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Abstract

This thesis deals with particle physics of dark matter, particularly emphasizing the

importance of particle physics phenomena in the early universe. Dark matter is one of

the biggest mysteries in modern physics. Despite convincing evidence of its existence, its

properties as a particle remain largely unknown.

Dark matter is a relic of the early universe if standard big bang cosmology applies.

Understanding the behavior and interactions of dark matter in the early universe allows

us to predict the present abundance of dark matter. Understanding how dark matter

interacts also allows us to map constraints from dark matter detection experiments to

the viable parameter space of the dark matter model in consideration.

In particular, this thesis deals with a specific type of dark matter production mech-

anism called coannihilation, where there exists, in addition to dark matter, a particle

mediating the dark sector and the visible sector, and its mass is very close to that of

the dark matter particle. We go through the calculations of coannihilation involving a

particle carrying color (Quantum Chromodynamics, or QCD) charges, and emphasize

the e↵ects of the formation of colored bound state on the prediction of dark matter relic

abundance on top of the better-known Sommerfeld e↵ects. In addition, we study the

case where the particle is also electrically charged.

Furthermore, we discuss other cosmological implications of colored bound states. If

the colored particle’s lifetime is long, it could a↵ect the theoretical predictions of the

big bang nucleosynthesis. It is known that the standard calculation (without including

e↵ects of exotic particles) of processes of big bang nucleosynthesis matches well with

experimental observations, placing a stringent limit on the abundance of the long-lived

particle. The formation of colored bound state in the early universe can change the pre-

diction of the abundance of such a long-lived particle. If dark matter is super weakly

interacting, the decay of the frozen-out colored particle can contribute to the relic abun-

dance of dark matter as well. Finally, we study how the Large Hadron Collider (LHC)

can probe scenarios of coannihilation and long-lived colored particles.

Summarizing our results, we find that for most cases, on top of the Sommerfeld

enhancement, bound-state e↵ects can further significantly increase the largest possible

DM masses which can give the observed DM relic abundance, by ⇠ 30 � 100% with
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respect to values obtained by considering the Sommerfeld e↵ect only while considering

DM coannihilating with color triplet or octet exotic particles. In particular, it indicates

that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the

Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ⇠ 2.5

TeV. Such cosmological upper limits on the DM mass have far-reaching consequences;

given that collider experiments constrain the mass of exotic massive colored particles

from below, a more precise calculation of the relic abundance of DM tells us whether

the LHC or a prospective high-energy collider can cover all parameter regions of the

coannihilation scenarios. We find that a prospective 100 TeV could not test the right-

handed stop-Bino coannihilation scenario fully, in contrast to previous estimates.
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Chapter 0

Preface

The discovery of the final missing piece of the Standard Model (SM), the Higgs boson,

at the Large Hadron Collider (LHC) in 2012 is arguably one of the most important

milestones in the history of mankind [1, 2]. This however, does not mean that we are

done with particle physics. In fact, the Higgs itself brings up troubles and questions

from the physicist’s point of view. How the Higgs mass is tuned at the electroweak scale

even though the radiative correction to its mass is quadratically divergent is one of the

biggest questions (hierarchy or naturalness problem). Even neglecting the Higgs, there

are mysteries involving the existence of dark energy and dark matter (DM). Particularly,

the latter, of which the nature remains largely unknown, has attracted attention of

physicists resolving its issues from the perspective of particle physics.

For these and many other reasons, the particle physics community has been bustling

with rigorous activities, both in theory and experiment. Experimental physics has been

advancing our understanding at a remarkable pace. The LHC has not only discovered

a Higgs boson, but also ruled out many SM extensions. Experiments aiming to detect

the scattering of particle DM with nuclei have achieved fruitful results, and many more

similar experiments are going to operate soon. There is also a number of experimental

programs that look for signals from the sky via space telescopes and Earth-based de-

tectors. These experiments have also helped us understand particle physics as well as

cosmic rays and astrophysics.

From the theoretical point of view, it has been expected that along with the Higgs,

there must be new particles near the weak scale that could resolve the large hierarchy

between the weak scale and the Planck scale induced by the relatively light Higgs.

However, the LHC which probes the weak scale at the highest energy, has so far failed

to find such particles. This has caused many people to abandon naturalness as a guiding

principle of new physics. Without naturalness, new physics can appear at any scale, and

since the LHC’s capability to probe new physics is at best the TeV scale, it seems to be

hopeless to find anything new at the energy frontier.
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Dark matter may be another guiding principle about where the new physics (or new

particle mass) scale lies at. The cosmological cold dark matter density depends on its

annihilation and coannihilation rate, as well as its mass. In this thesis, we focus on

the dark matter coannihilating with a certain colored particle. In such a scenario, it is

possible to impose a cosmological upper bound on the dark matter mass (as well as the

mass of the accompanying coannihilator) by requiring the dark matter density to be

consistent with the observed one.

Particularly, we emphasize the e↵ects of QCD bound states on the dark matter relic

abundance. As will be shown in the following, dark matter relic abundance can be re-

duced by the bound-state e↵ects. In many cases, the relic abundance of dark matter is

significantly reduced as compared to previously obtained results. With these new cal-

culations, one can impose a cosmological upper bound on the dark matter mass more

confidently and project how experimental searches (particularly searches at the LHC)

probe the viable parameter region of this type of models. While the scope of this study

is beyond the study of coannihilation in supersymmetry (SUSY), it is worthwhile to

emphasize one important implication of our calculations: that the stop/bino coannihi-

lation scenario can no longer be discovered with a standard monojet search, even at a

prospective 100 TeV collider.

This thesis is organized as follows. In Chapter 1, we illustrate the history and obser-

vational evidence that establish DM as a new particle that cannot be explained within

the SM framework. We also set up basic cosmological notations used throughout the

thesis.

Chapter 2 is dedicated to contemporary experimental methods that look for hints

of non-gravitational interactions of DM. We will review the direct detection, indirect

detection and collider search strategy used to look for possible particle physics signature

of dark matter.

Chapter 3 discusses how to calculate the relic density of dark matter. The main ingre-

dient is the Boltzmann equation governing the number density of dark matter throughout

the cosmological history. We also describe how the coannihilation process, the main topic

of this thesis, a↵ects the number density of dark matter.

In Chapter 4, we deal exclusively with the early universe reactions of colored particles,

which act as the coannihilator of dark matter. We give an account of the particles’

annihilation cross section and the e↵ects of Sommerfeld.

In Chapter 5, we provide an account of the formation of QCD bound state in the

early universe and its consequences on the relic density of dark matter. We discuss the

formation and dissociation rates of bound states, as well as the bound-state e↵ects on

the Boltzmann equations.

Chapter 6 deals with the numerical results of the dark matter relic density for the

cases of interest. We also study the implications of our results on the Big Bang Nucleosyn-

2



thesis constraint on long-lived particles, and the collider constraints on colored particles.

We also discuss how our newly calculated results change previously made conclusions on

the coannihlation scenarios. Finally, we conclude.

Materials presented in Chapter 4, 5 and 6 are based on [3].
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Chapter 1

Introduction

We first give a brief historical account of the discovery of dark matter (DM). We then

provide a more detailed description of modern experiments and observations that estab-

lish convincingly the existing evidence of DM as the solution of the “missing matter”

problem.

1.1 History of dark matter

The matter density in the local galactic neighborhood can be used to infer the dynamics

of stellar objects. The use of stellar objects’ velocity to determine the possible existence

of DM was first suggested by Kapetyn and then later emphasized by Oort [4, 5].

Beyond local galactic neighborhood, one can, utilizing the mass-to-light ratio of galac-

tic clusters, deduce how fast galaxies move in the clusters under the gravitational in-

fluence of luminous matter. In 1930s, Zwicky found a mass discrepancy as he measured

the galaxies’ redshifts in the Coma cluster [6]. According to his observation, the galaxies

were moving so fast relative to the cluster mean velocity that, the required cluster mass

would have to be 400 times larger than the observed luminous matter mass. Zwicky pro-

posed the existence of DM within the cluster in order to resolve the discrepancy. Three

years later, Smith found that the Virgo cluster behaves similarly, i.e. the mass-to-light

ratio is unexpectedly high [7].

Since then, there were a few more observations of anomalous dynamics of various

galactic objects but the DM interpretation was not given much attention. Around 25

years later, Kahn and Woltjer observed that the M31 and the Milky Way galaxy were

moving towards each other [8]. As both of them were not likely to have been formed

very far from each other, they must have performed at least one orbit around their

center of gravity. Kahn and Woltjer deduced from the mass of the Local Group from

this observation and found that the required mass is at least six times larger than the

observed one, i.e. there is some invisible form of matter.
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1.2. Cosmology

It was not until 1970s that observations of anomalous behaviors of the rotation

curve of galaxies provided clear evidence of the existence of DM. The first work can

be traced to 1939; Babcock showed that the rotation curve of M31 had unexpectedly

high velocity [9]. In 1970s, the work of Rubin and Ford, and subsequent observations

using 21-cm line by Roberts and Whitehurst strongly suggested the presence of DM in

various galaxies [10, 11]. These results were further corroborated by the works of Ostriker

and Peebles on the stability of galactic disks, and independent works of Einasto & Saar

and Ostriker et. al. on companion galaxies [12–14]. The majority of astronomers were

convinced by the concept of DM at that time.

The next big question was whether DM is hot (relativistic) or cold (non-relativistic).

Initially the focus was on hot DM, where neutrino was considered the natural candidate

of DM as no ingredients beyond the Standard Model (SM) are required[15]. Neutrino

also satisfies the condition of DM being weakly interacting. The relation of hot DM

with cosmic structure formation was studied by the Zel’dovich group and the hot DM

interpretation was later ruled out by simulation of the nonlinear growth of structure of

the universe [16].

Gravitino, the supersymmetric (SUSY) partner of graviton with mass . 1keV was

studied as the candidate of DM in 1982 [17]. Warm and cold DM were studied in the

same year as well [18]. Subsequent studies focused on the cosmic structure of the universe

due to DM, and during the same period of time, neutralino (SUSY partner of neutral

gauge boson) was suggested as the candidate of DM. [19] By then, there was a consensus

that part of our universe consists of (cold) DM within the scientific community. Along

with the discovery of dark energy, the so-called ⇤CDM cosmology (where the energy

density of the universe is assumed to be consisting of baryons, non-baryonic DM and

dark energy) has become the “standard model” of cosmology.

1.2 Cosmology

Before making more quantitative description and exploration, let us first set up the

notations of cosmology used in this dissertation. For a more complete account of relevant

topics, see e.g. [20] and [21]. From observations such as the X-ray background radiation

and galaxy surveys, it is safe to assume that our universe is isotropic (the universe looks

the same (at large scale) in all direction) and homogeneous (observers see the same

conditions at any point in the universe). Mathematically, this leads to the Friedmann-

Robertson-Walker metric, of which the line element reads

gµ⌫dxµdx⌫ = ds2 = dt2 � a2(t)



dr2

1 � kr2

+ r2

�

d✓2 + sin2 ✓ d�2

�

�

, (1.1)

where a(t) is the scale factor. r, ✓ and � are the comoving spatial coordinates. k deter-

mines the spatial curvature of the universe, i.e. k = �1 corresponds to an open, k = 0
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1.2. Cosmology

to a flat and k = +1 to a closed universe.

Meanwhile, the Einstein’s equations are:

Rµ⌫ � 1

2
gµ⌫R = 8⇡GTµ⌫ . (1.2)

Rµ⌫ and R are the Ricci tensor and Ricci scalar, respectively. G is the gravitational

constant and Tµ⌫ is the energy-momentum tensor. At large scale, vector and tensor

fields of matter average to zero, and thus they should be isotropic and homogenous.

Then, the energy-momentum tensor should take the following form:

Tµ
⌫ =

0

B

B

B

@

+⇢ 0 0 0

0 �p 0 0

0 0 �p 0

0 0 0 �p

1

C

C

C

A

. (1.3)

The energy conservation law T 0µ
;µ = 0 is satisfied in the Friedmann-Robertson-Walker

metric, giving

⇢̇+ 3 H (⇢+ p) = 0, (1.4)

where H ⌘ ȧ/a is the Hubble parameter, which is an important parameter describing

the expansion rate of the universe. Solving the Einstein’s equations gives the Friedmann

equation:

H2 =
8⇡G

3
⇢� k

a2

. (1.5)

If the equation state of matter is proportional to ⇢, i.e.

p = w⇢, (1.6)

we can solve Eq. (1.4), giving

⇢ / a�3�3w. (1.7)

The most interesting cases with physical meaning are as below:

cold matter (non-relativistic) : ⇢M / a�3 (1.8)

hot matter (relativistic) : ⇢R / a�4 (1.9)

vacuum energy : ⇢
⇤

= �p
⇤

= constant (1.10)

If our universe is flat, i.e. k = 0, the scale factor a(t), after solving the Friedmann

equation has simple form:

cold matter dominated : a(t) / t2/3 (1.11)

hot matter dominated : a(t) / p
t (1.12)

vacuum energy dominated : a(t) / exp(Ht) (1.13)
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1.3. Evidence

From the results of the Supernova Cosmology Project and the High-z Supernova Search

Team [22, 23], we know that the current universe is dominated by vacuum energy and the

expansion of our universe is accelerating, i.e. our universe is well described by Eq. (1.13).

It is convenient to rewrite the ⇢’s (⇢i) as follows:

⌦i(t) =
⇢i(t)

⇢c(t)
, (1.14)

where

⇢c(t) =
3H2

0

8⇡G
' 1.05 ⇥ 10�5 h2 GeV cm�3. (1.15)

⇢c(t) is called the critical density. H
0

is the present value of the Hubble parameter. h is

a value parametrized as follows:

H
0

= 100 h km s�1 Mpc�1, (1.16)

where measurements show that h ' 0.7.

With all three types of matter/energy (relativistic and non-relativistic matter, vac-

uum energy) and arbitrary curvature k, we have, from the Friedmann equation,

1 = ⌦R(z) + ⌦M (z) + ⌦
⇤

(z) � k

a2H2

, (1.17)

or, at present,

1 = ⌦R + ⌦M + ⌦
⇤

+ ⌦k, (1.18)

where ⌦k = � k
a2H2

0
.

1.3 Evidence

The amount of DM in a certain astronomical object cannot be measured directly. Typ-

ically, one measures the total amount of visible and invisible matter, and deduct the

amount of visible matter which is measured by other means. Out of a plethora of as-

tronomical and cosmological observations relating to DM, let us describe in more detail

several modern pieces of convincing evidence establishing particle DM as the explanation

of the observed “missing matter” in the universe, with a special emphasis on cosmic mi-

crowave background (CMB). Let us first notice that there were a few alternate theories

to explain the “missing matter” problem. For example, Newtonian dynamics could mod-

ified at large scale (MoND), or there might be massive compact halo object (MACHO).

We will show that such explanations are disfavored by observations in the following.

We first give a more quantitative description of the rotation curves of galaxies. Using

classical Newtonian laws, one can show that, if M(r) is the total mass inside a sphere of

radius r from the galactic center, the velocity v(r) of a test particle as a function of r is

v(r) =

r

GM(r)

r
. (1.19)
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1.3. Evidence

Figure 1.1: Typical velocity distribution of objects compared to the distance from the

galactic center. The dashed-dotted line labelled ”halo” is the expected mass contribution

to the velocity distribution from DM, whereas the dashed and dotted lines show the

contribution from disk and gas. Figure taken from [24, 25].

Outside the observable disk, the velocity of objects is expected to fall as
p

1/r. However,

as described previously, objects’ velocity remains constant at large r away from the

luminous disk (see Fig. 1.1). This phenomenon can be explained by the existence of

massive and invisible DM with halo density profile proportional to 1/r2.

Indeed, theories of MoND could in principle explain the anomalous rotation curves

at large scale. Let us invoke another remarkable evidence that can rule out MoND:

colliding clusters (or the so-called bullet cluster named 1E 0657-558) as observed in 2006

using the Hubble Telescope [26]. The fluid-like, X-ray emitting component forming the

baryonic majority of the cluster galaxies, is observed to form a clear shock profile. See

Fig . However, when mapping out the weak gravitational lensing of the system, the mass

distribution does not trace the distribution of hot plasma. Instead, it behaves as if there

8



1.3. Evidence

Figure 1.2: Shock profile of the bullet cluster [26]. The green contours show the gravita-

tional potential mapped from weak lensing, while the colored region represents X-rays

emission from the baryonic plasma. It can be seen that the mass distribution does not

trace the distribution of hot plasma.

are invisible objects that pass through each other without collision. This indicates the

particle-like behavior of DM and disfavors the MoND explanation.

1.3.1 Cosmic microwave background

Precision cosmology, in particular the measurement of the anisotropy of CMB gives

quantitavely the most concrete proof of DM. While the full treatment of CMB is out of

reach, here, we highlight features of the CMB anisotropy relevant to the energy density

of DM.1

The big bang theory tells us that the universe was hot and dense in the very beginning

of time. Photons were in thermal equilibrium with matter. When the universe started

to expand and cool to ⇠ 3000 K, atom hydrogen started to form and matter decoupled

with photon (recombination). The free photon is a relic of light from the epoch of the

last scattering, showing itself as CMB propagating in the present universe at ⇠ 3K.

While the almost isotropic CMB contains little information about the details of the

cosmological model, the CMB anistropies carry the imprint of fluctuations in the early

universe, which is fundamental to structure formation, and relevant to the matter content

1See, e.g. [27] for a more detailed account of this topic.
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1.3. Evidence

Figure 1.3: Temperature power spectrum presented by the Planck Collaboration [28]. The

red line shows the best fit of the temperature spectrum using the ⇤CDM cosmological

model. The lower panel shows the residuals of the power spectrum with respect to the

⇤CDM model.

and other important parameters of the universe.

It is the measurement of two point temperature correlation function that provides us

the statistical information of CMB anistropies. Equivalently, it is the measurement of the

power spectrum of Legendre moments Cl, which is the decomposition of the two point

temperature correlation function into normal modes. Fig. 1.3 shows the result presented

by the Planck Collaboration [28].

Before the last scattering, photon and baryons are tightly coupled to each other via

(photon-electron) Thomson scattering and (electron-proton) Coulomb interaction such

that, they form a fluid. Gravitational infall tends to compress the fluid, while the photon

pressure resists the compression, leading to acoustic oscillations. These oscillations froze

at recombination, and their imprints on the recombination surface becomes the acoustic

peaks in the temperature anisotropy observed as in Fig. 1.3.

The acoustic peaks have physical meanings. Odd (even) peaks represent the compres-

sion (rarefaction) phase of the fluid. The angular scale (position) of the first peak reflects

the distance the photon from the last scattering traveled, and thus determines the spatial

10



1.3. Evidence

curvature of our universe. Recent results show that at 95% confidence level [29]:

⌦k = 0.0008 ± 0.004. (1.20)

The second peak can be used to deduce the baryon density ⌦bh2. Baryons increase

the mass or inertia of the photon-baryon fluid, leading to an enhanced compression with

respect to rarefaction of the fluid. Thus, by comparing the ratio of the amplitudes of

the first and second peak, one can measure the baryon-to-photon ratio. The Planck

measurement gives the baryon abundance ⌦bh2 [29]:

⌦bh
2 = 0.02230 ± 0.00014. (1.21)

Note that the uncertainties quoted here and hereafter indicate the 68% confidence level

unless stated otherwise. It is worth to note that the baryon-to-photon ratio can as well

be determined independently from the Big Bang Nucleosynthesis (BBN) processes 2.

Both measurements are consistent with each other.

The third peak indicates how much DM there is. While baryons couple strongly

with photon before recombination, DM does not, and its compression is not a↵ected

by the counteracting photon pressure. This a↵ects the overall amplitude of the acoustic

peaks. The matter-to-photon ratio, and therefore the DM density ⌦
DM

h2 can then be

determined by relating the third peak with the first two, and recent results give:

⌦
DM

h2 = 0.1188 ± 0.0010. (1.22)

Roughly speaking, it tells us that DM makes up of around 26.8% of the energy density

of the universe.

It is worth mentioning another large scale observation carrying rich cosmological

information: baryon acoustic oscillations (BAO). The large scale structure of the universe

originates from the density anistropies, which can be traced back and related to the

CMB anistropies at recombination. The large survey on the distribution of galaxies, for

example the Sloan Digital Sky Survey (SDSS), gives a power spectrum of BAO showing

patterns matching those from CMB (see e.g. [31]).

1.3.2 Other issues

CMB anistropies, as well as BBN tell us clearly that most DM is non-baryonic. MACHO,

which are baryonic, such as faint stars, white dwarfs, etc., are against the CMB and

BBN observations. Indeed, other independent results show that MACHO has very little

contribution to ⌦
DM

h2 [32].

There is another issue about DM. Numerical simulations of DM halos with cold DM

are in tension with observations. N-body simulations also predict too great number of

2For a review of BBN, see e.g. [30].
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1.3. Evidence

low mass halos. It is still unclear how serious this problem is, as it remains unknown

whether the comparison of simulation with observation is appropriate [33].
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Chapter 2

Detecting dark matter

Arguments in the previous Chapter establish the existence of dark matter at the astro-

nomical/cosmological scale. As little is known about the particle aspects of dark matter,

various strategies have been devised to uncover the microscopic properties of dark mat-

ter. The purpose of this Chapter is to give a overview of these strategies.

Let us first see how the macroscopic nature of dark matter gives us some hints of the

particle properties of dark matter:

• Dark matter interacts weakly. The non-colliding behavior of bullet cluster im-

plies that the DM-DM scattering cross section is weak (� . /mDM < 0.7cm2g�1

for DM-DM scattering cross section [34]). As will be shown in the following, ter-

restrial experiments impose a stringent bound on the DM-baryon scattering cross

section (albeit the limit depends on DM mass).

• Dark matter is stable. Dark matter has lifetime as long as the age of the uni-

verse in order to explain all the astronomical and cosmological “missing matter”

problems. This translates to a lower limit on its lifetime: ⌧
DM

& 14 Gyr.

• Dark matter behaves classically. The fact that the observed behavior of dark

matter is classical imposes a lower bound on the dark matter mass, as the de Broglie

wavelength of DM cannot be as large as the size of galaxy (mDM & 10�22eV).

• Dark matter is not too heavy. Dark matter would lead to the kinematic heating

of the galactic disk if it is too heavy (see e.g. [35]). This leads to a limit mDM .
106M�.

Phenomenological properties mentioned above still give us very little information about

dark matter. Certain assumptions from the perspectives of particle physics and cosmol-

ogy are required in order to strategize DM detection. Perhaps the simplest assumption

is to assign DM a Z2 symmetry such that dark matter is stable at the cosmological
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2.1. Direct detection

Figure 2.1: A sketch on approaches to uncovering particle properties of dark matter.

scale. Another typical assumption is that there exists a certain interaction between DM

and visible sector such that the observed DM number density can be reproduced via

this type of interaction. One class of dark matter candidates called weakly interacting

massive particle (WIMP) in the literature indeed satisfies such conditions (or defined

as so). Three types of interaction can be deduced straightforwardly from these minimal

assumptions: DM-SM particle scattering, DM-DM annihilation to SM particles, and pro-

duction of DM from the collision of SM particles. These are used to strategize WIMP

detection. Fig. 2.1 summarizes schematically approaches to study the particle properties

of dark matter utilizing these types of interaction. 1

2.1 Direct detection

Dark matter propagates throughout our galactic halo. The maximum velocity the dark

matter travels is fixed by the galactic escape velocity. DM particles may come in contact

with the Earth and occasionally interact with the terrestrial baryons. The purpose of

1An example of non-WIMP dark matter is the axion, which is a by-product of the Peccei-Quinn

solution to the strong CP problem. Another example is the super-weakly interacting massive particle

(superWIMP), where its relic abundance gives the observed DM relic abundance assuming that the

early universe satisfies certain condition (e.g. reheating temperature). Some aspects of superWIMP will

be discussed in the following sections.
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2.1. Direct detection

direct detection experiments is to look for such rare elastic scatterings of nuclei with

dark matter by making experimental observation of the nuclei recoil. The scattering

event rate is given by R = Nh�
sca

vi, where N is the number of target nuclei in the

detector. h�
sca

vi accounts for dark matter number and velocity distributions as well as

the scattering cross section. More accurately, the observable related to these experiments

is the recoil energy Er of the target nuclei. Below a certain threshold recoil energy E
0

,

the detector is insensitive to the dark matter-nucleon scattering. The di↵erential event

rate can then be written as

dR

dEr
=

N⇢

m
DM

Z v
max

v
min

vf(~v)
d�

dEr
, (2.1)

where ⇢ is the local dark matter density, and f(~v) is the dark matter velocity distribution

(in the Earth frame) normalized to 1. vmin is the dark matter velocity that produces

the threshold recoil energy E
0

while vmax is the dark matter escape velocity. Based on

(2.1), we observe that the interpretation of direct detection experiments requires a good

knowledge of detector responses as well as the understanding of astrophysics (dark matter

velocity distribution), nuclear and particle physics (dark matter-nucleus scattering cross

section).

