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Abstract

A few hundred million years after the Big Bang, dark ages of the universe ends
with the emergence of first stars. First stars, also known as the Population III
(Pop III) stars, severely impact on the environment of the early universe; they
initiate the cosmic re-ionization by emitting high energy photons, they synthesize
heavier elements than 7Li, introducing diversities in the baryon matters, and the
final explosions as supernovae crush and inject the synthesized material into the
ambient primordial gases.

Understanding the nature and properties of the first stars is one key topic in
modern astronomy and astrophysics. In this work, I purpose to constrain the
important properties of first stars, the initial masses and the rotation properties.
Demand for this kind of constraints has been increasing, as resent cosmological
simulations provide valuable information on the first star formation, such as the
wide initial mass distribution of ∼ 10–1000 M⊙ and rapid rotation at their birth.
I conduct detailed comparisons between the theoretical yields of first stars and
the abundance patterns of metal-poor stars. Key idea is that metal-poor stars
existing in the local universe would be born from the chemically primitive gas
clouds existed in the early universe. Assuming that the signatures of the first
nucleosynthesis are imprinted on the characteristic abundance patterns in metal-
poor stars, the abundance comparison provides the properties of Pop III source
stars.

Yields of Pop III core-collapse supernovae are calculated for 12–140 M⊙ ro-
tating and non-rotating first stars. The novelty of this part is to take the wide
initial mass range and the effect of rotation into account for Pop III stellar yields.
The stellar evolutions are firstly calculated, then metal ejections by supernova
explosion are calculated by the weak explosion model, in which only outer dis-
tributing matter, which is not affected by the explosive nucleosynthesis, is ejected.
I find some characteristic nucleosynthesis taking place in the outer shell-helium
regions. Intermediate-mass α elements of Mg and Si are abundantly produced by
more massive models, and only rotating models produce N, Na, and Al. These
characteristic patterns are well reflected in the stellar yields and enable us to con-
strain the properties of source stars of metal-poor stars. More massive 145–260
M⊙ first stars are confirmed to explode as pair-instability supernovae. The full
evolution from the zero-age-main-sequence phase to explosion in addition to the
nucleosynthesis is systematically calculated for non-rotating progenitors for the
first time. I find that the characteristic odd-even variance is indicated by nearly
mass-independent ratios of [Na, Al, Sc/Mg], the ratios of [Si, Ca/Mg] are use-
ful to determine the initial mass, and the low [Ni/Fe] or [Zn/Ni] ratios indicate
the low temperature explosion of PISN. These abundance patterns are useful to
discriminate the hypothetical PISN children from the other metal-poor stars.

The yields of the weak explosion model are compared with the three most-
iron-deficient stars discovered so far. The abundance pattern in SMSS 0313-6708



is well explained by 50–80 M⊙ non-rotating models, rotating 30–40 M⊙ models
well fit the abundance of HE 0107-5240, and both non-rotating and rotating 15–
40 M⊙ models explain HE 1327–2326. Next, the first systematic comparison of
theoretical PISN yields with a large stellar abundance data compiled in SAGA
database including SDSS J0018-0939 is conducted. While no metal-poor star is
found from the sample to show the characteristic signatures of PISN yields, the
robust capability of utilizing the ratios of [Na, Ca, Sc, Cr, Co, Zn/Mg] for the
discrimination is shown.

In conclusion, I have obtained the indication of the existence of ∼ 15–80 M⊙
first stars for the first time. Some of them would rotate, but some of others would
not. This indicates the diversity of the rotation properties of the first stars. On
the other hand, signatures of more massive weak supernovae from ∼ 100–140 M⊙
stars have not yet found. Moreover, no metal-poor stars in the current big sample
of SAGA database are found to exhibit signature of PISN yields occurring from
145–260 M⊙ first stars. The lack of the children of very massive first stars is
incompatible with the wide initial mass distribution of first stars estimated by the
recent cosmological simulations.

ii



Acknowledgments

I express my greatest appreciation to my supervisor Hideyuki Umeda and to my
collaborator Takashi Yoshida for many years of supports, discussions, and encour-
agements on my research. I sincerely thank the collaborators Kohsuke Sumiyoshi
and Shoichi Yamada for many stimulating discussions and helpful supports. I am
deeply grateful to members of the Department of Astronomy for long years daily
supports. A part of this work has been done during a half-year visit at the Geneva
Observatory. I express my deepest gratitude to Prof. George Meynet and to his
laboratory members Authur Choplin and Giovanni Privitera for their respectful
accommodations and helpful supports.

I appreciate indications and suggestions by the examiners, Yuzuru Yoshii (chief),
Izumi Hachisu, Kazuyuki Omukai, Toshitaka Kajino, and Yoichi Takeda, which
improve the quality of this thesis. I would like to appreciate many exciting dis-
cussions and interesting suggestions on this work by Nozomu Tominaga, Shingo
Hirano, Takuma Suda, and Wako Aoki. I would like to thank Sylvia Ekström
and Cyril Georgy for insightful discussions on the stellar evolution and helpful
assistance for the usage of GENEC. I am grateful to Stanford Woosley, Alexander
Heger, Bill Paxton, Frank Timmes, Norbert Langer, Georges Meynet, and Alessan-
dro Chieffi for providing detail information about energy generation rates in their
code. I am also thankful to Alex Heger for providing pre-collapse structures of
their PISN models.

Finally, I wish to thank my family for their understanding and continuous
support during my life.

The author was supported by Grant-in-Aid for JSPS Fellows (DC1). The visit
to the Geneva Observatory was supported by the Bilateral Japanese-Swiss Science
and Technology Programme, YOUNG RESEARCHERS ’EXCHANGE PRO-
GRAM BETWEEN JAPAN AND SWITZERLAND. The author also acknowl-
edges the usage of the supercomputer at YITP in Kyoto University. A part of this
work was supported in part by the Large Scale Simulation Program (No.14/15-17)
of High Energy Accelerator Research Organization (KEK).

iii



Contents

Abstract i

Acknowledgments iii

List of figures ix

List of tables x

1 Introduction 1
1.1 Formation of first stars . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Evolution of first stars . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Metal poor stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Goal and purposes of this thesis . . . . . . . . . . . . . . . . . . . . 6

2 Computational methods 8
2.1 Abundance references . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Stellar evolution code . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Basic equations: Equations of stellar structure . . . . . . . . 9
2.2.2 Basic equations: Equation of chemical distribution . . . . . 11
2.2.3 Input physics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Stellar rotation . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Calibration of the code . . . . . . . . . . . . . . . . . . . . . 18

2.3 Hydrodynamic code . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Shock capturing method . . . . . . . . . . . . . . . . . . . . 21

3 Yields of Pop III weak supernovae 24
3.1 Computational settings . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Stellar evolution calculation . . . . . . . . . . . . . . . . . . 25
3.1.2 Assumption of the weak supernova . . . . . . . . . . . . . . 27

3.2 Hydrostatic evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Hydrogen burning phase . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Helium burning phase . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Later phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Iron core collapse . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Yields of weak supernovae . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Carbon and Oxygen . . . . . . . . . . . . . . . . . . . . . . 37

iv



3.3.2 Neon, Magnesium and Silicon . . . . . . . . . . . . . . . . . 41
3.3.3 Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Sodium and Aluminum . . . . . . . . . . . . . . . . . . . . . 45

3.4 Conclusion of this chapter . . . . . . . . . . . . . . . . . . . . . . . 47

4 Yields of Pop III PISNe 48
4.1 Energy generation rates . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Exact expressions of the energy generation rates . . . . . . . 50
4.1.2 Approximate expressions of the energy generation rates . . . 52

4.2 Computational settings . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Explosion of PISNe . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Explosion mechanism . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Impact of adopting different energy generation rates . . . . . 57

4.4 Yields of PISNe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Carbon to aluminum . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Silicon to calcium . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Scandium to germanium . . . . . . . . . . . . . . . . . . . . 62

4.5 Conclusion of this chapter . . . . . . . . . . . . . . . . . . . . . . . 63

5 Abundance profiling 64
5.1 Comparison with weak supernova yields . . . . . . . . . . . . . . . 65

5.1.1 SMSS 0313-6708 . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 HE 0107-5240 . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.3 HE 1327-2326 . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Comparison with PISN yields . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 General trends of observed abundance ratios . . . . . . . . . 71
5.2.2 Detailed comparisons with metal-poor stars . . . . . . . . . 76
5.2.3 SDSS J0018-0939 . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Conclusion of this chapter . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusion 83
6.1 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix 97

A Relations on the thermodynamic functions 97
A.1 Definitions of mass densities, number densities, and mole fractions . 97
A.2 The first law of thermodynamics . . . . . . . . . . . . . . . . . . . . 98

B Kippenhahn diagrams of massive first stars 100

C Abundance patterns of metal-poor stars 105

v



List of Figures

2.1 HR diagram (left) and [N/H] vs effective temperature diagram (right)
for 15 M⊙ models. Dotted lines in the HR diagram show the ob-
served width of massive main sequence stars in our Galaxy (Ek-
ström, 2015, private communication). Parameter sets applied for
the calculations are shown in the legends as (fµ, fov). . . . . . . . 19

3.1 Evolution of central temperatures (top) and central carbon mass fraction (bot-

tom) with time are shown for 12, 15, 20, 40, 80, 120 M⊙, non-rotating and

rotating Pop III models. Non-rotating and rotating models are respectively

shown by solid or dashed lines. Each model name, m(mass)-o(rotation), indi-

cates the initial mass of (mass) M⊙ and the initial rotation of (rotation)× 10

vini/vk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Surface evolutions of 12, 20, 40, 80, 120 M⊙, non-rotating and rotating Pop III

models are shown. Non-rotating and rotating models are respectively shown by

solid or dashed lines. The black dotted line shows the ZAMS observation in our

Galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Evolutions of 12, 20, 40, 80, 120 M⊙ non-rotating and rotating Pop III models

are shown in the central density-temperature plane. Rotating and non-rotating

models are respectively shown by solid or dashed lines Green dotted lines show

the boundary of the hydrodynamically unstable regions of γ < 4/3. . . . . . 34
3.4 Mass fraction distributions of 20 M⊙ models. The top panel corresponds to the

non-rotating case, while the bottom to the rotating one. For the non-rotating

model, MCO and ∆MHe are 5.730 M⊙ and 0.126 M⊙, while for the rotating

model, these values become 6.191 M⊙ and 1.628 M⊙. Abundant hydrogen in

the helium layer of the non-rotating model results from proton ingestion during

core carbon burning phase. . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Same as Fig. 3.4, but for 40 M⊙ models. For the non-rotating model, MCO and

∆MHe are 15.07 M⊙ and 1.571 M⊙, while for the rotating model, these values

become 16.45 M⊙ and 2.387 M⊙. . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Same as Fig. 3.4, but for 80 M⊙ models. For the non-rotating model, MCO and

∆MHe are 33.81 M⊙ and 3.674 M⊙, while for the rotating model, these values

become 42.48 M⊙ and 3.823 M⊙. . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Same as Fig. 3.4, but for 120 M⊙ models. For the non-rotating model, MCO

and ∆MHe are 53.33 M⊙ and 2.976 M⊙, while for the rotating model, these

values become 59.58 M⊙ and 6.151 M⊙. . . . . . . . . . . . . . . . . . . 37

vi



3.8 Abundance patterns of weak SN yields from the non-rotating (left) and rotating

(right) 20 M⊙ models. Yields with different Mej are shown by different colors.

The abundance of carbon is used for the normalization. . . . . . . . . . . . 38
3.9 Same with Fig. 3.8but for 40 M⊙ models. . . . . . . . . . . . . . . . . . . 38
3.10 Same with Fig. 3.8but for 60, 80, and 120 M⊙ models. . . . . . . . . . . . 39
3.11 Integrated yield of carbon as a function of the initial mass. All isotopes of

carbon are summed up. The range of integration is from the base of the helium

layer to the surface. Results of non-rotating models are shown by red open

squares connected by red solid lines, while green open circles with dashed lines

correspond to rotating models. . . . . . . . . . . . . . . . . . . . . . . 40
3.12 The production ratio between oxygen and carbon, MO/MC, as a function of

initial mass. All isotopes of oxygen and carbon are summed up, respectively.

Red open squares show non-rotating results, and green open circles with dashed

lines show rotating results, respectively. . . . . . . . . . . . . . . . . . . 40
3.13 Same as Fig. 3.12, but for magnesium (left) and for silicon (right). . . . . . . 41
3.14 Same as Fig. 3.12, but for calcium. . . . . . . . . . . . . . . . . . . . . 42
3.15 A nuclear chart showing fast reactions at t ∼ 8.24 × 1013 sec. Reactions at

the base of the hydrogen burning shell of the non-rotating 140 M⊙ are shown.

X- and y-axis show neutron and proton numbers, red squares are for stable

isotopes, and colors show the mass fraction of each isotope. Three different

sizes of arrows show different magnitudes of fluxes normalized by the fastest

reaction. Black arrows correspond to thermonuclear reactions, while red arrows

correspond to reactions involving weak interactions. . . . . . . . . . . . . . 43
3.16 Same as Fig. 3.11, but for nitrogen. In addition to our results shown by red

squares (non-rotating models) and green circles (rotating models), results of

rotating models from previous works are plotted. Magenta-open triangles show

results by Ekström et al. (2008) and blue-filled triangles are results of models

of vini/vk = 0.2 by Yoon et al. (2012). . . . . . . . . . . . . . . . . . . . 44
3.17 Same as Fig. 3.12, but for sodium (left) and for aluminum (right). . . . . . . 45

4.1 Evolutions of 200 and 280 M⊙ very massive Pop III models are shown in the

central density-temperature plane. The 200 M⊙ model explodes as a PISN,

while the 280 M⊙ model collapses. Comparative Pop III models of 20 and

60 M⊙ are additionally shown by dashed lines. Green dotted lines show the

boundaries of the hydrodynamically unstable regions of γ < 4/3. . . . . . . 55
4.2 Evolution of total explosion energy with the central temperature. Selected

models are 145, 160, 180, 200, 220, 240, 260, and 280 M⊙ very massive Pop III

models. While the most massive 280 M⊙ model finally collapses, others explode

as PISNe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 The maximum temperature reached during the explosion and the CO core mass

as functions of the initial mass for all exploded models. The green dotted line

is a fitting function for the CO core mass. For the maximum temperature, case

A results are plotted by the red points and case B are by blue points. . . . . 57

vii



4.4 Yields of 28Si (green) and 56Ni (blue) and the total explosion energy as functions

of the CO core mass for all exploded models. The top panel shows results of

case A calculations and bottom shows that of case B. The green dotted lines

show the fitting polynomials. . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Composition patterns of PISN yields of different models. Red-plus patterns

and cyan-point patterns show yields of case A and case B 240 M⊙ calculations,

respectively. Similarly, patterns shown by orange-cross and blue-triangle are

yields of 110 M⊙ and 95 M⊙ helium star models taken by Heger & Woosley

(2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Yields and the total explosion energy as functions of the CO core mass. Models

of 145, 150, 155, 160, 180, 200, 220, 240, and 260 M⊙ are summarized. Numbers

indicated near the total energy show the corresponding initial masses. . . . . 60
4.7 Abundance patterns of PISN yields. The abundance of magnesium is used for

the normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 The abundance pattern of SMSS 0313-6708 which has [Fe/H] < -7.1. Red

crosses and arrows show observed values and upper limits, and black points

show corrected values accounting for the effect of 3D/non-LTE stellar atmo-

sphere, respectively. Four model yields are non-rotating 50 M⊙ with fej=0.97

(green long-dashed), non-rotating 60 M⊙ with fej=0.96 (blue short-dashed),

non-rotating 70 M⊙ with fej=0.97 (magenta dotted), and non-rotating 80 M⊙

with fej=0.98 (cyan dash-dotted). A blue shadow shows the influence of chang-

ing fej in the range of 0.92–1.00 for the 60 M⊙ model. . . . . . . . . . . . . 66
5.2 Same as Fig. 5.1, but for HE 0107-5240. The star has [Fe/H] = -5.3. Se-

lected model yields are rotating 30 M⊙ with fej=1.07 (green long-dashed),

half-speed-rotating 30 M⊙ with fej=1.02 (blue short-dashed), quarter-speed-

rotating 40 M⊙ with fej=1.02 (magenta dotted), and half-speed-rotating 40

M⊙ with fej=1.00 (cyan dash-dotted). A green shadow corresponds to different

fej models from 1.00–1.13 for the rotating 30 M⊙ model. . . . . . . . . . . 68
5.3 Same as Fig. 5.1, but for HE 1327-2326. The star has [Fe/H] = −5.7. Model

yields of non-rotating 30 M⊙ with fej=0.96 (blue short-dashed) and non-rotating

40 M⊙ with fej=0.96 (magenta dotted) are presented. A magenta shadow cor-

responds to different fej models from 0.95–0.97 for the 40 M⊙ model. . . . . 69
5.4 Same as Fig. 5.1, but for HE 1327-2326. Three model yields of rotating 15 M⊙

with fej=0.92 (green long-dashed), rotating 20 M⊙ with fej=0.93 (blue short-

dashed), and rotating 30 M⊙ with fej=0.96 (magenta dotted) are presented. A

blue shadow corresponds to different fej models from 0.92–0.94 for the 20 M⊙

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 [Na/Mg] versus [Fe/H] collected from the compilation of the SAGA database.

Stellar data are plotted by points. The cyan band shows the obtainable varia-

tions of theoretical yields by changing the initial mass. . . . . . . . . . . . 73
5.6 Same as Fig. 5.5but for [Al/Mg] versus [Ca/Mg]. . . . . . . . . . . . . . . 73
5.7 Same as Fig. 5.5but for [Si/Mg] versus [Ca/Mg]. . . . . . . . . . . . . . . 74
5.8 Same as Fig. 5.6but for [Ca/Mg] versus [Zn/Mg]. . . . . . . . . . . . . . . 74
5.9 Same as Fig. 5.6but for [Al/Mg] versus [Si/Mg]. Stars in the orange box are

selected for the comparison with theoretical yields. . . . . . . . . . . . . . 75

viii



5.10 The abundance pattern of #34. CS22956-050. Red thick crosses show observed

values, while PISN yields are shown by thin lines. . . . . . . . . . . . . . . 78
5.11 The abundance pattern of #34. CS22943-132. . . . . . . . . . . . . . . . 79
5.12 The abundance pattern of #37. CS22957-019. . . . . . . . . . . . . . . . 79
5.13 The abundance pattern of #57. SDSS J0018-0939. . . . . . . . . . . . . . 80

B.1 Kippenhahn diagrams of the non-rotating (left) and rotating (right) 12 M⊙

(top) and 15 M⊙ (bottom) models. . . . . . . . . . . . . . . . . . . . . 100
B.2 Kippenhahn diagrams of the non-rotating (left) and rotating (right) 20 M⊙

(top), 30 M⊙ (middle), and 40 M⊙ (bottom) models. . . . . . . . . . . . . 101
B.3 Kippenhahn diagrams of the non-rotating (left) and rotating (right) 50 M⊙

(top), 60 M⊙ (middle), and 70 M⊙ (bottom) models. . . . . . . . . . . . . 102
B.4 Kippenhahn diagrams of the non-rotating (left) and rotating (right) 80 M⊙

(top), 100 M⊙ (middle), and 120 M⊙ (bottom) models. . . . . . . . . . . . 103
B.5 Kippenhahn diagrams of the non-rotating (left) and rotating (right) 140 M⊙

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.1 The abundance patterns of selected metal-poor stars. Red thick crosses show

observed values. Stars of #1–4 in Tab. 5.4are plotted. . . . . . . . . . . . 105
C.2 Same as C.1. Stars of #5–10 in Tab. 5.4are plotted. . . . . . . . . . . . . 106
C.3 Same as C.1. Stars of #11–16 in Tab. 5.4are plotted. . . . . . . . . . . . . 107
C.4 Same as C.1. Stars of #17–22 in Tab. 5.4are plotted. . . . . . . . . . . . . 108
C.5 Same as C.1. Stars of #23–28 in Tab. 5.4are plotted. . . . . . . . . . . . . 109
C.6 Same as C.1. Stars of #29–34 in Tab. 5.4are plotted. . . . . . . . . . . . . 110
C.7 Same as C.1. Stars of #35–40 in Tab. 5.4are plotted. . . . . . . . . . . . . 111
C.8 Same as C.1. Stars of #41–46 in Tab. 5.4are plotted. . . . . . . . . . . . . 112
C.9 Same as C.1. Stars of #47–52 in Tab. 5.4are plotted. . . . . . . . . . . . . 113
C.10 Same as C.1. Stars of #53–57 in Tab. 5.4are plotted. . . . . . . . . . . . . 114

ix



List of Tables

2.1 Isotopes in the nuclear reaction network . . . . . . . . . . . . . . . 12
2.2 References of reaction rates . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Properties of massive Pop III models . . . . . . . . . . . . . . . . . 26
3.2 Comparison of stellar lifetimes . . . . . . . . . . . . . . . . . . . . 31

4.1 Properties of Pop III PISN models . . . . . . . . . . . . . . . . . . 54

5.1 Summary of abundance profiling . . . . . . . . . . . . . . . . . . . 65
5.2 Stellar yields of the best fit models . . . . . . . . . . . . . . . . . . 65
5.3 Number of stars in SAGA database . . . . . . . . . . . . . . . . . . 72
5.4 Stellar sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

x



Chapter 1

Introduction

First stars, also known as Population III (Pop III) stars, were key drivers of the
evolution of the early universe. Their high energy radiations constituted an im-
portant component of ionizing photons to initiate the cosmic re-ionization. They
were the first nuclear reactors in the chemically primitive universe, creating heavier
isotopes than 7Li. Massive first stars, furthermore, would explode as first super-
novae in the universe. The explosions spread over the circumference, crushing
and heating up the ambient gases. Processed stellar materials were ejected by the
explosions and mixed with the primordial gases, changing the chemical properties.

A number of questions arise on the nature of the first stars. How these first stars
evolve and end their lives? What are the evolutionary properties that characterize
them from metal-rich stars? What kind of nucleosynthesis takes place, and how
do they eject the processed materials out to the primordial circumference? More
to say, how can we answer to those questions?

1.1 Formation of first stars

Formation of the first stars has been extensively investigated by cosmological sim-
ulations over the past decades (e.g., Abel et al., 2002; Bromm et al., 2002; Yoshida
et al., 2004). The unique advantage of these simulations is that the high preci-
sion initial conditions can be obtained from the direct application of the ΛCDM
model of cosmological structure formation, which is calibrated by WMAP (Ko-
matsu et al., 2011) and more recently by Planck (Planck Collaboration et al., 2014)
satellites. The ab-initio cosmological simulations treat dynamics of dark matters
together with hydro-thermo-dynamic evolution of gases in a general-relativistically
evolving frame. Firstly a primordial gas cloud, embedded in a dark matter mini-
halo of 105–106 M⊙, collapses at redshifts z ∼ 20–30 due to gravitational insta-
bility (Yoshida et al., 2003). The adiabatic collapse increases the temperature of
the primordial gas cloud, resulting in stabilization of the structure. As more effi-
cient cooling due to atomic-hydrogen needs higher temperature to operate, further
collapse requires molecular-hydrogen cooling that activates in lower temperature
environment. Experiencing complicated chemical evolution of atomic and molecule
hydrogen (e.g. Omukai & Nishi, 1998a), finally a proto-stellar core of ∼ 0.01 M⊙ is
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formed in a gas cloud of ∼ 1000 M⊙ (e.g., Omukai & Nishi, 1998b; Yoshida et al.,
2008).

The evolution of the core during the successive accretion phase remains unclear.
Traditionally, it was believed that the high gas temperature results in the high
accretion rate onto the proto-stellar core, according to a simple estimate of Ṁacc ≃
MJeans/tff ∝ T 3/2, where Ṁacc, MJeans, and tff are the accretion rate, the Jeans
mass, and the free-fall time of the gas cloud, respectively. Hence, a massive initial
mass of the first star was estimated from the high accretion rate, reaching ∼ 100
M⊙ or even higher (Bromm& Larson, 2004). On the other hand, recent simulations
claim that other important processes, such as irradiation by the protostar (McKee
& Tan, 2008; Hosokawa et al., 2011, 2012) and disk rotation and fragmentation
(e.g., Stacy et al., 2010; Clark et al., 2011), significantly affect the accretion history.

The large angular momentum of accreting gas not only enables to form a rapidly
rotating first star (Stacy et al., 2011, 2013), but also decreases the mass accretion
rate and allows a disk to form around the core (Tan & McKee, 2004). In the
growing accretion disk, global gravitational instabilities are suggested to set in
(Gammie, 2001). A small perturbation thus grows and finally disrupts the disk,
triggering disk fragmentation. This indicates that Pop III stars may have a large
fraction of binaries or multiple systems (e.g., Greif et al., 2012). The possible
binary or multiple system formation is especially important as small mass metal-
free stars can be formed from the path (Clark et al., 2011). A small mass Pop
III star of ! 0.8 M⊙ can survive the long history of the universe, thus still to
be observable in our Galaxy, if it exists. However, the fate of the fragmented
disk is not so clear. A recent three-dimensional simulation including the effects of
UV feedback suggests that many fragmented segments migrate inward and finally
accrete onto the central star (Hosokawa et al., 2016). On the contrary to the
multiple system formation, this process rather enhances the mass accretion rate.

Radiation from the proto-star is another process to reduce the mass accretion
rate. Once the central proto-star has grown to ∼ 10 M⊙, the UV radiation from the
star evaporates the accretion disk, intercepting the further accretion to take place
(Omukai, 2001; McKee & Tan, 2008). Since this is a feedback process, in which
the source star of the UV radiation itself is affected by the mass accretion, a self-
consistent simulation is desired for the accurate estimation. Such a work is firstly
done by Hosokawa et al. (2011), who show that the efficient UV radiation feedback
indeed regulates the mass accretion rate and accordingly a first star of a few tens of
solar masses is formed. Furthermore, the same consistent calculation is conducted
for a large number of samples collected from a cosmological simulation in Hirano
et al. (2014). They obtain a wide spread initial-mass-distribution, spanning from
∼ 10 M⊙ to ∼ 1000 M⊙, for Pop III stars (Hirano et al., 2015).

