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Abstract

The baroclinic tide, a kind of oceanic internal waves generated by a barotropic tidal flow

over bottom topography, is regarded as the most significant energy source in the deep ocean.

Since the dissipation of internal waves causes vertical water mixing that controls the over-

turning circulation of the ocean, detection of the global distribution of tidal dissipation rates

is a major concern in physical oceanography. In the last decades, it has been reported that the

nonlinear resonant interactions among internal waves effectively enhance the energy dissipa-

tion of baroclinic tides in the mid-latitude ocean. Even today, however, such nonlinear wave

dynamics is insufficiently understood. This thesis discusses the qualitative and quantitative

aspects of resonant interactions in the ocean.

Among various resonant interactions, the most important one is parametric subharmonic

instability (PSI). In PSI, two small-scale waves with nearly opposite wave vectors are spon-

taneously enhanced in a large-scale wave train. While a number of numerical studies have

coped with this phenomenon, physical mechanism of PSI remains obscure. In this study, PSI

is redefined as a kind of parametric instability where two disturbance waves propagating in

opposite directions compose beats of velocity vectors locked with the phase of background

waves resulting in successive advection of background momentum causing self-acceleration

of disturbances. This interpretation is visually presented.

More quantitative aspects of resonant interactions are investigated based on a theory of sta-

tistical physics. In general, a widely used statistical method for resonant interaction processes

is the so-called kinetic equation, which describes long-term evolution of an energy spectrum
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in a continuous medium. In some cases, however, the kinetic equation bankrupts or offers

an unrealistic prediction. Especially for PSI, the growth rate of disturbance energy estimated

from the kinetic equation does not agree with the result of a simple dynamic theory. This

problem is successfully solved in this thesis. It is pointed out that the implicit assumption

adopted to derive the kinetic equation gets invalid in an unsteady process. Introducing a gen-

eralized statistical theory, we derive a simple solution which reconciles the existing two types

of studies. This new method is valid even when considering a baroclinic tide with weak phase

modulation, which has not been discussed in the previous studies. Our theory also implies

that the kinetic equation is valid in a steady state as far as the nonlinearity is sufficiently weak,

which serves as the theoretical foundation of the theme that follows.

In the real ocean, it can be supposed that the energy generation and loss of the baroclinic

tides are balanced in a steady state. Although a direct numerical simulation offers a good

estimates of the generation of baroclinic tidal energy, the loss of baroclinic tidal energy de-

pends on adjustable parameters. A proper scheme is desired to reproduce the energy loss of

the baroclinic tides in numerical models. For this purpose, we utilize a new expression of

the kinetic equation to formulate the attenuation rate of baroclinic tides interacting with the

background wave field. Using a standard energy spectrum and the geographical data, we ob-

tain global distribution of the attenuation rates of baroclinic tidal energy. As the main result,

rapid attenuation of the tidal energy at the mid-latitudes where PSI most efficiently works is

successfully reproduced. In this latitudinal band, ocean depth and density structure control

the zonal variation of the attenuation rate, which can be quantified using the equivalent depth

of each mode. To discuss the vertical distribution of the interaction intensity, the expression

of the kinetic equation is heuristically decomposed into a vertical integration form and its

integrand is analyzed. It is shown that strong stratification near the surface concentrates the

generation of small-scale waves in the upper ocean, especially for the lowest-mode barolcinic

tide. A series of results suggest that ongoing parameters in the conventional ocean models
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need to be replaced by more reliable ones.

Overall, the theoretical basis and the numerical results in this thesis will serve as a mile-

stone for the future study of tidal dissipation in the ocean.
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Chapter 1

General introduction

1.1 Tides and ocean circulation

Periodic tidal forcing exerted by the gravity of the sun and moon extracts the rotational

energy from the earth, causing up-and-down motion of the ocean surface. Summing up all

the tidal constituents, the total energy directly excited from the tidal forcing is about 3.7

TW (3.7 × 1012 Joule per second) in the global ocean (Munk and Wunsch, 1998; Garrett,

