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要旨

北半球冬季の成層圏 (高度 10 – 50 km) には、極渦と呼ばれる世界最大の孤立渦の 1

つが存在する (e.g., Waugh and Polvani 2013)。極渦は対流圏起源の Rossby波により乱さ

れており、この乱れが大きくなると温度上昇と共に崩壊する。この現象は成層圏突然昇

温 (SSW) と呼ばれ、対流圏の気象システムにも影響を及ぼすことが知られている (e.g.,

Kidston et al. 2015)。SSW は、極渦が南にずれて崩壊するディスプレイスメント型 (D-

SSW)と、極渦が 2つに分離して崩壊するスプリット型 (S-SSW)に分類される (Charlton

and Polvan 2007)。

SSW のメカニズムは、Matsuno (1971) を始めとし、ダイナミクスの観点から弱非線

形理論を用いて研究されてきた。S-SSWに限って言えば、東西波数 2の等価順圧 Rossby

波が共鳴により増幅し、その後、Love型の力学的不安定 (Love 1893)により極渦が 2つ

に分離すると考えられている (Esler and Scott 2005; Mitchell and Rossi 2008; Matthewman

and Esler 2011)。これらの弱非線形理論は微小振幅擾乱の仮定に基づいているが、SSW

のような強非線形現象に対して、この仮定は必ずしもよくは満たされていない可能性が

ある。

強非線形理論の 1つとして平衡統計力学が挙げられる。地球流体系における統計力学

はここ 20 年で大きく発展し (e.g., Bouchet and Venaille 2012)、特に、ミクロカノニカル

分布と呼ばれる確率モデルから最大エントロピー問題が数学的に導出された (Michel and

Robert 1994; Boucher et al. 2000; Ellis et al. 2000)。統計力学は微小振幅擾乱の仮定に基づ

かないため、強非線形系に適用可能である。その反面、スタティックな理論であり、系の
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要旨

時間発展に関する情報を全く与えないという欠点もある。すなわち、上記の弱非線形理

論と正反対の長所と短所を持つ。本研究では、気象庁 55年長期再解析 (JRA-55)、球面準

地衡 (QG)順圧モデル、および統計力学を用いて、エントロピーの観点から S-SSWの理

解を試みた。

本研究では、S-SSWを QG順圧モデルに基づいて調べる。最初にこのことの合理性

を示すために、Seviour et al. (2013)に従い、JRA-55から S-SSWの平均像をコンポジッ

ト解析により求めた。そして、Matthewman et al. (2009)と同様の解析により、極渦の分

離前後の高度 20 – 40 kmにおいて、極渦が等価順圧構造を持つことを確認した。そこで、

以下では、極渦の時間変化を一層の球面 QG順圧モデルで記述することにした。

まず、順圧モデルの有効性を確認するために、コンポジット解析で得られた S-SSW

の渦位 (PV)の時間発展が順圧モデルにより再現可能であるか調べた。この比較実験を行

うために、順圧モデルの下部強制 hは、JRA-55のコンポジット 550 K温位面 (高度約 20

kmに存在)の高度偏差とした。そして、初期条件は、ある基準時刻の JRA-55のコンポ

ジット PVとし、その後の PVの時間発展を数値積分により求めた。比較対象であるコン

ポジット PVは、JRA-55の絶対渦度の鉛直平均から求めた。積分開始から約 15日目ま

では、順圧モデルは JRA-55の PV場をよく再現することが分かった。15日目以降は、コ

ンポジット場の傾圧性が強くなり、順圧モデルによる PV場の再現性が悪くなる。

次に、初期条件は変化させず、強制 h の東西波数 0, 1, 2 成分のいずれかのみを抽出

し、それを強制とした実験を行った。その結果、hの波数 2成分を使用した場合のみ、極

渦の分離が再現された。これは、強制 hの波数 2成分が S-SSWにとって最も本質的であ

ることを示唆している。従って、以下では、波数 2の強制のみを考慮した。

コンポジット PV場との比較実験では、強制 hの時間変化が速いため、極渦の状態遷

移はあまり明瞭ではなかった。そこで hの振幅をゆっくり増大させる準静的 (quasi-static)

実験を行い、状態遷移を調べることにした。初期条件は JRA-55の絶対渦度の時間・鉛直
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要旨

平均場とした。強制 hの波数 2の構造は固定し、その振幅 aを 2.8万日かけて a = 0か

ら 1に線形に増大させた。その結果、aの増大と共に、3つの状態 A, B, Cがこの順に現

れた。各状態は定常と見なせ、状態の遷移時にのみ、PV場は非定常となった。Aと Bは

低気圧性、Cは高気圧性の流れ場である。Bから Cの遷移時には、細長く伸びた極渦か

ら PVフィラメントが剥離し、極渦は 2つに分離することなく崩壊した。

この準静的実験の結果を、統計力学理論の一つである二次の Casimir 変分問題

[Quadratic Casimir Variational Problem, QCVP (e.g., Venaille and Bouchet 2009, 2011b)]で

解釈する。QCVPにおいて、エントロピー S はポテンシャルエンストロフィーのマイナ

ス倍で与えられる。そして、エネルギー Eと PVの総量 Γを一定とする拘束条件の下で、

エントロピー S は最大化される。この S 最大の状態は平衡状態と呼ばれ、微小擾乱に対

し安定な定常場である (e.g., Ellis et al. 2002)。この解は E と Γだけでなく、PVの定義式

を通して強制 hの振幅 aに依存する。準静的実験のパラメータ (E, Γ, a)の全範囲におい

て、平衡状態は高気圧性の流れ場であった。そのため、状態 Cは平衡状態と解釈できる。

次に、Aと Bに対応する低気圧性の状態を議論するために、エントロピーの鞍点であ

る準定常状態 (QSS)を調べた。QSSは定常場であるが、微小擾乱に対し安定とは限らな

い。QSSは無数に存在するが、最も大規模な構造を持つ QSS 1に着目する。この状態は

回転対称性を持たない領域内 (e.g.,正方形領域)で、エントロピーの極大点 (すなわち、微

小擾乱に対し安定な状態)となり得る唯一の状態である。一方、回転対称な円盤領域内で

は、東西波数 1の基底モードに対してのみ QSS 1は不安定になり得る。この QSS 1は低

気圧性で、その PV場は状態 Aと同様の空間構造を持つ。よって、状態 Aは QSS 1と解

釈できる。次に、3番目に大きな構造を持つ QSS 3に着目した。QSS 3の PV場は、QSS

1 (また QSS 2) の PV場と直交する方向に伸びており、状態 Bの空間構造に類似してい

る。よって、状態 Bは QSS 3と解釈できる。

より定量的な比較を行うため、遷移の瞬間が理論予測と整合的であるかも調べた。こ

3



要旨

こでは極渦の崩壊を伴う Bから Cの遷移に着目する。準静的実験の各時刻において、Γ

と aを与えて、状態 Bに対応する QSS 3の存在に必要な最小エネルギー Eを理論的に求

めた。そして、その最小 E と準静的実験の E の時系列を比較した。結果、1.8万日目付

近で、理論による最小 E よりも実験の E が小さくなった。これは、QSS 3が存在できな

いパラメータ領域へ状態が移行することを意味し、その周辺の時刻において遷移が起こ

る可能性を示唆する。実際に、ほぼ同じ時刻において、エントロピーの急増と共に極渦

は崩壊し、Bから Cへの遷移が起こる。すなわち、PV場の構造という定性的な点だけで

なく、遷移のタイミングという定量的な点からも、状態 Bを QSS 3と解釈する妥当性が

示された。同様の結果は、Aから Bの遷移に対しても得られ、初期状態 Aを QSS 1と解

釈する妥当性が確認された。

次に、実験設定をより現実的にするため、強制 hの振幅 aを 1週間で増加させた。そ

の結果、状態は Aから Cへ遷移し、その過程で極渦の分離が起こった。これは、S-SSW

を低気圧性の QSS 1から高気圧性の平衡状態へ向かおうとする遷移と理解できる可能性

を示唆する。

平衡状態は任意の微小擾乱に対して力学的に安定であるが、QSS 1は東西波数 1の微

小擾乱に対してのみ不安定となる可能性がある。そこで QSS 1 の安定性を調べるため、

QSS 1と見なされる準静的実験の流れ場に波数 1の微小擾乱を加えて、その後の時間発

展を球面 QG順圧モデルの数値積分により調べた。結果、波数 1の擾乱は急激に減衰後、

小振幅を保ったまま振動した。この結果は、波数 1の擾乱が成長しないこと、すなわち

QSS 1が Lyapnov安定 (中立安定または漸近安定)であることを示唆する。

冬季成層圏において、放射冷却は約 10日の緩和時間をもち (Newman and Rosenfield

1997)、S-SSW後の極渦の再形成に寄与する (e.g., Scott and Polvani 2006)。そこで、さら

に現実的な実験を行うため、Newton冷却を模した線形緩和を順圧モデルに組み込んだ。

その結果、極渦の分離は見られたが、高気圧性の平衡状態は確認できなかった。これは、

4
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平衡状態への遷移時間が約 200日と十分長く、線形緩和による極渦の回復が先に起こる

ためと考えられる。

一方、東西平均東西風は、S-SSWの期間内に、西風から東風へ一時的に変化すること

がある。この軸対称成分の低気圧から高気圧性への一時的な変化は、コンポジット S-SSW

と線形緩和を入れた数値実験の両方で確認できた。これらの結果は、成層圏の状態が高

気圧性の平衡状態へ一時的に近づくことを示唆する。

以上の結果から「S-SSWがエントロピーの鞍点 (QSS 1)から最大点 (平衡状態)へ向

かおうとする遷移」と理解できることが分かった。QSS 1は低気圧性の流れ場で、極渦

の崩壊前に対応する。また QSS 1はエントロピーの極大点になり得る唯一の特別な鞍点

である。平衡状態は高気圧性の流れ場で、極渦の崩壊後に対応する。遷移を起こす主要

因は Rossby波の増幅であり、遷移途中で極渦は分離する。放射冷却による極渦の回復の

ため、平衡状態は実現されないと考えられるが、成層圏の状態は一時的に平衡状態へ向

かおうとする。東西平均東西風の逆転は、平衡状態に向かおうとする途中状態を反映し

ていると考えられる。

5



Abstract

Vortex-split stratospheric sudden warming (S-SSW) is an extreme event in the stratosphere,

in which the polar vortex breaks down while splitting into the two daughter vortices. The dy-

namical mechanism for S-SSWs has been understood by employing weakly nonlinear theories

that are based on the assumption of small-amplitude perturbations (e.g., Matsuno 1971; Chao

1985; Matthewman and Esler 2011). This assumption may be not necessarily satisfied well for

strongly nonlinear phenomena such as S-SSWs. Equilibrium statistical mechanics is a strongly

nonlinear theory and has made great progress over the last two decades (e.g., Bouchet and Ve-

naille 2012). It is possible to obtain a large-scale coherent structure realized after strong PV

(potential vorticity) mixing, by solving a variational problem (e.g., maximum entropy problem)

without solving the governing equations of a system. The present study investigates S-SSWs

by using a reanalysis dataset, a quasi-geostrophic (QG) barotropic model, and a statistical-

mechanics theory.

Composite analyses of S-SSWs are made by using the Japanese 55-year Reanalysis (JRA-

55). The equivalent-barotropic nature of the S-SSW is confirmed in the altitude range of about

20 to 40 km, as found by Matthewman et al. (2009). On the basis of these composite analyses, a

spherical QG barotropic model is constructed to describe the equivalent-barotropic motions as-

sociated with S-SSWs. The effective bottom forcing in the QG model is given by the composite

height field of the 550-K isentropic surface (∼ 20 km). The QG model well reproduces the evo-

lution of the composite PV made from JRA-55 during the period before a baroclinic structure

6



ABSTRACT

develops in the composite S-SSW. The zonal-wavenumber-2 component of the bottom forcing

is essential to reproduce the vortex splitting in the QG model.

To reveal a transition of the polar vortex in the QG model, a quasi-static experiment is

conducted, where the amplitude of the wavenumber-2 bottom forcing is increased linearly and

sufficiently slowly with time. The flow field over the North Pole is nearly steady, which fa-

cilitates pursuing the state changes of the polar vortex. Two transitions are observed: in the

first transition, the shape of the polar vortex changes; in the second transition, the polar vortex

breaks down without splitting, while the flow over the North Pole changes from cyclonic to

anti-cyclonic.

The theory of statistical mechanics named the quadratic Casimir variational problem

(QCVP, e.g., Venaille and Bouchet 2009, 2011b) is applied to the polar cap over 45 to 90◦N.

In the QCVP, the entropy, which is the negative of potential enstrophy, is maximized with the

constraints of constant total PV and energy. The equilibrium state is anti-cyclonic, whereas the

quasi-stationary states are cyclonic, in the parameter range relevant to the winter stratosphere.

A quasi-stationary state is defined as a saddle point of the entropy, and an equilibrium state

as the entropy maximum. The quasi-stationary state having the largest structure (QSS 1) can

be a local maximum of the entropy (i.e., metastable) in a general domain not having the rota-

tional symmetry. This unique property of QSS 1 comes from the fact that QSS 1 becomes an

equilibrium state, as the total PV is increased. By contrast, in the disk domain, QSS 1 may be

destabilized by a perturbation with zonal wavenumber 1, but it is dynamically stable against

any small-amplitude perturbations with the other wavenumbers.

The results of the quasi-static experiment are interpreted with the QCVP. The theory well

explains the structures of the PV fields observed in the quasi-static experiment. Moreover, the

timings of the two transitions in the quasi-static experiment are consistent with those given by

7



ABSTRACT

the QCVP. The initial state in the quasi-static experiment is regarded as QSS 1, and the final

state as the equilibrium state. To examine the dynamical stability of QSS 1, the evolution of

the wavenumber-1 perturbations are examined by adding these perturbations to the flow field

regarded as QSS 1 and performing the numerical integrations. In all cases, the small- but finite-

amplitude perturbations do not grow with time, which implies that QSS 1 is Lyapunov stable.

By contrast with the quasi-static experiment, when the forcing amplitude is increased over one

week (not sufficient slow), the polar vortex splits during the transition from the cyclonic QSS

1 to the anti-cyclonic equilibrium state.

Effects of radiative cooling are discussed by performing QG experiments including a linear

relaxation, where the relaxation time is O(10 days). The polar vortex is re-formed by the linear

relaxation before the anti-cyclonic equilibrium state is organized, which is likely due to that the

transition time (about 200 days) is one-order larger than the relaxation time.

The above results suggest a new understanding of S-SSWs based on the equilibrium statis-

tical mechanics: The S-SSW can be qualitatively understood as the transition from the cyclonic

QSS 1 in the direction of the anti-cyclonic equilibrium state. The transient state with the split-

ted two vortices is a non-equilibrium state that appears during the transition in the direction of

the equilibrium. Without radiative cooling, the anti-cyclonic equilibrium state would be real-

ized at a later time (∼ 200 days) after an S-SSW. In the stratosphere, however, the radiative

cooling [relaxation time = O(10 days)] will re-establish a cyclonic polar vortex, before the

anti-cyclonic equilibrium state is organized. During an S-SSW, zonal-mean zonal winds often

change from westerly to easterly, which suggests that the state of the stratosphere temporarily

approaches the anti-cyclonic equilibrium state.
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Chapter 1

General Introduction

1.1 Stratospheric sudden warmings (SSWs)

The polar vortices in the winter stratosphere are the largest coherent vortices in the atmo-

sphere (e.g., Andrews et al. 1987; Haynes 2005; Waugh and Polvani 2013). The polar vortices

are cyclonic flows maintained, through the thermal wind relation, by the radiative cooling over

the winter poles. The Arctic polar vortex (hereafter, simply referred to as the polar vortex)

is perturbed by planetary-scale Rossby waves generated by topography and land-sea contrast

in the troposphere. Sufficiently strong wave forcings sometimes break down the polar vortex.

Such an extreme event has a time scale of a few days and is accompanied by a reversal of zonal

winds (from westerly to easterly) and a strong warming (sometimes over 50 K) in the polar

stratosphere, called a major stratospheric sudden warming (SSW, see Fig. 1.1). SSWs occur on

average about once every two winters in the Northern Hemisphere.

The SSW is not only an interesting phenomenon confined to the stratosphere, but is also

practically important for our daily lives because it affects tropospheric eddies, i.e., weather

systems (e.g., Baldwin and Dunkerton 2001; Nakagawa and Yamazaki 2006; Mitchell et al.

2013; Kidston et al. 2015). For instance, the storm tracks tend to be displaced southward af-

ter an SSW (Baldwin and Dunkerton 2001). Because of the downward influence from the

stratosphere, several studies have indicated that the weather predictions are improved by the

9
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Figure 1.1: Left panels show schematic illustrations in the latitude-height sections for the states
(a) before and (b) just after an SSW. Middle and right panels show examples of snapshots on
the 10-hPa isobaric surface (about 30-km height) during the February 1979 S-SSW in JRA-55
[(a) on Dec. 31, 1978 and (b) on Feb. 28, 1979], corresponding to the left panels: (middle)
geopotential height and (right) temperature.
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(a) composite S-SSW

(b) composite D-SSW

Figure 1.2: Three-dimensional isosurfaces of the composite vertically weighted Ertel’s poten-
tial vorticity (PV) for (a) S-SSW and (b) D-SSW between the isentropic surfaces of 400 and
1600 K (about the 14- and 44-km heights), made from the ERA-40 dataset. τ denotes time
in days. These isosurfaces accord well with the polar-vortex boundary defined by the maxi-
mum of PV gradient. Adapted from Matthewman et al. (2009) with permission of c⃝American
Meteorological Society.

proper representation of stratospheric processes, including SSWs (e.g., Mukougawa and Hi-

rooka 2004; Tripathi et al. 2015).

SSWs are classified into vortex-displacement type (D-SSWs) and vortex-split type (S-

SSWs) on the basis of the horizontal structure of the polar vortex (Charlton and Polvani 2007).

During a D-SSW event, the polar vortex is displaced equatorward and broken down, whereas

during an S-SSW, the polar vortex collapses while splitting into the two daughter vortices. By

contrast with the D-SSW, the S-SSW has a nearly equivalent-barotropic structure (Fig. 1.2); in

particular, the vortex splitting occurs almost simultaneously over the altitude range of about 20

to 40 km (Matthewman et al. 2009). Note that the term SSWs is hereafter used to denote SSWs

without distinguishing between S-SSWs and D-SSWs.
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1.2 Mechanism for SSWs

1.2.1 Matsuno’s model

A pioneering work on the mechanism for SSWs was made by Matsuno (1971). He proposed

that SSWs result from the amplification of wave forcing (i.e., the convergence of eddy fluxes)

to the mean flows (Fig. 1.1). He devised a theoretical model from a continuously stratified

quasi-geostrophic (QG) system. His model describes the interactions between the zonal mean

flow and one wave mode generated by an effective bottom forcing at the tropopause height

(= 10 km) that mimics some large-scale disturbance propagating from the troposphere. The

numerical integrations of his model successfully reproduced events similar to SSWs in the

atmosphere.

Following Matsuno (1971), SSWs have often been theoretically studied in the framework

of wave-mean flow interaction. These studies may be roughly categorized into two groups:

The first group employs a severely truncated dynamical system called the Holton-Mass model

(Holton and Mass 1976); The second group focuses on the resonance of Rossby waves and

is here referred to as the resonance theory (e.g., Tung and Lindzen 1979a,b). Both groups of

studies rely on weakly nonlinear theories using perturbation expansions in terms of a small

parameter representing a normalized wave amplitude.

1.2.2 Holton-Mass model

The Holton-Mass model is obtained by simplifying Matsuno’s model (Holton and Mass

1976). The crucial procedure to derive the model is that the meridional structure of all the

fields is approximated by a single sine function. This simplification reduces the degrees of

freedom of the model and makes it possible to investigate the solutions of the model by using

the bifurcation theory. Another important difference from Matsuno’s model is that the Holton-
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Mass model includes Newtonian cooling. As the bottom forcing is increased, the model shows

an abrupt transition from a quasi-steady state with a strong westerly wind (close to the radiative

equilibrium) to a time-dependent state where the zonal wind vacillates between weak westerly

and easterly (Holton and Mass 1976).

Chao (1985) investigated the Holton-Mass model in terms of the catastrophe theory (a

branch of bifurcation theory), and argued that an SSW in the atmosphere corresponds to a

catastrophe, which is characterized by the abrupt transition in the model. Similar transitions

have been observed in a one-layer version of the Holton-Mass model (Ruzmaikin et al. 2003;

Birner and Williams 2008) and also in an improved Holton-Mass model where the bottom

forcing is specified through the Eliassen-Palm flux (Sjoberg and Birner 2014).

1.2.3 Resonance theories

It may be naturally understood that an amplification of a Rossby-wave source (i.e., a bottom

forcing) leads to an SSW through the increase in eddy-flux convergence. There is another

mechanism for a wave amplification, which is resonance. The theories that attempt to interpret

SSWs in terms of resonance may be classified into linear and nonlinear theories.

Tung and Lindzen (1979a,b) derived a linear theory based on a continuously stratified QG

model, and revealed that stationary Rossby waves can be resonant with a bottom topography

in a realistic zonal-mean velocity field. Using a linear response theory, Esler and Scott (2005)

analyzed the results of fully nonlinear, three-dimensional QG simulations imitating an S-SSW.

They argued that the resonance of an equivalent-barotropic Rossby-wave mode is essential to

the onset of S-SSWs. Thus, not only an increase in an effective bottom forcing but also a

resonance can lead to the Rossby-wave amplification that results in an SSW.

When a resonance occurs, the wave amplitude becomes large and nonlinear effects can no

longer be ignored. Plumb (1981a,b) obtained a weakly nonlinear system from a continuously
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stratified QG model, and demonstrated that the nonlinear effect makes a positive feedback, that

is, the nonlinear adjustment to the mean velocity occurs in a way to amplify the wave. Matthew-

man and Esler (2011) extended Plumb’s idea and investigated the onset of S-SSWs by using

a weakly nonlinear model. This model describes the evolution of a barotropic vortex-Rossby

wave generated by a wavenumber-2 bottom forcing. They showed that an abrupt transition to

the larger amplitude solution occurs in the model when the forcing is stronger than a threshold,

which corresponds to the evolution of a Rossby wave in the onset period of S-SSWs. Esler and

Matthewman (2011) also investigated D-SSWs by applying similar techniques to a stratified

fluid model, and argued that the nonlinear resonance of the first baroclinic Rossby-wave mode

is important to the onset of D-SSWs.

1.3 Equilibrium statistical mechanics for geophysical flows

An inviscid, freely-evolving, two-dimensional flow tends to develop into finer and finer

structures, while at a later time it tends to reach a quasi-steady, large-scale coherent structure.

Such a complex system generally shows a high sensitivity to the initial conditions and ends in

a chaotic state. It may not be easy to obtain such a large-scale structure that appears after a

long-time evolution by solving governing equations. Equilibrium statistical mechanics gives

a general method to obtain a large-scale coherent structure realized after strong PV (poten-

tial vorticity) mixing, without solving the governing equations (e.g., Salmon 1998; Majda and

Wang 2006; Bouchet and Venaille 2012). More precisely, the statistical mechanics gives a vari-

ational problem (e.g., a problem of maximum entropy) with some constraints on parameters

such as total energy and bottom forcing. A large-scale steady flow is obtained as a solution

of the variational problem, which is called an equilibrium state. By studying the equilibrium

states over some parameter range, it is possible to understand the effects of varying parameters
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such as total energy and bottom forcing.