There are spin-dependent and spin-independent contributions to the the di↵erential

scattering cross section. In general, for an elastic scattering between DM and a nucleus

of proton number Z and nucleon number A, it can be written in the following form:

d�

dEr
=

mA

2µ2

Av2

(�SD
0

S(q) + �SI
0

F 2(q)). (2.2)

mA is the nucleus mass, and µA is the reduced mass of dark matter and the nucleus.

�SD/SI
0

are the spin-dependent and spin-independent cross sections at zero momentum

transfer q = 0. S(q) and F 2(q) are form factors describing the cross sections when there

is non-zero momentum transfer. The form factors are determined from nuclear physics.

They determine if the scattering is coherent with respect to all nucleons in the nucleus.

2.1.1 Spin-dependent scattering

Let us give a brief discussion of spin-dependent scattering.2 Assuming that DM is a Ma-

jorana fermion �, the spin-dependent contribution arises from the following Lagrangian

at the quark level:

L = ↵q
DM

(��µ�
5

�)(q�µ�5

q). (2.3)

At the nucleon level, the Lagrangian can be parametrized as

LN = (��µ�
5

�)(NsµN)
X

q=u,d,s

2↵q
DM

�N
q , (2.4)

2Here, we follow [36, 37] closely.
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2.1. Direct detection

with hn|q�µ�5

q|ni = 2snµ�n
q . The next step is to write the nuclear matrix element of the

nucleon operator. The nuclear matrix element of the spin operator is just the average

spin of protons and neutrons in the nucleus at zero transfer momentum. At non-zero

momentum transfer, the coherence loss is accounted by the form factor. It is common,

in correspondence to nuclear physics, to use the following notations:

ap =
X

q=u,d,s

2↵q
DMp

2GF

�p
q , an =

X

q=u,d,s

2↵q
DMp

2GF

�n
q (2.5)

a
0

= ap + an, a
1

= ap � an. (2.6)

The di↵erential cross section takes the following form:

d�

d|q|2 =
8

⇡v2

⇤2G2

FJ(J + 1)
S(|q|)
S(0)

. (2.7)

The form factor S(|q|) is of the following form:

S(|q|) = a2

0

S
00

(q) + a2

1

S
11

(q) + a
0

a
1

S
01

(q). (2.8)

J is the total angular momentum of the nucleus. ⇤ is given by

⇤ = (1/J)[aphSpi + anhSni], (2.9)

where hSni = hN |Sn|Ni is the expectation value of the spin of the neutron in the

nucleus, and similarly for hSpi. We show in Table 2.1 several elements often used in

direct detection experiments and values relevant to spin-dependent scattering.

2.1.2 Spin-independent scattering

For demonstration, we consider spin-independent scattering cross section arising from

the Lagrangian of the following form (scalar and vector part):3

L = ↵S
q ��qq + ↵V

q ��µ�q�µq. (2.10)

Note that the above Lagrangian is symbolic, i.e. we do not specify the particle nature of

dark matter. The di↵erential scattering cross section in general reads
✓

d�

dEr

◆

SI

=
mN�0

F 2(Er)

2µ2v2

. (2.11)

The reduced mass, µ, is defined as follows:

µ =
m

DM

mN

m
DM

+ mN
. (2.12)

3Here, we have ignored possible (e↵ective) couplings between DM and gluon
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2.1. Direct detection

Table 2.1: Elements and their atomic number Z, the total nuclear spin J , and the ex-

pectation values of the proton and neutron spins inside the nucleus hSp,ni. The nucleus

is indicated whether it contains odd numbers of protons or neutrons. The relative sen-

sitivities to spin-dependent interactions are also shown. Taken from [38].

Odd 4hSpi2(J + 1) 4hSni2(J + 1)

Nucleus Z Nuc. J hSpi hSni 3J 3J
19F 9 p 1/2 0.477 -0.004 9.1⇥10�1 6.4⇥10�5

23Na 11 p 3/2 0.248 0.020 1.3⇥10�1 8.9⇥10�4

27Al 13 p 5/2 -0.343 0.030 2.2⇥10�1 1.7⇥10�3

29Si 14 n 1/2 -0.002 0.130 1.6⇥10�5 6.8⇥10�2

35Cl 17 p 3/2 -0.083 0.004 1.5⇥10�2 3.6⇥10�5

39K 19 p 3/2 -0.180 0.050 7.2⇥10�2 5.6⇥10�3

73Ge 32 n 9/2 0.030 0.378 1.5⇥10�3 2.3⇥10�1

93Nb 41 p 9/2 0.460 0.080 3.4⇥10�1 1.0⇥10�2

125Te 52 n 1/2 0.001 0.287 4.0⇥10�6 3.3⇥10�1

127I 53 p 5/2 0.309 0.075 1.8⇥10�1 1.0⇥10�2

129Xe 54 n 1/2 0.028 0.359 3.1⇥10�3 5.2⇥10�1

131Xe 54 n 3/2 -0.009 -0.227 1.8⇥10�4 1.2⇥10�1

Form factor

Let us first discuss the form factor F (Er). When the transfer momentum q is zero,

every nucleon in the nucleus scatters equally with DM. However, when q is not zero,

DM resolves the internal structure of the nucleus and causes the loss of coherence of

scattering.

The form factor F (q), with q equivalent to the transferred momentum (q =
p

2mNEr

at the non-relativistic limit), is defined as

F (q) =
1

A(2⇡)3/2

Z

⇢(~r)e�i~q.~rd3r. (2.13)

⇢(~r) is the charge density and A is the proton number of the nucleus. One way to

parametrize the form factor is using the so-called Helm form factor [42]:

F (q) =
3j

1

(qR
1

)

qR
1

e� 1
2 q

2s2 , (2.14)

where j
1

is the 2nd spherical Bessel function and R
1

=
p

c2 + 7⇡2a2/3 � 5s2, with c, a

and s determined from nuclear physics data.
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 expectedσ 1 ±

Figure 2.2: Results on spin-independent dark matter-nucleon scattering (at 90% CL)

together with the regions (1�/2�) preferred by supersymmetric (CMSSM) models. Taken

from [39]. See [39] for details.

Hadronic matrix elements

The vector part of the spin-independent scattering as in Eq. (2.10) does not receive any

contribution from sea quarks and gluons. This is because the vector current conserves

charge. Only valence quarks contribute and �
0

in Eq. (2.11) is

�V
0

/ µ2

⇥

↵V
u (A + Z) + ↵V

d (2A � Z)
⇤

2

, (2.15)

where the coe�cient depends on the nature of dark matter (scalar, Dirac fermion etc.),

of which we will go through next Chapter. For the scalar part of Eq. (2.10), it is a bit

more complicated. We follow closely those presented in [43]. The �
0

in Eq. (2.11) reads

�S
0

/ µ2 [Zfp + (A � Z)fn]2 , (2.16)

where

fn
mn

=
X

q=u,d,s

f (n)

T
q

↵S
q

mq
+

2

27
f (n)

T
G

X

q=c,b,t

↵S
q

mq
(2.17)
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2.1. Direct detection

Figure 2.3: Results on spin-independent dark matter-nucleon scattering (at 90% CL)

together with the regions (1�/2�) preferred by supersymmetric (CMSSM) models at

the sensitivity frontier. Also shown are limits obtained by XENON100 (red), DarkSide-

50 (orange), and PandaX-II. Taken from [40].

and similarly for fp. fT ’s are parametrized as:

mNf (N)

T
q

= hN |mqqq|Ni ⌘ mqB
(N)

q , (2.18)

and

f (N)

TG = 1 �
X

q=u,d,s

f (N)

T
q

. (2.19)

Using isospin symmetry of proton/neutron, the scalar matrix elements (B(n)

q and

B(p)
q ) can be related to each other as follows:

B(n)

u = B(p)
d , B(n)

d = B(n)

u , B(n)

s = B(p)
s . (2.20)

The B’s are related to the pion-nucleon sigma, ⌃⇡N as follows

⌃⇡N ⌘ 1

2
(mu + md) ⇥ �BN

u + BN
d

�

. (2.21)
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2.1. Direct detection

LQCD Experiment

fTu 0.0190 ± 0.0029 0.0308 ± 0.0061 [44], [45]

fTd 0.0246 ± 0.0037 0.0459 ± 0.0089 [44], [45]

fTs 0.043 ± 0.011 0.493 ± 0.159 [46], [45]

Table 2.2: Values of fT ’s determined with lattice QCD (LQCD) and from experiment.

Taken from [47].

We show in Table 2.1.2 values and uncertainties related fT ’s.

2.1.3 Astrophysical aspects of direct detection

DM has a relative velocity of order 100 km/s with respect to our Earth. Thus, the

DM-nucleus scattering is non-relativistic and Er can be written as, in the DM-nucleus

center-of-mass frame,

Er =
µ2v2

mN
(1 � cos ✓), (2.22)

where ✓ is the scattering angle in the DM-nucleon center-of-mass frame.At ✓ = ⇡, the

momentum transfer is the largest, and it corresponds to the minimum speed required to

scatter at a given recoil energy Er:

vmin =

s

mNEr

2µ2

. (2.23)

µ is the reduced mass. Since the speed of DM is not arbitrarily large, i.e cannot be larger

than the escape velocity, the low energy threshold of the detectors limit DM detection

to a certain DM velocity range. This is especially important when one tries to interpret

results of XENON100, which in the conventional cases, has no sensitivity at the low

mass region.

All information of the DM velocity distribution can be represented by g(vmin):

g(vmin) =

Z

v>v
min

1

v
fe(~v, t)d3v. (2.24)

~v can be divided into ~ve + ~v. Here, ~v is the DM velocity in the Earth’s frame, and ~ve is

the Earth’s velocity in the galactic halo’s rest frame, which, following [48], reads

ve = v� + v
orb

cos � cos[!(t � t
0

)]. (2.25)

The DM velocity distribution (relative to the rest frame of the galactic halo) is usually

assumed to be Maxwellian/isothermal. This is called the Standard Halo Model (SHM)
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2.2. Indirect detection

and has the form:

fSHM (~v) =

8

<

:

1

Nv30⇡
3/2 e�v2/v20 , v < v

esc

0, otherwise
(2.26)

v
0

is the mean DM velocity relative to the rest frame of the galactic halo. N is the

normalization factor:

N = erf

✓

v
esc

v
0

◆

� 2v
esc

v
0

p
⇡

e�v2esc/v
2
0 . (2.27)

We quote the following values from [48] : v
0

= 220 km/s, v� = 232 km/s, v
esc

=

544 km/s, v
orb

= 30 km/s, ⇢ = 0.3 GeV/c2/cm3, cos � = 0.51.

In recent years, some experimental groups have claimed to observe spin-independent

dark matter-nucleon scattering events (DAMA/LIBRA [49], CoGeNT [50, 51] and CRESST [52],

CDMS-II Si [53]).However, their results remain debatable as the viable parameter regions

are in tension with each other. Moreover, other experiments such as XENON100 [39] and

LUX [54] have ruled out most parameter regions claimed to be yielding positive results.

We show in Fig. 2.2 and 2.3 several recent results of direct detection experiments.

2.2 Indirect detection

Dark matter may decay or annihilate into SM particles. This provides an opportunity to

detect signals of dark matter in the form of cosmic rays. These cosmic rays can either be

primary products of dark matter annihilation/decay or secondary products from primary

SM particles. Their fluxes are proportional to ⇢2h�
ann

vi for annihilating dark matter with

velocity-averaged annihilation cross section h�
ann

vi and ⇢�
dec

for decaying dark matter

with decay rate �
dec

. The bound on annihilating dark matter is often compared with

the canonical annihilation cross section of thermally produced dark matter.

2.2.1 Gamma rays

Dark matter may annihilate into quarks or leptons which undergo cascade decay pro-

ducing a continuous energy spectrum of gamma rays. Detections of gamma rays are

straightforward as they propagate in the space una↵ected by galactic magnetic fields. For

gamma rays, the relevant quantity is the flux, �(E, ), of which comes from a direction

of observation  integrated over a solid angle �⌦. For annihilating (particle-antiparticle)

dark matter, writing N(E)� as the gamma-ray energy spectrum per annihilation,

�(E, ) =
h�

ann

vi
8⇡m2

DM

N(E)�

Z

l.o.s.,�⌦

dl d⌦⇢2[l( )], (2.28)
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Figure 2.4: Upper limit on h�
ann

vi assuming that dark matter annihilates into various

channels. The shaded region is due to uncertainties of the combined dSphs dark matter

density profile. The horizontal dashed line is the canonical annihilation cross section for

thermal dark matter. Taken from [55].

where the integration is performed over the line of sight (l.o.s). Note that there is an

additional factor of 1/2 for the case where DM is self-conjugate. The integral is called

the J-factor. It is dependent on the dark matter mass distribution of the astrophysical

target of interest.

Dwarf spheroidal galaxies are excellent targets for indirect detection. These objects

are dominated by dark matter and their astrophysical background is minimal. The total

mass of dark matter inside the system is deduced from the velocity dispersion of the

stars in the system. This information allows experimentalists to deduce the upper limit

of the annihilation cross section of dark matter. In Fig. 2.4, we show constraints on the

annihilation cross section based on the gamma-ray flux from these galaxies, assuming

various annihilation channels [55]. The experiment was performed using the Fermi Large

Area Telescope (LAT).
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2.2. Indirect detection

In recent years, there have been curious signatures originated from the observation of

the spectral and morphological distribution of gamma rays from the Galactic Center [56,

57]. Furthermore, WMAP has observed excess microwave emission from the Galactic

Center (”WMAP” Haze) [58]. The Fermi Gamma-Ray Space Telescope has also seen

excess of gamma rays at high latitudes (”Fermi Bubble”), which is thought by some

to be related to the WMAP haze. While these phenomena could be of astrophysical

origin, they have also been interpreted as hints from dark matter. In addition, observed

hard synchrotron emission from the Inner Galaxy’s radio filament has been interpreted

as synchrotron emission of energetic SM particles as a result annihilation/decay of dark

matter [59]. Galactic Center gamma rays, the WMAP haze and the synchrotron emission

from the Inner Galaxy’s radio filament can be explained simultaneously by dark matter

of mass ⇠ 10 GeV [60]. However, dark matter models inspired by these phenomena are

under serious reconsideration due to stringent constraints from antiproton and positron

flux measurements.

Aside from continuum gamma rays, monochromatic gamma-ray line, if observed,

could be a smoking gun signature of dark matter. Such signal are recently found to be

coming from the Galactic Center at 130 GeV [61, 62]. If it is to be interpreted as a

signal from the annihilation (decay) of dark matter, its annihilation cross section (decay

lifetime) into gamma rays is around 10�27 cm3s�1 (1028 s). The interpretation of the

gamma-ray line remains tentative and further investigation and inspection are needed

before one makes any conclusion. See, e.g. [63, 64] for theoretical works on possible dark

matter models that could generate this signal.

Excess of 511 keV from the Galactic Center has also been reported [65, 66]. This has

been speculated as MeV-scale dark matter that produces e+ e� which, in turn annihilate

into 511 keV gamma rays [67]. Dark matter model with an MeV-scale excited state has

also been proposed [68]. We note that again, there is no confirmation of such speculations

yet.

More recently, monochromatic line has been discovered by two independent groups

looking for X-ray line emissions originated from galaxy clusters as well as Andromeda

galaxy [69, 70]. It has been found that there is an excess of X-ray emissions at around

3.5 keV, which has no explanation with known physics. Although it remains debatable

regarding the source of the X-ray, more experimental works are needed to rule out the

possibility of explaining it as dark matter. See, e.g. [71] for a possible dark matter model

explaining the anomaly.

2.2.2 Neutrinos

We now discuss briefly neutrino signals from dark matter. Detection of neutrino is always

straightforward because the propagation of neutrino is una↵ected by galactic magnetic

fields. Teresterial neutrino detection is basically based on Cherenkov light (observed
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2.2. Indirect detection

via photomultiplier) produced when there is charged-current scattering of neutrino with

nucleon or electron. Neutrino detection usually involves detector volume of enormous size

due to its extremely weak interaction. The current leading neutrino detection experiment

is the Icecube experiment located at the Antarctica [72].

Results from neutrino detection can be utilized to impose bounds on the spin-

dependent scattering cross section of dark matter captured in the sun [73]. The more

exciting prospect is perhaps the possibility of detecting energetic neutrinos directly from

the annihilation/decay of dark matter. Interestingly, Icecube detectors at the Antarctica

have seen anomalous neutrino events of energy O(100 � 1000) TeV that could not be

accounted for by the background [74]. There have been theoretical progresses suggesting

that these events could be coming from the decay of dark matter [75, 76].

2.2.3 Charged particles

We now discuss indirect detection of charged particles. There are several processes that

a↵ect the propagation of charged particles in the galaxy. The propagation equation can

be constructed from these processes:

@Ni

@t
=

X

processes

f(Ni, ...). (2.29)

Ni is the number of charged particle of interest. the function f can depend on other

variables such as energy, position etc.

The most important processes are as follows:

@Ni

@t
= D(E)�Ni +

@

@E
(b(E)Ni) + Q(~x, E, t). (2.30)

The first term accounts for the di↵usion of the charged particle. The second one is energy

loss. The third term indicates all sources of the charged particle.

It is vital to fix the boundary condition when solving this di↵erential equation. The

boundary is often chosen in the shape of cylinder, of which the meaning is clear as it is

the shape of the galaxy. Beyond the boundary, the typical assumption is that particles

can escape freely.

Parameters in Eq. (2.30) are determined using observational data. We note that

as compared to vigorous astrophysical activities that are involved in the production

of cosmic rays, dark matter, whether through annihilation or decay, has subdominant

contribution to the energy density of cosmic ray. Hence, using the boron-to-carbon ratio,

one can determine parameters involved in the propagation of cosmic rays.

This does not mean that there is no hope of detecting any trace of dark matter

from charged particles. Matter that is rarely produced in astrophysical phenomena, such

as positron, antiproton and anti-deuterium are excellent target candidates of indirect
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2.2. Indirect detection

Figure 2.5: p/p and theoretical prediction of the secondary-only production of antiprotons

during the propagation of cosmic rays in the galaxy. Taken from [77].

detection of dark matter. Dark matter annihilation or decay produces, except in special

cases, equal amount of ordinary and antiparticles.

We first discuss antiproton cosmic ray. The main astrophysical production is via

p + p ! p + p + p + p. (2.31)

Such process is called spallation. It also applies to other antimatter. Note that the thresh-

old energy of this process is around 10 GeV (a high-energy proton hitting a proton in

the interstellar medium, for example). As we can see from Figure 2.5 from the PAMELA

experiment, antiprotons do not lose much of its energy during propagation. This in fact

makes antiproton a good candidate for dark matter indirect detection as any significant

cuto↵ in the energy spectrum could hint at products of dark matter annihilation or de-

cay. The measurement of the flux of antiproton cosmic ray, however, has yielded good

agreement between astrophysical theory and observation [77]. See Fig. 2.7 for the recent

measurement of antiproton flux from AMS-2 [78].

As is well known, PAMELA and, more recently, AMS-02 have obtained indisputable

data that indicate that there is an excess of positrons in cosmic rays [79, 80]. There have
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2.2. Indirect detection

Figure 2.6: Measured fluxes of various particles with respect to rigidity, defined as the

particle momentum divided by charge. antiproton flux (red, left axis) compared to the

proton flux (blue, left axis), electron flux (purple, right axis), and positron flux (green,

right axis). Taken from [78].

26



2.3. Collider searches

Figure 2.7: Upper limits on annihilation cross section of dark matter, assuming various

leptonic channels (solid lines). Also shown are limits from Fermi LAT gamma-ray con-

straints assuming various leptonic channels (dashed lines) and WMAP7 CMB constraints

(light blue band). Taken from [81].

been many papers on its interpretation as dark matter, but it is generally di�cult as

dark matter must annihilate/decay dominantly into lepton pairs as there is no excess

of antiproton. The annihilation cross section must be very large to explain the positron

anomaly, 103 larger than the canonical annihilation cross section.

At lower energy, the high-quality AMS-02 data have enabled physicists to impose

upper limits of dark matter annihilation cross section or decay rate [81]. Any significant

rate of annihilation/decay of dark matter at around 10 GeV into electrons/positrons

would appear clearly as a bump on the smooth energy spectrum. As we can see in

Fig. 2.7, the limits are reaching the canonical value at energy as high as 100 GeV.

2.3 Collider searches

Dark matter may be produced at colliders and this is a potentially powerful complemen-

tary probe to searches for DM in direct and indirect detection experiments as mentioned

above. The searches for DM at colliders have been focused on popular models of beyond

the Standard Model physics where DM is involved, such as supersymmetry (SUSY).

However, the idea that the LHC can search for DM in more general classes of theories

and interactions has gained attention. It has been studied and shown quite a while ago
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2.3. Collider searches

that can constrain DM models via a jet, photon or Z-boson recoiling o↵ missing energy

originated from DM [82–85]. More recently, the advents of Tevatron and the LHC have

led to studies of DM models utilizing the e↵ective field theory (EFT), where one can

cast bounds on models by comparing directly the constraints from colliders with results

from direct and indirect detection experiments [86–92]. The energy scale in relation

with direct and indirect detection experiments is often negligible as compared to the

energy scale of the full model, where particles other than DM and SM particles in the

UV-complete model can be integrated out while studying direct and indirect detection

constraints. One can then compare these results with a bound on the scale of the EFT

operator, ⇤ derived from collider searches. The e↵ective operators are often labelled

following [87, 88] and are shown in Table 2.3. These non-renormalizable operators are

suppressed by a scale M⇤, which is related to the UV-complete model of dark matter.

We note that for operators D1-5, M1-M4, C1-2, R1-2, it is implicitly assumed that the

coe�cients of these e↵ective operators are proportional to the quark mass in order to

achieve minimal flavor violation. Perhaps for the reason of this simplicity of comparison

to direct and indirect detection experiments, DM searches at the Large Hadron Collider

(LHC) have gained popularity, and the EFT framework has been utilized in many LHC

searches.

However, it is clear that the energy scale of collision processes probed at colliders

such as the LHC is in general beyond the values of ⇤ that can be bounded, rendering

the EFT characterization of DM searches at colliders invalid in many cases. In general,

One integrates out heavy mediators at a scale ⇤ in the UV-complete theory in order to

generate e↵ective operators for various studies. One can only derive the constraints on ⇤

derived self-consistently if the processes used to constrain the theory have energy scale

smaller than ⇤. Further discussions and more detailed analyses of this issue can be found

in [93–102]. For this reason, the collider limits obtained using the EFT approach cannot

be reliably used, for example, to compare with limits obtained from direct detection

experiments.

These statements are especially true once constraints on the mediating particle are

taken into account, generally forcing one out of the regime of validity of the EFT (e.g.

[99, 102]). For example, dijet searches for the particle mediating the DM production

place such strong constraints on the quark-mediator coupling that, in order for the DM-

mediator coupling to be perturbative but still constrained by mono-jet searches, the

mediator must, in most cases, be produced on-shell.

