.

21

The intermediate movies contain fluorescence of GCaMP6f whose feature

is identical with that of the dynamics movies except for the spatial interval

of the focal planes. The reference movies contain fluorescence of mCherry.nls

which enables us to determine positions of the somas in the samples. The

parameters used for the recordings are summarized in Table 2.2.

Table 2.2: Parameters of movie acquisition

Parameters Dynamics Intermediate Reference
Dimension (normal) 32 planes 1000 planes
Dimension (focal) 2048 × 1024 px2

Interval (normal) 2.485 µm/px 0.146 µm/px
Interval (focal) 0.146× 0.146 µm2/px2

Temporal resolution 0.638 s -
Laser wavelength 488 nm 561 nm

2.3 Preprocessing

2.3.1 Drift Correction

Some of the acquired movies underwent drift in a focal plane. Since information

about the position would be lost when the position of a sample shifts, we had to

apply registration to the movies. However, the scenes of the movies change not

only by the drift effect but also by the neural activity of the sample. Therefore,

accurate registration was not possible with a simple intensity-based method

22

such as comparing the entire screen. Hence, we made a custom registration

program which enables one to eliminate the translation of the movies.

2.3.2 Morphology Detection

To find the area of the CNS and the neuropil of samples, we used the reference

movies and the intermediate movies, which have the following characteristics:

1. Intermediate movie: GCaMP6f proteins distribute in whole cytoplasms

of all the neurons in the CNS.

2. Reference movie: mCherry proteins localize in the nuclei of the all neu-

rons in the CNS.

Since in the intermediate movies fluorescence distributes in CNS, they can

be used to detect the CNS. We estimated the intensity level of the fluores-

cence in the boundary region to remove the background and create a mask for

only the CNS region. We used the Sobel-Feldman operator to estimate the

boundary region.

After detecting the CNS region, we can determine the neuropil region by

subtracting the bright region of the reference movie from the CNS region.

Using the information of the neuropil region, we can obtain detailed informa-

tion on the structure of VNC. Also, we can exclude the region from the cell

23

detection since somas would not exist in the neuropil.

Sobel-Feldman Operator The Sobel-Feldman operator [26, 8] creates an

image which emphasizes the edges in the 2-dimensional input image. The

operator uses 3 × 3 kernels, Gx and Gy:

Gx :=

−1 0 1

−2 0 2

−1 0 1

 , Gy :=

1 2 1

0 0 0

−1 −2 −1

 . (2.1)

Applying the above matrices for a 2-dimensional image f , we obtain images

fx, fy which are approximations of the gradient of the input image along with

the x- and y-axis respectively:

fx = Gx ∗ f, fy = Gy ∗ f. (2.2)

Since gradient of the image has a high value in the boundary region (Fig-

ure 2.2), we can estimate the border of the sample in the image using the

Sobel-Feldman operator.

24

a

0 500 1000 1500 2000

x-axis [px]

0

200

400

600

800

1000

y
-a

xi
s

[p
x]

b

0 500 1000 1500 2000

x-axis [px]

0

200

400

600

800

1000

y
-a

xi
s

[p
x]

Figure 2.2: An example of the border detection with the Sobel-Feldman op-
erator. (a) An image before the operation. (b) The image filtered by the
Sobel-Feldman operator. The image indicates f 2

x + f 2
y .

25

2.3.3 Cell Detection

Since the Drosophila larval CNS is composed of tens of thousand of neurons,

manually identifying all neuron locations takes a lot of time and labor. In

order to overcome this problem, we created a program to detect the position

of cells from the images automatically.

The reference movie (imaging of the nuclei) were used to perform cell seg-

mentation. Since lengths of all the edges of the voxel of the movie are identical

(0.146 µm/px) by the settings of the recording, we could handle the image as

an isotropic image. We applied LoG (Laplacian of Gaussian) on the reference

movie and found local maxima of the result. Using the CNS mask and the

neuropil mask calculated in the anatomy detection process, we excluded points

which are outside of the CNS area or inside of the neuropil area.

In this section, we introduce a method for the cell detection by detecting the

peaks of the fluorescence intensity in the images. In this method, we first detect

the whole local maxima including the vertex by applying a method commonly

used for edge detection of an object called LoG (Laplacian of Gaussian) [22].

After that, it is possible to detect only the peaks of the cells using an index [12]

for distinguishing edges other than the vertex.

First of all, for the 3D image f : R3 → R, the LoG {f} generates a 3D

26

image expressed as following defintion:

LoG{f} := ∇2(Gσ ∗ f) =

{
∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z

}
(Gσ ∗ f) , (2.3)

which is applying Gaussian filter after blurring the image so derivatives on

the image would be stable. Gσ is a Gaussian probability density function of

standard deviation σ. Smoothing with Gσ results in reduced noise on the pixels

of the scale below σ. So we can find pixels that take extremes calculating the

Laplacian of the filtered image.

However, with this operation alone, not only the center of the cell we focus

on but also the points corresponding to the edge where the change of pixel

greatly changes would be detected. To exclude the points corresponding to

the edges, we use information of Hessian H(Gσ ∗ f) of the 2D image defined

as following equation:

H(Gσ ∗ f) =

 ∂2

∂2x
∂2

∂x∂y

∂2

∂y∂x
∂2

∂2y

 (Gσ ∗ f) . (2.4)

Letting the first eigenvalue with Hessian obtained here be α and the second

eigenvalue be β, these are proportional to the principal curvature of that point.

If the ratio r = α/β is far from 1, the point corresponds to the edge, so we

27

could exclude the edges using the ratio r assigned to each pixel. For calculating

r, we used the following relational expression:

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(r + 1)2

r
(2.5)

2.3.4 Normalization

Fluorescence intensity in all the neurons can change by various influences be-

sides the neural activity. Therefore, normalization of the fluorescence intensity

was done to extract only neural activity as much as possible from the data.

Fluorescence time series of the cells are extracted from the dynamics movie,

using the center of cells detected as described above. The time series data

obtained from the calcium imaging movies change with various factors, and

we want to extract neural activity which is one of these factors. The effect

of the photobleaching, which is the main obstacle to the extraction of neural

activity, causes a large change in fluorescence intensity. The change is often

greater than that by neural activity, but the time scale of the phenomenon is

much larger than that of neural activity. Therefore, we used a time window in

a sufficiently small size to estimate the variation of the signal other than the

neural activity by applying the Gaussian blur after taking the minimum value

28

of the window at each time. Assuming the result time series as the baseline, we

obtained fluctuations in signal due to neural activity by dividing the original

data by the baseline.

2.4 Circuit State Detection

Drosophila larvae show various behaviors including forward locomotion, back-

ward locomotion, and turning [11, 19]. We focused on four kinds of activity

patterns in the CNS corresponding to the forward locomotion, backward loco-

motion, left turning, and right turning.

To determine the circuit state at each time frame, we applied hidden

Markov model (Section 2.4.1). We decided to use the hidden Markov model

for the following reasons:

1. The model is relatively simple and clear.

2. From the physics, the state of the circuit at the next moment is supposed

to be determined by the state at the moment just before it.

3. Each state does not necessarily produce the same result (neural activities

of all neurons in the CNS) because of lack of information.

29

2.4.1 Hidden Markov Model

Hidden Markov model is a model which obeys the Markov process and the

states are not observable. A brief explanation of the model is as follows.

Mathematical Description Let S be a state space composed of all the

possible (hidden) states, and let O be a observation space composed of all

the possible observations. Let a transition probability function φ : S × S →

[0, 1] describe the probability of transition between the states, so φ(si, sj) is

the probability of transition from state si to state sj. Finally, let a emission

probability function θ : S × O → [0, 1] describe the probability of emission of

observation, so θ(s, o) is the probability of emission of observation o for state

s.

To determine the hidden states given the parameters, we implemented the

Viterbi algorithm and applied it to the fluorescence time-series.

Viterbi Path Let T denote a set of time frames of the data. Given the

initial probability function π : S → [0, 1] (π(s) is the probability of being in

state s at the beginning), and the sequence of the observations O : T → O,

we estimate the sequence of the states S : T → S so that it maximizes the

30

likelihood:

L(S;O, φ, θ, π) := p(O|S, φ, θ, π) . (2.6)

The Viterbi algorithm [29] is a dynamic programming algorithm which

finds the sequence of hidden states, viterbi path, satisfying Equation (2.6). For

descriptions of concrete procedure, refer to appendix B.2, the implementation

in the Python 3. We can describe the procedure as the following pseudo-code:

Algorithm 1 Viterbi algorithm

1: function viterbi(φ, θ, π, O)

2: prepare A : T × S→ R
3: prepare B : T × S→ S
4: for s ∈ S do

5: A[Tfirst, s]← π(s) · θ(s,O(Tfirst))

6: end for

7: for t ∈ T \ {Tfirst} sequentially do

8: for s ∈ S do

9: B[t, s]← argmaxs′∈S{A[t− 1, s′] · φ(s′, s)}
10: A[t, s]← θ(s,O(t)) ·maxs′∈S{A[t− 1, s′] · φ(s′, s)}
11: end for

12: end for

13: prepare S : T → S
14: S[Tlast]← argmaxs∈S{A[Tlast, s]}
15: for t ∈ T \ {Tlast} reversally do

16: S[t]← B[t+ 1, S[t+ 1]]

17: end for

18: return S
19: end function

31

We used Baum-Welch algorithm on the data from the samples so we can

fix the parameters used in the Viterbi algorithm.

Baum-Welch algorithm The Baum-Welch algorithm [4] is EM (expectation-

maximization) algorithm which maximizes the likelihood:

L(φ, θ, π;O) := p(O|φ, θ, π) . (2.7)

For descriptions of concrete procedure, refer to appendix B.2, the imple-

mentation with the python 3. For the seed of the algorithm, see appendix A.1.

2.5 Other Numerical Methods

2.5.1 K-means Clustering

Let fi(t) be the fluorescence intensity of the t th time frame of the ith neuron

(1 ≤ i ≤ N , 1 ≤ t ≤ T). This time series data could be handled as N points

in the T -dimensional space. Then, each point represents the characteristic of

the whole time series data of each neuron. Clustering in this T -dimensional

space makes it possible to divide a number of neurons into clusters showing

several similar activity patterns.

32

In the following, we will explain K-means clustering. Given a set of S in

the n-dimensional space, suppose that the set is divided into k groups. The

first step is to randomly determine k points using the k-means++ algorithm [3].

Let them be {m(0)
1 , · · · ,m(0)

k }.

1. Next, determine S
(n+1)
i from each m

(n)
i :

S
(n+1)
i = {r ∈ S | dn(r,m

(n)
i) ≤ dn(r,m

(n)
j) for j = 1, · · · , k} (2.8)

where dn(p,q) =
n∑
j=1

(pj − qj)2.

2. Find the average m
(n+1)
i of elements of S

(n+1)
i :

m
(n+1)
i =

1

|S(n+1)
i |

∑
r∈S(n+1)

i

r. (2.9)

According to this procedure, (2.8) and (2.9) are iteratively calculated, and

when S
(n∗+1)
i = S

(n∗)
i is satisfied with some n∗, the calculation is terminated.

33

Chapter 3

Results

3.1 Distribution of Neurons in the CNS

In this study, calcium imaging was performed using Drosophila larvae of elav-

Gal4, UAS-GCaMP6f, UAS-mCherry.nls, which enables to measure signals

from all neurons in the CNS.

The distribution of neuronal cell body contained in the system was con-

firmed by immunostaining (anti-GFP) of the larval VNC (Figure 3.1). The

population in the ventral side (Figure 3.1b) was found to be denser than that

in the dorsal side (Figure 3.1a). We, therefore, decided to record the calcium

imaging with the ventral side facing the camera (ventral side up).

34

a

b

Figure 3.1: Immunostaining of the larval VNC of elav > GCaMP6f (anti-
GFP). The left side of the figure is the head and the right side is the tail. (a)
Dorsal side view. (b) Ventral side view.

35

3.2 Calcium Imaging Movie

We recorded the dynamics movie, the intermediate movie, and the reference

movie for each sample. The summary of the characteristic of the movies is as

follows:

1. Dynamics movie: high temporal resolution (0.638 s/volume), low spatial

resolution (interval of z-stack: 2.485 µm), fluorescence of GCaMP6f

2. Intermediate movie: low temporal resolution, high spatial resolution (in-

terval of z-stack: 0.146 µm), fluorescence of GCaMP6f

3. Reference movie: low temporal resolution, high spatial resolution (inter-

val of z-stack: 0.146 µm), fluorescence of mCherry

3.2.1 Dynamics Movie

We recorded the dynamics movie to observe neural activities from the sample.

We set the temporal resolution of the movie high enough (∼ 0.6 s/volume) to

detect the activity patterns during the larval behaviors.

After recording the movie, we confirmed the activity patterns were visible

(Figure 3.2). To visualize the activities more clearly, we applied the Gaussian

blur along the temporal axis and the spatial axis on the movie to obtain the

36

luminance in steady state. We then calculated the change from the steady

state using the Gaussian blurred movie. From the resulting movie, we could

observe the forward waves (Figure 3.2a) which propagate from the tail to the

head, and the backward waves (Figure 3.2b) which propagate from the head

to the tail.

a

Low

High

b

Low

High

Figure 3.2: Activity patterns in the movie. The images of the movie in each
time frame were spliced into one figure. In each image, the direction of the
sample is anterior side up. (a) The forward waves propagate from the tail to
the head. (b) The backward waves propagate form the head to the tail.

