
 

 

Development and validation of  a cell-based optimally 

accurate method for computation of  synthetic 

seismograms for arbitrarily heterogeneous and 

anisotropic Earth models 

Application to spherical coordinates 

 

 

 

 

 

 

 

 

（要約）



         

 

 

 

 



PhD Thesis 

 

Development and validation of  a cell-based optimally 

accurate method for computation of  synthetic 

seismograms for arbitrarily heterogeneous and 

anisotropic Earth models 

Application to spherical coordinates 

 

 

 

Kei Hasegawa 

 

Department of  Earth and Planetary Science, 

Graduate School of  Science, University of  Tokyo 

 

December 2016 





Abstract

Methods for accurate and efficient computation of synthetic seismograms in highly

heterogeneous, anisotropic three-dimensional (3-D) models are essential for progress

in seismology. Presently available computational methods have greatly contributed

to research on inferring large scale 3-D Earth structure, but are not fully satisfactory

for use in forward and inverse studies of fine scale 3-D Earth structure, because (i)

most methods require great effort in setting up the computational mesh along inter-

nal boundaries and irregular surface topography; (ii) such irregular grids degrade

computational accuracy; and (iii) higher-order methods are well suited for applica-

tion to large scale heterogeneous models, but not to fine scale heterogeneous models.

To make it possible to accurately and efficiently compute synthetic seismograms for

arbitrarily anisotropic and heterogeneous fine scale 3-D models, we develop new

methods which we call the “cell-based optimally accurate method (C-OPT)” for

Cartesian and the “cell-based spherical optimally accurate method (CS-OPT)” for

spherical coordinates. In deriving CS-OPT we use a Jacobian transformation of the

weak-form of the equation of motion in order to avoid significant additional compu-

tational costs. We present several numerical examples of applications of C-OPT and

CS-OPT. We confirm their validity by stability and dispersion analyses, including

an analytic derivation of the stability limit of a predictor-corrector scheme of for a

2-D infinite, homogeneous, isotropic case. We show that the numerical dispersion

of C-OPT is two more order smaller than that of a conventional finite-difference



scheme. We also compare the accuracy of the synthetic seismograms computed

by C-OPT for 2-D media with those computed using the spectral element method

(SEM), which is presently one of the most widely used numerical methods. The per-

formance of C-OPT is better than SEM for fine scale heterogeneous media. These

results are also expected to hold for a comparison of CS-OPT to SEM in spherical

coordinates.
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Chapter 1

General Introduction

Seismograms contain vital information about rupture process of earthquakes (e.g.

Guo et al. 2013), mechanisms of volcanic eruptions (e.g. Ohminato et al. 2006),

and the interior structure of the Earth (e.g. Takeuchi 2007; Kawai et al. 2014;

French & Romanowicz 2015). Joining seismic analysis to knowledge of other fields

of study such as mineral physics, we have succeeded to reveal dynamic systems of

the Earth (e.g. Kawai & Tsuchiya 2009; Namiki et al. 2013). Presently, accurate

reproduction of seismograms under assumed source and structure models becomes

a critical step for highly-detailed seismic analysis. However, although there have

been many sophisticated methods, this step for general complex models has been

still a challenging work. In this thesis, we present a new method having potential

to enable efficient and accurate computation of synthetic seismograms for such

complex media.

In this chapter, we review historical development of studies for methods for

computation of synthetic seismograms and their applications in Section 1.1, and see

1



Chapter 1 General Introduction 2

missing points in previous studies from the author’s point of view in Sections 1.2

and 1.3. Then we give the purpose of this thesis in Section 1.4. Finally, we give an

overview of this thesis in Section 1.5.

1.1 Numerical methods and their applications in

seismology

In the past decades from the 1970s, most programs of seismology are focused on

stratified media. Many methods specialized to compute synthetic seismograms for

such media have been presented. Notable examples are the reflectivity method

(e.g. Fuchs & Müller 1971; Kennett 1983), the modal superposition approach

(e.g. Gilbert 1970; Woodhouse 1988), and the direct solution method (DSM;

Geller & Ohminato 1994). The reflectivity method and the modal superposition

approach are, respectively, well-suited to compute body-waves at high frequencies

and surface-waves at low frequencies, and applied to several studies (e.g. Lay &

Helmberger 1983; Grand & Helmberger 1984; Ishi & Tromp 1999). But, for more

general purposes dealing with broad-band frequencies, DSM is well-suited to com-

pute complete synthetic seismograms including body-waves and surface-waves.

In DSM for global Earth’s problems, the displacement is decomposed by vec-

tor spherical harmonics, and then the partial differential equations for the expan-

sion coefficients are directly computed by solving a system of linear equations.

(e.g. Cummins et al. 1994ab). Further, DSM improved its efficiency and accuracy

by using the modified operators of the optimally accurate method (OPT; Geller



Chapter 1 General Introduction 3

& Takeuchi 1995 cited as GT95 below). Presently, DSM-software is a promising

method for efficient and accurate computation of complete synthetic seismograms

for laterally homogeneous structures (Kawai et al. 2006). Using DSM and efficient

algorithms for computation of partial derivatives for model parameters (Geller &

Hara 1993), full-waveform inversions have been extensively conducted to estimate

3-D models of the S-velocity structure of the whole mantle (Takeuchi 2007), fine

scale 1-D models of the S-velocity structure of the lowermost mantle (Kawai et

al. 2007ab, 2009, 2010; Kawai & Geller 2010abc; Konishi et al. 2009, 2012), and

fine scale 1-D models of the S-velocity and Q structures of the mantle transition

zone (Fuji et al. 2010). Recently, the inversion method is extended for estimation

of fine scale 3-D S-velocity models, and applied for the lowermost mantle (Kawai et

al. 2014; Konishi et al. 2014; Suzuki et al. 2016).

For 2-D and 3-D heterogeneous media, full-numerical methods, in which the time

and the space are fully discretized, will be preferable, and many methods have been

presented. These methods basically can be classified by two formulations construct-

ing their basis: the strong and weak forms of the equation of motion (see Strang

& Fix 1973 for their difference). Notable examples for strong form-based methods

include the finite-difference method (FDM; Altherman & Karal 1968; Boore 1970;

Kelly et al. 1976, Virieux 1984, 1986; Korn 1987; Levander 1988; Igel et al. 1995;

Ohminato & Chouet 1997) and the pseudo-spectral method (PSM; Furumura et

al. 1998ab). Notable examples for weak form-based methods include the conventi-

nal finite-element method (FEM; Mullen & Belytschko 1982; Marfurt 1984; Bao et

al. 1998; Zhang & Verschuur 2002; Koketsu et al. 2004), the discontinuous Galerkin
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method (Käser & Dumber 2006), the Chebyshev FEM (Seriani & Priolo 1994),

and the spectral element method (SEM; Patera 1984; Komatitsch & Vilotte 1998;

Komatitsch & Tromp 1999; Komatitsch et al. 2000ab). Besides, a sophisticated

reflectivity method for irregularly layered structures (Koketsu 1987; Koketsu et

al. 1991), and a method based on a modified scattering theory (Wu & Zheng 2014)

are also notable methods suitable for relatively simple heterogeneous structures.

Hybrid methods between full-numerical and semi-analytical methods are also pre-

sented for 3-D regionally heterogeneous problems (Zahradńık & Moczo 1996; Wen

& Helmberger 1998; Capdeville et al. 2003ab; Montellier et al. 2013).

On the author’s knowledge, FDM was first introduced for seismic wave analy-

sis by Altherman & Karal (1968). Boore (1970) and Kelly et al. (1976) are also

notable early researches to apply FDM to reproduce seismograms for 2-D hetero-

geneous media. The above studies used the collocated grid with the displacement

formulation of the equation of motion, but to improve accuracy and efficiency, es-

pecially for heterogeneous media and higher P/S-velocity ratio, the staggered-grid

with the velocity-stress formulation was introduced by Virieux (1984, 1986). The

staggered-grid method can efficiently implement any heterogeneous isotropic me-

dia, and relatively easily implement any topography of free surface (Ohminato &

Chouet 1997). To improve further accuracy, higher-order staggered-grid method

have been presented (e.g. Levander 1988 for the 4th-order scheme). Since FDM is

one of the simplest methods and can easily input complex structures, presently the

staggered-grid FDM had great success especially in regional scale problems (e.g.

Furumura, T. & Kennett, B. L. N 2008). However, as mentioned by Igel (2016),
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it is difficult to extend to general anisotropic media, or needs interpolations which

can degrade the accuracy (Igel et al. 1995). Although there need additional com-

putational costs to compute geometrical terms for spherical coordinates compared

to the cartesian case, several studies have been presented for spherical problems

(Igel & Weber 1995, 1996; Igel 1999; Igel et al. 2002; Jahnke et al. 2008; Zhang et

al. 2012).

PSM is a dispersionless method, and can handle general anisotropic media in a

straightforward manner, but ill-suited for parallel computation, and presently there

are few studies to apply it to realistic 3-D problems.

Recently, FEM begins to widely used for seismology since it can express to-

pography of free surface and internal discontinuities by using mesh deformations.

Lower-order FEMs are frequently used for simulation of seismic ground motion for

hazard prediction (e.g. Hori et al. 2016) due to its usability. For global seismology,

higher-order FEMs are preferable to many seismologists because of low numerical

dispersion properties. Among them, SEM is one of the most prominent methods be-

cause the mass matrix is diagonal and thus we can easily compute its inverse matrix,

which enable direct computation of the displacement at each time step. Notable

studies for SEM for spherical problems include Komatitsch & Tromp (2002ab),

Capdeville et al. (2003ab), and Cupillard et al. (2012), and notable studies for their

applications include To et al. (2011) for a modeling of an ultra-low velocity zone on

the core-mantle boundary beneath Hawaii, and Fichtner et al. (2009ab; 2013) for

full-waveform inversions for crust and mantle structures of Eurasian and Oceanian

regions.
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Although SEM had great success in studies to reveal large-scale global Earth’s

structures, there are also some disadvantages compared to lower-order FEM in prac-

tical applications: (i) it requires relatively larger computational costs than lower-

order methods of the same grid points since the bandwidth of the stiffness matrix is

relatively larger; (ii) it requires to consider strong deformation of elements in order

to align with discontinuities of a structure because SEM uses considerably larger el-

ements compared to lower-order FEM cases. Recently, Capdeville & Marigo (2007)

and Capdeville & Cance (2015) developed a method to derive a smoothed structure

against an original structure including many complex discontinuities, which will

enable to compete the equivalent seismograms to for the original structure without

the efforts of a mesh-generation. Further, to overcome larger computational costs,

SEM software-developers have taken full advantage of sophisticated computational

architecture such as GPU-computing (Komatitsch et al. 2010).