1.2 Evolution of first stars

The fundamental importance of first stars provokes extensive investigations on the
evolution (Woosley & Weaver, 1995; Chieffi et al., 2001; Schaerer, 2002; Marigo
et al., 2001, 2003; Siess et al., 2002; Chieffi & Limongi, 2004; Umeda & Nomoto,
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2002, 2005; Gil-Pons et al., 2007; Lau et al., 2008; Ekström et al., 2008; Heger &
Woosley, 2002, 2010; Chatzopoulos & Wheeler, 2012; Yoon et al., 2012, 2015).

These authors have calculated evolution of first stars utilizing stellar evolu-
tion codes, which are generally calibrated to give reasonable agreements to stars,
especially to the sun, in our Galaxy and Magellanic clouds. In this meaning, calcu-
lations of Pop III stellar evolution inherit the large uncertainties in the treatments
of macroscopic physics of convection, wind mass loss, and stellar rotation, which
are generally described by parameterized phenomenological approaches. On the
other hand, only the intrinsic uncertainties are incorporated in the microphysics,
such as the opacity, the nuclear reaction rates, and the neutrino emission rates.
Especially, the initial composition of first stars are provided by the accurate and
precise theory of big-bang nucleosynthesis (e.g. Steigman, 2007),

One important effect of first stars on the environment is radiation of ionizing
photons (Schaerer, 2002). Owing to the much more compact structure than stars in
the local universe, massive first stars radiate exceptionally strong ionizing fluxes
(Tumlinson & Shull, 2000). The intensity of the ionizing flux mainly depends
on the initial mass of the first star. Those ionizing radiations not only initiate
the cosmic re-ionization (e.g. Haiman & Loeb, 1997) but also possibly change
the path of the nearby star formation to the so-called Pop III.2 channels, in which
photo-ionized gases enhance H2 and HD formation (Yoshida et al., 2007) or photo-
dissociated gases lose the molecule coolants (Omukai & Palla, 2001; Omukai &
Yoshii, 2003). The resulting star formation is thus much different from the usual
Pop III stellar formation (Johnson & Bromm, 2006; Hirano et al., 2015).

The other important effect is the final explosion of a massive first star (Woosley
& Weaver, 1995; Heger & Woosley, 2002; Umeda & Nomoto, 2002, 2005). The
supernova explosion spreads a large quantity of energy and metals out the ambient
gases, both of which significantly affect the environment (e.g. Ferrara et al., 2000).
Similar to supernovae in the local universe, supernovae in the early universe can be
diverse. The main parameter of a massive star to determine the fate is the initial
mass. A less massive first star of ∼ 9–10 M⊙ may become a less energetic electron-
capture supernova (Miyaji et al., 1980; Takahashi et al., 2013; Kitaura et al., 2006),
a massive star of ∼ 10–25 M⊙ will explode as a core-collapse supernova (CCSN)
with the energy of ∼ 1051 erg, and a more massive 25–40 M⊙ star may become
a ten times more energetic supernova, so-called hypernova (Nomoto et al., 2006).
Possibly not all of massive stars succeed to explode, but some part of them become
faint- or failed-supernovae (Hamuy, 2003). Furthermore, an energetic explosion of
pair-instability supernova (PISN) will arise from the very massive mass range of
145–260 M⊙ (Heger &Woosley, 2002; Umeda & Nomoto, 2002). Type Ia supernova
(SN Ia), which is resulting from thermonuclear explosion of a CO white dwarf,
chiefly contributes to production of iron (Nomoto et al., 1984), hence it works to
reduce other abundance ratios such as [O/Fe]1 (Kobayashi et al., 1998). Since SN
Ia is estimated to have much longer lifetime of billions of years than supernovae
from massive stars (based on a galactic chemical evolution, Yoshii et al. 1996; and

1Here [A/B] ≡ log10(NA/NB)−log10(NA/NB)⊙, where the subscript ⊙ denotes the solar value
and NA and NB are the number abundances of elements A and B, respectively.
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on a delay time distribution, Totani et al. 2008), the contribution to the metal
pollution is believed to initiate from [Fe/H] " −1.0 (Kobayashi et al., 2006).

In addition to the initial mass of the first star, stellar rotation is the second
important parameter to determine the evolution of first stars (Meynet & Maeder,
1997). Calculations with solar metallicity have shown that inclusion of stellar rota-
tion broadly impacts the outputs of stellar evolution, such as the stellar structure,
the wind mass loss, the nucleosynthesis, and the fate (Meynet & Maeder, 2000;
Heger et al., 2000). With a decreasing metallicities, the effects of rotation are
found to be enhanced, since more effective rotationally induced mixing takes place
in the more compact structure and the braking effect by the wind mass loss is
reduced (Meynet & Maeder, 2002a; Yoon et al., 2006; Hirschi, 2007). Therefore,
it is naturally expected that stellar rotation also has an impact on the evolution
of first stars.

In the past decade, several works have been done to calculate the evolution
of rotating first stars (Marigo et al., 2003; Ekström et al., 2008; Chatzopoulos &
Wheeler, 2012; Yoon et al., 2012, 2015). Ekström et al. (2008) have calculated the
evolution of rotating first stars with masses between 9 and 200 M⊙ until deple-
tion of the central silicons. They have found that the rotationally induced mixing
triggers high nitrogen production in the first stars, while the suggested enhance-
ment of mass loss has found not to take place (Meynet et al., 2006). Yoon et al.
(2012) have calculated a grid of massive Pop III models, covering the range of
mass from 10 to 1000 M⊙ and the range of rotational velocity from zero to 100%
of the critical rotation. The exciting result they have obtained is the realization
of the chemically-homogeneous-evolution (CHE) (Maeder, 1987) in their fastest
rotating models. As a large quantity of angular momentum can be preserved in
the homogeneous star, the CHE is considered to be the key evolution path to trig-
ger a long-GRB jet (Yoon & Langer, 2005; Woosley & Heger, 2006). While those
previous works reveal properties of divergent evolution of rotating first stars, the
supernova nucleosynthesis have not yet calculated.

In spite of extensive investigations over many years, accurate simulation of su-
pernova explosion is still a numerically challenging task (e.g., Janka, 2012; Kotake
et al., 2012; Bruenn et al., 2013; Burrows, 2013). Therefore, many investigations on
yields of Pop III supernovae have conducted simulations by much simplified man-
ners. Often the engine of the explosion is approximated by injecting an energy into
the central region of the star in terms of the thermal energy (the thermal-bomb
model, Hashimoto et al., 1989), the kinetic energy (the piston model, Woosley &
Weaver, 1986), and combination between them. Moreover, in order to mimic the
multi-dimensional nature during the matter ejection, the so-called mixing-fallback
model has been introduced by Umeda & Nomoto (2002). In the model, an explo-
sion is assumed not to eject the whole stellar mass, but some fraction of mixed
inner material falls back onto the central remnant. Accordingly, this model has
three basic parameters, the inner boundary of the mixing region corresponding to
the initial mass of the compact remnant, Mcut, the outer boundary of the mixing
region, Mmix, and the escape fraction with which the matter in the mixing region
is ejected, fesc (Tominaga et al., 2007a). Two schematic illustrations are discussed
to account for the mixing-fallback process. The first one is a low energy supernova.
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At the boundary region of a stellar core, deceleration by the reverse shock takes
place (e.g., Hachisu et al., 1990; Kifonidis et al., 2003). The deceleration accounts
for the large fallback of inner matter, simultaneously explaining the mixing by the
growth of the Rayleigh-Taylor instabilities. The other one is a jet-like explosion
(Tominaga et al., 2007b; Tominaga, 2009), in which large fallback is attributed to
the accretion of off-axis matter.

1.3 Metal poor stars

The oldest and most metal-poor stars in the local universe contain invaluable
information of nucleosynthesis in the early universe in their primitive chemical
abundances (e.g., Frebel & Norris, 2015; Nomoto et al., 2013). Recent cosmological
simulations estimate that the first metal enrichment can be as high as Z ∼ 10−3

Z⊙ (Greif et al., 2010; Smith et al., 2015; Ritter et al., 2012, 2016). Besides,
due to the pre-existing small amount of metals, even a single metal ejection can
dominate the primitive chemical abundance of ambient gases (Audouze & Silk,
1995; Ryan et al., 1996). Since the second-generation stars should be born from
such chemically primitive gases, an anticipation exists that the most metal-poor
stars observed in the local universe may actually be the second-generation stars,
based on their extremely metal poor abundances and the intrinsically large scatters
observed in many elemental abundances (e.g. Umeda & Nomoto, 2003).

Recently, growing number of such objects has been discovered and observed by
several surveys. Some of them facilitate a low-resolution prism spectroscopy with a
wide viewing angle to find an indicative CaII K line, which provides a first estimate
of the stellar metallicity (e.g., HK survey: Beers et al. 1992; Hamburg/ESO survey:
Christlieb 2003). Some others utilize a big medium-resolution spectroscopic data
to find metal-poor signatures (e.g., SEGUE survey: Yanny et al. 2009; LAMOST
survey: Deng et al. 2012). The SkyMapper Southern Sky Survey (SMSS survey:
Keller et al. 2007), by which the most iron-poor star, SMSS 0313-6708 of [Fe/H]
< −7.3, has been discovered (Keller et al., 2014), is a photometric survey, which
uses the UV excess as the metallicity estimate.

Among the metal-poor stars, stars showing smaller metallicity of −4.0 ≤
[Fe/H] < −3.0 are called extremely-metal-poor (EMP) stars. Similarly, stars of
−5.0 ≤ [Fe/H] < −4.0, −6.0 ≤ [Fe/H] < −5.0, and [Fe/H] < −6.0 are respectively
named ultra-metal-poor (UMP), hyper-metal-poor (HMP), and mega-metal-poor
stars (Beers & Christlieb, 2005). More metal-poor stars are much rarer (Yong
et al., 2013b). Currently ∼ 20 stars have been discovered having [Fe/H] < −4.0
in our Galaxy, and the number reduces to 6 with [Fe/H] < −5.0 (Christlieb et al.,
2002; Frebel et al., 2005; Caffau et al., 2011a; Keller et al., 2014; Bonifacio et al.,
2015; Frebel et al., 2015). Peculiar characteristics of the abundance patterns are
not only the low iron abundance. Interestingly, all of the six most-iron-poor stars
except Caffau star show an over abundance of carbon relative to iron, [C/Fe] "
−3. It is also noteworthy that the enhancement of intermediate mass elements,
such as carbon, nitrogen, oxygen, sodium, magnesium, and aliminum is frequently
observed from the most iron-poor stars (Norris et al., 2013).
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Although abundances of metal-poor stars show intrinsically large scatters, some
trends have been found in their averaged abundances. For example, [α/Fe] is
known to reach a constant value of ∼ 0.5 at [Fe/H] < −1.0 and abundance ratios
of odd elements such as [Na, Al, Cu/Fe] decrease toward low [Fe/H]. Also iron-
peak elements show decreasing [Cr, Mn/Fe] and increasing [Co, Zn/Fe] trends
with decreasing [Fe/H] (McWilliam et al., 1995). Considering a galactic chemical
evolution model, in which interaction between chemical enrichment by several
processes and next generation star formation is simulated, many of these trends
have been explained (e.g., Timmes et al., 1995; Kobayashi et al., 2006). On the
other hand, still significant underproductions are found in some of odd- or iron-
peak elements, such as [K, Sc, Ti, V/Fe] (Nomoto et al., 2013).

Metal-poor stars with large carbon excess of [C/Fe] > 0.72 are called carbon-
enhanced-metal-poor (CEMP) stars (Aoki et al., 2007). The fraction of CEMP
stars increases with decreasing metallicity (e.g., Beers et al., 1992; Aoki et al.,
2007). Moreover, the bimodal distribution of carbon abundances has been discov-
ered in CEMP stars (Bonifacio et al., 2015). Based on the abundances of neutron-
rich isotopes, CEMP stars are further classified into four subclasses (Beers &
Christlieb, 2005); CEMP-s stars showing s-process element enhancement, CEMP-
r stars with r-process element enhancement, CEMP-r/s stars with both s- and
r-elements enhancements, and CEMP-no stars with no neutron rich element en-
hancements. Among them, CEMP-s stars dominate the large fraction of the CEMP
stars. As majorities of CEMP-s (Johnson & Bolte, 2002), CEMP-r, and CEMP-
r/s stars have metallicities of [Fe/H] " −3.0, CEMP stars of [Fe/H] < −3.0 are
expected to be dominated by CEMP-no stars.

Origins of carbon enhancement will be different for each classes. Based on the
high binary frequency, the origin of the carbon enhancement in CEMP-s stars has
been elucidated as the mass transfer from the former AGB binary (Suda et al.,
2004; Lucatello et al., 2005). On the other hand, origins of carbon enhancements
in CEMP-r, CEMP-r/s, and CEMP-no stars are unclear. Besides the AGB mass
transfer model, other models, such as the faint supernova model (e.g. Umeda &
Nomoto, 2003; Iwamoto et al., 2005), superposition of two supernovae (Limongi
et al., 2003), the spin-star model (Meynet et al., 2006), and the self-enrichment
model (Fujimoto et al., 2000), have been proposed to explain the carbon enhance-
ment.

1.4 Goal and purposes of this thesis

The final goal of this work is to reveal and to understand the properties of first
stars existed in the early universe. Because it is extremely challenging to directly
observe such high-z objects by present telescopes, I decide to take more indirect
but reasonable strategy, by conducting the so-called abundance profiling method
(Nomoto et al., 2013). The key idea is that chemically primitive abundances
observed from metal-poor stars in the local universe may preserve nucleosynthetic
signatures occurred in the early universe. Assuming in this way, I try to make

2Sometimes > 1.0 is used; Beers & Christlieb 2005.
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a link between the theoretically calculated yields of first supernovae in the early
universe and the observationally collected abundances of metal-poor stars in the
local universe.

In this thesis, I purpose to constrain the properties of first stars, such as the
initial masses and the rotational properties. By conducting the abundance profil-
ing, information of what kind of first stars at least existed in the early universe can
be deduced. Demand for this kind of constraint has been increasing to examine
theoretically estimated characteristics of first stars. Recent simulations estimate
that first stars will show a wide initial mass distribution of ∼ 10–1000 M⊙ (Hirano
et al., 2014, 2015; Susa et al., 2014). Besides, first stars are suggested to have a
fast rotation velocity at their birth (Stacy et al., 2011, 2013).

Theoretical calculations are done by the stellar evolution code and the hydro-
dynamic code. Descriptions of these codes and discussions on the input physics
are given in Chapter 2.

In order to infer progenitor’s properties from abundance comparisons, one needs
to know how characteristic chemical signatures are resulted from the specific pro-
genitor in advance. Therefore, to begin with, I aim to find such characteristic nucle-
osynthesis patterns for Pop III core-collapse supernova (CCSN) yields in Chapter
3. I conduct evolution calculations of 12–140 M⊙ progenitors, with and without
taking the effects of rotation into account. The supernova yields are calculated
by applying a simple but pragmatic model of the weak explosion model, which
will provide suitable stellar yields for CEMP stars. In the next Chapter 4, I con-
firm that more massive 145–260 M⊙ stars explode as pair-instability supernovae
(PISNe). I conduct a systematic calculation of PISN explosions and nucleosynthe-
sis, in order to determine characteristic abundance patterns that can be used to
distinguish the PISN yields from the other.

Eventually, I conduct abundance comparisons between the theoretical yields
and observations in Chapter 5. As a demonstration of the weak supernova model,
I compare the theoretical yields with the three most-iron-poor stars discovered so
far, to constrain the initial masses and rotational properties of source stars of the
metal pollution. PISN yields are compared with a large abundance data compiled
in SAGA database (Suda et al., 2008, 2011; Yamada et al., 2013). I try to find
candidates of PISN children from the large sample, and validate the applicability
of characteristic abundance patterns proposed in Chapter 4 for efficient search.

Summary and conclusion, as well as a short discussion on future prospects, are
presented in Chapter 6.
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Chapter 2

Computational methods

2.1 Abundance references

The primordial abundance by Steigman (2007) is adopted for stellar evolution
calculations. As the reference of the solar composition, the elemental abundance
ratio by Asplund et al. (2009) and the isotopic ratio by Lodders et al. (2009) are
used.

2.2 Stellar evolution code

A hydrostatic evolution of a spherical gas object, which is confined by the self-
gravity, is calculated by the stellar evolution code. The energy of the star is
continually radiated by photon radiation at the surface and by neutrino emission
at the central region. The lost energy is compensated by nuclear reactions, and
the supplied energy is redistributed among the stellar matter by energy transfer.
A star reaches a thermally equilibrating phase when the energy loss and the energy
supply balances. During the phase, composition change by nuclear reactions slowly
modifies the stellar structure. When the equilibrium breaks, the star contracts,
increasing the inner temperature until the next nuclear burning takes place.

The stellar evolution code solves the equations of stellar structure together
with the nuclear reactions occurring inside the star. Because of the slow evolution
compared to the hydrodynamic time, the structure equations forms a system of
hyperbolic partial differential equations. Therefore, the evolution code iteratively
solves the structure equations by a time-implicit manner, so-called the Henyey
method1. Also, the code adopts the Lagrangian coordinate system, in which the
radial mesh moves with time, tracing the movement of the fluid. The Lagrangian
coordinate has a merit to numerically ensure the conservation of chemical species.

The stellar structure and the chemical distribution are split in time integration.
The equations of stellar structure have four dependent variables, the radius r, the
luminosity L, the pressure p, and the temperature T , which are defined at the mass
coordinate M . The evolution of the chemical distribution is further split into the

1The method can actually be formulated as a Newton-Raphson’s scheme solved by a block-
tridiagonal matrix method.
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reaction equation and the transfer equation, in which a dependent variable of Yi,
the number fractions of chemical species, is treated. Stellar structure with given
chemical distribution is solved at first, then, according to the solution of the stellar
structure, the evolution of the chemical distribution is calculated.

2.2.1 Basic equations: Equations of stellar structure

Basic equations of stellar structure are obtained from equations of hydrodynamics
with self-gravity and energy transfer:

( ∂

∂t
+ (v⃗ ·∇)

)
v⃗ = −1

ρ
∇p−∇φ (2.1)

( ∂

∂t
+ (v⃗ ·∇)

)
e = −p

( ∂

∂t
+ (v⃗ ·∇)

)(1
ρ

)
−1

ρ
(∇ · θ⃗) + ϵ (2.2)

∇2φ = 4πGρ (2.3)
∂ρ

∂t
+∇ · (ρv⃗) = 0 (2.4)

θ⃗ = (energy flux), (2.5)

where p, ρ, e, v⃗ are the pressure, the density, the internal energy, and the velocity
of the fluid, φ is the gravitational potential, θ⃗ and ϵ are the energy flux and the
energy source term, respectively. The first equation is the Euler equation of the
flow, the second is the energy conservation law, the third is the Poisson equation,
the fourth is the continuity equation, and the last shows an governing equation of
the energy flux. Under the assumption of the spherical symmetry of the object,
these equations reduce to

Dv

Dt
= −1

ρ

∂p

∂r
− ∂φ

∂r
(2.6)

De

Dt
= −p

D(1/ρ)

Dt
− 1

ρ

( 1

4πr2
∂

∂r
(4πr2θ)

)
+ϵ (2.7)

4πGρ =
1

r2
∂

∂r

(
r2
∂φ

∂r

)
(2.8)

0 =
∂ρ

∂t
+

1

r2
∂

∂r

(
r2ρv

)
(2.9)

4πr2θ = (luminosity), (2.10)

here, the derivative D/Dt ≡ (∂/∂t) + v(∂/∂r) is used.
The enclosed mass is then defined as a function of time and radius,

M(t, r) ≡
∫ r

0

4πr2ρdr. (2.11)

The enclosed mass has several merit to be handled. Firstly, since the gravity,
−∂φ/∂r, should be zero at the center of the spherical potential, it gives the first
integral of the Poisson equation,

∂φ

∂r
=

GM

r2
. (2.12)
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Moreover, the basic equations are further reduced by the variable transformation
from (t, r) to (t,M). With the help of the continuity equation, the partial deriva-
tives of M(t, r) becomes

∂M

∂t
= −4πr2ρv (2.13)

∂M

∂r
= 4πr2ρ, (2.14)

and thus the variable transformation is done with

∂

∂t

∣∣∣
r
+v

∂

∂r

∣∣∣
t

→ ∂

∂t

∣∣∣
M

(2.15)

1

4πr2ρ

∂

∂r

∣∣∣
t

→ ∂

∂M

∣∣∣
t
. (2.16)

According to this variable transformation, time derivative of r(t,M) equates with
v. This fact shows that the co-moving frame with the flow, which is called the
Lagrangian coordinate, is realized by taking the (t,M) coordinate. Hereafter, the
partial derivatives are taken under the Lagrangian (t,M) expression.

The basic equations of stellar structure can be summarized as;

1. Definition of the enclosed mass, or the mass coordinate:

∂r

∂M
=

1

4πr2ρ
, (2.17)

2. Velocity equation:

v =
∂r

∂t
, (2.18)

3. Hydrostatic equation:

∂p

∂M
= −GM

4πr4
+

1

4πr2
∂v

∂t
, (2.19)

4. Energy equation:

∂e

∂t
= −p

∂(1/ρ)

∂t
− ∂L

∂M
+ ϵ, (2.20)

5. Equation of the luminosity,

L = Lrad + Lconv. (2.21)

The effect of the so-called inertia term, the last term in the hydrostatic equation,
is only effective when the timescale of the evolution gets short enough.
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The basic equations require four boundary conditions for closure. At the center
of the star, equations

r|M=0 = 0 (2.22)

L|M=0 = 0 (2.23)

are imposed, and at the surface of the star,

p|surface =
GM

κr2
τs (2.24)

L|surface = 4πr2σT 4 (2.25)

are solved, where κ, σ, and τs are the opacity at the surface, the Stefan-Boltzman
constant, and the surface optical depth, which is an ∼ O(1) parameter typically
set to be 2/3, respectively.

2.2.2 Basic equations: Equation of chemical distribution

The basic equation of chemical distribution is written as

∂Yi

∂t
= Ẏi −

∂Ji
∂M

(2.26)

Ji = −(4πr2ρ)2Deff
∂Yi

∂M
, (2.27)

where Yi is the number fraction of species i, Ẏi is the source term showing the
effects of nuclear reactions, Ji is the flux integrated over the surface of r, and Deff

is the effective diffusion coefficient. A straightforward derivation of the governing
equation of chemical distribution is difficult, since it includes an ad-hoc transfer
term.

In the code, the time integration is firstly done for the nuclear reactions. The
nuclear reaction network,

∂Yi

∂t
= Ẏi(T, ρ, Yj) (2.28)

= −λi→jYi + λj→iYj −
∑

j,k

λij→kYiYj +
∑

j,k

λjk→iYjYk · · · , (2.29)

where λ’s represent the reaction rates, is solved by the Newton-Raphson method.
While the same module is used for the iteration (Yoshida & Umeda, 2011; Umeda
et al., 2012), different number of isotopes, and thus of reactions, are set depending
on calculations. In this work, 260 isotopes in the evolution calculations, 153 in
the explosion calculations, and 300 in the post-process calculations are considered
(Tab. 2.1). Reaction rates used in the network calculation are summarized in
Tab. 2.2. Besides them, electron screening formulae are collected from Graboske
et al. (1973) for the weak and intermediate screening and from Itoh et al. (1990)
for the strong screening.
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Table 2.1: Isotopes in the nuclear reaction network
Element A Element A
n 1 1 1 Ar 33–42 34–40 34–43
H 1–3 1–3 1–3 K 36–43 37–41 36–45
He 3–4 3–4 3–4 Ca 37–48 38–43 38–48
Li 6–7 6–7 6–7 Sc 40–49 41–45 40–49
Be 7–9 7–9 7–9 Ti 41–51 43–48 42–51
B 8–11 8–11 8–11 V 44–52 45–51 44–53
C 11–14 12–13 11–16 Cr 46–55 47–54 46–55
N 12–15 13–15 13–18 Mn 48–56 49–55 48–57
O 13–20 14–18 14–20 Fe 50–61 51–58 50–61
F 17–21 17–19 17–22 Co 54–62 53–59 51–62
Ne 18–24 18–22 18–24 Ni 56–66 55–62 54–66
Na 20–25 21–23 21–26 Cu 59–67 57–63 56–68
Mg 21–27 22–26 22–28 Zn 62–70 60–64 59–71
Al 23–29 25–27 25–30 Ga 65–73 — 61–73
Si 24–32 26–32 26–32 Ge 69–76 — 63–75
P 27–34 29–33 27–34 As 71–77 — 65–76
S 29–36 30–36 30–37 Se 73–79 — 67–78
Cl 31–38 33-37 32–38 Br 76–80 — 69–79

Notes. Isotopes included in the nuclear reaction network for stellar evolution calculations (260

isotopes, left), for explosion calculations (153 isotopes, middle), and for post processing calcula-

tions (300 isotopes, right).

Then the rest is solved as a diffusion equation,

∂Yi

∂t
=

∂

∂M

(
(4πr2ρ)2Deff

∂Yi

∂M

)
. (2.30)

The effective diffusion coefficient consists of the convective component and the
component of rotationally induced mixing,

Deff = Dconv +Drot. (2.31)

How to determine the two components are described later.