37

3.2.2 Intermediate Movie and Reference Movie

Neurons of Drosophila first instar larva consists of cell bodies of ∼ 1.5 µm

radius and neurites of several hundred nanometers thick. Since the laser wave-

length of the microscope was 488 nm or 561 nm, it was almost impossible to

distinguish adjacent neurites of different neurons. Therefore we had to locate

somas in the larval CNS so that we could extract the fluorescence intensity

from their position.

For this reason, we recorded the reference movie to observe the morphology

of the sample, especially the positions of the nuclei of the neurons. We set the

voxel size in z-axis (normal to the focal plane) to the same value as that of the

focal plane so that we could treat the image as an isotropic image.

However, registration of the two images of different features is not trivial.

As shown in Figure 3.3a, the image of the reference movie which contains

fluorescence of mCherry is quite different from the dynamics movie which

contains fluorescence of GCaMP6f (similar with Figure 3.3b), since the latter

visualizes the entire cell bodys whereas the former only visualizes the nuclei.

Since we wanted to use the information obtained from the reference movie in

the dynamics movie, we had to solve this registration problem.

In order to avoid the problem which is quite difficult to handle, we intro-

38

duced the intermediate movie. The intermediate movie (Figure 3.3b) contains

fluorescence of GCaMP6f, so the registration between the dynamics movie and

the intermediate movie is trivial (except for the difference of the spatial res-

olution along the z-axis). Also, the misalignment between the intermediate

movie and the reference movie could be almost ignored from the imaging pro-

tocol. Therefore, by introducing the intermediate movie, the problem turned

into a registration problem of two images with different spatial resolution (the

intermediate movie and the dynamics movie).

39

a

30 µm30 µm30 µm

b

30 µm

Figure 3.3: Comparison of the reference movie and the intermediate movie.
We took the images from the same focal plane. (a) The reference movie. (b)
The intermediate movie.

40

3.3 Drift Correction

Some of the acquired movies (the dynamics movies, the intermediate movies,

and the reference movies) showed drift in the focal plane. To extract the signals

from the neuron using the information of the positions, the signals would be

mixed without proper registration. In fact, we confirmed that all the dynamic

movies were translated by a larger amount (∼ 50 px) than the scale of cell

radius (∼ 10 px).

We made a custom registration program which enables one to eliminate

the translation of the movie and thus to obtain the correct signal from each

cell. The acquired movies, especially the dynamics movies, had the following

characteristics:

1. There is almost no rotation compared to the translation.

2. The intensity changes sporadically and greatly at various places accord-

ing to the activity of the CNS.

3. The speed of translation caused by the drift is sufficiently slower than

the frame rate of the movie.

4. Due to the photobleaching of the calcium indicator, the intensity of the

movie is decreasing.

41

Considering the above characteristics, we decided to prepare the algorithm

which satisfies the following conditions:

1. Parameters representing the movement of the sample can be narrowed

down to a very small number representing only the translation.

2. We detect many feature points in the image and track the position of

the feature points. Then we estimate the movement of the sample from

feature points which shows the same behavior.

3. Referring to the previous feature points, we can reduce the computational

cost since the deviation from the previous feature points is limited to a

certain range.

4. Comparing the features, we use normalized cross-correlation (NCC) [21]

rather than root-mean-square error (RMS), thereby reducing the effect

of the photobleaching.

The flow of the algorithm is as follows.

Data Compression

Since the movement of the sample lies in the focal plane, we reduce the com-

putational cost and the noise of the image by stacking the images of all the

focal planes (z-stacks) at each time.

42

Feature Detection

To calculate the overall motion of the sample, we detect many feature points

throughout an image (template image, drawn from the stacked images of the

movie). First, by generating lattice-like points on the template image (Fig-

ure 3.4), we reduce the computational cost involved in the evaluation of fea-

ture points in the next step and avoid concentration of feature points. Next,

an image around a point (256× 256 px2) is cut out (Figure 3.4) and template

matching using normalized cross-correlation with the original large image was

performed. From the distribution of the distances, we calculated the accuracy

of matching and select a certain number (256, in this case) of feature points in

descending order (from the smallest to the largest) of the value (Figure 3.4).

w

h

Figure 3.4: The process of the feature detection. left: the index (the accuracy
of matching) is calculated for each lattice point. middle: For each feature point,
we used the image of the area surrounded by a rectangle (width wf = 256 px
and height hf = 256 px) centered on the point. right: Selected certain number
of feature points.

43

Feature Tracking

First, we searched for all the feature points determined in the previous step

in the image at the first time frame (Figure 3.5). We determined offsets from

the correspondence of each feature point and create a histogram of those offset

(Figure 3.6). Choosing the value of the highest density, we obtained the motion

of the sample. For the search of feature points for the image at the next time

frame, the information of the sample motion was used (Figure 3.7) to reduce

the computational cost. By repeating this process, all feature points were

detected in the images throughout the recording.

Original image New image

scan all area found

Figure 3.5: Searching for the feature point. Execute template matching using
the image of each feature point, in all the area of the new image.

Movement Estimation

In order to suppress the vibration of the corrected moving image, we made a

matrix that connects the histogram at each time frame created by the same

method as the previous step (If it is an N-dimensional correction, the ma-

44

Original image New image

Figure 3.6: Estimation of the offset. Create the offset using the feature points
in the template image and the corresponding points found in the new image.
Estimation of the offset as a whole is done by ignoring few offsets (in the figure,
the blue one) of different value.

Scan the pridicted area

Figure 3.7: Efficient searching. Using the offset previously obtained, the search
is done in a small area in a new image, which reduces computational cost
significantly.

trix would become an (N + 1)-dimensional one). Since the temporal resolu-

tion was sufficiently higher than the speed of the movement of the sample (≤

1 px/frame), it is expected that more accurate estimation can be made by us-

ing the information of the adjacent time frame. Here we decided the movement

of the sample by applying the Gaussian blur to the matrix and performing the

same calculation used in the previous step at each time frame.

45

3.3.1 Application

Acquired movies, especially the dynamics movies underwent drift in the focal

plane. In the case of dynamic movies, signals would be mixed on the signal ex-

traction process without a correction. We applied the correction (Section 2.3.1)

on all the movies, so we could safely use spatial information of the neurons to

extract the signals of them.

Figure 3.8 shows an example of the result of the correction. We confirmed

that in a typical dynamic movie, the amount of translation caused by the drift

is large enough to distort the extracted signal since the offsets could be larger

than the scale of the cell radius (∼ 10 px).

46

a

0 500 1000 1500 2000 2500

Time [frame]

−30

−20

−10

0

10

20

30

δx
[p

x]

b

0 500 1000 1500 2000 2500

Time [frame]

−15

−10

−5

0

5

10

15

20

δy
[p

x]

Figure 3.8: Drift correction on a sample movie. δx and δy indicate the offset
from the template image in the x- and y-axis, respectively. (a) The offsets
along with the x-axis. (b) The offsets along with the y-axis.

47

Also, we calculated the velocity of the movement of the sample in the movie,

to test if check the speed of translation caused by the drift is sufficiently slower

than the frame rate of the movie:

vx(t) := δx(t+ 1)− δx(t) , (3.1)

vy(t) := δy(t+ 1)− δy(t) . (3.2)

We confirmed the velocity (Figure 3.9) was sufficently slow (≤ 1 px/frame).

a

0 500 1000 1500 2000 2500

Time [frame]

-1

0

1

v x
[p

x/
fr

am
e]

b

0 500 1000 1500 2000 2500

Time [frame]

-1

0

1

v y
[p

x/
fr

am
e]

Figure 3.9: The velocity of the estimated drift of the sample movie. (a) The
velocity of the drift along with the x-axis. (b) The velocity of the drift along
with the y-axis.

48

Since there was no simple cost function which enables us to confirm that

the correction was done properly, we created stacked images (Figure 3.10),

averaging the movies along the temporal axis. If the correction is correct, the

stacked image of the corrected movie (Figure 3.10c) would have high contrast

and similar to a single frame of the movie (Figure 3.10a). Apparently, we

found that the stack image made using the corrected image is clear, indicating

the correction worked well.

Also, if the correction to the original movie was necessary, the stacked

image of the original movie (Figure 3.10b) should be a blurred image. As

expected, it was confirmed that the stacked image of the original movie was

blurred significantly compared with the other images (Figure 3.10a, c).

49

a

0 500 1000 1500 2000

x-axis [px]

0

200

400

600

800

y
-a

xi
s

[p
x]

b

0 500 1000 1500 2000

x-axis [px]

0

200

400

600

800

1000

y
-a

xi
s

[p
x]

c

0 500 1000 1500 2000

x-axis [px]

0

200

400

600

800

y
-a

xi
s

[p
x]

Figure 3.10: Drift correction on a sample movie. (a) An image of a single frame
of a movie. (b) A mean-stacked image of the movie before the correction. (c)
A mean-stacked image of the movie after the correction.

50

3.3.2 Validation

In order to evaluate the accuracy of the drift correction algorithm, the same

algorithm was applied to artificial data. As the artificial data, we used the

drift-corrected movies which were offset by a different amount for each time

frame after the correction. Then, we compared the detected offsets against the

simulated offsets in various conditions.

First, we applied the algorithm to movies translated by offsets having a

form of a linear function:

δxsim(t) = sxt , δysim(t) = syt , (3.3)

where sx and sy are the rate of shift along with x- and y-axis respectively.

For sx = 80/2800 px/frame and sy = 40/2800 px/frame, we evaluated the

difference between the offsets of the simulated value and that of the estimate

(Figure 3.11).

51

a

0 500 1000 1500 2000 2500

Time [frame]

0

10

20

30

40

50

60

70

80

δx
[p

x]

Simulated

Estimated

b

0 500 1000 1500 2000 2500

Time [frame]

−40

−35

−30

−25

−20

−15

−10

−5

0

δy
[p

x]

Simulated

Estimated

Figure 3.11: Drift correction on the artificial data (linear drift: sx =
80/2800 px/frame, sy = 40/2800 px/frame). The red line indicates estimated
offsets by the correction and the black line indicates the simulated offsets. (a)
The offsets along with the x-axis. (b) The offsets along with the y-axis.

52

Since we would align the movie using the estimated offsets, it is natural to

decide the worst-case error as the following way:

Eworst
x := max

t
∆x(t)−min

t
∆x(t) , (3.4)

Eworst
y := max

t
∆y(t)−min

t
∆y(t) , (3.5)

where ∆x(t) := δxest(t)− δxsim(t) and ∆y(t) := δyest(t)− δysim(t).

In the case of Figure 3.11, Eworst
x was 7 px and Eworst

y was 3 px, which was

small compared to the cell radius (∼ 10 px).

Also, we calculated the velocity of the movement of the sample in the

simulated movie, to confirm the speed of translation caused by the simulated

drifts:

vx(t) := δxsim(t+ 1)− δxsim(t) , (3.6)

vy(t) := δysim(t+ 1)− δysim(t) . (3.7)

In the case of Figure 3.11, we confirmed the velocity (Figure 3.12) was

sufficiently slower (≤ 1 px/frame) than the frame rate of the movie.

Also, we applied the algorithm to movies translated by offsets having a

53

a

0 500 1000 1500 2000 2500

Time [frame]

0

1

v x
[p

x/
fr

am
e]

b

0 500 1000 1500 2000 2500

Time [frame]

-1

0

v y
[p

x/
fr

am
e]

Figure 3.12: The velocity of the simulated drift and estimated drift of the
artificial data (linear drift: sx = 80/2800 px/frame, sy = 40/2800 px/frame).
(a) The velocity of the drift along with the x-axis. (b) The velocity of the
drift along with the y-axis.

form of a sine function:

δxsim = ax sinwxt , δysim = ay sinwyt , (3.8)

where wx and wy are the frequencies along with x- and y-axis respectively.

With different values of wx and wy, we evaluated the differences between the

offsets of the simulated value and that of the estimate (Figures 3.13 and 3.15).

54

a

0 500 1000 1500 2000 2500

Time [frame]

−20

−10

0

10

20

30

40

δx
[p

x]

Simulated

Estimated

b

0 500 1000 1500 2000 2500

Time [frame]

−20

−10

0

10

20

30

40

δy
[p

x]

Simulated

Estimated

Figure 3.13: Drift correction on the artificial data (sine drift: ax = ay = 20 px,
wx = wy = 0.05 rad/frame). The red line indicates estimated offsets by the
correction and the black line indicates the simulated offsets. (a) The offsets
along with the x-axis. (b) The offsets along with the y-axis.

55

We calculated the worst-case error in the first case (Figure 3.13), Eworst
x

was 3 px and Eworst
y was 2 px, which are small compared to the cell radius.

Also, the speed of the movement caused by the simulated drift in this case

(Figure 3.14) was slow (≤ 1 px/frame).

a

0 500 1000 1500 2000 2500

Time [frame]

-1

0

1

v x
[p

x/
fr

am
e]

b

0 500 1000 1500 2000 2500

Time [frame]

-1

0

1

v y
[p

x/
fr

am
e]

Figure 3.14: The velocity of the simulated drift and estimated drift of the
artificial data (sine drift: ax = ay = 20 px, wx = wy = 0.05 rad/frame). (a)
The velocity of the drift along with the x-axis. (b) The velocity of the drift
along with the y-axis.