Therefore, in order to interpret DM search results at colliders adequately, simplified

models should be employed. Simplified models are UV-complete models that do not nec-

essarily represent the full theory, but enable one to study the kinematics and topologies

of DM production at the LHC in a precise manner. Moreover, the sensitivity comparisons

between collider and direct detection limits can be performed accurately.
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2.3. Collider searches

Name Operator Coe�cient

D1 ��qq mq/M3

⇤
D2 ��5�qq imq/M3

⇤
D3 ��q�5q imq/M3

⇤
D4 ��5�q�5q mq/M3

⇤
D5 ��µ�q�µq 1/M2

⇤
D6 ��µ�5�q�µq 1/M2

⇤
D7 ��µ�q�µ�5q 1/M2

⇤
D8 ��µ�5�q�µ�5q 1/M2

⇤
D9 ��µ⌫�q�µ⌫q 1/M2

⇤
D10 ��µ⌫�5�q�↵�q i/M2

⇤
D11 ��Gµ⌫Gµ⌫ ↵s/4M3

⇤
D12 ��5�Gµ⌫Gµ⌫ i↵s/4M3

⇤
D13 ��Gµ⌫G̃µ⌫ i↵s/4M3

⇤
D14 ��5�Gµ⌫G̃µ⌫ ↵s/4M3

⇤

Name Operator Coe�cient

M1 ��qq mq/2M3

⇤
M2 ��5�qq imq/2M3

⇤
M3 ��q�5q imq/2M3

⇤
M4 ��5�q�5q mq/2M3

⇤
M5 ��µ�5�q�µq 1/2M2

⇤
M6 ��µ�5�q�µ�5q 1/2M2

⇤
M7 ��Gµ⌫Gµ⌫ ↵s/4M3

⇤
M8 ��5�Gµ⌫Gµ⌫ i↵s/8M3

⇤
M9 ��Gµ⌫G̃µ⌫ i↵s/8M3

⇤
M10 ��5�Gµ⌫G̃µ⌫ ↵s/8M3

⇤

Name Operator Coe�cient

C1 �†�qq mq/M2

⇤
C2 �†�q�5q imq/M2

⇤
C3 �†@µ�q�µq 1/M2

⇤
C4 �†@µ�q�µ�5q 1/M2

⇤
C5 �†�Gµ⌫Gµ⌫ ↵s/4M2

⇤
C6 �†�Gµ⌫G̃µ⌫ i↵s/4M2

⇤
R1 �2qq mq/2M2

⇤
R2 �2q�5q imq/2M2

⇤
R3 �2Gµ⌫Gµ⌫ ↵s/8M2

⇤
R4 �2Gµ⌫G̃µ⌫ i↵s/8M2

⇤

Table 2.3: E↵ective operators of DM coupling to SM particles. The operator names

beginning with D, M, C, R refer to DM that are Dirac fermions, Majorana fermions,

complex scalars or real scalars respectively.
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Simplified models immediately suggest that other signatures, apart from looking for

DM recoiling against a visible SM particle, must be considered. Searching directly for

the mediator of the SM-DM interaction may generally be more powerful for constraining

the parameter space. For example, returning to the earlier example, assuming that the

mediator is coupled to both quarks and DM, where the monojet search is expected to

be important, models with t-channel DM production (squark mediator) are constrained

by jets plus missing transverse energy (MET) searches, while models with s-channel

DM production (Z 0 mediator) are constrained by dijet searches. Various aspects of such

simplified models have been studied extensively in the literature [96–104]. 4

2.4 A final remark

As reviewed above, even though DM direct/indirect detection experiments have looked

for DM signals extensively, there is no concrete observational evidence of DM interacting

with SM particles. One might wonder if there exists WIMP that can escape (almost)

all the detection strategies mentioned above. Let us remind the readers that postulate

of the existence of WIMP is motivated by the fact it can be produced thermally via

SM-DM interactions (without modifying early-universe conditions). It is then of interest

to question if there is any WIMP with almost-vanishing SM-DM interaction, yet it could

be produced thermally to match the cosmologically observed DM abundance. We will

review the calculation of DM relic abundance in the next Chapter and reveal that, the

so-called coannihilation scenario has such a property.

4For a comprehensive list of references, see [105–107].
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Chapter 3

Relic density of dark matter

Calculating the evolution of number density of dark matter with respect to time is

crucial in order to predict its relic abundance at present. Essentially, the evolution is

governed by the Boltzmann equation. In the early studies of particle cosmology, only

the DM self annihilation cross section is considered to be important in calculating the

relic abundance. Later, it has been shown that the interaction of exotic particles other

than dark matter can also be important if their masses are close to that of the dark

matter. In certain limits, the relic abundance of dark matter is completely determined

by the properties of the exotic particles. This so-called coannihilation process will be an

important topic studied in detail throughout this thesis.

In the first part of this chapter, we discuss how the Boltzmann equation is solved to

obtain the relic abundance of dark matter. Since the early universe is basically a thermal

bath of particles, thermal average needs to be taken when considering the dynamics

of the particles in the thermal bath. The second part of this chapter is dedicated to

the description of thermal averaging. In the final part, we study how the e↵ects of

coannihilation change the usual prediction of the relic abundance.

3.1 The Boltzmann equation

Let us describe the Boltzmann equation governing the evolution of the DM number

density. We first give a qualitative discussion of DM number density evolution.

The standard description of the early universe is that there exists a stage of reheating

and particle production at the end of inflation. The temperature of the early universe

is so high that all particles are in thermal equilibrium (if the particle mass is not larger

than the reheating temperature, or the interaction rate is not too low), and the energy

density of the universe is dominated by radiation (radiation dominated era). As the

universe expands, the temperature (which is common for all particles in the equilibrium)

decreases as the momentum of particles gets redshifted away.
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3.1. The Boltzmann equation

The number density of a certain particle X is governed by inelastic interactions that

annihilate or produce it. For simplicity, let us assume two-to-two scattering of X with

another particle Y which is lighter than X: XX $ Y Y .1 At high temperature, both the

annihilation and production processes of X are at a rate high enough to keep the particles

in the equilibrium. Once the temperature falls below the mass of X, it is more di�cult

for Y to annihilate into X as most of the Y particles do not have enough kinetic energy

to produce X. Then, the number density of X can no longer be kept in equilibrium, or

in other words, the production rate of X can no longer compete with the expansion rate

of the universe. The number density of X in a comoving volume is conserved if there is

no other process that can produce X. Then, X is said to have undergone ”freeze out”.

This typically occurs at temperature T ' mX/20.

The Boltzmann equation governing the number density of X, nX , for the simple

system mentioned above can be written as follows:

dnX

dt
+ 3HnX = �h�vreliXX!Y Y n2

X + h�vreliY Y !XXn2

Y , (3.1)

where h�vreli is the thermally averaged annihilation cross section times velocity. Let

us invoke the principle of detailed balance, h�vreliXX!Y Y neq2
X = h�vreliY Y !XXneq2

Y ,

where neq is the number density in thermal equilibrium. Furthermore, assuming that

Y is always in equilibrium within the period of time in consideration, nY = neq
Y , the

Boltzmann equation can be rewritten as

dnX

dt
+ 3HnX = �h�vreliXX!Y Y (n2

X � neq2
X ). (3.2)

The equation can be understood as follows: the rate of change in the total number

of X in a comoving volume, na3 is controlled by its annihilation rate (�h�vrelin2) as

well as its production rate (h�vrelineq2). Note that the era of universe in consideration

is radiation-dominated.

In order to solve the Boltzmann equation, it is convenient to change the variable

to remove the second term in the LHS of Eq. (3.2). Let us define Y = nX/s, where s

is the entropy density. The total entropy per comoving volume is conserved if there is

no entropy release: d(sa3)/dt = 0, implying ds/dt = �3Hs. Hence, Eq. (3.2) can be

rewritten as:

dY

dt
= �sh�vreli(Y 2 � Yeq

2). (3.3)

Furthermore, it is easier to track the evolution of Y using the temperature of the

system. The derivative dT/dt can be derived using the properties of s. As described

1Here, we assume the antiparticle of X is itself. We will discuss the case where X annihilates with X

in later chapters.
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3.2. Thermal averaging

briefly in Section, the Hubble constant in a radiation-dominated flat universe is:

H2 =
8⇡⇢

3
, (3.4)

where ⇢ = g⇤(T )⇡
2

30

T 4. The e↵ective degree of freedom g⇤(T ) is given as:

g⇤(T ) =
X

i=boson

gi(Ti/T )4 + (7/8)
X

i=fermions

gi(Ti/T )4, (3.5)

where Ti is the temperature of the particle with T the temperature of the photon (or

heat bath). Moreover, the entropy density is written as:

s = g⇤s(T )
2⇡2

45
T 3, (3.6)

with the e↵ective degree of freedom g⇤s(T ) given as:

g⇤s(T ) =
X

i=boson

gi(Ti/T )3 + (7/8)
X

i=fermions

gi(Ti/T )3. (3.7)

Then, dT/dt = (dT/ds)(ds/dt) = (45/6⇡2T 2gseff (T ))(�3Hs). We also define the dimen-

sionless quantity:

x ⌘ m/T, (3.8)

where m is the mass of dark matter. Then, Eq. (3.3) can be rewritten as:

dY

dx
= � xs

H(m)
(1 � x

3g⇤s

dg⇤s
dx

)h�vreli(Y 2 � Yeq
2), (3.9)

where

H(m) ⌘ H(T )x2 =

r

4⇡3Gg⇤
45

m2. (3.10)

3.2 Thermal averaging

Let us write down the full form of the term h�vreli. We follow the method presented

in [108] closely. For a process involving incoming particles 1 and 2 with common mass

m, the annihilation cross section can be written as:

�vrel =
1

4E
1

E
2

Z

d LIPS |T |2, (3.11)

where d LIPS is the Lorentz invariant phase space, given by

d LIPS ⌘ (2⇡)4�4

0

@p
1

+ p
2

�
X

j

pj

1

A

Y

i

d3pi
(2⇡)3

1

2p0

i

, (3.12)
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3.2. Thermal averaging

where the sum and product are over final-state particles. The term |T |2 is the matrix

element squared for the process in consideration, with spin, color and particle-antiparticle

factors averaged appropriately.

It is convenient to describe the kinematics using the Mandelstam variables s, t, u.

Since s = (p
1

+ p
2

)2 is Lorentz invariant, we define the Lorentz-invariant quantity w(s),

w(s) ⌘ 1

4

Z

d LIPS|T |2 = E
1

E
2

�vrel. (3.13)

Assuming that the initial-state particles has an energy distribution f(E), h�vreli can be

written as

h�vreli =
1

n2

0

Z

dE
1

dE
2

f(E
1

)f(E
2

)
w(s)

E
1

E
2

, (3.14)

where n
0

normalizes the initial-state particle distribution n
0

=
R

dEf(E).

The range of temperature we are particularly interested in is x ⇠ 20, where the

statistics of particle is not important. Therefore, the energy distribution of particles in

the thermal bath can be approximated as the Boltzmann one, f(E) = (2⇡)3e�E/T ,

where  is the number of degrees of freedom of spin and color.

Moreover, it is in general computationally ine�cient to evaluate Eq. (3.14) directly

as it involves multiple integrals. As we are mainly interested in the the cross section

at x & 20, it is more convenient to obtain analytical expressions of each term in the

expansion of h�vreli with respect to 1/x. First, we write

h�vreli =
2

(2⇡)6n2

0

Z

d3p
1

d3p
2

e�E1/T e�E2/T 1

E
1

E
2

w(s) (3.15)

=
2

8⇡4n2

0

Z

dp
1

dp
2

p2

1

p2

2

E
1

E
2

e�E1/T e�E2/T

Z

1

�1

d cos✓w(s) (3.16)

=
2

8⇡4n2

0

Z

dE
1

dE
2

p
1

p
2

e�E1/T e�E2/T

Z

1

�1

d cos✓w(s), (3.17)

where we have used dp/dE = p/E. Next, we perform changes of variables from Ei to yi:

Ei = m(1 +
yi
x

), pi = m

r

2

x

r

yi +
1

2

y2

i

x
. (3.18)

One needs to further express n
0

and s in terms of x and yi (see [108] for details).

Expanding around s = 4m2, one gets

h�vreli =
1

m2



w � 3

2
(2w � w0)

1

x
+ ...

�

s=4m2

, (3.19)

where w, w0 is to be evaluated at s = 4m2. The first and second term is commonly called

the s-wave and p-wave thermally averaged cross section (a and b terms) respectively

in the literature when the thermally averaged cross section is expanded in the form

h�vreli = a + b T/mX + O �(T/mX)2
�

.
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3.3. Coannihilation

3.3 Coannihilation

Let us now consider a system of N particles which has a conserved multiplicative quan-

tum number di↵erent from the SM particles, denoted as �i for i = 1, ..., N . This corre-

sponds to the R-parity of the SUSY particles in SUSY. Each exotic particle decays into

lighter exotic particles with the quantum number conserved. Then, the lightest particle

is stable due to the quantum number conservation and can be the candidate of dark

matter. While the coupled Boltzmann equations look complicated to solve, as will be

shown below, since we are mainly interested in the lightest particle’s relic abundance,

the solution can be simplified dramatically.

There are various possible interactions within this system. Let us take SUSY as

an example to elucidate these interactions. Often the lightest SUSY particle (LSP) is

thought to be the lightest neutralino. For example, if the lightest neutralino is wino-like,

it annihilates into the W bosons:

�0

1

+ �0

1

$ W+W�. (3.20)

If the temperature of the thermal bath is high enough, the LSP can scatter with an SM

particle to create another SUSY particle accompanied by yet another SM particle:

�0

1

+ q $ q̃ + g, (3.21)

where q̃ refers to the squark. This process trivially leads to the “crossed” process where

a pair of SUSY particles (of di↵erent species) annihilates into SM particles:

�0

1

+ q̃ $ q + g. (3.22)

Finally, in the Boltzmann equation, one should include the decay process:

q̃ $ q + �0

1

. (3.23)

The Boltzmann equation governing the number density of �i should then look like

as follows:

dni

dt
+ 3Hni = �

X

j,X

h�ijvi(ninj � neq
i neq

j ) (3.24)

� h�0
ijvi(ninX � neq

j neq
X0) (3.25)

� �ij(ni � nj

neq
j

), (3.26)

where the labels X,X 0 refer to SM particles. The cross sections and decay rates refer to

the processes:

�ij = �(�i�j $ XX 0), (3.27)

�0
ij = �(�iX $ �jX

0), (3.28)

�ij = �(�i $ �jX). (3.29)
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3.3. Coannihilation

Since heavier �’s eventually decay to the lightest �
1

, it is useful to define the total number

density of �’s n =
PN

i=1

ni, and track the change of n with time in the Boltzmann

equation. Using Eq. (3.26), the Boltzmann equation of n can be written as

dni

dt
+ 3Hni = �

X

j

h�ijvi(ninj � neq
i neq

j ). (3.30)

Let us note that for i = j, two particles are annihilated away,resulting in a factor of 2.

However, the factor 2 is balanced by a factor 1/2 due to the fact that the annihilating

particles are identical. Therefore, the equation shown above is correct even for i = j. Let

us also note that the total relic number density is independent of the conversion term

proportional to �0
ij , and decay term �ij , since at late times, all exotic particles eventually

decay into the lightest state.

Eq. (3.30) can be further simplified by getting rid of the unknown ni’s. This is done

by using the fact that the scattering process �0
ij occurs at a much larger rate than the

annihilation process. This is because the exotic particles are non-relativistic around the

freeze-out temperature, and its number density is Boltzmann suppressed. On the other

hand, SM particles are light and the number density is nX / T 3. More concretely,

ninXh�0
iji

ninjh�iji ⇠ T 3

(mjT 3)3/2e�m
j

/T
⇠
✓

T

mj

◆

3/2

emj

/T , (3.31)

where we have assumed that the scattering and annihilation cross sections are of the

same order (which is usually, because they are related by crossing). For mj ⇠ m
1

and

T ⇠ m
1

/25, the scattering rate is around 109 larger than the annihilation rate. From

Eq. (3.26), it can be seen that such a large rate keep the ratio ni/nj in equilibrium:

ni

nj
=

neq
i

neq
j

. (3.32)

Or, more conveniently, the expression can be written as

ni

n
=

neq
i

neq
. (3.33)

With this expression, Eq. (3.30) can be written as

dn

dt
+ 3Hn = �h�effvi(n2 � n2

eq), (3.34)

where

h�effvi =
X

i,j

h�ijvin
eq
i

neq

neq
j

neq
. (3.35)
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3.3. Coannihilation

The Boltzmann equation then looks just the same as the case where there is only a single

exotic particle annihilating by itself, Eq. (3.2). The e↵ect of heavier exotic particles on

the relic abundance of the lightest particle is called coannihilation [109].

To elucidate this e↵ect, consider a system composed of two species of exotic particles.

The e↵ective annihilation cross section is then given by

h�effvi = h�
11

vin
eq2
1

n2

eq

+ h�
22

vin
eq2
2

n2

eq

+ 2h�
12

vin
eq
1

neq
2

n2

eq

. (3.36)

At the limit m
2

� m
1

, it becomes

h�effvi = h�
11

vi, (3.37)

the usual definition of annihilation cross section. On the other hand, at the limit m
2

=

m
1

,

h�effvi =
1

(g
1

+ g
2

)2
�

g2

1

h�
11

vi + g2

2

h�
22

vi + 2g
1

g
2

h�
12

vi� . (3.38)

It can be observed that, even if �
1

has zero self annihilation cross section, its number

density can be reduced with the help of the partner �
2

’s self annihilation, provided that

their masses are almost degenerate. Physically, the number density is reduced as �
1

is

continuously converted into �
2

in the thermal bath, where �
2

is subsequently annihilated

away by self interaction. The e�ciency of this convert-and-annihilate e↵ect is controlled

by the Boltzmann suppression coming from the mass splitting:

neq
2

neq
⇠ e

m1�m2
T . (3.39)

Therefore, the annihilation cross section of the partner particle can, when the mass

splitting is small, determine the relic abundance of dark matter dominantly. In particular,

the coannihilation e↵ects of a colored partner particle can be very important due to its

strong interactions. This will be the main topic in the following chapters of this study.

Moreover, it should be noted that colored particles can form a bound state in the early

universe. The long-ranged nature of QCD interaction makes bound state formation of

colored particles possible. The formation of a QCD bound state ⌘X occurs via the process

X
1

X
2

! ⌘Xg, with the final-state gluon carrying the binding energy EB ' m⌘�m
1

�m
2

.

⌘X can then decay to gluons or quarks via QCD annihilation of the constituent X’s.

The formation of bound state and its subsequent decay to SM particles help remove X

from the thermal bath. As will be shown in the following, this type of process increases

significantly the e↵ective annihilation cross section of X or DM. This will also be dealt

with in the following chapters.
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Chapter 4

Coannihilation of colored particles

In cosmological scenarios of physics beyond the SM, the early universe may have been

inhabited by exotic particles charged under QCD. Due to their strong interactions with

SM particles, they were initially in thermal equilibrium and later froze out such that

their number density over entropy density (YX for particle X) remains constant until

present.

While the relic abundance of a stable colored particle is stringently constrained by

null results from searches for exotic isotopes or nuclei 1, the bounds are considerably

relaxed if the colored particle is metastable, i.e. it froze out and decayed to neutral par-

ticles at a timescale much shorter than the lifetime of the universe. This can happen

in, e.g., R-parity conserved Minimal Supersymmetric Standard Model (MSSM) where

the next-to-the lightest supersymmetric particle (NLSP) is colored, and the lightest LSP

or DM is extremely weakly interacting (superWIMP), such as gravitino or axino. Typi-

cally, observational and experimental bounds are applicable only to metastable colored

particles with lifetime & 0.1s. Specifically, one can derive significant constraints from

processes of the big-bang nucleosynthesis (BBN) [30]. Moreover, the decay of the frozen

out colored particles into superWIMPs can contribute non-thermally to the relic density

of DM.

Even if the colored particle has not-so-weak interaction with DM, the colored particle

can play a role in determining the relic abundance of DM, especially when the mass of

the colored particle is almost degenerate with DM. Coannihilations among themselves

can significantly reduce the relic abundance of DM [109].

1See [110] for a review. The bounds using carbon on Y
X

/Y
B

(B denoting baryon) range from 10�20

to 10�16 for m
X

' 0.1� 10 TeV [111].
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4.1. Motivations

4.1 Motivations

Squarks and gluino are the colored SUSY particles. In the so-called split SUSY scenarios,

where the scalar SUSY partners are heavy and fermion partners are light, gluino coan-

nihilations are possible [112–122]. In such a scenario, the LSP would be a neutralino

(gaugino or Higgsino, or the mixture of them). As gluino decays via an intermediate

squark to the neutralino, its decay rate is suppressed with respect to two-body decay. If

the timescale of bound state formation is shorter than gluino lifetime, the formation of

gluinonium is possible.

The scalar SUSY partner of the top quark, stop is, in variants of MSSM, for example

the CMSSM, the coannihilating partner of the lightest neutralino [123–132]. Often, stop

receives the largest radiative corrections and its mass (at hight scale) can be driven

down to mass range of the LSP (at low scale), initiating stop coannihilation. If the mass

splitting between stop and the LSP is smaller than the mass of the top quark, its lifetime

is delayed. Again, stoponium formation is possible if the rate of bound state formation

is fast enough.

The extension of the SM with a vector-like quark is a fairly popular idea due to

its simplicity 2. It can couple to a DM-to be scalar field and a SM quark field via the

Yukawa coupling, initiating coannihilation if the mass splitting is small. The decay of

the vector-like quark into DM is controlled by the Yukawa coupling, and if it is small,

bound state formation is possible. The same goes to the possibility of having a massive

scalar gluon in the SM extension.

The colored particle we consider in this thesis is either a scalar (S) or fermion (F).

It can also either be a color triplet (3) or octet (8). These four cases are abbreviated in

the following as S3, S8, F3 and F8.

4.2 Annihilation of colored particles

We now proceed to present the calculation of the QCD annihilation of colored particles

into quarks and gluons. The kinematic variables are written in terms of s, t, u. For colored

fermions, there are three diagrams contributing to the annihilation into two gluons: s-

channel gluon exchange. t an u-channel X exchange diagrams. For colored scalars, there

is additional a contact interaction diagram. For annihilation into quark-antiquark, there

is only the s-channel gluon exchange diagram. The procedure of extracting the s and

p-wave annihilation cross section is described in Section 3.2.

2Such a particle can also be found in models of Universal Extra Dimensions in the form of Kaluza-

Klein (KK) quark [133–138].
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4.2. Annihilation of colored particles

Color rep. (fermion) cini Css Ctt Cst Ctu Dss

3 1/9 12 16/3 6 -2/3 8

8 1/64 72 72 36 36 48

Table 4.1: color factors for fermion annihilation.

Colored fermion annihilation to gluons

A factor cini is used to average over initial colors. |T |2 takes the form

|T |2 = cini(Ts⇥Ts + Tt⇥Tt + Tu⇥Tu + Ts⇥Tt + Ts⇥Tu + Tt⇥Tu) .

Ts⇥Ts = Css
16⇡2↵2

s

s2

⇥

s2 � (t � u)2
⇤

,

Tt⇥Tt = �Ctt
32⇡2↵2

s

s2

�

m2

X � t
�

2

n

m2

X

⇥

s2(t + 3u) + 2s(t2 + 2u2) + 2(t + u)3
⇤

+ m4

X

⇥

s2 � 2s(t + 2u) � 6(t + u)2
⇤

+ 2m6

X [s + 4(t + u)]

� 4m8

X � tu
⇥

s2 + 2su + 2(t2 + u2)
⇤

o

,

Ts⇥Tt = �Cst
16⇡2↵2

s

s2

�

m2

X � t
�

⇥

s(t � u)
�

4m2

X � t + u
�

+ s3 + s2(u � t) + (t � u)3
⇤

,

Tt⇥Tu = �Ctu
64⇡2↵2

s

s2

�

m2

X � t
� �

m2

X � u
�

�

m4

X � tu
� ⇥�4(t + u)m2

X + 8m4

X + (t � u)2
⇤

,

and Ts⇥Tu and Tu⇥Tu are related to Ts⇥Tt and Tt⇥Tt, respectively, by exchanging t $ u

in the corresponding expressions.

Colored fermion annihilation to quarks

|T |2 = cini(Ts⇥Ts) .

Ts⇥Ts = Dss
48⇡2↵2

s

s2

⇥

m2

X(s � t � u) + 2m4

X + t2 + u2

⇤

.

Colored scalar annihilation to gluons

|T |2 = cini(Ts⇥Ts +Tt⇥Tt +Tu⇥Tu +Tc⇥Tc +Ts⇥Tt +Ts⇥Tu +Tt⇥Tu +Tt⇥Tc +Tu⇥Tc) .
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4.2. Annihilation of colored particles

Color rep. (scalar) cini Css Ctt Ccc Cst Ctu Ctc Dss

3 1/9 12 16/3 28/3 6 -2/3 14/3 8

8 1/64 72 72 216 36 36 108 48

Table 4.2: color factors for scalar annihilation.

S3 F3 S8 F8

a for gg 14/27 7/27 27/16 27/32

b for gg �61/27 1/6 -261/32 9/64

a for qq 0 4/3 0 9/8

b for qq 4/3 �14/3 9/8 �63/16

Table 4.3: The coe�cients a and b in h�vreli for massive colored particle pair annihilation

to gg or qq, up to the common factor ⇡↵2

s/m2

X , for the S3, F3, S8 and F8 cases.