However, applications for 3-D fine scale heterogeneous structures such as lami-

nated crustal models (e.g. Champion et al. 2006), scattering crust/mantle models

(e.g. Furumura & Kennett 2008), and D′′ models (e.g. Kawai et al. 2014; To et

al. 2005, 2012) may have been still challenging works. Our method presented in

this thesis, which we call “cell-based optimally accurate method (C-OPT)”, will be

suited to computation of synthetic seismograms for such models. C-OPT is based

on the weak form of the equation of motion, because this formulation can easily

set up the boundary conditions for free surfaces and fluid-solid interfaces. In that

respect, C-OPT may be categorized into a lower-order scheme of FEM rather than

FDM. But similarly to FDM, in C-OPT the structure models are represented by
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regularly spaced cells (voxels), without requiring special gridding to match internal

discontinuities. Consequently, the topography of free surface and internal disconti-

nuities is approximated as staircases. Although the accuracy might be somewhat

degraded by the staircase approximation, this makes it much easier to conduct

simulations for complex structures than methods which require special grid gener-

ation for each model. To improve the accuracy, C-OPT uses original interpolations

and differential operators to optimize the net error of synthetic seismograms. As

a result, C-OPT has comparable accuracy as schemes having 4th-order accuracy

without significantly increasing computational costs. Furthermore, for spherical

coordinates we present a new method based on C-OPT, which we call “cell-based

spherical optimally accurate method (CS-OPT)”.

1.2 Error analysis for numerical methods

A method for stability and dispersion analysis was developed by von Neumann

& Richtmyer (1950), where they derived an upper limit of the temporal interval

versus a given spatial interval for a particular scheme by substituting a harmonic

ansatz into the scheme. Their interest was originally for the stability condition,

but presently their method has been also frequently used for numerical dispersion

analysis. Related to their work, Geller & Takeuchi (1998 cited as GT98 below)

and Geller et al. (2012 cited as GMH12 below) developed general frameworks for

stability analysis, but now we omit the detail (see Chapter 4 for detailed review).

Numerical dispersion is an artificial phenomenon which causes changes of the phase

velocities of P and S-waves depending on their wavelength and propagation direc-
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tions, and can occur even when the medium is isotropic and homogeneous. Since the

travel-times of P and S-waves are critical informations in seismology, suppressing

numerical dispersion is one of the most important criteria for setting up spatial and

temporal grid size of a particular scheme depending on desirable accuracy (needless

to say, in the extent satisfying the stability condition).

There have been many studies for dispersion analysis. Mullen & Belytschko (1982)

conducted the dispersion analysis for the conventional lower-order FEM. Mar-

furt (1984) suppressed the numerical dispersion of the lowest-order FEM by nu-

merically blending consistent and lumped mass matrices. Cohen (2002) showed the

dispersion analysis for many higher-order methods including SEM for the scalar

wave equation. For the elastic cases, De Basabe & Sen (2007) and Seriani & Oliveira

(2008ab) conducted the dispersion analysis for SEM. De Basabe & Sen (2010) stud-

ied effects of several time integration methods on the numerical dispersion of SEM.

Unanimously, their results show the prominent superiority of higher-order methods

including SEM.

However, although most error analyses emphasized dispersion analysis, small

dispersion does not necessarily guarantee the accuracy of synthetic seismograms.

Related to this controversy, Hasegawa et al. (2016) found existence of previously

unrecognized type of error in higher-order finite element methods (ho-FEMs) in-

cluding SEM, which is also shown in Appendix A. Moczo et al. (2011) is another

notable work to analyze the numerical error from different aspects.

Finally, regarding SEM, it can avoid strong error caused by discontinuities of the

structures by using deformed mesh aligning with the discontinuities. However, the



Chapter 1 General Introduction 9

mesh of SEM composes nested elements, where each element contains many grid

points. Consequently, the size of elements will be considerably larger than lower-

order FEMs of the same grid points. Then SEM requires strong deformation of the

mesh in order to align with discontinuities. Therefore, effects of such deformation

on the accuracy should also be considered. Oliveira & Seriani (2011) estimated

such effects by the dispersion analysis. But their interest is only for the scalar wave

equation. In Appendix B, we extend their analysis to the case of the elastic wave

equation, and we see a notable remark.

1.3 Previous works for optimally accurate method

(OPT)

GT95 developed a general error analysis for the error of synthetic seismograms based

on the perturbation theory and modal expansion for the numerical solution. Then

they derived the criterion of optimal accuracy, and modified operators satisfying

the criterion for the frequency-domain of the weak-form of the equation of motion

for horizontally homogeneous isotropic media. These operators have been applied

to DSM for computations of synthetic seismograms and their partial derivatives for

global Earth models (Takeuchi et al. 1996 for laterally homogeneous and isotropic

cases; Cummins et al. 1997 for axisymmetric heterogeneous and isotropic cases;

Takeuchi et al. 2000 for weakly heterogeneous and isotropic cases; Kawai et al. 2006

for laterally homogeneous and transversely isotropic cases). Related to these works,

Takeuchi & Geller (2003) developed an accurate representation of the source term of
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OPT when the source is located at an arbitrary point between the grid points, and

was implemented by Kawai et al. (2006). As mentioned in Section 1.1, presently

DSM-software has been widely used by many other researchers as well as our group

for studies of full-waveform inversions and forward modelings.

However, for more general purposes including computation of synthetic seismo-

grams for arbitrarily 3-D heterogeneous structures, the time-domain scheme of OPT

is highly desirable. GT98 developed modified FDM operators satisfying the crite-

rion of optimal accuracy for 1-D acoustic media, where they first derived the time-

domain implicit scheme, and then derived the predictor-corrector (P-C) scheme by

separating the implicit scheme into the zeroth-order and the first-order terms in

order to enable two-step explicit computations. Mizutani et al. (2000) showed that

P-C scheme of GT98 is essentially equivalent to Lax & Wendroff (1964) except for

small difference of implementation of source term. Takeuchi & Geller (2000 cited

as TG00 below) extended GT98 for 2-D and 3-D isotropic elastic media.

Regarding the accuracy of OPT, Mizutani et al. (2000) showed that although

PSM is most likely suitable for homogeneous cases, OPT shows better accuracy

than PSM for some heterogeneous cases. This work showed only for 1-D cases, and

considered for PSM. However, such a tendency might also hold for other higher-

order methods such as SEM; i.e., although higher-order methods are preferable to

homogeneous or large scale heterogeneous structures, these might be inaccurate for

fine scale heterogeneous structures. In contrast, although OPT might not have

prominent accuracy for homogeneous or large scale heterogeneous structures com-

pared to higher-order methods, OPT might have relatively robust accuracy even
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for fine scale heterogeneous structures. In other words, our inference is as follows.

Higher-order methods achieve their accuracy by minimizing the error of the numeri-

cal operators themselves. Consequently, their numerical operators require relatively

wide range of the footprints to compute the differentiation terms. Then higher-order

approximations might break down when there exists heterogeneity in the footprints

of the numerical operators. In contrast, OPT is designed to minimizes the error of

the numerical solution itself, but not the numerical operators themselves. Thus, it

uses relatively narrow range of the footprints of the numerical operators, and such

problem might not occur.

Although OPT has potential noted above, there has been a limitation in TG00:

our group found that there exist situations of instability of computation in TG00

unless spacial treatment is put on the free surface boundary condition. It is due to

presence of a negative eigenvalue of the stiffness matrix of TG00 in such situations.

To avoid such unstable situations, Geller et al. (2013ab cited as GMHT13 below)

recently developed the basic concept of C-OPT, which is a reformulated version of

OPT. In C-OPT, the whole volume is divided into cells to approximately compute

the integrals of the weak formulation, and in each cell, the sampling point of the

integration is put at the center of a cell. As shown in Chapter 2, the cell-based

formulation invariably guarantees nonnegative-definiteness of the stiffness matrix.

For efficient time integrations, GMH12 developed a modified P-C scheme which is

well-suited to C-OPT. However, although GMHT13 succeed to define the stiffness

matrix of C-OPT, they provisionally used the mass matrix of TG00.

In this thesis, we construct a complete form of C-OPT including fluid-solid cou-
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pling cases as well as the mass matrix. Then we extend C-OPT to CS-OPT for

spherical problems. Furthermore, the inference mentioned above on different behav-

ior of accuracy between OPT and higher-order methods is confirmed in Chapter 5,

where we compare accuracy of C-OPT with SEM for several 2-D vertically hetero-

geneous models.

1.4 Purpose of this thesis

In Section 1.1, we reviewed resent progress of numerical methods and their applica-

tions, and introduced C-OPT and CS-OPT presented in this thesis. In Section 1.2,

we reviewed error analysis of numerical methods especially for SEM, in which we

introduce the motivation for studies shown in the appendices of this thesis. In Sec-

tion 1.3, we reviewed the current situation for previous situation of studies for OPT

and see potential of OPT and difficulties in the pervious studies of OPT.

In this thesis, we establish fundamental theory of C-OPT for cartesian coor-

dinates, and CS-OPT for spherical coordinates. These methods are applicable to

arbitrary anisotropic and heterogeneous 3-D media including fluid-solid coupling

media. CS-OPT is well-suited to compute synthetic tele-seismic body-waves prop-

agating global models of the Earth. As mentioned in Section 1.3, it is the first

time to show a complete form of C-OPT which is applicable to general anisotropic

fluid-solid coupling 3-D media. Extension to spherical coordinates (CS-OPT) also

previously has not been presented. Derivations of stability condition and dispersion

properties of C-OPT (and CS-OPT) are also important topics in this thesis.

It is also important to reveal superior and inferior aspects of C-OPT (and CS-
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OPT) compared to previously developed other methods. In this thesis we focus

on SEM because it is not only one of the most prominent methods, but also can

be a representative method for higher-order methods. For this purpose, we con-

duct comparison of accuracy of C-OPT and SEM for homogeneous and vertically

heterogeneous models. Although, we consider only simple 2-D structures due to

limitation of computational resources, our results are consistent and systematic,

and thus these features will hold for general 3-D spherical cases. Therefore, here

we may show sufficient potential of C-OPT and CS-OPT by this study.