56

For the fastly vibrating movie (Figure 3.15), on the other hand, the worst-

case error was relatively large, Eworst
x was 7 px and Eworst

y was 5 px, which are

much larger than the previous case of sine draft. Since the range of the trans-

lation caused by the sine drift was same with the previous case (Figure 3.13),

it can be inferred that the deterioration of the error is due to the speed of the

translation (Figure 3.16), which was 2 fold of the previous case (Figure 3.14).

57

a

0 500 1000 1500 2000 2500

Time [frame]

−30

−20

−10

0

10

20

30

40

δx
[p

x]

Simulated

Estimated

b

0 500 1000 1500 2000 2500

Time [frame]

−30

−20

−10

0

10

20

30

40

δy
[p

x]

Simulated

Estimated

Figure 3.15: Drift correction on the artificial data (sine drift: ax = ay = 20 px,
wx = wy = 0.1 rad/frame). The red line indicates estimated offsets by the
correction and the black line indicates the simulated offsets. (a) The offsets
along with the x-axis. (b) The offsets along with the y-axis.

58

a

0 500 1000 1500 2000 2500

Time [frame]

-2

-1

0

1

2

v x
[p

x/
fr

am
e]

b

0 500 1000 1500 2000 2500

Time [frame]

-2

-1

0

1

2

v y
[p

x/
fr

am
e]

Figure 3.16: The velocity of the simulated drift and estimated drift of the
artificial data (sine drift: ax = ay = 20 px, wx = wy = 0.1 rad/frame). (a)
The velocity of the drift along with the x-axis. (b) The velocity of the drift
along with the y-axis.

59

3.4 Normalization

Since it was able to calculate the positions of all cells, we extracted time series

of fluorescence (Figure 3.17a) by averaging the values in the volume belonging

to the location of each cell in the dynamics movie (from now on, we will call it

signals). The signals obtained from the calcium imaging movies change with

various factors, and we need to extract neural activity from them.

We first eliminated the effect of the photobleaching. The intensity of the

calcium imaging movie decreases with the lapse of time. However, the time

scale of the photobleaching is much larger that of the neural activity. To esti-

mate the intensity by the other factors than the neural activity, we calculated

local minima of the signal in a small area (radius of ∼ 7 time frames or 4.5 s

which is the time scale of the neural activity), and applied the Gaussian blur

with a small standard deviation (∼ 7 time frames) on the result (Figure 3.17a).

Then we use the resulting time series as the baseline of the signal.

Using the baseline, we could obtain the change in the intensity during the

neural activity (Figure 3.17b). However, the baseline was lower than the real

baseline, since we set the baseline as the minimum of each local region. There-

fore, we estimated the statistics of the noise assuming the distribution of the

noise is the Gaussian distribution and obtained the center of the distribution.

60

a

0 5 10 15 20 25 30

Time [min]

200

220

240

260

280

300

320

340

F
[a

.u
.]

Signal

Baseline

b

0 5 10 15 20 25 30

Time [min]

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

∆
F
/F

0

Flatten signal

Center of noise

Figure 3.17: The normalization process consists of the two steps. (a) Estimat-
ing the baseline of the signal. The red line indicates the estimated baseline.
(b) Estimating the center of the noise. After the signal had been flattened,
we shifted the flatten signal by the center of the noise.

61

In the following analyses, the normalized signal refers to the modified signal

obtained through this process (Figure 3.18).

62

a

0 5 10 15 20 25

Time [min]

240

260

280

300

320

340

360

380

400

F
[a

.u
.]

b

0 5 10 15 20 25

Time [min]

−0.05

0.00

0.05

0.10

0.15

0.20

∆
F
/F

0

Figure 3.18: An example of the normalization. (a) A raw signal. (b) The
normalized signal.

63

3.5 Circuit State Detection

Based on several previous reports and our visual inspection, Drosophila larvae

show various behaviors including forward locomotion, backward locomotion,

and turning. We focused on four kinds of activity patterns in the CNS corre-

sponding to the forward locomotion, backward locomotion, left turning, and

right turning.

Drosophila larvae have eight abdominal segments and there are correspond-

ing neuromeres in the CNS. During the forward locomotion, the larvae contract

the muscles of the abdominal segments of the body wall from the tail (A8) to

the head (A1). Since the contraction pattern of the muscles is generated by the

CNS and the motor neurons in each neuromere of the CNS innervate muscles

in the corresponding segment of the body wall, the CNS activity pattern is

similar to the body muscle contraction pattern at the macroscopic level [9].

For this reason, we named the activity pattern which occurs during the

forward locomotion as forward wave and defined 8 active states (F0 ∼ F7)

and one idle state (FQ) for the forward wave. Each state in the 8 active states

corresponds to the activity concentrated on each neuromere of the CNS. For

example, the first state of the forward wave F0 indicates the activity state

corresponding the muscle contraction in the segment A8 of the body wall,

64

and the last state F7 indicates the activity state corresponding the muscle

contraction in the segment A1.

In the case of the backward locomotion, we defined 8 active states (B0

∼ B7) and one idle state (BQ) for backward wave, as we did for the forward

locomotion. The difference in forward locomotion is, the first state of the

backward wave B0 corresponds to the contraction of the muscles in the segment

A1 of the body wall because the contraction starts from the tail in the backward

locomotion.

The direction of the turning of the larva could be left or right. Therefore

we defined two activity patterns, TL and TR. TL, which indicates turning left,

consists of 3 active states (TL0 ∼ TL2) and 1 idle state (TLQ). The 3 active

states correspond to the activity patterns which cause the contraction of the

muscle in the anterior left side (A1 ∼ A3). TR, turning right, consists of 4

states (TR0 ∼ TR2, and TRQ) like the TL, but is related to turning in the

opposite (right) direction.

Finally, we defined a steady idle state (SQ) which is not directly related to

the motor outputs that generate behaviors. Thus, activity states of the CNS

are SQ, FQ, F0 ∼ F7, BQ, B0 ∼ B7, TLQ, TL0 ∼ TL2, TRQ, TR0 ∼ TR2,

totaling 27 states.

65

SQ

F4

F3 F2

F1

F0F5

F6 F7

B6

B5 B4

B3

B2B7

B0 B1
FQ BQ

TL1

TL0 TR1

TR0

TRQTLQ

Forward wave Backward wave

Turning wave (left, right)

Steady state

Figure 3.19: The states of the CNS related to the motor outputs.

To determine the circuit state at each time frame, we applied hidden

Markov model (Section 2.4.1) whose hidden states are the above 27 states.

The information about the locomotions we have is the pattern of the muscle

contractions. Hence we extracted the signals of all pairs (left and right portion)

in neuromeres A1 ∼ A8. And we binarized the 16 signals so each observation

would fall into 0 ∼ 216 (= 65536).

66

3.5.1 Application

In order to extract activity dynamics of the circuit as a whole, we applied

principal component analysis (PCA) to the normalized signals of the neurons.

In the trajectory in a 3-dimensional space obtained by PCA, we found two

different circular trajectories. It suggests that there are at least two different

periodic activity patterns in the circuit. We confirmed the two trajectories

correspond to the forward wave and the backward wave by visual inspection

of the movie.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

Figure 3.20: The result of principal component analysis (PCA) on the normal-
ized signals. Two different circular trajectories are visible.

67

In order to investigate the change of the state of the circuit in detail, the

hidden Markov model was applied to the normalized signals. First, we ob-

tained the parameters (the transition matrix and the emission matrix, refer

to Section 2.4.1) reflecting the calcium imaging movie from the initial pa-

rameters using the Baum-Welch algorithm. By calculating the Viterbi path

(Figure 3.21) from the obtained parameters, we were able to obtain the state

of the circuit at each time.

Figure 3.21: The Viterbi path of the normalized signals. The green lines
indicate the forward waves, and the blue lines indicate the backward waves.

3.6 Activity Profiles of Cells

3.6.1 Motor Activity-dependent Neurons

Since we were able to detect the state of the circuit at each time, we used that

information to investigate the activity profiles of the cells. The states defined

68

in this study (Section 3.5) related to the larval movements, so we could find

cells whose activity depends on the state of the circuit.

First, we focused on the two frequent movement states, forward wave and

backward wave. Since almost all muscles are used during the forward loco-

motion and the backward locomotion, many motor neurons are active at both

the forward locomotion and the backward locomotion. However, the activity

of the interneurons could be different between the two locomotions, and we

wanted to find those interneurons.

To measure the difference in the activities of a neuron during the forward

wave and the backward wave, we created a mask mF−B (Figure 3.22a) as the

following definition:

mF−B(t) =

+1

−1

0

for t ∈ ⋃i Fi

for t ∈ ⋃iBi

otherwise

(3.9)

where Fi is a set containing the time frames of the state Fi, and Bi is a set

containing the time frames of the state Bi. Then we calculate a score sF−B(i)

of neuron i by dotting (inner product) the normalized signal of the neuron

and the mask. However, the magnitude of the changes in intensity of the

69

neurons are all different, so we created lots of shuffled signals (Figure 3.22c) to

each signal (Figure 3.22b) of neuron and the score was normalized using the

distribution of scores of the shuffled signals.

a

0 5 10 15 20 25

Time [min]

-1

0

1

V
al

u
e

b

0 5 10 15 20 25

Time [min]

0.0

0.2

0.4

0.6

0.8

∆
F
/F

0

c

0 5 10 15 20 25

Time [min]

0.0

0.2

0.4

0.6

0.8

∆
F
/F

0

Figure 3.22: Calculating the score (forward wave - backward wave) on each
neuron. (a) The mask created as Equation (3.9). (b) A signal of a neuron.
(c) An example of the shuffled signal from the signal of the neuron.

70

Then, we obtained the distribution of the scores (Figure 3.23) for all the

neurons. We found that the distribution is not a Gaussian distribution since

it has large tails on both sides. Hence, the distribution is not a form of Fig-

ure 3.24a, which has one center of the Gaussian curve. We concluded the

distribution of the scores was a form of Figure 3.24c, having the parameter

m0 ≈ 0. Since the heights of the curves at mF and mB would be small, the

population of the activity specific neurons also would be a small fraction.

−15 −10 −5 0 5 10 15

Score

0

200

400

600

800

1000

1200

D
en

si
ty

All cells

Non-biased cells

Figure 3.23: The distribution of the scores. The red line is the estimated
gaussian distribution of the non-biased cells. The two large tails are visible,
which correspond to the populations of the activity dependent cells.

71

a

m0

Score

D
en

si
ty

b

mB mF

Score

D
en

si
ty

c

mB m0 mF

Score

D
en

si
ty

Figure 3.24: Examples of possible distributions of the scores. (a) A distribu-
tion has only one center of the Gaussian distribution (only non-biased cells).
(b) A distribution has two centers of the Gaussian distributions (forward wave
specific neurons and backward wave specific neurons). (c) A distribution has
three centers of the Gaussian distributions (forward wave specific neurons,
non-biased neurons, and backward wave specific neurons).

72

Based on this hypothesis, we performed a fitting of the distribution to a

Gaussian curve (Figure 3.23) to estimate the distribution of cells not biased on

the circuit states. Then we estimated the populations of the activity dependent

neurons from the fitting. We assumed that activity dependent neurons would

have scores in the outside of the fitted curve. So we calculated the number

of the forward wave specific neurons (nF) which have their own scores lower

than −3σ of the fitted curve, and the number of the backward wave specific

neurons (nB) which have their own scores higher than 3σ of the fitted curve.

Letting the number of all the neurons be N , the fraction of the forward wave

specific neurons nF/N was 9.8 % and the fraction of the backward wave specific

neurons nB/N was 3.4 % (Figure 3.25).

Also, we divided the larval CNS into two regions, posterior CNS which

consist of the abdominal neuromeres and anterior CNS which consist of the

regions other than the abdominal neuromeres. Letting the number of the cells

in the posterior CNS be Npost, the fraction of the forward wave specific neurons

in the posterior CNS npost
F /Npost was 14 % and the fraction of the backward

wave specific neurons in the posteior CNS npost
B /Npost was 5.0 % (Figure 3.25).

The similar statistics were obtained for the cells in the anterior CNS, resulting

in nant
F /Nant = 2.5 % and nant

B /Nant = 0.94 % (Figure 3.25).

73

Whole CNS Posterior CNS Anterior CNS

Regions

0.00

0.05

0.10

0.15

0.20

0.25

F
ra

ct
io

n

Backward wave
specific neurons

Forward wave
specific neurons

Figure 3.25: The populations of the circuit state dependent neurons. The
blue bars indicate the fractions of the backward wave specific neurons, and the
green bars indicate the fractions of the forward wave specific neurons.

74

Forward Wave Specific Neurons

To find the spatial distribution of the forward wave specific neurons in the

larval CNS, we selected the neurons which have score sF−B higher than a

threshold (3σ of the distribution). Their spatial distribution in the CNS was

as Figure 3.26.

75

a

b

Figure 3.26: Neurons active biased during the forward wave. (a) Dorsal view.
(b) Lateral view.

76

To investigate the activity timing of the forward wave specific neurons we

found, we created a profile of the neurons, which have the average value of the

normalized signal in each circuit state. First, we focus on the posterior CNS

(Figure 3.27). Figure 3.28a suggests that the forward wave specific neurons

in the posterior CNS show activities with a similar spatio-temporal pattern to

the forward wave, the cells close to the tail activated early and the cells close

to the head activated later.

77

a

b

Figure 3.27: The distribution of the forward wave specific neurons in the pos-
terior CNS. (a) Dorsal view. (b) Lateral view.