Ts⇥Ts = Css
32⇡2↵2

s

s2

(t � u)2 ,

Tt⇥Tt = �Ctt
256⇡2↵2

s

s2

�

m2

X � t
�

2

��m4

X + t u
�

2

,

Tc⇥Tc = Ccc 32⇡2↵2

s ,

Ts⇥Tt = �Cst
64⇡2↵2

s

s2

�

m2

X � t
� (t � u)

h

s
�

s � 2m2

X

�� �m2

X � t
�

2 � �m2

X � u
�

2

i

,

Tt⇥Tu = Ctu
64⇡2↵2

s

s2

�

m2

X � t
� �

m2

X � u
�

⇥

2m2

X(s � t � u) + 2m4

X � s2 + t2 + u2

⇤

2

,

Tt⇥Tc = Ctc
64⇡2↵2

s

s
�

m2

X � t
�

⇥

2m2

X(s � t � u) + 2m4

X � s2 + t2 + u2

⇤

.

Colored scalar annihilation to quarks

|T |2 = cini(Ts⇥Ts) .

Ts⇥Ts = Dss
48⇡2↵2

s

s2

⇥

s(s � 4m2

X) � (u � t)2
⇤

.

Up to the common factor ⇡↵2

s/m2

X , the a and b terms in h�vreli we found are listed in

Table 4.3. The results for the qq channel are for all 6 types of SM quarks, and we have

dropped quark mass dependent terms, as we are considering massive colored particles

much heavier than the SM quarks.
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4.3. Sommerfeld corrections

4.3 Sommerfeld corrections

In addition to the annihilation of colored particles at the tree level as discussed above,

there is another e↵ect: at low velocities, the initial state of the annihilating particles

receives non-perturbative corrections due to the exchange of multiple t-channel ladder-

type massless mediators, namely Sommerfeld correction. See [139–141] and [142–145] for

its e↵ects on DM annihilation and coannihilation respectively.

The Sommerfeld correction is understood as the ratio of the wave-function squared

with and without the influence of potential at the interaction point (x = 0),

S =
| k(0)|2
| (0)

k (0)|2
= | k(0)|2, (4.1)

where we have normalized  (0)

k (0) to 1, and k is the momentum of the particle. Under

the influence of a centrally symmetric potential, the wave-function can be written as

 k =
1
X

l=0

iLei�L(2L + 1)

k
Pl(cos✓)RkL(r), (4.2)

where PL(cos✓) is the the associated Legendre function with L the angular momentum

quantum number, and RkL(r) is the radial function.

We then need to solve the Schroedinger equation of the radial function. Under the

influence of an Abelian-like massless mediator with Coulomb potential V = ↵/r, the

radial part of the Schroedinger equation is

1

r

d

dr

✓

r2

dR(r)

dr

◆

� L(L + 1)

r2

R(r) + 2m(E � ↵

r
)R(r) = 0, (4.3)

with m and E the mass and energy of the particle.

It is convenient to make a change of variables:

⇢ = kr (4.4)

y =
↵

�
(4.5)

�(r) = rR(r) (4.6)

with � the particle velocity. Then, the equation looks like

d2�(⇢)

d⇢2

+

✓

1 � 2y

⇢
� L(L + 1)

⇢

◆

�(⇢) = 0. (4.7)

The solution is

�(⇢) =

r

2⇡y

e2⇡y � 1

(2⇢)2⇢

(2L + 1)!
ei⇢M(L + 1 + iy, 2L + 2, �2iy)

l
Y

s=1

p

s2 + y2, (4.8)
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4.3. Sommerfeld corrections

where

M(↵, �, z) ⌘ 1 +
↵

�

z

1!
+
↵(↵+ 1)

�(� + 1)

z2

2!
+ ... (4.9)

is the confluent hypergeometric function. We are mainly interested in the s-wave contri-

bution (L = 0). Moreover, the case of interest involves the QCD potential between two

particles of the same mass, where in the center-of-mass frame, we substitute m ! m/2

and � ! �/2 = vrel. Taking account into these, the Sommerfeld factor is

S = | k(0)|2 (4.10)

= |e
i�0(2L + 1)

k
Rk0

(r)|2 (4.11)

=
⇡y

e⇡y � 1
(4.12)

An attractive potential (↵ > 0) results in an enhancement (S > 1), while a repulsive

potential (↵ < 0) results in a suppression (S < 1). The Sommerfeld corrected s-wave

annihilation cross section can be written as

�vrel = aS(↵/vrel) , (4.13)

In Eq. (4.13), the perturbative s-wave cross section, a, does not depend on tempera-

ture. Therefore, the thermally-averaged Sommerfeld corrected s-wave cross section is

ahS(↵/vrel)i, where

hS(↵/vrel)i =

Z 1

0

S(↵/vrel)f(vrel)dvrel , (4.14)

where f(vrel) is the Maxwell-Boltzmann distribution function of vrel, given as

f(vrel) =
⇣ µ

2⇡T

⌘

3/2
4⇡v2

rel e
�µv

2
rel

2T . (4.15)

For the massive colored particles of our interest, we expect that the dominate anni-

hilation channels are S3S3, F3F3, S8S8 and F8F8 annihilation into a pair of gluon,

gg, and into quark-antiquark pairs, qq. We consider the Sommerfeld corrected s-wave

cross sections and the tree-level p-wave cross sections in our calculation. To consider the

Sommerfeld e↵ect, we need to decompose an s-wave cross section into partial cross sec-

tions contributed from each two-body states in di↵erent color representations, as given in

Eqs. (5.4) and (5.5), because di↵erent representations correspond to di↵erent Coulomb-

like potentials. We follow the decompositions given in [145]. The thermally-averaged
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4.3. Sommerfeld corrections

Sommerfeld factors are

h�vrel(S3S3 or F3F3 ! gg)is-wave, Sommerfeld

h�vrel(S3S3 or F3F3 ! gg)is-wave, pertubative

=
2

7
hS(

4↵s/3

vrel
)i +

5

7
hS(

�↵s/6

vrel
)i ,

h�vrel(F3F3 ! qq)is-wave, Sommerfeld

h�vrel(F3F3 ! qq)is-wave, pertubative

= hS(
�↵s/6

vrel
)i ,

h�vrel(S8S8 or F8F8 ! gg)is-wave, Sommerfeld

h�vrel(S8S8 or F8F8 ! gg)is-wave, pertubative

=
1

6
hS(

3↵s

vrel
)i +

1

3
hS(

3↵s/2

vrel
)i +

1

2
hS(

�↵s

vrel
)i ,

h�vrel(F8F8 ! qq)is-wave, Sommerfeld

h�vrel(F8F8 ! qq)is-wave, pertubative

= hS(
3↵s/2

vrel
)i . (4.16)

The s-wave cross sections vanish for S3S3 ! qq and S8S8 ! qq.
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Chapter 5

Colored bound states in the early
universe

The main purpose of the following chapters is to study the e↵ects of exotic massive

colored particles on DM relic abundance, assuming that they share the same discrete

symmetry stabilizing DM (e.g., R-parity in supersymmetric models and KK-parity in

UED models). In this chapter, we study properties of QCD bound state and how they

play a role in the early-universe cosmology. These results will be used in the next chapter

to calculate the DM relic abundance in scenarios where the colored particle coannihilates

with the WIMP. We also discuss implications of a metastable colored particle on BBN

and the DM relic abundance in the superWIMP scenario.

5.1 Bound state formalism

In this section, we discuss properties and dynamics of formation and dissociation of

QCD bound state, X
1

X
2

$ ⌘g. Studies on DM bound state formation due to some

new binding force can be found in the literature, see [146–149]. Gluino (colored octet)

bound-state e↵ects on neutralino DM coaanihilation have been investigated in [121].

We are mainly concerned with masses of colored particles satisfying m
1

, m
2

� ⇤
QCD

.

At this limit, the dynamics can be described by the exchange of single gluon where the

potential is Coulomb-like, and if the potential is attractive, a bound state can be formed.

The bound state is characterized by the color decomposition of its constituent particle.

As an example, a pair of SM top and anti-top decomposes as follows:

tt : 3 ⌦ 3 = 1 � 8, (5.1)

and the two-particle state is characterized by the 1 and 8 color representations. The
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5.1. Bound state formalism

Coulomb-like potential due to gluon exchange has the form:

V (r) = � ⇣

r
, (5.2)

in which ⇣ is determined by the quadratic Casimir coe�cients of the color representations

of the individual colored particles, X
1

and X
2

(CX1 and CX2 , respectively), as well as of

the one by taking X
1

and X
2

together in a specific color state (CX1X2):

⇣ =
1

2
(CX1 + CX2 � CX1X2)↵s , (5.3)

where ↵s > 0 is the QCD coupling strength. A positive, negative or zero value of ⇣ gives

an attractive, repulsive or zero potential, respectively.

The colored particles we consider in this paper include a complex scalar and a Dirac

fermion in the color SU(3) fundamental representation, a real scalar and a Majorana

fermion in the adjoint representation. The X
1

X
2

combinations are S3S3, F3F3, S8S8

and F8F8, abbreviated in the following as S3, F3, S8 and F8, respectively, and hence

mX1 = mX2 ⌘ mX . As mentioned previously, there are motivations to consider such

particles in BSM. Examples of S3 and F8 are a squark-antisquark pair and a gluino-

gluino pair, respectively, in the MSSM. A KK quark-antiquark pair in models of UED

is a realization of F3. One can also build models for the S8 case [150, 151]. As shown

before, the product of a color triplet and an anti-triplet is decomposed as

3 ⌦ 3 = 1 � 8, (5.4)

and the product of two color octets is decomposed as

8 ⌦ 8 = 1S � 8A � 8S � 10A � 10A � 27S , (5.5)

where the subscripts S and A indicate symmetric and anti-symmetric color states, respec-

tively. Therefore, the relevant quadratic Casimir coe�cients of the color representations

for our calculations are C1 = 0, C3 = 4/3, C8 = 3, C10 = 6 and C27 = 8. 1

In principle, a bound state can form as long as the potential for it is attractive.

In this paper, we focus on the color-singlet bound state, since it is expected to be the

deepest bound (i.e., the ground state) and the most copiously produced one, in analogy

1We note that at a temperature T of the Universe, the screening e↵ect from the quarks and gluons

in the thermal plasma induces a thermal mass m
th

⇠ p
↵
s

T to the gluon, modifying the QCD Coulomb

potential to a Yukawa one. However, as emphasized in [152], the Coulomb potential is a good approxima-

tion as long as the momentum transfer between the two incoming particles, ⇠ m
X

q
T

mX
, is larger than

m
th

. We can see that this condition is well satisfied at the usual freeze-out temperature T ⇠ m
X

/20,

and further better satisfied for the bound-state e↵ect calculation since the e↵ect of which is important

at even lower temperature T ⇠ ↵2
s

m
X

, as will be shown in the next section.
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to atomic physics 2. Therefore, the coe�cient, ⇣, in Eq. (5.2) for the bound state in the

S3 and F3 cases is 1/2⇥ (4/3+4/3�0)↵s = (4/3)↵s, and is 1/2⇥ (3+3�0)↵s = 3↵s for

the S8 and F8 cases. In all the four cases, we consider that the color-singlet bound state

has total orbital angular momentum L = 0 and spin S = 0 3. The normalized spatial

wave function of such a bound state is

�⌘(r) = (⇡a3)�1/2e�r/a, (5.6)

where a is the Bohr radius,

a = (⇣µ)�1, (5.7)

where µ ⌘ mX1mX2/(mX1 + mX2) = mX/2 is the reduced mass. The binding energy of

the bound state is

EB =
⇣2µ

2
. (5.8)

We show all possible combinations of bounds states as well as the strengths of the

potential among MSSM colored particles (stop t̃ and gluino g̃) in Table 5.1 and 5.2.

5.2 Dissociation and formation of bound states in the early

universe

We first give a general description of the dissociation and formation processes of bound

states without specifying the color representation of the particles. We focus only on

the dynamics of the ground state of color singlet bound state (with angular momentum

2In [149], the formation of bound states at excited energy levels is discussed for bound-state e↵ects in

the late Universe, and it is found that the total bound-state formation cross section is dominated by levels

with principle quantum numbers n < ⇣/v
rel

, where v
rel

is the relative velocity of the incoming particles.

Compared to the ground state, the contribution from the excited states enhances the total bound-state

formation cross section by a logarithmic factor ⇠ log(⇣/v
rel

), which is significant for v
rel

⇠ 10�3 in

the galactic halo. However, in the early Universe at temperatures relevant for the dark matter relic

abundance calculation, v
rel

is of order 10�1, so that ⇣/v
rel

⇠ 1. Moreover, compared to the ground

state, the excited states are easier to be dissociated by gluons in the thermal bath, while the dissociation

is not a concern for bound states in the late Universe. Therefore, the contribution from the excited states

is not significant for the relic abundance calculation. Nevertheless, in the next section we will also show

results with a factor of 2 enhancement of the bound-state e↵ect from the considerations of the excited

states contribution as well as other uncertainties in our calculations.
3The total wave function of the bound state is a product of the spatial, spin and color parts of the

wave functions. For the S8 (F8) case, because of the nature of identical particles, the total wave is

symmetric (anti-symmetric). L = 0 gives symmetric (symmetric) spatial wave function, and S = 0 gives

symmetric (anti-symmetric) spin wave function. Together with the symmetric color wave function of the

color-1
S

state, indeed the requirement of the total wave function is satisfied.
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MSSM attractive repulsive

g̃g̃ 1,8S,8A 10,10,27

t̃t̃⇤ 1 8

t̃t̃ 3 6

t̃g̃ 3,6 15

Table 5.1: Color representations of bound states formed by a pair of MSSM particles

(stop t̃ or gluino g̃).

MSSM SU(3) C

(g̃g̃) 1 3

8 3/2

(t̃t̃⇤) 1 4/3

(t̃t̃), (t̃⇤t̃⇤) 3,3 2/3

(t̃g̃), (t̃⇤g̃) 3,3 3/2

6,6 1/2

Table 5.2: Bound states in MSSM, their color representations and the strength of their

potential (5.2). Due to Bose symmetry, the ground states of t̃t̃ and t̃⇤t̃⇤ have angular mo-

mentum L = 1. Moreover, the ground state of g̃g̃ (t̃g̃) belongs to the 1(3) representation

due to the larger value of C.

L = 0 and spin angular momentum S = 0), which is expected to be most copiously

produced in the early universe.

First of all, due to color charge conservation, the emission (absorption) of a gluon

during bound-state formation (dissociation) makes the color representation of the bound

state ⌘ not necessarily be the same as the free pair X
1

X
2

. Therefore, the coe�cient in

the Coulomb potential for the free pair, denoted as ⇣ 0, is not necessarily equal to the one

for the bound state. In particular, ⇣ 0 can be negative, so that the potential is repulsive for

the free pair. As will be shown, at high temperature in the early Universe, the massive

colored particles can have enough kinetic energy to overcome a repulsive potential to

form a bound state.

We follow [121] to calculate the bound-state formation and dissociation cross sections,

where the method is adapted from the calculations of the photoelectric e↵ect for an

atom [153]. The essence of of the calculation is to evaluate the transition matrix element

between the bound state and the free pair state:

Mfi =

Z

�⇤
f (�i

~r · ~✏c
µ

)ei
~k·~r�id

3~r, (5.9)

where �f is the wave function of the free pair and �i ⌘ �⌘(r). The gluon has a momentum
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5.2. Dissociation and formation of bound states in the early universe

~k and a polarization ~✏c, where “c” is the color index.

For the free pair, the normalized spatial part of the wave function is (see Section 136

of [154])

�f =
1

2|~p|
1
X

L=0

iL(2L + 1)e�i�
LRpL(r)PL(

~p · ~r
|~p|r ), (5.10)

where |~p| is the relative momentum of the free pair, expressed in terms of the reduced

mass and their relative velocity as |~p| = µvrel. PL( ~p·~r
|~p|r ) is the Legendre polynomial and

�L (a real number) is the phase shift. Note that the form of the radial function RpL(r)

for an attractive potential between the free pair is di↵erent from the one for a repulsive

potential (see Section 36 of [154] for details). Consider the spatial part of the wave

functions only, the di↵erential dissociation cross section is given as

d�0

dis = ↵s
µ|~p|
2⇡!

|Mfi|2d⌦~p, (5.11)

where ! ⌘ |~k| is the energy of the gluon. The explicit ↵s factor in the above equation

comes from the coupling between the emitted gluon and the massive colored particle. In

the Lagrangian of the quantum field theory, this coupling is from the covariant derivative

of the kinetic term of the massive colored particle, and it takes the form of igsTc, where

gs =
p

4⇡↵s is the strong coupling, and Tc are the generator matrices for the color

representation in which the massive colored particle lies. We will specify Tc in the next

subsection when we consider the color part of the wave functions for the four cases of

our interest.

We use the dipole approximation, i.e. ei
~k·~r ⇡ 1 to calculate the transition matrix

element Eq. (5.9). For the four cases of our interest (S3, F3, S8, F8), we have checked

that the dipole approximation is always justified, i.e. !a < 1 (as the gluon carries a

momentum |~k| = !). Also, the kinetic energy of the bound state is negligible compared

to the gluon energy, so that ! ⇡ EB + 1

2

µv2

rel. This means that only the L = 1 term

in �f has a non-zero contribution due to selection rule. Also, considering that it is the

absolute square of the transition matrix element that appears in Eq. (5.11), we can drop

the phase factors and rewrite �f as

�f =
3

2|~p|Rp1(r)P1

(
~p · ~r
|~p|r ) . (5.12)

Defining the dimensionless quantities:

⌫ ⌘ |⇣ 0|/vrel, (5.13)

and

 ⌘ ⇣/|⇣ 0|, (5.14)
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we can write down the integrated dissociation cross section, averaged over the incoming

gluon spin polarizations. The result depends on whether the free pair feels an attractive

(denoted by the subscript “a”) or a repulsive (denoted by the subscript “r”) Coulomb

potential:

�0

dis,a =
29⇡2

3
↵sa

2

✓

EB

!

◆

4 1 + ⌫2

1 + (⌫)2
e�4⌫ arccot(⌫)

1 � e�2⇡⌫
�1 , (5.15)

�0

dis,r =
29⇡2

3
↵sa

2

✓

EB

!

◆

4 1 + ⌫2

1 + (⌫)2
e4⌫ arccot(⌫)�2⇡⌫

1 � e�2⇡⌫
�1 . (5.16)

In the case that the free pair feels no potential (denoted by the subscript “free”, and

see Section 33 of [154] for the radial function), we find

�0

dis,free =
29⇡2

3
↵sa

2

✓

EB

!

◆

4 (aµvrel)3

2⇡ [1 + (aµvrel)2]
. (5.17)

One can check that in the ⇣ 0 ! 0 limit, Eq. (5.15) and Eq. (5.16) both become Eq. (5.17).

The superscript “0” in the above three equations indicates that we have considered

the spatial part of the wave function only, while the full wave function is a product of

spatial, color and spin wave functions. Also, if the particles are identical, one needs to

symmetrize or anti-symmetrize the wave functions. The full dissociation cross section,

�dis, after taking into account color, spin and the symmetry factors, is related to the

bound-state formation cross section, �bsf , via the Milne relation:

�bsf =
g⌘gg!2

gX1gX2 (µvrel)
2

�dis, (5.18)

where gg,X1,X2,⌘ are the degrees of freedom of gluon, X
1

, X
2

and ⌘, respectively. Note

that if X
1

and X
2

are identical, the left-hand side of Eq. (5.18) has to be multiplied by

1/2 to avoid double counting the number of bound-state formation reactions.

Bound state can be destroyed not only by the dissociation process, but also by

decays. Moreover, the decays can happen in two ways: the constituent particles inside

the bound state can annihilate between themselves (annihilation decay) or an individual

constituent particle can decay by itself 4. The e↵ects of these two kinds of decays on the

relic density of the metastable colored particles or DM are di↵erent. Since we assume

that the constituent particles in the bound state have the same discrete symmetry as

the DM particle, the annihilation decay to SM particles remove, for example, two R-

odd numbers in SUSY, while the individual constitute particle decay does not change

the R-odd number. For the colored particle coannihilating in the WIMP scenario and

the metastable colored particle in the superWIMP scenario, the individual constituent

4It should be noted that the prerequisite of forming a bound state is that the constituent particle

decay width has to be smaller than the bound state formation time a�1.

50



5.3. Results

particle decay rate is suppressed either by the small mass di↵erence or by the very

small coupling between the massive colored particle and the DM particle 5, while the

annihilation decay rate is not suppressed and is proportional to the large mass of the

colored particle. Therefore, we will hereafter neglect the individual constitute particle

decay rate compared to the annihilation decay rate.

5.3 Results

Here, we present the full bound-state formation and dissociation cross sections for the

cases of S3, F3, S8 and F8, as well as the annihilation decay rates.

S3 and F3

Since we consider that the bound state is a color-singlet state, the emission (absorp-

tion) of a gluon in the bound-state formation (dissociation) process dictates that for

both S3 and F3 the free pair state must be in a color-octet state (see Eq. (5.4)), due to

color charge conservation. The normalized color wave function is �kj/
p

3 for the bound

state, and �bij/
p

2 for the free pair, where �bij are the Gell-Mann matrices, and the color

indices i, j, k = 1 � 3, b = 1 � 8. The generator Tc takes the form �cki/2 . Therefore, the

color part of the wave functions contributes to �dis as

�

�

�

�

�

�bijp
2

�cki
2

�kjp
3

�

�

�

�

�

2

=

�

�

�

�

�bcp
6

�

�

�

�

2

=
4

3
. (5.19)

For S3, there is no spin wave function to worry about. While for F3, without con-

sidering the bound state, a pair of heavy colored fermion and anti-fermion can have

3/4 chance in a spin-triplet configuration with S = 1 and 1/4 chance in a spin-singlet

configuration with S = 0. Since we only consider a bound state with S = 0, then by

neglecting the spin-orbit interaction we will only consider a free pair that is also in S = 0

state. Therefore, we consider that both the bound state and the free pair have the same

spin wave function, given as

("# � #")/
p

2 , (5.20)

so that the spin part of the wave functions does not introduce a factor for �dis. However,

in the next section we will see that when including the bound-state formation and dis-

sociation cross sections in the Boltzmann equation, we need to introduce an additional

5This is the case in the MSSM for a Bino-like neutralino LSP coannihilating with a stop, when the

two-body decay of the stop into top and neutralino is kinematically forbidden, and indeed coannihilation

is responsible for giving the correct DM relic abundance for the small mass di↵erence range [130]. For a

neutralino LSP coannihilating with a gluino, the gluino decay rate can be very suppressed by the small

mass di↵erence as well as by large squark masses in the propagator [121]. For a gravitino or axino LSP,

its coupling with the NLSP is suppressed by the Planck or the Peccei-Quinn scale.
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factor of 1/4 for F3 compared to S3 to take into account the fact that we have only

considered the S = 0 possibility in the former.

Putting the factor of 1/8 from the incoming gluon color averaging, the factor of

4/3 from the color part of the wave functions, and by noticing that the free pair has a

repulsive potential with ⇣ 0 = 1/2 ⇥ (4/3 + 4/3 � 3)↵s = (�1/6)↵s (see Eq. (5.3)), we get

the full dissociation cross section for S3 and F3,

�S3,F3

dis =
1

8
⇥ 4

3
⇥ �0

dis,r , (5.21)

in which the quantities inside �0

dis,r are given in Eqs. (5.7), (5.8), (5.13) and (5.14) with

⇣ = (4/3)↵s. From Eq. (5.18), the bound-state formation cross sections are

�S3

bsf =
1 ⇥ 16

3 ⇥ 3

!2

(µvrel)
2

⇥ �S3,F3

dis (5.22)

and

�F3

bsf =
1 ⇥ 16

6 ⇥ 6

!2

(µvrel)
2

⇥ �S3,F3

dis , (5.23)

where the degrees of freedom are written explicitly.

For the bound-state annihilation decay, we consider the dominant decay mode only,

which is the two-gluon final state (see e.g. [155]), and the results are

�S3

⌘ =
1

3
µ↵2

s⇣
3 (5.24)

and

�F3

⌘ =
2

3
µ↵2

s⇣
3, (5.25)

where ⇣ = (4/3)↵s. In the above two equations, the ↵s factor explicitly written is eval-

uated at the scale of 2mX , while the ↵s inside ⇣ is evaluated at the scale of the inverse

Bohr radius, a�1.

S8 and F8

Due to the nature of identical particles, the total wave functions need to be symmetric

for S8 whereas anti-symmetric for F8.