2003). Although a large part of energy locally dissipates near the coast or in the ocean bottom

boundary layer, some energy is converted into oceanic internal motions, called ”baroclinic

tides”. Generation processes of baroclinic tides in the open ocean have been qualitatively

and quantitatively investigated in the past decades (Garrett and Kunze, 2007). Thanks to the

development of recent numerical ocean models and computational power, one can directly

simulate the generation and propagation of baroclinic tides (Niwa and Hibiya, 2004, 2011;

Shriver et al., 2012). Using a high resolution numerical model, Niwa and Hibiya (2014)

estimated that the total energy of baroclinic tides generated in the global ocean amounts to

about 1.2 TW (Fig. 1.1). Global patterns of surface displacements associated with baroclinic

tides are also detected from satellite altimeters (Ray and Zaron, 2016; Zhao et al., 2016).
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Despite the endeavors of innumerable researchers, how and where the baroclinic tidal energy

dissipates in the ocean remain unknown even today.

Tidal dissipation in the ocean is related to the global ocean circulation. In general, energy

dissipation in a stratified fluid causes vertical water mixing, associated with the energy con-

version from kinetic energy into potential energy (Osborn, 1980; Huang, 2009). This process

is crucial to overturn the dense water spreading from polar region to the global deep ocean

(Munk, 1966). It is widely known that numerically reproduced deep ocean states badly de-

pend on the vertical diffusivity in the model (Bryan, 1987; Tsujino et al., 2000). An accurate

estimates of energy dissipation rates in the ocean is one of the main concerns of modern

physical oceanography.

1.2 Tidal dissipation caused by nonlinear resonances

One key process for the energy dissipation of baroclinic tides is the nonlinear resonance

among internal waves. The first formulation of wave-wave interaction theory for oceanic in-

ternal waves dates back to 1960’s. Despite the long history of study, the significant progress

was made in this century. It was revealed that, the intensity of interaction between baroclinic

tides and the surrounding wave components highly depends on the local Coriolis parameter,

resulting in the remarkable latitudinal dependence of energy dissipation rates. Following the

first observational report (Fig. 1.2) in Hibiya and Nagasawa (2004), a large number of nu-

merical, observational, and theoretical studies have been made for the wave-wave interaction

processes linked with the tidal energy dissipation in the ocean.

The most well-known character of nonlinear resonance for internal waves is ”resonant

condition”. In general, three wave components with wave vectors k1,k2,k3 and the corre-
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sponding frequencies ω1, ω2, ω3 can interact with each other if the conditions

k1 ± k2 ± k3 = 0 (1.1a)

ω1 ± ω2 ± ω3 = 0 (1.1b)

are satisfied. McComas and Bretherton (1977) pointed out that major interaction among

oceanic internal waves can be classified into three types, called, induced diffusion (ID), elastic

scattering (ES), and parametric subharmonic instability (PSI), which are described in Fig. 1.3.

Numerical studies such as Hibiya et al. (2002) have shown that PSI plays a key role for the

energy dissipation of baroclinic tides. In order for PSI to occur in a wave train of a baroclinic

tide with frequency ωT , other two waves with ω1, ω2 need to satisfy

ω1 + ω2 = ωT . (1.2)

Taking account of the dispersion relation of inertia-gravity waves, PSI occurs only equator-

ward of the latitude where half the tidal frequency coincides with the local inertial frequency.

As for the principal lunar semi-diurnal constituent (M2 Tide), 28.89◦ is the so-called critical

latitude. Observational and numerical studies tend to suggest that PSI most effectively acts

near the critical latitude, with the abrupt switch off at the higher latitudes and rather smooth

relaxation toward the lower latitudes (Hibiya and Nagasawa, 2004; Furuichi et al., 2005;

MacKinnon and Winters, 2005; Kunze et al., 2006; Hibiya et al., 2007; Simmons, 2008;

Hazewinkel and Winters, 2011; Qiu et al., 2012). A simple empirical formula in Hibiya et al.

(2006) suggests that the global distribution of tidal dissipation rate is strongly controlled by

the resonant interaction processes in the ocean (Fig. 1.4).