78

a

F0 F1 F2 F3 F4 F5 F6 F7

State

Anterior0

50

100

150

Posterior

C
el

ls

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

b

0 5 10 15 20 25

Time [min]

A
ct

iv
it

y

0.
1

∆
F
/F

0

2 min

Figure 3.28: Activities of the forward wave specific neurons in the posterior
CNS. (a) The profiles of the neurons. We sorted the cell numbers so that the
bigger the number the closer it would be to the tail. (b) Examples of the
normalized signals of the neurons. The estimated circuit state trace indicated
below the signals (green: the forward wave, blue: the backward wave).

79

Next, we focus on the anterior CNS (Figure 3.29). By calculating the

activity profile (Figure 3.30a), we found that the cells active in state F0 is

included in the anterior CNS. Since there would be no motor neurons active

at state F0 in the anterior CNS, these neurons would not directly connect to

motor neurons. Since the neurons are activated at the initial phase of the

forward wave, they are likely related to the initiation of the forward waves.

Using the activity profile (Figure 3.30a), we found the candidates which have

maximum activity in state F0 (Figure 3.31).

In the forward wave, the motor activity starts from the segment A8 and

propagates to A1. Hence by comparing the activity timings of candidates and

that of the motor signal in A8, we can double check whether the candidate

neurons are activated prior to the forward wave. And Figure 3.31b shows that

the candidates are indeed activated in the beginning of the forward wave.

Finally, we obtained the spatial distribution of the candidates (Figure 3.32).

The fraction of the candidates out of the forward wave specific neurons in the

anterior CNS ncand/n
ant
F was 59 %.

80

a

b

Figure 3.29: The distribution of the forward wave specific neurons in the an-
terior CNS. (a) Dorsal view. (b) Lateral view.

81

a

F0 F1 F2 F3 F4 F5 F6 F7

State

Anterior
0

5

10

15

20

Posterior

C
el

ls

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

b

0 5 10 15 20 25

Time [min]

A
ct

iv
it

y

0.
2

∆
F
/F

0

2 min

Figure 3.30: Activities of the forward wave specific neurons in the anterior
CNS. (a) The profiles of the neurons. We sorted the cell numbers so that the
bigger the number the closer it would be to the tail. (b) Examples of the
normalized signals of the neurons. The estimated circuit state trace indicated
below the signals (green: the forward wave, blue: the backward wave).82

a

0 5 10 15 20 25

Time [min]

A
ct

iv
it

y

0.
1

∆
F
/F

0

2 min

Motor signal in A8

Candidates

b

0 5

Time [min]

A
ct

iv
it

y 0.
1

∆
F
/F

0

30 s

Motor signal in A8

Candidates

Figure 3.31: Candidates of the forward wave triggering neurons. The red trace
is the normalized motor signal of the segment A8. Their activity timings are
almost identical (see the arrows, the candidates precede 1 frame or 0.638 s).
The estimated circuit state trace indicated below the signals (green: the for-
ward wave, blue: the backward wave). (a) The signals of the candidates and
that of the motor signal in A8. (b) An enlarged view of the time range from
0 min to 7 min.

83

a

b

Figure 3.32: The distribution of the candidates of forward wave triggering
neurons. (a) Dorsal view. (b) Lateral view.

84

Backward Wave Specific Neurons

To find the spatial distribution of the backward wave specific neurons in the

larval CNS, we selected the neurons which have score sF−B lower than a thresh-

old (−3σ of the distribution). Their spatial distribution in the CNS was as

Figure 3.33.

85

a

b

Figure 3.33: Neurons active biased during the backward wave. (a) Ventral
view. (b) Lateral view.

86

To investigate the activity timing of the backward wave specific neurons we

found, we created a profile of the neuron, which have the average value of the

normalized signal in each circuit state (Figure 3.34a). Figure 3.35a suggests

that the backward wave specific neurons in the VNC show activities with a

similar spatio-temporal pattern to the backward wave, the cells close to the

tail activated early and the cells close to the head actived later. Therefore, the

cells we found here could be part of the backward wave circuitry.

87

a

b

Figure 3.34: The distribution of the backward wave specific neurons in the
posterior CNS. (a) Dorsal view. (b) Lateral view.

88

a

B0 B1 B2 B3 B4 B5 B6 B7

State

Anterior0

10

20

30

40

50

60

Posterior

C
el

ls

−0.04

0.00

0.04

0.08

0.12

0.16

0.20

0.24

b

0 5 10 15 20 25

Time [min]

A
ct

iv
it

y

0.
2

∆
F
/F

0

2 min

Figure 3.35: Activities of the backward wave specific neurons. (a) The profiles
of the neurons. We sorted the cell numbers so that the bigger the number the
closer it would be to the tail. (b) Examples of the normalized signal of the
backward wave specific neurons. The estimated circuit state trace indicated
below the signals (green: the forward wave, blue: the backward wave).

89

Chapter 4

Discussion

In order to investigate the neural circuits that produce multiple behavioral

patterns, this study extracted and analyzed the activities of thousands of neu-

rons contained in the Drosophila larval CNS. To measure the activities from

a large number of neurons spreading in a 3-dimensional space, we used a light

sheet microscopy capable of recording a wide range of images at a fast frame

rate, and the genetically modified larvae expressing GCaMP6f proteins in all

the neurons in the CNS.

Since the samples in the calcium imaging movies were moving, the regis-

tration was required before extracting the signals. To suppress the influence

of photobleaching and the fluctuation due to neural activities, we decided to

90

estimate translation by detecting a large number of feature points in the movie

and tracked them using normalized cross-correlation. Tracking a large num-

ber of feature points, we could ignore feature points which fluctuate due to

the neural activities. And using normalized cross-correlation, we were able to

compare feature points between images distant temporally with each other.

Since Drosophila larval CNS contains ten thousand of neurons, manually

deciding the positions of the neurons leads to waste of time and labor and a

decrease in objectivity. Detecting the neurons automatically, we were able to

decide the position of the neurons in a relatively short time, and the result is

guaranteed to be the same each time.

To extract the neural activity from the sequence of the fluorescence ob-

tained, we normalized the fluorescence signals assuming the time scale of the

neural activity would be small compared to that of the photobleaching (Fig-

ure 3.18). Comparing with using the Gaussian blurred signal as the baseline,

we could suppress false negative changes especially noticeable at the start and

end points of activity series. More accurate normalization allowed us to cal-

culate quantities intuitively and more accurately.

To investigate the activity of the circuit roughly, we used the principal

component analysis (PCA) to reduce dimensionality. Applying the PCA on

91

all the neural activities of the CNS, we could confirm there are at least two

different periodic activities at the circuit level (Figure 3.20). We confirmed

the two activities correspond to the forward wave and the backward wave,

which are related to the forward locomotion and the backward locomotion,

respectively.

Using the hidden Markov model, we could detect the states of the larval

CNS (Figure 3.21). And using the information of the state in each time frame,

we found the neurons whose activity is biased toward the forward or backward

wave state (Figures 3.26 and 3.33). Both forward-biased and backward-biased

neurons existed not only in the anterior CNS but also in the posterior CNS

(Figures 3.27 and 3.34). It suggests that the circuits responsible for the for-

ward locomotion and the backward locomotion are scattered in the VNC. Such

system will produce more stable motor patterns than a case in which the circuit

is present only in a decision making layer in the brain.

And we compared the number of the forward wave biased neurons nF and

the number of the backward wave biased neurons nB. We found that nF

was much larger than nB in both the anterior CNS and the posterior CNS

(Figures 3.23 and 3.25).

The distribution of the forward wave biased neurons was concentrated in a

92

dorsal region of the VNC (Figure 3.26). In the dorsal region, however, almost

all neurons are motor neurons. It suggests that the activity intensity of the

motor neurons is much stronger in the forward wave. The result was not an

numerical error, since the backward wave biased neurons were not found in

the dorsal region (Figure 3.33).

We also found F0 phase neurons in the anterior CNS region (Figure 3.32).

The activity of these neurons preceded the forward waves (Figure 3.31). Their

position and activity timing imply that these neurons trigger the initiation

of the forward wave at the posterior-end segment through direct or indirect

descending axon projections. To confirm the neurons would trigger the forward

wave, we need further experiments that would clarify the causality.

While this work was in progress, a similar study on Drosophila larval whole

CNS functional imaging was published by Lemon et al. [20]. However, the

functional unit in the study was voxel so one cannot estimate the population

size (the number of neurons) and the activities obtained would be noisy. We

detected the position of the neurons so that we could set the ROIs on the

somas. Also, we determined the circuit state by using hidden Markov model

whose parameters are learned from the data. Hence we could assign a certain

circuit state to each time frame, which cannot be accomplished from visual

93

inspection. The differences between our study and Lemon’s are summarized

in Table 4.1.

Table 4.1: Comparison between this study and the previous study.

Our study Lemon et al.
Neurons All

Microscopy Light-sheet
Temporal resolution 2 Hz 5 Hz

Analysis Quantitative Qualitative
Functional unit (ROI) Neuron Voxel
Circuit state definition Statistical analysis Visual inspection

The methods we developed in this study enabled us to obtain the activity

profiles of neurons in Drosophila larval CNS which generates various behaviors

including the forward locomotion and the backward locomotion. This map of

the activity profiles provide us a clue for distinguishing the circuits correspond-

ing to the distinct behaviors. By combining the results with optogenetics, we

would be able to find the neurons commanding the activity patterns in the

circuit.

94

Acknowledgement

This research was conducted as a collaborative research with Shin Ishii and Ken

Nakae of the Graduate School of Informatics, Kyoto University and Shigenori

Nonaka and Atsushi Taniguchi of National Institute for Basic Biology. I would

like to thank Shin Ishii and Ken Nakae for guidance on analysis method, dis-

cussion, and other generous cooperation. Also, I would like to thank Shigenori

Nonaka and Atsushi Taniguchi that they willingly allowed me to use the ex-

perimental system and helped the experiments.

I would like to express my deepest appreciation to Akinao Nose who gave

me guidance in every aspect of this research. I also deeply appreciate Hi-

roshi Kohsaka who gave me detailed advice on the whole experiment and

analysis. Everyone in Nose lab who supported various opinions through-

out the research - Etsuko Takasu, Eri Hasegawa, Kaoru Masuyama, Satoko

Okusawa, Yuki Itakura, Akira Fushiki, Teruyuki Matsunaga, Shunsuke Tak-

agi, Koichi Teranishi, Tappei Kawasaki, Keisuke Ban, Ryota Mori, Dohjin

Miyamoto, Yoshiki Maruta, Yumi Sakamaki, Suguru Takagi, Hitoshi Maruo,

Yasuhide Lee, Jeonghyuk Park, Atsuki Hiramoto, Tatsuya Takatori, Maki Ku-

sano, Shoya Ohura, Yuji Matsuo, and Xiangsunze Zeng. I would like to thank

95

Sawako Niki, Toshie Naoi, Kasumi Shibahara for their efforts to maintain the

experimental environment.

96

Bibliography

[1] Misha B Ahrens, Michael B Orger, Drew N Robson, Jennifer M Li, and

Philipp J Keller. Whole-brain functional imaging at cellular resolution

using light-sheet microscopy. Nature methods, 10(5):413–420, 2013.

[2] Jasper Akerboom, Tsai-Wen Chen, Trevor J Wardill, Lin Tian,

Jonathan S Marvin, Sevinç Mutlu, Nicole Carreras Calderón, Federico

Esposti, Bart G Borghuis, Xiaonan Richard Sun, et al. Optimization of

a gcamp calcium indicator for neural activity imaging. The Journal of

neuroscience, 32(40):13819–13840, 2012.

[3] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of

careful seeding. In Proceedings of the eighteenth annual ACM-SIAM sym-

posium on Discrete algorithms, pages 1027–1035. Society for Industrial

and Applied Mathematics, 2007.

[4] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A

maximization technique occurring in the statistical analysis of probabilis-

tic functions of markov chains. The annals of mathematical statistics,

41(1):164–171, 1970.

[5] Jimena Berni, Stefan R Pulver, Leslie C Griffith, and Michael Bate. Au-

tonomous circuitry for substrate exploration in freely moving drosophila

larvae. Current Biology, 22(20):1861–1870, 2012.

97

[6] Andrea H Brand and Norbert Perrimon. Targeted gene expression as a

means of altering cell fates and generating dominant phenotypes. devel-

opment, 118(2):401–415, 1993.

[7] Tsai-Wen Chen, Trevor J Wardill, Yi Sun, Stefan R Pulver, Sabine L

Renninger, Amy Baohan, Eric R Schreiter, Rex A Kerr, Michael B Orger,

Vivek Jayaraman, et al. Ultrasensitive fluorescent proteins for imaging

neuronal activity. Nature, 499(7458):295–300, 2013.

[8] Richard O Duda, Peter E Hart, et al. Pattern classification and scene

analysis, volume 3. Wiley New York, 1973.

[9] Lyle E Fox, David R Soll, and Chun-Fang Wu. Coordination and mod-

ulation of locomotion pattern generators in drosophila larvae: effects of

altered biogenic amine levels by the tyramine β hydroxlyase mutation.

The Journal of Neuroscience, 26(5):1486–1498, 2006.

[10] Akira Fushiki, Maarten F Zwart, Hiroshi Kohsaka, Richard D Fetter, Al-

bert Cardona, and Akinao Nose. A circuit mechanism for the propagation

of waves of muscle contraction in drosophila. Elife, 5:e13253, 2016.