The F8 case was studied in detail in [121], and the result for the gluon dissociation

of a color-1S bound state with (S = 0, L = 0) into a free pair in an 8A state with

(S = 0, L = 1) is

�F8

dis = 3 ⇥ 4 ⇥ 1

8
⇥ 1

2
⇥ �0

dis,a , (5.26)
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where the factor 3 comes from the color part of the wave functions together with the gen-

erator Tc = �ifcde in the coupling between the gluon and the massive colored particle,

where fcde are the SU(3) structure constants. The factor 4 comes from symmetrization

of the spatial part of the bound-state wave function (L = 0) and anti-symmetrization

of the spatial part of the free pair wave function (L = 1). 1/8 comes from the color

averaging of the incoming gluon. The factor 1/2 is introduced to avoid double count-

ing of the two identical massive colored particle in the outgoing free pair phase-space

integration. The spin part of the wave functions do not introduce any extra factor. The

quantities inside �0

dis,a are given in Eqs. (5.7), (5.8), (5.13) and (5.14) with ⇣ = 3↵s and

⇣ 0 = 1/2 ⇥ (3 + 3 � 3)↵s = (3/2)↵s.

The S8 case is exactly the same as the F8 case, namely, a transition from a color-1S
bound state with (S = 0, L = 0) into a color-8A free pair state with (S = 0, L = 1). The

only di↵erence is that while for the F8 case the S = 0 state means that the spin wave

function is anti-symmetric (i.e., a spin-singlet configuration), for the S8 case there is no

spin to worry about, so that for the latter the total wave functions for both bound state

and free pair state are symmetric, as they should be. Therefore, we have

�S8

dis = �F8

dis ⌘ �S8,F8

dis . (5.27)

The corresponding bound-state formation cross sections are

�S8

bsf = 2 ⇥ 1 ⇥ 16

8 ⇥ 8

!2

(µvrel)
2

⇥ �S8,F8

dis (5.28)

and

�F8

bsf = 2 ⇥ 1 ⇥ 16

16 ⇥ 16

!2

(µvrel)
2

⇥ �S8,F8

dis , (5.29)

where the factor of 2 in the front of the right-hand side of the two equations is actually

the factor of 1/2 which would have been in the left-hand side of Eq. (5.18) to avoid double

counting the number of bound-state formation reactions. In Eqs. (5.28) and (5.29), the

degrees of freedom are written explicitly.

Again, we consider the dominant two-gluon annihilation decay channel only, and the

annihilation decay rates are (see e.g. [155]),

�S8

⌘ =
9

4
µ↵2

s⇣
3, (5.30)

and

�F8

⌘ =
9

2
µ↵2

s⇣
3, (5.31)

where ⇣ = 3↵s. The scales of evaluating the ↵s explicitly written and the one inside ⇣ in

the above two equations are understood similarly as in the S3 and F3 cases.
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5.4 Thermal averaging

Let us note that in order to study the bound-state e↵ects on the relic abundance of

the massive colored particles or the DM, we need the thermally-averaged bound-state

dissociation and annihilation decay rates, as well as the formation cross section times the

relative velocity of the free pair, since it is these quantities that appear in the Boltzmann

equation which determines the evolution of the density of the massive colored particles

or the DM with temperature, T . By defining two dimensionless variables, z ⌘ EB/T

and u ⌘ 1

2

µv2

rel/T , we can rewrite �dis and �bsf as functions of z and u, together with

factors not changing with T . In particular, the relevant quantities are expressed as

! = EB

⇣

1 +
u

z

⌘

, (5.32)

⌫ =
⇣ z

u

⌘

1
2
�1 , for ⇣ 0 6= 0 , (5.33)

vrel = ⇣
⇣u

z

⌘

1
2

. (5.34)

The thermally-averaged bound-state dissociation rate is

h�idis = gg
4⇡

(2⇡)3

Z 1

E
B

�dis
!2d!

e!/T � 1
= gg

4⇡

(2⇡)3

Z 1

0

�dis
E3

B

�

1 + u
z

�

2

du

z (ez+u � 1)
. (5.35)

The thermally-averaged bound-state formation cross section times relative velocity is

h�vibsf =

Z 1

0

�bsfvrelf(vrel)

✓

1 +
1

e!/T � 1

◆

dvrel , (5.36)

with f(vrel) given in Eq. (4.15).

The factor 1

e!/T �1

in Eq. (5.36) accounts for the stimulated emission due to the gluons

in the thermal bath. Using Eqs. (5.34) and (5.8), h�vibsf can be rewritten as

h�vibsf =

Z 1

0

�bsf⇣
⇣u

z

⌘

1
2 2p

⇡
u1/2e�u

✓

1 +
1

ez+u � 1

◆

du . (5.37)

The thermally-averaged bound-state annihilation decay rate is

h�i⌘ = �⌘hm⌘

E⌘
i ⇡ �⌘

R1
m

⌘

m
⌘

E
⌘

e�E
⌘

/Td3~p⌘
R1
m

⌘

e�E
⌘

/Td3~p⌘
= �⌘

K
1

(m⌘/T )

K
2

(m⌘/T )
, (5.38)

where m⌘ is the mass of the bound state, given as m⌘ = mX1 + mX2 � EB. In the above

formula, we have assumed the Maxwell-Boltzmann approximation for the bound-state

equilibrium distribution, and K
1,2(m⌘/T ) are the modified Bessel functions of the second

kind. At m⌘ � T , h�i⌘ ⇡ �⌘.
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5.5 Boltzmann equations revisited

We now have all the tools to write down and solve the Boltzmann equations of interest

governing the evolution of particle number density in the expanding universe. The general

formulae for N species of exotic particles are given in [122]. For our purpose, we consider

at most two exotic particles in the thermal bath: the colored particle X and DM �,

with degree of freedom gX and g� respectively, 6 and by considering that they share

the same discrete symmetry stabilizing DM, we assume the decay of the massive colored

particle produced one DM together with some SM particles. In the WIMP scenario,

we are interested in the coannihilation between the two exotic species. As highlighted

in [121, 156], coannihilation is e↵ective only if the interconversion rate between the

two species is su�ciently large compared to the Hubble expansion rate, otherwise the

two species would freeze out separately. Without committing to specific particle theory

models, in this work we assume the interconversion rate is su�ciently large so that the

two species freeze-out together and we can use a single Boltzmann equation to calculate

the DM density. We emphasis that this condition needs to be checked when one consider

coannihilations in specific DM models.

Also, as we are mainly interested in QCD interactions and further model specifica-

tions would have been needed, in our calculation we neglect the (co)annihilation cross

sections for DM - DM and DM - massive colored particle, in comparing to the annihi-

lation cross sections between the massive colored particles. In the WIMP DM scenario,

indeed this is usually a good approximation. For example, for the right-handed stop-Bino

coannihilation in the MSSM, the stop - antistop annihilation to gg channel dominates the

e↵ective annihilation cross section in the coannihilation region for an O(TeV) Bino [132],

if the ratio of the lighter stop - heavier stop - Higgs coupling to heavier stop mass is not

very large [130]; for the gluino-neutralino coannihilation, the gluino pair annihilations

to gg and qq dominate over the neutralino-gluino and neutralino pair (co)annihilation

cross sections.
6For the case where � is a superWIMP, where � is never in the thermal bath, we simply impose

g
�

= 0 in our formulae.
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With these specifications, the following set of coupled Boltzmann equations apply:

dY�

dx
=

xs

H(m�)

h

h�iX
1

s

✓

YX � Y eq
X

Y�

Y eq
�

◆

i

,

(5.39)

dYX

dx
=

xs

H(m�)

h

� h�viXX

�

YXYX � Y eq
X Y eq

X

�� h�iX
1

s

✓

YX � Y eq
X

Y�

Y eq
�

◆

�h�vibsf
✓

YXYX � Y eq
X Y eq

X

Y⌘

Y eq
⌘

◆

i

, (5.40)

dY⌘

dx
=

xs

H(m�)

h

� h�i⌘
1

s

�

Y⌘ � Y eq
⌘

�� h�viX⌘!XgYX

�

Y⌘ � Y eq
⌘

�

+h�vibsf
✓

YXYX � Y eq
X Y eq

X

Y⌘

Y eq
⌘

◆

i

, (5.41)

where

x ⌘ m�

T
, s =

2⇡2

45
g⇤sT

3, H(m�) ⌘ H(T )x2 =

✓

4⇡3GNg⇤
45

◆

1
2

m2

� , (5.42)

GN being the gravitational constant, and g⇤s, g⇤ are the numbers of degrees of freedom

associated with the entropy density and the energy density respectively.

Rewriting Eq. (5.41) as:

d ln Y⌘

d ln x
= �h�i⌘ + h�viX⌘!XgnX

H(T )

✓

1 � Y eq
⌘

Y⌘

◆

+

1

2

h�vibsfnX

⇣

Y
X

Y
⌘

⌘

H(T )

"

1 �
✓

Y eq
X

YX

◆

2

✓

Y⌘

Y eq
⌘

◆

#

,

(5.43)

we can see that LHS of Eq. (5.43) is of order �10, the terms on the RHS of Eq. (5.43) are

of order ↵5

sMP /m� � 10. Therefore, under the approximation that the LHS of Eq. (5.43)

is zero, we can write
⇣

Y
⌘

Y eq

⌘

⌘

as:

Y⌘

Y eq
⌘

=
h�i⌘ + h�viX⌘!XgnX + h�idis

⇣

Y
X

Y eq

X

⌘

2

h�i⌘ + h�viX⌘!XgnX + h�idis
, (5.44)

where

h�idis =
1

2
h�vibsf (neq

X )2/neq
⌘ . (5.45)

Hence, the evolution of the total number density of exotic particles over the entropy

density, Ỹ ⌘ (nX + n�)/s can be described by a single Boltzmann equation as follows:

dỸ

dx
=

xs

H(m�)

h

� h�viXX

�

YXYX � Y eq
X Y eq

X

�

�h�vibsf
h�i⌘ + h�viX⌘!XgnX

h�i⌘ + h�viX⌘!XgnX + h�idis
�

YXYX � Y eq
X Y eq

X

�

i

.

(5.46)
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While calculating the relic abundance we are only interested in the temperature of the

universe where X is non-relativistic. Hence h�viX⌘!XgnX can be ignored.

The Boltzmann equation can be written more succinctly using an e↵ective cross

section h�effvi:

dỸ

dx
= � xs

H(m�)

✓

1 +
T

3g⇤s

dg⇤s
dT

◆

h�effvi
⇣

Ỹ 2 � Ỹ 2

eq

⌘

, (5.47)

We define � ⌘ (mX �m�)/m� and geff ⌘ g�+gX(1+�)3/2e��x. Then, the e↵ective

annihilation cross section without bound-state e↵ects, h�effvi0 can be written as

h�effvi0 = h�viXX
g2

X(1 + �)3e�2�x

g2

eff

, (5.48)

where h�viXX is the total annihilation cross section of X into quarks and gluons with

Sommerfeld e↵ects included.

Following arguments above, the e↵ects of bound states are incorporated by replacing

h�viXX with the following terms:

h�viXX ! h�viXX + h�vibsf h�i⌘
h�i⌘ + h�idis . (5.49)

The formula has the following physical interpretation: the reactions of bound states occur

at a timescale much shorter than the Hubble scale such that if one is interested in the

change in the number density of X/�, one does not have to trace the evolution of bound

state number density by solving the coupled Boltzmann equations. Once the bound state

of X is formed, it either decays to SM particles, reducing the number density of X/�,

or dissociate back to X immediately. These processes feed directly into the annihilation

cross section as in Eq. (5.49). As a result, the annihilation cross section of X is e↵ectively

enhanced as a new channel involving X annihilating to the bound state is now open.

5.6 Bound-state e↵ects

In order to demonstrate the e↵ects of bound states, we plot for S3 (stop) and F8 (gluino)

in Fig. 5.1 and Fig. 5.2 the temperature dependences of the Sommerfeld-corrected anni-

hilation cross section (orange line), i.e.

h�vrel(XX ! gg, qq)i
Sommerfeld

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

, (5.50)

the thermally-averaged bound-state formation cross section with (solid black curve) and

without (dotted black curve) considering bound state dissociation and annihilation decay
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rates, also normalized to the tree-level XX ! gg, qq annihilation cross section, i.e.,

h�vibsf h�i
⌘

h�i
⌘

+h�i
dis

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

and
h�vibsf

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

, (5.51)

respectively, and with purple curves for the same ones but multiplied by a factor of 2 in

the bound-state formation cross section (solid and dotted) and dissociation rate (solid),

that is 7,

2h�vibsf h�i
⌘

h�i
⌘

+2h�i
dis

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

and
2h�vibsf

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

. (5.52)

As can be observed from the plots, at early times where the gluons in the thermal bath

are energetic, the dissociation rate is so large that once the bound state is formed, it is

quickly dissociated away without decaying via annihilation. A factor of 2 increase of the

bound state e↵ect has little e↵ect on the e↵ective annihilation cross section, and there is

no contribution to reducing the relic abundance at early times. Bound-state e↵ects are

important only during the time when the dissociation rate is smaller than the decay rate.

This happens at x & mX/EB ⇠ 1/↵2

s ⇠ 100, where the gluon in the thermal plasma is

no longer energetic enough to dissociate the bound state. Then, the bound state decays

via annihilation and contributes to reducing the relic abundance. Also can be observed

from the plots is the fact that the bound-state e↵ects can be comparable or larger than

the Sommerfeld e↵ects. 8

There is a qualitative di↵erence between the S3 and F8 cases at EB/T � 1: while

in the F8 case the solid black and purple curves keep growing with the decrease of

temperature, in the S3 case they are decreasing after achieving maximum values around

EB/T ⇠ 2. This is due to the fact that an S3 incoming pair feels a repulsive potential

prior to forming a bound state, while the potential is attractive for an F8 incoming pair.

7To account for the errors involving the evaluations of ↵
s

’s [157], the corrections from a more accurate

QCD potential and the thermal mass of the gluon [145], as well as the possibility that excited bound

states may also contribute to the bound-state e↵ect [146], we plot purple curves in this and following

figures with an uncertainty of a factor of 2.
8We use a common value, ↵

s

= 0.1, for all the ↵
s

’s appearing in the formulae for the curves in

Figs. 5.1,5.2 and the upper left, upper right and lower left panels in Fig. 6.5. In this way, all the ratios do

not depend on m
X

. However, we note that in other parts of this paper and other plots, ↵
s

’s are evaluated

di↵erently: the ↵
s

’s appearing in the Sommerfeld factors in Eq. (4.16) are evaluated at �m
X

which is

the typical scale of the momentum transfer of the soft-gluon exchanges which are responsible for the

Sommerfeld e↵ect [142], and we take � = 0.3, which is roughly the average of the thermal velocities of the

X’s at the freeze-out temperature; the ↵
s

’s in the bound-state formation cross sections and dissociation

rates, as well as in the ⇣ part of the annihilation decay rates (given in Eqs. (5.24), (5.25), (5.30) and

(5.31)), are evaluated at the bound-state inverse Bohr radius scale; the ↵
s

’s in the tree-level XX ! gg, qq

annihilation cross sections and the ones appearing explicitly in the bound-state annihilation decay rates,

are evaluated at the scale of 2m
X

.
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Figure 5.1: The S3 (stop) Sommerfeld-corrected annihilation cross section (orange line),

e↵ective annihilation cross section due to bound states (second term in the RHS of

Eq. (5.49); black line), and e↵ective bound-state annihilation cross section multiplied

by 2 (where h�vibsf and h�idis are 2 times larger; purple line) as a function of EB/T .

Together we also plot the e↵ective annihilation cross section due to bound states without

taking into account the dissociation process (h�idis = 0; black and purple dotted lines).

All plotted cross sections are normalized with respect to the tree-level annihilation cross

section. The vertical black dotted lines correspond to, from left to right, x = mX/T =

20, 30, 100.

At lower temperature, there is a smaller fraction of the incoming S3 pairs which have

enough kinetic energy to overcome the repulsive potential to form bound states. While

for the F8 case, a low temperature (and hence small velocities) favors the formation of

the bound state, similar to that of the Sommerfeld enhancement.

Let us return to solving the Boltzmann equation in Eq. (5.47). In order to obtain the

value of Ỹ at late time (x ! 1), one solves the equation from a freeze-out temperature

Tf where the number density Ỹ starts to depart from its equilibrium value Ỹeq, such

that the last term of the RHS of Eq. (5.47) can be dropped:

dỸ

dx
' � xs

H(m�)

✓

1 +
T

3g⇤s

dg⇤s
dT

◆

h�effvi
⇣

Ỹ 2

⌘

. (5.53)

This typically occurs at xf = 20 ⇠ 30. Integrating both sides from x = xf ⌘ m�/Tf to

x = 1, we get

1

Ỹ (x = 1)
' 1

Ỹ (xf )
+

Z 1

x
f

dx
xs

H(m�)

✓

1 +
T

3g⇤s

dg⇤s
dT

◆

h�effvi. (5.54)
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Figure 5.2: The F8 (gluino) Sommerfeld-corrected annihilation cross section (orange

line), e↵ective annihilation cross section due to bound states (second term in the RHS

of Eq. (5.49); black line), and e↵ective bound-state annihilation cross section multiplied

by 2 (where h�vibsf and h�idis are 2 times larger; purple line) as a function of EB/T .

Together we also plot the e↵ective annihilation cross section due to bound states without

taking into account the dissociation process (h�idis = 0; black and purple dotted lines).

All plotted cross sections are normalized with respect to the tree-level annihilation cross

section. The vertical black dotted lines correspond to, from left to right, x = mX/T =

20, 30, 100.
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For the typical case where h�effvi is independent of temperature, the last term of the

RHS of Eq. (5.54) is negligible, and the present-time relic abundance equals to its value

at freeze-out. However, this is not true for Sommerfeld-enhanced processes and bound-

state e↵ects, where late-time annihilations are important. Sommerfeld e↵ects become

important when the relative velocity of the annihilating particles is low. Moreover, dis-

cussed, bound-state e↵ects are important only x & mX/EB ⇠ 1/↵2

s ⇠ 100, where the

gluon in the thermal plasma is no longer energetic enough to dissociate the bound state.

Therefore, the common wisdom assuming that the number density of relics suddenly

freezes out at xf does not apply.

To demonstrate these e↵ects, we plot for S3 (stop) and F8 (gluino) in Fig. 5.3 and

Fig. 5.4 the change of Ỹ with respect to temperature in the coannihilation scenario (as-

suming DM has a total number of degree of freedom 2). For S3 (F8), we take mX = 2

TeV (mX = 8 TeV), and the mass splitting between DM and the colored particle 5 GeV

(15 GeV), which will reproduce the observed relic abundance as will be shown in the next

Section. The red, orange, black and purple lines show the calculation without Sommerfeld

and bound-state e↵ects, with Sommerfeld but without bound-state e↵ects, with Som-

merfeld and bound-state e↵ects, and with Sommerfeld and two times the bound-state

e↵ects, respectively. The solid lines correspond to the solution where the full Boltzmann

equation (Eq. (5.47)) is solved numerically. The dashed lines correspond to the approxi-

mate solution using Eq. (5.54), where the freeze-out temperature is taken to be xf = 30,

and the yield during freeze-out is calculated numerically using the full Boltzmann equa-

tion. The fact that the solid and dashed lines almost overlap with each other shows that

Eq. (5.54) is a good approximation.

It can be noted from the plots that the values of Ỹ at freeze-out (xf = 30, corre-

sponding to the second vertical black dotted line from the left) is di↵erent from its value

at x ! 1. This is particularly apparent for the case with Sommerfeld and bound-state

e↵ects included, where the di↵erence between Ỹx
f

and Ỹ (x ! 1) can be larger than

an order of magnitude. Therefore, in order to take Sommerfeld and bound-state e↵ects

into account appropriately, one must integrate the Boltzmann equation at least until

T . EB.
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Figure 5.3: The yield Ỹ as a function of EB/T for the S3 (stop) coannihilation scenario.

The red, orange, black and purple lines show the calculation without Sommerfeld and

bound-state e↵ects, with Sommerfeld but without bound-state e↵ects, with Sommerfeld

and bound-state e↵ects, and with Sommerfeld and two times the bound-state e↵ects, re-

spectively. The solid lines correspond to the solution where the full Boltzmann equation

(Eq. (5.47)) is solved numerically. The dashed lines correspond to the approximate solu-

tion using Eq. (5.54), where the freeze-out temperature is taken to be xf = 30, and the

yield during freeze-out is calculated numerically using the full Boltzmann equation. The

green dashed line correspond to the equilibrium value of Ỹ . The vertical black dotted

lines correspond to, from left to right, x = mX/T = 20, 30, 100.

62



5.6. Bound-state effects

0.5 1 5 10 501.×10-14

5.×10-14
1.×10-13

5.×10-13
1.×10-12

5.×10-12
1.×10-11

Eb/T

n/
s

Figure 5.4: The yield Ỹ as a function of EB/T for the F8 (gluino) coannihilation scenario.

The red, orange, black and purple lines show the calculation without Sommerfeld and

bound-state e↵ects, with Sommerfeld but without bound-state e↵ects, with Sommerfeld

and bound-state e↵ects, and with Sommerfeld and two times the bound-state e↵ects, re-

spectively. The solid lines correspond to the solution where the full Boltzmann equation

(Eq. (5.47)) is solved numerically. The dashed lines correspond to the approximate solu-

tion using Eq. (5.54), where the freeze-out temperature is taken to be xf = 30, and the

yield during freeze-out is calculated numerically using the full Boltzmann equation. The

green dashed line correspond to the equilibrium value of Ỹ . The vertical black dotted

lines correspond to, from left to right, x = mX/T = 20, 30, 100.
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Chapter 6

Implications and applications

In this chapter, we study implications of colored bound states and the applications

of our techniques to several early-universe scenarios. We first discuss how our calcula-

tions change the BBN constraints on long-lived particles. We then study non-thermal

contribution of such particles to the relic abundance of superWIMP. Next, we study

coannihilating WIMP scenarios. Collider constraints and e↵ects of electric charge will

also be discussed.

Before delving deeper into the phenomenology of bound states, let us remind the

readers again limitations and assumptions of our calculations. Firstly, we do not in-

clude higher order corrections to the QCD Coulomb potential and the thermal mass of

the gluon. Secondly, we consider only the ground state, which is expected to be most

copiously produced. However, these e↵ects are expected to be small, as explained in

Section 5.1. We nevertheless show results with a factor of 2 enhancement of the bound-

state e↵ects from the considerations of the excited states contribution as well as other

uncertainties in our calculations.

6.1 Bounds on long-lived colored particles

We compare the relic abundance of the long-lived particles with the bounds from the

BBN. Injection of energetic particles into the thermal plasma during BBN change pre-

dictions on the abundance of light elements. The fact that the observed abundance of

light elements agreeing well with standard BBN processes place a stringent constraint on

the long-lived relic’s abundance [158–167]. Generically, the BBN bounds can constrain

particles of lifetime ⌧ & 0.1s. Examples of such metastable particles can be found in

R-parity conserving SUSY models with a gravitino [168–172] or axino LSP [173–175].

Another motivation is split SUSY [176–178]. Gluino NLSP (neutralino being the LSP)

can be long-lived if the squarks are much heavier.

It is well-known that the concordance of the standard BBN predications of the pri-
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6.1. Bounds on long-lived colored particles

mordial light-element abundances with the values inferred from observational data, pro-

vides strong constraints on the abundance, mass, lifetime, and decay spectra of a massive

particle decaying during or after BBN (see e.g. [164]). Since our focus in this work is to

study the impacts of the bound-state e↵ect of massive colored particles, we want to see

how much the bound-state e↵ect can change the BBN constraints on the abundance and

mass comparing to in particular the Sommerfeld e↵ect, for a given lifetime and decay

spectra which depend on other details of a specific particle theory model. With this in

mind, we simply use the parametrization given in Eq. (56) of [157] for the BBN con-

straints obtained by [164] for a massive metastable particle with a lifetime of ⇠ 0.1�102

sec and assuming that its hadronic decay branching ratio is 1 (which can be a good

approximation for a massive colored particle), given as

YX 6 1.0 ⇥ 10�13

⇣ mX

1 TeV

⌘�0.3
for ⌧X ⇠ 0.1 � 102 s . (6.1)

The above constraint comes from the would be overproduction of He4, due to the new

proton $ neutron interconversion reactions induced by the hadronic shower from X

decays. In Eq. (6.1), YX is the sum of the yield for particle and anti-particle in our

convention.