One of the most important mathematical results in the statistical mechanics is that an over-

whelming number of possible states are associated with the equilibrium state (Michel and

Robert 1994; Boucher et al. 2000; Ellis et al. 2000). This means that if one state were picked

up at random among all the possible states, including unsteady turbulent states, and if a spatial

coarse-graining were performed, the equilibrium state would be recovered. In other words, the

equilibrium state is overwhelmingly common and occupies a quite large portion of the phase

space.

The statistical mechanics usually does not rely on perturbation expansions (or the assump-

tion of small-amplitude perturbations); hence, it can be used for a strongly nonlinear system.

On the other hand, the statistical mechanics is applicable only to a freely evolving flow without

diabatic heating nor dissipation, and does not give any information on the time evolution of a

system (e.g., even the equilibrium states are not necessarily attractive fixed points). Thus, the

statistical mechanics has the opposite weakness and strength to those of the weakly nonlinear

theories described above.

1.3.1 Casimir variational problems

The general theory of equilibrium statistical mechanics for geophysical flows is known as

the Miller-Robert-Sommeria (MRS) theory (Miller 1990; Robert 1991; Robert and Sommeria

1991). The MRS theory gives the most general variational problem that takes into account all

conserved quantities: total energy and any moment of PV. Due to this generality, however, the

entropy maximization of the MRS theory is quite complicated and is not easy to solve. This

complexity originates from the constrains reflecting all conserved quantities.

Several variational problems have been proposed, where the complicated constraints are

relaxed (e.g., Bouchet 2008; Bouchet and Venaille 2012). One important subclass of the MRS
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theory is the Casimir variational problem (CVP):

max
q

{
C ≡

∫
s(q) dA

∣∣∣∣ E,Γ
}
, (1.1)

where

E =
1
2

∫
(∇ψ)2 dA, and Γ =

∫
q dA. (1.2)

The formula (1.1) means that C is maximized by varying q subject to the two constraints of

constant E and Γ. Here, q is a PV in a two-dimensional system, ψ is the stream function given

by the PV inversion, dA is an area element, Γ is the total PV, E is the total energy, and s is

an arbitrary concave function of q. Solving the CVP (1.1) is not quite difficult because only

the two constraints are imposed. More importantly, any solution of the CVP is a solution of

the MRS theory, but the converse is not necessarily true (Bouchet 2008). In other words, any

equilibrium state in the CVP belongs to the MRS equilibria (Fig. 1.3).

MRS
CVP

QCVP

Figure 1.3: Relation between
the MRS, CVP, and QCVP
equilibria.

In the CVP (1.1), s(q) is an arbitrary concave function.

One of the simplest concave functions is a quadratic one:

s ≡ −1/2 × q2. The CVP using this function is referred to

as the quadratic Casimir variational problem (QCVP, Chava-

nis and Sommeria 1996; Venaille and Bouchet 2009, 2011b;

Naso et al. 2010):

max
q

{
S ≡ −1

2

∫
q2 dA

∣∣∣∣ E,Γ
}
. (1.3)

Although S is the negative of potential enstrophy, it is called

the entropy because the state maximizing S is always that of maximum mixing (or Shannon)

entropy (Bouchet 2008). The exponential of mixing entropy gives the number of possible

(micro) states. This implies that the state maximizing S , i.e., the equilibrium state of the QCVP,

is overwhelmingly common, as stated above.

16



1. GENERAL INTRODUCTION

The QCVP has been studied independently in geophysical fluid dynamics, and it is

called the selective decay (or minimum enstrophy) principal (Bretherton and Haidvogel 1976;

Carnevale and Frederiksen 1987). In the context of the selective decay principal, the constraint

of the total PV (Γ) is often excluded. This principal was first proposed from a phenomenologi-

cal viewpoint, associated with the inverse cascade in two-dimensional fluids. Later, its validity

has been rigorously proven for some viscous fluid systems (Foias and Saut 1984; Majda et al.

2000; Majda and Wang 2006): A two-dimensional fluid evolves asymptotically into the equi-

librium state, under the presence of Newtonian or hyper viscosity.

1.3.2 Applications to geophysical fluid systems

The equilibrium statistical mechanics has already been applied to several geophysical fluid

problems: Jupiter’s great red spots (Bouchet and Sommeria 2002), bottom trapped flows over

oceanic bottom topographies (e.g., Merryfield 1998; Venaille 2012), mesoscale eddies and jets

in the ocean (Venaille and Bouchet 2011a), an idealized jet in a two-layer QG model (Esler

2008), and hurricanes (Prieto et al. 2001).

Prieto and Schubert (2001) examined the evolution of the polar vortex that was dynamically

unstable at the initial time (i.e., the meridional PV gradient was negative somewhere) by using

a spherical, unforced, barotropic model without bottom forcing. They applied the MRS theory

and QCVP, and demonstrated that both successfully predicted the final states simulated by the

numerical model.

1.4 Overview of this thesis

The present study proposes a new understanding of S-SSWs based on the equilibrium sta-

tistical mechanics (Fig. 1.4): The S-SSW can be qualitatively understood as a transition from

an entropy saddle point in the direction of the entropy maximum (i.e., the equilibrium state).
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Figure 1.4: (left) Schematic illustration of the new understanding on S-SSWs. Note that the
entropy (S ) maximum is the minimum of −S . (right) Snapshots of geopotential height at the
10-hPa isobaric surface during the February 1979 S-SSW in JRA-55, corresponding to the
states in the left figure: (a) on Dec. 31,1978; (b) on Feb. 22, 1979; and (c) on Mar. 31, 1979.

The polar vortex splits during this transition.

The thesis is organized as follows. In Chapter 2, a composite S-SSW is made from the

Japanese 55-year Reanalysis (JRA-55), and we demonstrate a nearly equivalent-barotropic

structure of the composite S-SSW. In Chapter 3, a spherical QG barotropic model is constructed

on the basis of the composite analysis. The validity of the QG model is verified through the

direct comparison with the evolution of the composite PV. In addition, to examine a transi-

tion of the polar vortex, a quasi-static experiment is performed, in which the amplitude of a

wavenumber-2 bottom forcing is increased linearly and sufficiently slowly with time. In Chap-

ter 4, the statistical-mechanics theory, namely the QCVP, is applied to a two-dimensional disk

domain with the wavenumber-2 bottom forcing. In Chapter 5, the results of the quasi-static

experiment are interpreted with the QCVP, and the new understanding of S-SSWs is proposed.

In Chapter 6, effects of radiative cooling are discussed, and a view of potential is proposed.

Associated with this view, we discuss the preconditioning of the polar vortex and the SSWs in

the Southern Hemisphere. Finally, the conclusions are given in Chapter 7.
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Chapter 2

Composite Analysis of Vortex-Split SSWs
(S-SSWs)

The S-SSW is known to have a nearly equivalent-barotropic structure between the alti-

tudes of about 20 and 40 km around the vortex splitting (Matthewman et al. 2009). Due to

this equivalent-barotropic structure, the S-SSW is considered to be caused mainly by the am-

plification of an equivalent-barotropic Rossby wave (Esler and Scott 2005; Matthewman and

Esler 2011). In this chapter, we confirm these results by analyzing a reanalysis dataset (JRA-

55). In Section 2.1, a composite S-SSW is constructed from JRA-55. In Section 2.2, we

analyze the three-dimensional PV structure and confirm that the composite S-SSW has the

nearly equivalent-barotropic structure. Finally, in Section 2.3, we show that disturbances with

a vertical scale of about 85 km are predominant when the polar vortex splits.

2.1 Construction of composite fields

We analyze the Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015) and construct

a composite S-SSW from 10 S-SSW events showing distinct splittings of the polar vortex.

Following Seviour et al. (2013), all S-SSWs are identified by applying the vortex-moment

diagnostics to geopotential height at 10 hPa (about 30-km height) over the winters (December

to March) of 1958/1959 to 2013/2014. In the vortex-moment diagnostics, the polar vortex
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is approximated to be an ellipse of uniform geopotential height that is defined from the first

and second moments of the geopotential-height field (see Appendix A for details). An S-

SSW requires the aspect ratio of the ellipse to remain larger than 2.3 for 7 consecutive days or

more. The onset time is defined as the time when the threshold of 2.3 is first exceeded, and is

designated by t = 0 (i.e., the reference of time).

To prevent from counting the same S-SSW twice, once an S-SSW is identified, no event is

defined within 30 days of the onset time. This interval is approximately equal to three radiative

time scales at 10 hPa (Newman and Rosenfield 1997).

Moreover, to extract S-SSWs associated with vortex splittings near the North Pole, we

exclude events in which the ellipse centroid moves to the south of 66◦N once or more between

t = 0 and 7 days. This procedure corresponds to excluding mixed S-SSWs, which have features

common to S-SSWs and D-SSWs (Mitchell et al. 2013), because a D-SSW is defined as an

event where the ellipse centroid remains equatorward of 66◦N for 7 consecutive days or more

(Seviour et al. 2013). After this procedure, 18 S-SSWs are identified. About a half of these

S-SSWs do not show distinct vortex splittings and are excluded accordingly.

To make a meaningful composite, an average needs to be taken over S-SSWs having similar

characteristics. To this end, we further extract 10 S-SSWs in which the distance between the

two ellipse centroids of the daughter vortices, after the vortex splitting, is at least 2000 km

larger than the sum of the lengths of their major axes for more than 4 consecutive days. The

following results are insensitive to the choice of the criterion values of 2000 km and 4 days.

In fact, the same results were obtained when 1500 km and 3 days were used instead. Table

2.1 shows the onset dates of the 10 S-SSWs obtained in the present study and those in Seviour

et al. (2013). For the 10 S-SSWs identified here, the zonal-mean zonal wind at 10 hPa returns

to westerly for 10 consecutive days or more before April 30, which indicates that these events
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Table 2.1: Onset dates of the S-SSWs showing the distinct splittings of the polar vortex. For
comparison, the corresponding onset dates in Seviour et al. (2013) are listed. The symbol ×
denotes that the 2012/13 winter is outside their analysis period.

.

This study Seviour et al. (2013)
Jan. 03, 1968 Dec. 29, 1967
Jan. 16, 1971 Jan. 15, 1971
Feb. 04, 1973 Feb. 04, 1973
Feb. 17, 1979 Feb. 18, 1979
Dec. 25, 1984 Dec. 25, 1984
Feb. 24, 1999 Feb. 24, 1999
Mar. 15, 2001 Mar. 15, 2001
Mar. 21, 2002 Mar. 21, 2002
Jan. 18, 2009 Jan. 18, 2009
Jan. 05, 2013 ×

are not final warmings (Charlton and Polvani 2007).

Finally, as in Seviour et al. (2013), each composite field is constructed by simply averaging

over the 10 S-SSWs at each time t. The direction of the vortex splitting is slightly different

among the 10 S-SSWs, which suggests that a composite field may be distorted due to the can-

cellation among the 10 S-SSW events. We confirmed that such a cancellation is not critical

here. In fact, similar composite fields were obtained when each field was rotated, before aver-

aging, so that the major axis of the equivalent ellipse at t = 0 (i.e., the direction of the vortex

splitting) was arranged to the same direction (not shown).

2.2 Three-dimensional PV structure

Using a composite analysis, Matthewman et al. (2009) demonstrated that the S-SSW has

a nearly equivalent-barotropic structure. In examining the vertical structure of our composite

S-SSW, the modified PV (MPV, Lait 1994) is calculated on each isentropic surface. The MPV
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is defined as the vertically weighted Ertel’s PV (EPV):

MPV ≡ EPV ×
(
θ

θ0

)−9/2

=
ζ + f
σ
×

(
θ

θ0

)−9/2

, (2.1)

where θ is the potential temperature, θ0 is its reference, ζ is the vertical component of the

relative vorticity, f is the Coriolis parameter, and σ is the density in the isentropic coordinate

system. Following Matthewman et al. (2009), θ0 is set to 475 K. The MPV is a conserved

quantity along an air-parcel trajectory like EPV in the absence of friction and diabatic heating.

Unlike EPV, however, the MPV exhibits small vertical dependence, so that it is suitable to

examine a vertical structure of the polar vortex.

Figure 2.1 shows the snapshots of MPV at various times and heights. The polar vortex is

nearly equivalent-barotropic around t = 0; in particular, it splits almost simultaneously over

the altitude rage of θ = 440 to 1150 K (about 16.8 to 37.0 km). The vortex splitting is not

obvious at 400 and 1500 K. After the polar vortex splits at about t = 2 days, the two daughter

vortices are advected westward more rapidly at high altitudes (1150 and 1500 K). These results

are consistent with those of Matthewman et al. (2009).

To further clarify a vertical variation of the structure, we examine the phases of the dominant

MPV components with zonal wavenumber 1 and 2. The phase with wavenumber 1 or 2 is

defined as the longitude of the MPV maximum for each component. Figure 2.2 shows the

time series of the MPV phases with wavenumber 1 and 2 at the various isentropic surfaces.

Around t = 0, the phases take similar values. More precisely, the wavenumber-2 phases are

concentrated around 90◦ between about t = −1 and 3 days, which corresponds to the period

of the vortex splitting. On the other hand, the wavenumber-1 phases are concentrated around

0◦ between about t = −3 and 0 days before the splitting. At a later time, the phases for

wavenumber 2 start to spread, and those at the higher altitudes (1150 or 1300 K) decrease more

rapidly, which corresponds to a westward advection of the daughter vortices as seen in Fig. 2.1.
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(PVU)MPV

400 K
14.5 km

440 K
16.8 km

500 K
19.8 km

550 K
21.9 km

850 K
31.0 km

1150 K
37.0 km

0 days 2 days 4 days 8 dayst = -8 days

1500 K
42.3 km

-4 days

Figure 2.1: Evolution of the composite modified PV [MPV, Lait (1994)] over 30 to 90◦N at the
respective isentropic surfaces between 400 and 1500 K. The MPV is given by (2.1). The unit of
PVU is defined as 1 PVU = 10−6 K m2 s−1 kg−1. Each lateral label represents the time-mean
height of the isentropic surface at 60◦N over the period of the composite SSW.
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Figure 2.2: Time series of the MPV phases with wavenumber 1 and 2 at the various isentropic
surfaces between 550 and 1300 K. The phase of MPV with zonal wavenumber 1 or 2 is defined
as the longitude of the MPV maximum for each component. Before calculating the phase, a
moving average with window size of 11.25◦ was applied along the latitudinal direction. The
results are insensitive to the window size.

The wavenumber-1 phases after t = 0 also spread rapidly, but this is not important because the

wavenumber-1 components at the later time are not dominant in the MPV field.

2.3 Disturbances to zonal-mean flows

The dynamics of S-SSWs is known to be captured by a framework of wave-mean flow

interactions (Matsuno 1971). Esler and Scott (2005) analyzed the results of fully nonlinear

three-dimensional QG simulations of a prototype S-SSW in which the initial polar vortex is

equivalent-barotropic, by employing the wave activity conservation and a linear response the-

ory. They demonstrated that the amplification of an equivalent-barotropic Rossby wave gener-

ated by a wavenumber-2 bottom forcing is essential to cause the S-SSW. In this section, we first

confirm that wavenumber-2 disturbances are dominant during the composite SSW by analyzing

the Eliassen-Palm (EP) flux. Subsequently, the vertical scale of the wavenumber-2 disturbances

is roughly estimated.

The diagnostic of the EP flux and transformed Eulerian-mean equations is quite useful to
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understand the middle-atmosphere dynamics (Andrews and McIntyre 1976, 1978; Andrews

et al. 1987). In the spherical log-pressure coordinate system, the EP flux F = (0, F(φ), F(z)) and

its divergence are given as

F(φ) ≡ ρ0R cosφ
uz

v′θ′

θz

− u′v′
 , (2.2)

F(z) ≡ ρ0R cosφ
[ f − 1

R cosφ
(u cosφ)φ

]
v′θ′

θz

− u′w′
 , (2.3)

and

∇ · F ≡ 1
R cosφ

(
F(φ) cosφ

)
φ
+

(
F(z)

)
z
, (2.4)

where z is the log-pressure height, φ is latitude, ρ0 is the reference density, R is the earth

radius, (u, v,w) is the zonal, meridional, and vertical components of the velocity, respectively,

() and ()′ denote the zonal mean and local deviation from it, respectively, and the subscripts

φ and z denote the partial derivatives with respect to the meridional and vertical coordinates,

respectively. Since the EP flux and its divergence consist of only the quadratic terms of the

disturbances, the contributions from different zonal-wavenumber components can be exactly

separated. The EP flux divergence/convergence drives the zonal-mean flows. If ∇·F is positive

(negative) somewhere, the zonal-mean zonal wind u is accelerated (decelerated) around there.

If ∇ · F = 0 everywhere, the mean flows are not changed with time (i.e., the non-acceleration

theorem). Moreover, if the Wentzel-Kramers-Brillouin (WKB) approximation is assumed to be

valid, the EP flux vector F is parallel to the group velocity of a disturbance in the latitude-height

section (Edmon et al. 1980).

Figure 2.3 shows the EP flux and its divergence in the latitude-height sections for (a)

wavenumber-2, (b) wavenumber-1, and (c) total components, together with the zonal-mean

zonal wind u. The wavenumber-2 components mainly contribute to the deceleration of u, and

the region with negative u is observed at t = 4 and 8 days. Under the assumption of the WKB
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Figure 2.3: Latitude-height sections of EP flux vectors (arrows), its divergence (colors), and
zonal-mean zonal wind (u, contours) at t = −4, 0, 4, and 8 days. (a) Zonal wavenumber-2, (b)
wavenumber-1, and (c) total components. Contour interval for u is 5 m s−1. The red contours
represent u = 0. The EP flux divergence ∇·F is multiplied by (ρ0R cosφ)−1 to change its unit
to m s−1 day−1.

approximation, the EP flux vectors indicate that the wavenumber-2 disturbances propagate up-

ward along the u = 0 line (the critical line for stationary waves) and then toward the equator.

This upward and subsequent equatorward path can be understood by the concept of wave-guide

associated with a high refractive index (Matsuno 1970).

We give a rough estimate of the vertical scale of the wavenumber-2 disturbances. If the

monochromaticity is assumed, a vertical wavelength may be roughly estimated in the follow-

ing four steps: (i) Two isentropic surfaces are chosen; (ii) The difference in the average height

(∆H) between the two isentropic surfaces is calculated, where an average height is given by the

time mean of the geometric height of an isentropic surface at 60◦N over the period of the com-

posite SSW; (iii) The difference in the phase of wavenumber 2 (∆ϕ) between the two isentropic
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surfaces is calculated, where a phase (degree) is given by the longitude with the maximum

of height deviation for the wavenumber-2 component of an isentropic-surface undulation; (iv)

The vertical wavelength is defined by ∆H × 180◦/∆ϕ. As shown in Fig. 2.3a, the negative u

region appears at about t = 4 days, and the wavenumber-2 disturbances are dissipated along

the u = 0 line, which is located near the 30-km height at 60◦N between t = 4 and 8 days. To

avoid the negative u region, two isentropic surfaces are chosen among ten levels1 between 400

and 650 K (about 14.5 and 25.5 km). The vertical wavelengths are estimated at each time for

all possible pairs of isentropic surfaces (45 pairs), and the average wavelength is regarded as a

vertical scale of the wavenumber-2 disturbances. Figure 2.4 shows the time series of the esti-

mated vertical scale. The vertical scale tends to decrease from t = −4 to 1 days, but it slightly

increases around t = 4 days. The vortex splitting occurs between t = 0 and 4 days (Fig. 2.1).

During this period, the vertical scale of the wavenumber-2 disturbances is between about 70

and 100 km (on average about 85 km). This result may be consistent with that of Esler and

Scott (2005). Using a linear theory with an equivalent-barotropic mean state, they estimated a

vertical wavelength of Rossby waves having the maximum vertical group velocity at between

54 and 84 km.

2.4 Summary

We have constructed the composite S-SSW from JRA-55 and confirmed its equivalent-

barotropic nature. The analysis of the three-dimensional MPV structure has indicated that the

polar vortex is nearly equivalent-barotropic over the altitudes of about 20 to 40 km between

about t = −3 and 3 days. To examine which wavenumber component is dominant in the distur-

bances during the composite S-SSW, the EP flux and its divergence have been calculated. The

1The ten levels are 400, 420, 440, 460, 480, 500, 520, 540, 550, and 650 K.
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Figure 2.4: Time series of the vertical scale of the wavenumber-2 disturbances roughly esti-
mated between 400 and 650 K (about 14.5 and 25.5 km). See text for details.

results suggest that the wavenumber-2 disturbances mainly decelerate the zonal-mean zonal

flow. The vertical scale of these wavenumber-2 disturbances is roughly estimated at about 85

km, which is about four times longer than the thickness of 20 km between the heights of 20 and

40 km, over which the polar vortex is nearly equivalent-barotropic. These results suggest that

the PV evolution associated with the S-SSW may be simulated by a barotropic model.
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Chapter 3

Numerical Experiments Using a
Quasi-Geostrophic (QG) Barotropic
Model on the Sphere

Atmospheric phenomena are generally not easy to understand because they consist of mo-

tions with multiple temporal and spatial scales and also of different kinds of physical, chemi-

cal, and biological processes. A simple or theoretical model would be useful for understanding

such phenomena; however, its connection to the real phenomena may be somewhat obscure.

By contrast, a complex model such as a general circulation model (GCM) well reproduces real

phenomena, but a complicated data analysis is necessary to understand the phenomena. Thus,

there exists the model hierarchy from simple models to GCMs, and there is in general a tradeoff

between the level of understandability and the level of realism (e.g., Dijkstra 2013).

In the present study, results from the equilibrium statistical mechanics are easy to under-

stand without a data analysis because an equilibrium state has the meaning of the most probable

state and a phase diagram directly shows an influence of changing a parameter on these equi-

librium states. However, the statistical mechanics cannot be directly used to interpret any result

from JRA-55 because it is applicable only to an isolated system without diabatic heating nor

dissipation and does not give any information on the time evolution such as the relaxation

toward the equilibrium state. Thus, employing a barotropic model, we will bridge the gap be-
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Figure 3.1: Hierarchy for the reanalysis, model, and theory used in the present study.

tween real atmospheric data (JRA-55) and the statistical mechanics. Figure 3.1 represents the

hierarchy for the reanalysis, model, and theory used in the present study.

In the previous chapter, the equivalent-barotropic nature of the composite S-SSW has been

confirmed. These results suggest that the essence of S-SSWs is the equivalent-barotropic mo-

tions and these motions can be described by a barotropic model. In this chapter, we construct

a quasi-geostrophic (QG) barotropic model in a spherical coordinate system (Section 3.1), and

demonstrate that the model well reproduces the evolution of the composite PV obtained from

JRA-55 (Section 3.2). Similar one-layer models have been used in the previous studies on

SSWs (e.g., Polvani and Waugh 2004; MirRokni et al. 2011; Matthewman and Esler 2011; Liu

and Scott 2015; Scott 2016). However, to the best of our knowledge, it is the first time to con-

firm the validity of the QG barotropic model through the direct comparison with the reanalysis

dataset.