[11] CH Green, B Burnet, and KJ Connolly. Organization and patterns of

inter-and intraspecific variation in the behaviour of drosophila larvae. An-

imal Behaviour, 31(1):282–291, 1983.

[12] Chris Harris and Mike Stephens. A combined corner and edge detector.

In Alvey vision conference, volume 15, page 50. Citeseer, 1988.

[13] Eri Hasegawa, James W Truman, and Akinao Nose. Identification of

excitatory premotor interneurons which regulate local muscle contraction

during drosophila larval locomotion. Scientific Reports, 6, 2016.

[14] Ellie S Heckscher, Shawn R Lockery, and Chris Q Doe. Characterization

of drosophila larval crawling at the level of organism, segment, and so-

98

matic body wall musculature. The Journal of Neuroscience, 32(36):12460–

12471, 2012.

[15] Yuki Itakura, Hiroshi Kohsaka, Tomoko Ohyama, Marta Zlatic, Stefan R

Pulver, and Akinao Nose. Identification of inhibitory premotor interneu-

rons activated at a late phase in a motor cycle during drosophila larval

locomotion. PloS one, 10(9):e0136660, 2015.

[16] Fredrik Johansson et al. mpmath: a Python library for arbitrary-

precision floating-point arithmetic (version 0.18), December 2013.

http://mpmath.org/.

[17] Hiroshi Kohsaka, Satoko Okusawa, Yuki Itakura, Akira Fushiki, and Ak-

inao Nose. Development of larval motor circuits in drosophila. Develop-

ment, growth & differentiation, 54(3):408–419, 2012.

[18] Hiroshi Kohsaka, Etsuko Takasu, Takako Morimoto, and Akinao Nose.

A group of segmental premotor interneurons regulates the speed of axial

locomotion in drosophila larvae. Current Biology, 24(22):2632–2642, 2014.

[19] Subhaneil Lahiri, Konlin Shen, Mason Klein, Anji Tang, Elizabeth Kane,

Marc Gershow, Paul Garrity, and Aravinthan DT Samuel. Two alter-

nating motor programs drive navigation in drosophila larva. PloS one,

6(8):e23180, 2011.

[20] William C Lemon, Stefan R Pulver, Burkhard Höckendorf, Katie McDole,

Kristin Branson, Jeremy Freeman, and Philipp J Keller. Whole-central

nervous system functional imaging in larval drosophila. Nature commu-

nications, 6, 2015.

[21] JP Lewis. Fast normalized cross-correlation. In Vision interface, vol-

ume 10, pages 120–123, 1995.

[22] David G Lowe. Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110, 2004.

99

[23] Eve Marder and Dirk Bucher. Understanding circuit dynamics using the

stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol.,

69:291–316, 2007.

[24] Junichi Nakai, Masamichi Ohkura, and Keiji Imoto. A high signal-to-

noise ca2+ probe composed of a single green fluorescent protein. Nature

biotechnology, 19(2):137–141, 2001.

[25] Robert Prevedel, Young-Gyu Yoon, Maximilian Hoffmann, Nikita Pak,

Gordon Wetzstein, Saul Kato, Tina Schrödel, Ramesh Raskar, Manuel

Zimmer, Edward S Boyden, et al. Simultaneous whole-animal 3d imag-

ing of neuronal activity using light-field microscopy. Nature methods,

11(7):727–730, 2014.

[26] Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for

image processing. a talk at the Stanford Artificial Project in, pages 271–

272, 1968.

[27] Daisuke Takao, Atsushi Taniguchi, Takaaki Takeda, Seiji Sonobe, and

Shigenori Nonaka. High-speed imaging of amoeboid movements using

light-sheet microscopy. PloS one, 7(12):e50846, 2012.

[28] Lin Tian, S Andrew Hires, Tianyi Mao, Daniel Huber, M Eugenia Chi-

appe, Sreekanth H Chalasani, Leopoldo Petreanu, Jasper Akerboom,

Sean A McKinney, Eric R Schreiter, et al. Imaging neural activity in

worms, flies and mice with improved gcamp calcium indicators. Nature

methods, 6(12):875–881, 2009.

[29] Andrew Viterbi. Error bounds for convolutional codes and an asymptot-

ically optimum decoding algorithm. IEEE transactions on Information

Theory, 13(2):260–269, 1967.

[30] Nikita Vladimirov, Yu Mu, Takashi Kawashima, Davis V Bennett, Chao-

Tsung Yang, Loren L Looger, Philipp J Keller, Jeremy Freeman, and

100

Misha B Ahrens. Light-sheet functional imaging in fictively behaving

zebrafish. Nature methods, 2014.

101

Appendix A

Numerical Data

A.1 Circuit State Detection

Indices 0 from 26 correspond to: SQ, FQ, F0, F1, F1, F3, F4, F5, F6, F7, BQ,

B1, B2, B3, B4, B5, B6, B7, TLQ, TL0, TL1, TL2, TRQ, TR0, TR1, and

TR2 respectively.

The seed of transition matrix is as follows.

transition[0, 0] = 0.96, transition[1, 0] = transition[10, 0] = transition[19,

0] = transition[23, 0] = 0.3.

transition[0, 1] = transition[0, 10] = transition[0, 19] = transition[0, 23] =

0.01.

102

transition[1:10, 1:10] =

0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.7 0.3 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.3

0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

(A.1)

transition[10:19, 10:19] =

0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.7 0.3 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.3

0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

(A.2)

transition[19:23, 19:23] =
0.4 0.3 0.0 0.0

0.0 0.7 0.3 0.0

0.0 0.0 0.7 0.3

0.3 0.0 0.0 0.7

 (A.3)

103

transition[23:27, 23:27] =
0.4 0.3 0.0 0.0

0.0 0.7 0.3 0.0

0.0 0.0 0.7 0.3

0.3 0.0 0.0 0.7

 (A.4)

The other elements of the transition matrix are set to 0.

104

Appendix B

Codes

Structure

1. image

io: image i/o wrapper

codec: image codecs

nifti: NIfTI (neuroimaging informatics technology initiative)

multitif: single multi-tif

singletifs: multiple single-tifs

registration: drift correction

filters: filters using OpenCL or multiprocessing

105

esti: foreground estimation (CNS and neuropil), blob detection

2. mpmath: arbitrary precision floating-point arithmetic [16]

defmparray: mparray subclass

numeric: array creators

twodim base: 2-dim specific creators

3. signal: normalization and binarization

4. models: hidden markov model

License

Copyright c© 2015-2016 Youngtaek Yoon 〈caviargithub@gmail.com〉

This program is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITH-

OUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

106

You should have received a copy of the GNU General Public License along

with this program. If not, see http://www.gnu.org/licenses/.

3rd Party Addendum

==================

The files

• defmparray.py

• numeric.py

• twodim base.py

• filters.py

are derived from NumPy, and are available under the Modified BSD License:

Copyright c© 2005-2016, NumPy Developers. All rights reserved.

Redistribution and use in source and binary forms, with or without modi-

fication, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright no-

tice, this list of conditions and the following disclaimer in the documen-

tation and/or other materials provided with the distribution.

107

• Neither the name of the NumPy Developers nor the names of any con-

tributors may be used to endorse or promote products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-

RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-

RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-

RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-

ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-

ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-

VISED OF THE POSSIBILITY OF SUCH DAMAGE.

108

B.1 image.registration

###

##

Canal: Calcium imaging ANALyzer

##

Copyright (C) 2015-2016 Youngtaek Yoon <caviargithub@gmail.com>

##

This file is part of the source code of Canal.

##

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

##

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

##

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

##

###

import numpy as np

import multiprocessing as mp

import itertools # in lattice_points

import skimage.feature # in find_features

import tqdm

import scipy.ndimage.filters

import scipy.optimize

import scipy.spatial.distance

def concatenate(*args):

return Concatenator(args)

class Concatenator:

def __init__(self, args, ndim=None):

if ndim is not None:

for num, arg in enumerate(args):

shape = (1,) * (ndim - arg.ndim) + arg.shape

args[num] = arg.reshape(shape)

self._data = args

109

def _subindex(self, index):

if not isinstance(index, int):

raise ValueError(’Index must be integer’)

lengths = [len(elem) for elem in self._data]

ends = np.cumsum(lengths)

for dindex, end in enumerate(ends):

if index < end:

return dindex, index - sum(lengths[:dindex])

else:

raise IndexError((’index {} is out of bounds for axis 0 ’ +

’with size {}’).format(index, end))

@property

def ndim(self):

return self._data[0].ndim

@property

def dtype(self):

return self._data[0].dtype

def __len__(self):

return sum([len(elem) for elem in self._data])

def __getitem__(self, index):

dindex, sindex = self._subindex(index)

return self._data[dindex][sindex]

class MovieMapper:

"""

Transforms movie.

"""

def __init__(self, movie, offsets):

n_times = len(movie)

movie_vdim = movie.ndim - 1 # dimension of volume

offsets = np.asarray(offsets, int)

offset_vdim = offsets.shape[-1]

if offset_vdim < movie_vdim: # extend offset filling zeros

extended = np.zeros((len(offsets), movie_vdim), int)

extended[:, movie_vdim - offset_vdim:] = offsets

offsets = extended

prepare cropping

offset: position of feature in target relative to reference

110

canvas offset: offset of canvas which is needed to overlap features

so ‘canvas_offset = -offset‘ would be a simple solution

canvas_offsets = -offsets

valid_begin = canvas_offsets.max(axis=0)

valid_end = np.min(canvas_offsets + [elem.shape for elem in movie],

axis=0)

cropped_shape = tuple(valid_end - valid_begin)

crop_offsets = valid_begin - canvas_offsets

self._movie = movie

self._anchors = crop_offsets

self._shape = (n_times,) + cropped_shape

@property

def shape(self):

return self._shape

@property

def ndim(self):

return len(self.shape)

@property

def dtype(self):

return self._movie.dtype

def __len__(self):

return self.shape[0]

def __iter__(self):

return (self(time) for time in range(len(self)))

def __call__(self, time):

if time < 0:

time += len(self)

anchor = self._anchors[time]

vindex = tuple(slice(b, b + s) for b, s

in zip(anchor, self.shape[1:])) # volume

return self._movie[time][vindex]

def mapped(self, sl=slice(None), verbose=False):

res_times = range(len(self))[sl]

buf = np.empty((len(res_times),) + self.shape[1:], self.dtype)

if verbose:

print(’Creating movie’)

with tqdm.tqdm(res_times, unit=’frame’, disable=not verbose) as pbar:

for bindex, time in enumerate(pbar):

111

buf[bindex] = self(time)

return buf

def __getitem__(self, index):

"""

Returns transformed movie according to offsets.

Parameters

index: slice

verbose: bool, optional

Returns

transformed: ndarray

"""

movie = self._movie

anchors = self._anchors

if isinstance(index, tuple):

index = index + (slice(None),) * (self.ndim - len(index))

else:

index = (index,) + (slice(None),) * (self.ndim - 1)

total = tuple(range(s) for s in self.shape)

res_index = tuple(elem[i] for elem, i in zip(total, index)) # resolve

buf_shape = tuple(len(elem) for elem in res_index

if isinstance(elem, range))

crop

tindex = res_index[0]

if isinstance(tindex, int):

return self(tindex)[index[1:]]

else: # slice

buf = np.empty(buf_shape, self.dtype)

for bindex, time in enumerate(tindex):

buf[bindex] = self(time)[index[1:]]

return buf

def create_transform(kpseries, target_kps, kernel=1):

offsets = [np.array([np.array(rkp) - tkp for rkp, tkp

in zip(kps, target_kps) if rkp is not None])

for kps in kpseries]

min_offset = np.min([elem.min(axis=0) for elem in offsets], axis=0)

max_offset = np.max([elem.max(axis=0) for elem in offsets], axis=0)

112

edges = tuple(np.linspace(begin - 0.5, end + 0.5, end - begin + 2)

for begin, end in zip(min_offset, max_offset))

hist = np.empty((len(offsets),) + tuple(len(elem) - 1 for elem in edges))

for frame, frame_offsets in enumerate(offsets):

hist[frame] = np.histogramdd(frame_offsets, edges)[0]

hist = skimage.filters.gaussian(hist, kernel)

max_at = [np.unravel_index(frame_hist.argmax(), frame_hist.shape)

for frame_hist in hist]

centers = [range(begin, end) for begin, end

in zip(min_offset, max_offset + 1)]

return [tuple(c[i] for c, i in zip(centers, index)) for index in max_at]

for multiprocessing

def _match_template(args):

return skimage.feature.match_template(*args)

class PolyTransform:

def __init__(self, polys):

self._polys = polys

def __call__(self, args):

return tuple(poly(arg) for poly, arg in zip(self._polys, args))

def __str__(self):

format_str = "{} -> {}’"

return ’\n’.join([format_str.format(str(poly), poly.variable)

for poly in self._polys])

def __repr__(self):

return str(tuple(self._polys))

def inverse(self):

inverse_coeffs = []

for poly in self._polys:

c0, c1 = poly.coeffs

inverse_coeff = [1 / c0, -c1 / c0]

inverse_coeffs.append(inverse_coeff)

return PolyTransform(tuple(np.poly1d(c) for c in inverse_coeffs))

class Embedder:

def __init__(self, ambient_image):

self._ambient_image = ambient_image

def embed(self, subimage, interval, n_proc=None, verbose=False):

if n_proc is None:

113

n_proc = mp.cpu_count() - 1

ambimage = self._ambient_image

xy-plane registration

poorman’s registration

substack = subimage.max(axis=0)

detector = FeatureDetector((256, 256), (16, 16), 32, 256) # fix

kps, features = detector.detect(substack, n_proc=n_proc,

verbose=verbose)

tracker = FeatureTracker(kps, features)

ambstacks = np.array([ambimage[b::interval].max(axis=0)

for b in range(interval)])

kpseries = tracker.track(ambstacks, 8, n_proc=n_proc, verbose=verbose)

amboffset = np.median(create_transform(kpseries, kps), axis=0)

if verbose:

print(’XY shift detected: {}’.format(amboffset))

map

offsets = [(0, 0)] * len(subimage) + [amboffset] * len(ambimage)

concatenated = concatenate(subimage, ambimage)

planar_mapper = MovieMapper(concatenated, offsets)

mapped = planar_mapper.mapped(verbose=verbose)

subimage, ambimage = mapped[:len(subimage)], mapped[len(subimage):]

z axis embedding

evaluate distances

distances = np.empty((len(subimage), len(ambimage)))

if verbose:

print(’Measuring distances’)

with tqdm.tqdm(itertools.product(*[range(s) for s in distances.shape]),

total=distances.size, unit=’pair’,

disable=not verbose) as pbar:

for num, (subindex, ambindex) in enumerate(pbar):

u, v = subimage[subindex].flat, ambimage[ambindex].flat

distances.flat[num] = scipy.spatial.distance.euclidean(u, v)

normalize distances

amb_moment = np.sqrt([np.sum(elem * elem) for elem in ambimage])

distances /= amb_moment

sub_moment = np.sqrt([np.sum(elem * elem) for elem in subimage])

distances /= sub_moment[:, np.newaxis]

cost function

def cost(a0, a1=interval, distances=distances): # a1 * x + a0

fit = np.poly1d([a1, a0])

n_sub, n_amb = distances.shape

114

subindices = range(n_sub)

ambindices = [int(round(elem)) for elem in fit(subindices)]

try:

caught = [distances[index] for index in zip(subindices, ambindices)]

return np.mean(caught)

except IndexError:

return np.nan

brute force search

grid = (slice(0, int(len(ambimage) - interval * len(subimage)), 0.1),)

result = scipy.optimize.brute(cost, grid,

finish=scipy.optimize.fmin)

return PolyTransform([np.poly1d([interval, result], variable=’z’),

np.poly1d([1, amboffset[0]], variable=’y’),

np.poly1d([1, amboffset[1]], variable=’x’)])

class FeatureTracker:

def __init__(self, keypoints, features):

"""

Parameters

keypoints: tuple of length N

features: tuple of length N

"""

self._keypoints = keypoints

self._features = features

def track(self, movie, tolerance, n_proc=None, verbose=False):

"""

Paramters

movie: ndarray

tolerance: int

n_proc: int, optional

verbose: bool, optional

"""

if n_proc is None: # default parameter for n_proc

n_proc = mp.cpu_count() - 1

features = self._features

target_keypoints = self._keypoints

n_sdim = movie.ndim - 1 # spatial dimension

n_times = len(movie)

search_indices = [tuple(slice(0, None) for d in range(n_sdim))

for num in range(len(features))]

115

def guess_indices(offset, image_shape=movie.shape[1:],

feature_shapes=[f.shape for f in features],

target_keypoints=target_keypoints, tolerance=tolerance):

validity, indices = [], []

for keypoint, shape in zip(target_keypoints, feature_shapes):

point = tuple(p + o for p, o in zip(keypoint, offset))

cache for next search

begin = [p - tolerance for p in point]

end = [p + tolerance + 1 + s for s, p in zip(shape, point)]

check index range

if (all([b >= 0 for b in begin]) and

all([e <= s for e, s in zip(end, image_shape)])):

validity.append(True)

else:

validity.append(False) # outside of image

index = tuple(slice(b, e) for b, e in zip(begin, end))

indices.append(index)

return validity, indices

def fill_mask(mask, fill, constant):

dispenser = iter(fill)

return tuple(next(dispenser) if flag else constant

for flag in mask)

with mp.Pool(processes=n_proc) as pool:

initial search

args = ((movie[0], feature) for feature in features)

if verbose:

print(’Initial search’)

with tqdm.tqdm(args, total=len(features), unit=’feature’,

disable=not verbose) as pbar:

keypoints = [elem for elem in pool.imap(_locate_feature, pbar)]

offset = match_points(keypoints, target_keypoints)

validity, next_indices = guess_indices(offset)

tracking

offsets = np.empty((n_times, n_sdim), int)

tracked = []

if verbose:

print(’Tracking’)

with tqdm.trange(n_times, unit=’frame’, disable=not verbose) as pbar:

for time in pbar:

args = ((movie[time][index], feature, index, False)

for index, feature, valid in zip(next_indices,

features, validity)

if valid)

116

keypoints = pool.map(_locate_feature, args)

valid_points = [e for e, valid

in zip(target_keypoints, validity) if valid]

offset = match_points(keypoints, valid_points)

offsets[time] = offset

tracked.append(fill_mask(validity, keypoints, None))

validity, next_indices = guess_indices(offset)

return tracked

def lattice_features(image, score, shape, interval, n_keypoints, min_distance,

verbose=False):

gets lattice (keypoints which reside at top left of features)

keypoints = lattice_points(image.shape, interval, shape)

shift mask (so the centers could be evaluated)

offset = tuple(s // 2 for s in shape)

shifted_score = np.zeros_like(score)

from_index = tuple(slice(o, None) for o in offset)

to_index = tuple(slice(None, -o) for o in offset)

shifted_score[to_index] = score[from_index]

keyids = sorted(range(len(keypoints)),

key=lambda i: shifted_score[keypoints[i]], reverse=True)

keypoints = [keypoints[i] for i in keyids]

#keypoints = [point for point in keypoints if shifted_mask[point]]

check min distance

with tqdm.trange(len(keypoints), unit=’point’,

disable=not verbose) as pbar:

selected_ids = []

for cid in pbar:

cpt = keypoints[cid] # candidate point

for sid in selected_ids:

spt = keypoints[sid]

distance = scipy.spatial.distance.euclidean(cpt, spt)

if distance < min_distance:

break

else:

selected_ids.append(cid)

if len(selected_ids) == n_keypoints:

break

keypoints = [keypoints[i] for i in selected_ids]

create features

feature_indices = [tuple(slice(origin, origin + width)

for origin, width in zip(point, shape))

for point in keypoints]

117

features = tuple(image[index] for index in feature_indices)

return keypoints, features

def _keypoint_index(keypoint, shape):

determine begin and end

begin_offset = tuple(s // 2 for s in shape)

end_offset = tuple(s - o for s, o in zip(shape, begin_offset))

begin = tuple(p - o for p, o in zip(keypoint, begin_offset))

end = tuple(p + o for p, o in zip(keypoint, end_offset))

return tuple(slice(b, e) for b, e in zip(begin, end))

def features(keypoints, shape, image):

valid_keypoints, features = [], []

for keypoint in keypoints:

index = _keypoint_index(keypoint, shape)

if all([(i.start >= 0) and (i.stop <= s)

for i, s in zip(index, image.shape)]):

valid_keypoints.append(tuple(i.start for i in index))

features.append(image[index])

return valid_keypoints, features

def lattice_points(volume_shape, interval, margin):

"""

Returns lattice points.

Parameters

volume_shape: tuple of length D

Shape of D-dimensional lattice.

interval: tuple of length D

margin: tuple of length D

Returns

points: list

lattice points in D-dimensional space.

"""

ranges = [range(m, s - m + 1, i)

for i, m, s in zip(interval, margin, volume_shape)]

points = list(itertools.product(*ranges))

return points

def _feature_quality(args):

img, feature, answer = args

imgblur = skimage.filters.gaussian(img.astype(float), 1)

118

featureblur = skimage.filters.gaussian(feature.astype(float), 1)

imgnoise = np.std(img - imgblur)

imgspice = imgnoise * (np.random.rand(*img.shape) * 2 - 1)

score = skimage.feature.match_template(imgblur + imgspice, featureblur)

#return scipy.stats.kurtosis(score, axis=None)

if score.max() > score[answer]:

return -np.inf

else:

return (score[answer] - np.median(score)) / score.std()

class FeatureDetector:

def __init__(self, shape, stride, min_distance=None, n_keypoints=None):

"""

Finds keypoint from the image, whose pattern is a lattice determined

by ‘stride‘.

Parameters

shape: tuple of length D

A shape of the features.

stride: tuple of length D

A stride of the lattice.

min_distance: float, optional

The minimum distances between the keypoints.

n_keypoints: int, optional

If not ‘‘None‘‘, the best ‘n_keypoints‘ keypoints would be selected.

"""

self._shape = shape

self._stride = stride

self._min_distance = min_distance

self._n_keypoints = n_keypoints

def detect(self, image, n_proc=None, verbose=False):

"""

Detects keypoints and features from the image.

Parameters

image: ndarray

An image from which the detector finds features.

mask: ndarray, optional

n_proc: int, optional

The number of processes to use. If set to default (‘‘None‘‘),

all cpu would be used.

verbose: bool, optional

If ‘‘True‘‘, the progress would be printed.

119

Returns

keypoints: tuple

features: tuple

"""

if n_proc is None: # default parameter for n_proc

n_proc = mp.cpu_count() - 1

shape = self._shape

stride = self._stride

min_distance = self._min_distance

n_keypoints = self._n_keypoints

sampling (lattice pattern)

keypoints = lattice_points(image.shape, stride, shape)

feature_indices = [tuple(slice(origin, origin + width)

for origin, width in zip(point, shape))

for point in keypoints]

features = tuple(image[index] for index in feature_indices)

#window_indices = [tuple(slice(f.start - width, f.stop + width)

for f, width in zip(f_index, stride))

for f_index in feature_indices]

window_indices = [tuple(slice(i.start - width, i.stop + width)

for i, width in zip(index, shape))

for index in feature_indices]

evaluates the performances of the features

if n_keypoints is not None or min_distance is not None:

with mp.Pool(processes=n_proc) as pool:

args = ((image[index], feature, shape)

for index, feature in zip(window_indices, features))

#args = ((image, feature) for feature in features)

scores = np.empty(len(features))

if verbose:

print(’Inspecting features’)

with tqdm.tqdm(args, total=len(features), unit=’feature’,

disable=not verbose) as pbar:

for f_num, quality in enumerate(pool.imap(_feature_quality,

pbar)):

scores[f_num] = quality

sort

ranked_ids = sorted(range(len(scores)), key=lambda i: scores[i],

reverse=True)

keypoints = [keypoints[i] for i in ranked_ids]

120

features = [features[i] for i in ranked_ids]

check min distance

if min_distance is not None:

if verbose:

print(’Checking distances between the key points’)

with tqdm.trange(len(keypoints), unit=’point’,

disable=not verbose) as pbar:

selected_ids = []

for cid in pbar:

cpt = keypoints[cid] # candidate point

for sid in selected_ids:

spt = keypoints[sid]

distance = scipy.spatial.distance.euclidean(cpt, spt)

if distance < min_distance:

break

else:

selected_ids.append(cid)

if (n_keypoints is not None and

len(selected_ids) == n_keypoints):

break

keypoints = [keypoints[i] for i in selected_ids]

features = [features[i] for i in selected_ids]

select keypoints and features

if n_keypoints is not None:

if verbose and len(keypoints) < n_keypoints:

print(’{} (< {}) key points found’.format(len(keypoints),

n_keypoints))

keypoints = tuple(keypoints[:n_keypoints])

features = tuple(features[:n_keypoints])

return keypoints, features

def match_points(reference_points, target_points):

"""

Returns most frequent offset from target to reference.

Parameters

reference_points: list of length N (equivalent of ndarray of shape (N, D))

N points in D-dimensional space. All elements should be tuple of size D.

target_points: list of length N (equivalent of ndarray of shape (N, D))

N points in D-dimensional space. All elements should be tuple of size D.

Returns

121

offset: tuple of length D

"""

offsets = np.asarray(reference_points) - np.asarray(target_points)

#mean_offset, std_offset = offsets.mean(axis=0), offsets.std(axis=0)

hist_range = tuple(zip(offsets.min(axis=0), offsets.max(axis=0)))

hist_edges = [np.linspace(begin - 0.5, end + 0.5, end - begin + 2)

for begin, end in hist_range]

hist = skimage.filters.gaussian(np.histogramdd(offsets, hist_edges)[0], 1)

max_at = np.unravel_index(hist.argmax(), hist.shape)

left_edge = [edges[index] for edges, index in zip(hist_edges, max_at)]

return tuple(np.ceil(left_edge).astype(int))

def _locate_feature(args):

return locate_feature(*args)

def locate_feature(image, feature, index=None, apply_mask=True):

"""

Returns position of feature in image.

Parameters

image: ndarray of shape (A, B[, C])

feature: ndarray of shape (a, b[, c])

index: tuple, optional

A mask in which it searchs for feature.

apply_mask: bool, optional

If True (by default), ‘index‘ would be applyed to image before search.

If False, the offset extracted from the index would be applied to the

output, however, ‘index‘ would NOT affect the search.

Implemented for the performance reason.