Finally, related to the above studies, we find several new remarks for accuracy

of SEM which previously have not been recognized. These results will contribute

to criterions for mesh-generation as well as comparison studies for SEM. Note that

these will be intrinsic features only for SEM and most other ho-FEMs, and not for

C-OPT (and CS-OPT). Although, these topics may not be directly related to the

above works for C-OPT, these can be supplemental results to compare C-OPT with

SEM, and thus we show them in the appendices of this thesis.

1.5 Overview of this thesis

This thesis is organized as follows:

Chapter 2: We show the theory of C-OPT. Some parts of C-OPT previously have

been presented by GMHT13. But here we show a complete form of C-OPT, espe-

cially derivation of the mass matrix and the fluid-solid boundary operators.

Chapter 3: We derive CS-OPT. We also show several numerical examples for ap-

plications of CS-OPT.
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Chapter 4: We conduct stability and dispersion analysis of P-C scheme of C-OPT

for the cases of the 2-D infinite, isotropic, homogeneous media.

Chapter 5: We compare accuracy of synthetic seismograms of C-OPT with SEM

for 2-D homogeneous and heterogeneous models.

Chapter 6: We mention the reaching points in this thesis, and future works

Appendix A: We conduct a general error analysis for ho-FEMs including SEM,

and show existence of previously unrecognized type of error in such methods. A sig-

nificant portion of this chapter was published in Geophysical Journal International

(2016, vol. 205, 1532–1547).

Appendix B: We study effects of grid-deformation on the accuracy of SEM by

using a new method of dispersion analysis which can be applicable to deformed

grids.
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Chapter 6

Conclusion

In this thesis, we established theoretical bases of a cell-based optimally accurate

method (C-OPT) for accurate and efficient computations of synthetic seismograms

for arbitrarily anisotropic and heterogeneous 3-D media including fluid-solid cou-

pling cases. For C-OPT, the structure models are represented by regularly spaced

cells (voxels), without requiring special gridding to match internal discontinuities.

This makes it much easier to conduct simulations for complex structures with ir-

regular internal boundaries than methods which require special grid generation for

each model. The numerical operators of C-OPT are designed to satisfy the criterion

for optimal accuracy of Geller & Takeuchi (1995; note that abbreviated citations

such as GT95 are not used in this chapter, in order to make it self-contained), which

enables accurate and efficient computation of synthetic seismograms.

For global scale Earth’s models including lateral heterogeneity and anisotropy,

we next extended these results by deriving a new method for spherical coordinates,

which we call a cell-based spherical optimally accurate method (CS-OPT). Although
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this thesis dose not present softwares of C-OPT and CS-OPT optimized to practi-

cal applications such as full-waveform inversions, our performance studies suggest

they will be promising methods for accurate and efficient computations of synthetic

seismograms.

We now summarize the contents of this thesis in more detail. Geller et al. 2013ab

previously develop the concept of C-OPT and define the stiffness matrix. In Chap-

ter 2, we presented a complete form of C-OPT including a derivation of the mass

matrix, and extended C-OPT to be applicable to fluid-solid coupling cases. We also

discussed the relation of C-OPT to previous studies of optimally accurate methods,

and showed that at inner nodes in a homogeneous medium, the numerical operators

for spatial differentiation are equivalent to previous versions of OPT (e.g. Takeuchi

& Geller 2000). In this sense C-OPT can be considered to be a reformulation of

previous OPT schemes. However, there were some instabilities due to the way the

operators for nodes at external boundaries were handled. C-OPT overcome these

difficulties.

In Chapter 3, we derived CS-OPT based on C-OPT operators. We showed that

by defining equivalent physical parameters for spherical coordinates, we can use the

same algorithm as C-OPT without any additional computations. This approach

will also be useful especially for schemes based on regular gridding. Although our

derivation is based on the weak form of the equation of motion, similar approach

may be able to used for strong form-based methods such as FDM. Although, our

software is still a prototype, we confirmed its validity by computations of synthetic

seismograms using CS-OPT for several Earth’s models.
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In Chapter 4, we conducted a stability and dispersion analysis of C-OPT. For op-

timally accurate time integration, C-OPT uses the predictor-corrector (P-C) scheme

of Geller et al. (2012). For P-C scheme for 2-D infinite, isotropic, homogeneous

cases, we analytically derived the stability limit as a function of S-wave to P-wave

velocity ratio. We also showed that “a second island of stability” (i.e., two stable

regions of the Courant number separated by an unstable region does) not exist for

this case. From dispersion analysis of C-OPT, we see that the numerical dispersion

of C-OPT is two orders of accuracy better than conventional FDM. This result

follows from the results of Geller & Takeuchi (1998) for the 1-D case. Although the

stability condition and the numerical dispersion of a particular method are widely

considered to be important to assess the validity of the numerical methods, such

analyses for P-C schemes for 2-D or 3-D cases had not been yet conducted. Our

analysis in Chapter 4 assumes an infinite homogeneous medium; this assumption is

commonly used in validation studies for numerical methods (e.g. von Neumann &

Richtmyer 1950). Geller & Takeuchi (1998) pointed out the importance of studying

stability condition for the case of heterogeneous finite media. Our study is a first

step towards such more general results.

In Chapter 5, we conducted a comparison of C-OPT and the spectral element

method (SEM) as a reference scheme. C-OPT can be categorized into a lower-order

scheme, and SEM is a higher-order scheme which is widely used in seismology.

First, we saw that SEM has prominent accuracy in applications to homogeneous

and weakly heterogeneous media, but that its accuracy is dependent on the amount

and type of the heterogeneity of the model. In particular, the accuracy of SEM
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worsens for fine scale heterogeneous models. In contrast, we saw that C-OPT

does not have better accuracy than SEM, but the accuracy is relatively robust

for both homogeneous and large/fine scale heterogeneous models, even for models

including internal discontinuities without any irregular gridding. These results are

also expected to hold for CS-OPT for spherical coordinates.

6.1 Future works

In my opinion, one of the most prominent advantages of C-OPT and CS-OPT is

that they can be used to conduct simulations for complex structures with irregular

internal boundaries without requiring special grid generation for each model. This

makes it much easier to input a model structure. Furthermore, we see that C-OPT

and CS-OPT provide sufficient and robust accuracy for both homogeneous and het-

erogeneous models, including models with strong high wavenumber heterogeneity,

or/and models with internal discontinuities. Thus, C-OPT and CS-OPT will be

suitable to conduct seismic wave simulations especially for complex structures such

as crustal models, mantle models with scattering, and heterogeneous D′′ models

with arbitrary anisotropy. They will be compatible with a full-waveform inversion

since we can conduct the inversion using regular gridding for both steps of waveform

computations (and their derivatives) and model perturbations.

Towards such practical applications, we have the following issues to be resolved

at most: (i) extension to anelastic media; (ii) implementation of a more effective

absorbing boundary condition; (iii) code-optimization for large-scale computations;

(iv) development of a multigrid scheme for C-OPT.
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For (i), we may have to consider a new C-OPT for the memory variable formu-

lation of C-OPT (Kay & Krebes 1999). But it may be sufficient to use C-OPT in

this thesis to solve the wave equation at each time step as just same as for the elas-

tic case, and use conventional methods to solve the partial difference equation for

the memory-variable tensors, because the numerical dispersion is the most impor-

tant error in synthetic waveforms, and C-OPT successfully suppresses the numerical

dispersion using the minimum bandwidth of matrix operators.

For (ii), it is worth introducing a perfect matched layer for an effective absorbing

boundary condition (Komatitsch & Tromp 2003), rather than the most simple for-

mulation of Cerjan et al. (1985) used in this thesis. However, we should eliminate

possibilities of presence of artifacts or/and unstable situations in the implementa-

tion.

For (iii), there are two approaches for the implementation of C-OPT. One is “the

element-based implementation”, in which we compute the derivatives of the stress

tensor by computing them for each cell and time step, and then assemble them.

The other is “the global matrix implementation”, in which we first define the global

stiffness matrix, and then for time step we compute the derivatives of the stress

tensor by operating the global stiffness matrix on the displacement at the current

time (needless to say, we should make computations only for non-zero elements of

the matrix). Although the former approach can be easily implemented, however, the

latter approach is preferable due to the low costs of computing extra-intermediate

variables. But, its memory usage is less efficient than the former approach despite

that the global matrix is sparse. Thus, it depends on a computer architecture.
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An optimal implementation for large scale parallel computations will also be an

important future work. For this purpose, we should separate the 3-D spatial region

so that for each time step the amount of computational costs is nearly equal for

each computation-node. Minimizing the amount of data communications between

computation-node is also important.

Finally, for (iv), one of the most famous approaches is the mortar method (e.g.

Bernardi et al. 1990, 1994), in which for each time step we simply make computa-

tions separately for each region in which we use a uniform size of regular mesh, and

then connect the displacement along the boundaries of the separated regions with

proper boundary conditions. However, this approach can often cause artifacts along

the boundaries. Thus, it may be more preferable to develop a cell which connects

small and large cells.
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Appendix A

Error analysis of SEM I: effect of

degenerate coupling

Waveform inversion for Earth structure (e.g., Fichtner et al. 2013; Kawai et al. 2014)

requires accurate methods for computing synthetic seismograms. Many higher order

finite-element methods have been proposed for use in computing synthetic seismo-

grams, notably SEM (e.g., Komatitsch & Vilotte 1998). Most error analyses of

ho-FEMs including SEM have emphasized dispersion analysis (e.g., De Basabe &

Sen 2007; Seriani & Oliveira 2008ab; Ainsworth & Wajid 2009; Kolman et al. 2013),

but Thompson & Pinsky (1994) and Mulder (1999) also studied the errors of eigen-

functions for a 1-D case. Moczo et al. (2011) conducted an analysis of the “local

error” of many numerical schemes, including ho-FEMs, and studied its dependence

on the P-wave to S-wave velocity ratio on the basis of both theory and numerical

experiments.

The purpose of this appendix is to derive a theoretical framework for making a

129
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systematic study of the error of synthetic seismograms computed using ho-FEMs,

rather than just the dispersion error. We show the existence of a previously un-

recognized type of error due to degenerate coupling between waves with the same

frequency but different wavenumbers. We confirm this result by conducting numer-

ical experiments for an application of SEM to the 2-D elastic case using methods

similar to those used by Mulder (1999) for the 1-D case.