In Section 3.3, a quasi-static experiment is performed to examine transitions among states of

the polar vortex. In this experiment, a bottom forcing in the QG model is increased linearly and

sufficiently slowly with time, while the flow field keeping nearly steady; hence, it is possible

to reveal the states before and after a transition such as the polar-vortex collapse. In Chapter 5,

the results of the quasi-static experiment will be interpreted by comparing with the theoretical

calculations in Chapter 4.
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3.1 Model description

We describe the dynamics over the altitude range of about 20 to 40 km (θ = 550 to 1300

K) by using a spherical QG barotropic model with a bottom forcing. The governing equations

(e.g., Vallis 2006) are

∂q
∂t
+ v · ∇q = −ν∆10q, (3.1)

and

q(x, t) ≡ ∆ψ(x, t) + 2Ω sinφ︸   ︷︷   ︸
f (x)

+2Ω sinφ h(x, t)/H − 2Ω sinφoff︸      ︷︷      ︸
foff

, (3.2)

where q is the PV, ψ is the stream function, v is the horizontal velocity given by k × ∇ψ

(k is a vertical unit vector), ν is a coefficient of hyper viscosity, Ω is the angular velocity of

the earth’s rotation, h is an effective bottom forcing, and H is an effective mean depth. Note

that h represents the effects of large-scale disturbances propagating from the troposphere, like

in other theoretical models describing SSWs (e.g., Matsuno 1971; Holton and Mass 1976;

Plumb 1981a,b). A position x on the sphere is specified by a longitude λ and a latitude φ.

Without loss of generality, the offset of the PV, foff (≡ 2Ω sinφoff), is introduced in (3.2), where

φoff = 45◦N. In what follows, quantities except for time t are basically nondimensionalized

using the characteristic scales such as one day, earth radius, and mean depth.

We numerically solve the governing equations (3.1) and (3.2) with the fourth-order Runge-

Kutta method and the spectral method with the spherical harmonic expansion. The numerical

model was constructed with the ISPACK (Ishioka 2013). All experiments below were con-

ducted with the truncation wavenumber (in a triangular manner) T106 with the time step of

12 min. When calculating the nonlinear terms, the standard transform method is used with an

alias-free grid of 320 (zonal) × 160 (meridional). Some experiments were also performed with

T63, T85, and T126 to confirm the insensitivity to the truncation wavenumber. The value of ν

was chosen such that the e-folding time for the modes with the highest total wavenumber was
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either 80 h, 8 h, or 2.4 h. All the results are not highly sensitive to ν. Furthermore, we veri-

fied that the results are insensitive to the form of hyper viscosity: Similar results were obtained

when the viscosity term in (3.1) is given by −ν∆6q or −ν∆8q. Unless otherwise stated, the mean

depth H is set to 6.14 km. This value is equal to a scale height defined by RdryT0/g, where Rdry

is the gas constant for dry air (= 287 J K−1 kg−1), g is the gravity acceleration (≈ 9.81 m2 s−2),

and T0 (= 210 K) is the climatological temperature for the midwinter over the polar cap north

of 60◦N in JRA-55.

3.2 Reproduction of PV evolution associated with the com-
posite S-SSW

To compare with the QG simulations, the composite PV (3.2) is first constructed from JRA-

55 in the following three steps: (i) The bottom forcing h is given at each time (every 6 h) by

an undulation of the 550-K isentropic surface (at about 22 km) and is denoted by hcmp; This

undulation is defined at each position as the geometric height deviation of the 550-K surface

from its mean height (= 21.7 km), which is the zonal average at 60◦N over the period of the

composite S-SSW; (ii) The barotropic relative vorticity ∆ψ in (3.2) is given at each time by

vertically averaging the composite relative vorticity with a weight of density over θ = 550 to

1300 K (about 22 to 39 km); (iii) The composite PV qcmp is made by substituting the obtained

∆ψ and hcmp into (3.2).

For the numerical experiments, hcmp is linearly interpolated in time and then it is set to the

QG model. The initial PV is given by the composite PV qcmp at t = −10 days. Numerical

integration is performed from t = −10 to 10 days. All the following results are insensitive

to the choice of the bottom isentropic surface: Similar results were obtained when the 440-K

surface (at about 17 km) was used instead of the 550-K surface.

Figure 3.2 shows the evolution of (a) the bottom forcing hcmp, (b) the composite PV qcmp,
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Figure 3.2: Evolution of (a) the effective bottom forcing hcmp, (b) the composite PV qcmp, and
(c) the simulated PV q by the QG model, over 0 to 90◦N. Note that hcmp and qcmp are made from
the composite fields of JRA-55. Evolution of (d) the zonal-wavenumber-2 component of hcmp

and (e) the simulated PV q by the QG model with only the wavenumber-2 hcmp shown in (d).
The magnitude of hcmp is non-dimensionalized by H = 6.14 km in (a) and 0.7× 6.14 km in (d).

and (c) the simulated PV. The zonal-wavenumber-1 structure is observed in hcmp at first, but

gradually the wavenumber-2 structure becomes dominant. The PV evolution is well reproduced

by the QG model until t = 4 days, especially before and after the vortex splitting at about t = 2

days. At a later time (t = 6 or 9 days), the two daughter vortices remain in the composite PV

field, but only the one daughter vortex remains in the simulated field and the other becomes

quite small. This is likely due to that the baroclinic structure develops after the vortex splitting,

as seen in Figs. 2.1 and 2.2.

Similar experiments were also conducted for the S-SSW in February 1979 (e.g., Palmer

1981) instead of the composite S-SSW. This S-SSW event has been widely studied because it

occurred during a period of intensive observation of the atmosphere [the First GARP Global

Experiment, e.g., Andrews et al. (1987)]. The PV evolution was also reproduced well by the
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QG model. Moreover, we found little influence of changing the initial time: A similar vortex

splitting was simulated when the initial time was changed to t = −20 days (not shown).

Finally, we examine which zonal-wavenumber component of hcmp is the most essential

to the vortex splitting. Since the wavenumber 0, 1, and 2 components are predominant in

hcmp, only a single wavenumber component of hcmp is given to the QG model and the nu-

merical integrations are conducted. The polar vortex was elongated only in the case of the

wavenumber-2 component of hcmp, but its vortex splitting was not distinct. In the other cases of

the wavenumber-1 and -2 components of hcmp, the polar vortex remained nearly circular. These

results suggest that the amplitude of each wavenumber component of hcmp is too small for a

vortex splitting to occur. Since a use of a smaller mean depth H results in a relatively larger

amplitude of hcmp in (3.2), all numerical simulations are performed again with H = c̃×6.14 km,

where c̃ is changed between 0.7 and 0.9 with an interval of 0.1. The vortex split occurs only in

the cases of the wavenumber-2 hcmp with c̃ = 0.7, 0.8, and 0.9. Figures 3.2d and 3.2e show the

evolution of the wavenumber-2 hcmp and simulated q with c̃ = 0.7, respectively. These results

indicate that the wavenumber-2 component of hcmp is the most essential to the vortex splitting.

3.3 Quasi-static experiments

In the numerical experiments of the previous section, the details of transitions (or bifur-

cations) among states of the polar vortex were not clear because the time scale of the bottom

forcing hcmp was too short and the polar vortex evolved too rapidly. It may be useful for un-

derstanding S-SSWs to conduct an experiment with a slowly varying forcing and to pursue

changes in the structure of a flow field. In fact, several studies (e.g., Matthewman and Esler

2011; Liu and Scott 2015) have argued that some transition is essential to understand S-SSWs.

To examine such a transition, we conduct a quasi-static experiment where the time scale of the
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forcing h is O(104 days). Due to this quite slow variation of h, the flow field is nearly steady

and it is possible to reveal the states before and after a transition. This kind of method is known

as continuation methods in the bifurcation theory (e.g., Seydel 2009). The set-up of the quasi-

static experiment is also suitable to apply equilibrium statistical mechanics and the results will

be interpreted in Chapter 5.

A link of the real S-SSW to the quasi-static experiment, in which the forcing time scale is

unrealistically long, may not be clear. Before conducting such a highly idealized simulation,

we perform an experiment with the forcing time scale of one week, which is a reasonable time

scale of Rossby waves causing SSWs (Sjoberg and Birner 2012).

3.3.1 Preliminaries

We first describe the model configuration common to the experiments with the short and

quite long time scales of h. In Section 3.2, the bottom forcing is given at each time by hcmp

made from JRA-55 and its zonal-wavenumber-2 component is the most essential to the vortex

splitting. Moreover, Fig. 3.2d suggests that the phase of the wavenumber-2 hcmp does not vary

much after t = −4 days. Thus, a new h is defined as follows, whose spatial structure is fixed,

but amplitude a(t) is varied with time:

hQSE ≡ a(t) × h0 cos[2(λ − λ0)] exp
−1

2

(
φ − φ0

∆φ

)2 , (3.3)

where

a(t) ≡


0 (t < 0),
amax × t

∆t (0 ≤ t ≤ ∆t),
amax (∆t < t).

(3.4)

Note that the subscript QSE stands for quasi-static experiment. Figure 3.3 compares hQSE [a(t)

= 1] with the wavenumber-2 hcmp (at the onset time). The value of h0 is set to 420 m, which

is nearly equal to the amplitude of the wavenumber-2 hcmp. In the following, the magnitude of
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Figure 3.3: Effective bottom forcings over 0 to 90◦N: (a) the zonal-wavenumber-2 component
of hcmp at the onset time made from JRA-55 and (b) hQSE with a(t) = 1 defined in (3.3). The
parameters h0, λ0, φ0, and ∆φ are determined to fit hQSE into the wavenumber-2 hcmp: h0 = 420
m, λ0 = 56.3◦, φ0 = 58.1◦N, and ∆φ = 13.0◦. (c) Cross sections of (a) and (b) on the blue lines.

hQSE is normalized by h0 and is denoted by a in (3.3). The parameters of λ0, φ0, and ∆φ are also

determined to fit hQSE to the wavenumber-2 hcmp, as in the caption of Fig. 3.3. The parameters

amax and ∆t will be given in the following each section.

The initial PV is given by the axisymmetric component of the barotropic, climatological,

absolute vorticity ∆ψ+ f , which is made in the following two steps: (i) The three-dimensional,

climatological, absolute vorticity is obtained by simply averaging the absolute vorticity over

the 55 midwinters (December to February) in JRA-55, except for the periods of SSWs; (ii) Its

barotropic component is defined by vertically averaging the obtained absolute vorticity with a

weight of density over θ = 550 to 1300 K (about 22 to 39 km).

3.3.2 Experiment with the forcing time scale of one week

In this subsection, we perform an experiment with the forcing time scale ∆t = 7 days, where

amax in (3.4) is set to 2. Figure 3.4a compares the time series of a(t) in (3.4) with those of the

amplitude of the wavenumber-2 hcmp. The time scale and amplitude of hQSE are similar to those

of hcmp. Sjoberg and Birner (2012) analyzed reanalysis datasets (ERA-Interim and ERA-40)

and showed that Rossby waves with a time scale of one week or longer tend to cause SSWs.
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Figure 3.4: (a) Time series of the forcing amplitudes given by the wavenumber-2 component
of hcmp made from JRA-55 (red) and by hQSE in (3.3) and (3.4) (black), where ∆t = 7 days and
amax = 2. The same wavenumber-2 hcmp as that in Fig. 3.2d is used for the red time series.
For comparison, the onset time is shifted to t = 10 days. (b) Evolution of PV over 45 to 90◦N
simulated by the QG model using hQSE.

The choice of ∆t = 7 days is consistent with their results.

Figure 3.4b shows the simulated PV evolution. Compared with Figs. 3.2c and 3.2e, a

similar vortex splitting is reproduced even by using the simpler bottom forcing hQSE in (3.3).

This result motivates us to further investigate the transitions in the QG model by performing an

experiment with a large ∆t (i.e., the amplitude of hQSE is slowly increased).

The vortex splitting is likely to be understood with the Love-type instability from a dynam-

ics point of view (Matthewman and Esler 2011). The polar vortex is elongated by the increase in

the bottom forcing hQSE, which leads to a strong shear near the vortex center. Eventually, a kind

of barotropic instability, named the Love-type instability, occurs (Love 1893). The Love-type

instability has often been investigated for the Kirchhoff elliptic vortex, which consists of an

elliptic high vorticity surrounded by a low vorticity. Many studies have analyzed the linear and

nonlinear dynamics of the Kirchhoff vortices by using theoretical and numerical methods (e.g.,

Wan 1986; Tang 1987; Dritschel 1985, 1986; Guo et al. 2004). Mitchell and Rossi (2008) nu-

merically investigated the nonlinear evolution of the Kirchhoff vortices in the two-dimensional

plane. They demonstrated that the wave-wave interaction between wavenumber-2 perturbations

makes a wavenumber-4 perturbation and this perturbation develops the Kirchhoff vortex into

a vortex splitting or a filamentation structure, depending on the phase of the wavenumber-4
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perturbation. The latter filamentation structure likely corresponds to a state developed during

the breakdown of the polar vortex in the next subsection (Fig. 3.6b).

The evolution over a long period is examined next. Figure 3.5 shows the evolution of stream

function and PV, together with the structure of the bottom forcing hQSE [a(t) = 2] and the time

series of the following quantities: total PV Γ, total energy E, and potential enstrophy S , where

Γ =

∫
q dA, (3.5)

E =
1
2

∫
(∇ψ)2 dA, (3.6)

S = −1
2

∫
q2 dA, (3.7)

dA is an area element, and S is also called the entropy as explained in Section 1.3.1. Significant

changes in the PV field occur over the North Pole, and we focus on the polar cap over 45 to

90◦N. All surface integrals in (3.5) – (3.7) are taken over this polar cap.

The polar vortex gradually breaks down after the vortex splitting shown in Fig. 3.4b. The

entropy S is rapidly increased by the vortex splitting and then it is gradually increased, asso-

ciated with the PV mixing shown in the right column of Fig. 3.5b. The total PV Γ and energy

E evolve in similar ways. The flow field reaches a nearly steady state at about t = 1000 days.

This final state is anti-cyclonic, as seen in the stream function, and the flow field is elongated

along the direction of the hQSE maxima.

3.3.3 Experiment with the forcing time scale of O(104 days)

We perform a quasi-static experiment with the forcing time scale of O(104 days) to investi-

gate the transitions inherent in the QG barotropic system. The parameters ∆t and amax in (3.4)

are set to 2.8 × 104 days and 1, respectively. The following results are insensitive to ∆t. In fact,

similar results were obtained when ∆t = 1.4×104 days, which indicates that the variation in the

forcing amplitude a(t) is sufficiently slow. Without loss of generality, λ0 in (3.3) is set to zero.
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Figure 3.5: Results of the QG experiment using hQSE in (3.3) and (3.4) with ∆t = 7 days and
amax = 2. (a) Time series of the total PV Γ, the total energy E, and the entropy S (i.e., the
negative of potential enstrophy). Those quantities are defined in (3.5), (3.6), and (3.7). (b)
Evolution of stream function (SF) ψ and PV q over 45 to 90◦N. (c) Effective bottom forcing
hQSE with a(t) = 2 over 45 to 90◦N. The parameters of hQSE are the same as those in Fig. 3.3.
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Note that the initial PV is axisymmetric (Section 3.3.1). We also perform a quasi-static ex-

periment using a non-axisymmetric initial PV, including the zonal-wavenumber-1 component.

Similar results to the following are obtained and shown in Appendix B.

Evolution of PV field

Figure 3.6 shows (a) the time series of Γ, E, S and the major-axis angle of the equivalent

ellipse for PV, (b) the evolution of stream function and PV, and (c) the structure of the forcing

hQSE with a(t) = 1. The PV field is nearly steady, except around the two transitions. The

changes in the PV field are correlated with the abrupt changes in Γ, E, and S . The first transition

occurs at about t = 7000 days. The state before the transition is referred to as State A, in which

the polar vortex is vertically elongated (i.e., the major-axis angle ∼ 0◦), as shown in the 4000th-

day snapshots. The state after the transition is referred to as State B, in which the polar vortex

is laterally elongated (i.e., the major-axis angle ∼ 90◦), as shown in the 11000th-day snapshots.

Associated with the transition from A to B, the values of Γ, E, and S rapidly decrease. Note

that the temporary increase in the major-axis angle around t = 5000 days (Fig. 3.6a) was not

observed in some experiments using different viscosity coefficient, truncation wavenumber, or

initial condition (see Fig. B.1a) and it is not discussed here.

The major-axis angle of the equivalent ellipse increases before about t = 2000 days and

then reduces to about 0◦ (Fig. 3.6a). This variation is sensitive to slight changes in the initial

PV (not shown). This is likely because the aspect ratio of the equivalent ellipse is close to unity

(i.e., the ellipse is almost a circle) and there is a high uncertainty in the direction of its major

axis, which will lead to the sensitivity of the major-axis angle. During this period, the initial

axisymmetric state changes into A, which is not axisymmetric (Fig. 3.6b). For simplicity, we

regard the initial axisymmetric state as A. When the forcing time scale ∆t is 7 days and the

initial PV is given by that of State A (i.e., the 4000th-day PV in Fig. 3.6b), a similar vortex
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Figure 3.6: Results of the quasi-static experiment with the QG model using hQSE in (3.3) and
(3.4) where ∆t = 2.8 × 104 days and amax = 1. (a) Time series of the total PV Γ, the total
energy E, the entropy S (i.e., the negative of potential enstrophy), and the major-axis angle
of the equivalent ellipse for PV. The quantities of Γ, E, and S are defined in (3.5), (3.6), and
(3.7), respectively. The equivalent ellipse for PV is obtained by following Matthewman and
Esler (2011), where its major-axis angle is measured from the vertical axis in the clockwise
direction. A low-pass filter with a 100-day cutoff period was applied to all time series (the
results are insensitive to the cutoff period). (b) Evolution of stream function (SF) ψ and PV q
over 45 to 90◦N. In some PV snapshots, the equivalent ellipses are drawn by the dashed curves
and their major axes by the solid lines. (c) Effective bottom forcing hQSE with a(t) = 1 over 45
to 90◦N. The parameters of hQSE are the same as those in Fig. 3.3, except for λ0 = 0◦.
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splitting to that in Fig. 3.4b is reproduced. Furthermore, when ∆t is 2.8 × 104 days (quasi-

static) and the initial PV includes all zonal-wavenumber components (not axisymmetric), a

state similar to A appears (Fig. B.1). These results imply that the emergence and persistence

of State A is not highly sensitive to the initial PV, and give the validity that the initial state is

regarded as A.

The second transition occurs at about t = 18000 days, accompanied by the polar-vortex

collapse (the right column in Fig. 3.6b). The PV filaments are peeled off the polar vortex,

and eventually the polar vortex breaks down without splitting. Before this transition, the flow

field is at State B (e.g., the 11000th-day snapshots). The state sufficiently after the transition

is referred to as State C, in which the weak PV patch is laterally elongated, as shown in the

28000th-day snapshots. Associated with the transition from B to C, the values of Γ and E

rapidly decrease, but that of S rapidly increases due to the strong PV mixing. Just after the

transition, the small PV patch remains (e.g., the 18000th-day snapshots), but it is dissipated at

about t = 21500 days and the flow field reaches State C.

More importantly, State B as well as A is cyclonic, whereas C is anti-cyclonic, as seen in

the stream functions (the left column in Fig. 3.6b). In the experiment of the previous subsection

with ∆t = 7 days, a similar final state to C was obtained (Fig. 3.5b), in which the flow field

is elongated along the direction of the hQSE maxima, like that of C. These results indicate that

the final state C is not sensitive to the forcing time scale ∆t, but the vortex splitting and the

emergence of State B, namely the transition paths to the final state C, depend on ∆t.

Liu and Scott (2015) conducted the parameter sweep experiments where the forcing am-

plitude was increased linearly and slowly with time, like in our quasi-static experiment, by

using spherical one-layer models (QG and shallow-water) with a wavenumber-2 bottom forc-

ing. Their parameter space is spanned by the angular frequency of the forcing as well as the
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forcing amplitude. They obtained a similar regime diagram to that in the f -plane barotropic

model (Matthewman and Esler 2011), even using the spherical systems with/without a radia-

tive relaxation. They also observed similar two transitions to those in our experiment. The

difference from our results is that the flow field corresponding to State B oscillates much more

strongly (they called it the oscillating regime). This difference is likely attributable to the forc-

ing frequency, which is zero in our experiment.

Variations in the integrated quantities

Finally, we investigate causes for the variations in Γ, E, and S . Their budgets are governed

by the following equations:

dΓ
dt
= −ν

∫
∆10q dA −

∫
∇ · (vq) dA, (3.8)

dE
dt
= ν

∫
ψ∆10q dA +

∫
∇ ·

(
vqψ + ψ

∂

∂t
∇ψ

)
dA +

∫
ψ f
H
∂hQSE

∂t
dA, (3.9)

and

dS
dt
= ν

∫
q∆10q dA +

∫
∇ ·

(
v

q2

2

)
dA, (3.10)

where all integrations are taken over the polar cap of 45 to 90◦N. Note that if the viscosity co-

efficient ν is zero and if all integrations are taken over the whole sphere, Γ and S are conserved,

but E can be changed by variations in hQSE [i.e., the last term in (3.9 )].

Figure 3.7a shows the time series of each term in the energy budget (3.9). Obviously, E is

varied at the two transitions (t ∼ 7000 and 18000 days) primarily by the energy fluxes across

45◦N. Similarly, Γ is varied primarily by the PV fluxes (not shown). Figure 3.7b shows the time

series of each term in the entropy budget (3.10). The abrupt change in S at the first transition

(t ∼ 7000 days) is mainly due to the flux term, like Γ and E, but its change at the second

transition (t ∼ 18000 days) is due not only to the flux term but also to the viscosity term. At the

second transition, the small-scale structures develop (Fig. 3.6b), the entropy S is transferred
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Forcing
ViscositydE/dt

Flux
ViscositydS/dt

Flux

(a) (b)

Figure 3.7: Time series of each term in (a) the energy budget (3.9) and (b) the entropy budget
(3.10) in the quasi-static experiment. The label Viscosity denotes the first terms on the right
hand sides of (3.9) and (3.10), Flux the second ones of (3.9) and (3.10), and Forcing the third
one of (3.9). Each inset shows the time series around the polar-vortex collapse. A low-pass
filter with a 500-day cutoff period was applied to all time series (the results are insensitive to
the cutoff period).

into smaller scales, and it is finally dissipated by the numerical viscosity. These results are not

highly sensitive to the viscosity coefficient ν: Similar time series to those in Figs. 3.6a and 3.7

were obtained even when ν was ten times as large as the present value.

3.4 Summary

The spherical QG barotropic model with the effective bottom forcing h has been constructed

on the basis of the equivalent-barotropic nature of S-SSWs. To estimate the model validity, the

simulated PV evolution has been compared with the composite PV evolution made from JRA-

55. The QG barotropic model well reproduces the composite PV evolution during the period

before the baroclinic structure develops in the composite S-SSW. This result indicates that the

QG barotropic model well describes the equivalent-barotropic processes associated with the

vortex splitting.

We have also conducted the QG simulations including only a single zonal-wavenumber

component of h to reveal which component is the most essential to the vortex splitting. The

vortex splitting occurs only in the experiments with the zonal-wavenumber-2 h.