Returns

point: tuple of length 2 (or 3)

"""

search = image[index] if index is not None and apply_mask else image

score = skimage.feature.match_template(search, feature)

max_at = np.unravel_index(score.argmax(), score.shape)

if index is not None: # offset

extended_index = index + (slice(0, None),) * (image.ndim - len(index))

offset = np.array([i.start for i in extended_index])

max_at = tuple(max_at + offset)

return max_at

122

B.2 models

###

##

Canal: Calcium imaging ANALyzer

##

Copyright (C) 2015-2016 Youngtaek Yoon <caviargithub@gmail.com>

##

This file is part of the source code of Canal.

##

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

##

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

##

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

##

###

import numpy as np

import scipy.ndimage.filters

import multiprocessing as mp

import itertools

import mpmath as ap

import wrappers.mpmath as hp

import random

import tqdm

class Quantizer:

def __init__(self, n_levels):

self._n_levels = n_levels

def quantize(self, raw):

return np.array([self._quantize(elem) for elem in raw])

def _quantize(self, raw):

std = raw.std()

max_std = self._n_levels - 1

digital = np.ones(len(raw), int) * max_std

123

for thres in range(max_std)[::-1]:

digital[raw < std * (thres + 1)] = thres

return digital

class SpatialCodec:

def __init__(self, observation):

self._n_pos = len(observation)

self._radix = observation.max() + 1

def encode(self, raw):

moment = self._radix ** np.arange(self._n_pos)

return np.dot(moment, raw)

class TemporalCodec:

def __init__(self, observation):

id_size = observation.max() + 1

valid_ids = np.array([np.any(observation == oid)

for oid in range(id_size)])

decoder = np.arange(id_size)[valid_ids]

encoder = np.ones(id_size, int) * -1

for encoded_id, raw_id in enumerate(decoder):

encoder[raw_id] = encoded_id

self._encoder = encoder

self._decoder = decoder

def encode(self, raw_id):

if raw_id < len(self._encoder):

cand_id = self._encoder[raw_id]

if cand_id != -1:

return cand_id

raise ValueError(’Invalid raw id’)

def decode(self, encoded_id):

if encoded_id < len(self._decoder):

return self._decoder[encoded_id]

raise ValueError(’Invalid encoded id’)

def encode_observation(self, raw):

return np.array([self.encode(elem) for elem in raw])

def encode_emission(self, raw):

removed = raw.T[self._decoder].T

return removed / removed.sum(axis = -1, keepdims = True)

124

class Simulator:

def __init__(self, transition, emission):

self._transition = transition

self._emission = emission

def simulate_states(self, n_times, init_dist = None):

states = np.empty(n_times, int)

transition = self._transition

initial state

random.seed()

if init_dist is None:

rec = transition.diagonal()

norm_rec = rec / rec.sum()

states[0] = Simulator._draw(norm_rec)

elif isinstance(init_dist, int):

states[0] = init_dist

elif iterable(init_dist):

arrdist = np.array(init_dist)

norm_dist = arrdist / arrdist.sum()

states[0] = Simulator._draw(norm_dist)

else:

raise ValueError(’initial distribution must be None or integer or ’

’1-d iterable’)

get sequence of states

for time in range(1, n_times):

states[time] = Simulator._draw(transition[states[time - 1]])

return states

def simulate_observations(self, states):

emission = self._emission

random.seed()

return np.array([Simulator._draw(emission[state]) for state in states])

def _draw(probabilities):

rand = random.random()

for index, val in enumerate(np.cumsum(probabilities)):

if rand < val:

return index

def state_masks(state_begin, state_end, path):

masks = []

begun = False

for time, state in enumerate(path):

125

if state == state_begin:

begun = True

time_begin = time

elif begun and state == state_end:

begun = False

masks.append(slice(time_begin, time))

return masks

def _shuffledot(args):

raw, shuf = args

np.random.shuffle(shuf)

return np.dot(raw, shuf)

def _shuffledotmulti(args):

raw, shuf, n_shuf = args

ret = np.empty((n_shuf, len(raw), len(shuf.T)))

np.random.seed()

for it in range(n_shuf):

np.random.shuffle(shuf)

ret[it] = np.dot(raw, shuf)

return ret

def binary_profile(signals, indices):

range of mask: (-1, 1)

n_times = signals.shape[-1]

mask = np.zeros((len(indices), n_times), bool)

for num, index in enumerate(indices):

mask[num][index] = 1

return np.dot(signals, mask.T).astype(bool)

def binary_profile_test(signals, positive, negative,

n_iter=512, n_proc=None, verbose=False):

if n_proc is None:

n_proc = mp.cpu_count() - 1

range of mask: (-1, 1)

n_times = signals.shape[-1]

mask = positive.astype(int) - negative.astype(int)

mask = mask.reshape(1, mask.size)

if n_proc is None:

n_proc = mp.cpu_count() - 1

range of mask: (-1, 1)

momented = np.dot(signals, mask.T)

shuffle_momented = np.empty((n_iter,) + momented.shape)

if verbose:

126

print(’Creating shuffled distribution’)

if verbose:

with tqdm.trange(n_iter) as pbar:

with mp.Pool(processes=n_proc) as pool:

args = ((signals, mask.T) for i in pbar)

for it, ret in enumerate(pool.imap(_shuffledot, args)):

shuffle_momented[it] = ret

else:

with mp.Pool(processes=n_proc) as pool:

workiters = np.linspace(0, n_iter, n_proc + 1).astype(int)

worknums = workiters[1:] - workiters[:-1]

args = ((signals, mask.T, num) for num in worknums)

shuffle_momented = np.concatenate(pool.map(_shuffledotmulti, args))

#return (momented - momented.mean(axis=0)) / momented.std(axis=0)

return momented

def profile(signals, path, n_iter=512, n_proc=None, verbose=False):

"""

Parameters

signals: ndarray

path: ndarray

states: slice

n_iter: int

n_proc: int

verbose: bool

"""

if n_proc is None:

n_proc = mp.cpu_count() - 1

range of mask: (-1, 1)

n_times = signals.shape[-1]

n_states = path.max() + 1

mask = np.ones((n_states, n_times)) * 0 #-1

for state in range(n_states):

mask[state][state == path] = 1

momented = np.dot(signals, mask.T)

shuffle_momented = np.empty((n_iter,) + momented.shape)

if verbose:

print(’Creating shuffled distribution’)

if verbose:

with tqdm.trange(n_iter) as pbar:

127

with mp.Pool(processes=n_proc) as pool:

args = ((signals, mask.T) for i in pbar)

for it, ret in enumerate(pool.imap(_shuffledot, args)):

shuffle_momented[it] = ret

else:

with mp.Pool(processes=n_proc) as pool:

workiters = np.linspace(0, n_iter, n_proc + 1).astype(int)

worknums = workiters[1:] - workiters[:-1]

args = ((signals, mask.T, num) for num in worknums)

shuffle_momented = np.concatenate(pool.map(_shuffledotmulti, args))

return (momented - momented.mean(axis=0)) / momented.std(axis=0)

def direct_profile(signals, path, verbose=False):

"""

Parameters

signals: ndarray

path: ndarray

states: slice

n_iter: int

n_proc: int

verbose: bool

"""

range of mask: (-1, 1)

n_times = signals.shape[-1]

n_states = path.max() + 1

mask = np.ones((n_states, n_times)) * 0

for state in range(n_states):

mask[state][state == path] = 1

mask /= mask.sum(axis=-1, keepdims=True)

momented = np.dot(signals, mask.T)

return momented

def out_scatter(locations, masks, titles):

import matplotlib.pyplot as plt

import matplotlib.gridspec

z, y, x = locations.T

gs = matplotlib.gridspec.GridSpec(2, 1, hspace=0)

for title, mask in zip(titles, masks):

fig = plt.figure()

ax = plt.subplot(gs[0])

if mask.dtype == bool:

ax.scatter(x, y, color=’grey’)

128

ax.scatter(x[mask], y[mask], color=’red’)

else:

ax.scatter(x, y, c=mask)

plt.ylabel(’Y’)

plt.title(title)

ax = plt.subplot(gs[1], sharex=ax)

if mask.dtype == bool:

ax.scatter(x, z, color=’grey’)

ax.scatter(x[mask], z[mask], color=’red’)

else:

ax.scatter(x, z, c=mask)

plt.ylabel(’Z’)

plt.xlabel(’X’)

plt.xlim(0, 1024)

plt.show()

def out_plot(signals, masks, titles):

import matplotlib.pyplot as plt

import matplotlib.gridspec

gs = matplotlib.gridspec.GridSpec(2, 1, hspace=0, height_ratios=[10, 1])

for title, mask in zip(titles, masks):

fig = plt.figure()

ax = plt.subplot(gs[0])

ax.plot(signals[mask].T)

plt.ylabel(r’$\Delta F / F$’)

plt.title(title)

ax = plt.subplot(gs[1], sharex=ax)

ax.imshow(mask.reshape((1, mask.size)), interpolation=’none’, aspect=’auto’)

plt.xlabel(’Time [frame]’)

plt.xlim(0, signals.shape[-1])

plt.show()

def state_labels(prefix, n_phases, quiescence=True):

n_digit = len(str(n_phases - 1))

format_str = ’{}{{:0{}}}’.format(prefix, n_digit)

labels = [format_str.format(num) for num in range(n_phases)]

if quiescence:

labels = [prefix + ’Q’] + labels

return labels

def canonical_labels(n_forward, n_backward, n_turning):

return (state_labels(’S’, 0) + state_labels(’F’, n_forward) +

state_labels(’B’, n_backward) + state_labels(’TL’, n_turning) +

state_labels(’TR’, n_turning))

def transition_matrix(n_forward, n_backward, n_turning,

129

propagate, trigger, cool, excite):

high precision

propagate = ap.mpf(str(propagate))

trigger = ap.mpf(str(trigger))

cool = ap.mpf(str(cool))

excite = ap.mpf(str(excite))

def subtransition(n_states, trigger, cool, propagate):

sub = hp.diag([1.0 - trigger - cool] + [1.0 - propagate] * n_states)

q_id = 0

sub[q_id, q_id + 1] = trigger

for row in range(0, -n_states, -1):

sub[row - 1, row] = propagate

return sub

prob_arr = hp.zeros((n_forward + 1 +

n_backward + 1 +

(n_turning + 1) * 2 +

1,) * 2)

sq_id = 0 # id of steady quiscence

eqf_id = sq_id + 1 # id of excited quiescence for forward wave

eqb_id = eqf_id + n_forward + 1 # id of excited quiescence for backward wave

eqtl_id = eqb_id + n_backward + 1 # id of excited quiescence for left turning

eqtr_id = eqtl_id + n_turning + 1 # id of excited quiescence for right turning

for steady quiescence

prob_arr[sq_id, sq_id] = 1 - 4 * excite

prob_arr[sq_id, eqf_id] = excite

prob_arr[sq_id, eqb_id] = excite

prob_arr[sq_id, eqtl_id] = excite

prob_arr[sq_id, eqtr_id] = excite

for excited quiescence which triggers forward wave

prob_arr[eqf_id, sq_id] = cool

for excited quiescence which triggers backward wave

prob_arr[eqb_id, sq_id] = cool

for excited quiescence which triggers turning

prob_arr[eqtl_id, sq_id] = cool

prob_arr[eqtr_id, sq_id] = cool

for forward wave

forward_arr = subtransition(n_forward, trigger, cool, propagate)

prob_arr[eqf_id:eqb_id, eqf_id:eqb_id] = forward_arr

130

for backward wave

backward_arr = subtransition(n_backward, trigger, cool, propagate)

prob_arr[eqb_id:eqtl_id, eqb_id:eqtl_id] = backward_arr

for left turning

turning_arr = subtransition(n_turning, trigger, cool, propagate)

prob_arr[eqtl_id:eqtr_id, eqtl_id:eqtr_id] = turning_arr

for right turning

prob_arr[eqtr_id:, eqtr_id:] = turning_arr

return prob_arr / prob_arr.sum(axis = -1, keepdims = True)

def emission_matrix(n_waves, n_turnings, sigma):

n_states = (n_waves + 1) * 2 + (n_turnings + 1) * 2 + 1

n_cells = n_waves * 2

n_obs = 2 ** n_cells

emit_arr = hp.zeros((n_states, n_obs))

quiscence

silent = ap.mpf(n_waves)

spon = ap.mpf(1)

sq_id = 0

emit_arr[sq_id] = spon

emit_arr[sq_id, 0] = silent

eqf_id = sq_id + 1

emit_arr[eqf_id] = spon

emit_arr[eqf_id, 0] = silent

eqb_id = eqf_id + n_waves + 1

emit_arr[eqb_id] = spon

emit_arr[eqb_id, 0] = silent

eqtl_id = eqb_id + n_waves + 1

emit_arr[eqtl_id] = spon

emit_arr[eqtl_id, 0] = silent

eqtr_id = eqtl_id + n_turnings + 1

emit_arr[eqtr_id] = spon

emit_arr[eqtr_id, 0] = silent

seed for templates

seed = np.eye(n_waves)

blur = np.array([scipy.ndimage.filters.gaussian_filter1d(vec, sigma)

131

for vec in seed])

def subemission(template, n_states):

n_cells = len(template)

emission = hp.zeros((n_states, 2 ** n_cells))

for o_id, mask in enumerate(itertools.product(

*itertools.repeat((False, True), n_cells))):

for s_id in range(n_states):

selected = template[np.array(mask[::-1]), s_id]

emission[s_id][o_id] = selected.mean() if len(selected) != 0 else 0

return emission

forward wave

forward_template = hp.asmparray(np.r_[blur, blur][:, ::-1])

emit_arr[eqf_id + 1:eqb_id] = subemission(forward_template, n_waves)

backward wave

backward_template = forward_template[:, ::-1]

emit_arr[eqb_id + 1:eqtl_id] = subemission(backward_template, n_waves)

#anterior_subtemplate = np.zeros_like(blur)

#anterior_subtemplate[:n_turnings] = blur[-n_turnings:, ::-1]

left turning

#left_turning_template = hp.asmparray(np.r_[anterior_subtemplate,

np.zeros(blur.shape)])

#emit_arr[eqtl_id + 1:eqtr_id] = subemission(left_turning_template, n_turnings)

right turning

#right_turning_template = hp.asmparray(np.r_[np.zeros(blur.shape),

anterior_subtemplate])

#emit_arr[eqtr_id + 1:] = subemission(right_turning_template, n_turnings)

left turning

left_turning_template = hp.asmparray(np.r_[blur, np.zeros(blur.shape)])

emit_arr[eqtl_id + 1:eqtr_id] = subemission(left_turning_template, n_turnings)

right turning

right_turning_template = hp.asmparray(np.r_[np.zeros(blur.shape), blur])

emit_arr[eqtr_id + 1:] = subemission(right_turning_template, n_turnings)

return emit_arr / emit_arr.sum(axis = -1, keepdims = True)

def smooth(vec, noise_sigma, background_sigma):

blur = scipy.ndimage.filters.gaussian_filter1d(vec, noise_sigma)

background = scipy.ndimage.filters.gaussian_filter1d(vec, background_sigma)

return blur / background - 1

132

def viterbi_path(observation, transition, emission, init_dist, verbose=False):

’’’

returns viterbi path.