A significant portion of this appendix was published in Geophysical Journal

International (2016, vol. 205, 1532–1547).

To avoid confusion, in the following appendices we use the word “cell” as volume

element of FEM, and use the word “element” as the elements of matrices.

A.1 Theory for formal estimates of numerical er-

ror

We begin by reviewing GT95 derivation of the theory for making formal estimates

of the error of numerical solutions of the elastic equation of motion, which we then

extend to the case of modes with equal or nearly equal frequencies. The derivation

of GT95 is for a frequency-domain scheme. The extension to time-domain schemes

is given by GT98 and TG00 and to predictor-corrector time domain schemes by

GMH12.

GT95 represent all numerical schemes in the framework of the weak form of the

elastic equation of motion (e.g., Geller & Ohminato 1994). The discretized equation

of motion for a heterogeneous elastic medium with free surface boundary conditions
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is given by

(
ω2T−H

)
c = −g, (A.1)

where ω is the frequency, T is the mass matrix, H is the stiffness matrix, c is the

vector of expansion coefficients for the trial functions, and g is the discretized force

vector. In the basis of trial functions, the elements of the mass matrix, the stiffness

matrix, and the force vector are given respectively by

[T]ij =

∫
V

[
φ(i)
α

]∗
ρφ(j)

α dV (A.2)

[H]ij =

∫
V

[
φ
(i)
α,β

]∗
Cαβμνφ

(j)
μ,νdV (A.3)

[g]i =

∫
V

[
φ(i)
α

]∗
fαdV, (A.4)

where “[·]ij” and “[·]i” represent the elements in the basis of trial functions, α, β, μ,

and ν represent dummy indices for the x, y or z axes, and summation over repeated

subscript indices is implied. φ
(i)
α is the α-component of the ith trial function, “,β”

denotes spatial differentiation with respect to the β-coordinate, ρ is the density,

Cαβμν is the elastic modulus, fα is the external body force, and V denotes the entire

volume of the medium. The displacement is represented as a linear combination of

the trial functions:

uα =
∑
i

[c]iφ
(i)
α . (A.5)

We formally denote the exact operators by T(0) and H(0), the exact solution by

c(0), the numerical operators by T and H, the error of the numerical operators by
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δT and δH, and the error of the numerical solution by δc, where

T = T(0) + δT (A.6)

H = H(0) + δH (A.7)

c = c(0) + δc. (A.8)

The eigenvalue problem for the exact operators is

[
ω2
iT

(0) −H(0)
]
ci = 0, (A.9)

where ωi is the eigenfrequency of the ith mode, and ci is the eigenvector. The

modes are orthonormalized as follows:

c∗iH
(0)cj = ω2

i c
∗
iT

(0)cj = ω2
i δij, (A.10)

where the superscript ∗ indicates the conjugate transpose, and δij is a Kronecker-δ.

The exact equation of motion can be formally written as follows:

[
ω2T(0) −H(0)

]
c(0) = −g. (A.11)

The error of the solutions, δc, can be estimated using the first-order Born approx-

imation:

[
ω2T(0) −H(0)

]
δc = − (

ω2δT− δH
)
c(0). (A.12)
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We represent the solution of eq. (A.11) in terms of an eigenfunction expansion,

c(0) =
∑
i

d
(0)
i ci. (A.13)

The expansion coefficient of the ith mode is given by

d
(0)
i = −gi/

(
ω2 − ω2

i

)
, (A.14)

where

gi = c∗ig. (A.15)

The denominator of the right-hand side of eq. (A.14) will be small, and thus d
(0)
i

will be large, when ω is close to ωi. d
(0)
i will be negligible except when ω is in the

vicinity of ωi.

GT95 did not discuss the case in which several modes have identical or nearly

identical eigenfrequencies; we consider that case below, but for the moment we

continue with the derivation of GT95. We also represent the solution of eq. (A.12)

in terms of an eigenfunction expansion,

δc =
∑
i

δdici. (A.16)

The expansion coefficient for the ith mode is given by

δdi = −
∑

j (ω
2δTij − δHij) d

(0)
j

ω2 − ω2
i

, (A.17)



Appendix A Error analysis of SEM I 134

where the matrix elements in eq. (A.17) are given by

δTij = c∗iδTcj, δHij = c∗iδHcj. (A.18)

GT95 considered the case in which there were no other modes with frequencies

equal or nearly equal to ωi. For that case, by the same argument used above for

eq. (A.14), the i-component of the error (i.e., δdi) will be large only when ω is close

to ωi. However, in the vicinity of ω = ωi, only d
(0)
i will be large; the expansion

coefficients of all the other modes will be negligible. Therefore in the vicinity of

ω = ωi, the j �= i terms in the summation in eq. (A.17) can be neglected. The

expansion coefficient of the ith mode is therefore approximately given by

δdi = −(ω2δTii − δHii) d
(0)
i

ω2 − ω2
i

. (A.19)

We thus see from eq. (A.19) that the relative error of the numerical solution in the

vicinity of ω = ωi can be approximated by

δdi

d
(0)
i

= −ω2δTii − δHii

ω2 − ω2
i

= −δTii (ω
2 − δHii/δTii)

ω2 − ω2
i

. (A.20)

Eq. (A.20) shows that in general the relative error will greatly increase as ω → ωi.

However, if the numerator of eq. (A.20) is also proportional to (ω2−ω2
i ), the relative

error will not worsen appreciably as ω → ωi. Such proportionality can be achieved
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if and only if the respective errors of the numerical operators approximately satisfy

ω2
i δTii − δHii = 0 (A.21)

for every mode. GT95 refer to schemes whose operators approximately satisfy

eq. (A.21) as “optimally accurate.”

The above results show that under the assumptions made in the above derivation

only the diagonal matrix elements significantly affect the error of the numerical

solution and that the matrix elements for coupling between modes, δTij and δHij,

i �= j, do not significantly affect the error of the numerical solution. Eq. (A.20)

shows that the relative error of the numerical solution obtained using operators

that approximately satisfy eq. (A.21) is approximately given by

∣∣∣∣∣ δdid
(0)
i

∣∣∣∣∣ = |δTii| , (A.22)

as ω → ωi. On the other hand, if the operators do not approximately satisfy

eq. (A.21), then eq. (A.20) shows that the relative error will worsen drastically as

ω → ωi.

The eigenproblem for the numerical operators is

[(
ω
(num)
i

)2

T−H

]
c
(num)
i = 0. (A.23)

Omitting details, we note that GT95 (see their eq. 2.28) showed, using first-order

perturbation theory, that the error of the eigenfrequencies of the numerical operators
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is given by (
ω
(num)
i

)2

− ω2
i ≈ 2ωiδωi ≈ δHii − ω2

i δTii. (A.24)

Thus eq. (A.21), which GT95 derived by minimizing the error of the numerical

solution, can also be derived by requiring the error of the eigenfrequencies of the

numerical operators (i.e., the solutions of eq. A.23) to be approximately equal to

zero. Since the modes are a complete set, the sum of all the modes yields a complete

synthetic seismogram. If the eigenfrequencies are all accurate to some given order,

the velocity of P and S-waves in the numerical solutions will be accurate to the

same order. Note that the eigenfrequencies for a heterogeneous medium play the

same role as the phase velocities for a homogeneous medium. Thus suppressing

numerical dispersion is equivalent to minimizing the error of the eigenfrequencies

of the numerical solutions.

Now let us return to eq. (A.17), above, in GT95’s derivation and consider the

case for which two or more modes have identical or nearly identical eigenvalues. For

the optimally accurate O(2, 2) finite difference operators considered by GT95 and

the 2-D and 3-D optimally accurate time-domain schemes of TG00 and GMHT13

we have

δT ≈ FT(0), δH ≈ FH(0), (A.25)

where F is a constant. Thus for i �= j, δTij ≈ 0 and δHij ≈ 0, and the GT95

derivation holds approximately even for the case of equal or nearly equal eigenvalues

(as coupling between modes can be neglected in eq. A.17 because the relevant matrix

elements are nearly zero). On the other hand, if there are modes with nearly
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identical or identical frequencies for the more general case where

δHij �= 0, δTij �= 0 for i �= j, (A.26)

then we cannot reduce eq. (A.17) to eq. (A.19). For this case we can have large

errors in the numerical solution even when the numerical operators are designed so

that δωi in eq. (A.24) is zero, because the relative solution error |δu/u| can greatly

increase for degenerate or nearly degenerate cases.

A.1.1 Perturbation theory for degenerate cases: a simple

example

We consider a case where the first and second modes of the exact problem have the

same eigenfrequency:

ωide = ω1 = ω2, (A.27)

and all the other modes have different eigenfrequencies. For this case we no longer

can use eq. (A.24) to estimate the eigenfrequencies of the numerical operators. We

must instead solve the following eigenvalue problem:

⎛
⎜⎜⎝ δH11 − ω2

ideδT11 δH12 − ω2
ideδT12

δH21 − ω2
ideδT21 δH22 − ω2

ideδT22

⎞
⎟⎟⎠
⎛
⎜⎜⎝ ai1

ai2

⎞
⎟⎟⎠ ≈ 2ωideδωi

⎛
⎜⎜⎝ ai1

ai2

⎞
⎟⎟⎠ for i = 1, 2

(A.28)

to obtain the two sets of expansion coefficients ai and the estimated values of the

two respective eigenfrequencies of the numerical operators ωide + δωi (i = 1, 2).

Even if the exact eigenfrequencies are identical, the numerical eigenfrequencies will
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in general be split (δω1 �= δω2) , and we assume that to be the case here.