We show in Fig. 6.1 and Fig. 6.2 YX as functions of mX for the S3 and F8 cases,

calculated using Eq. (5.47) with the meanings of the variables understood as mentioned

at the end of Sec. 5.5 for massive colored particles. As before, the red, orange, black

and purple lines are results without the Sommerfeld and bound-state e↵ects, with the

Sommerfeld e↵ect but without bound-state e↵ect, with both the Sommerfeld and bound-

state e↵ect, and with Sommerfeld e↵ect and a factor of 2 enlargement of the bound-state

e↵ect, respectively. The blue dashed line is given by Eq. (6.1), and the parameter region

above this line is excluded for an X with a lifetime of ⇠ 0.1 � 102 sec. We can see that

the bound-state e↵ect pushes the allowed regions of mX to larger values compared to the

ones with the Sommerfeld e↵ect included only, namely, ⇠ 1.1 ! 2.1 TeV and ⇠ 8 ! 11

TeV for S3 and F8, respectively. As will be discussed more in the next Section, since

the LHC is pushing the exclusion limit of long-lived colored particles to TeV scale, it

is useful to update the exclusion limit from BBN as well by including the previously

omitted bound-state e↵ect, so that we can be more confident to close or to leave open

the mass window a long-lived colored particle can have.

We note that in our calculations of the relic abundance of massive colored particles,

we have not included the possible further reduction of the abundance due to annihila-

tions of heavy exotic color-neutral hadrons, which are formed by not-yet-decayed massive

colored particles together with quarks and gluons after the quark-hadron phase transi-

tion in the early Universe [179, 180]. In this sense, the BBN constraints given here are

conservative. The contribution to ⌦non-th

SW

h2 from the massive colored particle decays be-

comes smaller as well if there is further reduction of ⌦Xh2 after the quark-hadron phase
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Figure 6.1: The total yield of the massive colored particles as a function of the mass,

for the S3 case, calculated without the Sommerfeld and bound-state e↵ects (red line),

with the Sommerfeld e↵ect but without bound-state e↵ect (orange line), with both the

Sommerfeld and bound-state e↵ect (black line), and with Sommerfeld e↵ect and a factor

of 2 enlargement of the bound-state e↵ect (purple line). The blue dashed line is the

constraint given in Eq. (6.1). The vertical dashed line is the mass lower limit on the

long-lived massive colored particle from collider constraints as demonstrated in Sec. 6.4.
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Figure 6.2: The total yield of the massive colored particles as a function of the mass,

for the F8 case, calculated without the Sommerfeld and bound-state e↵ects (red line),

with the Sommerfeld e↵ect but without bound-state e↵ect (orange line), with both the

Sommerfeld and bound-state e↵ect (black line), and with Sommerfeld e↵ect and a factor

of 2 enlargement of the bound-state e↵ect (purple line). The blue dashed line is the

constraint given in Eq. (6.1). The vertical dashed line is the mass lower limit on the

long-lived massive colored particle from collider constraints as demonstrated in Sec. 6.4.
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transition.

6.2 SuperWIMP

Let us discuss how the number density of exotic colored particles can change the predic-

tions of the relic abundance of superWIMP. The superWIMP framework in consideration

has two sources contributing to the relic abundance of superWIMP: thermal production

of superWIMP, where the superWIMP is produced via interactions in the thermal bath,

and the decay of frozen out relic colored particles into superWIMPs. Including bound-

state e↵ects allows us to study the the latter contribution more precisely. As an example,

we consider the case where the right-handed stop is the NLSP and the KSVZ axino is

the superWIMP [181, 182].

Axino is thermally produced via QCD interactions in the early universe. The relic

abundance depends on the reheating temperature, TR as follows [183, 184]

⌦(th)

ã h2 ' 1.5g6

s ln

✓

3

gs

◆

⇣ mã

600 GeV

⌘

✓

TR

106 GeV

◆✓

fa
1014 GeV

◆�2

, (6.2)

where fa is the axion decay constant, and gs is to be evaluated at the TR scale.

As the decay rate of the stop NLSP is suppressed by fa, its decay occurs after freeze-

out. The contribution of the stop NLSP to the relic abundance of axino can be related

to the would-be relic abundance of stop as follows:

⌦(

˜t
R

)

ã h2 =
mã

m
˜t
R

⌦
˜t
R

h2. (6.3)

We parametrize the yield of stop as follows:

Y
˜t
R

' 3.54 ⇥ 10�14

⇣ m
˜t
R

103 GeV

⌘

1.25

. (6.4)

Using ⌦
˜t
R

h2 ' 2.76 ⇥ 1011Y
˜t
R

(m
˜t
R

/103GeV), we get

⌦(

˜t
R

)

ã h2 ' 0.1
⇣ mã

600 GeV

⌘⇣ m
˜t
R

104 GeV

⌘

1.25

. (6.5)

Hence, a multi-TeV stop can reproduce the observed DM relic abundance, assuming that

the axino is also of TeV-scale. On the other hand, the reheating temperature must be

lower than around 1.4 ⇥ 105 GeV for fa = 1014 GeV so that axino is not overproduced.

Such a limit on TR may impose constraints on high-scale models of baryogenesis or

leptogenesis.

Note that the decay rate of stop is given as [185]

�(t̃R ! tã) = (1.3 ⇥ 10�3 sec)�1⇠2t

⇣ m
˜t
R

104 GeV

⌘⇣ mg̃

104 GeV

⌘

2

✓

1014 GeV

fa

◆

2

 

1 � m2

ã

m2

˜t
R

!

,(6.6)

where ⇠t is a factor of order one. Therefore, within the parameter space of interest, the

decay of stop does not a↵ect BBN.
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6.3 Coannihilation

Let us now study scenarios in which the WIMP DM � has a mass close to a certain

massive colored particle X, such that �� X coannihilation is important in determining

the DM relic abundance. We assume that the DM has a number of degrees of freedom

g� = 2, corresponding to a Majorana (e.g., the neutralino in SUSY) or a complex scalar

DM. The relic abundance of DM then depends only on the DM mass, m�, and the mass

splitting between DM and the colored particle, mX � m�. We plot in Fig. 6.3 in the

(m�, mX � m�) planes the contour bands of the dark matter relic abundance falling

within the 3-� range of the Planck determination of the cold DM density, ⌦
CDM

h2 =

0.1193±0.0014 [29]. These bands are calculated using Eq. (5.47) without the Sommerfeld

and bound-state e↵ects (red), with the Sommerfeld e↵ect but without bound-state e↵ect

(orange), with both the Sommerfeld and bound-state e↵ect (black), and with Sommerfeld

e↵ect and a factor of 2 enlargement of the bound-state e↵ect (purple). We can see

that for the S3, S8 and F8 cases, on top of the Sommerfeld enhancement, bound-state

e↵ect further push upwards the largest mass splittings which can result in correct DM

relic density. Also, the largest possible DM masses achieved at the endpoints of the

coannihilation strips when the mass splittings approach zero, increase by ⇠ 50%, 100%

and 30% with respect to the Sommerfeld-enhanced-only values, reaching ⇠ 2.5, 11 and

9 TeV for the S3, S8 and F8 cases, respectively 1. For the F3 case in the upper right

panel, however, the Sommerfeld and bound-state e↵ects are much smaller compared to

the other three cases. As can be seen from the positions of the red and orange bands,

the Sommerfeld e↵ect gives a slightly suppressed rather than an enhanced h�effvi 2.

Fig. 6.4 shows in the (m�, ⌦�h2) plans the locations of the endpoints of the coanni-

hilation strips for di↵erent values of ⌦�h2, achieved when mX � m� = 0, for S3 (upper

left), F3 (upper right), S8 (lower left) and F8 (lower right) coannihilating with a WIMP

DM which has g� = 2. The color conversions are the same as in Fig. 6.3. The horizontal

green band shows the 3-� range determined by Planck, 0.1151 < ⌦�h2 < 0.1235. We

can see that for the S3, S8 and F8 cases, for a given value of m� the Sommerfeld e↵ect

greatly reduces the calculated ⌦�h2 compared to the one without the inclusion of Som-

merfeld factors. Also, the calculated ⌦�h2 is further significantly reduced after including

the bound-state e↵ect, in particular for a DM mass of TeV scale or larger. On the other

hand, for the F3 case, again we see that the Sommerfeld and bound-state e↵ects are

1The numerical di↵erences for the F8 case in Figs. 6.3 and 6.4 compared to Figs. 4 and 5 in [121]

are due to a di↵erent use of ↵
s

in the bound-state formation and dissociation cross sections, as well as

the e↵ect from the squark masses in the tree-level cross section of gluino pair annihilation into quark-

antiquark pairs.
2The red and orange bands and curves in Figs. 6.3 and 6.4 are consistent with the red and light green

bands and curves in Figs. 1 and 2 in [145] for the S3, S8 and F8 cases. For the F3 case, the red band

and curve presented here are also consistent with the ones in [145], but the orange band and curve are

di↵erent.
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Figure 6.3: The (m�, mX � m�) planes showing bands where 0.1151 < ⌦�h2 < 0.1235

(3-� range of the Planck determination of the cold DM relic density), for S3 (upper

left), F3 (upper right), S8 (lower left) and F8 (lower right) coannihilating with a DM

which has the number of degrees of freedom g� = 2. These results are calculated without

the Sommerfeld and bound-state e↵ects (red), with the Sommerfeld e↵ect but without

bound-state e↵ect (orange), with both the Sommerfeld and bound-state e↵ect (black),

and with Sommerfeld e↵ect and a factor of 2 enlargement of the bound-state e↵ect

(purple).
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Figure 6.4: The locations of the endpoints (i.e., mX � m� = 0) of the coannihilation

strips for di↵erent values of ⌦�h2, using the same color conventions as in Fig. 6.3 for S3

(upper left), F3 (upper right), S8 (lower left) and F8 (lower right), respectively. The 3-�

range 0.1151 < ⌦�h2 < 0.1235 is shown by the horizontal green band.

small, and the Sommerfeld e↵ect is opposite compared to the other three cases.

6.4 Collider constraints

As shown in the previous Section, the DM relic abundance in the WIMP DM coannihila-

tion scenarios and the BBN constraints on the long-lived massive particle decays impose

upper bounds on the masses of exotic massive colored particles. On the other hand, col-

lider experiments are constraining the masses from below. It should be emphasized that

it is impossible to probed the WIMP DM coannihilation scenarios using techniques of

DM direct/indirect detection experiments as reviewed in Chapter 2. Collider search for

the colored particles is the only alternative strategy (which is interesting and important
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6.4. Collider constraints

from the minimalist’s point of view).

In the massive colored particle coannihilating with a WIMP DM scenario, the coan-

nihilation region is characterized by a small mass splitting, which typically is di�cult to

probe at the LHC using the conventional multiple jets plus large missing energy searches.

Massive colored particle pair production accompanied by a hard initial-state radiation,

i.e., the monojet search, is utilized to constrain scenarios with such a compressed mass

spectrum. For simplicity, we focus only on the mX �m� ! 0 region so that the kinemat-

ics of decay products of the colored particles can be ignored 3. The 13 TeV lower mass

limits for S3 (stop) and F8 (gluino) are 0.32 TeV [186] and 0.63 TeV [187], respectively.

To impose limits on F3 and S8, we simulate the monojet analysis [188, 189] using the

MadGraph-Pythia-Checkmate [190–197] pipeline: parton events pp ! ��j, where j is a

jet, are generated using MadGraph; partons are showered and hadronized using Pythia;

detector responses to the events are simulated with Delphes; cuts on the events are

applied with the help of Checkmate. In particular, we utilize the Run 2 SUSY search

for squarks and gluino to place monojet limits on F3 and S8 [188]. The relevant signal

region is SR2jm and has kinematic cuts as follows:

• pj1T > 300 GeV

• pj2T > 50 GeV

• /ET > 200 GeV

• ��(j, /ET ) > 0.4 up to three leading jets in the events

• no leptons with pT > 10 GeV

• /ET /
p

HT > 15 GeV1/2

• m
e↵

> 1600 GeV

where pT is the jet transverse momentum, /ET is the missing transverse energy, HT is the

scalar sum of jet pT ’s, and m
e↵

is defined as the sum of HT and /ET . The obtained mass

limits are 0.41 TeV and 0.43 TeV for F3 and S8, respectively. The results are summarized

in Table 6.1, together with the endpoint values for the coannihilation strips including

the Sommerfeld and bound-state e↵ects read from Fig. 6.3.

Let us briefly comment on the discovery reach of a prospective 100 TeV proton-

proton collider at an integrated luminosity of 3000 fb�1, in particular for the S3 case.

3Opening the mass splitting m
X

� m
�

will lower the monojet sensitivity as the missing energy is

reduced by additional jets or objects from the decays of the massive colored particles. On the other

hand, the signal e�ciency of multi-jet plus missing energy searches is increased as the mass splitting

opens, albeit the e�ciency depends on how the colored particle decays. It is interesting to study how

these complementary approaches can probe the coannihilation region. The detailed study is left for future

work.
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6.5. Electric charge corrections

Bounds (TeV) S3 F3 S8 F8

DM 2.5 2.4 11 9

LHC 0.32 0.41 0.63 0.43

Table 6.1: The DM masses at the endpoints of the coannihilation scripts including the

Sommerfeld and bound-state e↵ects and giving the observed DM relic abundance, and

the LHC monojet bounds for these coannihilation scenarios.

The bound-state e↵ect increases the mass range of DM significantly, making the coanni-

hilation scenario more di�cult to probe. With the inclusion of the bound-state e↵ect so

that the right-handed stop-Bino coannihilation strip ends at ⇠ 2.5 TeV when the Bino

accounts for the total DM density (the inclusion of additional electroweak coannihilation

channels [132] and a large lighter stop - heavier stop - Higgs coupling to heavier stop

mass ratio [130] can shift the endpoint to even larger values), the ending part of the

strip may be not within the discovery reach any more, though may be still within the

exclusion reach given su�ciently low systematics [198].

In the long-lived massive colored particle scenario, the produced massive colored

particles at a collider form R-hadrons and travel through the detector with velocities

significantly less than the speed of light, leaving ionization energy dE/dx characteris-

tically higher than that of charged SM particles. Searches for such events have been

performed by both ATLAS and CMS collaborations at the LHC [199, 200]. The current

13 TeV limits on long-lived (stable at collider scales) S3 (stop) and F8 (gluino) are 890

GeV and 1580 GeV, respectively [201]. While a dedicated simulation of R-hadron events

at the LHC is beyond the scope of this work, in order to make a simple estimate of

the bounds on long-lived F3 and S8, we assume that the signal e�ciency and hadron

formation probability of F3 (S8) equal to that of S3 (F8). The pair production cross

section of F3 is estimated up to NNLO using Hathor [202], while an NLO K-factor of 2

is used for the S8 scenario [203]. The obtained mass limits are 1170 GeV and 1420 GeV

for F3 and S8, respectively. The results are summarized in Table 6.2, together with the

upper bounds from BBN for the masses of long-lived massive colored particles assuming

lifetimes between 0.1 and 100 sec, including the Sommerfeld and bound-state e↵ects, as

discussed previously.

6.5 Electric charge corrections

So far we have focused on bound-state e↵ects with a gluon being emitted/absorbed in

the bound-state formation/dissociation process. If a massive colored particle also carries

some electric charge, for example, the squark in SUSY, a bound state can form (or be

dissociated) by emitting (or absorbing) a photon, i.e., X
1

X
2

$ ⌘�. In addition, the
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6.5. Electric charge corrections

Bounds (TeV) S3 F3 S8 F8

BBN 2.1 1.7 17 11

LHC 0.89 1.2 1.6 1.4

Table 6.2: BBN upper bounds on the masses of long-lived massive colored particles

assuming lifetimes between 0.1 and 100 sec, including the Sommerfeld and bound-state

e↵ects. Also shown are the LHC lower bounds on the masses of long-lived colored par-

ticles.

previously calculated bound-state formation/dissociation cross sections associated with

gluon emission/absorption are modified due to the change of the potentials between the

massive colored particles. To see the impacts of the electric charge on the bound-state

e↵ect, we use the S3 case as an example by assigning a charge Q (�Q) to S3 (S3), and

consider the processes S3S3 $ ⌘g and S3S3 $ ⌘�.

For S3S3 $ ⌘g, we still consider the transition between the (color-octet, L = 1, S =

0) free pair state and the (color-singlet, L = 0, S = 0) bound state. By modifying the

coe�cients of the Coulomb potentials, ⇣ ! ⇣ + ↵
EM

Q2 and ⇣ 0 ! ⇣ 0 + ↵
EM

Q2, where

↵
EM

is the electromagnetic fine structure constant, the formulae given in the previous

sections still apply. Quantities depending on ⇣ and/or ⇣ 0, e.g., a, EB,, and the cross

sections and rates into which they enter, therefore all change. With an electric charge,

for the bound state the previous attractive potential becomes more attractive. On the

other hand, for the free pair state the previous repulsive potential becomes less repulsive,

and even it can become attractive when |Q| is large enough, i.e., (�1/6)↵s + ↵
EM

Q2 is

positive when |Q| & 3/2. The bound-state annihilation decay rate changes as well due

to the change of ⇣.

For S3S3 $ ⌘�, the bound state and the free pair state are in the same color state,

so that ⇣ = ⇣ 0. Using dipole approximation 4, we consider the transition between the

(color-singlet, L = 1, S = 0) free pair state and the (color-singlet, L = 0, S = 0) bound

state. The calculation is the same as for S3S3 $ ⌘g, except that there is no color factors

to worry about and the explicit coupling factor ↵s in Eq. (5.11) is changed to ↵
EM

Q2.

The bound-state dissociation and formation cross sections are

��dis =
29⇡2

3
↵

EM

Q2a2

✓

EB

!

◆

4 e�4⌫ arccot ⌫

1 � e�2⇡⌫
, (6.7)

��bsf =
1 ⇥ 2

3 ⇥ 3

!2

(µvrel)
2

⇥ ��dis , (6.8)

where the superscript “�” indicates photon emission/absorption. The quantities a, EB

etc. are evaluated taking into account the change of potential due to the electric charge

4We have checked that the dipole approximation is still justified with the inclusion of the electric

charges we consider.
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6.5. Electric charge corrections

as mentioned above. In the thermally-averaged dissociation rate given in Eq. (5.35), gg
is changed to g� = 2. The formula for the thermally-averaged formation cross section

times relative velocity given in Eq. (5.36) stays the same.

We show in Fig. 6.5 the impacts of electric charge on the bound-state e↵ect for the

S3 case. The red dashed, red dotted, blue dashed, blue dotted and brown dashed lines

correspond to cases of |Q| = 1/3, 2/3, 1, 2 and 3, respectively. The grey dashed lines in

the upper left, upper right and lower left panels are for the case with the electric charge

chosen such that ⇣ 0 = 0. The black lines in the upper left and lower left panels are the

same as the one in the left panel of Fig. 5.1, and the black line in the lower right panel is

the same as the one in the upper left panel of Fig. 6.4, all for Q = 0. We use ↵
EM

= 1/128

in these plots, and take values of ↵s’s as noted before in Sec. 5.6. The upper left panel

shows the the ratio
h�vigbsf h�i

⌘

h�i
⌘

+h�ig
dis

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

, (6.9)

where the superscript “g” indicates that only S3S3 $ ⌘g is considered. We can see that

larger |Q| makes the bound-state e↵ect stronger. Also, for a large enough |Q| such that

the free pair potential becomes attractive (the blue dotted line and especially the brown

dashed line), the behavior of the ratio at large EB/T becomes more like the black line

of Fig. 5.2 where the free pair potential is attractive. The upper right panel shows the

ratio
h�vi�bsf h�i

⌘

h�i
⌘

+h�i�
dis

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

. (6.10)

Again, larger |Q| leads to larger bound-state e↵ect with photon emission/absorption.

By comparing with the corresponding lines in the upper right panel, we see that for

|Q| > 2, at EB/T . 10 the bound-state e↵ect due to gluon emission/absorption is much

larger than the one due to photon emission/absorption, while they become comparable

for larger |Q|. The lower left panel shows the ratio

⇣

h�vigbsf + h�vi�bsf
⌘

h�i
⌘

h�i
⌘

+h�ig
dis

+h�i�
dis

h�vrel(XX ! gg, qq)i
w/o Sommerfeld

, (6.11)

in which the numerator is the one entering into the Boltzmann equation as the second

term in Eq. (5.49). The shape of curves at smaller EB/T is controlled by the gluon

emission/absorption bound-state e↵ect, while the one from photon emission/absorption

becomes important at larger EB/T .

We plot in the lower right panel the locations of the endpoints of the coannihilation

strips for di↵erent values of ⌦�h2, after taking into account the total impacts of electric

charge on the bound-state e↵ects. As before, the horizontal green band shows the 3-�

range of the Planck determination of the cold DM relic density, 0.1151 < ⌦�h2 < 0.1235,
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Figure 6.5: Impacts of the electric charge on the bound-state e↵ect for the S3 case. The

upper left panel is for the gluon emission/absorption bound-state e↵ect, corresponding

to Eq. (6.9). The upper right panel is for the photon emission/absorption bound-state

e↵ect, corresponding to Eq. (6.10). The lower left panel takes both of the above two

into account, corresponding to Eq. (6.11). The lower right panel shows the locations

of the endpoints (i.e., mX � m� = 0) of the coannihilation strips for di↵erent values

of ⌦�h2, for a WIMP DM with the number of degrees of freedom g� = 2. The 3-�

range 0.1151 < ⌦�h2 < 0.1235 of the Planck determination of the cold DM relic density

is shown by a horizontal green band. In all panels, the red dashed, red dotted, blue

dashed, blue dotted and brown dashed lines correspond to cases of |Q| = 1/3, 2/3, 1, 2

and 3, respectively. The grey dashed lines in the upper left, upper right and lower left

panels are for the case with the Q chosen such that the potential for the free pair is zero.

The black lines in the upper left, lower left and lower right panels are for the case of

Q = 0.
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6.5. Electric charge corrections

and we assume a WIMP DM with the number of degrees of freedom g� = 2. Comparing

to the black line which corresponds to Q = 0, the |Q| = 1/3 and 2/3 cases (corresponding

to the charges of squarks) only slightly increase the endpoint values of m� for a given

⌦�h2, and by ⇠ O(10) GeV on the Planck band. For larger |Q|, the increase becomes

significant, and the endpoint on the Planck band reaches ⇠ 3 (4) TeV for |Q| = 2 (3).
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Chapter 7

Discussions and Conclusions

After giving an review on DM, we have in this thesis studied the bound-state e↵ects of

exotic massive colored particles on DM relic abundance calculations in scenarios where

the massive colored particles coannihilating with a WIMP DM. In general the bound-

state e↵ect increases the e↵ective annihilation cross section through the formation and

then annihilation decays of bound states, draining the number of DM particles in the

thermal bath, when the massive colored particles and DM share the same discrete sym-

metry which stabilizes the latter, and provided the interconversion rate between the two

particle species is fast enough compared to the Hubble expansion rate. For a given DM

relic abundance, this e↵ect allows a larger DM mass and a larger mass splitting between

the massive colored particle and the DM. As examples, we consider the massive colored

particles being complex scalars (S3) or Dirac fermions (F3) in the color SU(3) funda-

mental representation, and real scalars (S8) or Majorana fermions (F8) in the adjoint

representation. We find that the bound-state e↵ect significantly increases the largest pos-

sible DM masses which can give the observed DM relic abundance, reaching ⇠ 2.5, 11

and 9 TeV for the S3, S8 and F8 cases, resepectively. Comparing to the corresponding

ones when considering only the Sommerfeld e↵ect but without the bound-state e↵ect,

these values increase by ⇠ 50%, 100% and 30%, respectively. The increase for the F3 case

is smaller, but still the bound-state e↵ect can more than counterbalance the Sommerfeld

e↵ect which is a suppression rather than an enhancement in this case.

We note that while the potentials for the bound states are attractive, due to color

charge conservation the potential for an incoming massive colored particle pair can be

attractive, zero or repulsive. In the early Universe bound states can form when incoming

pairs have su�ciently large relative velocities to overcome the repulsive potential. In

particular, for the S3 case, we find that although fading at low temperatures, the large

bound-state formation cross section achieved when temperatures are comparable to the

bound-state binding energy makes the bound-state e↵ect significant enough, such that

to probe the entire stop-Bino coannihilation strip can be quite challenging, if possible,
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even in a prospective 100 TeV proton-proton collider at an integrated luminosity of 3000

fb�1.

We have also calculated the corrections for the bound-state e↵ect when the massive

colored particles carry electric charges. Using the S3 case as an example, we find that

larger electric charge makes the bound-state e↵ect stronger, and the enhancement can

make the above mentioned ⇠ 2.5 TeV coannihilation endpoint to ⇠ 3 (4) TeV for |Q| = 2

(3), for which the incoming pair potential changes from being repulsive to attractive.

However, for |Q| < 1, the enhancement is quite small.