2.2.3 Input physics

The equation of states of the stellar matter consists of four species of particles, pho-
ton, nuclei, electron, and positron, which share the same equilibrating temperature.
Photon is expressed as a black body radiation, nuclei are approximated as ideal
gases that obey the Maxwell-Boltzmann statistics, and Electron and positron are
expressed as ideal Fermi gases (Blinnikov et al., 1996). The emergence of positron
is governed by the equation,

0 = µe− + µe+ , (2.32)

which shows the reaction equilibrium between electron-positron pair and the black-
body radiation. The free energy of the matter is firstly defined as

F (T, V,Ni) = Fph + Fnuc + Fe− + Fe+ + Fcoul, (2.33)
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Table 2.2: References of reaction rates
reference

Mass excess Audi (2003)
Thermonuclear reaction rate
and thermal enhancement factor JINA Reaclib (Cyburt et al., 2010)
Weak interaction rate (A = 17–39) Oda et al. (1994)

(A = 23, 25, 27) Toki et al. (2013)
(A = 40–44) Fuller et al. (1982)
(A = 45–65) Langanke & Mart́ınez-Pinedo (2001)
(A > 65) Takahashi & Yokoi (1987)
(others) Horiguchi et al. (2000)

in which Fph, Fnuc, Fe− , Fe+ are the free energies of photon, nuclei, electron,
and positron, respectively, and Fcoul is the free energy of the Coulomb interaction
(Salpeter & van Horn, 1969; Slattery et al., 1982). Then other thermodynamic
quantities are defined as derivatives of the free energy,

S =
(∂F
∂T

)

V,Ni

(2.34)

p =
(∂F
∂V

)

T,Ni

(2.35)

µi =
( ∂F

∂Ni

)

T,V,Nj

, (2.36)

or as a result of the Legendre transformation for the internal energy,

U = F − TS. (2.37)

In the stellar calculation, the specific forms of the thermodynamic quantities, s ≡
S/Mb, e ≡ U/Mb, p, and µi are directly calculated and used as functions of the
density, the temperature, and the composition, where Mb ≡ muNb is the baryon
mass in the region of V (see Appendix A).

The energy source term, ϵ, is further divided into the energy generation term by
nuclear reactions, ϵnuc, and the energy loss term by neutrino emission, ϵν . Equating
with the first law of the thermodynamics,

de = −pd
(1
ρ

)
+Tds+

1

mu

∑

i

µidYi, (2.38)

which is directly derived for the free-energy-based equation of states, the energy
equation is further modified into the entropy equation,

T
∂s

∂t
= − ∂L

∂M
− 1

mu

[∑

nuclei

µiẎi + µeẎe

]
−ϵν , (2.39)

where µi and µe are the special-relativistic chemical potentials including the rest
masses for nuclei and electron. One may define ϵnuc as

ϵnuc = − 1

mu

[∑

nuclei

µiẎi + µeẎe

]
(2.40)
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in this entropy equation. The thermal contribution of the neutrino cooling rate
is calculated according to Itoh et al. (1989, 1996), which includes pair, photo-,
plasma, and bremsstrahlung processes. In addition to those thermal neutrinos,
neutrinos emitted by weak nuclear reactions, such as electron captures and beta
decays, also composes ϵν .

One important input physics in the stellar code is the opacity of the matter.
Since stellar matter, except near the surface, is in the radiative equilibrium, the
Rosseland mean opacity

1

κ
≡

∫∞
0 κ−1

ν uνdν∫∞
0 uνdν

(2.41)

is useful to be used in the simulation. Using the mean opacity, the radiative
luminosity can be determined as

Lrad =
4
3aT

4

p

4πcGM

κ

dlogT

dlogP
. (2.42)

We utilize the tabulated opacity data by the OPAL project (Iglesias & Rogers,
1996) together with the conductive opacity by Potekhin et al. (2006) and the
molecular opacity by Ferguson et al. (2005).

Convection is assumed to take place in a dynamically unstable region of

∇rad > ∇ad +
ϕ

δ
∇µ, (2.43)

where ϕ ≡ (∂lnρ/∂lnµ) and δ ≡ −(∂lnρ/∂lnT ) are thermodynamic functions,
∇µ ≡ d log µ/d log p is the µ-gradient, and ∇rad and ∇ad are the radiative and
adiabatic temperature gradients. In the convective region, the convective lumi-
nosity, Lconv, is calculated according to the mixing length theory (Böhm-Vitense,
1958), otherwise it is set to be zero. The velocity of the convective blob, vconv, and
the mixing length, lmix ≡ αmixHp, are used to estimate the diffusion coefficient by
convection,

Dconv =
1

3
vconvlmix. (2.44)

In addition, overshooting of the convective motion from the edge of the dynamically
unstable regions is treated during core hydrogen and core helium burning phases.
An exponentially decaying formula,

Dconv,ov = Dconv,0exp
(
−2

∆r

fovHp,0

)
(2.45)

is applied, where fov is an adjustable parameter, Dconv,0 andHp,0 are the convective
mixing coefficient and the pressure height at the edge of the convective region, and
∆r is a distance from the edge. Finally, the vibrational instability is assumed to
grow in a region of

∇ad +
ϕ

δ
∇µ ≥ ∇rad > ∇ad. (2.46)
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Mixing by the instability is treated by applying a diffusion coefficient of Spruit
(1992) with a parameter of fsc=0.3.

Although wind mass loss constitutes a highly influential input physics in evo-
lution of a massive metal-rich star, I apply a small constant mass loss rate of
Ṁ = 10−14 M⊙ yr−1 for metal-free calculations. This reflects the fact that the
surface of a metal-free star is lacking a photon absorber, such as iron ions, which
account for the wind acceleration of hot metal-rich stars. Owing to the small rate,
mass loss in the metal-free models presented in this work is practically negligible,
unless mechanical mass loss by fast rotation sets in. However, still many possibili-
ties exist concerning the mass loss rate of massive stars. There is a discussion that
light elements synthesized in an early stage of the stellar life may be mixed up to
the surface and contribute to the wind acceleration (Meynet et al., 2006; Ekström
et al., 2008). Photon absorption by CNO elements might be of the prime impor-
tance to be investigated, but calculation by Krtička & Kubát (2009) in this case
shows that they are not enough to drive an effective wind mass loss. Pulsational
mass loss (Baraffe et al., 2001; Sonoi & Umeda, 2012; Moriya & Langer, 2015)
may account for the mass loss in the metal-less environment. Moreover, as the
mechanism of red giant mass loss has not been determined yet even for metal-rich
stars, there is no grounds to omit the red giant mass loss for metal-free models.
The assumption of no mass loss for metal-free models, thus, should be regarded
as one extreme possibility to be investigated.

2.2.4 Stellar rotation

Stellar rotation can be modeled as a large-scale steady flow circulating around
the rotation axis. It is, thus, fundamentally a multi-dimensional phenomenon,
the description of which requires at least axially symmetric equations. However,
although there are some efforts to conduct a two-dimensional calculation incorpo-
rating the evolution of flows in the meridional plane (e.g., Deupree, 1990; Espinosa
Lara & Rieutord, 2007; Yasutake et al., 2015), simulating the full evolution is still
a computationally unreachable task. One possibility is to somehow subtract a
one-dimensional relation from the multi-dimensional problem, and expresses the
meridional flow as an effective transfer phenomenon between the one-dimensional
regions.

For example, if the rotational flow is a potential flow, i.e., the angular velocity
of the flow only depends on the distance from the rotation axis, the constant pres-
sure surface coincides with the constant density surface (e.g. Eriguchi & Mueller,
1985). In this case, the pressure structure can be described by a one-dimensional
equation (Kippenhahn & Thomas, 1970). Similar type of a one-dimensional pres-
sure equation can be formulated, if the angular velocity of the rotational flow
becomes constant on the isobar (Meynet & Maeder, 1997). This so-called shellular
rotation law is firstly introduced by Zahn (1992) as a result of the effective angular
momentum transfer by the hypothetical horizontal turbulence, and it constitutes
the most fundamental assumption in modern 1D evolution codes for calculating
the evolution of a rotating star (e.g., Meynet & Maeder, 2000; Heger et al., 2000;
Yoon & Langer, 2005; Chieffi & Limongi, 2013; Paxton et al., 2013; Takahashi
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et al., 2014).
Three effects of stellar rotation are incorporated in our code.

1. Due to the centrifugal force, the star is deformed and the pressure balance
is changed.

2. Chemical composition is mixed owing to the meridional circulation and the
meridional turbulence driven by rotational instabilities.

3. The surface material is easier to be ejected with the help of the centrifugal
force.

Those effects are respectively taken into account in the equations of pressure and
temperature gradients, in the diffusion equation of chemical species, and in the
formula of the mass loss.

At first, definitions of the mass coordinate and the radius are extended. The
mass coordinate, Mp, is defined as the enclosed mass inside the isobar of the
pressure p. Accordingly, the radius, rp, is defined as the effective radius of the
volume inside the isobar, Vp ≡ 4πr3p/3. Due to the centrifugal force, the constant
pressure surface is assumed to form a spheroid of

r(cosθ) = a[1− ϵP2(cosθ)], (2.47)

in which P2 is the second-order Legendre polynomial (Denissenkov & VandenBerg,
2003). The scaling radius a and the degree of rotation ϵ are related to rp as

rp = a
(
1 +

3

5
ϵ2 − 2

35
ϵ3
)1/3

, (2.48)

ϵ =
ω2
pr

3
p

3GMp

( a

rp

)3

, (2.49)

where ωp is the angular velocity of the isobar.
The equations of pressure balance and radiative luminosity are modified as

∂p

∂Mp
= −GMp

4πr4p
fp, (2.50)

Lrad =
4
3aT

4

p

4πcGMp

κ

d log T

d log p

fp
fT

. (2.51)

Modification factors, fp and fT , are calculated as

fp =
4πr4p

GMpSp

1

⟨g−1
eff ⟩

(2.52)

fT =
(4πr2p

Sp

)2 1

⟨geff⟩⟨g−1
eff ⟩

, (2.53)

where Sp is the surface area of the isobar, and ⟨⟩ represents the averaged quantity,

⟨q⟩ = 1

SP

∫

isobar

qdσ. (2.54)
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In the calculation of ⟨geff⟩, the norm is calculated from

geff,r =
∂φ

∂r
+ ω2

pr sin
2 θ (2.55)

geff,θ =
1

r

∂φ

∂θ
+ ω2

pr sin θ cos θ, (2.56)

with the Roche approximation for the gravity,

∂φ

∂r
= −GMp

r2p
(2.57)

1

r

∂φ

∂θ
= 0. (2.58)

Several instabilities, as well as meridional circulation, constitute the coefficient
of the rotationally induced mixing (Endal & Sofia, 1978; Pinsonneault et al., 1989;
Heger et al., 2000, 2005):

Drot = fc × (νES + νGSF + νSH + νDS + νSS) +DTS. (2.59)

The considered instabilities are meridional circulation (also known as the Eddington-
Sweet circulation), the Goldreich-Schubert-Fricke instability, the Solberg-Høiland
instability, the dynamical and secular shear instabilities, and the Tayler-Spruit
dynamo (Spruit, 2002). According to Heger et al. (2000), corresponding viscosi-
ties are estimated as νES, νGSF, νSH, νDS, and νSS, and summed up using a free
parameter fc. This parameter fc accounts for the possible difference between the
efficiencies of angular momentum transport and matter mixing. In addition, dif-
fusion coefficient by the Tayler-Spruit dynamo DTS is added.

For instance, the way to calculate the viscosity of the meridional circulation is
shown. Firstly, typical velocities of meridional circulation and µ-currents, by which
the meridional circulation is stabilized, are calculated (Kippenhahn & Moellenhoff,
1974; Kippenhahn, 1974),

ve =
1

gδ

∇ad

∇ad −∇

(ω2r3

GM

) L

M

[2M(ϵnuc − ϵν)

L
− 2− M

4πρr3/3

]
(2.60)

vµ = fµ
ϕ
δ∇µ

∇ad −∇
Hp

τ ⋆KH

, (2.61)

in which fµ is another free parameter that shows the reduction efficiency of the
µ-barrier, and τ ⋆KH ≡ GM2

r(L+Mϵν)
is the local Kelvin-Helmholtz timescale. Next,

the effective circulation velocity is defined as the difference between the absolute
values of the two velocities. Only if the effective velocity becomes positive, the
rotationally induced mixing is assumed to take place by the meridional circulation.
Thus, using the effective circulation velocity, vES = max[|ve| − |vµ|, 0], and the
length scale of meridional circulation lES, the viscosity is estimated as

νES = vESlES. (2.62)
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Note that we use the pressure scale hight as the trial length scale of meridional
circulation,

lES = Hp, (2.63)

rather than more complicated definitions in literature (e.g. Endal & Sofia, 1978).
This is because the computational cost is much less but calculated results by
adopting either definitions are quite similar.

Similar to matter mixing, the angular momentum transport is expressed by a
diffusion equation (Pinsonneault et al., 1989):

∂ω

∂t
=

1

I

∂

∂M

(
(4πr2ρ)2Iνeff

∂ω

∂M

)
−ω

r

(∂r
∂t

)(∂lnI
∂lnr

)
, (2.64)

in which I and νeff are, respectively, the specific moment of inertia and the effective
viscosity. The first term in the r.h.s. represents the angular momentum transport
by matter mixing, and the second term emerges from the local angular momentum
conservation (Heger et al., 2000). For the effective viscosity, all the viscosities listed
above are summed up:

νeff = νES + νGSF + νSH + νDS + νSS + νTS. (2.65)

The last effect of stellar rotation is the rotationally induced enhancement of
mass loss (the ΩΓ-limit, Langer, 1998; Maeder & Meynet, 2000; Kudritzki, 2002).
According to Yoon et al. (2010, 2012), the enhancement of the mass loss rate is
calculated as

Ṁ = −min
[
|Ṁ(vrot = 0)|×

(
1− vrot

vcrit

)−0.43

, 0.3
M

τKH

]
, (2.66)

where vcrit =
√
GM(1− L

LEdd
)/R is the critical rotation velocity at the surface

of the star, LEdd is the Eddington luminosity, and τKH is the Kelvin-Helmholtz
timescale.

2.2.5 Calibration of the code

The same calibration to the recent grids calculations with GENEC has been done
(Ekström et al., 2012; Georgy et al., 2012, 2013). A solar-metallicity 15 M⊙ star
rotating with ∼ 200 km s−1 during main sequence has been specified as the refer-
ence model. Two observational constraints are used. The first is the main sequence
width in the HR diagram. The second is the surface nitrogen enhancement during
main sequence, which is set to be in the range from +0.5 to +0.7 at the terminal-
age main sequence (TAMS) phase (Gies & Lambert, 1992; Morel et al., 2008;
Hunter et al., 2009).

Taking the constant fc = 1/24, the overshoot parameter, fov, and the parame-
ter showing the reduction efficiency of µ-barrier, fµ are calibrated. Effective tem-
perature decreases by increasing fov, and both effective temperature and [N/H]
increases by decreasing fµ, thus by increasing the efficiency of rotation induced
mixing. The evolution of surface quantities are shown in Fig.2.1. According to the
calibration, two parameters are specified as fµ = 0.015 and fov = 0.07.
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Figure 2.1: HR diagram (left) and [N/H] vs effective temperature diagram (right)
for 15 M⊙ models. Dotted lines in the HR diagram show the observed width of
massive main sequence stars in our Galaxy (Ekström, 2015, private communica-
tion). Parameter sets applied for the calculations are shown in the legends as (fµ,
fov).

2.3 Hydrodynamic code

I utilize a 1D-spherical general-relativistic Lagrangian hydrodynamic code devel-
oped by Yamada (1997) for hydrodynamic simulations. The code integrates the
time in an implicit manner, iteratively solving equations of the metric and the hy-
drodynamics. As the code had originally been developed to simulate evolution of
very inner region of a collapsing core, I introduce some input physics for more gen-
eral purpose simulations. They are the reaction network and the non-NSE EOS,
which are imported from the stellar evolution code. Although the hydrodynamic
code is capable directly solving the Boltzmann equation for the neutrino transfer
(Yamada et al., 1999; Sumiyoshi et al., 2000), the thermal neutrino energy loss
rate, which is also imported from the stellar evolution code, is locally estimated
in the work presented here without treating the complicated neutrino transfer.

2.3.1 Basic equations

According to Misner & Sharp (1964), a Lagrangian spherical metric is applied in
the code:

ds2 = e2φdt2 − e2λ
(G
c2

)2

dm2 − r2(dθ2 + sin2 θdϕ2), (2.67)

where the metric is identified by functions of φ(t,m), λ(t,m), and r(t,m). The
gravitational constant, G, and the speed of light, c, are taken to be unity in the
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following equations. The energy-momentum tensor, T µν , of the fluid is written as

T µν = [ρb(1 + ϵ) + p]uµuν − pgµν , (2.68)

where gµν is the inverse of the metric tensor gµν . As the metric is designed to be
a co-moving frame of the fluid, the 4-velocity of the fluid uµ becomes ut = e−φ

and ui = 0 (i = r, θ,ϕ). The baryon mass density of the fluid, ρb, relates with the
baryon number density, nb, as

ρb = munb. (2.69)

The basic equations of the system are obtained from the baryon number con-
servation

∇µ(nbu
µ) = 0, (2.70)

the energy and momentum conservation

∇µT
µν = 0, (2.71)

and the Einstein equation

Gµν = 8πT µν , (2.72)

where Gµν is the Einstein tensor. Not all of them are actually independent. To-
gether with the equation of states, they are used to describe the evolution of the
six dependent variables, φ, λ, r, ρb, p, and ϵ, thus five independent equations are
to be deduced.

First, from the energy and momentum conservation, two equations are ob-
tained;

e−φ∂ϵ

∂t
= −e−φp

∂τ

∂t
(2.73)

h
∂φ

∂m
= −τ

∂p

∂m
, (2.74)

in which τ ≡ 1/ρb and h ≡ 1 + ϵ + pτ are the specific volume and the specific
enthalpy of the fluid, respectively. The first equation shows the first law of thermo-
dynamics, and the second is the Euler equation of the flow. Then, metric equations
are obtained from the Einstein equation as

e−φ∂U

∂t
= −Γ

h
4πr2

∂p

∂m
− m̃

r2
− 4πrp (2.75)

∂m̃

∂t
= −p

∂

∂t

(4π
3
r3
)
, (2.76)

in which new variables, the radial fluid velocity U , the gravitational mass m̃, and
the general relativistic gamma factor Γ , are defined as

U = e−φ∂r

∂t
(2.77)

eλ =
1

Γ

∂r

∂m
(2.78)

Γ2 = 1 + U2 − 2m̃

r
. (2.79)
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Finally, the continuity equation is obtained from the baryon number conservation,

e−φ∂τ

∂t
= − 1

Γ

∂

∂m
(4πr2U). (2.80)

For the implicit calculations and for the better reproduction of the Rankine-
Hugoniot relation, the above equations are further modified as a system of nine
basic equations as

e−φ∂τ

∂t
= − 1

Γ

∂

∂m
(4πr2U) (2.81)

e−φ∂ϵ

∂t
= − 1

Γ

∂

∂m
(4πr2pU)− h

Γ2
e−φ ∂

∂t

(1
2
U2

)
+

h

Γ2
m̃e−φ ∂

∂t

(1
r

)

− h

Γ2
2πpe−φ∂r

2

∂t
(2.82)

e−φ∂U

∂t
= −Γ

h
4πr2

∂p

∂m
− m̃

r2
− 4πrp (2.83)

∂m̃

∂t
= −p

∂

∂t

(4π
3
r3
)

(2.84)

h
∂φ

∂m
= −τ

∂p

∂m
(2.85)

Γτ =
∂(4πr3/3)

∂m
(2.86)

h = 1 + ϵ+ pτ (2.87)

eλ =
1

Γ

∂r

∂m
(2.88)

Γ2 = 1 + U2 − 2m̃

r
, (2.89)

which describes the evolution of the ten dependent variables of φ, λ, r, m̃, τ ≡
1/ρb, ϵ, p, h, U , and Γ, together with the equation of states. Note that the
equation (2.86) is solved to determine r instead of the equation (2.77). All the
dependent variables except r, φ, and m̃ are defined at the center of meshes, while
the exceptions are defined at the cell interfaces.

2.3.2 Shock capturing method

The linearized Riemann problem is solved to determine the pressure and velocity
at every cell interface. The method is a Lagrangian and general-relativistic gen-
eralization of a method in Roe (1981). Hereafter, a dependent variable defined at
cell centers is denoted to have a subscript or i, instead a subscript I is used for
variables defined at cell interfaces. Thus, the left and right constant states, which
are characterized as (τL, UL, pL) and (τR, UR, pR), are determined by (τi, Ui, pi)
and (τi+1, Ui+1, pi+1), and quantities at the interface, (τI , UI , pI), are given as the
solution of the evolution.
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First, taking advection terms from the basic equations, an advection equation

∂

∂t

⎛

⎝
τ
U
p

⎞

⎠ =

⎛

⎜⎝
0 eφ

Γ 4πr
2 0

0 0 − eφΓ
h 4πr2

0 −γ p
τ
eφ

Γ 4πr
2 0

⎞

⎟⎠
∂

∂m

⎛

⎝
τ
U
p

⎞

⎠ (2.90)

is obtained, where

γ ≡
( ∂lnp

∂lnρb

)

ad
(2.91)

is the adiabatic index. The Jacobian matrix has eigenvalues and eigenvectors of

λ1 = −eφ4πr2ρbcs : r1 =

⎛

⎝
τ
Γcs
−γp

⎞

⎠ , l1 =

⎛

⎝
0

1/2Γcs
1/2γp

⎞

⎠ , (2.92)

λ2 = 0 : r2 =

⎛

⎝
1
0
0

⎞

⎠ , l2 =

⎛

⎝
1
0

τ/γp

⎞

⎠ , (2.93)

λ3 = eφ4πr2ρbcs : r3 =

⎛

⎝
τ

−Γcs
−γp

⎞

⎠ , l3 =

⎛

⎝
0

−1/2Γcs
−1/2γp

⎞

⎠ , (2.94)

where

cs ≡
√
γ

p

ρbh
(2.95)

is the sound velocity. The first and the third modes correspond to the left- and
right-going sound waves and the second represents the contact discontinuity, re-
spectively.

Next, for the linearization, the Jacobian matrix is replaced by a constant ma-
trix. In this procedure, variables are evaluated by simple arithmetic averages as
ρbm = (ρbL + ρbR)/2, um = (uL + uR)/2, and ϵm = (ϵL + ϵR)/2, and other ther-
modynamic quantities are made from them using the equation state. It is known
that the linearized Riemann problem is solved analytically. The solutions are

uI =
1

2
(uR + uL)−

csm
2γmpm

(pR − pL) (2.96)

pI =
1

2
(pR + pL)−

γmpm
2csm

(uR − uL). (2.97)

The second terms that are proportional to differences of the pressures and the
velocities naturally introduce diffusion effects into the solution.

In order to achieve second order accuracy in the spacial resolution, the left and
right constant states are estimated by the piecewise linear distribution. The slopes
are made for variables of ρb, U , ϵ, and Γ as

Sj =

⎧
⎨

⎩

sjL for ∥sjL∥ ≤ ∥sjR∥ and sjLs
j
R > 0,

sjR for ∥sjL∥ > ∥sjR∥ and sjLs
j
R > 0,

0 otherwise,
(2.98)
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where the superscript j indicates the dependent variables, and sL and sR denote the
left- and right-hand slopes respectively. Thus the interpolated values of velocity,
for example, are determined as

uL = Ui + SU
i (rI − r̄i) (2.99)

uR = Ui+1 + SU
i+1(rI − r̄i+1), (2.100)

where r̄i ≡ 3

√
(r3I−1 + r3I )/2 is the averaged radius at the cell center.
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Chapter 3

Yields of Pop III weak supernovae

In this chapter, I perform stellar evolution simulation of first stars and calculate
stellar yields from the first supernovae1.

Similar attempts have been made by a number of previous works (e.g., Umeda
& Nomoto, 2002, 2005; Tominaga et al., 2007a, 2014; Heger & Woosley, 2010).
Among them, Japanese researchers have shown that abundance trends seen in
EMP stars can be explained by theoretical yield calculations applying a so-called
mixing-fallback model (Umeda & Nomoto, 2005). The mixing-fallback model is
a one-dimensional effective model which mimics the three dimensional flows, rep-
resented by mixing and fallback (Tominaga et al., 2007a). They attribute the
increasing trend of [Co, Zn/Fe] with decreasing [Fe/H] to Pop III CCSNe explod-
ing with large explosion energies (Kobayashi et al., 2006; Nomoto et al., 2013).
However, properties of the progenitor star, such as the initial mass or the rota-
tion rate, have not been constrained. The reason is that inner abundance ratios
that those authors have mainly focused are similar among the massive stars in the
mixing-fallback model. One representative study is done by Tominaga et al. (2014),
in which abundance patterns of 48 EMP stars are fitted by the mixing-fallback
model to discuss the explosion properties, using only one 25 M⊙ progenitor. Heger
& Woosley (2010) calculate hydrostatic and explosive nucleosynthesis by a one-
dimensional hydrodynamic code, and compare the results with some EMP stars.
Although their calculation fills the wide parameter ranges of the initial mass and
the explosion energy, stellar rotation is not considered in this work. In addition,
as they choose the “best-fit” models by running an automated fitting algorithm,
it has not been investigated on what basis the initial mass of the progenitor can
be constrained through the abundance profiling.

Therefore, the main purpose of this chapter is to obtain new knowledge of abun-
dance yields of Pop III supernovae that can be used to constrain the characteristics
of Pop III stars. Calculated models have a wide initial mass range of 12–140 M⊙,
which is a likely mass range for core-collapse supernovae. Additionally, in order to
find a signature of stellar rotation, evolution of rotating stars is calculated. The
supernova yields are calculated by the weak explosion model, which will provide
appropriate abundance patterns of CEMP stars. So far, several works show that

1The evolution and yield calculations have been reported in Takahashi et al. (2014).
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stellar rotation affects all results of stellar evolution (e.g., Meynet & Maeder, 2000;
Heger et al., 2000). Hence stellar rotation in Pop III stars is also expected to have
an important consequence on the yields. Indeed, it has been already shown that
stellar rotation at small metallicities significantly affects the stellar nucleosynthe-
sis, especially nitrogen production, which can explain a N/O plateau observed in
metal poor host stars (Meynet & Maeder, 2002a,b; Chiappini et al., 2006; Hirschi,
2007; Meynet et al., 2010). Note that our calculation is limited to the case of
single stellar evolutions. Fragmentation during first star formation may result in
a high fraction of binaries and/or multiple systems, and the binarity could affect
the evolution and thus the nucleosynthesis results of the first stars (e.g., Stacy &
Bromm, 2013). Effects of binarity will be investigated in the future.