We now show in more detail how the splitting causes inaccuracies in the nu-

merical solution. For simplicity, we consider a case where the force vector g has a

non-zero value for the first mode (g1 �= 0), and all of the other components are zero

(gi = 0 for i �= 1). For this case, only the first mode should be excited. However,

the expansion coefficient of the numerical solution for the second mode is

δd2
|d(0)| =

δd2

d
(0)
1

= −δT21 − 2a12a22ωide
δω1 − δω2

ω2 − ω2
ide

, (A.29)

where we normalized the eigenfunctions as follows:

|ai1|2 + |ai2|2 = 1 (A.30)

det

⎛
⎜⎜⎝ a11 a12

a21 a22

⎞
⎟⎟⎠ = 1. (A.31)

When ω is close to ωide, the denominator of the second term in eq. (A.29) will

be close to zero. Thus δd2 will in general be large unless the numerator of the

second term of (A.29) is zero (i.e., unless there is no splitting), which will in general

not be the case. Thus the splitting will in general cause an artificial excitation of

the second mode in the numerical solution, except that if the numerical operators

approximately satisfy eq. (A.27), this will not occur because the 2 × 2 matrix in

eq. (A.28) is diagonal and a12 is zero, and therefore the second term in eq. (A.29)

will be zero. We present a simple example in the next section to show the occurrence

of such errors due to degenerate coupling in elastic wave simulations using SEM.
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A.2 Numerical experiment

We now consider a simple computational example which shows the effects of de-

generate coupling. We proceed as follows. In Section A.2.1, we discretize the weak

form of the elastic equation of motion using SEM, and in section A.2.2 we spe-

cialize this derivation to the case of a homogeneous medium. In Section A.2.3, we

use these results to derive the solution for the initial condition of a plane wave at

time t = 0. We show that the problem can be reduced to a matrix equation for

a single cell, giving an easily solvable problem. In Section A.2.4, we show how to

find frequency-wavenumber pairs for which degenerate coupling occurs. In Section

A.2.5, we show that the error of the numerical solutions degrades in the vicinity of

the degenerate frequency-wavenumber pairs, as predicted by our theoretical results.

A.2.1 SEM discretization

We consider a 2-D infinite homogeneous medium, with x and y as the independent

variables. The Galerkin discretized form of the homogeneous equation of motion

(i.e., the equation for the case of no applied external force) in the time-domain is

given by:

∫
V

ρ
[
φ(m)
α

]∗
üαdV +

∫
V

[
φ
(m)
α,β

]∗
Cαβμνuμ,νdV = 0 for each value of m, (A.32)

where φ
(m)
α is the α-component of the mth trial function, uα is the α-component of

the displacement, and üα is the α-component of the acceleration. The displacement
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uα(t, x, y) is expressed in terms of a trial function expansion as follows:

uα(t, x, y) =
∑
n

dn(t)φ
(n)
α (x, y), (A.33)

where dn(t) are the expansion coefficients of the trial functions.

We divide the whole space V into a uniform cartesian mesh with cells whose

sides have length h. At this point we are using m as a generic index for the trial

functions; the numbering for our particular case is discussed below. We define the

coordinates of the nodes of the mesh to be

(xNx , yNy) = (hNx, hNy), (A.34)

where Nx and Ny, the indices denoting the cells (and also denoting the node at the

lower left corner of each cell), span all integers. Then the domain of integration of

eq. (A.32) is divided as follows:

∞∑
Nx=−∞

∞∑
Ny=−∞

{∫ h

0

∫ h

0

ρ
[
φ(m)
α (x+ hNx, y + hNy)

]∗
üα(t, x+ hNx, y + hNy)dxdy

+

∫ h

0

∫ h

0

[
φ
(m)
α,β (x+ hNx, y + hNy)

]∗
Cαβμνuμ,ν(t, x+ hNx, y + hNy)dxdy

}
= 0.

(A.35)

Note that, for simplicity, we omit explicit mention of the fact that the equations

apply to each value of m in eq. (A.35) and below.
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A.2.2 SEM formulation for homogeneous medium

We henceforth restrict our discussion to the case of a homogeneous 2-D medium.

Thus in the remainder of this appendix ρ and Cαβμν are constants. We now define

trial functions for a single cell. Most SEM implementations use Legendre-Lagrange

interpolation for shape functions in conjunction with the Gauss-Lobatto-Legendre

(GLL) quadrature rule (see, e.g., Karniadakis & Sherwin 2005 for a general discus-

sion). For SEM of polynomial order n, we define GLL points as follows for a single

cell 0 ≤ x, y ≤ h:

x0 = y0 = 0 < x1 = y1 < · · · < xn = yn = h. (A.36)

Note that the values in eq. (A.36) are for the GLL interpolation points within a

single cell and should not be confused with the coordinates of the corners of the

cells defined in eq. (A.34).

We write the scalar SEM interpolation functions within a single cell, 0 ≤ x, y ≤

h, as follows:

s(px,py)(x, y) for px = 0, · · · , n; py = 0, · · · , n, (A.37)

Note that we follow the standard definition of the scalar SEM interpolations func-

tions, so that s(px,py)(x, y) = 1 at the point (xpx , ypy) and is equal to 0 at all of the

other SEM interpolation points.

We next define vector SEM interpolation functions as follows:

s
(q)
i (x, y) = s(px,py)(x, y)δiη, (A.38)
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where η is the coordinate direction (either x or y) for which the vector SEM in-

terpolation function is non-zero at the point (xpx , ypy), and where q is a pointer to

(η, px, py). Each pointer to a vector SEM interpolation function has three indices,

but through straightfoward bookkeeping they can be arranged in a one-dimension

array for ease of computation (see Appendix A4 of Geller & Ohminato 1994 for

one example). There are (n+1)2 scalar SEM interpolation functions and 2(n+1)2

vector SEM interpolation functions for a single cell; thus the indices of the vector

SEM interpolation functions in eq. (A.38) are in the range 1 ≤ q ≤ 2(n+ 1)2.

We now consider the (Nx, Ny)-th cell, for which

⎧⎪⎪⎨
⎪⎪⎩

hNx ≤ x ≤ h(Nx + 1)

hNy ≤ y ≤ h(Ny + 1),

(A.39)

and we define trial functions such that continuity of displacement is satisfied at

the inter-node boundaries. We write the mth trial function in this cell, φ
(m)
i (x +

hNx, y + hNy), as a linear combination of the vector SEM interpolation functions:

φ
(m)
i (x+ hNx, y + hNy) =

∑
q

[
Φ(m;Nx,Ny)

]
q
s
(q)
i (x, y), (A.40)

where Φ(m;Nx,Ny) are the vectors of the expansion coefficients of the vector interpo-

lation functions of SEM, and where “[·]q” represents the qth element of the vector

in the brackets. The coefficients of the trial functions must be chosen so that dis-

placement is continuous at nodes on the cell boundaries.
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The α-component of the trial functions at the GLL points are given by:

φ(m)
α (xpx + hNx, ypy + hNy) =

[
Φ(m;Nx,Ny)

]
q
. (A.41)

To satisfy continuity of the trial functions at inter-cell boundaries, we require the

expansion coefficients to satisfy the following conditions:

[
Φ(m;Nx+1,Ny)

]
(α,0,py)

=
[
Φ(m;Nx,Ny)

]
(α,n,py)

(A.42)

[
Φ(m;Nx,Ny+1)

]
(α,px,0)

=
[
Φ(m;Nx,Ny)

]
(α,px,n)

. (A.43)

We now express the displacement as a linear combination of the trial functions, as

shown in eq. (A.33), and then substitute this expansion into eq. (A.35) to obtain

the following system of linear equations:

TGd̈(t) +HGd(t) = 0, (A.44)

where TG and HG are the global mass and stiffness matrices, respectively. The

element of the local mass and stiffness matrices, TL and HL, respectively, in a

single cell are

TL
qr =

∫ h

0

∫ h

0

s
(q)
i ρs

(r)
i dxdy (A.45)

HL
qr =

∫ h

0

∫ h

0

s
(q)
i,j Cijkls

(r)
k,ldxdy, (A.46)

where the integrations in eqs. (A.45) and (A.46) are approximately calculated using
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GLL quadrature. The local matrices for each cell are overlapped following standard

ho-FEMs so that the continuity conditions (eqs. A.42 and A.43) are satisfied when

assembling the global matrices in eq. (A.44).

In this appendix, we omit the explicit forms of the interpolation functions and

the details of the implementation of the SEM.

A.2.3 Formulation of numerical experiment

The discussion in Section A.2.1 is for a general case and that in Section A.2.2 for

the homogeneous case in general. In this section, however, we derive results for a

particular simple case. We solve eq. (A.44) for the case of an infinite, homogeneous,

isotropic medium where the initial conditions are a harmonic plane wave for the

displacement and velocity field at t = 0. The discretized form of a harmonic plane

wave with wavenumber vector


k = (kx, ky) (A.47)

(Note that we are using the arrow over the wavenumber vector 
k to indicate a

physical vector as opposed to a vector in the sense of linear algebra.) is

[
ψ(Nx,Ny)(t;
k)

]
q
= Aα exp

(
ikx(xpx + hNx) + iky(ypy + hNy)− iωt

)
= Aα exp

(
ikxxpx + ikyypy − iωt

)
exp(ikxhNx + ikyhNy)

=
[
ψ(0,0)(t;
k)

]
q
exp(ikxhNx + ikyhNy), (A.48)
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where i =
√−1, q is, as discussed above, a pointer to one of the vector SEM

interpolation functions, and

[
ψ(0,0)(t;
k)

]
q
= Aα exp(ikxxpx + ikyypy − iωt). (A.49)

Note that the last line of eq. (A.48) shows that the discretized plane wave for an

arbitrary cell can be easily expressed in terms of that for the (0, 0)-th cell. The

amplitude vector is


A = (Ax, Ay) = D(kx, ky) (A.50)

for P-waves and


A = (Ax, Ay) = D(−ky, kx) (A.51)

for S-waves, where without loss of generality

D = (k2
x + k2

y)
−1/2, (A.52)

and ω is the frequency given by

ω = c
√

k2
x + k2

y, (A.53)

where

c =
√

(λ+ 2μ)/ρ (A.54)

for P-waves and

c =
√

μ/ρ (A.55)
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for S-waves, where λ and μ are the Lamé constants and ρ is the density.

We specify the respective initial conditions for the displacement and velocity to

be as follows:

u(Nx,Ny)(0) = ψ(Nx,Ny)(0;
k) (A.56)

u̇(Nx,Ny)(0) = ψ̇
(Nx,Ny)

(0;
k). (A.57)

The physically meaningful range of the wavenumbers in eq. (A.48) is

−πn/h = −kmax < kx, ky ≤ kmax = πn/h, (A.58)

where kmax corresponds to the Nyquist sampling rate.

We now show that eq. (A.44) with the initial conditions eqs. (A.56) and (A.57)

can be reduced to 2n2 simultaneous differential equations, and that the numerical

wavefield calculated by SEM can be written in the same form as the last line of eq.