In these experiments, the polar vortex evolves too rapidly due to the short time scale of the
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forcing h. To investigate state transitions of the polar vortex, the quasi-static experiment has

been performed, where the forcing amplitude is increased linearly and sufficiently slowly with

time, while its spatial distribution is fixed to the wavenumber-2 structure. The flow field is

nearly steady except around the two transitions, and the three quasi-steady states are observed,

which are named A, B, and C. In the first transition from A to B, the flow remains cyclonic, but

the shape of the polar vortex changes. In the second transition from B to C, the polar vortex

breaks down without splitting, and the flow changes from cyclonic to anti-cyclonic. We have

also conducted the same experiment as the quasi-static one except for the forcing time scale of

one week (not sufficient slow). In this case, the polar vortex splits during the transition from

A to C, and State B does not appear. These results indicate the final state C is not sensitive to

the forcing time scale, but the transition path such as the vortex splitting and the emergence of

State B depends on the forcing time scale.
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Chapter 4

Theoretical Calculations Based on
Equilibrium Statistical Mechanics

In the previous chapter, we have observed the drastic changes in the large-scale flow struc-

ture and the self-organization of the anti-cyclonic flow pattern after the polar-vortex breakdown

in the QG barotropic model. Such a drastic change is reminiscent of a phase transition in sta-

tistical mechanics. Phase transition is a typical example of cooperative phenomena. Let us

first consider a system consisting of quite many (the order of Avogadro’s number) particles.

Each particle is governed by the equation of motion including the two-body interactions (e.g.,

Coulomb interactions) with the other particles, but apparently there exists no law governing

the entire system. When the temperature is slowly varied, for instance, the entire system sud-

denly changes from liquid to gas at some boiling point, even though the form of the equations

of motion and the parameters (e.g., mass and charge of each particle) are not changed at all.

Such a phenomenon does not occur in a system composed of a few particles, but it occurs as

a results of the interactions among quite many particles. This kinds of cooperative phenomena

are observed in many systems, often accompanied by self-organizations or pattern formations.

The related concepts and methods are now applied in many fields: physics, chemistry, biology,

computer science, economics, and social science.

It is well known that there exists the analogy between point-vortex systems and many-
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particle systems. In fact, the motion of point vortices is governed by the Hamiltonian equations

and the interaction between two point vortices is described by a similar function to the Coulomb

potential. On the basis of this analogy, it may be possible to understand the behaviors of fluid

systems consisting of quite many point vortices, by applying equilibrium statistical mechan-

ics. This attempt was first carried out by Onsager (1949), and later by some researchers (e.g.,

Salmon et al. 1976; Kraichnan and Montgomery 1980). Recently, the equilibrium statistical

mechanics for geophysical flows has made great progress (e.g., Salmon 1998; Majda and Wang

2006; Bouchet and Venaille 2012), as the Miller-Robert-Sommeria (MRS) theory has been de-

veloped (Miller 1990; Robert 1991; Robert and Sommeria 1991), which is the most general

statistical-mechanics theory so far including the previous theories as the particular limits.

In this chapter, we apply a statistical-mechanics theory to a QG barotropic system on a disk

domain. This theory is a subclass of the MRS theory (Bouchet 2008), and called the quadratic

Casimir variational problem (QCVP). A brief review on the QCVP is given in Section 4.1.

The equilibrium and quasi-stationary states are examined in Sections 4.2, and 4.3, respectively,

where a quasi-stationary state is a saddle point of the entropy. The main result is that the mean

state of the winter stratosphere accompanied by the polar vortex may be regarded not as the

equilibrium state but as a quasi-stationary state. In Section 4.4, we show the possibility of tran-

sition with changing some parameters such as total energy and forcing amplitude. Although the

configuration considered here is aimed at understanding S-SSWs, this chapter is somewhat in-

dependent and refers to few results in the previous chapters. In the next chapter, the theoretical

calculations performed here will be compared with the results of the quasi-static experiment.
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4.1 Quadratic Casimir variational problem (QCVP)

The quadratic Casimir variational problem (QCVP) is given as follows (Chavanis and Som-

meria 1996; Venaille and Bouchet 2009, 2011b; Naso et al. 2010):

max
q

{
S ≡ −1

2

∫
q2 dA

∣∣∣∣ E,Γ
}
. (4.1)

where

E ≡ 1
2

∫
(∇ψ)2 dA, (4.2)

Γ ≡
∫

q dA, (4.3)

and

q(x) ≡ ∆ψ(x) +
[
f (x) − foff

]
+ f (x) h(x)/H. (4.4)

The formula (4.1) means that S is maximized by varying q subject to the two constraints of

constant E and Γ. The above definitions of the entropy S , total energy E, total PV Γ, and PV q

are the same as those in Chapter 3 [i.e., (3.7), (3.6), (3.5), and (3.2), respectively]. The entropy

maximizer q is referred to as the equilibrium state. As stated in Section 1.3.1, an overwhelming

number of possible states specified by the constant E and Γ are associated with the equilibrium

state. In other words, if one state were picked up at random among all the possible ones and if

a spatial coarse-graining were performed, the equilibrium state would be recovered.

Any stationary point, i.e., a state with the first variation of S being zero under the two

constraints of E and Γ, satisfies the following linear q-ψ relation

q = bψ − c, (4.5)

where b and c are Lagrange multipliers, depending implicitly on the two constraints of E and Γ.

This relation means that a streamline is identical to the corresponding PV contour; hence, any

stationary point for the QCVP is an exact steady solution of the QG barotropic system [(3.1)
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and (3.2), where ν = 0]. In addition to the equilibrium state, we focus on a local maximum

and a saddle point of the entropy in the QCVP, which are referred to as metastable state and

quasi-stationary state, respectively.

An important difference between these three states is dynamical stability. In general, a

state corresponding to a local maximum/minimum of a conserved quantity is dynamically and

nonlinearly stable against any small-amplitude perturbation, but a state corresponding to a sad-

dle point is not necessarily stable and may be destabilized by some perturbation (e.g., Arnold

1965; Holm et al. 1985; Swaters 1999; Majda and Wang 2006). Figure 4.1 explains why a local

maximum of a conserved quantity is dynamically stable. Since the entropy S is conserved in

an inviscid flow, the equilibrium and metastable states are dynamically stable, but the quasi-

stationary states are not necessarily stable (Ellis et al. 2002; Venaille and Bouchet 2011b; Naso

et al. 2010). This is the reason for referring to the latters as “quasi”-stationary states. The

stability of saddle points is unclear, unless a linear stability analysis is performed or the time

evolution of perturbations are obtained by solving the (nonlinear) QG equations. However,

recent studies suggest that the state of a system may approach the nearest saddle point in the

phase space and remain there for a long time (e.g., Majda and Wang 2006; Naso et al. 2010).

Bouchet (2008) revealed that the QCVP belongs to a subclass of the MRS theory. More

precisely, if an appropriate global PV distribution is considered, any maximum and local maxi-

mum of the entropy S in the QCVP are always a maximum and a local maximum of the mixing

(or Shannon) entropy in the MRS theory, respectively, but the converse is not necessarily true.

According to the large deviation theory (e.g., Touchette 2009; Campa et al. 2014), this result

means that the equilibrium entropy of the QCVP is asymptotically equal to the Boltzmann en-

tropy. In other words, the equilibrium state given by the QCVP is overwhelmingly common.

Even if an appropriate global PV distribution is not considered, the entropy S has a one-to-one
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(a) Local maximum of S

Phase space

Entropy S surface

Perturbations (arrows) :
         bounded

Phase space

local max.

(b) Saddle point of S

Phase space

Entropy S surface

Perturbations (arrows) :
         unbounded

Phase space

saddle point

Figure 4.1: Schematic illustrations of the entropy S surface near (a) a local maximum and (b)
a saddle point in the phase space. The local maximum and saddle point correspond to steady
states. Arrows represent perturbations added to the steady states. The motion of each pertur-
bation is governed by the nonlinear QG equations. In (a), the contours of S are closed around
the local maximum, which means that small-amplitude perturbations are bounded and cannot
grow because perturbations evolve along a single contour of S (i.e., S is conserved). A similar
discussion can be made for a local minimum of S , if it exists. On the other hand, in (b), the
contours of S are not closed around the saddle point, which means that small-amplitude pertur-
bations are unbounded and may grow. The evolution of a perturbation is unknown, unless the
nonlinear QG equations are solved. In this sense, nonlinear stability theorems give a sufficient
condition for the stability (i.e., a necessary condition for the instability).

correspondence to the mixing (or Shannon) entropy, when a probability density function of PV

is Gaussian (Naso et al. 2010).

Finally, we give a few remarks on the application of statistical-mechanics theories, includ-

ing the QCVP. Equilibrium statistical mechanics is applicable only to an isolated fluid system

without dissipation nor forcing, where forcing means an external forcing that varies conserved

quantities such as total energy. For instance, when the bottom forcing h is not varied with

time, it is not an external forcing because the total PV Γ and energy E are conserved [(3.8)

and (3.9)] and the constraints of the QCVP (4.1) are invariant in time. By contrast, when h is

time-dependent, Γ is conserved, but E is not; hence, h is an external forcing.

Practically, a fluid system is changed by an external forcing or dissipation. In this case,

statistical mechanics is applicable if the inertial time scale (for instance, given by the eddy

turnover time) is much smaller than the forcing and dissipation time scales. The system needs

to move around a large region in the phase space, before the constraints given by the conserved
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quantities are varied much by the external forcing or dissipation. It may then be natural to

consider that the system relaxes toward the equilibrium state because the equilibrium state is

overwhelmingly common and occupies a large portion of the phase space. This discussion is not

a proof that a fluid system always relaxes toward the equilibrium state. Equilibrium statistical

mechanics does not give any information on the time evolution. The relaxation toward the

equilibrium state is still an open question, even for isolated systems without any forcing nor

dissipation. In fact, recent studies of non-equilibrium statistical mechanics suggest that the

relaxation in long-range interacting systems (including two-dimensional fluid systems) may be

quite slow compared with short-range interacting systems, and in some systems the relaxation

time diverges as taking the thermodynamic limit (e.g., Campa et al. 2014). In other words, the

equilibrium states are not necessarily attractive fixed points.

4.2 Equilibrium states

The aim of this section is to show that the equilibrium state is anti-cyclonic at a realistic

parameter set, which implies that the typical state of the winter stratosphere associated with the

cyclonic polar vortex cannot be regarded as an equilibrium state.

If the polar cap (45 – 90◦N) is assumed to be a closed domain, the equilibrium state is com-

puted by solving the QCVP. The equilibrium states are easily expressed in terms of Laplacian

eigenmodes (Chavanis and Sommeria 1996; Venaille and Bouchet 2009, 2011b; Naso et al.

2010). However, computing those eigenmodes over a polar cap (a part of the sphere) leads to

technical difficulties because the eigenmodes do not have a simple analytic expression such as

the spherical harmonics. For this reason, we consider a simpler geometry, namely a disk do-

main, which is obtained by projecting the polar cap over 45 to 90◦N into the plane (x, y) with
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Lambert’s azimuthal equal-area projection:x =
√

2(1 − sinφ) cos λ,
y =

√
2(1 − sinφ) sin λ.

(4.6)

The values of Γ, E, and S are invariant under Lambert’s projection because they are the surface

integrals of scalars and Lambert’s projection preserves the area element. This point facilitates

the comparisons of theoretical calculations with the numerical-simulation results (Chapter 5).

The Coriolis parameter f (x) and the effective bottom forcing h(x) are also projected with

Lambert’s map. The projected f is a monotonic function having the maximum at the origin

[(x, y) = (0, 0)], which corresponds to the North Pole. The effect of the earth curvature is

partially taken into account, even though the disk on the plane is considered. We use the same

bottom forcing as hQSE used so far [(3.3) and (3.4)]. The spatial structure of hQSE is fixed, while

its amplitude is controlled by a. The projected hQSE with a = 1 is shown in Fig. 4.2a.

A stationary point of the QCVP is determined by the three parameters1 : the forcing ampli-

tude a, the total PV Γ, and the total energy E. The calculation method to obtain the equilibrium

states is described in Appendix C and the expressions of Laplacian eigenmodes in Appendix

D.

The three parameters are fixed to (a, Γ, E) = (0.15, 4.2, 0.10) for the moment, which are

close to the values taken on the 4000th day in the quasi-static experiment (see Fig. 3.6a). This

suggests that these values are in a parameter range relevant to the winter stratosphere. Figure

4.2b shows the equilibrium PV and stream function (SF). The PV is minimum at the origin

(corresponding to the North Pole), but the stream function is maximum there, which means that

the equilibrium state is anti-cyclonic. Similar results are obtained in all the parameters covered

1Because time does not matter for the QCVP, it is always possible to choose time unit such that E = 1. Thus, we
are left only with two parameters, namely, the forcing amplitude a and the total PV Γ. However, the transformation
of time unit makes it a little difficult to compare the theoretical calculations with the numerical-simulation results.
Thus, we consider here the three parameters of a, Γ, and E.
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(b) EQS (c) QSS 1 (d) QSS 2 (e) QSS 3

PVq

SFψ

(a) h (a=1)

q ψ h

Figure 4.2: (a) Effective bottom forcing hQSE over 45 to 90◦N projected onto the plane with
Lambert’s azimuthal equal-area projection (4.6). (b) – (e) Theoretically calculated PV q and
stream function (SF) ψ of (b) the equilibrium state (EQS), (c) QSS 1, (d) QSS 2, and (e) QSS
3, where QSS n stands for the quasi-stationary state having the n-th largest b in (4.5). The
parameters are fixed to (a, Γ, E) = (0.15, 4.2, 0.10).

by the quasi-static experiment. Thus, the mean state of the winter stratosphere, in which the

cyclonic polar vortex exists over the North Pole, may not be considered as an equilibrium state.

4.3 Quasi-stationary states

Naso et al. (2010) pointed out that a cyclonic state may exist as a quasi-stationary state

even when an equilibrium state is anti-cyclonic. In the QCVP, there are infinitely many quasi-

stationary states, where small-scale structures become dominant, as the inclination b in (4.5) is

decreased (Chavanis and Sommeria 1996). In this section, we investigate a few quasi-stationary

states having large b. Note that any metastable state does not exist in a disk domain according to

Naso et al. (2010) (see also Appendix E). The calculation method to obtain the quasi-stationary

states is described in Appendix C.

Figures 4.2c to 4.2e show the three quasi-stationary states at (a, Γ, E) = (0.15, 4.2, 0.10),

where QSS n stands for the quasi-stationary state having the n-th largest b. The three quasi-

stationary states are cyclonic flows, as seen in their stream functions. The PV patches of QSS 1
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and 2 are vertically long, but that of QSS 3 is laterally long. QSS 1 has the largest structure due

to the largest b, and its PV is maximum at the origin (corresponding to the North Pole). The

mean state of the winter stratosphere where the North Pole is covered with the cyclonic polar

vortex appears to be similar to QSS 1.

4.3.1 Interpretations of flow structures in terms of linear QG system

The structures of the quasi-stationary and equilibrium states in Fig. 4.2 may be understood

using the linear QG equations. In this subsection, for simplicity, we consider a β-channel

domain (x, y), where the meridional component of velocity is zero along the sidewalls at y = 0

and L and the periodic boundary condition is imposed in the x direction (the period is 2π). The

mean state is assumed to be a uniform zonal flow U = (U, 0). The linear QG equations are

derived from (3.1) and (3.2):

∂q′

∂t
+ U

∂q′

∂x
+ βv′ = 0, (4.7)

and

q′(x, t) ≡ ∆ψ′(x, t) + f0

H
h(x) (4.8)

where ()′ denotes a perturbation from the zonal flow and the Coriolis parameter is given by

f = f0 + βy ( f0 = const). Since the quasi-stationary and equilibrium states are steady, a steady

perturbation is considered here. Integrating (4.7) with respect to x, we obtain the following

equation:

∆ψ′ +
β

U
ψ′ = − f0

H
h (4.9)

Furthermore, the forcing h is assumed to be proportional to ei 2x sin(πy/L), which is the gravest

wavenumber-2 mode. The expression of the perturbation is finally obtained:

ψ′(x) =
f0

H
h(x)(

4 + π2

L2

)
− β

U

=
f0

H
h(x)

µ2
′ − β

U

, (4.10)
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where 4 + (π/L)2 is denoted by µ2
′ in the most right hand side. Note that −µ2

′ is the Lapla-

cian eigenvalue of the gravest wavenumber-2 mode. This perturbation can be interpreted as a

stationary Rossby wave forced by h.

When a quasi-stationary (or equilibrium) state is regarded as a flow in which a wavenumber-

2 perturbation is superposed on an axisymmetric flow, its structure may be understood using

(4.10). Note that the perturbation (4.10) is an exact steady solution for the nonlinear QG equa-

tions, like the equilibrium and quasi-stationary states, because the nonlinear term vanishes due

to the assumption of monochromatic wave. We first consider the case where U is sufficiently

large such that µ2
′ − β

U is positive. According to (4.10), the stream function ψ′ is in phase with

the forcing h. This structure of ψ′ corresponds to those of QSS 1 and 2 (Figs. 4.2c and 4.2d).

The zonal-flow speed U in (4.10) is decreased, as the amplitude of the perturbation is in-

creased, under the condition of the constant total energy. This procedure corresponds to de-

creasing the inclination b in (4.5). When U is positive but sufficiently small such that µ2
′ − β

U

is negative, the stream function ψ′ becomes out of phase with the forcing h, as seen in (4.10).

This opposite-phase structure is observed in the stream function of QSS 3 (Fig. 4.2e). In more

detail, any state whose b is smaller than −µ2
′ has an opposite-phase structure with the forcing

h, as seen in (C.5), where QSS n (≥ 3) satisfies b < −µ2
′. This inequality corresponds to

−β/U < −µ2
′ [i.e., the denominator of (4.10)]. In other words, the inclination b in (4.5) can

be interpreted as −β/U. Since U is positive (i.e., cyclonic flow), b is negative for QSS 1 to 3

(Figs. 4.2c to 4.2e).

The flow structure of the equilibrium state (Fig. 4.2b) is understood in a similar way. Its

positive b implies a negative U, which is consistent with the anti-cyclonic-flow pattern in Fig.

4.2b. When U is negative, the denominator in (4.10) is always positive and the stream function

ψ′ is in phase with the forcing h. Although not clear, the stream function of the equilibrium

55



4. THEORETICAL CALCULATIONS BASED ON EQUILIBRIUM STATISTICAL
MECHANICS

state is in phase with the forcing h (Fig. 4.2b).

4.3.2 Dynamical stability of quasi-stationary states

The structure of the entropy surface in the phase space is important to consider the dynam-

ical stability (Section 4.1). For instance, if some state is a local maximum of the entropy S , it

is dynamically and nonlinearly stable. Since S in (4.1) is a quadratic functional, S is expressed

in terms of a quadratic form; then, the structure of the entropy surface can be analyzed with the

definiteness of the quadratic form. The details of the calculations are described in Appendix E.

QSS 1, 2, and 3 are saddle points of the entropy S , but the QSS 1 has the unique prop-

erty. Roughly speaking, QSS 1 is virtually a local maximum of S , and it is dynamically and

nonlinearly stable against almost all small-amplitude perturbations. More precisely, in the

phase space, the entropy S around QSS 1 is increased only along the two directions given by

the gravest wavenumber-1 Laplacian eigenmodes. In other words, only when a perturbation

having a gravest wavenumber-1 component is added to the flow field of QSS 1, the entropy

S is increased and QSS 1 might be destabilized. The term gravest means that these eigen-

modes have the largest structure along the radial (i.e., latitudinal) direction. The two different

wavenumber-1 eigenmodes exist because of the degeneracy in a disk domain (Appendix D):

one is proportional to sin λ and the other cos λ. Moreover, in a general domain not having the

rotational symmetry, QSS 1 can be exactly a local maximum of the entropy (i.e., metastable).

In this case, QSS 1 is dynamically and nonlinearly stable against any small-amplitude pertur-

bation. This result is shown in Appendix F by the theoretical calculations in a square domain.

The dynamical stability of QSS 1 (and another QSS n) is unknown, unless a linear stability

analysis is performed or the time evolution of perturbations are obtained by solving the (non-

linear) QG equations. Since QSS 1 is an exact steady solution for the QG system on the disk,

the QG equation can be linearized with respect to a perturbation and its growth rate is obtained
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by solving the eigenvalue equation. Instead of this linear stability analysis, in Section 5.4, we

will add perturbations with wavenumber 1 to the flow field regarded as QSS 1 and examine the

evolution of these perturbations by using the spherical (nonlinear) QG barotropic model. These

small-amplitude perturbations do not grow with time, which implies that QSS 1 is stable in the

sense of Lyapunov. The linear stability analysis on the disk will make the stability of QSS 1

clearer in the future.

Here, we give a physical interpretation on why only QSS 1 is virtually a local maximum

of the entropy. The details are discussed in Appendix F. The reason is that QSS 1 becomes an

equilibrium state, depending on the total PV Γ. The equilibrium state is defined as the entropy

maximum, which is usually unique. This uniqueness is reflected in the fact that only QSS 1 can

be a local maximum of the entropy.

To explain it in more detail, let us consider the case where the total energy E is fixed and

the PV q is identical to the vorticity ∆ψ (≡ ζ) [i.e., f (x) = 0 for all x in (4.4)]. A similar

discussion can be made in a more general situation. Figure 4.3 is a schematic illustration for

the following discussion. A flow field is assumed to be composed of a positive and a negative

vorticity ζ. The statistical mechanics predicts the final state after the strong vorticity mixing

or after the inverse-cascade processes finish. Thus, the flow field is considered to have the

largest structure consisting of a single patch of ζ. There are two cases (Fig. 4.3): in one case,

the positive-vorticity patch is surrounded by the negative one; in the other case, the negative-

vorticity patch is surrounded by the positive one. The former is cyclonic and called the cyclonic

branch; the latter is anti-cyclonic and called the anti-cyclonic branch. The equilibrium state is

the most probable state among all possible ones. This fact implies that the equilibrium state

will be cyclonic when the total amount of vorticity (Γ) is sufficiently large (more precisely,

Γ∗ < Γ. see Appendix F), that is, the cyclonic branch is equilibrium (the right panel in Fig.
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Figure 4.3: Schematic illustration for the relation between the equilibrium state (EQS) and the
quasi-stationary state 1 (QSS 1). The total amount of vorticity is denoted by Γ. See text for
details.

4.3). Even in this case, the anti-cyclonic flow configuration is possible and the anti-cyclonic

branch exists. When Γ is decreased (from the right to the left panel in Fig. 4.3), the entropy

of the cyclonic branch decreases, but that of the anti-cyclonic one increases. Eventually, the

anti-cyclonic branch becomes the entropy maximum, and the cyclonic branch becomes a local

maximum of the entropy or a saddle point having only a few directions along which the entropy

is increased (the left panel in Fig. 4.3). This cyclonic branch is QSS 1 discussed above. Note

that the equilibrium states are anti-cyclonic over all Γ covered by all experiments in Chapter 3,

which implies the entropy surface considered in the present study has a similar structure to that

of the left panel in Fig. 4.3.

4.4 Domains of existence of quasi-stationary states

The results in Sections 4.2 and 4.3 are at one parameter point [(a, Γ, E) = (0.15, 4.2, 0.10)].