3.1 Computational settings

3.1.1 Stellar evolution calculation

Stellar evolution of 24 progenitor models is calculated for a wide initial parameter
range. Metallicity is set to be zero, and two initial parameters are used to specify
the progenitor. The first one is the initial mass of the model, which is taken from
12 M⊙ to 140 M⊙. The wide range covers the likely initial mass for core-collapse
supernovae to take place. The next one is the initial rotation. For a rotating
model, initial rotation is set to be a uniform rotation with a moderate velocity of
vrot/vk ∼ 0.15 at its ZAMS, where vk ≡

√
GM/R is the Keplerian velocity at the

surface. These massive first stars have surface rotation velocities of ∼ 200–300 km
sec−1 at their ZAMS phase, which is comparable to rotation speeds of observed
OB stars (e.g., for our Galaxy, Fukuda 1982, and for LMC and SMC, Hunter et al.
2008). More slowly rotating models of half- and quarter-rotation are additionally
calculated for 20, 30, and 40 M⊙ cases.

Stellar evolution calculations are followed from deuterium burning phases until
central temperatures reach 1010 K during the last collapse. Calculated models are
summarized in Table 3.1. The mass of the iron core, MFe, is defined as the mass
coordinate of the local peak of energy generation by silicon burning. The CO core
massMCO, or mass of the base of a helium layer, is taken to be the mass coordinate
at which the mass fraction of helium reaches 0.1. Similarly, the top of the helium
layer, MCO +∆MHe, is defined as the mass coordinate where the mass fraction of
hydrogen becomes 0.01.

Although there have been a lot of works on the structure of rotating stars, how
to construct a proper model is still under debate. Internal mixing in a rotating
star will be the most influential physics for the evolution, but precise treatment
of rotational mixing is difficult so far. This is why we basically take only one
rotating model for each mass in the calculation, except for the additional 20–40
M⊙ models. The presented rotating models show varieties of nucleosynthesis due
to efficient internal mixing. Our rotating models can thus be regarded as the
representative results of efficient internal mixing by rotation.

Finally, let me note here that no arguments has been known for the justification
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Table 3.1: Properties of massive Pop III models

Mini Mfin vrot vrot/vk τH τfin MFe MCO ∆MHe log Tbase,He log Tbase,H

12 12 0 0 12.46 14.80 1.508 2.516 0.897 8.569 7.729
15 15 0 0 9.94 12.62 1.419 3.596 0.145 8.151 7.660
20 20 0 0 7.86 9.40 1.644 5.730 0.126 8.232 7.832
30 30 0 0 5.62 6.52 1.845 10.28 0.252 8.461 8.171
40 40 0 0 4.39 5.02 2.206 15.07 1.571 8.564 8.303
50 50 0 0 3.70 4.26 2.454 19.35 1.537 8.639 8.422
60 60 0 0 3.22 3.75 2.631 23.63 2.224 8.746 8.484
70 70 0 0 3.04 3.46 2.755 28.95 1.897 8.706 8.520
80 80 0 0 2.86 3.25 3.799 33.81 2.111 8.811 8.617
100 100 0 0 2.60 2.94 4.748 43.60 2.608 8.840 8.651
120 120 0 0 2.44 2.75 4.353 53.33 2.976 8.816 8.631
140 140 0 0 2.31 2.62 12.46 63.18 3.339 8.951 8.766
12 12 210 0.15 13.05 14.61 1.452 2.448 1.374 8.475 7.281
15 15 220 0.15 10.64 11.90 1.520 3.674 1.512 8.221 6.636
20 20 230 0.15 8.63 9.49 1.541 6.191 1.628 8.030 6.210
30 30 250 0.15 5.72 6.42 2.001 11.10 1.955 8.435 7.742
40 39.74 250 0.15 5.07 5.87 2.604 16.45 2.387 8.776 8.159
50 49.28 270 0.15 4.44 5.14 3.698 23.90 2.790 8.832 8.209
60 58.84 270 0.14 3.92 4.46 4.084 28.58 3.388 8.844 8.240
70 68.57 280 0.14 4.04 4.58 4.648 33.74 4.004 8.851 8.230
80 77.39 280 0.14 3.80 4.36 6.017 42.48 4.249 8.872 8.266
100 95.94 280 0.13 3.09 3.59 7.644 50.43 5.833 8.910 8.371
120 114.89 280 0.13 2.88 3.27 16.62 59.58 6.151 8.980 8.478
140 134.38 270 0.12 2.58 2.94 21.77 70.13 7.602 9.011 8.468
20 20 59 0.04 7.96 8.92 1.473 6.069 1.433 7.962 6.247
30 30 64 0.04 5.41 6.35 2.049 10.84 1.953 8.469 7.437
40 40 66 0.04 4.33 4.88 2.539 15.31 2.002 8.590 8.186
20 20 120 0.08 7.99 8.90 1.499 5.808 1.618 8.065 6.214
30 30 130 0.08 5.84 6.49 1.572 10.60 1.788 8.369 7.791
40 40 130 0.08 4.65 5.38 2.287 16.79 1.990 8.634 8.106

Notes. Mini and Mfin are the initial and final masses; vrot and vk ≡
√

GM/R are the surface

rotation velocity and the surface Kepler velocity at the zero age main sequence; τH and τfin
are the hydrogen burning duration and the lifetime; MFe, MCO and ∆MHe are the iron core

mass, the carbon-oxygen core mass, and the helium shell mass at the end of the calculation; and

Tbase,He and Tbase,H are the base temperatures of the helium shell and the hydrogen envelope at

the end of the calculation. Masses are in M⊙, velocities are in km sec−1, times are in 106 yr,

and temperatures are in K.
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of the assumption of the uniform rotation at the stellar birth. Uniform rotation
may realize if highly efficient viscosity develops inside a still accreting pre-main-
sequence star, otherwise differential rotation will establish. Depending on the
initial condition, the rotation profile evolves differently and thus different feedback
is given to the stellar evolution. The difficulty here is that the evolution of rotation
profile depends not only on the initial condition but also on the assumptions of
the rotationally induced mixing. As discussed in Song et al. (2016), effective
matter mixing occurs under the strong differential rotation, if shear instabilities
are assumed to be effective. Contrastingly, mixing due to meridional circulation
mainly depends on the speed of the rotation. Problems on the initial condition
and the rotational mixing are strongly entangled.

3.1.2 Assumption of the weak supernova

Stellar matter is somehow ejected by supernova explosions. A precise treatment
of matter ejection will be needed for accurate estimate of the supernova yields,
which ideally includes three-dimensional hydrodynamics, inner explosion engine,
higher order shock capturing and accompanying nucleosynthesis, and so on. The
enormous computational cost will interrupt the systematic calculations, and more-
over, large uncertainties still exist in understanding the mechanisms of explosions
and matter ejections (e.g., Janka, 2012; Wongwathanarat et al., 2015). In order
to avoid handling the complicated uncertainties, instead, I decide to take more
pragmatic way to calculate stellar yields in this work.

Thus I assume a weak explosion for every yield calculation. This means that,
explosive nucleosynthesis by shock heating is too weak to change the abundance
distribution in the progenitor star. This first assumption will be appropriate es-
pecially for the outer region of a star. Indeed, for a calculation of explosive nu-
cleosynthesis with a typical explosion energy of 1051 erg, the outer abundance
distribution from the carbon convective region is not much affected by shock heat-
ing. Secondly, I assume that the weak explosion only expels such an unmodified
outer stellar matter, which is loosely bound by the gravity. Such a weak su-
pernova explosion has been proposed as a metal pollution mechanism to explain
characteristic abundance patterns of CEMP stars. This is because, a highly effec-
tive fallback, which is required to account for the high abundance ratio between
lighter elements and iron-peak elements observed in CEMP stars, can be naturally
expected from the less energetic explosion. Actually, recent 2D hydrodynamical
simulation by Chen et al. (2016) provides very consistent picture. They calculate
hydrodynamical evolution of two low-energy Pop III CCSNe, injecting 0.6 × 1051

erg for the 12 M⊙ model and 1.8×1051 erg for the 60 M⊙ model. While only small
amount of Z > 20 elements is mixed up and ejected, most of the material from
the innermost region falls back to the central remnant.

Since only unmodified outer materials are assumed to be ejected in this model,
simple integration gives a consistent supernova yield, even though the explosive
nucleosynthesis is not followed in the procedure. Ejected mass of an element i,
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Mi, is calculated as a function of Mej,

Mi(Mej) =

∫ Msurface

Mej

Xi(M)dM, (3.1)

whereMej is the inner boundary of the ejection andXi is an abundance distribution
of i in terms of mass fraction. The inner boundary Mej is arbitrarily taken, though
it may relate to the explosion energy in reality. In our model, material that
distributes belowMej is assumed to be completely captured by the central remnant,
and does not contribute to the yield. Compared with the mixing-fallback model,
results of the weak supernova model will agree with them, if the mixing-fallback
parameters of outer boundary of the mixing region, Mmix, and the ejection fraction,
f , are respectively specified to Mej and zero. Thus, mixing process during the
explosion is not important ingredient in our model, while mixing process during
the stellar evolution is of importance.

Two different mechanisms are considered to account for the weak explosion.
Firstly, mass ejection from a weak CCSN will be well represented by the weak
supernova model. In addition to the weak CCSN, the failed supernova model,
which ejects their outer layer due to the reduction of the gravitational mass by
neutrino emission (Nadezhin, 1980; Lovegrove & Woosley, 2013), may also be
compatible with the weak explosion. In any case, considering that the fallback
is driven by the reverse shock developing at the core/envelope boundary (e.g.,
Hachisu et al., 1990; Kifonidis et al., 2003), the typical ejection mass Mej will
be comparable to the CO core mass MCO of the progenitor. Thus I define a
dimension-less parameter fej ≡ Mej/MCO for the function of the ejected mass.

3.2 Hydrostatic evolution

3.2.1 Hydrogen burning phase

A massive first star is known to have a high equilibrium temperature at the core
center during its hydrogen burning stage. Figure 3.1 shows the evolution of the
central temperature and the central carbon mass fraction of rotating and non-
rotating Pop III models of 12, 20, 40, 80, and 120 M⊙. The central temperature
becomes 1.0–1.25×108 K for 12–140 M⊙ models. This is due to lack of the CNO-
elements at the formation of the first star.

Before a massive Pop III star reaches the equilibrium state, it firstly burns
hydrogen by the pp-chain. However, if the star is more massive than 20 M⊙,
the reaction rate is insufficient to balance with the surface luminosity. The star
keeps contracting even after the hydrogen ignition. Contraction stops when the
central temperature rises enough to ignite helium by the triple-α reaction. By this
new reaction, small amount of 12C and 16O are synthesized at the center of the
star. These helium burning products, then, act as catalysts of the much effective
hydrogen burning process, the CNO-cycle. The energy release by the hydrogen
burning stabilizes the star, and the star finally reaches the zero-age-main-sequence
(ZAMS). The required mass fractions of CNO-elements are small; depending on
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Figure 3.1: Evolution of central temperatures (top) and central carbon mass fraction (bottom)
with time are shown for 12, 15, 20, 40, 80, 120 M⊙, non-rotating and rotating Pop III models.
Non-rotating and rotating models are respectively shown by solid or dashed lines. Each model
name, m(mass)-o(rotation), indicates the initial mass of (mass) M⊙ and the initial rotation of
(rotation)× 10 vini/vk.

the stellar mass, even 10−12–10−10 CNO elements are enough for the stabilization.
Therefore, the contraction stops as soon as the helium burning takes place. The
least massive 12 M⊙ models are already stabilized by the pp-chain, and enter the
zero-age-main-sequence (ZAMS) phase. This can be seen as a lack of the first rise
of the temperature in the Fig. 3.1. The critical initial mass of 20 M⊙ to have a
CNO-cycle at its ZAMS is well coincide with the previous works (Marigo et al.,
2003; Ekström et al., 2008; Yoon et al., 2012).

Then a star enters the long equilibrium phase of stable core hydrogen burning.
Due to the much contracting initial structure, as well as to the small opacity of
the zero-metallicity gas, the Pop III star develops a compact structure in this
phase. The compact stars accordingly have blue surfaces with the high surface
temperatures. The Hertzsprung-Russell diagram of these models are plotted in
Fig. 3.2. Comparing with the black dashed line, which shows the ZAMS in our
Galaxy (Ekström, 2015, private communication), it is inferred that Pop III models
have ∼ 0.3 dex higher surface temperature than the solar metallicity stars. The
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Figure 3.2: Surface evolutions of 12, 20, 40, 80, 120 M⊙, non-rotating and rotating Pop III
models are shown. Non-rotating and rotating models are respectively shown by solid or dashed
lines. The black dotted line shows the ZAMS observation in our Galaxy.

high surface temperature is especially important for the re-ionization by Pop III
stars.

During the hydrogen burning phase, a star burns its hydrogen into helium,
forming an inert helium core at its center. The size of the helium core is mainly
determined by the convection driven by the core hydrogen burning. Then it is
enlarged by other mixing processes of the rotation induced mixing as well as the
convective overshooting. As a result of the core extension, a redder and more
luminous evolution of the main sequence can be seen in the HR diagram. Moreover,
those additional mixing supply fresh hydrogen from outside to inside the convective
core. The continuous fuel supply extends the lifetime of the core hydrogen burning
phase. The lifetimes of rotating and non-rotating models are compared in Fig 3.1.
The lifetime of the main-sequence phase significantly decreases with increasing the
initial mass, spanning 12.4 Myr (12 M⊙) to 2.3 Myr (140 M⊙) for non-rotating
models, but at the same time, ∼ 10% extension can be done by the rotation
induced mixing, spanning 13.0 Myr (12 M⊙) to 2.6 Myr (140 M⊙) for rotating
models. Comparing the lifetimes to the previous works, I also find the reasonable
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Table 3.2: Comparison of stellar lifetimes
Ekström et al. (2008) Yoon et al. (2012) This work

Mini vrot τH τfin vrot τH τfin vrot τH τfin
15 0 10.60 11.6 0 13.64 14.35 0 9.94 12.62
15 800 13.20 14.4 325.5 14.58 15.28 220 10.64 11.90
60 0 3.60 3.96 0 3.88 4.22 0 3.22 3.75
60 800 4.20 4.57 631.3 4.45 4.76 270 3.92 4.46

Notes. Mini, vrot, τH, and τfin are the initial mass, the surface rotation velocity, the hydrogen

burning duration, and the lifetime, respectively. Masses are in M⊙, velocities are in km sec−1,

and times are in 106 yr.

agreement among the theoretical calculations (Table 3.2). Longer lifetimes in
Yoon et al. are resulted from the more efficient overshooting in their calculations
(Yoon et al., 2012). Scatter of lifetimes will be due to different efficiencies of both
convective overshooting and rotational mixing.

3.2.2 Helium burning phase

A star re-starts to contract after the core hydrogen depletion. It is this moment
when an envelope of a metal-rich counterpart suddenly inflates and the star enters
the red-giant branch. The similar inflation also takes place for metal-free first stars,
but it is limited to occur only in massive models of > 70 M⊙ for the non-rotating
cases. The lack of the inflation is especially important if the Pop III star is in a
close binary system, because the change of the radius determines the final fate of
the system (Kinugawa et al., 2014). In the case of a metal-rich star, the internal
luminosity steeply increases as the hydrogen shell burning activates during the core
contraction phase. The luminosity then supplies the work to expand the envelope.
On the other hand, in a metal-free star, the luminosity increases more mildly and
this delays the envelope inflation. Firstly this is because a metal-free star, which
has a higher core temperature of hydrogen burning, need not to contract so much
to ignite helium. The temperature and thus the energy liberation of the hydrogen
shell burning, in turn, does not increase as much by the core contraction. Secondly,
since mass fractions of the CNO-elements are very small at this region, the shell
burning takes place only less effectively.

Similar to the hydrogen burning phase, core convection and the convective
overshooting around the core determines the size of the CO core and the lifetime
of the helium burning phase. With increasing the initial mass or the He core
mass of the star, the lifetime of the helium burning phase decreases. The 12 M⊙
models show longer lifetimes of 2.4 Myr (non-rotating) and 1.6 Myr (rotating)
than that of 140 M⊙ models of 0.31 Myr (non-rotating) and 0.36 Myr (rotating).
For non-rotating cases, the large fraction of the Helium core is then occupied by
the forming CO core. This, in turn, results in a relatively thin helium layer at the
end of the helium burning phase.

Rotationally induced mixing during the core helium burning phase can have
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important effects on the Pop III stellar evolution, as it accompanies with an ad-
ditional nuclear burning and nucleosynthesis. The mixing takes place around the
convective region inside the helium core. The inner processed material is mixed
up by the mixing, as a result, the remaining hydrogen in the outer helium layer
encounters the helium burning products, carbon and oxygen. This leads to very
efficient hydrogen burning via the CNO-cycle, making several impacts on the stel-
lar evolution. First, the large energy generation increases the stellar luminosity,
modifying the star as a red giant. As discussed earlier, Pop III massive stars tend
to evolve compact. However, all rotating models calculated in this work evolve to
red giants due to the effective shell hydrogen burning. This also indicates that a
steep entropy jump is formed at the hydrogen/helium boundary in a rotating Pop
III star. Second, since a large quantity of hydrogen burning products accretes onto
the helium core, a rotating model forms a larger CO core and thicker helium layer
than the non-rotating counterpart. Finally, the CNO cycle leaves a satisfactory
amount of processed nitrogen behind in the outer helium layer. Part of them are
farther mixed into the hydrogen envelope. The nitrogen production in a rotating
model is an important outcome in stellar nucleosynthesis, and to be discussed in
much detail later.

3.2.3 Later phases

After the formation of a CO core, the timescale of evolution suddenly decreases.
This is owing to the initiation of efficient energy loss by neutrino emission. In a
core of high temperature, neutrinos are created by thermal processes, especially
due to the pair creation process (Itoh et al., 1989, 1996). The higher the core
temperature is, the more efficient the neutrino emission rate becomes. Hence, as
the neutrino energy loss dominates the cooling of the core, it accelerates the core
contraction.

In a contracting core, small scale burnings of carbon, neon, oxygen, and silicon
successively take place within a short lifetime. The reason of the small scale in
mass is again due to the neutrino energy loss. Since the greater part of the energy
generated by a nuclear burning is lost by the neutrino emission in these advanced
stages, the energy need to drive a large convection becomes insufficient. This
remarkably affects core carbon burning in metal-free stars. That is, in models
more massive than 12 M⊙ for non-rotating or 15 M⊙ for rotating cases, convection
is not activated by core carbon burning in its early phase. Evolution of convective
regions is shown in Appendix B, in which green hatched regions show the convective
regions in a star.

Some models in ∼ 15–30 M⊙ in our model grid are affected by the hydrogen
ingestion in this advanced phases. A convective shell exists in a helium layer in
such a model. The convection develops when the central core contracts and the
base temperature of the helium layer increases. Suddenly the shell convection
penetrates the µ- and entropy-barrier at the border between the helium/hydrogen
layer. As a results, small fraction of hydrogen are mixed into the inner high
temperature helium layer, and rapidly reacts generating energy in a very short
timescale. The envelope inflates responding to the energy generation, and some
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peculiar nucleosyntheses result in. Although such a strange phenomenon has been
known to occur in massive (15–40 M⊙) low metallicity stars (e.g., Fujimoto et al.,
1990; Ekström et al., 2008; Heger & Woosley, 2010; Limongi & Chieffi, 2012; Yoon
et al., 2012), the mechanism of the convective penetration, which takes place only
for models within the relatively small parameter range, is not clearly understood.

During the successive burning phases, a core of iron is developed for less massive
stars of !140 M⊙. Several mechanisms account for the contraction of the iron core.
The first is the silicon shell burning, which increases the mass of the central iron
core. The second is the neutrino cooling, by which the entropy of the core is
reduced. Finally, electron capture reactions by silicon burning products reduces
Ye and the electron pressure of the core. The iron core finally collapses, closing the
hydrostatic phase of evolution. On the other hand, if the star is more massive, the
hydrodynamic collapse initiates after the core helium burning phase. This is due
to the strong electron-positron-pair-creation instability, which is discussed later in
detail.

Let me shortly discuss here about the problem of chaotic (non-convergent)
results of the 1D stellar evolution. The problem has become well known after
Ugliano et al. (2012) have shown the non-monotonic behavior of the compactness
parameter, which correlates well with the explosionability of the progenitor model,
against the initial mass (see also Sukhbold & Woosley, 2014). One may consider
that this problem indicates the unreliability of the stellar evolution calculations,
since such a non-monotonic result is hardly expected from a simple initial-value
problem. But in reality, this reflects the fact that the stellar phenomena are highly
non-linear and it is a too simplistic prospect to expect every outcome of the stellar
simulations will correlate with the initial mass. In the stellar community, it has
been recognized that even a small difference in the initial mass can result in a
large difference in the iron core mass. The mechanism of the growth of the small
fluctuation can be understood as follows. Firstly, because a stellar core formed in
later phases is mainly supported by degenerate electrons, the core temperature is
not sensitive to the pressure structure. On the other hand, both nuclear energy
generation rate and energy loss rate by neutrino emission are highly dependent
on the temperature. Thus energy generation in a core with slightly different tem-
perature can be different. The generating energy is consumed to activate a core
convection and heat up the region. The size of the convection is determined by
the balance between the energy generation and the energy loss, hence the width of
the convection is severely affected by the difference between them. The width of
the convection determines the size of the next burning core. Since the past history
remains as the difference in the core size, the first fluctuation in temperature can
severely affect the final size of the iron core.

3.2.4 Iron core collapse

As the iron core contracts, the core temperature increases. Accordingly, a hydro-
dynamical instability sets in the core, and a runaway collapse takes place. The
iron core collapse divides the hydrostatic and hydrodynamic evolution of the star.
The evolution of central temperature and density is shown by Fig. 3.3. In the
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Figure 3.3: Evolutions of 12, 20, 40, 80, 120 M⊙ non-rotating and rotating Pop III mod-
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figure, the hydrodynamically unstable regions are outlined by green-dotted lines.
In general, a gas having the adiabatic index γ ≡ d log p/d log ρ|ad < 4/3 be-

comes hydrodynamically unstable when it forms a spherical Newtonian self grav-
itating system. This can be understood by carrying out a simple dimensional
analysis on hydrostatic equations. The equation of the pressure balance leads to

4πR3p ∼ GM2

R
, (3.2)

which shows the balance between the thermal energy and the gravitational energy
of the system. This relation further shows that the pressure of the system, p,
should increase more rapidly than p ∝ R−4 to keep the stability when the system
shrinks and the radius R decreases. Since the mass of the system can be regarded
as a conservative value, the density of the system, ρ, increases as ρ ∝ R−3 during
the contraction. Therefore, the hydrodynamical instability takes place when the
increase of the gas pressure is below the required value of p ∝ ρ4/3 under an
adiabatic contraction.

Two kinds of gases mainly contribute to the pressure of the iron core, the
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Figure 3.4: Mass fraction distributions of 20 M⊙ models. The top panel corresponds to the
non-rotating case, while the bottom to the rotating one. For the non-rotating model, MCO and
∆MHe are 5.730 M⊙ and 0.126 M⊙, while for the rotating model, these values become 6.191 M⊙
and 1.628 M⊙. Abundant hydrogen in the helium layer of the non-rotating model results from
proton ingestion during core carbon burning phase.

electron-positron gas and the ionic gas. Since the electron-positron gas has the
marginally critical adiabatic index of γelec ≃ 4/3 in this high temperature and
density environment, the ionic gas should support the star by having a larger adi-
abatic index γion > 4/3. However, under the high temperature condition, nuclear
reactions take place with fast enough speeds to allow the reaction equilibrium,
so called the nuclear-statistical-equilibrium (NSE), to be achieved. As the tem-
perature reaches the critical value of ∼ 109.8 K, photo-dissociation takes place on
iron elements to form free protons, neutrons, and α-particles. Due to this trans-
formation, the internal energy of the matter is changed to the rest mass energy.
Accordingly, the pressure is reduced and the adiabatic index of the gas becomes
lower than the critical, γ < 4/3.

3.3 Yields of weak supernovae

As a result of stellar evolution calculations, abundance distributions of various
progenitors are obtained (Fig. 3.4–3.7). I find that diverse nucleosynthesis take
place in a helium layer, in which a condition for nucleosynthesis, such as the
density, the temperature, and the composition, largely depends on the initial mass
and the rotation velocity. To illustrate the variations in helium layers, abundance
distributions of non-rotating and rotating 40 M⊙ models are shown by Fig. 3.5. In
the helium layers, mass fractions of 12C and 16O do not show much differences. On
the other hand, intermediate mass elements of 23Na, 24Mg, and 27Al are produced
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Figure 3.5: Same as Fig. 3.4, but for 40 M⊙ models. For the non-rotating model, MCO and
∆MHe are 15.07 M⊙ and 1.571 M⊙, while for the rotating model, these values become 16.45 M⊙
and 2.387 M⊙.
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Figure 3.6: Same as Fig. 3.4, but for 80 M⊙ models. For the non-rotating model, MCO and
∆MHe are 33.81 M⊙ and 3.674 M⊙, while for the rotating model, these values become 42.48 M⊙
and 3.823 M⊙.
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Figure 3.7: Same as Fig. 3.4, but for 120 M⊙ models. For the non-rotating model, MCO and
∆MHe are 53.33 M⊙ and 2.976 M⊙, while for the rotating model, these values become 59.58 M⊙
and 6.151 M⊙.

in the helium layer of the rotating model, and abundant 14N is distributed in the
hydrogen envelope in the model.