(A.48), with ψ(0,0)(t;
k) replaced by any other function. Such functions are called

Bloch functions (e.g., Brillouin 1953).

We assume the following form for Φ(m;Nx,Ny)

Φ(m;Nx,Ny) = z(q)(
k) exp(ikxhNx + ikyhNy), (A.59)

where the index of the trial functions, m, is replaced by q and 
k. The physical

meaning of eq. (A.59) is that the global trial functions are defined as Bloch functions,

where the vectors z(q)(
k) are basis vectors for a single cell, defined as follows.

The global trial functions in eq. (A.59) must satisfy the continuity conditions
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eqs. (A.42) and (A.43). We thus require the following relation between the values

of the single-cell basis vectors at bottom and top boundaries, and the left and right

boundaries, respectively:

[
z(q)(
k)

]
(α,0,py)

=
[
z(q)(
k)

]
(α,n,py)

exp(−ikxh) (A.60)

[
z(q)(
k)

]
(α,px,0)

=
[
z(q)(
k)

]
(α,px,n)

exp(−ikyh). (A.61)

As an example, Fig. A.1 shows the GLL nodes of a cell for n = 4. The circles indicate

linearly independent nodes, and the crosses indicate linearly dependent nodes (due

to the boundary conditions in eqs. A.60 and A.61). Note that the choice of which

boundary node (right or left; top or bottom; one of the four corners) is linearly

independent is arbitrary, but must be the same for every cell in the medium.

For SEM of order n each basis vector z(q)(
k) has 2(n+1)2 elements which define

the x- and y-components of the displacement at each of the SEM interpolation

points, but because of the continuity conditions eqs. (A.60) and (A.61) only 2n2

basis vectors (each with 2(n + 1)2 elements) are required. We have three types

of basis vectors: 2(n − 1)2 for interior points, 4(n − 1) for boundary points other

than corners, and 2 for corners, for a total of 2n2 basis vectors. We define all of

the n2 basis vectors for the x-component displacements to have the y-component

displacement set to zero at all nodes. The basis vectors for internal nodes (see

Fig. A.1) are defined to have a value of 1 at one of the internal nodes and zero at

all the other nodes. The basis vector for a node on the left hand edge (other than

a corner node) is defined to have a displacement of 1 at the left hand edge, and
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exp(ikxh) at the corresponding point (the point with the same height) on the right-

hand edge, with zeros at all the other nodes. The basis vectors for nodes (other

than corner nodes) on the top and bottom edges are defined similarly. Finally,

for the case of the basis vector for the corner nodes the element for the lower left

hand corner is 1, that for the lower right corner is exp(ikxh), that for the upper

left corner is exp(ikyh), and that for the upper right corner is exp(ikxh) exp(ikyh),

with the elements for all of the other nodes equal to zero. The basis vectors for the

y-component displacements are defined similarly.

The matrix of the 2n2 basis vectors for a single cell, each of which has 2(n+1)2

elements, is defined as follows:

Z(
k) =
(
z(1)(
k), . . . , z(2n

2)(
k)
)
, (A.62)

where the superscript indices in the above equation refer to the pointers q, which

have been arranged in some particular order. We also define a second matrix of 2n2

basis vectors for a single cell for 
k′ rather than 
k:

Z(
k′) =
(
z(1)(
k′), . . . , z(2n

2)(
k′)
)
, (A.63)

and a second set of trial functions using 
k′ instead of 
k, and Z(
k′) rather than Z(
k):

Φ(m′;Nx,Ny) = z(q)(
k′) exp(ik′
xhNx + ik′

yhNy). (A.64)

We now use the trial functions in eq. (A.59) in place of those defined in eq. (A.40).
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In place of eq. (A.33) the trial function expansion becomes

d(Nx,Ny)(t) =
∑
�k

2n2∑
q=1

[
v(t;
k)

]
q
z(q)(
k) exp(ikxhNx + ikyhNy)

=
∑
�k

Z(
k)v(t;
k) exp(ikxhNx + ikyhNy), (A.65)

where the sum is taken over all wavenumbers 
k, the range of applicability of

eq. (A.65) is the area of the (Nx, Ny)-th element, namely that given by eq. (A.39)

and where v(t;
k) is a vector of the 2n2 unknown coefficients of the single-cell basis

vectors.

We now rewrite the equation of motion (eq. A.32 or A.44) using eq. (A.65) to

represent the displacement and eq. (A.64) as the trial function by whose complex

conjugate we multiply the equation of motion on the left. However, before proceed-

ing we make one simplification to eq. (A.65), dropping the sum over all wavenum-

bers and considering only a single wavenumber 
k. Eq. (A.65) thus simplifies to the

following:

d(Nx,Ny)(t) =
2n2∑
q=1

[
v(t;
k)

]
q
z(q)(
k) exp(ikxhNx + ikyhNy)

= Z(
k)v(t;
k) exp(ikxhNx + ikyhNy). (A.66)

We substitute eq. (A.66) into eq. (A.44). Using the above trial functions and ansatz,
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eq. (A.44) becomes

∞∑
Nx=−∞

∞∑
Ny=−∞

[
Φ(m′;Nx,Ny)

]∗ [
TLd̈(Nx,Ny)(t) +HLd(t)

]

=
∞∑

Nx=−∞

∞∑
Ny=−∞

[
Z(
k′) exp(ik′

xhNx + ik′
yhNy)

]∗

×
[
TLZ(
k)v̈(t;
k) exp(ikxhNx + ikyhNy) +HLZ(
k)v(t;
k) exp(ikxhNx + ikyhNy)

]
=
[
Z(
k′)

]∗ [
TLZ(
k)v̈(t;
k) +HLZ(
k)v(t;
k)

]
×

∞∑
Nx=−∞

exp [i(kx − k′
x)hNx)]

∞∑
Ny=−∞

exp
[
i(ky − k′

y)hNy)
]

=
[
Z(
k′)

]∗ [
TLZ(
k)v̈(t;
k) +HLZ(
k)v(t;
k)

]
× (2π)2

h2
δ

(
k′
x − kx − 2πMx

h

)
δ

(
k′
y − ky − 2πMy

h

)

= 0, (A.67)

where Mx and My are integers. Therefore the left hand side of eq. (A.67) will be

zero unless ⎧⎪⎪⎨
⎪⎪⎩

k′
x = kx + 2πMx/h

k′
y = ky + 2πMy/h.

(A.68)

For all cases for which eq. (A.68) is satisfied, we obtain the following 2n2 simulta-

neous differential equations,

T̃(
k)v̈(t;
k) + H̃(
k)v(t;
k) = 0, (A.69)

where

T̃(
k) =
[
Z(
k)

]∗
TLZ(
k) (A.70)
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H̃(
k) =
[
Z(
k)

]∗
HLZ(
k). (A.71)

Note that we would have obtained the same result (eq. A.69) if we had used

eq. (A.65) rather than eq. (A.66).

We derive the initial conditions for eq. (A.69). Note that eq. (A.48) is written

as

ψ(Nx,Ny)(t;
k) = Z(
k)ψ̃
(0,0)

(t;
k) exp(ikxhNx + ikyhNy), (A.72)

where ψ̃
(0,0)

(t;
k) is a vector whose 2n2 elements are

[
ψ̃

(0,0)
(t;
k)

]
(α,px,py)

=
[
ψ(0,0)(t;
k)

]
(α,px,py)

, (A.73)

with px, py = 0, . . . , n − 1. Comparing eq. (A.66) with eq. (A.72), and using eqs.

(A.56) and (A.57), the initial conditions for eq. (A.69) are

v(0;
k) = ψ̃
(0,0)

(0;
k) (A.74)

v̇(0;
k) =
˙̃
ψ

(0,0)

(0;
k). (A.75)

We numerically solve the 2n2 simultaneous differential equations, eq. (A.69),

with the initial conditions eqs. (A.74) and (A.75). To do this, we write the solution

by representing it in terms of an eigenfunction expansion:

v(t;
k) =
2n2∑
p=1

ap(t;
k)cp(
k), (A.76)

where each cp(
k) is an eigenvector of the following eigenvalue problem with eigen-
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frequency Λp(
k): {[
Λp(
k)

]2
T̃(
k)− H̃(
k)

}
cp(
k) = 0. (A.77)

The othonormalization of the eigenvectors is given by:

[
cq(
k)

]∗
H̃(
k)cp(
k) =

[
Λp(
k)

]2 [
cq(
k)

]∗
T̃(
k)cp(
k) = δpq for p, q = 1, . . . , 2n2.

(A.78)

Substituting eq. (A.76) into eq. (A.69) with the initial conditions eqs. (A.74)

and (A.75) the expansion coefficients ap(t;
k) are found to be:

ap(t;
k) =
[
cp(
k)

]∗
T̃(
k)

⎧⎨
⎩ψ̃

(0,0)
(0;
k) cos

[
Λp(
k)t

]
+

˙̃
ψ

(0,0)

(0;
k)
sin

[
Λp(
k)t

]
Λp(
k)

⎫⎬
⎭ .

(A.79)

We define the relative error of the wavefield computed using the SEM operators

for a particular time t as follows:

Relative Error =

√∑
Nx,Ny

∣∣∣d(Nx,Ny)(t;
k)−ψ(Nx,Ny)(t;
k)
∣∣∣2√∑

Nx,Ny

∣∣∣ψ(Nx,Ny)(t;
k)
∣∣∣2

=

∣∣∣v(t;
k)− ψ̃
(0,0)

(t;
k)
∣∣∣∣∣∣ψ̃(0,0)

(t;
k)
∣∣∣ , (A.80)

where the argument 
k of d(Nx,Ny)(t;
k) indicates the wavenumber vector of the plane

wave used in the initial conditions, eqs. (A.56) and (A.57).

We also estimate the grid dispersion as follows:

GridDispersion =

∣∣∣Λp′(
k)− c|
k|
∣∣∣

c|
k| , (A.81)
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where p′ is selected to minimize the error of the eigenfunctions defined as:

min
p=1,...,2n2

∣∣∣cp(
k)− ψ̃
(0,0)

(0;
k)
∣∣∣∣∣∣ψ̃(0,0)

(0;
k)
∣∣∣ . (A.82)

This definition is essentially same as in previous studies of dispersion analysis

(e.g., Mulder 1999). Note that this definition assumes that the numerical solution,

eq. (A.76) will approximately satisfy

v(t;
k) ≈ cp′(
k) exp
(
iΛp′(
k)t

)
≈ ψ̃

(0,0)
(0;
k) exp

(
iΛp′(
k)t

)
, (A.83)

and that the effects of other modes with p �= p′, which are so-called “spurious

modes,” will be small. In other words, it implies that the numerical solution still

approximately propagates as a harmonic wave with the numerical phase velocity

changing in accordance with the dispersion curve.