Similar results are obtained over the parameter range of the quasi-static experiment. However,
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(a) QSS 1 (b) QSS 3
a=0.15
a=1.00

a=0.15
a=1.00

Domain boundaries of existence

Figure 4.4: Domain boundaries of of existence of (a) QSS 1 (orange) and (b) QSS 3 (blue) in
the Γ-E space with the forcing amplitude a = 0.15 (solid) and a = 1.00 (dashed). The domain
boundary for the equilibrium state is also shown by the dashed black curve, where a = 1.00.
Each state exists at higher energies than those on the domain boundary. These boundaries are
theoretically obtained by using the method of Appendix C. In each figure, the blue cross is at
(Γ, E) = (4.2, 0.10), and the red one is at (Γ, E) = (2.1, 0.05).

some quasi-stationary state does not exist in some parameter domain. In this section, we ex-

amine the parameter domains of existence of QSS 1, 2, and 3, and discuss the possibility of

transition.

Figure 4.4 shows the domain boundaries of existence of QSS 1 and 3 with a = 0.15 and

1.00 in the Γ-E space. Each state exists at higher energies than those on the colored curve (solid

for a = 0.15 and dashed for a = 1.00). The calculation method to obtain these boundaries is

described in Appendix C. The domains of existence of QSS 1 and 3 become narrower and shift

to regions with higher energies, as the forcing amplitude a is increased. The domain boundary

for the equilibrium state is also shown by the dashed black curve, which nearly overlaps with

the Γ axis in each figure. This black curve is almost independent of a, and the curve with

a = 1.00 is shown.

The domain of existence of QSS 2 is the same as that of QSS 1 because both states annihilate
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Figure 4.5: Schematic illustration for a change of the entropy surface in the phase space around
QSS 1 and 2 with increasing the forcing amplitude a. In each panel, the lateral axis repre-
sents the subspace of the phase space spanned by the Laplacian eigenmodes with azimuthal
wavenumber 0 and 2. A similar description is obtained when the total PV Γ or energy E is
decreased.

at the same parameters. This is because the energies of QSS 1 and 2 are given by the adjacent

branches of the energy curve (see Fig. C.1). Figure 4.5 is a schematic picture for a change of

the entropy surface in the phase space around QSS 1 and 2. In the subspace spanned by the

wavenumber-0 and -2 Laplacian eigenmodes, QSS 1 is a local maximum of the entropy S , but

QSS 2 is a local minimum. When the forcing amplitude a is increased, QSS 1 and 2 annihilate

at some a (Fig. 4.5).

The variations of the domain boundaries suggest the occurrence of transition. The blue

cross in Fig. 4.4 is at (Γ, E) = (4.2, 0.10), which are close to the values on the 4000th day

in the quasi-static experiment (Fig. 3.6a). Let us first consider the case where Γ and E are

fixed at the blue cross and the initial state is QSS 1. In Fig.4.4a, the blue cross is shifted to

a parameter domain without QSS 1, as the forcing amplitude is increased to a = 1.00. This

implies that some transition occurs because QSS 1 can no longer exist at a = 1.00. In addition

to a, the values of Γ and E can be varied. For instance, Γ and E in the quasi-static experiment

vary to around (Γ, E) = (2.1, 0.05), i.e., the red cross in Fig. 4.4. Along this variation, both

boundaries of existence of QSS 1 and 3 are crossed, which suggests again that some transition

occurs. It is worth noting that equilibrium statistical mechanics, including the QCVP, does not
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give any information on the time evolution such as the relaxation toward the equilibrium or

a quasi-stationary state. Moreover, the statistical mechanics does not predict the variations of

the total PV Γ and energy E, while these variations are obtained by solving the QG equations

and then externally given to the statistical-mechanics theory. A careful analysis of numerical

experiments is necessary to discuss a transition between two states. We perform this kind of

analysis in the next chapter.

4.5 Summary

We have applied the QCVP to the disk domain obtained by projecting the polar cap (45 –

90◦N) onto the plane with Lambert’s map, and examined the equilibrium and a few quasi-

stationary states. The equilibrium state is anti-cyclonic, but the quasi-stationary states are

cyclonic, in the parameter range of the quasi-static experiment. Thus, the mean state of the

winter stratosphere, in which the cyclonic polar vortex exists, may be considered not as the

equilibrium state but as a quasi-stationary state.

We have focused on the quasi-stationary state having the largest spatial structure, which is

referred to as QSS 1. This state has the unique property that QSS 1 is virtually a local maximum

of the entropy. In other words, in the phase space, the entropy curve on almost every cross-

section around QSS 1 is a concave parabola. The directions along which the entropy of QSS

1 is increased are given by the gravest Laplacian eigenmodes with azimuthal wavenumber 1.

This unique property of QSS 1 comes from the fact that QSS 1 becomes an equilibrium state,

as the total PV (Γ) is increased.

Finally, we have examined the domain boundaries of existence of quasi-stationary states in

Γ-E space. The domains of existence become narrower, as the forcing amplitude a tends to be

larger. This result suggests that a transition may occur when the initial state is an appropriate
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quasi-stationary state and a is gradually increased.
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Chapter 5

Interpretations of the Quasi-Static
Experiment in terms of Equilibrium
Statistical Mechanics

In this chapter, the results of the quasi-static experiment are compared with the theoreti-

cal calculations performed in the previous chapter. In Section 5.1, we first confirm that the

statistical-mechanics theory, i.e., the QCVP, can be applied to the polar cap of 45 to 90◦N. In

Section 5.2, the snapshots of PV field in the quasi-static experiment (State A, B, and C) are

qualitatively compared with those of the equilibrium and quasi-stationary states. The initial

state A is interpreted as QSS 1, State B as QSS 3, and the final state C as the equilibrium state.

In Section 5.3, quantitative comparisons are carried out by using the time series of the total

PV Γ and energy E in the quasi-static experiment. We demonstrate that a transition occurs in

the quasi-static experiment at about when the parameters of (a,Γ, E) enter the domain without

existence of an appropriate quasi-stationary state. In Section 5.4, we examine the dynamical

stability of QSS 1 (State A). As discussed in Section 4.3.2, a zonal-wavenumber-1 perturbation

may destabilize QSS 1. We perform numerical experiments in which a wavenumber-1 per-

turbation is added to QSS 1 and demonstrate that these perturbations do not grow with time.

Finally, in Summary (Section 5.5), we propose a new interpretation of S-SSWs, that is, the

S-SSW can be qualitatively understood as the transition from QSS 1 in the direction of the
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equilibrium state.

5.1 Preliminaries

Equilibrium statistical mechanics, including the QCVP, predicts a steady state realized after

strong PV mixing, and applies only to an isolated system without dissipation nor forcing. More

precisely, an inertial time scale (for instance, given by the eddy turnover time) needs to be much

smaller than dissipation and forcing time scales. Before applying the QCVP to the quasi-static

experiment, it is necessary to check the following three things. The PV field over the North

Pole is not sensitive to (i) the viscosity coefficient ν, which controls the dissipation time scale,

nor to (ii) the rate of change in the forcing amplitude da/dt [or ∆t in (3.4)], which determines

the forcing time scale. In addition, (iii) the PV field over the North Pole needs to be regarded as

steady. We have already stated that the above three points are well satisfied in the quasi-static

experiment, but here we examine them again.

Three more quasi-static experiments were conducted, where ten times ν and/or a half times

∆t were used. According to (3.4), a smaller ∆t means a faster increase in the forcing amplitude

a(t). Figure 5.1a shows the plots of the PV difference from the original quasi-static experiment.

The PV difference normalized by the mean PV of the original experiment is almost always less

than 15%, except around the two transitions discussed in Section 3.3.3 (at a ∼ 0.25 and 0.65).

Thus, the PV field before and after the transitions is not sensitive to the forcing nor dissipation

time scales, which implies that both time scales are sufficiently longer than the turnover time

of the flow over the North Pole.

We also confirm the steadiness of PV field in the original quasi-static experiment. Figure

5.1b shows the time series of the difference between the filtered and unfiltered (raw) PV fields,

where the cutoff period is 100 days (top) or 300 days (bottom). The low frequency components
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Figure 5.1: (a) Plots of the PV difference between q and qref against the forcing amplitude a in
the quasi-static experiments. The PV in the original quasi-static experiment is regarded as the
reference qref, where ∆t = 2.8 × 104 days and ν is chosen such that the e-folding time for the
modes with the highest total wavenumber is 80 h. The reference qref is compared with the PV q
from another experiment where ten times ν and/or a half times ∆t are used. The PV difference
is obtained in the following two steps: (i) At each grid point, q and qref are averaged over the
time period such that a − ∆a/2 ≤ a(t) ≤ a + ∆a/2 for a given a, where ∆a = 10−2. (ii) The
PV difference at each a is given by the area-weighted mean of |q − qref | over 45 to 90◦N. All
plots are insensitive to ∆a. (b) Time series of the PV difference between qref and qref,LF in the
original quasi-static experiment. The data step of qref is 5 days, and qref,LF is made by applying
a low-pass filter to qref at each grid point with a cutoff period of (top) 100 days or (bottom) 300
days. The PV difference is given at each time by the area-weighted mean of |qref − qref,LF| over
45 to 90◦N. In (a) and (b), the lateral red lines represent 15%, where each right vertical axis
(%) represents the PV difference divided by the time and area-weighted mean of |qref | (= 2.02).
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are dominant, except around the two transitions (t ∼ 7000 and 18000 days). Thus, the PV field

before and after the transitions is regarded as steady at a time scale of 100 days or shorter.

A completely isolated system is practically meaningless because we cannot examine it with

a measuring instrument. A system is generally considered to be isolated (or closed) when the

state quickly becomes quasi-steady or the time scale of the evolution is sufficiently shorter than

those of variations in external parameters such as total energy. In the quasi-static experiment,

the time scales of the variations in the total PV Γ and energy E are controlled by that of the

forcing amplitude a (i.e., ∆t). The PV field is not sensitive to ∆t and is regarded as steady at a

time scale of 100 days or shorter. Thus, the polar cap of 45 to 90◦N is considered as a closed

domain at these time scales. In conclusion, the QCVP is applicable to this polar cap.

We make a few remarks on an influence of flows in the Southern Hemisphere and the

application of equilibrium statistical mechanics. Polvani et al. (1995) investigated the surf zone

(i.e., strong PV mixing region at middle latitudes) by using a spherical shallow-water model.

They pointed out that a flow in the Southern Hemisphere may have a significant influence

on a flow over the North Pole, especially when a (linear) relaxation is not included in the

model. Furthermore, in barotropic fluid systems, an interaction between two vortices does not

decay with distance, which supports the above result of Polvani et al. (1995). We conducted

an experiment similar to the quasi-static experiment, but a large and strong vortex was set

over the South Pole. We obtained similar results to those in Section 3.3.3 and the following

sections, which implies that flows in the Southern Hemisphere are not critical to our quasi-static

experiments.

We have shown above the validity of applying the QCVP to the north polar cap. The QCVP

predicts a steady flow satisfying the linear q-ψ relation (4.5), whereas the more general Miller-

Robert-Sommeria (MRS) theory predicts one satisfying a monotonic (not necessarily linear)
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Figure 5.2: The initial state over the both hemispheres in the quasi-static experiment: (a) q-ψ
scatter plot and PV fields over the (b) Northern and (c) Southern Hemispheres. The PV offset
foff in (3.2) is added to q, i.e., PV in (a) – (c) is equal to q(x) + foff .

q-ψ relation (Miller 1990; Robert 1991; Robert and Sommeria 1991). This means that the

statistical mechanics is not applicable to flows not having monotonic q-ψ relations, even if the

system satisfies the above three points (i) – (iii).

In the quasi-static experiment, the flow over 45 to 90◦N always satisfies the q-ψ mono-

tonicity well, which is approximated to be linear, as will be discussed in the next section. By

contrast, the flow over the whole sphere does not always show monotonic q-ψ relations. Figure

5.2 shows the q-ψ scatter plot and PV fields of the initial state over the both hemispheres. Obvi-

ously, the q-ψ relation over the sphere is not monotonic, which means that not only the QCVP

but also the MRS theory cannot be used to interpret this flow structure. It would be possible to

make an initial state satisfying the q-ψ monotonicity, but we do not change the initial state be-

cause the initial state has been constructed from the real atmospheric data (JRA-55, see Section

3.3.1). After the polar-vortex breakdown, the q-ψ relation over the sphere becomes monotonic

(but not linear). We focus here on only the north polar cap to make a consistent analysis from

the initial to the final state in the quasi-static experiment.
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5.2 Comparisons of instantaneous PV fields

In this section, we qualitatively compare the snapshots of PV field and demonstrate that

State A is interpreted as QSS 1, State B as QSS 3, and State C as the equilibrium state. Figure

5.3 shows (a) the stream functions and (b) the PV fields in the quasi-static experiment. As

typical snapshots, the 4000th-, 11000th-, and 28000th-day fields are shown as State A, B, and

C, respectively.

State A is cyclonic and has a large-scale structure, which suggests that A is regarded as

QSS 1 because QSS 1 has the largest structure among all quasi-stationary states (Section 4.3).

Figure 5.3c shows the PV fields obtained by the theoretical calculations where the parameters

of (a, Γ, E) from the quasi-static experiment are used. As expected, the PV magnitude and

distribution of QSS 1 are quite similar to those of State A.

State B is cyclonic and its PV field is slightly elongated along the lateral direction, which

implies that B can be interpreted as QSS 3 because QSS 3 has the largest structure among

all the quasi-stationary states having laterally long PV fields. The PV magnitude of QSS 3

is comparable to that of State B. Both PV fields have qualitatively similar shapes, but the PV

patch of QSS 3 is smaller than that of State B.

Only State C is anti-cyclonic, which indicates that C is considered as the equilibrium state

because the equilibrium states are anti-cyclonic in the parameter range of the quasi-static ex-

periment (Section 4.2). In fact, the magnitude and distribution of the equilibrium PV field are

quite similar to those of State C.

There is also a good agreement on the q-ψ relation. Figure 5.3d shows the q-ψ scatter plots

obtained from the quasi-static experiment. In each plot, the green line is given by the least

squares fitting to the red dots, which represent the values from the grid points north of 45◦N

(the black dots show the values from the other points). There are well-defined q-ψ relations
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Figure 5.3: (a) PV fields and (b) stream functions (SFs) over 45 to 90◦N obtained from the
quasi-static experiment. As typical snapshots, the 4000th-, 11000th-, and 28000th-day fields
are shown as State A, B, and C, respectively. (c) Theoretically calculated PV fields. Each field
is obtained by giving the instantaneous parameters of (a,Γ, E) in the quasi-static experiment.
(d) q-ψ scatter plots in the quasi-static experiment. The red dots represent the values from the
grid points north of 45◦N and the black ones represent those from the other points. The green
line is given by the least squares fitting to the red dots. Each orange line represents the q-ψ
relation (4.5) for the above theoretically calculated field.
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over the North Pole and the linear fitting is valid as the first-order approximation. The QCVP

gives the linear q-ψ relation, namely q = bψ − c in (4.5), which characterizes the equilibrium

and quasi-stationary states. The theoretically calculated linear relations are also shown in Fig.

5.3d by the orange lines. The inclinations b given by the theory agree well with those of the

quasi-static experiment, but there is a discrepancy in the offsets c. This discrepancy is likely

because c is strongly dependent on the latitude at the polar-cap boundary. It would be possible

to define the boundary of polar cap at each time such that a theoretical value of c is close to

a value from the quasi-static experiment. However, such treatment is not necessary for the

qualitative comparisons here.

Therefore, we have obtained the following expectation: The state changes observed in the

quasi-static experiment are understood as

QSS 1 (State A)→ QSS 3 (State B)→ Equilibrium state (State C).

The polar vortex breaks down without splitting during the transition from B to C. By contrast

with the quasi-static experiment, when the forcing amplitude is increased over one week (Sec-

tion 3.3.2), State B does not appear and the polar vortex collapses while splitting into the two

vortices during the transition from A to C.

5.3 Comparisons of timings of transitions

The discussions in the previous section are based on the instantaneous PV fields in the

quasi-static experiment. In this section, using the time series of the total PV Γ and energy E in

the quasi-static experiment, we demonstrate that the timings of the two transitions in the quasi-

static experiment are consistent with the theoretical predictions. This result supports the above

expectation of the state changes. We first show that a transition timing given by the theoretical

calculations within 45 to 90◦N is not consistent with that in the quasi-static experiment. This is
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due to that transition timings given by the theory are sensitive to the choice of polar caps. We

properly determine a polar cap on the basis of the position of the surf zone and compare the

transition timings again.

In Section 4.4, we have discussed that a transition may occur when the parameters of

(a,Γ, E) enter the domain without existence of a quasi-stationary state. Due to the sufficiently

slow variation in the forcing hQSE, the flow field is nearly steady and the QCVP is almost always

applicable to the quasi-static experiment. Thus, the theory can be used to interpret timings of

transition.

The transition from State A to B is first investigated. The minimum energy for existence

of any quasi-stationary state can be theoretically calculated when the forcing amplitude a and

the total PV Γ are given, as seen in Fig. 4.4. Note that the QCVP cannot predict the variation

in Γ, which is externally given by solving the QG barotropic equations. Since we expect that

the transition from A to B is considered as that from QSS 1 to 3, the minimum energy for QSS

1 is calculated at each time by giving the instantaneous values of a and Γ in the quasi-static

experiment. Figure 5.4a compares the time series of the minimum energy for QSS 1 (orange)

with those of the energy in the quasi-static experiment (black). The middle and bottom panels

show the time series of Γ and S in the quasi-static experiment, respectively. Before reaching the

entropy minimum, the energy in the experiment becomes lower than the minimum energy for

QSS 1, which suggests that a transition occurs at about that time. In fact, associated with the

decrease in the entropy, the flow field changes from State A to B: The PV field changes from

a vertically to a laterally elongated shape, as seen in the time series of the major-axis angle of

the equivalent ellipse (Fig. 3.6a). These results support that State A before the first transition

is regarded as QSS 1.

There is another reason for focusing on the minimum of the entropy, that is, QSS 1 is virtu-
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(a) Latitude at Polar-Cap Boundary = 45.0°N (b) Latitude at Polar-Cap Boundary = 43.6°N

min E for QSS 1 min E for QSS 1

Figure 5.4: Time series obtained from the quasi-static experiment: (top) the total energy E,
(middle) the total PV Γ, and (bottom) the entropy S . The orange curve in each top panel shows
the minimum energy for QSS 1, which is theoretically calculated by giving the instantaneous
values of a and Γ in the quasi-static experiment. The latitude at the polar-cap boundary is (a)
45.0◦N and (b) 43.6◦N.

ally a local maximum of the entropy (Section 4.3.2). The only way to increase the entropy of

QSS 1 is to add a perturbation including the gravest wavenumber-1 modes. In the quasi-static

experiment, the initial PV is axisymmetric (Section 3.3.1) and the bottom forcing hQSE in (3.3)

consists of only the wavenumber-2 component. This means that a wavenumber-1 perturbation

is never produced in the QG barotropic model, except for a noise from numerical errors. As-

suming that such a noise is not critical, we can regard QSS 1 as the unique local maximum of

the entropy. In this case, the entropy is decreased in any transition from QSS 1 to another quasi-

stationary state, and the minimum entropy implies that the transition is completed. Even when

the initial PV includes wavenumber-1 components, similar results are obtained (Appendix B).

Moreover, in the next section, we will investigate the dynamical stability of QSS 1 (State A) by

directly adding a wavenumber-1 perturbation to its PV field and examining the time evolution

of the perturbation. The results indicate that small- but finite-amplitude wavenumber-1 pertur-

bations do not grow with time. These results suggest that the wavenumber-1 components do
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(a) Latitude at Polar-Cap Boundary = 45.0°N (b) Latitude at Polar-Cap Boundary = 53.4°N

min E for QSS 3
min E for QSS 3

Figure 5.5: Time series obtained from the quasi-static experiment: (top) the total energy E,
(middle) the total PV Γ, and (bottom) the entropy S . The green curve in each top panel shows
the minimum energy for QSS 3, which is theoretically calculated by giving the instantaneous
values of a and Γ in the quasi-static experiment. The latitude at the polar-cap boundary is (a)
45.0◦N and (b) 53.4◦N.

not have much effect on the emergence and persistence of QSS 1, even though the nonlinear

stability of QSS 1 against these perturbations is not theoretically assured.

The transition from State B to C is examined in a similar way. Since we expect that this

transition is considered as that from QSS 3 to the equilibrium state, the minimum energy for

QSS 3 is theoretically calculated and is compared with the energy of the quasi-static experi-

ment. Figure 5.5a shows the results, like Fig. 5.4a. The transition timing given by the theory is

denoted by the intersection of the time series of the energy (black) with those of the minimum

energy for QSS 3 (green). Obviously, the predicted timing is too early compared with that

in the quasi-static experiment, which is characterized by the abrupt increase in the entropy S

(t ∼ 18000 days).
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5.3.1 Comparisons under an appropriate choice of polar caps

We have so far focused on the polar cap of 45 to 90◦N. The above comparisons of the

transition timings are quantitative and dependent on the size of the polar cap. In this subsection,

we properly determine a polar cap for the QCVP and then compare the transition timings again.

We first discuss which latitude should be regarded as the polar-cap boundary.

The theoretical calculations are performed within the disk obtained by projecting the polar

cap onto the plane. By contrast, the QG barotropic model on the sphere has been used to

conduct the quasi-static experiment. Thus, a discrepancy between the theoretical calculations

and the simulation results will be large, as the polar cap becomes larger, due to the difference

between the flat and spherical geometries. This suggests that the polar cap should be as small

as possible.

The theory describes a flow field having the linear q-ψ relation: q = bψ − c in (4.5). If q

is nearly constant over some region, only b = 0 is possible (i.e., q = c = const) because ψ is

generally not constant even in such a region. The region with nearly constant PV is well-known

as the surf zone in the stratosphere (e.g., McIntyre and Palmer 1983, 1984). The dynamics of

the surf zone can be described with a one-layer model (e.g., Polvani et al. 1995). Thus, we

define the polar-cap boundary as the north edge of the surf zone.

To determine the surf-zone edges, we examine the zonal-mean PV q and its meridional

derivative ∂q/∂φ. In the QG barotropic model, the region with nearly constant q appears at

middle latitudes. The north and south edges of the surf zone are defined in the following two

steps: (i) The latitude with the minimum ∂q/∂φ is determined and denoted by φmin; (ii) The

north (south) edge of the surf zone φsurf,N (φsurf,S) is defined as the latitude north (south) of φmin

at which ∂q/∂φ first exceeds 7.0. The value of 7.0 is arbitrary, but the following results are

insensitive to this value. Figure 5.6a shows the time series of φsurf,N, φsurf,S, and major-axis
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(b) t = 6500 days

(c) t = 16000 days

φsurf, N

φsurf, S

(a) Time series

PV = q + foff

Figure 5.6: (a) Time series obtained from the quasi-static experiment: (top) the latitudes at
the north and south edges of the surf zone, φsurf,N and φsurf,S, respectively, and (bottom) the
major-axis angle of the equivalent ellipse. See text for the definitions of φsurf,N and φsurf,S. (b)
and (c) PV fields over the Northern Hemisphere and plots of zonal-mean PV against latitude on
(b) t = 6500 days and (c) 16000 days. The red dashed curves represent the Coriolis parameter
f (φ) ≡ 2Ω sinφ. The vertical lines represent φsurf,N and φsurf,S. In (b) and (c), the PV offset foff

in (3.2) is added to q: PV ≡ q(x) + foff.

angle of the equivalent ellipse. These time series are ended at t = 18000 days because of the

polar-vortex breakdown. Figures 5.6b and 5.6c show the PV fields and the distributions of

zonal-mean PV, where the vertical lines represent φsurf,N and φsurf,S. In both figures, the above

definition of the surf-zone edges well captures the regions with nearly constant PV. The surf

zone becomes wider, as the forcing amplitude a is increased (Fig. 5.6a). A similar result was

reported by Polvani et al. (1995).