Based on the abundance distributions, yields of weak supernovae are calcu-
lated. Results are shown in Figs. 3.8–3.10 for selected models. I find that the
characteristics of weak supernova yields directly reflect the characteristics of nu-
cleosynthesis taken place in the progenitor’s helium layers. Thus, the abundances
of C, N, O, Na, Mg, Al, Si, and Ca in the yields significantly change depending on
the parameters of the progenitor modes. In the following, characteristics of these
abundance patterns are analyzed.

3.3.1 Carbon and Oxygen

Through triple-α reaction and succeeding α-capture reaction on 12C, carbon and
oxygen are produced. The main production site is a convective helium core, in
which the prime isotope, 4He, is almost completely consumed during the stellar
life. The other production site is a shell helium layer, which forms as a remnant of
the edge region of the previously existed helium core after core helium depletion.
Between the two sites, I focus on the nucleosynthesis in the shell helium layer,
since models with different masses show variations in the burning conditions at
the layer.

Figure 3.11 shows carbon yields as a function of the initial mass, taking CO
core masses as Mej for each model. In addition, the production factor of MO/MC is
presented in Fig. 3.12. Hereafter, all figures showing yield ratios takeMej at the CO
core masses. Three important characteristics on production of carbon and oxygen
in a helium layer can be inferred from those figures. Firstly, production of carbon

37



-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

[X
/C

]

Z

C N O F Ne Na Mg Al Si P S Cl Ar K Ca

20 Msun, NON-ROT
fej=1.10
fej=1.07
fej=1.03
fej=1.00
fej=0.97
fej=0.93
fej=0.90

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
[X

/C
]

Z

C N O F Ne Na Mg Al Si P S Cl Ar K Ca

20 Msun, ROT
fej=1.10
fej=1.07
fej=1.03
fej=1.00
fej=0.97
fej=0.93
fej=0.90

Figure 3.8: Abundance patterns of weak SN yields from the non-rotating (left) and rotating
(right) 20 M⊙ models. Yields with different Mej are shown by different colors. The abundance
of carbon is used for the normalization.
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Figure 3.9: Same with Fig. 3.8 but for 40 M⊙ models.
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Figure 3.10: Same with Fig. 3.8 but for 60, 80, and 120 M⊙ models.
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Figure 3.11: Integrated yield of carbon as a function of the initial mass. All isotopes of carbon
are summed up. The range of integration is from the base of the helium layer to the surface.
Results of non-rotating models are shown by red open squares connected by red solid lines, while
green open circles with dashed lines correspond to rotating models.
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Figure 3.12: The production ratio between oxygen and carbon, MO/MC, as a function of initial
mass. All isotopes of oxygen and carbon are summed up, respectively. Red open squares show
non-rotating results, and green open circles with dashed lines show rotating results, respectively.

40



10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  20  40  60  80  100  120  140

M
M

g/
M

C

initial mass [M
⊙

]

nrot
rot

10-12

10-10

10-8

10-6

10-4

10-2

100

102

 0  20  40  60  80  100  120  140

M
Si

/M
C

initial mass [M
⊙

]

nrot
rot

Figure 3.13: Same as Fig. 3.12, but for magnesium (left) and for silicon (right).

and oxygen takes place in all of the models. This is because the temperature
at the helium burning shell is high enough to allow the triple alpha and alpha
capture reactions to occur. Secondly, the O/C ratio does not exceed unity in all
models. This is particularly important, because O/C ratio in the case of core
helium burning always exceeds unity. Therefore, if one observes a O/C ratio
smaller than the unity from a metal-poor stellar surface, it suggests that the metals
in the star are produced in an outer layer of the source star, but not in the central
CO core. Finally, the heavier the initial mass of the progenitor is, the smaller
the resulting O/C ratio is. As a conclusion, carbon and oxygen production with
a small O/C can be regarded as a general nucleosynthetic signature of elemental
production in helium layers, and more massive stars will have a smaller O/C ratio.

3.3.2 Neon, Magnesium and Silicon

Intermediate-mass alpha elements of 20Ne, 24Mg, and 28Si are mainly produced
during several burning phases inside a CO core. For example, neon and magnesium
can be produced through carbon burning as 12C + 12C → 20Ne + α and 12C +
12C → 23Na + p, 23Na + p → 24Mg. Also, silicon is produced by alpha capture on
24Mg during neon or oxygen burning and by 16O + 16O → 28Si + α. Besides the
main nucleosynthesis over the phases, I find that these elements are synthesized
in a helium layer of a massive star in its later evolution stages. In this case, these
alpha elements are produced via a series of alpha capture reactions on 16O.

The production ratio between magnesium and carbon is shown in the left panel
of Fig. 3.13. Efficient production of magnesium occurs for rotating ≥ 40 M⊙ mod-
els and non-rotating ≥ 60–80 M⊙ models. The initial mass dependence can be
characterized by the steep rise in less massive models and the plateau in more
massive models. The increase of the magnesium yield is a result of more efficient
alpha capture reactions in massive models, and the plateau is due to the consump-
tion of seed elements of 20Ne. The same trend on the progenitor initial mass is
also found in the silicon production ratio, shown in the right panel of Fig. 3.13.
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Figure 3.14: Same as Fig. 3.12, but for calcium.

Based on the trend in the initial mass dependence, the pattern of the produced
alpha elements can be used as a probe of the progenitor’s initial mass.

3.3.3 Calcium

Figure 3.14 shows production ratio of calcium. For rotating models, only the two
most massive models of 120 M⊙ and 140 M⊙ show the enhancement. It is fast
alpha capture reactions at the base of the helium layer that synthesize calcium
in these rotating models. In this small region, other alpha elements of 28Si, 32S,
and 36Ar are also produced, and by (α, p) reactions on these alpha elements, some
odd species of 31P, 35Cl, and 39K are synthesized as well. For non-rotating models,
abundant calcium production occurs for stars of ≥ 80 M⊙. Interestingly, a totally
different nuclear process accounts for the production in non-rotating cases.

The calcium production in non-rotating models is attributed to proton capture
reactions in a hydrogen burning shell. Similar to helium shell burning, the temper-
ature of the hydrogen burning shell increases as the stellar core contracts. If the
base temperature gets high enough, break-out reactions from the CNO cycle take
place (Wiescher et al., 1999). These reactions occur at the base of the hydrogen en-
velope of non-rotating ≥ 80 M⊙ models in our calculation, resulting in production
of proton rich isotopes including 40Ca. Figure 3.15 shows how the reaction goes in
the non-rotating 140 M⊙ model after the central carbon burning phase. Since the
model has the largest initial mass in all of our models, the base temperature in the
hydrogen burning region gets very high, log Tbase,H = 8.66, when the star shrinks
after the depletion of core carbon. The required high base temperature does not
realize in a rotating models, since efficient heating by the previous CNO-cycle lifts
up the envelope and reduces the base temperature in advance.

42



Figure 3.15: A nuclear chart showing fast reactions at t ∼ 8.24×1013 sec. Reactions at the base
of the hydrogen burning shell of the non-rotating 140 M⊙ are shown. X- and y-axis show neutron
and proton numbers, red squares are for stable isotopes, and colors show the mass fraction of
each isotope. Three different sizes of arrows show different magnitudes of fluxes normalized
by the fastest reaction. Black arrows correspond to thermonuclear reactions, while red arrows
correspond to reactions involving weak interactions.
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Figure 3.16: Same as Fig. 3.11, but for nitrogen. In addition to our results shown by red
squares (non-rotating models) and green circles (rotating models), results of rotating models
from previous works are plotted. Magenta-open triangles show results by Ekström et al. (2008)
and blue-filled triangles are results of models of vini/vk = 0.2 by Yoon et al. (2012).

3.3.4 Nitrogen

Nitrogen is an especially important element in the context of stellar physics and
stellar nucleosynthesis in the early universe. Since nitrogen is only synthesized
as a by-product of the CNO-cycle in an evolving star, nitrogen synthesis requires
foregoing production of seed elements of carbon or oxygen. However, because a
metal-free star does not contain any metals at its birth, the CNO-cycle is only
very weakly activated in both core and shell hydrogen burning. If canonical non-
rotating stellar models are considered, nitrogen synthesis starts after CO-rich stars
are formed. Nitrogen produced in such a metal-rich star is called secondary nitro-
gen.

The situation changes if efficient matter mixing takes place inside one star.
Carbon and oxygen are naturally produced by core helium burning. Hence, when
the CO-rich core material is transported to the hydrogen-rich outer envelope, ni-
trogen is expected to be synthesized as a result of the CNO-cycle. Such nitrogen
produced in metal-free or extremely-metal-poor stars are called primary nitrogen.
Meynet & Maeder (2002a,b) shows that rotationally induced mixing transports in-
ner material to the envelope, and shows that nitrogen is produced in their rotating
massive first stars.

Figure 3.16 shows yields of nitrogen, MN, obtained by several stellar calcu-
lations. Yield data other than this work are rotating models of Ekström et al.
(2008) and vini/vk = 0.2 models of Yoon et al. (2012). In my calculation, all rotat-
ing models produce nitrogen during the core helium burning phase. The nitrogen
production is resulted from the transportation of seed materials by rotationally
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Figure 3.17: Same as Fig. 3.12, but for sodium (left) and for aluminum (right).

induced mixing. Thus, I confirm the primary nitrogen production in this work.
Since almost all of the nitrogen is distributed in hydrogen and helium layers at
the last stage of the evolution, the graph shows the total yields of nitrogen in the
calculations. Similarly, models of Ekström et al. (2008) show the enhancement
of nitrogen. On the other hand, not much enhancement is seen in the models
by Yoon et al. (2012), suggesting the uncertainty of treatment of stellar rotation.
Note that nitrogen production can be seen in some models with initial masses of
15 and 20 M⊙ even for non-rotating cases. This nitrogen production is due to
hydrogen ingestion discussed in an earlier section.

The primary nitrogen firstly distributes both in the hydrogen envelope and
in the outer region of the helium core. For nitrogen in the hydrogen envelope,
matter mixing transports nitrogen enriched material from the base of the hydrogen
burning shell to the hydrogen envelope. The mixing processes are rotation induced
mixing for less massive stars of ≤ 30 M⊙, or convective mixing in a small convective
region that appears in the early core helium burning phase for massive stars of
≥ 40 M⊙. For nitrogen in the outer region of the helium core, matter accretion
onto the helium core accounts for the nitrogen enrichment. During the core helium
burning phase, hydrogen shell burning increases the mass of the helium core. The
accreting matter has a large abundance of nitrogen, and all rotating models form
nitrogen-rich helium layers at the end of the core helium burning phase. Nitrogen
in the helium layer accounts for the nitrogen yield for less massive models of ≤
20 M⊙. On the other hand, for massive models of ≥ 30 M⊙, most nitrogen in
the helium layer is converted into 22Ne in later evolution stages (see the next
subsection.), and do not contribute to the nitrogen yield.

3.3.5 Sodium and Aluminum

The production ratios of sodium and aluminum are shown in two panels of Fig. 3.17.
These figures clearly show the enhancement of sodium and aluminum in the outer
region of rotating first stars. I find that the enhancement of sodium and aluminum
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is attributed to the neutron capture reactions, which only takes place in the helium
layer of a rotating model.

At first, as a result of the rotationally induced mixing, 14N exists in a helium
layer in rotating models. Then, alpha capture reactions produce 22Ne from 14N as

14N(α, γ)18F(,β+νe)18O(α, γ)22Ne.

The 22Ne is a well-known neutron source in massive star evolution. A free neutron
is emitted by another alpha capture on 22Ne as

22Ne(α, n)25Mg.

Finally, when the neutron is absorbed by seed elements of 22Ne, 25Mg, and 26Mg,
23Na and 27Al are produced as

22Ne(n, γ)23Ne(,β−ν̄e)23Na,
(25Mg(n, γ)) 26Mg(n, γ)27Mg(,β−ν̄e)27Al.

Sodium and aluminum productions also take place in a hydrogen burning shell of
rotating models. These are due to the Ne-Na and the Mg-Al chains, since tiny
fractions of neon and magnesium are transported from the base of the helium
layer to the hydrogen burning shell by rotationally induced mixing (Maeder et al.,
2015; Choplin et al., 2016). However, in my calculation, sodium and aluminum
production by these proton capture reactions is much less effective than the n-
capture processes explained above.

Both the production ratios of sodium and aluminum have very similar depen-
dence on the initial mass. For less massive stars of ! 40 M⊙, these production
ratios show steep increase with the initial mass. There is a plateau in the range
from 40 M⊙ to 80 M⊙. And these odd elements are less produced in the most mas-
sive stars of " 100 M⊙. These trends in the initial mass are due to the temperature
dependence of related nuclear reactions. The lower production in less massive stars
can be understood as follows: The alpha capture by 22Ne requires a temperature
higher than ∼ 108.6 K, thus less massive stars do not have a sufficiently large flux of
neutrons. In addition, less massive stars do not have sufficiently abundant 24Mg as
the seed element of 25Mg, since the alpha capture by 20Ne requires a temperature
higher than ∼ 108.7 K. This reduces aluminum production. On the other hand,
lower production in massive stars of " 100 M⊙ is attributed to efficient destruction
reactions. Alpha capture by 23Na reduces sodium production, and alpha captures
by 25Mg and 26Mg, seed elements of 27Al, reduce aluminum production.

In summary, a rotating model with an intermediate initial mass of 30–80 M⊙
shows efficient production of sodium, and a rotating model with an intermediate
initial mass of 40–80 M⊙ shows efficient production of aluminum. Thus, these odd
elements are useful to prove the existence of rotationally induced mixing in the
progenitor.
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3.4 Conclusion of this chapter

The purpose of this chapter is to obtain new knowledge of the abundance patterns
of first supernova yields, which can be used to constrain the progenitor charac-
teristics. I have calculated Pop III stellar evolution in a wide range of initial
parameters. The initial mass range is set from 12 to 140 M⊙ to cover the wide
likely mass range of CCSNe. Stellar rotation is newly included in the progenitor
calculation, resulting in diverse nucleosynthesis due to efficient internal matter
mixing. The stellar yields are calculated by the weak supernova model, which will
provide applicable yields to explain abundances of CEMP stars.

I have found that various abundance distributions arise in outer shell helium
regions in calculated models. Massive models of ≥ 40 M⊙ for rotating and ≥ 60–80
M⊙ for non-rotating cases show both magnesium and silicon enhancement in their
helium layers. These enhancements are due to efficient alpha capture reactions in
the region. As for rotating models, owing to rotationally induced mixing, abundant
nitrogen is produced in the hydrogen burning shell at first. Alpha capture reactions
onto nitrogen take place in later evolutionary phases, resulting in neutron emission
and nucleosynthesis of sodium and aluminum. For non-rotating massive stars of
≥ 80 M⊙, calcium production occurs in the hydrogen burning shell, owing to the
break-out of the CNO cycle. These characteristics are well reflected in the stellar
yields. The new findings will be useful to deduce the properties of source stars,
which existed in the early universe.
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Chapter 4

Yields of Pop III PISNe

In this chapter, besides the detailed discussion of how to treat the energy conserva-
tion in an exploding star, the mechanism of PISN explosion and the nucleosynthesis
results are described1.

A possibility to obtain an explosion owing to the hydrodynamical collapse
induced by electron-positron pair production has been firstly pointed out by Barkat
et al. (1967) and Rakavy et al. (1967). The explosion is now called pair-instability-
supernova. Two key reactions are responsible for the explosion. The first is a
creation reaction of electron-positron pair that reduces the pressure and induces
the dynamical collapse of a CO core, and the second is a thermonuclear reaction of
oxygen burning that effectively heats the core and supplies energy to reverse the
motion from collapse to explosion. Firstly, I discuss in detail how these energetics
can be treated in a simulation to accurately determine the initial mass range for
PISNe. Then the systematic Pop III PISN calculations are conducted, following
the evolution from the hydrogen burning phase to the explosion, for the first time.

Theoretical investigation of PISN has been driven by an expectation that their
outstanding properties, such as a high explosion energy and a peculiar yield pat-
tern, may enable the observational identification of the hidden properties of the
far-away universe (e.g., Umeda & Nomoto, 2002; Heger & Woosley, 2002). In
particular, owing to the high explosion energies and/or the large 56Ni yields that
make the explosion luminous, PISN is one of the most promising candidates as an
observable object at high redshift (Scannapieco et al., 2005; Kasen et al., 2011;
Kozyreva et al., 2014a,b; Chatzopoulos et al., 2015; Whalen et al., 2013; Smidt
et al., 2015).

According to the most recent study of simulation of first star formation, a large
fraction of first stars is born having initial masses of several tens to several hundreds
of solar masses (Hirano et al., 2014, 2015). The mass range for the PISN explosion
is fully covered by the theoretical prediction. Hence, from the simulations, a large
number of PISNe are expected to have happened in the early universe. If a PISN
explosion took place in reality, low mass stars might have been born from the
metal-enriched gas by the PISN ejecta. And one may observe such a PISN child
as an old metal poor star in our Galaxy. Therefore, I calculate the nucleosynthesis

1Analysis of energy generation rates and results of explosion simulations have been reported
in (Takahashi et al., 2016).
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in PISNe for the abundance profiling of the metal poor stars. The purpose of this
chapter is, first, to find a nucleosynthetic signature of PISN, which can be used to
discriminate a PISN-child star by comparing the surface abundance pattern, and
moreover, to understand the mass dependency of the nucleosynthesis, in order to
further constrain the initial mass of the source star of the PISN children.

4.1 Energy generation rates

Before starting the discussion of PISN mechanism and yields, here I emphasize the
importance of understanding how the energy conservation is treated in a simulation
code. Energetics of nuclear reaction is fundamentally important to understand the
mechanism of PISNe. Based on the equation of one dimensional hydrodynamics,
classical textbooks often formalize energy conservation with three kinds of energy
generation rates:

∂L

∂M
= ϵgrv + ϵnuc − ϵν , (4.1)

where ϵgrv, ϵnuc, and ϵν are the so-called gravothermal energy generation rate, the
nuclear energy generation rate, and the neutrino cooling rate, respectively (Chiu,
1968; Cox, 1968; Kippenhahn & Weigert, 1990; Iben, 2013). In order to obtain the
complete expression of this equation, definitions of individual energy generation
rates should be given explicitly. However, In the literature, such definitions are
often omitted or given with some implicit assumptions. If little attention is paid to
these points, physically incorrect energy generation rates might produce erroneous
results in simulation.

For example, as noted in Cox (1968), if one firstly defines ϵgrv as

ϵgrv ≡ −∂e

∂t
− p

∂(1/ρ)

∂t
, (4.2)

equating with the first law of the thermodynamics, this reduces to another expres-
sion of

ϵgrv = −T
∂s

∂t
− 1

mu

∑

particles

µi
∂Yi

∂t
. (4.3)

If one assumes that the second term on the right hand side is negligibly small, this
equation becomes

ϵgrv = −T
∂s

∂t
, (4.4)

which coincides with the formula given in Chiu (1968) and Kippenhahn & Weigert
(1990). As for the nuclear energy generation rate, the general definition is more
difficult to find2. One may define ϵnuc using the Q-value and the reaction rate λ

ϵnuc ≡
∑

reactions

Qiλi (4.5)

2Eq. 8.5 in Kippenhahn & Weigert (1990) may provide this.
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as a straightforward generalization of that for the pp-chain or the CNO-cycle that
are often discussed in detail. In this case, the Q-value must contain the rest masses
(and the average energy for neutrino) of all particles involved in the reaction, and
the summation must run for all reactions occurring.

In the following, based on the hydrodynamic equations and thermodynamic
relations, I derive exact expressions for energy conservation suitable to be solved
in simulations. Then, some formulae commonly used in the literature are shown
to be obtained as approximations of the exact expressions. Later, I demonstrate
that the explosion properties of PISN, such as the mass range, the 56Ni yield, and
the explosion energy, are significantly affected by applying the different energy
generation rates.

4.1.1 Exact expressions of the energy generation rates

I begin the discussion with the energy equation in the stellar equations,

∂erel

∂t
= −p

∂(1/ρb)

∂t
− ∂L

∂Mb
+ ϵν , (4.6)

where ρb ≡ munb is the baryon density defined as the product of the atomic mass
unit and the baryon number density, and ρberel is the relativistic internal energy
per unit volume. Note that this energy equation does not include the energy
generation rate by the nuclear reactions, ϵnuc. This is because nuclear reactions
just transform the form of the internal energy from the rest mass to thermal
motion of gas particles. On the other hand, ϵν is included since neutrinos are not
in thermal equilibrium with stellar gas and the energy of neutrinos are excluded
from the internal energy. This equation coincides with eq.(4.1), if ϵgrv and ϵnuc are
correctly defined as

ϵbasegrv ≡ −∂erel

∂t
− p

∂(1/ρb)

∂t
, (4.7)

ϵbasenuc ≡ 0. (4.8)

Hereafter we refer to these definitions as the base expression of energy conservation.
Next, I define the thermal component of the internal energy density as

ρbe
therm ≡ ρbe

rel − ρc2, (4.9)

in which ρ is the rest mass density (A.12). According to eq.(A.13), the change of
the rest mass per baryon is expressed as

d
(ρc2

ρb

)
=

1

mu

[∑

ion

mic
2dYi +mec

2dYe + 2mec
2dYe+

]
, (4.10)

where mi and Yi are the rest mass and the mole fraction of i-th ion, me is the
electron mass, Ye = Ye− − Ye+ is the net electron mole fraction, and Ye− and Ye+

are the electron and positron mole fractions (see the appendix A.1 for detailed
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definitions). Equating eqs.(4.6, 4.9, 4.10), one obtains an alternative expression of
energy conservation as

∂L

∂Mb
= ϵreacgrv + ϵreacnuc − ϵν , (4.11)

where I momentarily identify the energy generation rates as

ϵreacgrv ≡ −∂etherm

∂t
− p

∂(1/ρb)

∂t
(4.12)

ϵreacnuc ≡ − 1

mu

[∑

ion

mic
2∂Yi

∂t
+mec

2∂Ye

∂t
+ 2mec

2∂Ye+

∂t

]
. (4.13)

This expression, though it is equivalent to the base expression, is more suitable
for intuitive understanding of the effect of reactions, since the thermal part of the
internal energy is affected by ϵreacnuc , which is directly related to the compositional
change due to reactions. On the other hand, since one has to evaluate Fermi-Dirac
integrals to obtain Ye+ , this formula is not feasible to be applied to a numerical
simulation.

One practical solution to take account for the change of the rest mass of
electron-positron pairs is including the rest mass of that particular particles into
the internal energy of the EOS (Blinnikov et al., 1996; Timmes & Swesty, 2000).
Thus, the internal energy in a stellar code is often defined as

ρbe
therm+pair ≡ ρbe

therm + ρpairc
2 (4.14)

= ρbe
therm + 2mec

2ne+ , (4.15)

then the equivalently exact expression, which we call the reaction expression, is
derived:

ϵreacgrv ≡ −∂etherm+pair

∂t
− p

∂(1/ρb)

∂t
(4.16)

ϵreacnuc ≡ − 1

mu

[∑

ion

mic
2∂Yi

∂t
+mec

2∂Ye

∂t

]
. (4.17)

This expression does no longer include the term of Ye+ . Similar treatments can be
found in some stellar codes that is used for massive stellar evolution calculation
(private communication, Woosley 2015, Heger 2015, Langer 2015, Timmes 2015).

The other way to eliminate the term of Ye+ is to treat the entropy equation
instead. This approach guarantees a fluid element evolves adiabatically when the
energy flux and reactions are negligible. Moreover, this has an advantage to calcu-
late a thermal structure of degenerate objects like white dwarfs, in which pressure
and internal energy scarcely depend on temperature. The entropy equation is ob-
tained by equating the one-dimensional energy conservation (eq.4.6) with the first
law of thermodynamics in the form of specific density,

derel = Tds− pd
( 1

ρb

)
+

1

mu

∑

particles

µrel
i dYi, (4.18)
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where T is the temperature, ρbs is the entropy per unit volume, and µrel
i is the

relativistic chemical potential (including the rest mass) of i-th particle (see ap-
pendix A.2). Since the reaction equilibrium is always established for the pair
creation-annihilation reactions, the relation 0 = µrel

e+ + µrel
e− is satisfied. Then one

obtains

∂L

∂Mb
= −T

∂s

∂t
− 1

mu

[∑

ion

µrel
i

∂Yi

∂t
+ µrel

e

∂Ye

∂t

]
−ϵν . (4.19)

This equation does not include the term of Ye+ , and thus can be evaluated only
using ionic mole fractions. As for the definitions of the energy generation rates, an
ambiguity exists. If one defines ϵentnuc to account for the heat generated by reactions,
the following entropy expression can be defined,

ϵentgrv ≡ −T
∂s

∂t
, (4.20)

ϵentnuc ≡ − 1

mu

[∑

ion

µrel
i

∂Yi

∂t
+ µrel

e

∂Ye

∂t

]
. (4.21)

4.1.2 Approximate expressions of the energy generation
rates

In addition to above equivalently exact expressions, here I derive two approximate
expressions, which are often found in the literature and, we are afraid, may have
been employed in actual simulations.

Firstly, if one neglects the last term of eq.(4.13), then the reaction expression
becomes

ϵ̃reacgrv ≡ −∂etherm

∂t
− p

∂(1/ρb)

∂t
, (4.22)

ϵ̃reacnuc ≡ − 1

mu

[∑

ion

mic
2∂Yi

∂t
+mec

2∂Ye

∂t

]
. (4.23)

This approximate reaction expression is easy to evaluate similar to ϵentnuc and coin-
cides with the exact one if positron is essentially non-existent. Thus, to investi-
gate evolution of low mass stars or early stages of massive stellar evolution, this
expression provides accurate enough energy generation rates, and this is why the
expression is utilized in some stellar evolution codes (e.g. in GENEC, Meynet
2015, private communication.) On the other hand, this expression overestimates
the nuclear energy generation rate when electron-positron pairs are created, since
the neglected positron term accounts for the energy reduction due to pair creation.
Correspondingly the nuclear energy generation rate is underestimated when the
pair annihilation occurs.