Parameters

observation: integer array of shape (T,)

observation[i] is the observation on time i.

transition: float array of shape (S, S)

transition[i, j] is the transition probability of transiting from state i to state j.

emission: float array of shape (S, O)

emission[i, j] is the probability of observing j from state i.

init_dist: float array of shape (S,)

init_dist[i] is the initial probability of being state i.

Returns

viterbi_path: integer array of shape (T,)

The most likely state sequence.

’’’

input parameter validation

if observation.dtype != int:

raise ValueError(’Condition observation.dtype == int not met.’)

n_states, n_obs = emission.shape

if transition.shape != (n_states,) * 2:

raise ValueError(’’)

if init_dist.shape != (n_states,):

raise ValueError(’’)

if not observation.max() < n_obs:

raise ValueError(’’)

if not hp.array_equiv(hp.asmparray(transition, ap.iv.mpf).sum(axis=-1), 1):

raise ValueError(’’)

if not hp.array_equiv(hp.asmparray(emission, ap.iv.mpf).sum(axis=-1), 1):

raise ValueError(’’)

if not hp.array_equiv(hp.asmparray(init_dist, ap.iv.mpf).sum(), 1):

raise ValueError(’’)

most likely path (viterbi path)

n_times = len(observation)

133

path_probs = hp.zeros((n_times, n_states))

path_states = np.empty((n_times, n_states), int)

if verbose:

print(’Determining state for each frame’)

path_probs[0] = emission[:, observation[0]] * init_dist

with tqdm.trange(1, n_times, unit=’frame’, disable=not verbose) as pbar:

for time in pbar:

for state in range(n_states):

every_probs = (path_probs[time - 1] * transition[:, state] *

emission[state, observation[time]])

max_prob_state = every_probs.argmax()

path_states[time, state] = max_prob_state

path_probs[time, state] = every_probs[max_prob_state]

viterbi path

viterbi_path = np.empty(n_times, int)

viterbi_path[-1] = path_probs[-1].argmax()

for time in range(1, n_times)[::-1]:

viterbi_path[time - 1] = path_states[time, viterbi_path[time]]

return viterbi_path

def baum_welch_iter(observation, transition, emission, init_dist,

n_iter, verbose=False):

for num in range(n_iter):

if verbose:

print(’Iter {}’.format(num))

transition, emission, init_dist = baum_welch(observation, transition,

emission, init_dist,

verbose=verbose)

return transition, emission, init_dist

def baum_welch_converge(observation, transition, emission, init_dist,

verbose=False):

prev_viterbi = viterbi_path(observation, transition, emission, init_dist,

verbose)

for num in itertools.count():

if verbose:

print(’Iter {}’.format(num))

transition, emission, init_dist = baum_welch(observation, transition,

emission, init_dist,

verbose=verbose)

next_viterbi = viterbi_path(observation, transition, emission,

init_dist, verbose)

134

if np.all(prev_viterbi == next_viterbi):

return transition, emission, init_dist

else:

prev_viterbi = next_viterbi

def baum_welch(observation, transition_seed, emission_seed, init_dist_seed,

verbose=False):

’’’

returns the maximum likelihood estimate of the parameters of a HMM.

Parameters

observation: integer array of shape (T,)

observation[i] is the observation on time i.

transition_seed: float array of shape (S, S)

transition_seed[i, j] is the transition probability of transiting from state i to state j.

emission_seed: float array of shape (S, O)

emission_seed[i, j] is the probability of observing j from state i.

init_dist_seed: float array of shape (S,)

init_dist_seed[i] is the initial probability of being state i.

Returns

transition: float array of shape (S, S)

transition[i, j] is the transition probability of transiting from state i to state j.

emission: float array of shape (S, O)

emission[i, j] is the probability of observing j from state i.

init_dist: float array of shape (S,)

init_dist[i] is the initial probability of being state i.

’’’

input parameter validation

if observation.dtype != int:

raise ValueError(’Condition observation_seed.dtype == int not met.’)

n_states, n_obs = emission_seed.shape

if transition_seed.shape != (n_states,) * 2:

raise ValueError(’’)

if init_dist_seed.shape != (n_states,):

raise ValueError(’’)

135

if not observation.max() < n_obs:

raise ValueError(’’)

if not hp.array_equiv(hp.asmparray(transition_seed,

ap.iv.mpf).sum(axis=-1), 1):

raise ValueError(’’)

if not hp.array_equiv(hp.asmparray(emission_seed,

ap.iv.mpf).sum(axis=-1), 1):

raise ValueError(’’)

if not hp.array_equiv(hp.asmparray(init_dist_seed, ap.iv.mpf).sum(), 1):

raise ValueError(’’)

forward procedure

n_times = len(observation)

for_probs = hp.zeros((n_times, n_states))

for_probs[0] = emission_seed[:, observation[0]] * init_dist_seed

if verbose:

print(’Proceding forward’)

with tqdm.trange(1, n_times, unit=’frame’, disable=not verbose) as pbar:

for time in pbar:

for state in range(n_states):

for_probs[time, state] = (np.dot(for_probs[time - 1],

transition_seed[:, state]) *

emission_seed[state, observation[time]])

backward procedure

back_probs = hp.zeros((n_times, n_states))

back_probs[-1] = 1.0

if verbose:

print(’Proceding backward’)

with tqdm.tqdm(range(n_times - 1)[::-1], unit=’frame’,

disable=not verbose) as pbar:

for time in pbar:

for state in range(n_states):

back_probs[time, state] = np.dot(transition_seed[state],

back_probs[time + 1] *

emission_seed[:, observation[time]])

probability

mono_probs = for_probs * back_probs

mono_probs /= mono_probs.sum(axis=-1, keepdims=True)

intermediate = np.array([emission_seed[state][observation[1:]]

for state in range(n_states)]).T

need pbar

binary_probs = (for_probs[:-1][..., np.newaxis] *

transition_seed[np.newaxis] *

136

back_probs[1:][:, np.newaxis] *

intermediate[:, np.newaxis])

binary_probs /= binary_probs.sum(axis=-1).sum(axis=-1)[:, np.newaxis,

np.newaxis]

update

init_dist = mono_probs[0]

transition = (binary_probs.sum(axis=0) /

mono_probs[:-1].sum(axis=0)[:, np.newaxis])

transition /= transition.sum(axis=-1, keepdims=True) # normalize

indicator = np.array([observation == obs_id for obs_id in range(n_obs)])

emission = (np.dot(indicator, mono_probs) / mono_probs.sum(axis=0)).T

return transition, emission, init_dist

137

B.3 signal

###

##

Canal: Calcium imaging ANALyzer

##

Copyright (C) 2015-2016 Youngtaek Yoon <caviargithub@gmail.com>

##

This file is part of the source code of Canal.

##

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

##

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

##

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

##

###

import numpy as np

import scipy.ndimage.filters

import canal.local

import multiprocessing as mp

import tqdm

import scipy.stats

import scipy.interpolate

import canal.image.esti

def _sharpen_kernel(vec, width):

label, label_max = scipy.ndimage.label(vec)

ret = np.zeros_like(vec)

for l in range(1, label_max + 1):

mask = l == label

start = mask.argmax()

for index in range(start, min(start + width, vec.size)):

if mask[index]:

ret[index] = True

return ret

138

def _sharpen_array(arr, width):

if arr.ndim == 1:

return _sharpen_kernel(arr, width)

else:

buf = np.empty(arr.shape, bool)

for num, elem in enumerate(arr):

buf[num] = _sharpen_array(elem, width)

return buf

def _sharpen_packed(args):

return _sharpen_array(*args)

def _sharpen_parallel(arr, width, n_proc, verbose):

with mp.Pool(processes=n_proc) as pool:

args = ((elem, width) for elem in arr)

buf = np.empty(arr.shape, bool)

with tqdm.tqdm(args, total=len(arr), disable=not verbose) as pbar:

for num, ret in enumerate(pool.imap(_sharpen_packed, pbar)):

buf[num] = ret

return buf

def sharpen(arr, width, verbose=False):

arr = np.asarray(arr)

if arr.ndim == 1 or len(arr) == 1:

return _sharpen_array(arr, width)

else:

n_proc = min(mp.cpu_count() - 1, len(arr))

return _sharpen_parallel(arr, width, n_proc, verbose)

binarize -> _binarize_array -> _binarize_kernel

def _binarize_kernel(vec, dev):

gaussian approximation of background

center, std = canal.image.esti.statistic_background(vec, 512)

centered = vec - center

return centered > dev * std

def _binarize_array(arr, dev):

if arr.ndim == 1:

return _binarize_kernel(arr, dev)

else:

buf = np.empty(arr.shape, bool)

for num, elem in enumerate(arr):

buf[num] = _binarize_array(elem, dev)

return buf

def _binarize_packed(args):

139

return _binarize_array(*args)

def _binarize_parallel(arr, dev, n_proc, verbose):

with mp.Pool(processes=n_proc) as pool:

args = ((elem, dev) for elem in arr)

buf = np.empty(arr.shape, bool)

with tqdm.tqdm(args, total=len(arr), disable=not verbose) as pbar:

for num, ret in enumerate(pool.imap(_binarize_packed, pbar)):

buf[num] = ret

return buf

def binarize(arr, dev, verbose=False):

arr = np.asarray(arr)

if arr.ndim == 1 or len(arr) == 1:

return _binarize_array(arr, dev)

else:

n_proc = min(mp.cpu_count() - 1, len(arr))

return _binarize_parallel(arr, dev, n_proc, verbose)

def _normalize_kernel(vec, width):

baseline estimation

base_esti = canal.local.minimum(vec, width)

base_blur = scipy.ndimage.filters.gaussian_filter1d(base_esti, width)

flat = vec / base_blur - 1

gaussian approximation of background noise

center, std = canal.image.esti.statistic_background(flat, 512)

return flat - center

def _normalize_array(arr, width):

if arr.ndim == 1:

return _normalize_kernel(arr, width)

else:

buf = np.empty(arr.shape)

for num, elem in enumerate(arr):

buf[num] = _normalize_array(elem, width)

return buf

def _normalize_packed(args):

return _normalize_array(*args)

def _normalize_parallel(arr, width, n_proc, verbose):

with mp.Pool(processes=n_proc) as pool:

args = ((elem, width) for elem in arr)

buf = np.empty(arr.shape)

with tqdm.tqdm(args, total=len(arr), disable=not verbose) as pbar:

140

for num, ret in enumerate(pool.imap(_normalize_packed, pbar)):

buf[num] = ret

return buf

def normalize(arr, width, verbose=False):

arr = np.asarray(arr)

if arr.ndim == 1 or len(arr) == 1:

return _normalize_array(arr, width)

else:

n_proc = min(mp.cpu_count() - 1, len(arr))

return _normalize_parallel(arr, width, n_proc, verbose)

141

	Introduction
	Behavior and Nervous System
	Acqusition of Activity of Neural Circuit
	Calcium Imaging Technique
	Model Animal: Drosophila larvae
	Behaviors
	Nervous System

	Methods
	Drosophila melanogaster strains
	Calcium Imaging
	Preparation
	Light-sheet Microscopy
	Imaging Protocol

	Preprocessing
	Drift Correction
	Morphology Detection
	Cell Detection
	Normalization

	Circuit State Detection
	Hidden Markov Model

	Other Numerical Methods
	K-means Clustering

	Results
	Distribution of Neurons in the CNS
	Calcium Imaging Movie
	Dynamics Movie
	Intermediate Movie and Reference Movie

	Drift Correction
	Application
	Validation

	Normalization
	Circuit State Detection
	Application

	Activity Profiles of Cells
	Motor Activity-dependent Neurons

	Discussion
	Numerical Data
	Circuit State Detection

	Codes
	image.registration
	models
	signal