The first transition from State A to B occurs at about t = 7000, i.e., when the major-axis

angle is changed from about 0 to 90◦ (Fig. 5.6a). The value of φsurf,N gradually increases and

is equal to about 43.6◦N just before the transition. The same calculations as in Fig. 5.4a are
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performed for the polar cap of 43.6 to 90◦N. Figure 5.4b shows the obtained results. In these

calculations, the surface integrals of E, Γ, and S are taken over 43.6 to 90◦N, and the offset

of PV [ foff in (3.2)] is given by the Coriolis parameter at 43.6 ◦N. The theoretically calculated

timing of the transition is just before the entropy minimum, like in Fig. 5.4a.

The second transition from State B to C occurs at about t = 18000 days. Before the tran-

sition, φsurf,N is nearly constant at 53.4◦N. The same calculations as in Fig. 5.5a are performed

for the polar cap of 53.4 to 90◦N, and the obtained results are shown in Fig. 5.5b. In this

case, the theory gives the transition timing which is nearly the same as that in the quasi-static

experiment.

In summary, when the polar cap is determined by the north edge of the surf zone, the timings

of the two transitions given by the QCVP are close to those in the quasi-static experiment. In the

previous subsection, the theoretically calculated timing of the second transition was too early,

compared with the actual timing in the quasi-static experiment. This discrepancy is likely due

to that the size of the polar cap is too large and is not appropriate for the second transition.

5.4 Dynamical stability of QSS 1

The initial state A is considered as QSS 1, which may be destabilized by a zonal-

wavenumber-1 perturbation (Section 4.3.2). We investigate here the dynamical stability of

QSS 1 by adding a wavenumber-1 perturbation and examining its time evolution. The initial

PV is made by running the QG barotropic model for 5000 days from the 3000th-day flow field,

where the forcing amplitude a(t) is fixed at 0.11. The obtained field is regarded as QSS 1, like

the 4000th-day field in Fig. 3.6b, but its fluctuation is much smaller than that of 4000th-day

field. Thus, this initial state is almost steady with high accuracy. The following PV perturba-
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tion1 is then added to the initial PV and the numerical integration is performed for 5000 days

more:

δ̃q ≡ α̃ × qmax exp
−1

2

(
φ − 67.5◦N

7.5◦

)2 × {sin λ or cos λ}, (5.1)

where qmax is the PV maximum in the initial state (= 6.85) and the amplitude of δ̃q is specified

by α̃. This perturbation may be similar to the gravest zonal-wavenumber-1 Laplacian eigen-

mode within the polar cap of 45 to 90◦N. We vary α̃ from 0.01 to 0.1 in increments of 0.01 and

perform the 20 experiments for both cases of sin and cos in (5.1).

The above small- but finite-amplitude perturbation obeys the nonlinear QG equations (3.1)

and (3.2), and its magnitude is measured by the following two norms, which are common to

nonlinear stability theories (e.g., Swaters 1999):

∥ δ̃q(t) ∥E
2 ≡ 1

2

∫ {
∇

[
ψ(x, t) − ψ0(x)

]}2 dA, (5.2)

and

∥ δ̃q(t) ∥S
2 ≡ 1

2

∫ [
q(x, t) − q0(x)

]2 dA, (5.3)

where ψ0 and q0 are the initial stream function and PV without including the perturbation,

∥ δ̃q ∥E is the energy norm, ∥ δ̃q ∥S is the enstrophy norm, and the above integrations are taken

over 45 to 90◦N.

The perturbation does not grow with time in all the experiments. Figure 5.7 shows the

result of the experiment with α̃ = 0.1, where sin λ is chosen in (5.1). In Fig. 5.7a, the la-

bel ALL means that all zonal-wave-number components are included in the norms, and the

label WN1 means that only the wavenumber-1 components are included (i.e., ψ0 and q0 are

zero). All norms rapidly decrease in about a hundred days, where ∥ δ̃q(0) ∥E
2
= 3.5 × 10−3 and

∥ δ̃q(0) ∥S
2
= 6.8 × 10−2 (≈ 0.07). Note that the norms composed only of the wavenumber-1

1We also examined the evolution of a slightly different perturbation, whose standard deviation was 11.25◦

instead of 7.5◦ in (5.1). This perturbation rapidly decreased and then oscillated, like in Fig. 5.7, when α̃ = 0.1.
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components are the same as those including all components at t = 0. After the initial decay

period, the perturbation is gradually decayed likely due to the numerical viscosity, while its

norm fluctuates with time (Fig. 5.7a). The time scales of these fluctuations depend on the

cutoff period of the low-pass filter, but similar time series were obtained when different cutoff

periods were used. The PV field is always vertically elongated, like that of QSS 1 (Figs. 5.7a

and 5.7b).

These results suggest that a state slightly deviated from QSS 1 returns or persists there for a

long time, i.e., QSS 1 is nonlinearly stable in the sense of Lyapunov (Lyapunov stable), though

the nonlinear stability of QSS 1 is not theoretically assured. A linear stability analysis will still

be useful. Since QSS 1 is an exact steady solution on the disk (unlike on the sphere), its linear

stability can be investigated by solving the eigenvalue equation, which is obtained from the

linearized QG equation.

5.5 Summary

We have interpreted the results of the quasi-static experiment in terms of the statistical-

mechanics theory (i.e., the QCVP), and demonstrated that State A is regarded as QSS 1, State

B as QSS 3, and State C as the equilibrium state. Thus, the state changes observed in the quasi-

static experiment are understood as QSS 1 (State A) → QSS 3 (State B) → Equilibrium state

(State C).

In contrast to the quasi-static experiment, when the forcing time scale is one week, the po-

lar vortex splits and breaks down during the transition from QSS 1 to the equilibrium state,

in which State B does not appear (Section 3.3.2). Although the forcing time scale of one

week is relevant to S-SSWs (Sjoberg and Birner 2012), the comparisons between the statistical-

mechanics theory and the quasi-static experiment have revealed that the initial state is consid-
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(b) PV q (45-90°N)

(c) hQSE +0.1

-0.1

0

q

(a) Time series

WN1

WN1

ALL

ALL

Figure 5.7: Results of the numerical experiment where the zonal-wavenumber-1 perturbation
(5.1) with α̃ = 0.1 is added to the initial PV field regarded as QSS 1. (a) Time series of the
norms of the perturbation and major-axis angle of the equivalent ellipse for PV, where ∥ δ̃q ∥E
is defined in (5.2) and ∥ δ̃q ∥S in (5.3). Label ALL means that all zonal-wavenumber compo-
nents are included in the norms, and WN1 means that only the wavenumber-1 components are
included. A low-pass filter with a 100-day cutoff period was applied to all time series. (b)
Evolution of the PV field over 45 to 90◦N. The equivalent ellipses are drawn by the dashed
curves and their major axes by the solid lines. (c) Effective bottom forcing hQSE with a = 0.11
over 45 to 90◦N.
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ered as QSS 1, which is virtually a local maximum of the entropy (Section 4.3.2). Although

the nonlinear stability of QSS 1 is not theoretically assured, the numerical experiments have

suggested that QSS 1 is Lyapunov stable (i.e., a perturbation does not grow with time).

Therefore, we propose a new understanding of S-SSWs: The S-SSW can be qualitatively

understood as the transition from QSS 1 in the direction of the equilibrium state (see Fig. 1.4).

The state with the vortex splitting is observed during the transition, which is an unsteady non-

equilibrium state. Without any external forcing such as radiative cooling, the anti-cyclonic

equilibrium sate would be realized sufficiently after an S-SSW.

A typical phenomenon understood in a similar way is the transition from supercooled water

to ice. Supercooled water suddenly changes into ice when some shock is given. The state of ice

is the entropy maximum, but the state of supercooled water is a local maximum of the entropy.

This kind of transition is occasionally called the zeroth-order phase transition. According to

our interpretation, supercooled water corresponds to the state before an S-SSW (i.e., QSS 1),

in which the cyclonic polar vortex exists over the North Pole; Some shock corresponds to the

effects of a Rossby-wave amplification; Ice corresponds to the state sufficiently after an S-

SSW, in which the flow over the North Pole is anti-cyclonic. The only difference is that QSS 1

is virtually a local maximum of the entropy, but supercooled water is exactly a local maximum.

The concept of entropy connects the S-SSW to the transition from supercooled water to ice,

and reveals the analogy between both phenomena.
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Chapter 6

Discussions

The discussions so far do not take into account radiative cooling. The dynamics of SSWs

has often been investigated with a mechanical model not including a radiative relaxation be-

cause of the time scale separation between the inertial and relaxation time scales. However,

radiative cooling is vital for the re-formation of the polar vortex after an SSW (e.g., Rong and

Waugh 2004; Scott and Polvani 2006), and cannot be ignored when we discuss the evolution

over a long period [≥ O(1 month)]. An equilibrium state will appear after strong PV mixing,

which may take a much longer time than a radiative relaxation time.

In Section 6.1, we discuss a transition in the QG barotropic model including a linear relax-

ation. The radiative-relaxation time scale in the stratosphere is 10 days (Andrews et al. 1987;

Newman and Rosenfield 1997), whereas the transition time scale toward the equilibrium state

is 100 days. This result implies that the (anti-cyclonic) equilibrium state is very unlikely to

be observed in the stratosphere. However, the axisymmetric flow often becomes anti-cyclonic

just after an S-SSW. We compare the evolution of the zonal-mean zonal winds in JRA-55 and

the QG model, and discuss that the state of the stratosphere may temporarily approach the

equilibrium state after an S-SSW.

In Section 6.2, our understanding of S-SSWs is compared with the previous studies, which

also argue that SSWs, including S-SSWs, are interpreted as some transition. An important
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feature of our understanding is a view of potential, which is given by the negative of the entropy.

This view may extend our results to the non-equilibrium statistical mechanics. According to

the view of potential, a transition (i.e., S-SSW) occurs when the system gets over a potential

barrier. Associated with this view, we discuss the preconditioning of the polar vortex and the

frequency of S-SSWs in the Northern and Southern Hemispheres.

6.1 Effects of radiative cooling

We first give a perspective on the effects of radiative cooling in the re-formation processes

of the polar vortex. The polar vortex is quite weak after an S-SSW. The radiative cooling over

the North Pole supplies energy and PV to the polar stratosphere, and re-forms the strong polar

vortex. From a view point of the entropy, the radiative cooling has two effects: (i) the recovery

of saddle points on the entropy surface and (ii) the gradual change toward a quasi-stationary

state. The S-SSW makes the total PV Γ and energy E so small that some saddle points of the

entropy (e.g., QSS 1) do not exist (see Fig. 4.4). The energy and PV supply by the radiative

cooling recovers these saddle points.

The statistical mechanics suggests that there are many possible states at fixed Γ and E. For

instance, not only the equilibrium state but also QSS 1 may be possible. The most probable state

among all possible ones, including unsteady turbulent states, is the equilibrium state, which is

steady and anti-cyclonic in the realistic parameter range (Section 4.2). However, such a state

is not typical of the winter stratosphere. There are two reasons for that. The first reason is

due to the radiative cooling. The strong radiative cooling over the North Pole makes the winter

stratosphere a cyclonic state, even though the equilibrium state is anti-cyclonic. In addition, the

spatial distribution of the radiative equilibrium temperature will select which quasi-stationary

state is typical of the winter stratosphere. After an S-SSW, the radiative cooling will change
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the state of the stratosphere to such a quasi-stationary state [the above point (ii)]. The strong

candidate may be QSS 1 because of its largest spatial structure. The second reason is due to the

existence of various time-dependent disturbances such as Rossby and inertia-gravity waves.

These disturbances will fluctuate the state of the stratosphere among a few possible quasi-

stationary states (e.g., QSS 1 and 3). This kind of fluctuation may be modeled as a Langevin

system (Section 6.2.2).

A relation between the spatial structures of radiative equilibrium temperature and quasi-

stationary state may be important to interpret the mean state of the stratosphere with equi-

librium and non-equilibrium statistical mechanics. Recent studies suggest that a fluid system

approaches the nearest saddle point (or local maximum) of the entropy and persists there for a

long time, if the system is not affected by an external forcing such as radiative cooling (e.g.,

Majda and Wang 2006; Naso et al. 2010). Our results are consist with this dynamical descrip-

tion. The initial condition in the quasi-static experiment has been made from JRA-55 (Section

3.3.1), which is considered as a balanced state between the radiative forcing and the eddy dif-

fusion. This initial state approaches QSS 1 when the linear relaxation is not included in the QG

barotropic model (Sections 3.3.3, 5.4, and Appendix B). The spatial structure of the radiative

equilibrium temperature is large (e.g., Andrews et al. 1987), which will make the initial bal-

anced state close to QSS 1. Such a balanced (steady) state slightly deviated from QSS 1 may

be theoretically analyzed with a linear response theory in non-equilibrium statistical mechanics

(e.g., Kubo et al. 1998).
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6.1.1 Numerical experiments including a linear relaxation

An influence of the radiative cooling on transitions is investigated by using the spherical

QG barotropic model including a linear relaxation

∂q
∂t
+ v · ∇q = −ν∆10q −

(
q − qini

τrlx

)
, (6.1)

and

q(x, t) ≡ ∆ψ(x, t) + 2Ω sinφ︸   ︷︷   ︸
f (x)

+2Ω sinφ h(x, t)/H − 2Ω sinφoff︸      ︷︷      ︸
foff

, (6.2)

where qini is the initial PV and (6.2) is the same as the definition of the PV q used so far. The

linear relaxation in (6.1) corresponds to the Newtonian cooling, i.e., the first-order approxi-

mation of radiative cooling to temperature (e.g., Andrews et al. 1987). The relaxation time

becomes shorter at a higher altitude, which is on average about 28 days at 100 hPa (∼ 15 km)

and 4 days at 1 hPa (∼ 45 km) (Newman and Rosenfield 1997). We examine here the three

cases of τrlx = 10, 20, and 30 days. The initial PV is given by the axisymmetric component of

the barotropic, climatological, absolute vorticity ∆ψ + f , as in all experiments of Section 3.3.

Similar one-layer models have been employed by the previous studies on SSWs (e.g., Polvani

and Waugh 2004; Scott 2016), where τrlx = 10 or 20 days is often used.

The bottom forcing is given by

hR ≡ aR(t) × h0 cos[2(λ − λ0)] exp
−1

2

(
φ − φ0

∆φ

)2 , (6.3)

where

aR(t) ≡



0 (t < 0),
amax × t

∆t1
(0 ≤ t < ∆t1),

amax (∆t1 ≤ t < ∆t1 + ∆t2),
amax + (amax − amin)∆t1+∆t2−t

∆t3
(∆t1 + ∆t2 ≤ t < ∆t1 + ∆t2 + ∆t3),

amin (∆t1 + ∆t2 + ∆t3 ≤ t).

(6.4)

All parameters, except for the four new parameters (amin, ∆t1, ∆t2, and ∆t3), are the same as

those of hQSE in Section 3.3.2 (see Fig. 3.3). The new parameters are given as amin = 0.7,
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Black: hR
Red:    hcmp(WN2)

Figure 6.1: Time series of the forcing amplitudes: (black) the amplitude of hR in (6.3) [i.e., aR

in (6.4)] and (red) the amplitude of the zonal-wavenumber-2 hcmp made from JRA-55. Both
time series are the same as those in Fig. 3.4a until t = ∆t1 + ∆t2 (= 17 days). For comparison,
the onset time is shifted to t = 10 days, like in Fig. 3.4a.

∆t1 = 7 days, ∆t2 = 10 days, and ∆t3 = 14 days. Figure 6.1 compares the time series of aR

with those of the amplitude of the wavenumber-2 component of hcmp, which is made by the

composite analysis of JRA-55. The simple form of aR well approximates the variation in the

amplitude of the wavenumber-2 hcmp.

To estimate the transition time, we first conduct a simulation without the linear relaxation

(τrlx = ∞). The model configuration here is the same as that of the experiment in Section

3.3.2 until t = ∆t1 + ∆t2 (= 17 days), and the same vortex splitting is observed as in Fig. 3.4b.

The evolution over a long period is shown in Fig. 6.2. Compared with Fig. 3.5, the entropy

S becomes nearly constant and a quasi-steady (anti-cyclonic) flow appears at about t = 200

days. Thus, the system reaches the quasi-steady state much earlier than in the experiment of

Section 3.3.2. This result is attributed to the difference in the forcing amplitude after the vortex

splitting: a is fixed to amax (= 2) in Section 3.3.2, but to amin (= 0.7) here, which leads to a

larger velocity and a more rapid evolution. The anti-cyclonic flow observed after t = 200 days

is considered as the equilibrium state, and the transition time is estimated at about 200 days.

This transition time is one-order larger than the radiative relaxation time (∼ 10 days), which

suggests that the equilibrium state is not observed in the QG model. To confirm this, we conduct

the three experiments including the linear relaxation (τrlx = 10, 20, and 30 days). In all cases,
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q

ψ(a) Time Series (b) SF ψ and PV q (45-90°N)

(c) hR +2.0

-2.0

0

Figure 6.2: Results from the QG experiment with τrlx = ∞ (no relaxation): (a) time series of
the total PV Γ, the total energy E, and the entropy S ; (b) the evolution of stream function (SF)
ψ and PV q over 45 to 90◦N; and (c) effective bottom forcing hR over 45 to 90◦N defined by
(6.3) and (6.4) at t = ∆t1 + ∆t2.
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vortex splittings similar to that in Fig. 3.4b are observed, but quasi-steady anti-cyclonic flows

are not. The polar vortex is re-formed before the system reaches the equilibrium state.

In the case of τrlx = 10 days, a quasi-steady cyclonic state appears after the vortex splitting,

as shown in Fig. 6.3c, which likely results from the balance between the linear relaxation and

the form stress due to the bottom forcing. In the cases of τrlx = 20 and 30 days, vacillating

states appear after the vortex splittings. Figure 6.3 shows (a) the time series of Γ, E, and S and

(b) the evolution of PV q, when τrlx = 30 days. The vacillation with τrlx = 20 days is similar,

but its amplitude is smaller. The three time series in Fig. 6.3a suggest that the time scale of

the vacillation is about 150 days. This vacillation may be interpreted as a fluctuation (or a limit

cycle) around an unstable steady state that corresponds to the state in Fig. 6.3c.

6.1.2 Comparison of zonal-mean zonal winds

The QG experiments including the linear relaxation suggest that the equilibrium state,

which is steady and anti-cyclonic, is very unlikely to be observed in the stratosphere. In the

polar region, however, the axisymmetric flow temporarily becomes anti-cyclonic in a major

SSW 1. A reversal of the zonal-mean zonal wind u is also observed here. Figures 6.4a and 6.4b

show the time series of the composite u in JRA-55 and the time-latitude section of u in the QG

experiment with τrlx = 10 days, respectively. The simulated u changes from positive (westerly)

to negative (easterly) at high latitudes, and the timing of the flow reversal well agrees with those

in the composite u. This result suggests that the state of the stratosphere temporarily becomes

close to the anti-cyclonic equilibrium state, even though the state does not reach the equilibrium

state. This is the reason why we argue that S-SSWs can be understood as the transition from

QSS 1 in the direction of (not to) the equilibrium state.

1More precisely, a major SSW is defined by reversals of both the meridional temperature gradient and the
zonal-mean zonal wind (Andrews et al. 1987; Butler et al. 2015). By contrast, in a minor SSW, the meridional
temperature gradient is reversed, but the zonal-mean zonal wind remains westerly.
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q

(a) Time series, τrlx= 30 days (b) PV q (45-90°N), τrlx= 30 
            days

(c) PV q (45-90°N),τrlx= 10 days

Figure 6.3: (a) and (b) Results from the QG experiment including the linear relaxation with
τrlx = 30 days: (a) time series of the total PV Γ, the total energy E, and the entropy S ; and
(b) evolution of PV q over 45 to 90◦N. (c) Quasi-steady PV field over 45 to 90◦N in the QG
experiment with τrlx = 10 days, which is observed at t = 300 days.
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(b) ZM U [m/s] (QG, τrlx = 10 days)

ZM
 U
 (m

/s)

(a) ZM U [m/s] at 10 hPa (JRA, composite)
   : 80°N,        : 70°N,        : 60°N

Figure 6.4: (a) Time series of the composite zonal-mean zonal winds u in JRA-55 at 60◦N
(blue), 70◦N (black), and 80◦N (red). (b) Time-latitude section of u in the QG experiment
including the linear relaxation with τrlx = 10 days. In (a) and (b), u has the unit of m s−1. For
comparison, the onset time in (a) is shifted to t = 10 days, like in Figs. 3.4a and 6.1.

6.2 A view of potential

6.2.1 Comparisons with the previous studies on SSWs

Several studies have argued that SSWs are understood as some transition. Following Sec-

tion 1.2, our understanding is compared with the interpretations given by the Holton-Mass

model and by the resonance theory.

The most recent study employing the Holton-Mass model is Sjoberg and Birner (2014);

however, their interpretation is essentially the same as that given by Chao (1985), who inves-

tigated the Holton-Mass model in terms of the catastrophe theory. According to Chao (1985),

SSWs are interpreted as the transition from the steady state (close to the radiative equilibrium)

to the vacillating state in the model. In other words, the Holton-Mass model has the two stable

solutions at first (bistability), but one of them disappears when the bottom forcing is increased

(Yoden 1987). This bistability relies on the Newtonian cooling. If the Newtonian cooling co-

efficient is zero, the bistability is not observed (Christiansen 2000), and the transition does not
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occur. In our results, the bistability between the equilibrium state and QSS 1 is inherent in the

fluid system itself (see Fig. 4.3), and the radiative cooling just selects QSS 1 among possible

states.

The latest resonance theory was constructed by Matthewman and Esler (2011), who ar-

gued that the onset of S-SSWs is considered as the transition in the weakly nonlinear model

describing the evolution of a barotropic Rossby wave. Their model has a potential form:

Ẍ = −dŨ(X)/dX, where X is the wave amplitude and Ũ is a function of X. The transition

in the model is understood with the potential Ũ; however, the physical meaning of the potential

Ũ is unclear. In our view, the entropy acts as a potential (see Fig. 1.4). The entropy S can be

identified with the mixing (or Shannon) entropy (Bouchet 2008), which is equal to the number

of possible (micro) states. The view of potential is further discussed in the next subsection.

On the other hand, our understanding cannot refer to the time evolution because equilibrium

statistical mechanics is a static (not dynamical) theory. Both the Holton-Mass model and the

resonance theory can describe the dynamics. The weakly nonlinear model of Matthewman

and Esler (2011) gives a Rossby-wave evolution only in the onset period because the model

is based on the small-amplitude assumption. Although the Holton-Mass model is a weakly

nonlinear system as well, it describes a similar evolution of the zonal-mean flow over a long

period (∼ 100 days) to that in the atmosphere (e.g., Sjoberg and Birner 2014).