Next, the other approximate expression is derived from the exact entropy ex-
pression, in which the thermal contribution of the chemical potential µtherm

i ≡
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µrel
i −mic2 is neglected:

ϵ̃entgrv ≡ −T
∂s

∂t
, (4.24)

ϵ̃entnuc ≡ − 1

mu

[∑

ion

mic
2∂Yi

∂t
+mec

2∂Ye

∂t

]
. (4.25)

This approximate entropy expression, hence, coincides with the exact one when
the thermal contribution to the chemical potential is negligibly small compared
with the rest mass. (Equivalent formalisms are used in, e.g., Hayashi et al. 1962;
Paxton et al. 2011, and in Chieffi 2015, private communication). Meanwhile, our
calculations show that this expression overestimates the nuclear energy generation
rate in general.

It is noteworthy that, though totally different assumptions are treated in each
expression, the appearance of the nuclear energy generation rates of the exact
reaction expression (eq.4.17), the approximate reaction expression (eq.4.23), and
the approximate entropy expression (eq.4.25) are in complete agreement with each
other. Thus, it is necessary to exhibit the definition of both the so-called gravother-
mal energy generation rate and the nuclear energy generation rate in order to
illustrate what kind of physics are really treated in the simulation.

4.2 Computational settings

I calculate the evolution and subsequent explosion of zero-metallicity non-rotating
very massive stars having initial masses of ∼ 140–320 M⊙. Properties and fates of
calculated models are listed in Table 4.1. Hydrostatic evolution from the hydrogen
burning until the end of the helium burning is calculated by the stellar evolution
code. The evolutionary properties are very similar to that of massive end of CCSN
progenitors (∼ 100–140 M⊙) and are not described here in detail. Later evolution
including explosion is calculated by the hydrodynamic code. Finally, the explosive
yield is obtained by a post-process calculation.

For the explosion simulation, mainly two different expressions of energy genera-
tion rates are applied. The first one is the exact entropy expression (eqs.4.20, 4.21).
Hereafter, we refer to this group of calculations as the case A calculations. The
second expression is the approximate entropy expression (eqs.4.24, 4.25). These
calculations are referred to the case B calculations. Note that the luminosity term
is neglected in the energy equation, since the other terms overwhelm the luminosity
term for the short timescale evolution.

In order to determine the minimum mass of PISN, additional hydrodynamic
calculations are conducted for less massive models of ∼ 140–150 M⊙. The dis-
tributions obtained by an explosion calculation is mapped onto the time-explicit
Lagrangian hydrodynamic code (Colella & Woodward, 1984; Umeda & Nomoto,
2002), and further expansion is calculated. The same EOS, nuclear reaction net-
work, and neutrino cooling formulae are implemented. Based on the calculation,
a star whose central region does not fall back into the center at 105 sec after the
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Table 4.1: Properties of Pop III PISN models
Case A Case B

Mini MHe MCO C/O Etot M56Ni log Tmax fate Etot M56Ni log Tmax fate
140 75.2 64.9 0.130 - - - PPISN - - - PPISN
145 78.2 68.6 0.126 11.30 0.095 9.562 PISN 9.46 0.011 9.531 PISN
150 79.9 71.3 0.125 14.05 0.154 9.571 PISN 12.76 0.038 9.544 PISN
155 82.2 73.6 0.119 16.94 0.263 9.583 PISN 15.02 0.063 9.550 PISN
160 79.7 75.8 0.128 18.50 0.375 9.592 PISN 16.51 0.086 9.556 PISN
180 91.1 86.7 0.121 33.46 3.778 9.642 PISN 30.97 0.555 9.595 PISN
200 98.9 94.7 0.114 42.58 9.401 9.677 PISN 40.48 2.049 9.621 PISN
220 104.1 100.9 0.112 53.88 14.52 9.694 PISN 46.69 3.384 9.632 PISN
240 107.9 106.8 0.105 56.08 19.85 9.717 PISN 55.15 5.895 9.648 PISN
260 121.9 119.3 0.102 81.91 42.21 9.806 PISN 76.76 16.26 9.691 PISN
265 122.9 119.5 0.102 - - - BH 78.82 18.07 9.699 PISN
270 127.1 123.2 0.100 - - - BH 85.56 22.70 9.715 PISN
275 128.4 124.9 0.098 - - - BH 86.78 23.23 9.717 PISN
280 131.4 127.8 0.097 - - - BH 91.12 26.19 9.726 PISN
300 140.3 137.2 0.093 - - - BH 109.2 45.21 9.808 PISN
320 145.6 142.3 0.090 - - - BH - - - BH

Notes. Mini, MHe, and MCO are the initial mass, the helium core mass, and the carbon-oxygen
core mass, C/O is the ratio between mass fractions of carbon and oxygen in the CO core, Etot,
M56Ni, and Tmax are the explosion energy, the ejected 56Ni mass, and the maximum temperature
reached during the explosion, respectively. The fate is specified from PPISN, PISN, or black
hole formation (BH). Masses are in M⊙, the total energies are in 1051 erg, and Tmax are in K.

explosion is considered to become a PISN. Otherwise, the fate is identified as a pul-
sational pair instability supernova (PPISN, Barkat et al., 1967; Heger & Woosley,
2002; Yoshida et al., 2016).

For case A exploding models, their explosive nucleosynthesis is calculated by
a post processing manner. Data is taken for each Lagrange mesh, recording the
change of the density and the temperature with time. Then the composition
evolution of extended 300 isotopes is followed using the recorded density and tem-
perature change. The considered isotopes are from neutron to 79Br, shown by
Tab. 2.1. The explosive yield is further processed by a decay calculation, in which
additional 1010 yr is followed with the temperature of 103 K and the density of
10−10 g cm−3.

4.3 Explosion of PISNe

4.3.1 Explosion mechanism

Fig. 4.1 shows evolution of central density and temperature for 200 and 280 M⊙
case A models. The 200 M⊙ model explodes as a PISN, while the 280 M⊙ model
collapses. The green lines show the boundaries of the adiabatic index γ ≤ 4/3.
This reduction of γ in the lower temperature region is due to the electron-positron
pair creation. The creation of electron-positron pair does not change the entropy
of the matter since the reaction is in equilibrium. On the other hand, the reaction
changes the form of the energy from the thermal energy to the rest mass. Accord-
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Figure 4.1: Evolutions of 200 and 280 M⊙ very massive Pop III models are shown in the central
density-temperature plane. The 200 M⊙ model explodes as a PISN, while the 280 M⊙ model
collapses. Comparative Pop III models of 20 and 60 M⊙ are additionally shown by dashed lines.
Green dotted lines show the boundaries of the hydrodynamically unstable regions of γ < 4/3.

ingly, this reduces the pressure, and the adiabatic index falls below the critical
value of 4/3.

Explosion properties are well correlated with the CO core mass, rather than
the initial mass. If a star forms a massive enough CO core of " 65 M⊙, the stellar
center enters into the unstable domain of the electron-positron pair creaction.
The surrounding region in a core has a bit higher entropy than the center, because
more effective neutrino cooling reduces the central entropy. Therefore, as the star
contracts due to the central instability, the larger part of the core becomes unstable.
The enhancement of the instability drives the runaway collapse of the massive CO
core. As the collapse takes place within a short timescale, the temperature of
the core almost adiabatically increases. During the collapse, carbon, neon, and
then oxygen, ignites. The carbon and neon burnings have a small effect on the
evolution, since mass fractions of carbon and neon, ! 0.1, are small. Contrastingly,
subsequent oxygen burning more effectively heats up the core. If the stellar core
has a mass between ∼ 65–120 M⊙, the increasing pressure by the carbon-oxygen
burning halts the collapse and farther pushes the whole core back. If the core
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Figure 4.2: Evolution of total explosion energy with the central temperature. Selected models
are 145, 160, 180, 200, 220, 240, 260, and 280 M⊙ very massive Pop III models. While the most
massive 280 M⊙ model finally collapses, others explode as PISNe.

is more massive enough than ∼ 120 M⊙, on the other hand, the heating by the
oxygen burning is insufficient to stop the collapse. The star keeps collapsing, being
suffered by another instability of iron photo dissociation.

In Fig. 4.2, the evolution of the non-relativistic total energy as a function of
the central temperature is shown for selected case A models. The total energy is
defined as

∫
(12U

2 + etherm+pair − GMb
r )dMb, where U is the radial velocity of the

gas, Mb is the enclosed baryon mass. This figure clearly shows that two reactions
are responsible to determine the fate of the collapsing star. The first reaction
is oxygen burning. The total energy rapidly increases after the ignition of the
oxygen burning at Tc ∼ 109.5 K. If oxygen burning supplies enough energy to
invert the core motion, the core starts to expand. The explosion energy of a PISN
becomes very large, which exceeds at least ∼ 10×1051 erg and can be as large as ∼
80×1051 erg. On the other hand, the reduction of the total energy after the central
temperature exceeds ∼ 109.75 K is due to the iron photo-dissociation. As discussed
earlier, the dissociation reaction softens the pressure in the same way as the pair
creation reaction does. I find that the second hydrodynamical instability due to
the photo-dissociation overcomes the heating effect of carbon-oxygen burning and
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Figure 4.3: The maximum temperature reached during the explosion and the CO core mass as
functions of the initial mass for all exploded models. The green dotted line is a fitting function
for the CO core mass. For the maximum temperature, case A results are plotted by the red
points and case B are by blue points.

induces the final collapse, if the central temperature of the star once exceeds the
critical value of ∼ 109.8 K.

4.3.2 Impact of adopting different energy generation rates

By neglecting the thermal part in the chemical potential, the approximate entropy
expression applied to the case B calculations overestimates the nuclear energy
generation rate. In Figure 4.3, the maximum central temperature reached during
the explosion, as well as the CO core mass, are shown as functions of the initial
mass. This figure shows all case B models explode with lower central temperatures
than the case A counterparts. The central temperature indicates how much amount
of oxygen is consumed in the contracting CO core. In other words, the higher the
central temperature is, the larger amount of oxygen are consumed. Hence, using
the more efficient energy generation rate, the case B star explodes with a smaller
amount of oxygen burned.

Being applied more effective energy generation, some massive stars that col-
lapse with the exact energy generation rate become able to explode in the case B
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Figure 4.4: Yields of 28Si (green) and 56Ni (blue) and the total explosion energy as functions
of the CO core mass for all exploded models. The top panel shows results of case A calculations
and bottom shows that of case B. The green dotted lines show the fitting polynomials.

simulation. Fig. 4.4 shows that the maximum CO core mass for PISN extends from
119 M⊙ to 137 M⊙ by changing the definitions of energy generation rates. These
figures also show that the explosion energy is roughly proportional to the CO core
mass, and the dependence is almost identical in the two sets of calculations. As
a result, the maximum explosion energy of PISN in case B becomes larger than
the case A result. On the other hand, since the 56Ni yield strongly depends on the
maximum temperature, the most massive models for each set of calculations yield
similarly largest amount of 56Ni.

In Figure 4.5, yield comparison among four models, two from my calculation
and the other two from Heger & Woosley (2002), are shown. With the exact
entropy expression, yield of my zero metallicity 240 M⊙ model shows almost the
same composition pattern as the 110 M⊙ helium star model by Heger & Woosley
(2002). As both models have almost the same He core mass of ∼ 110 M⊙, this
agreement indicates the physical consistency of the two calculations. The only
difference between the two is production of hydrogen, helium, lithium, and nitrogen
in our model. These elements are produced at the base of the hydrogen envelope,
which is omitted in the model by Heger & Woosley (2002). If the approximate
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Figure 4.5: Composition patterns of PISN yields of different models. Red-plus patterns and
cyan-point patterns show yields of case A and case B 240 M⊙ calculations, respectively. Similarly,
patterns shown by orange-cross and blue-triangle are yields of 110 M⊙ and 95 M⊙ helium star
models taken by Heger & Woosley (2002).

entropy expression is applied to the same 240 M⊙ star instead, the composition
pattern is altered. Reflecting the lower temperature during the explosion at the
central region, the case B 240 M⊙ model yields smaller amount of heavy elements
heavier than nickel. The composition pattern resembles the pattern of the 95 M⊙
helium star model by Heger & Woosley (2002), however, the helium star mass is
much smaller than the core mass of the 240 M⊙ model.

Here I shortly conclude that, in order to accurately consider the energetics of
reactions, the definition of energy generation rates in the hydrodynamic equation is
fundamentally important. The energy generation rate of the approximate entropy
expression, which is applied to the case B calculations, more effectively heats
surroundings than the exact expression applied to the case A. As a result, the
56Ni yield as a function of the CO core mass shifts to higher masses for the case
B calculations. Moreover, the mass range for the PISN is extended in the case
B simulations, from the fiducial range of 65–120 M⊙ to the more wide range of
65–140 M⊙ in terms of the CO core mass, and from 145–260 M⊙ to 145–300 M⊙
in terms of the initial mass. In the following, yield calculations are done using the
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Figure 4.6: Yields and the total explosion energy as functions of the CO core mass. Models
of 145, 150, 155, 160, 180, 200, 220, 240, and 260 M⊙ are summarized. Numbers indicated near
the total energy show the corresponding initial masses.

case A explosion results.

4.4 Yields of PISNe

In Fig. 4.6, the explosion energy as well as the yields of representative isotopes
are summarized as functions of the CO core mass. While the explosion energy is
roughly proportional to the CO core mass, the elemental yields have more compli-
cated dependence. According to the dependence on the CO core mass, elements
can be divided into three groups. The first group is hydrostatic burning prod-
ucts: lighter elements than aluminum. Their yields weakly depend on the CO core
mass. The second group is oxygen burning products, which consist of isotopes
heavier than silicon and lighter than calcium. Their yields have a peak at the
intermediately massive CO core of ∼ 100 M⊙, while the ratio among them has
a little dependency on the core mass. The last group is silicon burning products
dominated by 56Ni. For less massive models, almost no 56Ni is produced by the ex-
plosion. Massive models, contrastingly, yield large amount of 56Ni. More detailed
elemental analyses are given below.
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Figure 4.7: Abundance patterns of PISN yields. The abundance of magnesium is used for the
normalization.

4.4.1 Carbon to aluminum

Fig. 4.7 shows abundance patterns of PISN yields in [X/Mg], taking the proton
number as the x-axis. Abundances are normalized by the magnesium yield in
this figure. This is because all of PISN models eject abundant magnesium, the
magnesium yield has a small dependency on the CO core mass, and moreover a
surface abundance of magnesium is obtained for most of the metal poor stars. This
figure shows that lighter elements from carbon to aluminum except nitrogen are
similarly produced by PISNe. Scatters of the abundance ratios are especially small
for [O/Mg] = 0.09–0.19, [Ne/Mg] = −0.37–−0.19, [Na/Mg] = −1.58–−1.46, and
[Al/Mg] = −1.36–−1.19. The large production of nitrogen in the 240 M⊙ model is
due to convective dredge-up during their late core helium burning phase, in which
base of the surface convection reaches the surface of the CO core and mixes small
amount of carbon and oxygen into the hydrogen rich envelope.
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4.4.2 Silicon to calcium

Intermediate-mass elements of silicon to calcium are mainly produced by oxygen
burning, and partially produced by neon and carbon burning. A well-known pe-
culiarity of PISN yields can be seen here as a pronounced variance between odd-Z
and even-Z elemental yields, which discriminates PISN yields from the usual CCSN
yields (Heger & Woosley, 2002; Umeda & Nomoto, 2002). The odd-even variance
is due to the high Ye, or the high proton-to-neutron ratio, of PISN explosions.
Since the pushing-back takes place within a short timescale, electron capture re-
actions are too slow to change the core Ye. With the high proton-to-neutron ratio,
the explosive nucleosynthesis favorably synthesizes even-Z elements.

Each PISN still shows a similar abundance pattern in these elements, however,
the odd-even difference is much more pronounced in a more massive PISN explo-
sion. In other words, yields of intermediate-mass elements depend on the core
mass of the PISN, and furthermore, the opposite mass dependency between odd-Z
and even-Z yields is found. Abundance ratios of even-Z elements are the lowest for
the lightest 145 M⊙ model and the highest for the most massive 260 M⊙ model,
e.g., [Si/Mg] = 0.52–0.96 and [Ca/Mg] = 0.78–1.35. On the other hand, that of
odd-Z elements are the highest for the 145 M⊙ model and the lowest for the 260
M⊙ model, e.g., [K/Mg] = −1.52–−0.78.

4.4.3 Scandium to germanium

The heavy elements, from scandium to germanium, are synthesized in the inner-
most region of the star. Firstly, silicon burning takes place in this region, then
it quickly develops into the NSE, in which baryons freely transform to attain the
most stable state of the lowest free energy. The equilibrium is lifted when the
star starts to expand. During the expansion, heavy elements are re-processed and
further the unstable nuclei decay into stable nuclei.

The mass dependence of these elements is extremely large. The lowest mass
145 M⊙ model yields smallest masses of these elements, for example, [Fe/Mg] =
−1.09, [Co/Mg] = −3.23, [Ni/Mg] = −1.68, and [Zn/Mg] = −8.93. In contrast,
the highest mass 260 M⊙ model yields magnificently large amount of the heavy
elements, [Fe/Mg] = 1.06, [Co/Mg] = 0.20, [Ni/Mg] = 0.87, and [Zn/Mg] = −1.31.
Note that the abundance ratio [Sc/Mg], spanning from −1.06 to −0.91, shows a
small scatter with changing the stellar initial mass.

The peculiarity of the abundance pattern is the large concentration on specific
elements of chromium, iron, and nickel. As a result, a steep decline is observed
around the proton number of 28–32. This can be indicated by the small abundance
ratios of [Ni/Fe] or [Zn/Ni]. The largest proton number element produced by a
PISN is germanium. The 260 M⊙ model produces germanium of [Ge/Mg] = −2.22.
No further massive elements are produced, thus [As, Se/Mg] < −9.
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4.5 Conclusion of this chapter

Two key reactions are responsible for the PISN explosion dynamics. The first is
the electron-positron pair creation, by which the dynamical collapse is triggered.
The second is the oxygen burning, which efficiently heats up the core and explodes
the star. I have pointed out the importance of the treatment of the energy gener-
ation rates in the stellar equation, and demonstrate that the explosion properties,
especially the mass range for the PISN explosion, is severely affected by adopting
approximate energy generation rates.

The explosive yield is calculated based on the explosion simulation using the
exact formulation of the energy conservation. First, the pronounced odd-even vari-
ance is also confirmed in my calculation (Heger & Woosley, 2002). Furthermore,
I have found that the elemental yield can be divided into three groups based on
the mass dependencies. First group consists of lighter elements of carbon to alu-
minum. Their abundance pattern is almost constant with changing the initial mass
of the star. In addition to the lighter elements, scandium shows similar constancy.
Therefore, abundance ratios such as [Na/Mg], [Al/Mg], and [Sc/Mg] can be used
as the first requirement for a hypothetical PISN child to exhibit. Deficiencies of
them can be interpreted as realization of the odd-even variance. The second group,
the intermediate-mass elements from silicon to calcium, is composed of products
of oxygen burning. The odd-even variance in these elements is found to show
the initial mass dependence. Thus the abundance patterns such as [Si/Mg] and
[Ca/Mg] can be used as a potential probe to constrain the initial mass of the PISN
source star. Finally, the heaviest elements from titanium to germanium show the
strongest mass dependence. This is a generalizing statement of the strong mass
dependence of Ni pointed by Umeda & Nomoto (2002). The steep decline around
the proton number of 28–32, which can be indicated by abundance ratios of [Ni/Fe]
or [Zn/Ni], can be used as the second requirement to search PISN children.
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Chapter 5

Abundance profiling

In preceding chapters, I have pointed out some abundance patterns seen in the
yields of first supernovae that characterize the properties of progenitor stars. Ap-
plying the weak supernova model, CCSN yields from 12–140 M⊙ first stars are
shown to exhibit peculiar abundance patterns synthesized in the helium layers. As
for yields of PISNe occurring from more massive 145–260 M⊙ stars, three groups
of elements having different mass dependencies are found.

The main purpose of this chapter is to provide a proof of existence of at least
some particular first stars, by conducting the abundance profiling. By gathering
these examples, properties of first stars will be constrained. I conduct detailed
comparisons between theoretical yields of Pop III massive stars and observations
of surface abundance patterns of metal-poor stars. Metal-poor stars would be
born from the chemically primitive gas clouds in the early universe. And the
metal ejection by first stars would be responsible for the metal pollution. Thus
the signatures of the first nucleosynthesis are expected to be imprinted in the
surface abundance patterns of metal-poor stars in the local universe. Through the
abundance comparison, the properties of the source stars can be obtained.

As an application of the weak supernova model, I aim to constrain the proper-
ties of source stars of the three most-iron-deficient stars discovered so far1. They
are SMSS 0313-6708 of [Fe/H] < −7.1 (Keller et al., 2014), HE 0107-5240 of [Fe/H]
= −5.3 (Christlieb et al., 2002), and HE 1327-2326 of [Fe/H] = −5.7 (Frebel et al.,
2005). All of these stars are members of CEMP stars, having large carbon abun-
dances compared to iron of [C/Fe] > 0.7. Moreover, they are also known to show
enhancements in intermediate-mass elements, such as sodium, magnesium, and
silicon. Therefore it is expected that a weak supernova model, which abundantly
produces such intermediate-mass elements synthesized in the outer region of the
progenitor, can provide a reasonable fitting.

In contrast to Pop III CCSNe, no candidate metal-poor stars have been dis-
covered for PISN children except for the recent work by Aoki et al. (2014). The
reason of the non-detection may be explained as a result of the observational bias.
Because of the large metal yield, PISN children may be born having a relatively
large [Ca/H] ∼ −2.5, which can be missed from metal-poor star huntings utilizing

1Comparison with the three most-iron-deficient stars has been reported in Takahashi et al.
(2014).
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Table 5.1: Summary of abundance profiling
Object [Fe/H] Mini fej Rotation Dilution Factor
SMSS 0313-6708 < -7.1 50-80 0.96 ± 0.04 (60 M⊙) non-rotating 1.78× 103 − 6.09× 102

0.98 ± 0.04 (80 M⊙) non-rotating 1.62× 103 − 1.91× 102

HE 0107-5240 -5.3 30-40 1.07 ± 0.06 (30 M⊙) rotating 7.84× 102 − 2.23× 102

HE 1327-2326 -5.7 20-40 0.96 ± 0.01 (40 M⊙) non-rotating 5.00× 102 − 4.32× 102

15-30 0.93 ± 0.01 (20 M⊙) rotating 7.92× 102 − 7.35× 102

Table 5.2: Stellar yields of the best fit models
Object Mini Rotation fej MSN

4He 12C 13C 14N 16O 20Ne 23Na 24Mg 27Al 28Si
SMSS 0313-6708 60 Nonrotating 0.96 37.3 1.70e1 3.05e-1 2.00e-8 2.13e-7 9.18e-1 5.81e-2 3.81e-8 6.88e-3 6.63e-9 4.90e-6

80 Nonrotating 0.98 46.8 2.21e1 2.62e-1 3.08e-9 3.00e-7 6.09e-1 9.00e-2 1.50e-8 5.21e-2 6.39e-9 1.21e-3
HE 0107-5240 30 rotating 1.07 18.1 8.21e0 4.53e-2 4.25e-4 2.94e-4 6.20e-3 4.19e-5 3.09e-5 2.03e-5 2.56e-7 3.14e-7
HE 1327-2326 40 Nonrotating 0.96 25.5 1.09e1 1.86e-1 2.89e-8 1.09e-6 5.18e-1 2.08e-2 1.56e-4 1.45e-3 4.81e-5 5.01e-5

20 rotating 0.93 14.2 5.94e0 1.59e-1 7.78e-3 1.18e-2 3.36e-1 1.83e-2 1.77e-4 1.20e-3 3.81e-5 4.11e-5

Notes. The first column shows the object name, from second to fourth columns show the initial
mass, the inclusion of rotation, and the adopted fej of the model. The rest show total mass of
the ejecta and ejected mass of each element in solar mass units.

the CaII K line (Karlsson et al., 2008). However, a growing number of metal-poor
stars have been discovered by recent observations (e.g., Hollek et al., 2011; Boni-
facio et al., 2012; Cohen et al., 2013; Yong et al., 2013b; Roederer et al., 2014).
Also it is noteworthy that the systematic observation to find the PISN signatures
in metal-poor stars is now undertaken (Ren et al., 2012).

Therefore, in this work, I conduct the first systematic comparison between
PISN theoretical yields and observations using the big stellar abundance data
compiled in SAGA database (http://sagadatbase.jp/, Suda et al. 2008, 2011;
Yamada et al. 2013). The purpose of the comparison is, firstly, to confirm the
(non-)existence of PISN signatures on the present metal-poor stellar sample, and
secondly, to validate what are the fundamentally reliable and practically useful
abundance ratios to discriminate PISN signatures. The possible discovery of PISN
children provides a firm proof of the existence of very-massive first stars in the early
universe.

5.1 Comparison with weak supernova yields

Hereafter, results of the abundance profiling to the three most-iron-deficient stars
are discussed. The best fit models are listed in Table 5.1, showing initial masses
and rotational characteristics of models for each star. In Table 5.2, the stellar
yields of intermediate mass elements are summarized. In the following subsections,
important characteristics of observed abundance patterns and how the best fit
models are selected are presented.