As we have briefly discussed, bound-state e↵ects should also be included in calcu-

lations of superWIMP DM relic density from the decays of metastable massive colored

particles, as well as when applying BBN constraints on long-lived massive colored par-

ticles. Furthermore, considering that BBN constraints and the DM relic abundance in

coannihilation scenarios impose upper bounds on the masses of massive colored particles,

we have studied the collider limits on the exotic massive colored particles we consider in

this thesis.

Let us note that many other QCD bound states are possible. For example, in SUSY

there can be di-squark and squark-gluino bound states [204]. Also, a squark and an

antisquark with di↵erent flavors can also form a bound state. Studying the e↵ects of

these bound states in specific SUSY models are left for future works.

78



Bibliography

[1] G. Aad et al. (ATLAS), Phys. Lett. B716, 1 (2012), arXiv:1207.7214 [hep-ex].

[2] S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012), arXiv:1207.7235 [hep-

ex].

[3] S. P. Liew and F. Luo, (2016), arXiv:1611.08133 [hep-ph].

[4] J. C. Kapteyn, Astrophysical Journal 55, 302 (1922).

[5] J. H. Oort, Bulletin of the Astronomical Institutes of the Netherlands 6, 249 (1932).

[6] F. Zwicky, Helv. Phys. Acta 6, 110 (1933).

[7] S. Smith, Astrophysical Journal 83, 23 (1936).

[8] F. D. Kahn and L. Woltjer, Astrophysical Journal 130, 705 (1959).

[9] D. B. Cline, ed., Sources of Dark Matter in the Universe: Proceedings, 1st Inter-

national Symposium, February 16-18, 1994, Bel Air, CA, World Scientific (World

Scientific, Singapore, 1995).

[10] V. C. Rubin and W. K. Ford, Jr., Astrophys. J. 159, 379 (1970).

[11] M. Roberts and R. Whitehurst, Astrophysical Journal 201, 327 (1975).

[12] J. Ostriker and P. Peebles, Astrophysical Journal 186, 467 (1973).

[13] K. A. Einasto, J. and E. Saar, Nature 250, 309 (1974).

[14] J. P. Ostriker, P. J. E. Peebles, and A. Yahil, Astrophys. J. 193, L1 (1974).

[15] R. Cowsik and J. McClelland, Astrophys. J. 180, 7 (1973).

[16] Ya. B. Zeldovich, J. Einasto, and S. F. Shandarin, Nature 300, 407 (1982).

[17] H. Pagels and J. R. Primack, Phys. Rev. Lett. 48, 223 (1982).

79

http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1611.08133
http://dx.doi.org/10.1086/142670
http://dx.doi.org/10.1086/143697
http://dx.doi.org/10.1086/146762
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/153889
http://dx.doi.org/10.1086/153889
http://dx.doi.org/10.1086/153889
http://dx.doi.org/10.1086/181617
http://dx.doi.org/10.1086/151937
http://dx.doi.org/10.1038/300407a0
http://dx.doi.org/10.1103/PhysRevLett.48.223


Bibliography

[18] G. R. Blumenthal, H. Pagels, and J. R. Primack, Nature 299, 37 (1982).

[19] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive, and M. Srednicki, IN

*BATAVIA 1984, PROCEEDINGS, INNER SPACE/OUTER SPACE*, 458-459.,

In *Srednicki, M.A. (ed.): Particle physics and cosmology* 223-246, Nucl. Phys.

B238, 453 (1984).

[20] E. W. Kolb and M. S. Turner, Front. Phys. 69, 1 (1990).

[21] S. Weinberg, Cosmology (2008).

[22] A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998),

arXiv:astro-ph/9805201 [astro-ph].

[23] S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999),

arXiv:astro-ph/9812133 [astro-ph].

[24] K. G. Begeman, A. H. Broeils, and R. H. Sanders, Mon. Not. Roy. Astron. Soc.

249, 523 (1991).

[25] G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405, 279 (2005), arXiv:hep-

ph/0404175 [hep-ph].

[26] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones,

and D. Zaritsky, Astrophys. J. 648, L109 (2006), arXiv:astro-ph/0608407 [astro-

ph].

[27] W. T. Hu, Wandering in the Background: A CMB Explorer, Ph.D. thesis, UC,

Berkeley (1995), arXiv:astro-ph/9508126 [astro-ph].

[28] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A16 (2014), arXiv:1303.5076

[astro-ph.CO].

[29] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589

[astro-ph.CO].

[30] B. Fields and S. Sarkar, (2006), arXiv:astro-ph/0601514 [astro-ph].

[31] M. Betoule et al. (SDSS), Astron. Astrophys. 568, A22 (2014), arXiv:1401.4064

[astro-ph.CO].

[32] K. Freese, B. Fields, and D. Gra↵, Nucl. Phys. Proc. Suppl. 80, 0305 (2000),

arXiv:astro-ph/9904401 [astro-ph].

[33] P. Kroupa, B. Famaey, K. S. de Boer, J. Dabringhausen, M. S. Pawlowski, C. M.

Boily, H. Jerjen, D. Forbes, G. Hensler, and M. Metz, Astron. Astrophys. 523,

A32 (2010), arXiv:1006.1647 [astro-ph.CO].

80

http://dx.doi.org/10.1038/299037a0
http://www.oup.com/uk/catalogue/?ci=9780198526827
http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9805201
http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/astro-ph/9812133
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://arxiv.org/abs/hep-ph/0404175
http://arxiv.org/abs/hep-ph/0404175
http://arxiv.org/abs/astro-ph/0608407
http://arxiv.org/abs/astro-ph/0608407
http://alice.cern.ch/format/showfull?sysnb=0207836
http://arxiv.org/abs/astro-ph/9508126
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5076
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/astro-ph/0601514
http://dx.doi.org/10.1051/0004-6361/201423413
http://arxiv.org/abs/1401.4064
http://arxiv.org/abs/1401.4064
http://arxiv.org/abs/astro-ph/9904401
http://dx.doi.org/10.1051/0004-6361/201014892
http://dx.doi.org/10.1051/0004-6361/201014892
http://arxiv.org/abs/1006.1647


Bibliography

[34] S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez, and M. Bradac, Astro-

phys. J. 679, 1173 (2008), arXiv:0704.0261 [astro-ph].

[35] H.-W. Rix and G. Lake, Astrophys. J. 417, L1 (1993), arXiv:astro-ph/9308022

[astro-ph].

[36] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rept. 267, 195 (1996),

arXiv:hep-ph/9506380 [hep-ph].

[37] D. G. Cerdeno and A. M. Green, (2010), arXiv:1002.1912 [astro-ph.CO].

[38] R. W. Schnee, in In Physics of the Large and Small: Proceedings of the 2009

Theoretical Advanced Study Institute in Elementary Particle Physics, 629-681

(World Scientific, Singapore) Ed. Csaba Csaki and Scott Dodelson (2010) (2011)

arXiv:1101.5205 [astro-ph.CO].

[39] E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012),

arXiv:1207.5988 [astro-ph.CO].

[40] D. S. Akerib et al., (2016), arXiv:1608.07648 [astro-ph.CO].

[41] R. Agnese et al. (SuperCDMS), Phys. Rev. Lett. 116, 071301 (2016),

arXiv:1509.02448 [astro-ph.CO].

[42] R. H. Helm, Phys. Rev. 104, 1466 (1956).

[43] J. R. Ellis, K. A. Olive, and C. Savage, Phys. Rev. D77, 065026 (2008),

arXiv:0801.3656 [hep-ph].

[44] X. L. Ren, L. S. Geng, J. Martin Camalich, J. Meng, and H. Toki, JHEP 12, 073

(2012), arXiv:1209.3641 [nucl-th].

[45] P. Schweitzer, Eur. Phys. J. A22, 89 (2004), arXiv:hep-ph/0312376 [hep-ph].

[46] P. Junnarkar and A. Walker-Loud, Phys. Rev. D87, 114510 (2013),

arXiv:1301.1114 [hep-lat].

[47] R. Ruiz de Austri and C. Prez de los Heros, JCAP 1311, 049 (2013),

arXiv:1307.6668 [hep-ph].

[48] M. I. Gresham and K. M. Zurek, Phys. Rev. D89, 016017 (2014), arXiv:1311.2082

[hep-ph].

[49] R. Bernabei et al. (DAMA, LIBRA), Eur. Phys. J. C67, 39 (2010), arXiv:1002.1028

[astro-ph.GA].

81

http://arxiv.org/abs/0704.0261
http://dx.doi.org/10.1086/187079
http://arxiv.org/abs/astro-ph/9308022
http://arxiv.org/abs/astro-ph/9308022
http://dx.doi.org/10.1016/0370-1573(95)00058-5
http://arxiv.org/abs/hep-ph/9506380
http://arxiv.org/abs/1002.1912
https://inspirehep.net/record/885795/files/arXiv:1101.5205.pdf
https://inspirehep.net/record/885795/files/arXiv:1101.5205.pdf
https://inspirehep.net/record/885795/files/arXiv:1101.5205.pdf
http://arxiv.org/abs/1101.5205
http://dx.doi.org/10.1103/PhysRevLett.109.181301
http://arxiv.org/abs/1207.5988
http://arxiv.org/abs/1608.07648
http://dx.doi.org/10.1103/PhysRevLett.116.071301
http://arxiv.org/abs/1509.02448
http://dx.doi.org/10.1103/PhysRev.104.1466
http://dx.doi.org/10.1103/PhysRevD.77.065026
http://arxiv.org/abs/0801.3656
http://arxiv.org/abs/1209.3641
http://dx.doi.org/10.1140/epja/i2004-10027-7
http://arxiv.org/abs/hep-ph/0312376
http://dx.doi.org/10.1103/PhysRevD.87.114510
http://arxiv.org/abs/1301.1114
http://dx.doi.org/10.1088/1475-7516/2013/11/049
http://arxiv.org/abs/1307.6668
http://dx.doi.org/10.1103/PhysRevD.89.016017
http://arxiv.org/abs/1311.2082
http://arxiv.org/abs/1311.2082
http://dx.doi.org/10.1140/epjc/s10052-010-1303-9
http://arxiv.org/abs/1002.1028
http://arxiv.org/abs/1002.1028


Bibliography

[50] C. E. Aalseth et al. (CoGeNT), Phys. Rev. Lett. 106, 131301 (2011),

arXiv:1002.4703 [astro-ph.CO].

[51] C. E. Aalseth et al., Phys. Rev. Lett. 107, 141301 (2011), arXiv:1106.0650 [astro-

ph.CO].

[52] G. Angloher et al., Eur. Phys. J. C72, 1971 (2012), arXiv:1109.0702 [astro-ph.CO].

[53] R. Agnese et al. (CDMS), Phys. Rev. Lett. 111, 251301 (2013), arXiv:1304.4279

[hep-ex].

[54] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 112, 091303 (2014), arXiv:1310.8214

[astro-ph.CO].

[55] M. Ackermann et al. (Fermi-LAT), Phys. Rev. Lett. 115, 231301 (2015),

arXiv:1503.02641 [astro-ph.HE].

[56] D. Hooper and L. Goodenough, Phys. Lett. B697, 412 (2011), arXiv:1010.2752

[hep-ph].

[57] D. Hooper and T. Linden, Phys. Rev. D84, 123005 (2011), arXiv:1110.0006 [astro-

ph.HE].

[58] D. P. Finkbeiner, (2004), arXiv:astro-ph/0409027 [astro-ph].

[59] T. Linden, D. Hooper, and F. Yusef-Zadeh, Astrophys. J. 741, 95 (2011),

arXiv:1106.5493 [astro-ph.HE].

[60] D. Hooper, Phys. Dark Univ. 1, 1 (2012), arXiv:1201.1303 [astro-ph.CO].

[61] T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, JCAP 1207, 054

(2012), arXiv:1203.1312 [hep-ph].

[62] C. Weniger, JCAP 1208, 007 (2012), arXiv:1204.2797 [hep-ph].

[63] M. Endo, K. Hamaguchi, S. P. Liew, K. Mukaida, and K. Nakayama, Phys. Lett.

B721, 111 (2013), arXiv:1301.7536 [hep-ph].

[64] S. P. Liew, Phys. Lett. B724, 88 (2013), arXiv:1304.1992 [hep-ph].

[65] J. Knodlseder et al., Astron. Astrophys. 411, L457 (2003), arXiv:astro-ph/0309442

[astro-ph].

[66] P. Jean et al., Astron. Astrophys. 407, L55 (2003), arXiv:astro-ph/0309484 [astro-

ph].

82

http://dx.doi.org/10.1103/PhysRevLett.106.131301
http://arxiv.org/abs/1002.4703
http://dx.doi.org/10.1103/PhysRevLett.107.141301
http://arxiv.org/abs/1106.0650
http://arxiv.org/abs/1106.0650
http://dx.doi.org/10.1140/epjc/s10052-012-1971-8
http://arxiv.org/abs/1109.0702
http://arxiv.org/abs/1304.4279
http://arxiv.org/abs/1304.4279
http://arxiv.org/abs/1310.8214
http://arxiv.org/abs/1310.8214
http://dx.doi.org/10.1103/PhysRevLett.115.231301
http://arxiv.org/abs/1503.02641
http://dx.doi.org/10.1016/j.physletb.2011.02.029
http://arxiv.org/abs/1010.2752
http://arxiv.org/abs/1010.2752
http://dx.doi.org/10.1103/PhysRevD.84.123005
http://arxiv.org/abs/1110.0006
http://arxiv.org/abs/1110.0006
http://arxiv.org/abs/astro-ph/0409027
http://dx.doi.org/10.1088/0004-637X/741/2/95
http://arxiv.org/abs/1106.5493
http://dx.doi.org/10.1016/j.dark.2012.07.001
http://arxiv.org/abs/1201.1303
http://arxiv.org/abs/1203.1312
http://dx.doi.org/10.1088/1475-7516/2012/08/007
http://arxiv.org/abs/1204.2797
http://arxiv.org/abs/1301.7536
http://dx.doi.org/10.1016/j.physletb.2013.06.006
http://arxiv.org/abs/1304.1992
http://dx.doi.org/10.1051/0004-6361:20031437
http://arxiv.org/abs/astro-ph/0309442
http://arxiv.org/abs/astro-ph/0309442
http://dx.doi.org/10.1051/0004-6361:20031056
http://arxiv.org/abs/astro-ph/0309484
http://arxiv.org/abs/astro-ph/0309484


Bibliography

[67] C. Boehm, D. Hooper, J. Silk, M. Casse, and J. Paul, Phys. Rev. Lett. 92, 101301

(2004), arXiv:astro-ph/0309686 [astro-ph].

[68] D. P. Finkbeiner and N. Weiner, Phys. Rev. D76, 083519 (2007), arXiv:astro-

ph/0702587 [astro-ph].

[69] E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein, and S. W.

Randall, Astrophys. J. 789, 13 (2014), arXiv:1402.2301 [astro-ph.CO].

[70] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, Phys. Rev. Lett. 113,

251301 (2014), arXiv:1402.4119 [astro-ph.CO].

[71] S. P. Liew, JCAP 1405, 044 (2014), arXiv:1403.6621 [hep-ph].

[72] E. Resconi (IceCube), Very large volume neutrino telescope for the Mediterranean

Sea. Proceedings, 3rd International VLVnuT Workshop, Toulon, France, April 22-

24, 2008, Nucl. Instrum. Meth. A602, 7 (2009), arXiv:0807.3891 [astro-ph].

[73] S. Profumo, in Proceedings, Theoretical Advanced Study Institute in Elementary

Particle Physics: Searching for New Physics at Small and Large Scales (TASI

2012): Boulder, Colorado, June 4-29, 2012 (2013) pp. 143–189, arXiv:1301.0952

[hep-ph].

[74] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 113, 101101 (2014),

arXiv:1405.5303 [astro-ph.HE].

[75] B. Feldstein, A. Kusenko, S. Matsumoto, and T. T. Yanagida, Phys. Rev. D88,

015004 (2013), arXiv:1303.7320 [hep-ph].

[76] A. Esmaili and P. D. Serpico, JCAP 1311, 054 (2013), arXiv:1308.1105 [hep-ph].

[77] O. Adriani et al. (PAMELA), Phys. Rev. Lett. 105, 121101 (2010),

arXiv:1007.0821 [astro-ph.HE].

[78] M. Aguilar et al. (AMS), Phys. Rev. Lett. 117, 091103 (2016).

[79] O. Adriani et al. (PAMELA), Nature 458, 607 (2009), arXiv:0810.4995 [astro-ph].

[80] M. Aguilar et al. (AMS), Phys. Rev. Lett. 110, 141102 (2013).

[81] L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper, and C. Weniger, Phys. Rev.

Lett. 111, 171101 (2013), arXiv:1306.3983 [astro-ph.HE].

[82] M. Brhlik, in Proceedings, 2nd International Heidelberg Conference on Dark matter

in astrophysics and particle physics (DARK 1998): Heidelberg, Germany, July 20-

25, 1998 (1998) pp. 499–515, arXiv:hep-ph/9810279 [hep-ph].

83

http://arxiv.org/abs/astro-ph/0309686
http://dx.doi.org/10.1103/PhysRevD.76.083519
http://arxiv.org/abs/astro-ph/0702587
http://arxiv.org/abs/astro-ph/0702587
http://arxiv.org/abs/1402.2301
http://dx.doi.org/10.1103/PhysRevLett.113.251301
http://dx.doi.org/10.1103/PhysRevLett.113.251301
http://arxiv.org/abs/1402.4119
http://dx.doi.org/10.1088/1475-7516/2014/05/044
http://arxiv.org/abs/1403.6621
http://dx.doi.org/10.1016/j.nima.2008.12.013
http://arxiv.org/abs/0807.3891
http://dx.doi.org/10.1142/9789814525220_0004
http://dx.doi.org/10.1142/9789814525220_0004
http://dx.doi.org/10.1142/9789814525220_0004
http://arxiv.org/abs/1301.0952
http://arxiv.org/abs/1301.0952
http://dx.doi.org/10.1103/PhysRevLett.113.101101
http://arxiv.org/abs/1405.5303
http://dx.doi.org/10.1103/PhysRevD.88.015004
http://dx.doi.org/10.1103/PhysRevD.88.015004
http://arxiv.org/abs/1303.7320
http://dx.doi.org/10.1088/1475-7516/2013/11/054
http://arxiv.org/abs/1308.1105
http://dx.doi.org/10.1103/PhysRevLett.105.121101
http://arxiv.org/abs/1007.0821
http://dx.doi.org/10.1038/nature07942
http://arxiv.org/abs/0810.4995
http://arxiv.org/abs/1306.3983
http://alice.cern.ch/format/showfull?sysnb=0292641
http://alice.cern.ch/format/showfull?sysnb=0292641
http://alice.cern.ch/format/showfull?sysnb=0292641
http://arxiv.org/abs/hep-ph/9810279


Bibliography

[83] A. Birkedal, K. Matchev, and M. Perelstein, Phys. Rev. D70, 077701 (2004),

arXiv:hep-ph/0403004 [hep-ph].

[84] F. J. Petriello, S. Quackenbush, and K. M. Zurek, Phys. Rev. D77, 115020 (2008),

arXiv:0803.4005 [hep-ph].

[85] Y. Gershtein, F. Petriello, S. Quackenbush, and K. M. Zurek, Phys. Rev. D78,

095002 (2008), arXiv:0809.2849 [hep-ph].

[86] M. Beltran, D. Hooper, E. W. Kolb, Z. A. C. Krusberg, and T. M. P. Tait, JHEP

09, 037 (2010), arXiv:1002.4137 [hep-ph].

[87] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu,

Phys. Lett. B695, 185 (2011), arXiv:1005.1286 [hep-ph].

[88] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu,

Phys. Rev. D82, 116010 (2010), arXiv:1008.1783 [hep-ph].

[89] Y. Bai, P. J. Fox, and R. Harnik, JHEP 12, 048 (2010), arXiv:1005.3797 [hep-ph].

[90] P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Phys. Rev. D84, 014028 (2011),

arXiv:1103.0240 [hep-ph].

[91] P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Phys. Rev. D85, 056011 (2012),

arXiv:1109.4398 [hep-ph].

[92] Y. Bai and T. M. P. Tait, Phys. Lett. B723, 384 (2013), arXiv:1208.4361 [hep-ph].

[93] A. Friedland, M. L. Graesser, I. M. Shoemaker, and L. Vecchi, Phys. Lett. B714,

267 (2012), arXiv:1111.5331 [hep-ph].

[94] I. M. Shoemaker and L. Vecchi, Phys. Rev. D86, 015023 (2012), arXiv:1112.5457

[hep-ph].

[95] G. Busoni, A. De Simone, E. Morgante, and A. Riotto, Phys. Lett. B728, 412

(2014), arXiv:1307.2253 [hep-ph].

[96] S. Chang, R. Edezhath, J. Hutchinson, and M. Luty, Phys. Rev. D89, 015011

(2014), arXiv:1307.8120 [hep-ph].

[97] H. An, L.-T. Wang, and H. Zhang, Phys. Rev. D89, 115014 (2014),

arXiv:1308.0592 [hep-ph].

[98] Y. Bai and J. Berger, JHEP 11, 171 (2013), arXiv:1308.0612 [hep-ph].

[99] H. Dreiner, D. Schmeier, and J. Tattersall, Europhys. Lett. 102, 51001 (2013),

arXiv:1303.3348 [hep-ph].

84

http://dx.doi.org/10.1103/PhysRevD.70.077701
http://arxiv.org/abs/hep-ph/0403004
http://dx.doi.org/10.1103/PhysRevD.77.115020
http://arxiv.org/abs/0803.4005
http://dx.doi.org/10.1103/PhysRevD.78.095002
http://dx.doi.org/10.1103/PhysRevD.78.095002
http://arxiv.org/abs/0809.2849
http://arxiv.org/abs/1002.4137
http://arxiv.org/abs/1005.1286
http://arxiv.org/abs/1008.1783
http://dx.doi.org/10.1007/JHEP12(2010)048
http://arxiv.org/abs/1005.3797
http://arxiv.org/abs/1103.0240
http://arxiv.org/abs/1109.4398
http://dx.doi.org/10.1016/j.physletb.2013.05.057
http://arxiv.org/abs/1208.4361
http://dx.doi.org/10.1016/j.physletb.2012.06.078
http://dx.doi.org/10.1016/j.physletb.2012.06.078
http://arxiv.org/abs/1111.5331
http://dx.doi.org/10.1103/PhysRevD.86.015023
http://arxiv.org/abs/1112.5457
http://arxiv.org/abs/1112.5457
http://dx.doi.org/10.1016/j.physletb.2013.11.069
http://dx.doi.org/10.1016/j.physletb.2013.11.069
http://arxiv.org/abs/1307.2253
http://arxiv.org/abs/1307.8120
http://dx.doi.org/10.1103/PhysRevD.89.115014
http://arxiv.org/abs/1308.0592
http://dx.doi.org/10.1007/JHEP11(2013)171
http://arxiv.org/abs/1308.0612
http://dx.doi.org/10.1209/0295-5075/102/51001
http://arxiv.org/abs/1303.3348


Bibliography

[100] A. DiFranzo, K. I. Nagao, A. Rajaraman, and T. M. P. Tait, JHEP 11, 014 (2013),

[Erratum: JHEP01,162(2014)], arXiv:1308.2679 [hep-ph].

[101] O. Buchmueller, M. J. Dolan, S. A. Malik, and C. McCabe, JHEP 01, 037 (2015),

arXiv:1407.8257 [hep-ph].

[102] M. Papucci, A. Vichi, and K. M. Zurek, JHEP 11, 024 (2014), arXiv:1402.2285

[hep-ph].

[103] K. Hamaguchi, S. P. Liew, T. Moroi, and Y. Yamamoto, JHEP 05, 086 (2014),

arXiv:1403.0324 [hep-ph].

[104] M. Garny, A. Ibarra, S. Rydbeck, and S. Vogl, JHEP 06, 169 (2014),

arXiv:1403.4634 [hep-ph].

[105] J. Abdallah et al., (2014), arXiv:1409.2893 [hep-ph].

[106] S. A. Malik et al., Phys. Dark Univ. 9-10, 51 (2015), arXiv:1409.4075 [hep-ex].

[107] D. Abercrombie et al., (2015), arXiv:1507.00966 [hep-ex].

[108] M. Srednicki, R. Watkins, and K. A. Olive, Nucl. Phys. B310, 693 (1988).

[109] K. Griest and D. Seckel, Phys. Rev. D43, 3191 (1991).

[110] K. A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014).

[111] T. K. Hemmick et al., Phys. Rev. D41, 2074 (1990).