A.2.4 Finding degenerate cases

We show below that it is straightforward to search systematically for degenerate

cases. Let us consider two waves, with the same frequency ω but with different

wavenumber vectors 
k and 
k′. The operators for coupling between harmonic plane

waves with different wavenumbers will be zero:

∞∑
Nx=−∞

∞∑
Ny=−∞

[
ψ(Nx,Ny)(t;
k′)

]∗
TLψ(Nx,Ny)(t;
k) = 0 (A.84)
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∞∑
Nx=−∞

∞∑
Ny=−∞

[
ψ(Nx,Ny)(t;
k′)

]∗
HLψ(Nx,Ny)(t;
k) = 0, (A.85)

unless the following two conditions are satisfied:

k′
x = kx + 2πMx/h (A.86)

k′
y = ky + 2πMy/h, (A.87)

where Mx and My are integers, in which case degenerate coupling will occur. Eqs.

(A.86) and (A.87) hold not only for cases when both of the waves are P-waves, or

S-waves, but also for cases where one wave is a P-wave and the other is a S-wave.

In the next subsection we present numerical examples showing that waves with

the same frequency but different wavenumbers can be excited as artifacts when

eqs. (A.86) and (A.87) hold.

To find degenerate cases we parameterize 
k and 
k′ as follows:


k = (kx, ky) = k(cos θ, sin θ), 
k′ = (k′
x, k

′
y) = k′(cos θ′, sin θ′). (A.88)

Since the dispersion relation for the 2-D isotropic case is given by eq. (A.53), from

eqs. (A.86) and (A.87) ω and ω′ for a degenerate case can be written in terms of k

and θ as follows:

ω = ck (A.89)

ω′ = c′
√
(k cos θ + 2πMx/h)2 + (k sin θ + 2πMy/h)2. (A.90)

where c and c′ are the phase velocities of the first and second waves, respectively.
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Hereafter, k (and k′) are normalized as

k̃ =
kh

2πn
, (A.91)

which corresponds to the spatial sampling rate (e.g., De Basabe & Sen 2007; Seriani

& Oliveira 2008a, b), and ω (and ω′) are normalized as

ω̃ =
ωh

2πn
. (A.92)

Figs. A.2a-d show degenerate coupling points predicted from intersections of

eqs. (A.89) and (A.90) with various Mx and My, for θ = 0◦, 15◦, 30◦, and 45◦. We

use n = 4, and the P-wave to S-wave velocity ratio

r = VP/VS =
√
3. (A.93)

We show the results in the range k̃′ ≤ 0.2, which is the range shown by previous

studies (e.g., De Basabe & Sen 2007; Seriani & Oliveira 2008a, b). The solid lines

and dashed curves show eqs. (A.89) and eq. (A.90), respectively. The red and

blue colors correspond to P- and S-waves, respectively. The intersections between

solid and dashed lines indicate degenerate coupling points. Table A.1 shows the

values of (k̃, θ) and (k̃′, θ′) at the intersections; the intersections are labeled P01–27

in Table A.1. The second column of Table A.1 indicates the panel of Fig. A.2 in

which the degenerate point is located. Note that P24 and P27 have two entries

each in Table A.1 because they represent triple intersections. The colors of the
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intersecting lines in the various panels of Fig. A.2 indicate the types of coupling:

e.g., P08 corresponds to P-P coupling, P09 to P-S coupling, P14 to S-P coupling,

and P15 to S-S coupling.

A.2.5 Numerical Results

To show the essence of the effects of degeneracy, we first consider SEM with n = 4

for the scalar wave equation. The other problem settings for the numerical exper-

iment are same as those stated above. Since the above theoretical results can be

straightforwardly simplified to apply to the scalar wave equation, we omit a de-

tailed derivation. Note that since only P-waves are excited for the acoustic case,

degenerate coupling can occur only at the values of the intersections between the

red solid and red dashed lines in Fig. A.2.

Fig. A.3 shows the relative error of the solution, eq. (A.80), for cases when

harmonic scalar waves are input as the initial conditions, where the frequencies and

the wavenumbers of the input waves are along the red solid lines of Fig. A.2. For

the unit of time t, we use the period of the input wave

T = 2π/ω = 2π/(ck). (A.94)

We see peaks of the error in Fig. A.3 at the wavenumbers labeled as corresponding to

the values of P01, P08, P16, and P24 in Table A.1. Fig. A.4 show an enlargement of

Fig. A.3b focusing around peak P08. In the vicinity of the peak, the error becomes

increasingly large as time passes. Figs. A.5 show the grid dispersion, eq. (A.81). The

dispersion curves in Figs. A.5 show localized large errors at the same wavenumbers
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as the peaks in Figs. A.3, labeled by the same numbering. The theoretical reason for

the localized errors in Figs. A.3–A.5 is degenerate coupling, as shown in Section A.1.

Hereafter we consider examples for the elastic wave equation. Note that in the

elastic cases, the upper limit of the spatial sampling rate is determined by S-waves,

because the wavelength of S-waves is always smaller than that of P-waves with the

same frequencies. However, for simplicity, as the abscissa of the graphs below we

use the wavenumber of the input waves normalized using eq. (A.91) rather than by

the corresponding S-wavenumber. This definition is same as other previous error

analyses (e.g., De Basabe & Sen 2007; Seriani & Oliveira 2008a, b; Moczo et al.

2011).

In Figs. A.6–A.8, we use n = 4 and r =
√
3, which are the same values of the

parameters used in Fig. A.2 and Table A.1. Figs. A.6 show the relative error of the

solution, eq. (A.80), with t = 100T , for cases when P-waves and S-waves are input

as the initial conditions, respectively, where the frequencies and the wavenumbers

of the input waves are along the solid lines of Figs. A.2. Figs. A.7 show the grid

dispersion for P and S-waves computed by eq. (A.81). We see peaks of the error of

the numerical solution labeled P01, P05, P08, P09, P14, P15, P16, P18, P19, P25,

and P27 in Figs. A.6, each of which corresponds to an intersection of the curves

in Figs. A.2, and to the row with the same labelling in Table A.1. Comparing

Figs. A.6 with Figs. A.3, we see additional peaks caused by P-S and S-P coupling.

Although we confirmed that all of the peaks in Figs. A.3–A.7 correspond to entries

in Table A.1, the strength of the degenerate coupling effects appears to depend on

the detailed properties of the SEM operators.
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In Fig. A.8, we show snapshots of the displacement field at t = 100T when we

input S-waves with θ = 15◦ and k̃ = 0.165, 0.169 (P14 in Table A.1), and 0.175, re-

spectively. We use Legendre-Lagrange interpolation to calculate the displacements

at intermediate points between the GLL node points. A movie of the wave prop-

agation simulations is available online as supplementary material in Hasegawa et

al. (2016). We see in the movie that when k̃ = 0.165 or 0.175, the waves seem to

propagate accurately. On the other hand, we see that when k̃ = 0.169 the wavefield

is contaminated by artificial coupling with the degenerate P-wave with θ = 153◦

and k̃ = 0.097 (see P14 in Table A.1). The artificial excitation of the P-wave can

be seen in the bottom panel of Figs. A.8b for the longitudinal component. (Note

that the longitudinal component is amplified tenfold.)

Figs. A.9 show the relative error of the solution at t = 100T for various P-wave

to S-wave velocity ratios r with fixed polynomial order n = 4. The green, blue,

and red lines correspond to the error for r = 6, r = 3, and r =
√
3, respectively.

The solid and dashed lines correspond to the error for input P-waves and S-waves,

respectively. Although the strength of the degenerate coupling effects depends

heavily on the detailed properties of the SEM operators, we see that the number of

peaks of the error increases for larger r, especially for cases when P-waves are input.

This is because the slopes of the red solid lines in Figs. A.2 become steeper for larger

values of r, and thus within k̃ ≤ 0.2, the red solid lines have more opportunities to

intersect with the blue dashed lines.

Fig. A.10 shows the relative error of the solution at t = 100T for various polyno-

mial orders n with fixed P-wave to S-wave velocity ratio r =
√
3. The green, blue,



Appendix A Error analysis of SEM I 159

and red lines correspond to the error for n = 1, n = 4, and n = 8, respectively.

The solid and dashed lines correspond to the error for input P-waves and S-waves,

respectively. Note that SEM for n = 1 is equivalent to the classical finite difference

method. In the cases for n = 1, (k′
x, k

′
y) of eqs. (A.86) and (A.87) is always outside

the physically meaningful range, eq. (A.58).

A.3 Discussion

In Appendix A we used the methods of GT95 to conduct a general error analysis

of ho-FEMs for solving the elastic equation of motion. We showed that degeneracy

(coupling between modes with identical or nearly identical frequencies) can cause

artificial excitation of other modes in the synthetic seismograms unless the eigen-

vectors of the exact problem are also eigenvectors of the numerical operators, which

in general will not be the case.

In Section A.2 we confirmed the existence of errors due to degenerate coupling

by a simple numerical experiment. Some previous studies have noted the presence of

such errors in synthetic seismograms computed by ho-FEMs for the 1-D Helmholtz

equation. Thompson & Pinsky (1994) and Mulder (1999) showed the existence

of what they called aliasing errors, which occur when an integer multiple of the

wavelength coincides with the element length. Such errors are particular examples

of errors that occur because of degenerate coupling between modes.

Our numerical example in Section A.2 is for SEM, but it should be easy to

make similar tests for other higher-order numerical methods for homogeneous and

isotropic models. As shown in Section A.1, the strength of the degenerate coupling
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effects mainly depend on the individual properties of the numerical mass and stiff-

ness matrices. Therefore to simplify the problem settings, we do not consider the

effects of temporal discretization on time evolution. Although the absolute values

of the figures in this study will change depending on the temporal discretization,

the basic character of the figures will not change.

In this study we do not consider the case of a viscoelastic medium, for which the

effects of degeneracy might become smaller because of existence of the imaginary

parts of the eigenfrequencies. This is an important subject for future work.