5.1.1 SMSS 0313-6708

A dwarf halo star, SMSS 0313-6708, discovered by Keller et al. (2014), is the most
iron-deficient star discovered so far. Amazingly enough, the high resolution spec-
troscopy could not detect iron emission lines from the stellar surface. Thus only the
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Figure 5.1: The abundance pattern of SMSS 0313-6708 which has [Fe/H] < -7.1. Red crosses
and arrows show observed values and upper limits, and black points show corrected values
accounting for the effect of 3D/non-LTE stellar atmosphere, respectively. Four model yields
are non-rotating 50 M⊙ with fej=0.97 (green long-dashed), non-rotating 60 M⊙ with fej=0.96
(blue short-dashed), non-rotating 70 M⊙ with fej=0.97 (magenta dotted), and non-rotating 80
M⊙ with fej=0.98 (cyan dash-dotted). A blue shadow shows the influence of changing fej in the
range of 0.92–1.00 for the 60 M⊙ model.

upper limit of extremely low value of [Fe/H] < −7.12 is estimated as the iron abun-
dance. Owing to the low level of metal contents, sparse abundance information
has been obtained. Similar to iron, upper limits are obtained for nitrogen, sodium,
aluminum, and silicon. At the moment of the discovery, abundances of only four
elements, lithium, carbon, magnesium, and calcium, have been obtained. In ad-
dition, the oxygen abundance has been determined by UV spectroscopy (Bessell
et al., 2015). Among them, carbon and oxygen show an exceptionally large abun-
dance of [C/H] ∼ −2.4 (or ∼ −2.6 considering 3D correction) and [O/C] = 0.02
± 0.175.

The fitting results are shown by Fig. 5.1. The small abundance ratio [Mg/C]
∼ −1 gives the first constraint for the fitting. More massive models of ≥100 M⊙
synthesize too much magnesium in their helium layer to account for the small mag-
nesium abundance. Thus low mass (12–40 M⊙) models, accounting for the magne-
sium production by carbon burning in CO cores, or intermediate-mass (50–80 M⊙)
models, producing magnesium in their helium layer, can explain the abundance
ratio. Next, although only upper limits are obtained so far, abundance ratios of
[Na/C] and [Al/C] are informative for the model constraint. Magnesium produc-
tion by carbon burnings in the low mass models is necessarily accompanied with
sodium and aluminum production. Also, all rotating models synthesize the odd-Z
elements in their helium layers. These models overproduces sodium and aluminum

2Recently the value is lowered to < −7.52 by Bessell et al. (2015).
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and are rejected. Therefore, I conclude that only non-rotating 50–80 M⊙ models
can explain the observed abundances of SMSS 0313-6708. It is noteworthy that the
oxygen abundance, recently obtained by Bessell et al. (2015), is completely com-
patible with my models. This consistency strongly supports the conclusion, since
the observation has been made after I firstly came to the conclusion in Takahashi
et al. (2014).

The calcium abundance [Ca/H] ∼ −7 is not used as a constraint in the above
reasoning. Models of 50–70 M⊙ do not synthesize calcium by themselves, thus
they need other pollution source(s) that explain the small existence of calcium.
This could be matter ejection of extremely limited fraction of inner region during
the supernova explosion, which is also suggested by the recent hydrodynamical
simulation by Chen et al. (2016). If so, the explosion would eject similar amount
of heavy elements such as iron. The iron abundance of SMSS 0313-6708 might be
in a similar level with calcium, [Fe/H] ∼ −7, in this case. On the other hand, the
massive model of 80 M⊙ coincidentally produces calcium in its helium layer. In
this case, no other pollution is needed. The model yields more magnesium than
the observation, but this could be within the uncertainties of both observation and
simulation. In addition, the extremely low abundance of calcium can be explained
by external pollution by accreting the interstellar material (Yoshii, 1981). Indeed,
Shigeyama et al. (2003) obtain that a wide metallicity distribution function having
the peak metallicity of [Fe/H] ∼ −6 for Pop III low mass stars. This estimate will
be applicable to the almost iron-free SMSS 0313-6708 to explain the low abundance
of [Ca/H] ∼ −7.

The explanation proposed here is consistent with the model by Keller et al.
(2014). The given mass, 60 M⊙, is exactly inside the mass range of my conclusion,
and their model is a non-rotating first star. The small difference is in a production
mechanism of calcium. They attribute calcium production by the breakout reac-
tions from CNO-cycle during the stable hydrogen burning phase. On the contrary,
such fast proton-capture reactions only take place in later phases of evolution of
massive stars of ≥80 M⊙ in my models. Different models have been proposed by
Ishigaki et al. (2014). Among their best-fit models, a 25 M⊙ model exploded with
a high explosion energy of 1052 erg well reproduces the low [Na/Mg] and [Al/Mg]
ratios. To distinguish the model with my model, the abundance ratio [O/C] is
informative. Reflecting the difference in initial masses of models, my best fit mod-
els suggest the oxygen abundance will be [O/C] ∼ 0, while the model by Ishigaki
et al. (2014) has much lower value of [O/C] ∼ −2. Recent observation of [O/C] ∼
0 by Bessell et al. (2015), therefore, prefers the model of less energetic explosion
from a 50–80 M⊙ progenitor to the model of energetic explosion from a 25–40 M⊙
progenitor.

5.1.2 HE 0107-5240

HE 0107-5240 is an HMP star, having the metallicity of [Fe/H] = −5.3, firstly
reported by Christlieb et al. (2002). The fitting result is plotted on Fig. 5.2.
Observational data are collected from Christlieb et al. (2004), Bessell et al. (2004),
Bessell & Christlieb (2005), and for 3D correction, from Collet et al. (2006) . The
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Figure 5.2: Same as Fig. 5.1, but for HE 0107-5240. The star has [Fe/H] = -5.3. Selected model
yields are rotating 30 M⊙ with fej=1.07 (green long-dashed), half-speed-rotating 30 M⊙ with
fej=1.02 (blue short-dashed), quarter-speed-rotating 40 M⊙ with fej=1.02 (magenta dotted),
and half-speed-rotating 40 M⊙ with fej=1.00 (cyan dash-dotted). A green shadow corresponds
to different fej models from 1.00–1.13 for the rotating 30 M⊙ model.

best fit model found from the basic model grid is the rotating 30 M⊙ model with
the mass ejection parameter of fej = 1.07. In addition to the basic model, models
with a bit slower rotation are calculated and fitted to the observation. They are 30
M⊙ with half speed of rotation and 40 M⊙ with half and quarter speed of rotation.

The very small [O/C] = −1.4 is the most informative abundance ratio of the
star. Since a CO core of a massive star has much larger O/C ratio, matter ejection
from inside of the CO core is rejected to account for the observation. Therefore,
it turns out that those elements are produced in the outer region than the helium
layer of the source star. Next, the abundance ratio of magnesium, [Mg/C] ∼ −3,
provides the constraint on the initial mass. As more massive stars overproduce
magnesium in their helium layer, 30 M⊙ models provide good fits for the observa-
tion. Moreover, the sodium abundance ratio [Na/C] ∼ −2 excludes non-rotating
models. The result does not so much depend on the mass ejection parameter. The
wide fej = 1.01–1.13 suggests the robustness of this fitting.

Since the best fit model slightly overproduces sodium, models with slower ro-
tation speeds have been calculated. Among them, a 40 M⊙ model with half speed
of rotation provides nearly perfect fitting. Note that calcium and other heavy el-
ements are needed to be explained by the other process in this fitting. The small
calcium abundance of [Ca/Fe] ∼ 0 suggests that those heavy elements come from
the same origin.

Here I compare the above result with two previous works. The first model is
a mixing-fallback model proposed by Iwamoto et al. (2005). With a mass cut of
6.3 M⊙ and with a very small escape fraction of 1.2×10−4, their 25 M⊙ model
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Figure 5.3: Same as Fig. 5.1, but for HE 1327-2326. The star has [Fe/H] = −5.7. Model
yields of non-rotating 30 M⊙ with fej=0.96 (blue short-dashed) and non-rotating 40 M⊙ with
fej=0.96 (magenta dotted) are presented. A magenta shadow corresponds to different fej models
from 0.95–0.97 for the 40 M⊙ model.

could provide a very nice fitting results to the observation. Corresponding to
the large mass cut, carbon and oxygen distributed in the helium layer account
for the low [O/C]. On the other hand, inner carbon burning product accounts
for the low Mg abundance with the small escape fraction. It seems that a high
degree of fine-tuning to those parameters would be required in the model. The
other model has been proposed by Limongi et al. (2003), in which superposition of
two supernovae of a less energetic explosion from 35 M⊙ and a typical supernova
from 15 M⊙ differently contribute to the yield and explain the observation in
combination. The strategy dividing elements into lighter and heavier group is
similar to my model. Difference exists for the sodium production mechanisms.
They attribute the sodium production by proton injection into the helium layer.
As discussed earlier, the process is well known to occur in metal-poor ∼ 15–
40 M⊙ stars. However, since the timescale of the reactive mixing will be too
short to be properly treated by the current numerical method, special care will
be needed to treat the nucleosynthetic result. As the nucleosynthesis is based on
the robust mechanism of rotationally induced reactions, I conclude that my model
provides more realistic interpretation on the abundance pattern of HE 0107-5240
than previous models.

5.1.3 HE 1327-2326

HE 1327-2326 is a subgiant HMP star with [Fe/H] = −5.7, reported by Frebel
et al. (2005). Figures 5.3 and 5.4 are the same as Fig. 5.1, but for HE 1327-2326.
These figures have the same observation points, but have different model fitting.
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Figure 5.4: Same as Fig. 5.1, but for HE 1327-2326. Three model yields of rotating 15 M⊙ with
fej=0.92 (green long-dashed), rotating 20 M⊙ with fej=0.93 (blue short-dashed), and rotating
30 M⊙ with fej=0.96 (magenta dotted) are presented. A blue shadow corresponds to different
fej models from 0.92–0.94 for the 20 M⊙ model.

In the former figure, non-rotating models are presented, while the latter shows
rotating models. Plotted observation points are taken from Aoki et al. (2006),
Frebel et al. (2006, 2008), and Bonifacio et al. (2012). For 3D correction, results
in Collet et al. (2006) are applied onto data obtained by Aoki et al. (2006) and
Frebel et al. (2006).

Firstly, since the star shows negative [O/C], the ejection of the inner CO core
material should be limited, and thus materials distributing in the outer region
dominate the ejecta. Then the small [Mg/C] = −1.8 cannot be explained by more
massive models than 40 M⊙, which overproduce magnesium in their helium layers.
On the other hand, by ejecting the outer edge of the carbon burning materials,
models equal to or less massive than 40 M⊙ explain the abundance. This naturally
explains the decreasing trends in [Na, Mg, Al/C], because sodium, magnesium, and
aluminum are produced by the carbon burning.

Further constraints can be made. The smallest 12 M⊙ models produce less
sodium and fail to explain the sodium ratio. Non-rotating 15 and 20 M⊙ models
suffer from proton ingestion and overproduce calcium. As a result, intermediate-
mass stars of 30–40 M⊙ for non-rotating models and 15–30 M⊙ for rotating models
give a consistent yield to the observation. The best-fit models are for non-rotating
40 M⊙ and rotating 20 M⊙ models. Because Mej in these models are set to edges
of carbon convective regions, acceptable widths of Mej become very narrow. The
acceptable ranges are shown in Figs. 5.3 and 5.4 as colored shadows, corresponding
to fej = 0.95–0.97 for the non-rotating 40 M⊙ model and to fej = 0.92–0.94 for
the rotating 20 M⊙ model.

HE 1327-2326 shows significant enhancement of nitrogen. Although none of our
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calculation presented in this work does not consistently match with the nitrogen
abundance, a weak supernova from a rotating progenitor may be able to explain the
observation. Our rotating models only include moderate rotators of vrot/vk ∼ 0.15,
and the best model of 20 M⊙ yields about 1/10 of observed nitrogen. Therefore,
one possibility to account for the large production is fast rotation in which highly
effective internal mixing will take place. Also, a rotating star with a very small but
non-zero metallicity is known to have a large enhancement in nitrogen production.
Comparing the results by Ekström et al. (2008) and Hirschi (2007), models with a
metallicity of 10−8 show larger nitrogen production than Pop III models. Ekström
et al. (2008) has explained this trend as a consequence of existence and absence
of CNO elements at its birth. This is because, a metal poor progenitor with CNO
elements can support the structure by the CNO cycle from the first ignition of
hydrogen. At the end of the core hydrogen burning phase, this results in faster
core rotation and thus more effective internal mixing.

The nitrogen enhancement may be explained by an intrinsic nucleosynthesis.
In a low mass metal poor star, a process called the helium-flash driven deep mixing
(He-FDDM) may take place (Fujimoto et al., 1990, 2000; Suda et al., 2004). In the
process, a convective region powered by a shell helium-flash penetrates into the
hydrogen envelope, resulting in nucleosynthesis of nitrogen. To compare with the
scenario of the nitrogen enhancement due to the rotationally induced mixing, an
isotopic ratio of 12C/13C will be useful. In the case of the intrinsic enhancement,
theory predicts the equilibrium value of the CN cycle of 12C/13C ∼ 3–4 (Picardi
et al., 2004; Weiss et al., 2004; Aoki et al., 2006). On the other hand, a much higher
isotopic ratio of 21.5 is resulted in my rotating 20 M⊙ progenitor. The observation
provides a lower limit of the isotopic ratio of 12C/13C > 5. This prefers the rotation
induced nitrogen enhancement to the intrinsic nitrogen production. One note,
however, should be added here. Since the present models are still insufficient in
nitrogen production by a factor of ∼ 10, a model that is compatible with the
nitrogen abundance may produce ∼ 10 times more 13C than these models. This
will reduce the isotopic ratio, thus will work in the opposite direction.

5.2 Comparison with PISN yields

5.2.1 General trends of observed abundance ratios

One purpose of this section is to find an abundance ratio that is useful to dis-
criminate a possible candidate of PISN children from the other normal metal-poor
stars. The ratio, thus, must be made of abundances of easily accessible elements
by observations. Table 5.3 shows the number of stars compiled in SAGA database,
in which the abundance of each element is determined by observations. It indi-
cates that the most accessible elements are magnesium, calcium, titanium, and
iron, then they are followed by sodium, aluminum, silicon, chromium, nickel, and
zink. Among them, magnesium is selected as the base, or the denominator, of
the abundance ratios. First this is due to the good accessibility, and moreover
because it facilitates comprehensive comparisons of the theoretical yields of PISNe
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Table 5.3: Number of stars in SAGA database
element number of stars
Na 2298
Mg 3490
Al 1972
Si 2485
P 0
S 350
Cl 0
Ar 0
K 256
Ca 3485
Sc 1240
Ti 3161
V 916
Cr 2257
Mn 1256
Fe 4022
Co 1113
Ni 2660
Cu 602
Zn 1719

Notes. Numbers of stars in SAGA database, in which the abundance is observed for each

element, are shown.

as shown in the preceding chapter.
Among the peculiar abundance patterns of the PISN yields, the abundance

ratio of [Na/Mg] is found to show the nearly mass-independent constant value of
−1.58 – −1.46, and thus is one of the good indicator of the odd-even variation.
Corresponding observations are plotted in Fig. 5.5 as a function of [Fe/H]. In
this figure, a theoretically obtainable band is overlaid for the comparison, and a
typical error of observations, ±0.1 dex, is indicated by the magenta cross. The
main component, including the decreasing trend toward low [Fe/H], has been well
reproduced by galactic chemical evolution models taking CCSN ejecta into account
(e.g. Kobayashi et al., 2006). Interestingly, although the figure includes more than
2000 stellar data, no stars are found within the theoretical band of the [Na/Mg]
ratio. In other words, no metal-poor star currently showing sodium signature at
its surface agrees with the PISN yields. Therefore, if the observation achieves
to detect the low sodium abundance, a candidate of PISN children will show the
small [Na/Mg] ratio distinctively apart from the other metal-poor stars. Possibly
the lack of stars in the low [Na/Mg] region is explained by the observational limit.
In this case, the candidate star should not exhibit detectable sodium lines in its
spectroscopy.

For other elements of aluminum, silicon, calcium, and zinc, moderate numbers
(several to tens) of stars are found inside the theoretical bands. Then, as a next
step, comparisons using combinations of them are conducted.

Stellar data are plotted on a plane of [Ca/Mg] and [Al/Mg] in Fig. 5.6. As
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Figure 5.5: [Na/Mg] versus [Fe/H] collected from the compilation of the SAGA database.
Stellar data are plotted by points. The cyan band shows the obtainable variations of theoretical
yields by changing the initial mass.
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Figure 5.6: Same as Fig. 5.5 but for [Al/Mg] versus [Ca/Mg].
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Figure 5.7: Same as Fig. 5.5 but for [Si/Mg] versus [Ca/Mg].

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0  2.5

typical error

PISN range
1662 stars plotted

[C
a/

M
g]

[Zn/Mg]

MP
EMP,RGB

EMP,MS
Crich,RGB

Crich,MS
CEMP,RGB

CEMP,MS
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Figure 5.9: Same as Fig. 5.6 but for [Al/Mg] versus [Si/Mg]. Stars in the orange box are
selected for the comparison with theoretical yields.

well as sodium, the main evolution sequences of calcium and aluminum have been
well explained by CCSN ejecta (Kobayashi et al., 2006). As for the PISN yields,
while tens of stars are found to be included within the theoretical range of either
[Ca/Mg] or [Al/Mg], no stars show comparable values of both ratios at the same
time. The same takes place for the [Ca/Mg] vs [Si/Mg] plot shown as Fig. 5.7, and
for the [Zn/Mg] vs [Ca/Mg] plot shown as Fig. 5.8. As the majority of stars in
the sample have lower [Ca/Mg] ∼ 0 than the theoretical limit, these disagreements
can be attributed to too low calcium abundances of currently observed metal-poor
stars. Thus, the hierarchy of the problem is opposite to [Na/Mg]: the requirement
of [Ca/Mg] = 0.78 – 1.35 is too large for the current stellar samples to agree
with. The PISN children candidate will show a higher [Ca/Mg] ratio than the
other metal-poor stars, even if they successively match the abundance patterns of
[Al/Mg], [Si/Mg], or [Zn/Mg] in advance.

In Fig. 5.9, the observed abundance patterns are shown for the [Al/Mg] vs
[Si/Mg] plot. In this case, numbers of stars are found to agree with the theoretical
yields. Considering the typical error of the observation, 56 stars, which are inside
the orange box of ([Al/Mg], [Si/Mg]) = (0.2, −1.0) – (1.1, −1.5), are selected for
the further comparison with the theoretical yields.

Finally, I discuss abundance ratios made by iron-peak elements except for zinc.
They are titanium, chromium, iron, and nickel. I find that they are not as useful
as the other accessible elements discussed above. The critically important reason
is that, inside the large variations of the theoretical abundance patterns, the most
feasible values of [X/Mg] = 0 is included. The calculated range of [Ti/Mg] spans,
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for example, from −0.77 to 0.55. Therefore majority of observations is included in
the theoretical bands, and they cannot discriminate the candidate of PISN children
from other metal-poor stars.

5.2.2 Detailed comparisons with metal-poor stars

Metal-poor stars compared with theoretical PISN yield patterns in this work are
summarized in Table 5.4. In addition to SDSS J0018-0939 (Aoki et al., 2014), 56
stars are selected from SAGA database. Since I do not utilize the metallicity of
the stars, [Fe/H], as the condition of the selection, the sample includes metal-poor
stars with metallicity as large as −1.86. Most of these relatively-metal-rich stars
will show the results of not one-time but many-times metal pollutions in their
abundances. However, the wide range in metallicity can be rather adequate for
the comparison with PISN yields, as some theoretical works suggest that high
metallicity of ∼ 10−3 Z⊙ is reachable by a one-shot PISN in the early universe due
to the large metal production (Karlsson et al., 2008; Greif et al., 2010). Therefore,
the high maximum metallicity characterizes the sample of this work, as most of
the previous works except for Aoki et al. (2014) have considered only EMP stars
of [Fe/H] ! −3 to be compared with PISN yield patterns.

First of all, just as a confirmation of the earlier findings, it is shown that metal-
poor stars in the sample have neither the low sodium abundances of [Na/Mg] =
−1.58 – −1.46 nor the high calcium abundances of [Ca/Mg] > 0.78. In addition,
three characteristics of abundance patterns are found from the stellar sample.
They are

1. the larger [Sc/Mg] than the theoretical values,

2. the larger [Zn/Mg] than the theoretical values, and

3. the inconsistently smaller [Cr/Co] than the theoretical values.

Representative stellar abundances are plotted in Figs. 5.10–5.12, while results of
comparisons for all of those stars are shown in the appendix C.

It is shown that only five stars in the sample have low [Sc/Mg] < −0.7 ratios.
They are #14. CS22891-200 ([Sc/Mg] = −1.27), #21. CS22898-047 ([Sc/Mg] =
−0.71), #34. CS22956-050 ([Sc/Mg] = −0.85), #35. CS22956-062 ([Sc/Mg] =
−0.74), and #50. HE0056-3022 ([Sc/Mg] = −0.75). The abundance pattern of
#34. CS22956-050 is shown in Fig. 5.10. Since, similarly to [Na/Mg] and [Al/Mg],
theoretical ratios of [Sc/Mg] is found to show the nearly mass-independent low val-
ues of −1.06 – −0.91, comparing the [Sc/Mg] ratio is useful to distinguish a PISN
children candidate from the other metal-poor stars. The ratio of [Sc/Mg] thus
can be used as the second indicator of the odd-even variation of the PISN yields
besides [Na/Mg]. It is noteworthy that a Pop III CCSN yield also tends to fail
to reproduce the observed low scandium abundances (e.g., Kobayashi et al., 2006;
Ishigaki et al., 2014). But in this case, ejection of high entropy inner material
may be able to account for the production of not only scandium, but also tita-
nium, cobalt, and zinc (Tominaga, 2009). Recent Pop III CCSN yields, in which
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Table 5.4: Stellar sample
# Obj [Fe/H] [Na/Mg] [Ca/Mg] [Sc/Mg] [Zn/Mg] [Cr/Co] Reference
1 BD+34 2476 -1.97 -0.23 0.23 -0.01 -0.47 -0.13 Ishigaki et al. (2010, 2012, 2013)

Gehren et al. (2006)
2 BD-01 2582 -2.62 -0.27 0.00 -0.54 -0.20 0.05 1.
3 BS16085-0050 -2.91 — -0.23 -0.31 — -0.22 2.
4 BS16928-053 -2.91 -0.52 -0.08 -0.69 — -0.21 2., Lai et al. (2008)
5 CS22180-014 -2.86 -0.54 -0.03 -0.51 < 0.28 -0.38 1.
6 CS22183-031 -3.57 — -0.22 -0.66 -0.10 -0.37 1.
7 CS22186-002 -2.72 -0.52 0.11 -0.39 0.03 -0.25 1.
8 CS22189-009 -3.92 -0.54 -0.06 -0.63 -0.08 -0.28 1.
9 CS22873-128 -3.75 -0.77 -0.18 -0.48 -0.29 -0.30 1.

10 CS22878-101 -3.53 — -0.11 -0.65 0.02 -0.23 1.
11 CS22879-103 -2.16 — -0.06 -0.48 -0.19 -0.05 1.
12 CS22886-044 -1.86 — 0.14 -0.25 -0.14 -0.11 1.
13 CS22888-002 -2.93 — 0.05 -0.51 < 0.26 -0.38 1.
14 CS22891-200 -4.06 — -0.05 -1.27 < 0.01 -0.25 1.
15 CS22893-005 -2.99 -0.56 -0.01 -0.47 < -0.04 -0.15 1.
16 CS22894-019 -2.98 — 0.02 -0.33 < 1.10 -0.36 1.
17 CS22894-049 -2.84 — 0.02 -0.36 < 0.30 -0.43 1.
18 CS22896-015 -2.85 -0.57 -0.03 -0.27 -0.47 -0.06 1.
19 CS22896-110 -2.85 — -0.03 -0.57 -0.34 -0.23 1.
20 CS22896-136 -2.41 — 0.18 -0.36 -0.06 -0.13 1.
21 CS22898-047 -3.51 — -0.02 -0.71 0.12 -0.50 1.
22 CS22941-017 -3.11 -0.57 -0.06 -0.44 -0.27 -0.21 1.
23 CS22942-002 -3.61 — -0.16 -0.62 -0.03 -0.51 1.
24 CS22942-011 -2.88 -0.45 -0.10 -0.49 -0.14 -0.14 1.
25 CS22943-095 -2.52 — 0.11 -0.31 0.02 -0.24 1.
26 CS22943-132 -2.63 — -0.03 0.24 -0.48 -0.33 1.
27 CS22944-032 -3.22 — -0.09 -0.59 -0.24 -0.31 1.
28 CS22945-028 -2.92 -0.56 -0.04 -0.64 -0.30 -0.11 1.
29 CS22947-187 -2.58 -0.40 -0.05 -0.45 -0.29 -0.01 1.
30 CS22949-048 -3.55 — -0.02 -0.51 0.48 -0.19 1.
31 CS22950-046 -4.12 — -0.09 -0.69 < 0.27 -0.35 1.
32 CS22951-059 -2.84 — -0.01 -0.14 -0.26 -0.26 1.
33 CS22953-003 -3.13 -0.42 -0.06 -0.62 -0.02 -0.12 1., Spite et al. (2011)
34 CS22956-050 -3.67 — -0.03 -0.85 -0.07 -0.31 1.
35 CS22956-062 -2.75 -0.69 -0.05 -0.74 < 0.04 -0.28 1.
36 CS22956-114 -3.19 — 0.02 -0.51 < 0.19 -0.20 1.
37 CS22957-019 -2.43 — 0.12 -0.20 -0.15 -0.16 1.
38 CS22957-022 -3.28 — -0.06 -0.56 -0.03 -0.14 1.
39 CS22958-083 -3.05 -0.52 -0.18 -0.69 0.08 -0.08 1.
40 CS22963-004 -4.09 — 0.17 -0.69 < 0.91 -0.53 1.
41 CS22968-029 -3.10 — 0.03 -0.56 < 0.51 -0.23 1.
42 CS29502-092 -3.30 -0.53 -0.14 -0.61 -0.07 -0.19 1., Aoki et al. (2002)
43 CS29517-042 -2.53 — 0.14 -0.26 0.00 -0.24 1.
44 CS30312-059 -3.41 — -0.05 -0.67 -0.05 -0.29 1.
45 CS30339-073 -3.93 -0.38 -0.08 -0.66 < 0.70 -0.36 1.
46 G25-24 -2.11 — 0.02 -0.43 -0.36 0.15 1.
47 HD110184 -2.52 — 0.10 -0.25 -0.13 0.00 2., Roederer et al. (2010)
48 HD175606 -2.39 -0.40 0.16 -0.26 0.07 -0.06 1.
49 HE0048-6408 -3.75 -0.39 -0.16 -0.65 < -0.07 -0.21 Placco et al. (2014)
50 HE0056-3022 -3.77 -0.35 -0.06 -0.75 0.11 -0.45 1.
51 HE0057-4541 -2.36 — -0.10 -0.37 — -0.51 3.
52 HE0105-6141 -2.58 — -0.04 -0.21 — -0.69 3.
53 HE0302-3417A -3.70 — -0.09 -0.51 -0.13 -0.65 4.
54 HE1320-2952 -3.69 -0.31 -0.09 -0.42 — -0.63 Yong et al. (2013a)
55 HE2302-2154A -3.88 — 0.01 -0.50 0.42 -0.76 4.
56 SDSSJ082511+163459 -3.22 — 0.19 — — -1.10 Caffau et al. (2011b)

Aoki star
57 J0018-0939 -2.46 -0.49 0.25 < -0.37 < 1.22 0.76 Aoki et al. (2014)

Notes. References are: 1. Roederer et al. (2014), 2. Honda et al. (2004), 3. Siqueira Mello
et al. (2014), and 4. Hollek et al. (2011).
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Figure 5.10: The abundance pattern of #34. CS22956-050. Red thick crosses show observed
values, while PISN yields are shown by thin lines.

inner density is artificially reduced to mimic the high entropy effect, successively
reproduce the observed high [Sc/Mg] ratios (Tominaga et al., 2014). On the other
hand, as the explosion mechanism is clearly elucidated, no degree-of-freedom for
this kind of modifications remains in PISN models.