6.2.2 Potential given by the entropy

To clarify that the entropy acts as a potential, we first give a general form of the QG equation

(Bouchet et al. 2014):

∂q
∂t
+ v · ∇q = −

∫
O(x,x′)

δ(−S )
δq(x′)

dx′ + ξ(x, t), (6.5)
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where O(x,x′) is a linear operator and ξ(x, t) is an external force. Note that the functional

derivative δ(−S )/δq(x′) is equal to q(x′), where S is the entropy given by −
∫

1/2 q2 dx. For

instance, if O(x,x′) = (∆10 + 1/τrlx)δ(x − x′) and ξ = qini/τrlx, where δ(x) is a Dirac delta

function, (6.5) is identical to (6.1). The form of (6.5) is similar to that of Langevin equations2

(e.g., Gardiner 2009; Sekimoto 2010). The only difference in the form is the nonlinear term

on the left hand side in (6.5), but this term does not change the essence of the dynamics. The

velocity component in the phase space attributed to the nonlinear term is along a contour of

−S , whereas a motion perpendicular to the contour of −S is driven only by the right hand side

in (6.5). Figure 6.5a is a schematic picture of a velocity in the phase space. The analogy with

the Langevin equations suggests that the negative of the entropy, −S , acts as a potential for the

QG systems.

The only extremum of the potential −S is at q(x) = 0, which is trivial. If the motions

are divided into a fast and a slow motion by using a perturbation expansion, the total PV Γ

and energy E are constant in the fast motion, but the potential −S decreases. In the slow

motion, all Γ, E, and −S gradually decrease, while the state of the system is always close to

a quasi-stationary or the equilibrium state. This description of the dynamics is supported by

the selective decay theories (e.g., Majda and Wang 2006). An effective potential for the fast

motion will be the potential −S constrained by constant Γ and E, which has been discussed so

far. A transition in the fast motion is then discussed on the basis of the shape of the effective

potential −S (Fig. 6.5b). Theoretical methods for a transition in such a fast-slow system have

been developed (e.g., Bouchet et al. 2016) and may be applicable to the general QG system

2A Langevin equation describes the evolution of a Brownian particle in a potential V:

dx(t)
dt
= −∂V

∂x
+ ξ(t), (6.6)

where x is a position of the particle and ξ is a white Gaussian noise. More precisely, this equation is an overdamped
Langevin equation, where the acceleration is set to zero under the assumption of the sufficiently strong damping.
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Phase space

transition

−S (effective)

ΔS
(b)

 ξ

(a)

Phase space

Countours of -S

min -S Velocity

Parallel

Perpendicular 

Figure 6.5: Schematic illustrations to explain a view of potential. (a) Decomposition of a
velocity in the phase space. The component parallel to the −S contour is attributed to the
nonlinear term in (6.5). The perpendicular component is made only by the right hand side in
(6.5). (b) Effective potential −S for the fast motion in (6.5), which is constrained by constant
total PV Γ and energy E. An external forcing ξ (for instance, a white noise) fluctuates the
system around a local minimum of −S . When the system gets over the potential barrier ∆S , a
transition occurs.

(6.5).

Recent studies have suggested that some transition observed in the atmosphere such as

meridional shift of jet streams may be understood within the framework of Langevin models

(e.g., Bouchet et al. 2014; Laurie and Bouchet 2015). The Langevin theory gives the most prob-

able transition path and a transition rate from one state to another. In particular, the transition

rate is expressed by the Arrhenius formula [∼ exp(−∆S/|ξmean|)], which is common in many

chemical reactions. This formula means that a transition will occur more frequently, as the

entropy barrier (∆S ) becomes lower and/or the mean amplitude of the external forcing (|ξmean|)

becomes larger. Figure 6.5b represents a transition in the effective potential −S .

Apart from the Langevin theory, the view of potential may be partially supported by the

nonlinear stability theories (e.g., Holm et al. 1985; Swaters 1999). When entropy contours are

closed around a basic state, all small-amplitude perturbations are bounded and cannot sponta-

neously grow; hence, a transition will be extremely rare (see Fig. 4.1). If the system got over
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an entropy barrier due to adding a large-amplitude perturbation, the entropy contours might be

open and the system could evolve into a completely different state.

6.2.3 Dependence of entropy barrier on the parameters

The view of potential implies that the magnitude of an entropy barrier gives the possibility

of S-SSWs. The S-SSW will occur more frequently, as the magnitude of a barrier becomes

smaller. As discussed in Section 4.3.2, QSS 1 is the only local maximum of the entropy (i.e.,

the local minimum of −S ) when we ignore the gravest wavenumber-1 modes. Moreover, QSS

1 and QSS 2 annihilate at the same parameters (Fig. 4.5). Both results suggest that the entropy

difference ∆S QSS1,2 between QSS 1 and 2 gives an entropy barrier, which is determined by the

total PV Γ, the total energy E, and the forcing amplitude a. Figure 6.6 shows the dependence

of ∆S QSS1,2 on (a) Γ and E at a = 0.1 and on (b) a and E at Γ = 4.2. Note that the zero contour

of ∆S QSS1,2 is identical to the domain boundaries of existence of QSS 1 and 2. The ∆S QSS1,2 on

the a-Γ plane is similar to that on the a-E plane in Fig. 6.6b (not shown). Clearly, ∆S QSS1,2 is

positive and a monotonic function of the parameters: ∆S QSS1,2 becomes smaller, as E or Γ gets

smaller or as a gets larger. We give brief discussions on the preconditioning of the polar vortex

and the frequency of S-SSWs based on the view of the entropy potential.

Preconditioning of the polar vortex

The polar vortex is known to be preconditioned before an SSW by Rossby waves (e.g.,

McIntyre 1982). The polar vortex is displaced poleward and changed into a tighter and smaller

shape due to these precursor waves, which will lead more Rossby waves to focus on the polar

region. As a result, stronger wave forcings act on the (preconditioned) smaller polar vortex

and an SSW finally occurs. These processes may be consistent with the view of the entropy

potential. The smaller polar vortex will have smaller total PV Γ and energy E, which may lower
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(a) ΔSQSS1,2 (at a=0.1) (b) ΔSQSS1,2 (at Γ=4.2)

Figure 6.6: Entropy difference ∆S QSS1,2 between QSS 1 and 2 on (a) the Γ-E plane at a = 0.10
and (b) the a-E plane at Γ = 4.2.

an entropy barrier as seen in Fig. 6.6a. This lowered barrier implies that an S-SSW occurs more

easily.

Recent studies suggest that a preconditioning is caused mainly by baroclinic Rossby

waves with zonal wavenumber 1 (e.g., Limpasuvan et al. 2004; Liberato et al. 2007; Charl-

ton and Polvani 2007). The entropy potential around QSS 1 decreases only along the gravest

wavenumber-1 modes in the phase space (Section 4.3.2), which implies that the state can escape

from QSS 1 without getting over an entropy barrier. The results in Section 5.4 and Appendix

B suggest that a wavenumber-1 Rossby wave having a sufficiently large amplitude is necessary

to make the system escape from QSS 1 through such a path. Although our study is based on

the barotropic model, these studies suggest an importance of wavenumber-1 Rossby waves in

a preconditioning. An extension using the three-dimensional statistical mechanics (e.g., Ve-

naille 2012) will clarify in more detail the effects of precursor baroclinic Rossby waves with

wavenumber 1.
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Frequency of S-SSWs in the Northern and Southern Hemispheres

We briefly discuss the frequency of S-SSWs in the Northern and Southern Hemispheres in

terms of the dependence of ∆S QSS1,2. All the above theoretical results are applied to a south

polar cap if Γ is replaced with −Γ. In the Southern Hemisphere, the SSW in September 2002,

which is vortex-split type, is the only SSW from the late 1950’s to the present (Roscoe et al.

2005; Waugh and Polvani 2013). By contrast, SSWs occur in the Norther Hemisphere on

average about once every two winters (e.g., Charlton and Polvani 2007). In JRA-55, we observe

30 SSWs (except for final warmings) between 1958 to 2014 (on average, 0.53 SSW per winter),

where 18 events are S-SSWs, 6 are D-SSWs, and 6 are mixed-SSWs. The difference in the SSW

frequency between both hemispheres is attributable to the topography (e.g., Haynes 2005). The

undulation of the earth’s surface and the land-sea heat contrast are stronger in the Northern

Hemisphere, which leads to the strong Rossby-wave activity. Large-amplitude Rossby waves

have two effects. First, they directly reduce ∆S QSS1,2 through larger a. Second, these waves

indirectly reduce ∆S QSS1,2 through Γ and E, both of which are decreased by the strong PV

mixing due to the wave breaking or by the form drag on the isentropic surface undulated by

Rossby waves. Thus, ∆S QSS1,2 will be smaller in the Northern Hemisphere. These discussions

suggest that S-SSWs occur more frequently in the Northern Hemisphere, which is consistent

with the previous studies and observations.
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Chapter 7

General Conclusions

7.1 Summary of this thesis

Stratospheric sudden warming (SSW) is an extreme event in the stratosphere, which is

categorized into vortex-displacement type (D-SSW) and vortex-split type (S-SSW) (Charlton

and Polvani 2007). In a D-SSW, the polar vortex is displaced equatorward and broken down;

in an S-SSW, the polar vortex collapses while splitting into the two daughter vortices. The

dynamical mechanism for SSWs is basically understood with wave-mean interaction theories

(Matsuno 1971). Following Matsuno, several researchers have theoretically studied SSWs in

terms of wave-mean interactions to develop a better understanding (e.g., Chao 1985; Matthew-

man and Esler 2011). They have employed weakly nonlinear theories based on the assumption

of small-amplitude perturbations. This assumption may be not necessarily satisfied well for

strongly nonlinear phenomena such as SSWs.

Equilibrium statistical mechanics is a strongly nonlinear theory and has made great progress

over the last two decades (e.g., Salmon 1998; Majda and Wang 2006; Bouchet and Venaille

2012). The statistical mechanics gives a variational problem such as an entropy maximization

problem. We can obtain a large-scale coherent structure realized after strong PV (potential

vorticity) mixing, by solving the variational problem without calculating a complicated flow

evolution. Through these calculations, we can understand the effects of varying control pa-
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rameters such as total energy. On the other hand, the statistical mechanics does not give any

information on the time evolution and is applicable only to an isolated system without external

forcing nor dissipation.

The present study has investigated S-SSWs by using a reanalysis dataset (JRA-55), a quasi-

geostrophic (QG) barotropic model, and a statistical-mechanics theory, and has proposed a

new understanding of S-SSWs: The S-SSW can be qualitatively understood as a transition

from a cyclonic quasi-stationary state in the direction of the anti-cyclonic equilibrium state. A

quasi-stationary state is defined as a saddle point of the entropy, and an equilibrium state as the

entropy maximum. The transient state with the splitted two vortices is a non-equilibrium state

that appears during the transition in the direction of the equilibrium. Without radiative cooling,

the anti-cyclonic equilibrium state would be realized at a later time [O(100 days)] after an S-

SSW. In the stratosphere, however, the radiative cooling [relaxation time = O(10 days)] will

re-form the cyclonic polar vortex, before the anti-cyclonic equilibrium state is organized. In

a major S-SSW, zonal-mean zonal winds change from westerly to easterly, which implies that

the state of the stratosphere temporarily approaches the anti-cyclonic equilibrium state. The

details of the results are as follows.

Chapter 2

The Japanese 55-year Reanalysis (JRA-55) has been analyzed, and the equivalent-

barotropic nature of the composite S-SSW has been confirmed in the altitude range of

about 20 to 40 km, as found by Matthewman et al. (2009). The composite S-SSW has

been constructed with the method of Seviour et al. (2013), and its three-dimensional

structure has been examined by using the modified PV (Lait 1994). During the compos-

ite S-SSW, disturbances with zonal wavenumber 2 are dominant, whose vertical scale

is roughly estimated at 85 km. These results suggest that the dominant equivalent-
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barotropic motions in S-SSWs can be described with a barotropic model.

Chapter 3

The spherical QG barotropic model has been constructed, and its validity has been con-

firmed through the direct comparison with the composite PV evolution obtained from

JRA-55. The effective bottom forcing in the QG model is given by the composite height

field of the 550-K isentropic surface (∼ 20 km). The wavenumber-2 component of the

bottom forcing is the most essential to the vortex splitting. To reveal a transition of the

polar vortex, a quasi-static experiment has been conducted, where the amplitude of the

wavenumber-2 forcing is increased linearly and sufficiently slowly with time. The flow

field over the North Pole is nearly steady, except around the two transitions.

Chapter 4

The theory of statistical mechanics named the quadratic Casimir variational problem

(QCVP, Chavanis and Sommeria 1996; Venaille and Bouchet 2009, 2011b; Naso et al.

2010) has been applied to the polar cap north of 45◦N. In the QCVP, the entropy, which

is the negative of potential enstrophy, is maximized with the constraints of constant total

PV and energy. The equilibrium state is anti-cyclonic, but the quasi-stationary states are

cyclonic, in the parameter range relevant to the winter stratosphere. The quasi-stationary

state having the largest structure (QSS 1) can be a local maximum of the entropy (i.e.,

metastable) in a general domain not having the rotational symmetry. This unique prop-

erty of QSS 1 comes from the fact that QSS 1 becomes an equilibrium state, as the total

PV is increased. By contrast, in the disk domain, QSS 1 may be destabilized by a pertur-

bation with zonal wavenumber 1, but it is dynamically stable against any small-amplitude

perturbations with the other wavenumbers.

Chapter 5
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The results of the quasi-static experiment have been interpreted by using the QCVP.

The theory well explains the structures of the PV fields simulated by the QG model.

Moreover, the timings of the two transitions given by the QCVP are consistent with those

in the quasi-static experiment. The initial state in the quasi-static experiment is regarded

as QSS 1, and the final state as the equilibrium state. To examine the nonlinear stability of

QSS 1, the evolution of the wavenumber-1 perturbations have been examined by adding

these perturbations to the flow field regarded as QSS 1 and performing the numerical

integrations. In all cases, the small- but finite-amplitude perturbations do not grow with

time, which implies that QSS 1 is Lyapunov stable. In a realistic experiment where

the forcing amplitude is increased over one week (not sufficient slow), the polar vortex

splits during the transition from QSS 1 to the equilibrium state. This result supports our

understanding of S-SSWs.

Chapter 6

The effects of radiative cooling have been discussed by performing the QG experiments

including the linear relaxation. The relaxation time is O(10 days), but the transition time

toward the equilibrium state is about 200 days. As a result, the anti-cyclonic equilib-

rium state has not been observed in the QG experiments including the linear relaxation.

The view of potential has also been discussed, which is given by the negative of the

entropy. This view may extend our results to the Langevin dynamics, i.e., a theory of

non-equilibrium statistical mechanics. The view of the entropy potential has given the

consistent discussions with the previous studies to the preconditioning of the polar vortex

and the frequency of S-SSWs in the Northern and Southern Hemispheres.
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7.2 Future work

There are at least two important future themes. The first one is on vortex-displacement

SSWs (D-SSWs). It is interesting whether D-SSWs can be considered as a transition in terms

of equilibrium statistical mechanics. Since a baroclinic structure is essential for D-SSWs

(Matthewman et al. 2009; Esler and Matthewman 2011), a continuously stratified QG model is

necessary to investigate them. The three-dimensional version of the QCVP has already been

developed and applied to geophysical fluid problems (e.g., Merryfield 1998; Venaille 2012). It

will be a first step to analyze D-SSWs by using the three-dimensional QCVP.

Stratospheric final warming (SFW) is also an interesting phenomenon. In the onset of

spring, the polar vortex rapidly becomes weak, while the zonal-mean zonal winds become

easterly and do not return to westerly. This SFW event occurs once every year, and most

of them are vortex-displacement type (Black and McDaniel 2007). The SFW (i.e., the change

from winter to spring) may be regarded as a transition from a quasi-stationary to the equilibrium

state; then, the equilibrium state will be observed as a summer state.

We have focused on the north polar cap, which is not a closed domain. When a stratified QG

model covers an altitude range from the ground to the stratosphere, the fact that the polar cap

is not closed will be essential to interpret D-SSWs and also S-SSWs. In this case, the bottom

forcing is the earth’s topography, which is time-invariant. The shape of the entropy surface

is then changed by influx/efflux of energy and PV across the boundary of the polar cap. Our

results suggest that S-SSWs will occur more easily, as the total PV or energy within the polar

cap is decreased, i.e., as the polar vortex is weakened (Sections 4.4 and 6.2). This description

may be directly related to an understanding of preconditionings.

The second important theme is extensions to non-equilibrium statistical mechanics. The

radiative relaxation is important for actual transitions in the stratosphere (Section 6.1). The
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time-mean state of the polar vortex is formed as a result of the balance between the forcing (i.e.,

radiative cooling) and the dissipation (i.e., eddy diffusion). Such a steady state is often observed

in forced-dissipative systems and has been studied within the framework of non-equilibrium

steady states (e.g., Bouchet and Venaille 2012). It is a challenging topic to understand S-SSWs

with a theory of non-equilibrium steady states.

For another direction of development, the Langevin dynamics may be proposed (Section

6.2). The transience of Rossby waves may be incorporated into a system as a white noise.

This system will be theoretically investigated with large-deviation techniques, which have been

recently developed (e.g., Bouchet et al. 2014; Laurie and Bouchet 2015; Bouchet et al. 2016).

It is challenging and interesting to examine time variations in the stratosphere by using large-

deviation theories.
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Vortex-Moment Diagnostics

The vortex-moment diagnostics has been originally developed by Waugh (1997) and later

applied to the polar vortices (Waugh and Randel 1999) and to the classification of SSWs

(Matthewman et al. 2009; Seviour et al. 2013). Following the latter two studies, we describe

here this method.

The vortex-moment diagnostics is applicable to any two-dimensional field such as Ertel’s

PV, but geopotential height G at 10 hPa is used to explain the method. First, a geopotential-

height field G over the Northern Hemisphere is projected onto the plane (x, y) with Lambert’s

map (4.6). Then, G is modified as

Ĝ ≡

∣∣∣G −Gmean

∣∣∣ for G ≤ Gmean,

0 otherwise,
(A.1)

where Gmean is the time- and zonal-mean of G at 60◦N over all winters (December to March).

Note that the inequality in (A.1) becomes opposite for (Ertel’s) PV.

The equivalent ellipse is uniquely determined by its centroid (xcnt, ycnt), its aspect ratio η,

its orientation χ, and its areaA. To obtain these quantities, the absolute moment is defined as

Mkl ≡
∫

Ĝxkyl dx dy, (A.2)

where k and l are arbitrary positive integers or zero. The centroid is then given by

(xcnt, ycnt) =
1

M00
(M10, M01) . (A.3)
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Geopotential 
height at 10 hPa (km)(a) Feb. 12, 1979 (b) Feb. 22, 1979

Figure A.1: Examples of the equivalent ellipse for geopotential height at 10 hPa in JRA-55. (a)
Before the 1979 S-SSW. (b) After the 1979 S-SSW. Each yellow curve represents the equivalent
ellipse and the asterisk its centroid.

By using the centroid, the relative moment is defined as

mkl ≡
∫

Ĝ(x − xcnt)k(y − ycnt)l dx dy. (A.4)

Finally, the aspect ratio η, orientation χ, and areaA are given by

η =

∣∣∣∣∣∣ m20 + m02 +
√

4m11
2 + (m20 − m02)2

m20 + m02 −
√

4m11
2 + (m20 − m02)2

∣∣∣∣∣∣1/2, (A.5)

χ =
1
2

tan−1
(

2m11

m20 − m02

)
, (A.6)

and

A = M00

Gnrm
. (A.7)

The orientation χ defines the angle between the x axis and the major axis of the equivalent

ellipse. The normalization constant Gnrm in (A.7) is set to 103 m for geopotential height and

3.14 for barotropic PV q in (3.2). Figure A.1a shows an example of the equivalent ellipse

(yellow) for the geopotential height at 10 hPa in JRA-55. The ellipse well represents the shape

of the polar vortex.
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In Section 2.1, S-SSWs have been identified with the method of Seviour et al. (2013), in

which only the aspect ratio is necessary. Subsequently, we have extracted the 10 S-SSWs in

which the two equivalent ellipses made by the vortex splitting are sufficiently separated from

each other. The two equivalent ellipses are determined in the following four steps (Matthewman

et al. 2009): (i) The centroid and orientation of the (single) equivalent ellipse are calculated as

above; (ii) The projected domain is divided into two parts, R1 and R2, by the straight line

y− ycnt = −(x− xcnt) cot χ, which is perpendicular to the major axis of the ellipse and is through

its centroid; (iii) Two modified fields of geopotential height are defined as

Ĝ(1) ≡
Ĝ in R1,

0 in R2,
and Ĝ(2) ≡

Ĝ in R2,

0 in R1;
(A.8)

(iv) The method described above is applied separately to Ĝ(1) and Ĝ(2), which gives the two

equivalent ellipses. Figure A.1b shows an example of the two equivalent ellipses (yellow) after

the February 1979 S-SSW. Each ellipse well represents the shape of the daughter vortex.
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Appendix B

Quasi-static experiment using an initial
state including all zonal-wavenumber
components

We show here the results of a quasi-static experiment where the initial state includes all

the zonal-wavenumber components. Similar results to those in Section 3.3.3 and Chapter 5

are obtained, and we basically emphasize the differences. These results suggest that the zonal-

wavenumber-1 components are not critical to the emergence and persistence of QSS 1, even

though its nonlinear stability against a wavenumber-1 perturbation is not theoretically assured.

The model configuration is the same as that described in Sections 3.3.1 and Section 3.3.3,

except for the initial condition. The initial PV is given by the barotropic, climatological, ab-

solute vorticity ∆ψ + f (not axisymmetric), which is made in the following two steps (Section

3.3.1): (i) The three-dimensional, climatological, absolute vorticity is obtained by simply aver-

aging the absolute vorticity over the 55 midwinters (December to February) in JRA-55, except

for the periods of SSWs; (ii) Its barotropic component is defined by vertically averaging the

obtained absolute vorticity with a weight of density over θ = 550 to 1300 K (about 22 to 39

km). The dominant zonal-wavenumber components are wavenumber 1, which is consistent

with the climatology of the Arctic polar vortex (e.g., Waugh and Randel 1999).

Figure B.1 shows the results of the quasi-static experiment, like Fig. 3.6. The initial PV and
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stream function are not axisymmetric, but similar results to those in Fig. 3.6 are obtained. There

are three differences from Fig. 3.6: (i) QSS 1 persists until about t = 4500 days, but t = 7000

days in Fig. 3.6; (ii) The temporary increase in the major-axis angle of the equivalent ellipse

at about t = 5000 days in Fig. 3.6a is not observed here; (iii) The major-axis angle reduces to

about 0◦ just after the polar-vortex breakdown, but it remains near 90◦ in Fig. 3.6a. The first

and second points may be related to each other. In Fig. 3.6, the state would change from State

A (QSS 1) to B (QSS 3) at about t = 5000 days, if some noise were added. In this experiment,

however, the initial state is axisymmetric and such a noise may be quite small; hence, only

the major-axis angle may be sensitively changed at about t = 5000 days. By contrast, in the

quasi-static experiment including all wavenumber components, these components may act as

a noise, and the transition from State A (QSS 1) to B (QSS 3) occurs earlier due to this noise.

The third difference is not important. The major-axis angle just after the polar-vortex collapse

depends on the size of the small PV patch left after the collapse, which is also sensitive to the

truncation wavenumber.

Figure B.2 compares the flow structures in the quasi-static experiment with those of the

equilibrium and quasi-stationary states, like Fig. 5.3. There is apparently no qualitative differ-

ence from Fig. 5.3.

Figure B.3 shows the time series of the surf zone edges and the two PV fields before the two

transitions, like Fig. 5.6. This figure is the preparation for comparing the transition timings.