It seems reasonable that errors due to degenerate coupling should also occur

for applications of ho-FEMs to heterogeneous models. but it seems hard to predict

what the systematics of such errors would be.

Finally, in closing for this section, we attempt to provide a non-technical expla-

nation of our results. The results presented in Appendix A do not suggest that the

error of numerical solutions computed by ho-FEMs are large in general, notwith-

standing their small numerical dispersion. What we are saying is that synthetics

computed using ho-FEMs are subject to significant degradation from their general

level of accuracy for particular frequency-wavenumber combinations where degen-

erate coupling occurs. We have presented theoretical derivations to show why this

occurs, and the phenomenon is ubiquitous in the numerical examples we presented

for homogeneous cases. These results should not be a surprise, because they are a

natural generalization of Mulder’s (1999) results for a 1-D case. On the other hand,

informal conversations with users of ho-FEMs suggest that such “pinpoint errors”

have not been noticed as a problem in practical applications (although it also ap-
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pears that no one has systematically investigated their possible existence). Users

of ho-FEMs should consider the possibility that the effects of degenerate coupling

may be degrading the accuracy of their results when choosing the size of the cells

used in their grids.
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Table A.1: Degenerate coupling points
target wave degenerate wave

Panel wave-type k̃ θ k̃x k̃y wave-type k̃′ θ′ k̃′
x k̃′

y Mx My

P01 a P 0.125 0◦ 0.125 0.000 P 0.125 180◦ -0.125 0.000 -1 0
P02 a P 0.092 0◦ 0.092 0.000 S 0.158 180◦ -0.158 0.000 -1 0
P03 a P 0.155 0◦ 0.155 0.000 S 0.268 111◦ -0.095 0.250 -1 1
P04 a P 0.177 0◦ 0.177 0.000 S 0.306 55◦ 0.177 0.250 0 1
P05 a P 0.183 0◦ 0.183 0.000 S 0.317 180◦ -0.317 0.000 -2 0
P06 a S 0.159 0◦ 0.159 0.000 P 0.092 180◦ -0.092 0.000 -1 0
P07 a S 0.125 0◦ 0.125 0.000 S 0.125 180◦ -0.125 0.000 -1 0
P08 b P 0.129 15◦ 0.125 0.034 P 0.129 165◦ -0.125 0.034 -1 0
P09 b P 0.093 15◦ 0.090 0.024 S 0.162 171◦ -0.160 0.024 -1 0
P10 b P 0.140 15◦ 0.135 0.036 S 0.243 -118◦ -0.115 -0.214 -1 -1
P11 b P 0.147 15◦ 0.142 0.038 S 0.255 -56◦ 0.142 -0.212 0 -1
P12 b P 0.177 15◦ 0.171 0.046 S 0.306 105◦ -0.079 0.296 -1 1
P13 b P 0.187 15◦ 0.180 0.048 S 0.323 171◦ -0.320 0.048 -2 0
P14 b S 0.169 15◦ 0.163 0.044 P 0.097 153◦ -0.087 0.044 -1 0
P15 b S 0.129 15◦ 0.125 0.034 S 0.129 165◦ -0.125 0.034 -1 0
P16 c P 0.144 30◦ 0.125 0.072 P 0.144 150◦ -0.125 0.072 -1 0
P17 c P 0.183 30◦ 0.159 0.092 P 0.183 -120◦ -0.092 -0.159 -1 -1
P18 c P 0.099 30◦ 0.089 0.050 S 0.171 163◦ -0.164 0.050 -1 0
P19 c P 0.125 30◦ 0.108 0.063 S 0.217 -60◦ 0.108 -0.187 0 -1
P20 c P 0.132 30◦ 0.114 0.066 S 0.229 -126◦ -0.136 -0.184 -1 -1
P21 c P 0.198 30◦ 0.172 0.099 S 0.343 163◦ -0.328 0.099 -2 0
P22 c S 0.144 30◦ 0.125 0.072 S 0.144 150◦ -0.125 0.072 -1 0
P23 c S 0.183 30◦ 0.159 0.091 S 0.183 -120◦ -0.091 -0.159 -1 -1
P24 d P 0.177 45◦ 0.125 0.125 P 0.177 -135◦ -0.125 -0.125 -1 -1
P24 d P 0.177 45◦ 0.125 0.125 P 0.177 -45◦ 0.125 -0.125 0 -1
P25 d P 0.109 45◦ 0.077 0.077 S 0.189 -66◦ 0.077 -0.173 0 -1
P26 d P 0.130 45◦ 0.092 0.092 S 0.224 -135◦ -0.158 -0.158 -1 -1
P27 d S 0.177 45◦ 0.125 0.125 S 0.177 -135◦ -0.125 -0.125 -1 -1
P27 d S 0.177 45◦ 0.125 0.125 S 0.177 -45◦ 0.125 -0.125 0 -1
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Figure A.1: The GLL nodes of a cell for n = 4. The circles indicate linearly
independent nodes, and the crosses indicate nodes which are linearly dependent
due to the boundary conditions in eqs. (A.60) and (A.61).
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Figure A.2: Degenerate coupling points predicted using eqs. (A.89) and (A.90) for
various values of Mx and My. We use n = 4, and r = VP/VS =

√
3. The solid

lines show the values of eq. (A.89) as functions of the normalized wavenumber k̃ as
defined in eq. (A.91) The red and blue colors correspond to P-waves and S-waves,
respectively. The dashed red and blue curves correspond to eq. (A.90) as functions

of k̃ for P-waves and S-waves, respectively, for variousMx andMy. The intersections
between the solid lines and dashed curves indicate degenerate coupling points. ω
is normalized using eq. (A.92). Panels a, b, c, and d are for incidence angles of
θ = 0◦, 15◦, 30◦, and 45◦, respectively. See Table A.1 for details of degenerate
coupling points.
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Figure A.3: The relative solution error for the scalar wave equation as given by
eq. (A.80), when the frequencies and the wavenumbers of the input wave at t = 0
are along the red solid lines of Figs. A.2. We consider SEM with n = 4. We use
the period T of the input wave, eq. (A.94), as the unit of time t. Panels a, b, c,
and d are for propagation angles of the input wave of θ = 0◦, 15◦, 30◦, and 45◦,
respectively.
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Figure A.4: The same as Fig. A.3b in the vicinity of Peak P08 only.
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Figure A.5: The grid dispersion for the scalar wave equation as given by eq. (A.81).
We consider SEM with n = 4. Panels a, b, c, and d are for angles of the wavenumber
vector θ = 0◦, 15◦, 30◦, and 45◦, respectively.



Appendix A Error analysis of SEM I 168

(a) (b)

(c) (d)

P01

P08

P16
P27

P09

P15
P14

P19 P25

10-6

10-4

10-2

100

102

 0  0.05  0.1  0.15  0.2

Re
la

tiv
e 

So
lu

tio
n 

Er
ro

r[
%

]

Normalized Wavenumber

input P-wave
input S-wave

10-6

10-4

10-2

100

102

 0  0.05  0.1  0.15  0.2

Re
la

tiv
e 

So
lu

tio
n 

Er
ro

r[
%

]

Normalized Wavenumber

input P-wave
input S-wave

10-6

10-4

10-2

100

102

 0  0.05  0.1  0.15  0.2

Re
la

tiv
e 

So
lu

tio
n 

Er
ro

r[
%

]

Normalized Wavenumber

input P-wave
input S-wave

10-6

10-4

10-2

100

102

 0  0.05  0.1  0.15  0.2

Re
la

tiv
e 

So
lu

tio
n 

Er
ro

r[
%

]

Normalized Wavenumber

input P-wave
input S-wave

Figure A.6: The relative solution error for the elastic wave equation as given by
eq. (A.80), when the frequencies and the wavenumbers of the input wave at t = 0
are along the solid lines of Fig. A.2 We consider SEM with n = 4, and r =

√
3. We

use the period T of the input wave, eq. (A.94), as the unit of time t. Panels a, b,
c, and d are for propagation angles of the input wave of θ = 0◦, 15◦, 30◦, and 45◦,
respectively. The red and blue lines are for input P and S-waves, respectively.
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Figure A.7: The grid dispersion for the elastic wave equation as given by eq. (A.81).
We consider SEM with n = 4, and r =

√
3. Panels a, b, c, and d are for angles of

the wavenumber vector of θ = 0◦, 15◦, 30◦, and 45◦, respectively. The red and blue
lines for the P and S-waves, respectively.



Appendix A Error analysis of SEM I 170

LO
NG
IT
UD
IN
AL
 C
OM
PO
NE
NT
 ×
 1
0

TR
AN
SV
ER
SE
 C
OM
PO
NE
NT

(a) (b) (c)

Figure A.8: Snapshots of the numerical displacement fields at t = 100T computed
by SEM with n = 4 when we input S-waves with θ = 15◦ and (a) k = 0.165, (b)
k = 0.169, and (c) k = 0.175, respectively. We use Legendre-Lagrange interpolation
to compute the displacement at intermediate points between the GLL nodes: (top
panels) the transverse (perpendicular to the wavenumber vector) component of the
displacement fields, (bottom panels) the longitudinal (parallel to the wavenumber
vector) component of the displacement fields. Note that the longitudinal component
is amplified tenfold.
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Figure A.9: The relative solution error for the elastic wave equation as given by
eq. (A.80). We consider SEM with n = 4. We use the period T of the input wave,
eq. (A.94), as the unit of time t. Panels a, b, c, and d are for propagation angles of
the input wave of θ = 0◦, 15◦, 30◦, and 45◦, respectively. The solid and green lines
are for input P and S-waves, respectively. The green, blue, and red lines are for
r =

√
3, 3, and 6, respectively. As only some of the peaks in this figure correspond

to Table A.1, none are labelled.
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Figure A.10: The relative solution error for the elastic wave equation as given by
eq. (A.80). We consider r =

√
3. We use the period T of the input wave, eq. (A.90),

as the unit of time t. Panels a, b, c, and d are for propagation angles of the input
wave of θ = 0◦, 15◦, 30◦, and 45◦, respectively. The solid and green lines are for
the input P and S-waves, respectively. The green, blue, and red lines are for SEM
with n = 1, 4, and 8, respectively. Note that SEM with n = 1 is equivalent to
the classical finite difference method. As only some of the peaks in this figure
correspond to Table A.1, none are labelled.
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