[112] S. Profumo and C. E. Yaguna, Phys. Rev. D69, 115009 (2004), arXiv:hep-

ph/0402208 [hep-ph].

[113] I. Gogoladze, R. Khalid, and Q. Shafi, Phys. Rev. D79, 115004 (2009),

arXiv:0903.5204 [hep-ph].

[114] D. Feldman, Z. Liu, and P. Nath, Phys. Rev. D80, 015007 (2009), arXiv:0905.1148

[hep-ph].

[115] I. Gogoladze, R. Khalid, and Q. Shafi, Phys. Rev. D80, 095016 (2009),

arXiv:0908.0731 [hep-ph].

[116] N. Chen, D. Feldman, Z. Liu, P. Nath, and G. Peim, Phys. Rev. D83, 035005

(2011), arXiv:1011.1246 [hep-ph].

[117] M. Adeel Ajaib, T. Li, Q. Shafi, and K. Wang, JHEP 01, 028 (2011),

arXiv:1011.5518 [hep-ph].

85

http://arxiv.org/abs/1308.2679
http://dx.doi.org/10.1007/JHEP01(2015)037
http://arxiv.org/abs/1407.8257
http://dx.doi.org/10.1007/JHEP11(2014)024
http://arxiv.org/abs/1402.2285
http://arxiv.org/abs/1402.2285
http://arxiv.org/abs/1403.0324
http://arxiv.org/abs/1403.4634
http://arxiv.org/abs/1409.2893
http://dx.doi.org/10.1016/j.dark.2015.03.003
http://arxiv.org/abs/1409.4075
http://arxiv.org/abs/1507.00966
http://dx.doi.org/10.1016/0550-3213(88)90099-5
http://dx.doi.org/10.1103/PhysRevD.43.3191
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevD.41.2074
http://dx.doi.org/10.1103/PhysRevD.69.115009
http://arxiv.org/abs/hep-ph/0402208
http://arxiv.org/abs/hep-ph/0402208
http://dx.doi.org/10.1103/PhysRevD.79.115004
http://arxiv.org/abs/0903.5204
http://arxiv.org/abs/0905.1148
http://arxiv.org/abs/0905.1148
http://dx.doi.org/10.1103/PhysRevD.80.095016
http://arxiv.org/abs/0908.0731
http://arxiv.org/abs/1011.1246
http://arxiv.org/abs/1011.5518


Bibliography

[118] K. Harigaya, M. Ibe, and T. T. Yanagida, JHEP 12, 016 (2013), arXiv:1310.0643

[hep-ph].

[119] K. Harigaya, K. Kaneta, and S. Matsumoto, Phys. Rev. D89, 115021 (2014),

arXiv:1403.0715 [hep-ph].

[120] J. L. Evans and K. A. Olive, Phys. Rev. D90, 115020 (2014), arXiv:1408.5102

[hep-ph].

[121] J. Ellis, F. Luo, and K. A. Olive, JHEP 09, 127 (2015), arXiv:1503.07142 [hep-ph].

[122] J. Ellis, J. L. Evans, F. Luo, and K. A. Olive, JHEP 02, 071 (2016),

arXiv:1510.03498 [hep-ph].

[123] C. Boehm, A. Djouadi, and M. Drees, Phys. Rev. D62, 035012 (2000), arXiv:hep-

ph/9911496 [hep-ph].

[124] J. R. Ellis, K. A. Olive, and Y. Santoso, Astropart. Phys. 18, 395 (2003),

arXiv:hep-ph/0112113 [hep-ph].

[125] J. Edsjo, M. Schelke, P. Ullio, and P. Gondolo, JCAP 0304, 001 (2003), arXiv:hep-

ph/0301106 [hep-ph].

[126] I. Gogoladze, S. Raza, and Q. Shafi, Phys. Lett. B706, 345 (2012), arXiv:1104.3566

[hep-ph].

[127] M. A. Ajaib, T. Li, and Q. Shafi, Phys. Rev. D85, 055021 (2012), arXiv:1111.4467

[hep-ph].

[128] J. Harz, B. Herrmann, M. Klasen, K. Kovarik, and Q. L. Boulc’h, Phys. Rev.

D87, 054031 (2013), arXiv:1212.5241 [hep-ph].

[129] J. Harz, B. Herrmann, M. Klasen, and K. Kovarik, Phys. Rev. D91, 034028 (2015),

arXiv:1409.2898 [hep-ph].

[130] J. Ellis, K. A. Olive, and J. Zheng, Eur. Phys. J. C74, 2947 (2014),

arXiv:1404.5571 [hep-ph].

[131] S. Raza, Q. Shafi, and C. S. n, Phys. Rev. D92, 055010 (2015), arXiv:1412.7672

[hep-ph].

[132] A. Ibarra, A. Pierce, N. R. Shah, and S. Vogl, Proceedings, Meeting of the APS

Division of Particles and Fields (DPF 2015): Ann Arbor, Michigan, USA, 4-8 Aug

2015, Phys. Rev. D91, 095018 (2015), arXiv:1501.03164 [hep-ph].

86

http://dx.doi.org/10.1007/JHEP12(2013)016
http://arxiv.org/abs/1310.0643
http://arxiv.org/abs/1310.0643
http://dx.doi.org/10.1103/PhysRevD.89.115021
http://arxiv.org/abs/1403.0715
http://dx.doi.org/10.1103/PhysRevD.90.115020
http://arxiv.org/abs/1408.5102
http://arxiv.org/abs/1408.5102
http://dx.doi.org/10.1007/JHEP09(2015)127
http://arxiv.org/abs/1503.07142
http://arxiv.org/abs/1510.03498
http://dx.doi.org/10.1103/PhysRevD.62.035012
http://arxiv.org/abs/hep-ph/9911496
http://arxiv.org/abs/hep-ph/9911496
http://dx.doi.org/10.1016/S0927-6505(02)00151-2
http://arxiv.org/abs/hep-ph/0112113
http://arxiv.org/abs/hep-ph/0301106
http://arxiv.org/abs/hep-ph/0301106
http://dx.doi.org/10.1016/j.physletb.2011.11.026
http://arxiv.org/abs/1104.3566
http://arxiv.org/abs/1104.3566
http://dx.doi.org/10.1103/PhysRevD.85.055021
http://arxiv.org/abs/1111.4467
http://arxiv.org/abs/1111.4467
http://arxiv.org/abs/1212.5241
http://arxiv.org/abs/1409.2898
http://dx.doi.org/10.1140/epjc/s10052-014-2947-7
http://arxiv.org/abs/1404.5571
http://dx.doi.org/10.1103/PhysRevD.92.055010
http://arxiv.org/abs/1412.7672
http://arxiv.org/abs/1412.7672
http://dx.doi.org/10.1103/PhysRevD.91.095018
http://arxiv.org/abs/1501.03164


Bibliography

[133] G. Servant and T. M. P. Tait, Nucl. Phys. B650, 391 (2003), arXiv:hep-ph/0206071

[hep-ph].

[134] F. Burnell and G. D. Kribs, Phys. Rev. D73, 015001 (2006), arXiv:hep-ph/0509118

[hep-ph].

[135] K. Kong and K. T. Matchev, JHEP 01, 038 (2006), arXiv:hep-ph/0509119 [hep-

ph].

[136] M. Kakizaki, S. Matsumoto, and M. Senami, Phys. Rev. D74, 023504 (2006),

arXiv:hep-ph/0605280 [hep-ph].

[137] G. Belanger, M. Kakizaki, and A. Pukhov, JCAP 1102, 009 (2011),

arXiv:1012.2577 [hep-ph].

[138] Y. Ishigure, M. Kakizaki, and A. Santa, (2016), arXiv:1611.06760 [hep-ph].

[139] J. Hisano, S. Matsumoto, and M. M. Nojiri, Phys. Rev. Lett. 92, 031303 (2004),

arXiv:hep-ph/0307216 [hep-ph].

[140] J. Hisano, S. Matsumoto, M. M. Nojiri, and O. Saito, Phys. Rev. D71, 063528

(2005), arXiv:hep-ph/0412403 [hep-ph].

[141] J. L. Feng, M. Kaplinghat, and H.-B. Yu, Phys. Rev. D82, 083525 (2010),

arXiv:1005.4678 [hep-ph].

[142] H. Baer, K.-m. Cheung, and J. F. Gunion, Phys. Rev. D59, 075002 (1999),

arXiv:hep-ph/9806361 [hep-ph].

[143] A. Freitas, Phys. Lett. B652, 280 (2007), arXiv:0705.4027 [hep-ph].

[144] A. Hryczuk, Phys. Lett. B699, 271 (2011), arXiv:1102.4295 [hep-ph].

[145] A. De Simone, G. F. Giudice, and A. Strumia, JHEP 06, 081 (2014),

arXiv:1402.6287 [hep-ph].

[146] J. L. Feng, M. Kaplinghat, H. Tu, and H.-B. Yu, JCAP 0907, 004 (2009),

arXiv:0905.3039 [hep-ph].

[147] W. Detmold, M. McCullough, and A. Pochinsky, Phys. Rev. D90, 115013 (2014),

arXiv:1406.2276 [hep-ph].

[148] B. von Harling and K. Petraki, JCAP 1412, 033 (2014), arXiv:1407.7874 [hep-ph].

[149] H. An, M. B. Wise, and Y. Zhang, Phys. Rev. D93, 115020 (2016),

arXiv:1604.01776 [hep-ph].

87

http://dx.doi.org/10.1016/S0550-3213(02)01012-X
http://arxiv.org/abs/hep-ph/0206071
http://arxiv.org/abs/hep-ph/0206071
http://dx.doi.org/10.1103/PhysRevD.73.015001
http://arxiv.org/abs/hep-ph/0509118
http://arxiv.org/abs/hep-ph/0509118
http://dx.doi.org/10.1088/1126-6708/2006/01/038
http://arxiv.org/abs/hep-ph/0509119
http://arxiv.org/abs/hep-ph/0509119
http://dx.doi.org/10.1103/PhysRevD.74.023504
http://arxiv.org/abs/hep-ph/0605280
http://dx.doi.org/10.1088/1475-7516/2011/02/009
http://arxiv.org/abs/1012.2577
http://arxiv.org/abs/1611.06760
http://dx.doi.org/10.1103/PhysRevLett.92.031303
http://arxiv.org/abs/hep-ph/0307216
http://dx.doi.org/10.1103/PhysRevD.71.063528
http://dx.doi.org/10.1103/PhysRevD.71.063528
http://arxiv.org/abs/hep-ph/0412403
http://dx.doi.org/10.1103/PhysRevD.82.083525
http://arxiv.org/abs/1005.4678
http://dx.doi.org/10.1103/PhysRevD.59.075002
http://arxiv.org/abs/hep-ph/9806361
http://dx.doi.org/10.1016/j.physletb.2007.07.019
http://arxiv.org/abs/0705.4027
http://dx.doi.org/10.1016/j.physletb.2011.04.016
http://arxiv.org/abs/1102.4295
http://dx.doi.org/10.1007/JHEP06(2014)081
http://arxiv.org/abs/1402.6287
http://arxiv.org/abs/0905.3039
http://dx.doi.org/10.1103/PhysRevD.90.115013
http://arxiv.org/abs/1406.2276
http://dx.doi.org/10.1088/1475-7516/2014/12/033
http://arxiv.org/abs/1407.7874
http://dx.doi.org/10.1103/PhysRevD.93.115020
http://arxiv.org/abs/1604.01776


Bibliography

[150] Y. Bai and J. Osborne, JHEP 11, 036 (2015), arXiv:1506.07110 [hep-ph].

[151] M. J. Baker et al., JHEP 12, 120 (2015), arXiv:1510.03434 [hep-ph].

[152] K. Petraki, M. Postma, and J. de Vries, (2016), arXiv:1611.01394 [hep-ph].

[153] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics

(Pergamon Press, 1971).

[154] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Course of Theoretical

Physics, Vol. v.3 (Butterworth-Heinemann, Oxford, 1991).

[155] D. Kahawala and Y. Kats, JHEP 09, 099 (2011), arXiv:1103.3503 [hep-ph].

[156] N. Nagata, H. Otono, and S. Shirai, Phys. Lett. B748, 24 (2015), arXiv:1504.00504

[hep-ph].

[157] C. F. Berger, L. Covi, S. Kraml, and F. Palorini, JCAP 0810, 005 (2008),

arXiv:0807.0211 [hep-ph].

[158] D. Lindley, Astrophys. J. 294, 1 (1985).

[159] M. H. Reno and D. Seckel, Phys. Rev. D37, 3441 (1988).

[160] S. Dimopoulos, R. Esmailzadeh, L. J. Hall, and G. D. Starkman, Astrophys. J.

330, 545 (1988).

[161] R. J. Scherrer and M. S. Turner, Astrophys. J. 331, 19 (1988), [Astrophys.

J.331,33(1988)].

[162] S. Dimopoulos, R. Esmailzadeh, L. J. Hall, and G. D. Starkman, Nucl. Phys.

B311, 699 (1989).

[163] J. R. Ellis, G. B. Gelmini, J. L. Lopez, D. V. Nanopoulos, and S. Sarkar, Nucl.

Phys. B373, 399 (1992).

[164] M. Kawasaki, K. Kohri, and T. Moroi, Phys. Rev. D71, 083502 (2005),

arXiv:astro-ph/0408426 [astro-ph].

[165] K. Jedamzik, Phys. Rev. D74, 103509 (2006), arXiv:hep-ph/0604251 [hep-ph].

[166] M. Kawasaki, K. Kohri, and T. Moroi, Phys. Lett. B649, 436 (2007), arXiv:hep-

ph/0703122 [hep-ph].

[167] M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D78, 065011

(2008), arXiv:0804.3745 [hep-ph].

88

http://dx.doi.org/10.1007/JHEP11(2015)036
http://arxiv.org/abs/1506.07110
http://dx.doi.org/10.1007/JHEP12(2015)120
http://arxiv.org/abs/1510.03434
http://arxiv.org/abs/1611.01394
http://dx.doi.org/10.1007/JHEP09(2011)099
http://arxiv.org/abs/1103.3503
http://dx.doi.org/10.1016/j.physletb.2015.06.044
http://arxiv.org/abs/1504.00504
http://arxiv.org/abs/1504.00504
http://arxiv.org/abs/0807.0211
http://dx.doi.org/10.1086/163267
http://dx.doi.org/10.1103/PhysRevD.37.3441
http://dx.doi.org/10.1086/166493
http://dx.doi.org/10.1086/166493
http://dx.doi.org/10.1086/166534
http://dx.doi.org/10.1016/0550-3213(89)90173-9
http://dx.doi.org/10.1016/0550-3213(89)90173-9
http://dx.doi.org/10.1103/PhysRevD.71.083502
http://arxiv.org/abs/astro-ph/0408426
http://dx.doi.org/10.1103/PhysRevD.74.103509
http://arxiv.org/abs/hep-ph/0604251
http://dx.doi.org/10.1016/j.physletb.2007.03.063
http://arxiv.org/abs/hep-ph/0703122
http://arxiv.org/abs/hep-ph/0703122
http://arxiv.org/abs/0804.3745


Bibliography

[168] J. L. Feng, A. Rajaraman, and F. Takayama, Phys. Rev. Lett. 91, 011302 (2003),

arXiv:hep-ph/0302215 [hep-ph].

[169] J. R. Ellis, K. A. Olive, Y. Santoso, and V. C. Spanos, Phys. Lett. B588, 7 (2004),

arXiv:hep-ph/0312262 [hep-ph].

[170] J. L. Feng, S.-f. Su, and F. Takayama, Phys. Rev. D70, 063514 (2004), arXiv:hep-

ph/0404198 [hep-ph].

[171] D. G. Cerdeno, K.-Y. Choi, K. Jedamzik, L. Roszkowski, and R. Ruiz de Austri,

JCAP 0606, 005 (2006), arXiv:hep-ph/0509275 [hep-ph].

[172] J. L. Feng, B. T. Smith, and F. Takayama, Phys. Rev. Lett. 100, 021302 (2008),

arXiv:0709.0297 [hep-ph].

[173] L. Covi, J. E. Kim, and L. Roszkowski, Phys. Rev. Lett. 82, 4180 (1999),

arXiv:hep-ph/9905212 [hep-ph].

[174] L. Covi, H.-B. Kim, J. E. Kim, and L. Roszkowski, JHEP 05, 033 (2001),

arXiv:hep-ph/0101009 [hep-ph].

[175] L. Covi, L. Roszkowski, R. Ruiz de Austri, and M. Small, JHEP 06, 003 (2004),

arXiv:hep-ph/0402240 [hep-ph].

[176] N. Arkani-Hamed and S. Dimopoulos, JHEP 06, 073 (2005), arXiv:hep-th/0405159

[hep-th].

[177] G. F. Giudice and A. Romanino, Nucl. Phys. B699, 65 (2004), [Erratum: Nucl.

Phys.B706,487(2005)], arXiv:hep-ph/0406088 [hep-ph].

[178] A. Arvanitaki, C. Davis, P. W. Graham, A. Pierce, and J. G. Wacker, Phys. Rev.

D72, 075011 (2005), arXiv:hep-ph/0504210 [hep-ph].

[179] J. Kang, M. A. Luty, and S. Nasri, JHEP 09, 086 (2008), arXiv:hep-ph/0611322

[hep-ph].

[180] K. Kohri and Y. Santoso, Phys. Rev. D79, 043514 (2009), arXiv:0811.1119 [hep-

ph].

[181] J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).

[182] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B166, 493

(1980).

[183] A. Brandenburg and F. D. Ste↵en, JCAP 0408, 008 (2004), arXiv:hep-ph/0405158

[hep-ph].

89

http://dx.doi.org/10.1103/PhysRevLett.91.011302
http://arxiv.org/abs/hep-ph/0302215
http://dx.doi.org/10.1016/j.physletb.2004.03.021
http://arxiv.org/abs/hep-ph/0312262
http://dx.doi.org/10.1103/PhysRevD.70.063514
http://arxiv.org/abs/hep-ph/0404198
http://arxiv.org/abs/hep-ph/0404198
http://dx.doi.org/10.1088/1475-7516/2006/06/005
http://arxiv.org/abs/hep-ph/0509275
http://dx.doi.org/10.1103/PhysRevLett.100.021302
http://arxiv.org/abs/0709.0297
http://dx.doi.org/10.1103/PhysRevLett.82.4180
http://arxiv.org/abs/hep-ph/9905212
http://dx.doi.org/10.1088/1126-6708/2001/05/033
http://arxiv.org/abs/hep-ph/0101009
http://dx.doi.org/10.1088/1126-6708/2004/06/003
http://arxiv.org/abs/hep-ph/0402240
http://dx.doi.org/10.1088/1126-6708/2005/06/073
http://arxiv.org/abs/hep-th/0405159
http://arxiv.org/abs/hep-th/0405159
http://arxiv.org/abs/hep-ph/0406088
http://arxiv.org/abs/hep-ph/0504210
http://dx.doi.org/10.1088/1126-6708/2008/09/086
http://arxiv.org/abs/hep-ph/0611322
http://arxiv.org/abs/hep-ph/0611322
http://dx.doi.org/10.1103/PhysRevD.79.043514
http://arxiv.org/abs/0811.1119
http://arxiv.org/abs/0811.1119
http://dx.doi.org/10.1103/PhysRevLett.43.103
http://dx.doi.org/10.1016/0550-3213(80)90209-6
http://dx.doi.org/10.1016/0550-3213(80)90209-6
http://dx.doi.org/10.1088/1475-7516/2004/08/008
http://arxiv.org/abs/hep-ph/0405158
http://arxiv.org/abs/hep-ph/0405158


Bibliography

[184] A. Strumia, JHEP 06, 036 (2010), arXiv:1003.5847 [hep-ph].

[185] L. Covi, L. Roszkowski, and M. Small, JHEP 07, 023 (2002), arXiv:hep-

ph/0206119 [hep-ph].

[186] M. Aaboud et al. (ATLAS), Phys. Rev. D94, 032005 (2016), arXiv:1604.07773

[hep-ex].

[187] M. Aaboud et al. (ATLAS), Eur. Phys. J. C76, 392 (2016), arXiv:1605.03814

[hep-ex].

[188] T. A. collaboration, (2015).

[189] K. Hamaguchi and S. P. Liew, Phys. Rev. D94, 035012 (2016), arXiv:1604.07828

[hep-ph].

[190] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S.

Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 07, 079 (2014), arXiv:1405.0301

[hep-ph].

[191] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, JHEP 06, 128

(2011), arXiv:1106.0522 [hep-ph].

[192] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 05, 026 (2006), arXiv:hep-

ph/0603175 [hep-ph].

[193] M. Drees, H. Dreiner, D. Schmeier, J. Tattersall, and J. S. Kim, Comput. Phys.

Commun. 187, 227 (2015), arXiv:1312.2591 [hep-ph].

[194] J. S. Kim, D. Schmeier, J. Tattersall, and K. Rolbiecki, Comput. Phys. Commun.

196, 535 (2015), arXiv:1503.01123 [hep-ph].

[195] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lematre, A. Mertens,

and M. Selvaggi (DELPHES 3), JHEP 02, 057 (2014), arXiv:1307.6346 [hep-ex].

[196] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C72, 1896 (2012),

arXiv:1111.6097 [hep-ph].

[197] M. Cacciari and G. P. Salam, Phys. Lett. B641, 57 (2006), arXiv:hep-ph/0512210

[hep-ph].

[198] M. Low and L.-T. Wang, JHEP 08, 161 (2014), arXiv:1404.0682 [hep-ph].

[199] G. Aad et al. (ATLAS), JHEP 01, 068 (2015), arXiv:1411.6795 [hep-ex].

[200] S. Chatrchyan et al. (CMS), JHEP 07, 122 (2013), arXiv:1305.0491 [hep-ex].

90

http://dx.doi.org/10.1007/JHEP06(2010)036
http://arxiv.org/abs/1003.5847
http://dx.doi.org/10.1088/1126-6708/2002/07/023
http://arxiv.org/abs/hep-ph/0206119
http://arxiv.org/abs/hep-ph/0206119
http://dx.doi.org/10.1103/PhysRevD.94.032005
http://arxiv.org/abs/1604.07773
http://arxiv.org/abs/1604.07773
http://dx.doi.org/10.1140/epjc/s10052-016-4184-8
http://arxiv.org/abs/1605.03814
http://arxiv.org/abs/1605.03814
http://dx.doi.org/10.1103/PhysRevD.94.035012
http://arxiv.org/abs/1604.07828
http://arxiv.org/abs/1604.07828
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/1106.0522
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/1312.2591
http://dx.doi.org/10.1016/j.cpc.2015.06.002
http://dx.doi.org/10.1016/j.cpc.2015.06.002
http://arxiv.org/abs/1503.01123
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1016/j.physletb.2006.08.037
http://arxiv.org/abs/hep-ph/0512210
http://arxiv.org/abs/hep-ph/0512210
http://dx.doi.org/10.1007/JHEP08(2014)161
http://arxiv.org/abs/1404.0682
http://arxiv.org/abs/1411.6795
http://dx.doi.org/10.1007/JHEP07(2013)122
http://arxiv.org/abs/1305.0491


Bibliography

[201] M. Aaboud et al. (ATLAS), Phys. Lett. B760, 647 (2016), arXiv:1606.05129 [hep-

ex].

[202] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, and M. Wiedermann,

Comput. Phys. Commun. 182, 1034 (2011), arXiv:1007.1327 [hep-ph].

[203] D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn, and I. Wigmore, Phys.

Rev. D85, 114024 (2012), arXiv:1203.6358 [hep-ph].

[204] Y. Kats and M. D. Schwartz, JHEP 04, 016 (2010), arXiv:0912.0526 [hep-ph].

91


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Preface
	Introduction
	History of dark matter
	Cosmology
	Evidence
	Cosmic microwave background
	Other issues


	Detecting dark matter
	Direct detection
	Spin-dependent scattering
	Spin-independent scattering
	Astrophysical aspects of direct detection

	Indirect detection
	Gamma rays
	Neutrinos
	Charged particles

	Collider searches
	A final remark

	Relic density of dark matter
	The Boltzmann equation
	Thermal averaging
	Coannihilation

	Coannihilation of colored particles
	Motivations
	Annihilation of colored particles
	Sommerfeld corrections

	Colored bound states in the early universe
	Bound state formalism
	Dissociation and formation of bound states in the early universe
	Results
	Thermal averaging
	Boltzmann equations revisited
	Bound-state effects

	Implications and applications
	Bounds on long-lived colored particles
	SuperWIMP
	Coannihilation
	Collider constraints
	Electric charge corrections

	Discussions and Conclusions
	Bibliography