Figure B.4 compares the transition timings given by the theory with those in the quasi-static

experiment, like Figs. 5.4 and 5.5. Before the first transition, the north edge of the surf zone

φsurf,N is at about 39.4◦N (Figs. B.3a and B.3b). The entropy minimum associated with the first

transition was obscure when the calculations were performed within 39.4 to 90◦N; hence, Fig.

B.4a shows the results calculated over 40.8 to 90◦N. Before the second transition, the north
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(a) Time series
t=3500 1750011000

q

ψ(b) SF ψ and PV q (45-90°N)

(c) hQSE +1.0

-1.0

0

(State A)

(State B)

(State C)

Figure B.1: As Fig. 3.6, but for the initial state including all the zonal-wavenumber components
(not axisymmetric).
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Theory

ψ

q

(d)

Quasi-static
experiment

(b) PV, q
(45-90°N)

(a) SF, ψ
(45-90°N)

(c) PV, q
(45-90°N)

State C
28000 days

EQS

State B
11000 days

QSS 3

State A
3500 days

QSS 1

Figure B.2: As Fig. 5.3, but for the initial state including all the zonal-wavenumber components
(not axisymmetric).
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PV = q + foff

φsurf, N

φsurf, S

(a) Time series

(b) t = 4000 days

(c) t = 14000 days

Figure B.3: As Fig. 5.6, but for the initial state including all the zonal-wavenumber components
(not axisymmetric).

edge of the surf zone φsurf,N is near 52.0◦N (Figs. B.3a and B.3c). Figure B.4b shows the results

obtained by the calculations within 52.0 to 90◦N, which are not highly sensitive to the size of

the polar cap. Obviously, the transition timings given by the theory are consistent with those in

the quasi-static experiment, as in Section 5.3.

All the above results are similar to those discussed in Section 3.3.3 and Chapter 5. Thus,

we can conclude that the zonal-wavenumber-1 components are not critical to the emergence

and persistence of QSS 1 and our understanding of S-SSWs may be not strongly affected by

the presence of zonal-wavenumber-1 disturbances.
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(a) Latitude at Polar-Cap Boundary = 40.8°N

min E for QSS 1

(b) Latitude at Polar-Cap Boundary = 52.0°N

min E for QSS 3

Figure B.4: As Figs. 5.4 and 5.5, but for the initial state including all the zonal-wavenumber
components (not axisymmetric).
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Appendix C

Details of Calculations to Obtain
Equilibrium and Quasi-Stationary States

We describe here the method to obtain the equilibrium and quasi-stationary states for the

QCVP (4.1). The discussions below basically follow the results of Venaille and Bouchet

(2011b). We first introduce the complete, orthonormal basis {ei}i∈N of Laplacian eigenmodes

on a simply connected domain such as a disk domain: ∆ei = −µiei, where an eigenvalue µi is

positive. Two subspaces are further introduced: one is composed of the Laplacian eigenmodes

having zero mean values (⟨ei
′⟩ = 0) and the other is composed of the eigenmodes having non-

zero mean values (⟨ei
′′⟩ , 0), where ⟨ ⟩ denotes spatial integral over the domain, and ′ and ′′

emphasize the difference between the two subspaces. In each subspace, the eigenvalues are in

ascending order. Appendix D gives the Laplacian eigenmodes and eigenvalues in a disk and a

rectangular domain.

All quantities are expressed in terms of the coordinates {qi} [i.e., the coefficients of PV q

(≡ ∑
i qiei)]:

ψi = −
qi − htoti

µi
, (C.1)

Γ =
∑

i

qi⟨ei⟩, (C.2)

E =
1
2

∑
i

(qi − htoti)2

µi
, (C.3)
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and

S = −1
2

∑
i

q2
i , (C.4)

where htot (≡ ∑
i htotiei) is the sum of f − foff and f h/H in (4.4), and ψi is a coefficient of

the stream function ψ (≡ ∑
i ψiei). Note that (C.1) represents the PV inversion (4.4) given by

q ≡ ∆ψ + f − foff + f h/H ≡ ∆ψ + htot. When both ′ and ′′ are not attached to variables in a

summation, the summation is taken over all indices of both subspaces. The expression of PV

at a stationary point for the QCVP is obtained by expanding the linear q-ψ relation (4.5) by the

Laplacian eigenmodes:

qi =
bhtoti − cµi⟨ei⟩

µi + b
. (C.5)

The expressions of Γ and E at a stationary point are obtained by substituting (C.5) into (C.2)

and (C.3), respectively:

Γ = −cF(b) + b
∑

i

htoti⟨ei⟩
µi + b

, (C.6)

and

E =

∑
i

µihtot
2
i

2(µi + b)2

 + c

∑
i

µihtoti⟨ei⟩
(µi + b)2

 + c2

∑
i

µi⟨ei⟩2
2(µi + b)2

 , (C.7)

where

F(b) ≡
∑

i

µi⟨ei⟩2
µi + b

. (C.8)

Any stationary point given by (C.5) with b > −µ1
′ and −µ∗ is a solution of the QCVP,

namely the equilibrium state, where µ1
′ is the smallest Laplacian eigenvalue for the zero-mean

eigenmodes and −µ∗ is the largest zero of F(b) [i.e., F(−µ∗) = 0]. In the parameter range

considered in the present study, b of the equilibrium states is always larger than −µ1
′ and

−µ∗. See Venaille and Bouchet (2011b) for the method to calculate the equilibrium state with

b = −µ1
′ or −µ∗. Note that equilibrium states with b < −µ1

′ or −µ∗ do not exist.

An equilibrium or a quasi-stationary state is obtained in the following four steps: (i) The

Lagrange multiplier c [i.e., the offset of the q-ψ relation in (4.5)] is analytically obtained by
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solving (C.6) with a given Γ; (ii) The equation E = E(b) is derived by substituting the obtained c

into (C.7) with a given E; (iii) The Lagrange multiplier b [i.e., the inclination of the q-ψ relation

in (4.5)] satisfying E = E(b) is numerically calculated; (iv) qi is computed by substituting the

obtained b and c into (C.5). When b > −µ1
′ and −µ∗, the obtained q is the only equilibrium

state for the given Γ and E. In the other cases, the obtained q is a quasi-stationary state, and an

appropriate b needs to be selected at the third step (iii).

We further explain how to determine an appropriate b. Figure C.1 gives two examples of the

energy curve E(b) for a disk domain. The shape of the energy curve is uniquely determined by

the total PV Γ and the forcing amplitude a. The E curve is divergent at b = −µ∗, −µ2
′, and −µ∗∗,

because some denominators in the equation of E = E(b) are zero (not shown), where µ2
′ is the

second smallest Laplacian eigenvalue for the zero-mean eigenmodes and −µ∗∗ is the second

largest zero of F(b). The E curve has infinitely many branches, which means that there are

infinitely many quasi-stationary states (Chavanis and Sommeria 1996). In the range of −µ∗ < b,

the intersection of the E curve (black) with a given E (i.e., a lateral line) is uniquely determined

and it gives b for the equilibrium state. In the range of b < −µ∗, the intersection of the first

branch (light green) gives b for QSS 1. Other b for QSS n are determined in the same way. In

Fig. C.1a, all the shown branches have the intersections with the lateral line of E = 0.12, but in

Fig. C.1b, the first (light green) and second (dark blue) branches do not have intersections. In

the case (b), QSS 1 and 2 do not exist, but another QSS such as QSS 3 exists. In making Fig.

4.4, we numerically calculated an energy curve at each parameter point of (a, Γ) and examined

whether an appropriate b existed. Thus, a domain with existence of a quasi-stationary state is

a parameter set over which the corresponding branch of the energy curve has the intersection

with the given E. Furthermore, the shape of the energy curve indicates that QSS n and QSS

n + 1 (n is odd) annihilate at the same parameter point of (a, Γ, E).
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b b

(a)   (a, Γ) = (0.15, 4.2) (b)   (a, Γ) = (1.00, 4.2)
EQS

QSS 1
QSS 2
QSS 3
QSS 4
QSS 5-µ2’-µ** -µ*-µ2’-µ** -µ*

E = 0.12 E = 0.12

Figure C.1: Examples of the energy curve E(b) at (a) (a, Γ) = (0.15, 4.2) and (b) (a, Γ) =
(1.00, 4.2). The label EQS stands for equilibrium state. See text for details.
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Appendix D

Laplacian Eigenvalues and Eigenmodes

D.1 Disk domain

We give the Laplacian eigenmodes and eigenvalues in a disk domain (0 ≤ r ≤ rmax and

0 ≤ λ < 2π). A position in the domain is specified by a radius r and an azimuthal angle1

λ, where the maximum of r is designated as rmax. The Laplacian eigenmodes are given by

Bessel functions of the first kind Jn and trigonometric functions, when the Dirichlet boundary

condition is imposed (i.e., ei = 0 at r = rmax):

{ei
′}i∈N =

{
Cn,m Jn

(
αn,m

rmax
r
)

sin(nλ), Cn,m Jn

(
αn,m

rmax
r
)

cos(nλ)
}

n,m∈N
, (D.1)

{ei
′′}i∈N =

{
C0,i J0

(
α0,i

rmax
r
)}

i∈N
, (D.2)

and

⟨ei
′′⟩ = 2

√
πrmax

α0,i
sgn

(
J1

(
α0,i

))
, (D.3)

where Cn,m is a normalization constant [⟨(ei)2⟩ = 1] and αn,m is the m-th zero of Jn. The

corresponding eigenvalue is given by

µ = (αn,m/rmax)2. (D.4)

1Azimuthal angle is identical to longitude λ when a disk domain is obtained with Lambert’s map (4.6).
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D.2 Rectangular domain

We give the Laplacian eigenmodes and eigenvalues in a rectangular domain with sides of

Lx and Ly. A position in the domain is specified by x and y, where 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly.

The Laplacian eigenmodes are given by sine functions, when the Dirichlet boundary condition

is imposed:

{ei}i∈N =
{

C̃m,n sin
(
mπx
Lx

)
sin

(
nπy
Ly

)}
m,n∈N

, (D.5)

where C̃m,n is a normalization constant [⟨(ei)2⟩ = 1]. An eigenmode with m or n even gives ei
′,

and an eigenmode with both m and n odd gives ei
′′, where

⟨ei
′′⟩ =

8
√

LxLy

mnπ2 . (D.6)

The corresponding eigenvalue is given by

µ = π2
(

m2

Lx
2 +

n2

Ly
2

)
. (D.7)
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Appendix E

Quadratic Form Expressing the Entropy
Surface around a Stationary Point

According to the Lagrangian multiplier theory (e.g., Gelfand and Fomin 2000), the neces-

sary and sufficient condition that a stationary point for the QCVP (4.1) is a local maximum of

the entropy is given by the following second-order variation, where a perturbation δq satisfies

the two first-order constraints:

0 < −δ2S + bδ2E =
1
2

∑
i

(
1 +

b
µi

)
(δqi)2 s.t. δΓ = 0 and δE = 0. (E.1)

The first-order constraints are expressed in terms of {δqi} (i.e., the coefficients of δq by Lapla-

cian eigenmodes):

0 = δΓ =
∑

i

⟨ei⟩δqi =
∑

i

⟨ei
′′⟩δqi

′′, and (E.2)

0 = δE =
∑

i

ψiδqi. (E.3)

The value of ψi is given by substituting (C.5) into (C.1).

The necessary and sufficient condition (E.1) is not quite easy to handle because of the two

first-order constraints. We solve these two linear constraints, (E.2) and (E.3), for δq1
′′ and δq2

′′:

δq1
′′ =

∑
i≥3

[
− ⟨ei

′′⟩
⟨e1
′′⟩ +

⟨e2
′′⟩

⟨e1
′′⟩

(
ψi
′′ − ψ1

′′⟨ei
′′⟩/⟨e1

′′⟩
ψ2
′′ − ψ1

′′⟨e2
′′⟩/⟨e1

′′⟩

)]
δqi
′′ +

∑
i≥1

⟨e2
′′⟩

⟨e1
′′⟩

(
ψi
′

ψ2
′′ − ψ1

′′⟨e2
′′⟩/⟨e1

′′⟩

)
δqi
′

≡
∑

i

Aiδqi, (E.4)
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and

δq2
′′ = −

∑
i≥3

(
ψi
′′ − ψ1

′′⟨ei
′′⟩/⟨e1

′′⟩
ψ2
′′ − ψ1

′′⟨e2
′′⟩/⟨e1

′′⟩

)
δqi
′′ −

∑
i≥1

(
ψi
′

ψ2
′′ − ψ1

′′⟨e2
′′⟩/⟨e1

′′⟩

)
δqi
′

≡
∑

i

Biδqi. (E.5)

Substituting δq1
′′ and δq2

′′ into (E.1), we obtain the quadratic form expressing the second-order

variation (E.1), in which the two first-order constraints are incorporated:

2
(
−δ2S + bδ2E

)
=∑

other i′

(
1 +

b
µi
′

)
δqi
′2 +

∑
i, j

[
δi j

(
1 +

b
µi

)
+ AiA j

(
1 +

b
µ1
′′

)
+ BiB j

(
1 +

b
µ2
′′

)]
︸                                                          ︷︷                                                          ︸

Qi j

δqiδq j, (E.6)

where δi j is a Kronecker delta and other i′ means all indices of the zero-mean eigenmodes

whose ψi
′ are zero (i.e., whose Ai and Bi are zero). The quadratic form (E.6) is decomposed into

the first sum consisting of the diagonal matrix and the second sum consisting of the symmetric

matrix Q. The quadratic form (E.6) expresses the entropy surface around a stationary point

in the phase space. When (E.6) is positive definite, the condition (E.1) is satisfied and the

stationary point is a local maximum of the entropy (i.e., dynamically and nonlinearly stable).

The definiteness of the quadratic form (E.6) is examined in the following three steps: (i) The

definiteness of Q is checked by numerically computing the eigenvalues of Q; The matrix Q is

positive definite, if and only if all eigenvalues are positive; (ii) The value of b is compared with

the eigenvalues µi
′; The first sum in (E.6) is positive for any δq, if and only if −µ1

′ < b, where

µ1
′ is the smallest Laplacian eigenvalue for the zero-mean eigenmodes; (iii) If Q is positive

definite and if −µ1
′ < b, the quadratic form (E.6) is positive definite and the stationary point is

a local maximum of the entropy. Clearly, any stationary point with b < −µ1
′ does not satisfy

this condition; hence, it is a saddle point of the entropy. Naso et al. (2010) showed the same

result through a different method: They found a specific first-order perturbation, substituted it

into −δ2S +bδ2E, and showed that the condition (E.1) is not satisfied for a stationary point with
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b < −µ1
′.

The uniqueness of QSS 1 comes from the positive definiteness of the symmetric matrix Q.

This means that QSS 1 is a local maximum of the entropy if −µ1
′ < b. In other words, the

structure of the entropy surface around QSS 1 is determined only by the inequality of b and

−µ1
′. Furthermore, the value of µ1

′ is determined only by the shape of a domain.

In a disk domain, µ1
′ is given by the gravest wavenumber-1 mode1 and satisfies −µ∗ < −µ1

′.

The range of b for QSS 1 is analytically obtained as −µ2
′ < b < −µ∗, where µ2

′ is the second

smallest Laplacian eigenvalue for the zero-mean eigenmodes2. These facts mean that any b of

QSS 1 is smaller than −µ1
′ and QSS 1 is always a saddle point of the entropy3. In the quadratic

form (E.6), the gravest wavenumber-1 components of a perturbation, δq1
′, are included only in

the first sum. If a perturbation δq does not have these components, the quadratic form (E.6) is

positive. Only in this case, QSS 1 becomes a local maximum of the entropy.

In a square domain, −µ1
′ < −µ∗ holds and any b of QSS 1 is smaller than −µ∗, which

suggests that −µ1
′ < b can be satisfied, depending on the parameters of a, Γ, and E. In other

words, QSS 1 can be a local maximum of the entropy (i.e., metastable) and dynamically stable

against any small-amplitude perturbation. See Appendix F for details.

1Note that µ1
′ = (α1,1/rmax)2 and −µ∗ is the largest zero of F(b) in (C.8) [i.e., F(−µ∗) = 0].

2The value of µ2
′ is given by the gravest wavenumber-2 mode: µ2

′ = (α2,1/rmax)2.
3All other quasi-stationary states are saddle points as well because QSS 1 has the largest b.
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Appendix F

Theoretical Calculations in a Square
Domain

In Chapter 4, for simplicity, the theoretical calculations have been performed in the disk

domain, which has the rotational symmetry. An infinitely small perturbation to the domain

boundary can break the rotational symmetry. This fact indicates that if an effective boundary

for the polar stratosphere is accurately determined, the domain will not have such a special

symmetry. In this chapter, we investigate the properties of QSS 1 in a square domain, which

has no continuous symmetry. The obtained results here would be representative of those in a

domain having a complex boundary.

The square domain has the same side length as the diameter of the disk obtained by the

projection of the polar cap (45 – 90◦N) with Lambert’s map (4.6). As in the disk (Chapter 4),

the Coriolis parameter and bottom forcing are projected and the same calculation methods are

employed. The form of Laplacian eigenmodes and eigenvalues in a square domain is given in

Appendix D.2. Note that similar results to the following are obtained in a rectangular domain

with its aspect ratio smaller than about 1.12.

First, the energy curve E(b) is investigated. Figure F.1 shows the E curve at the total PV

Γ = 6.1 and the forcing amplitude a = 0.01, together with the four PV fields. The black curve

is the equilibrium branch and the green is the QSS-2 branch (see also Appendix C). The QSS-1
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QSS-1 Branch EQS Branch
PV, q

EQS    = GM,  QSS 1 = LM + SP,  QSS 2 = SP

-µ1’ -µ*

Figure F.1: Energy curve E(b) in the square domain at the total PV Γ = 6.1 and the forcing
amplitude a = 0.01. The black curve represents the equilibrium branch (EQS), which is the
global maximum (GM) of the entropy. The green curve represents the QSS-2 branch, which is
a saddle point (SP) of the entropy. The QSS-1 branch is composed of the red curve, which is the
metastable branch (i.e., local maximum, LM, of the entropy), and the blue curve, which is the
quasi-stationary branch (i.e., saddle point, SP, of the entropy). The PV fields at the intersections
of the E curves with the lateral lines E = 0.12 and 0.24 are also shown.

branch is composed of the red and blue curves, which are referred to as the metastable and

quasi-stationary branches, respectively. In the QSS-1 branch, any state with −µ1
′ < b (red) is a

local maximum (LM) of the entropy, namely metastable, and any other state (blue) is a saddle

point (SP), namely quasi-stationary, as discussed in Appendix E. At the point of b = −µ1
′,

nothing happens. In fact, the metastable PV (top left) has a similar cyclonic structure to that of

the quasi-stationary PV (bottom left). For comparison, the equilibrium PV are shown, which

are anti-cyclonic. Similar results are observed at another point of (a, Γ).

The uniqueness of QSS 1 has been briefly explained in Section 4.3.2. We discuss here it

more deeply. Figure F.2b shows the 3D plot of the equilibrium entropy S EQ in the Γ-E space at

a = 0.01:

S EQ(E, Γ) ≡ max
q

{
S ≡ −1

2

∫
q2 dA

∣∣∣∣ E,Γ
}
. (F.1)
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The S EQ surface has the two peaks with the cusp (red line) given by Γ = Γ∗, where

Γ∗ ≡ −µ∗
∑

i

htoti⟨ei⟩
µi − µ∗

. (F.2)

The red line is called the first-order phase transition line because the first derivative of ∂S EQ/∂Γ

is discontinuous on it (Venaille and Bouchet 2011b). Figure F.2c shows the corresponding

phase diagram. The end point of the first-order phase transition line (red) is given by the

minimum energy for all equilibrium states with b = −µ∗.

Venaille and Bouchet (2009, 2011b) showed that the equilibrium states are switched be-

tween the cyclonic and anti-cyclonic branches at the first-order phase transition line, which

makes the cusp of the S EQ surface. In addition, Naso et al. (2010) demonstrated that the cy-

clonic branch becomes metastable on the side where the anti-cyclonic branch is equilibrium. To

further develop an understanding on the entropy surface, the parameter domains with existence

of the metastable state and QSS 1 are calculated with the methods of Appendices C and E. The

metastable branch is a part of the QSS-1 branch; hence, in Fig. F.2c, the domain of QSS 1

(orange) contains the domain of metastability (blue). The domain of metastability is quite nar-

row, and the state of the winter stratosphere is unlikely to be considered as a metastable state.

The cyclonic and anti-clonic branches do not end at the domain boundary of metastability, but

they extend to the domain of existence of QSS 1. Figure F.2a is a schematic illustration for

the structure of the entropy surface, where the two black curves represent S EQ. At the domain

boundary of QSS 1, both branches disappear because any solution for E = E(b) does not exist

(see Appendix C). Similar results are obtained at another forcing amplitude a, but the domain

of metastability as well as the domain of QSS 1 becomes narrow and shifts to a region with

higher energies, as a becomes larger. These results give the foundation for the brief discussions

in Section 4.3.2.

The equilibrium entropy S EQ is not globally concave. The boundary of non-globally-
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Γ*
Total PV, Γ

Entropy, S

not globally
concave

Anti-
Cyclonic

Cyclonic

(b) 3D Plot of SEQ surf (c) Phase Diagram (a=0.01)(a) Schematic  S vs Γ

Black = EQS, Light Blue = MTS, Orange = QSS 
Figure F.2: (a) Schematic illustration of the entropy curve at a constant energy. (b) 3D plot of
the equilibrium entropy S EQ surface in the Γ-E space with a = 0.01. (c) Phase diagram in the
Γ-E space with a = 0.01. The red line represents the first-order phase transition line Γ = Γ∗

given by (F.2). The blue curve shows the boundary for the non-globally-concave domain of S EQ

given by the energy curve with b = −µ1
′′. Two blue dots in (a) correspond to the blue curves in

(b) and (c). The light-blue area in (c) represents the domain of metastability, which corresponds
to the light-blue curves in (a). The orange area in (c) shows the domain with existence of QSS
1, which corresponds to the orange curves in (a). The label EQS stands for equilibrium state,
MTS metastable state, and QSS quasi-stationary state.

concave domain is shown by the blue curve in Fig. F.2b or F.2c, which is given by the energy

curve1E = E(Γ, b) with b = −µ1
′′ (Venaille and Bouchet 2011b). In Figure F.2a, the non-

globally-concave domain is emphasized by the two blue dots with the auxiliary line. In usual

short-rage interacting systems such as a cup of water, the entropy is always globally concave.

However, in long-rage interacting systems such as geophysical fluids and self-gravitating sys-

tems, the entropy may be not globally concave, which leads to several strange behaviors (e.g.,

Campa et al. 2014). For instance, such a system may have a negative heat capacity. In our case,

a negative heat capacity is not observed, but an ensemble inequivalence occurs (Venaille and

Bouchet 2009, 2011b), which is typical of long-rage interacting systems. More precisely, the

canonical ensemble is not equivalent to the microcanonical one in the non-globally-concave

area. The microcanonical ensemble has been always employed in our calculations.

1The expression of E(Γ, b) is obtained in the following two steps: (i) The Lagrangian multiplier c is obtained
by solving (C.6) with a given Γ; (ii) The obtained c(Γ, b) is substituted into (C.7), which gives E(Γ, b).
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