Similarly, the abundance ratio of [Zn/Mg] is found to be useful for the discrim-
ination. In this case, only four stars are found to have low [Zn/Mg] < 0.3, #1.
BD+34 2476 ([Zn/Mg] = −0.47), #19. CS22896-110 ([Zn/Mg] = −0.34), #26.
CS22943-132 ([Zn/Mg] = −0.48), and #46. G25-24 ([Zn/Mg] = −0.36), while the
maximum theoretical value is [Zn/Mg] = −0.52 that is obtained by the most mas-
sive 260 M⊙ PISN. As an example, the abundance pattern of #34. CS22943-132 is
shown in Fig. 5.11. The small [Zn/Mg] ratio of the candidate star, if observed, will
separate itself from the other majority of metal-poor stars in the [Zn/Mg] plot;
otherwise the small abundance will be too faint to be detected. Physical origins
of the distinctive ratios are different. The small [Na/Mg] and [Sc/Mg] ratios are
representations of the odd-even variance of PISN yields, while the small [Zn/Mg]
ratio is due to the low explosion temperature, with which only a part of a star is
affected by the complete silicon burning.

Finally, I find that observed small ratios of [Cr/Co] < 0 introduce a critical
inconsistency in explaining those observations by PISN yields. For the demonstra-
tion, a metal-poor star, #37. CS22957-019, is plotted as an example in Fig. 5.12.
According to my yield calculations, chromium can be well produced by the lightest
145 M⊙ PISN, which yields [Cr/Mg] = −0.63. As a result, a small initial mass of ∼
145–150 M⊙ is estimated from the [Cr/Mg] observation. On the other hand, only
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Figure 5.11: The abundance pattern of #34. CS22943-132.
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Figure 5.12: The abundance pattern of #37. CS22957-019.
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Figure 5.13: The abundance pattern of #57. SDSS J0018-0939.

more massive PISNe can yield cobalt. For instance, at least 220 M⊙ is required
to produce [Co/Mg] > −0.83. This results in a large initial mass estimate of ∼
240 M⊙ by using the [Co/Mg] ratio. The inconsistent two initial masses clearly
reject the possibility to explain the stellar abundance by PISN yields. The same
discussion is possible applying other iron-peak elements of [Ti/Mg], [Fe/Mg], or
[Ni/Mg] than [Cr/Mg], but it is found that [Cr/Mg] tends to provide the smallest
initial mass.

5.2.3 SDSS J0018-0939

SDSS J0018-0939 is a metal-poor main-sequence star with a metallicity of [Fe/H]
= −2.46, discovered by Aoki et al. (2013). Aoki et al. (2014) further observe the
distinctive abundance pattern, which is characterized by the low [α/Fe] ratios of
[C, Mg, Si/Fe] and by the exceptionally small [Co/Ni] ratio. Despite the star
has the relatively large metallicity, they assume that the star possesses primitive
chemical abundances based on the low abundances of neutron-rich elements of
[Sr/Fe] < −1.8 and [Ba/Fe] < −1.3. One explanation given in the work is a
single nucleosynthesis by a very massive star occurring in the early universe. They
compare two theoretical yields with the observation; one is a Pop III 1000 M⊙
CCSN model exploded with 6.67 × 1053 erg (Ohkubo et al., 2006), and the other
is a Pop III 130 M⊙ PISN model (Umeda & Nomoto, 2002), and moreover discuss
that the low [C, Mg/Fe] and the low [Co/Ni] can be explained by the PISN model.

Figure 5.13 shows comparison between the stellar abundances of SDSS J0018-
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0939 (Aoki et al., 2014) and my PISN yield models. Interestingly, only upper limits
have been obtained for informative elements of scandium and zinc. Therefore the
star avoids an early stage rejection due to overproductions of these elements. Be-
sides, as pointed out in the original work, the exceptionally low cobalt abundance
works in a good direction. Thanks to the low [Co/Mg], the iron-peak elements
except for vanadium are compatible with massive PISN models of 240–260 M⊙.
However, on the other hand, there are two fundamental problems for the explana-
tion. First is the too weak odd-even variation of the observed pattern. Sodium,
aluminum, and vanadium in the star are apparently overproduced. Second is the
underproduction of calcium. The low calcium abundance may be matched with
the least massive PISN model yields, ! 145 M⊙. However, the mass range is
completely inconsistent with the estimate given by iron-peak elements. Although
the low cobalt abundance is still very interesting, contrary to Aoki et al. (2014), I
conclude that the abundance pattern of SDSS J0018-0939 is not compatible with
any of my PISN models.

5.3 Conclusion of this chapter

Yields from massive first stars of 12–140 M⊙ are calculated by the weak super-
nova explosion model, and the abundance patterns are compared with the three
most-iron-deficient stars discovered so far. The abundance pattern of SMSS 0313-
6708 can be explained by non-rotating massive 50–80 M⊙ models with large inner
boundaries of ejections, fej = 0.92–1.00. The non-rotating 60 M⊙ model provides
the best explanation for both the observed low [Mg/C] and the upper limits on
[Na, Al/C], while the low abundance of [Ca/C] can be consistently explained by
the 80 M⊙ model. The recent detection of [O/C] ∼ 0 strongly supports the con-
sistency of the explanation. Abundances of [N, O, Na/C] in HE 0107-5240 can be
consistently explained by a rotating 30 M⊙ model. The wide acceptable range in
fej = 1.01–1.13 suggests the robustness of this model. Moreover, 30 and 40 M⊙
models with slower rotations provide much better fitting results for the sodium
abundance. HE 1327-2326 has a small [O/C] and an interesting decreasing trend
of [Na, Mg, Al/C]. These abundances are consistently explained by both rotating
and non-rotating 15–40 M⊙ models, ejecting the mass from the outer edge of the
carbon burning regions, fej = 0.92–0.97. To explain the large abundance of [N/C],
much faster rotation or another origins than the single explosion may be needed.

In conclusion, I have constrained the initial parameters of source stars for
the three most-iron-deficient stars. Not only the deficiency of iron, but also the
enhancement of intermediate mass elements of carbon, nitrogen, oxygen, sodium,
and magnesium is an important feature of these stars. I have found that this
peculiar abundance feature is useful to constrain the initial parameters of the
progenitor star. The first comparison provides the indication of the existence of
the massive first stars of 15–80 M⊙ in the early universe. Moreover, the variation
in the estimated stellar rotation velocities suggests that the intrinsic diversity also
exists in the rotation properties of first stars. Similar analysis will be applicable to
other carbon enhanced HMP stars, which will be discovered by future observations.
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The results will be valuable to constrain the characteristics of the first stars in the
early universe.

More massive 145–260 M⊙ first stars explode as PISNe. The yields are calcu-
lated by one-dimensional hydrodynamic calculations. Thanks to the development
of a large compilation data of SAGA database, I have conducted the first system-
atic comparison between the theoretical PISN yields with surface abundances of
metal-poor stars including large number of data obtained from recent observations.

Unfortunately, I have found no candidate metal-poor stars included in the
sample that exhibit characteristic abundance signatures of PISN yields. Thus the
constraint on the very massive Pop III stars has not been obtained. First, the
predicted [Na/Mg] = −1.58 – −1.46 is too low to be compared with the current
stellar observations, and second, the high [Ca/Mg] = 0.78 – 1.35 exclude most
of the metal-poor stars out from the candidates of PISN children. However, by
making the direct comparisons, effectiveness of theoretically proposed abundance
patterns can be verified. In addition to the [Na/Mg] ratio, the [Sc/Mg] ratio is
found to be useful as the indicator of the odd-even variance of the PISN yields.
Also, the low [Zn/Mg] < −0.52 due to the low explosion temperature can be
used as a firm requirement for the candidate abundance pattern. The abundance
pattern observed in the iron-peak elements, in most cases, is found to give critical
inconsistency to the model yields: the small initial mass suggested by [Cr/Mg] is
in complete disagreement with the large initial mass obtained by [Co/Mg], if the
metal-poor star has a typical value of [Cr/Co] < 0. The interesting example, SDSS
J0018-0939, has the exceptionally small [Co/Mg] ratio as discussed in Aoki et al.
(2014). The large odd-Z abundances of [Na, Al, V/Mg] and the small [Ca/Mg]
are, however, inconsistent with PISN yields.
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Chapter 6

Conclusion

6.1 Summary and conclusion

The purpose of this thesis is to constrain the properties of massive first stars,
such as the initial masses and rotational properties, by conducting the abundance
profiling. The low metal abundances as well as the large scatters in the abundance
ratios suggest that metal-poor stars observed in the local universe are born from
the chemically primitive gas clouds existed in the early universe. Assuming that
chemical signatures of the first metal ejection are imprinted in abundances of a
metal-poor star, properties of the source star can be inferred by comparing the
surface abundance of the metal-poor star and theoretically calculated yields of first
stars.

In advance of the comparison, the characteristics of theoretical abundance pat-
terns should be understood to specify the parameters of theoretical models. To
begin with, I have calculated stellar yields of 12–140 M⊙ first stars with and with-
out taking stellar rotation into account. The weak explosion model is applied, in
which the explosion is assumed to be so weak that the explosive nucleosynthesis
does not change the outer distributing materials and only the outer weakly-bound
material is ejected. I have found that various abundance distributions realize in the
outer shell-helium regions. Yields of intermediate-mass α elements of magnesium
and silicon mainly depend on initial masses, and nitrogen and odd-Z elements of
sodium and aluminum depend on rotation velocities. These characteristic abun-
dance patterns are well reflected in the stellar yields, and therefore are useful to
deduce the properties of source stars.

Next, I have conducted a systematic calculation of explosion and nucleosynthe-
sis of PISNe. I have investigated the energetics and the formalisms to accurately
treat the energy conservation, and have confirmed the initial mass range of PISN
to be 145–260 M⊙. Nucleosynthesis of PISNe is calculated based on the accurate
explosion simulations, in order to find characteristic abundance patterns that can
be used to discriminate PISN signatures from the others. I have found that the
elemental yields can be divided into three groups based on the mass dependencies.
Abundance ratios of the first group, which consists of lighter elements of carbon to
aluminum in addition to scandium, are nearly mass independent. Thus the ratios,
[Na, Al, Sc/Mg], can be used as the first indication of the odd-even variance of
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PISN yields. Abundance ratios of the second group, from silicon to calcium, de-
pend on the initial mass. Therefore the ratios, [Si, Ca/Mg], are useful to determine
the initial mass of the PISN. The heaviest elements of iron-peak elements show
the strongest mass dependencies. The decreasing trend towards increasing mass
number, which can be indicated by small abundance ratios of [Ni/Fe] or [Zn/Ni],
can be the second requirement for PISN yields.

Finally, I have conducted abundance profiling utilizing theoretical yields calcu-
lated above. The yields of the weak explosion model are compared with the three
most-iron-poor objects discovered so far; SMSS 0313-6708 of [Fe/H] < −7.1, HE
0107-5240 of [Fe/H] = −5.3, and HE 1327-2326 of [Fe/H] = −5.7. The abundance
pattern of SMSS 0313-6708 is only explained by non-rotating 50–80 M⊙ models
with large inner boundaries of ejections, fej = 0.92–1.00. This is required to simul-
taneously explain the high magnesium abundance and low sodium and aluminum
abundances. The reliability of the model is further reinforced by recent observa-
tional confirmation of the high oxygen abundance of [O/C] ∼ 0. Abundances of
[N, O, Na/C] in HE 0107-5240 is explained by a rotating 30 M⊙ model. The wide
acceptable ejection parameter of fej = 1.01–1.13 indicates the robustness of the
model. The consistency of the model is also indicated as slower rotating models
of 30 and 40 M⊙ can provide better fitting results. HE 1327-2326 has a small
[O/C] and an interesting decreasing trend in [Na, Mg, Al/C] ratios. Rotating and
non-rotating 15–40 M⊙ models can explain the abundances, by ejecting stellar
materials from the outer edge of the carbon burning regions with fej = 0.92–0.97.
The high nitrogen abundance may require much faster rotation or another origin
than the single explosion.

In order to find the PISN signatures from the present metal-poor stellar sam-
ple, and to validate the applicability of characteristic abundance patterns for the
discrimination, I have conducted the first systematic comparison between the the-
oretical yields of PISN and the big stellar abundance data compiled in SAGA
database. Unfortunately, I have found no candidate metal-poor stars showing char-
acteristic signatures of PISN yields. The predicted low [Na/Mg] and high [Ca/Mg]
are too isolated from the main sequences of observed metal-poor stars. However,
this means that these characteristic abundance ratios are useful to discriminate the
hypothetical PISN children. In addition to [Na/Mg], the low abundance of [Sc/Mg]
is found to be useful to indicate the odd-even variance, and the low [Zn/Mg] can
be used as an indicator of the low temperature explosion of a PISN. Moreover, I
have found that the critical inconsistency is often resulted from the [Cr/Co] ratio;
the smaller initial mass indicated by [Cr/Mg] completely disagrees with the larger
mass obtained by [Co/Mg]. Although the exceptionally small [Co/Mg] in SDSS
J0018-0939 can avoid this inconsistency, the overabundance in odd-Z elements of
sodium, aluminum, and vanadium, and the small [Ca/Mg] ratio are incompatible
with any of my PISN yields.

Abundance profiling enables us to investigate the characteristics of massive
first stars existed in the far-away early universe.

By the comparison with the most-iron-deficient stars, indication of the existence
of ∼ 15–80 M⊙ first stars is obtained for the first time. Some of them would rotate,
but some of others would not. This indicates the diversity of the rotation properties
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of massive first stars. Further investigation will provide invaluable information on
the properties of massive first stars. On the other hand, the characteristic yields
of ∼ 100–140 M⊙ stars, large abundance ratios of [O/C] and [Mg, Si/C], have not
been found from the HMP stars. Moreover, no signature of PISN yields occurring
from 145–260 M⊙ first stars has been found from the current big sample of metal-
poor stellar abundances. These result are incompatible with the wide initial mass
distribution of first stars estimated by the recent cosmological simulations. Where
are children of very massive first stars? This remains a big open question in
investigations of the early universe.

6.2 Future prospects

In closing the thesis, I discuss future prospects on the theoretical investigations of
the early universe.

First, the direct proceeding of this work will be made to increase the comparison
number of the CEMP stellar samples for the abundance profiling of the weak
supernovae. So far, ∼ 20 CEMP stars have been discovered with the metallicities
of [Fe/H] < −4.0 (cf. Frebel & Norris, 2015). These are indeed good targets to
be compared with the model. Characteristic abundances of massive first stars,
especially from more massive side of ∼ 100–140 M⊙ that are missed from the
current comparison, may be found from the increasing samples.

Additionally, in order to maximize the applicability of the abundance profil-
ing, further understanding of theoretical yields of various CCSN explosions will
be done. The weak supernova model accounts for only a part of supernova ex-
plosions. Therefore, characteristic abundance patterns should be noticed for other
explosions, such as for usual 1051 erg explosions, for ten times more energetic hy-
pernovae (HNe), and for explosions with long GRBs. To discriminate HN yields
from different initial masses and rotations will be of prime importance, because
the majority of EMP stars, which have high [Co, Zn/Fe] ratios, are considered to
be born from HN yields (Umeda & Nomoto, 2005).

Possibly the various CCSN explosion properties are inherited from the initial
conditions of the progenitor evolution, such as the initial mass and the initial ro-
tation velocity. To confirm the relation between the initial conditions and the
fate, therefore, will be one of the most important challenge in the future. Such a
relation, perhaps, is obtainable for metal-rich stars by calibrating the theory with
observations. The key points here are how to accurately treat the effect of convec-
tion, stellar rotation, and binarity, which are currently only crudely estimated.

As for the metal-free stars in the early universe, however, it requires a special
care to reduce the results obtained for the metal-rich universe. For instance, the
pre-existence of a weak magnetic field is assumed for a rotating model in this thesis.
The magnetic field is enhanced by a dynamo and results in an efficient angular
momentum transport. However, the existence of the magnetic field in the early
universe as well as the specific mechanisms of the dynamo process are currently
only poorly investigated. Also, the evolution of binary system largely depends
on the evolution of radii of components. Since the radii of first stars are affected
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by mass loss and stellar rotation, completely different fates are possibly resulted
if different conditions are assumed for these processes. Physically fundamental
insights will be needed to construct a more reliable model for first stars.

As for the observational prospects, several progresses will be achieved. Fu-
ture surveys will significantly increase the number of observations of metal-poor
stars (e.g., the APOGEE survey; Majewski et al. 2010, the LEGUE survey; Deng
et al. 2012, the GALAH syrvey; Heijmans et al. 2012, and the Gaia mission;
Cacciari 2009). The large number of sample will enable us to conduct a statis-
tical investigation for abundance profiling. A mass distribution of first stars in
a range of ∼ 12–140 M⊙ may be obtained by the abundance profiling. Some of
the metal-poor stars may exhibit characteristic signatures of PISN yields in their
abundances. And ultimately, completely metal-free stars will be perhaps discov-
ered. This observational progress should be accompanied with the improvements
of the understanding of the stellar surface abundance. Currently, uncertainties on
a surface abundance measurement are often dominated by the theoretical uncer-
tainties due to 3D and non-LTE effects (Asplund, 2005). More accurate modeling
of stellar surface will be highly demanding in the near future.

Finally, several next-generation telescopes will start the operations in the next
decade. With the emergence of the Thirty Meter Telescope (TMT), the Extremely
Large Telescope (ELT), the Giant Magellan Telescope (GMT), and the James
Webb Space Telescope (JWST), much more accurate abundance determination
and detection will be achieved. Furthermore, the direct observations of the first
galaxies, the first supernovae, and perhaps even the first massive stars, will be
possible. The direct detections of the ultra-high-z objects will provide crucially
important information of the properties of first stars. In advance, theory should
provide invaluable predictions on how to interpret those signals from the first
objects and how to discriminate first objects from metal-poor but already metal-
polluted objects, which will be observed much more frequently.
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Gil-Pons P., Gutiérrez J., Garćıa-Berro E., 2007, A&A, 464, 667

Graboske H. C., Dewitt H. E., Grossman A. S., Cooper M. S., 1973, ApJ, 181, 457

Greif T. H., Glover S. C. O., Bromm V., Klessen R. S., 2010, ApJ, 716, 510

Greif T. H., Bromm V., Clark P. C., Glover S. C. O., Smith R. J., Klessen R. S., Yoshida N.,
Springel V., 2012, MNRAS, 424, 399

Hachisu I., Matsuda T., Nomoto K., Shigeyama T., 1990, ApJ, 358, L57

Haiman Z., Loeb A., 1997, ApJ, 483, 21

Hamuy M., 2003, ApJ, 582, 905

Hashimoto M., Nomoto K., Shigeyama T., 1989, A&A, 210, L5
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Appendix A

Relations on the thermodynamic
functions

A.1 Definitions of mass densities, number den-
sities, and mole fractions

When reactions occur, rest mass density becomes a non-conserved variable. In-
stead of the rest mass density, one may define the baryon number density nb as
the new conserved variable, employing the baryon number conservation as the
new conservation law. Using the baryon number density, pseudo mass density, or
also called as the baryon mass density, can be defined as ρb ≡ munb, which also
conserves regardless of reactions.

The baryon number density is related with the number density of ion, which
has the mass number of Ai, as

nb =
∑

ion

Aini. (A.1)

Ionic mole fraction Yi and mass fraction Xi are defined as

Yi ≡ ni/nb (A.2)

Xi ≡ ρi/ρb, (A.3)

where ρi ≡ Aimuni is pseudo mass density of i-th ion. Thus, a relation

Yi = Xi/Ai (A.4)

holds. Using the conservation relation
∑

ion Xi = 1, one may use the mass fractions
as dependent variables for chemical composition.

One may define the net electron number density and the net electron mole
fraction as

ne ≡
∑

ion

Zini (A.5)

Ye ≡ ne/nb (A.6)

=
∑

ion

ZiYi, (A.7)
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where Zi is charge number of i-th ion. Via charge neutrality, the net electron
number density is related with number densities of electron ne− and positron ne+

as

ne = ne− − ne+ . (A.8)

Like an ionic mole fraction, electron and positron mole fractions are defined as

Ye− ≡ ne−/nb, (A.9)

Ye+ ≡ ne+/nb. (A.10)

Then, the relation

Ye = Ye− − Ye+ (A.11)

is obtained.
Rest mass density of gas composed of photon, ions, electron, and positron are

written as

ρ =
∑

ion

mini +me−ne− +me+ne+ . (A.12)

Equating with above relations, one may obtain

ρc2

ρb
=

1

mu

[∑

ion

mic
2Yi +mec

2Ye + 2mec
2Ye+

]
, (A.13)

where the relation me ≡ me− = me+ is used. In the right hand side, a reaction only
changes the mole fractions, and thus the equation gives a simple way to calculate
the change of the rest mass per baryon by reactions.

A.2 The first law of thermodynamics

Macroscopic expression of the first law of thermodynamics is

dErel = TdS − pdV +
∑

particles

µrel
i dNi, (A.14)

where Erel is the total relativistic internal energy, S is the total entropy, V is the
volume, and Ni is the number of i-th particle contained in the system. One may
define a total baryon number in the system, Nb ≡

∑
ion AiNi, as a constant value.

Then, specific densities of the relativistic internal energy, the entropy, the volume,
and the number fractions are defined as

erel ≡ Erel/(muNb) (A.15)

s ≡ S/(muNb) (A.16)

1/ρb ≡ V/(muNb) (A.17)

Yi ≡ Ni/Nb. (A.18)
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Using these specific densities, the first law of thermodynamics in the specific den-
sity form,

derel = Tds− pd
( 1

ρb

)
+

1

mu

∑

particles

µrel
i dYi, (A.19)

is obtained.
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Appendix B

Kippenhahn diagrams of massive
first stars

Figure B.1: Kippenhahn diagrams of the non-rotating (left) and rotating (right) 12 M⊙ (top)
and 15 M⊙ (bottom) models.

100



Figure B.2: Kippenhahn diagrams of the non-rotating (left) and rotating (right) 20 M⊙ (top),
30 M⊙ (middle), and 40 M⊙ (bottom) models.
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Figure B.3: Kippenhahn diagrams of the non-rotating (left) and rotating (right) 50 M⊙ (top),
60 M⊙ (middle), and 70 M⊙ (bottom) models.
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Figure B.4: Kippenhahn diagrams of the non-rotating (left) and rotating (right) 80 M⊙ (top),
100 M⊙ (middle), and 120 M⊙ (bottom) models.

103



Figure B.5: Kippenhahn diagrams of the non-rotating (left) and rotating (right) 140 M⊙
models.
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Appendix C

Abundance patterns of
metal-poor stars
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Figure C.1: The abundance patterns of selected metal-poor stars. Red thick crosses show
observed values. Stars of #1–4 in Tab. 5.4 are plotted.
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Figure C.2: Same as C.1. Stars of #5–10 in Tab. 5.4 are plotted.
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Figure C.3: Same as C.1. Stars of #11–16 in Tab. 5.4 are plotted.
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Figure C.4: Same as C.1. Stars of #17–22 in Tab. 5.4 are plotted.
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Figure C.5: Same as C.1. Stars of #23–28 in Tab. 5.4 are plotted.
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Figure C.6: Same as C.1. Stars of #29–34 in Tab. 5.4 are plotted.
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Figure C.7: Same as C.1. Stars of #35–40 in Tab. 5.4 are plotted.
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Figure C.8: Same as C.1. Stars of #41–46 in Tab. 5.4 are plotted.
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Figure C.9: Same as C.1. Stars of #47–52 in Tab. 5.4 are plotted.
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Figure C.10: Same as C.1. Stars of #53–57 in Tab. 5.4 are plotted.
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