1.3 Short review of theoretical studies

Energy transfer rate in wave vector space caused by wave-wave interaction in the ocean

has been investigated in substantial literature until now, reviews of which can be seen in
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Olbers (1983); Müller et al. (1986); Polzin and Lvov (2011). The standard model for weak

nonlinear interactions among dispersive waves is called a ”kinetic equation”, which extracts

only resonant interactions from all the possible combination of wave vectors and describes

the long-term behavior of an energy spectrum (Hasselmann, 1962, 1966; Hasselmann and

Saffman, 1967; Zakharov et al., 1992; Nazarenko, 2011). The kinetic equation significantly

reduces the fundamental equation so that it is useful to calculate the energy transfer rate in

wave vector space. Kinetic equations act only in weakly nonlinear systems where interaction

time is sufficiently longer than an intrinsic period of each component.

Using a kinetic equation, nonlinear interactions of oceanic internal waves had been rigor-

ously investigated until 1980’s. In this era, however, resonant interaction theories were not

regarded to be useful to deal with the tidal dissipation processes from two reasons. First,

small-scale internal waves which controll local energy dissipation rates are too intense to be

treated with the resonant interaction theory (McComas, 1977; Holloway, 1980, 1982). Sec-

ond, on the contrary, the internal wave spectrum was regarded to be too weak to attenuate

the large-scale baroclinic tides (Olbers and Pomphrey, 1981). These statements have been

reversed by a series of numerical experiments in Hibiya et al. (1996, 1998, 2002), where PSI

is redefined as the key process for the tidal dissipation in the ocean interior.

Why did the classical studies overlook the significance of PSI? Young et al. (2008), (here-

after Y08) tackled this question. They reformulated the PSI process with an asymptotic

expansion and estimated the growth rate of disturbance energy in a monochromatic wave

train of a baroclinic tide. It is true that their estimates well agree with the results of numer-

ical experiments. They made, however, serious misconception for the interpretation of past

studies.
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1.3.1 Time scales of PSI

Y08 reasoned that the random phase assumption adopted in the kinetic equation made

PSI seem insignificant. This argument is not correct. If a kinetic equation is applied to the

problem treated in Y08, the growth rate diverges to infinity. Olbers and Pomphrey (1981),

using a kinetic equation, had calculated not the growth time of disturbance energy, but the

attenuation time of tidal energy in an oceanic internal wave spectrum. These two time scales

are confused in Y08.

Another discussion can be seen in Polzin and Lvov (2011). They showed that the growth

rate of disturbance energy in baroclinic tides with a broadband energy spectrum can be de-

rived with the kinetic equation. However, their formulation still bankrupts in the limit of

a monochromatic plane wave. Reasonable explanation for this confliction has never been

provided.

1.3.2 Beyond the kinetic equation

Two types of theoretical approach is well known for non-weak nonlinear interaction pro-

cesses of internal waves. One is ray-tracing method, where variation of the wave vector and

amplitude of each wave packet is calculated along the wave trajectory in physical and wave

vector space. This method is suited to describe waves in random and inhomogeneous media

and serves as the theoretical basis of the practical parameterization of water mixing in the

ocean interior; the energy dissipation rates are estimated from fine-scale data (Henyey et al.,

1986; Polzin et al., 1995; Ijichi and Hibiya, 2015, 2016). However, the ray-tracing method

can not cope with resonant interactions.

Another approach is called direct interaction approximation (DIA), which was originally

developed for homogeneous isotropic turbulence in Kraichnan (1959). Carnevale and Fred-
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eriksen (1983), Dewitt and Wright (1982, 1984), and Yokoyama (2011) discussed the DIA

approach to internal wave dynamics and showed that the kinetic equation is an approximate

form of the DIA equation. More generally speaking, statistical theories for classical media,

including DIA and the kinetic equation, are related to quantum field theory. Martin-Siggia-

Rose (MSR) formalism (Martin et al., 1973) is the most general method for the statistical

dynamics of classical systems.

MSR formalism is the exact theory. Using some approximation, the DIA equation and

the kinetic equation are systematically derived from MSR formalism. In order to solve the

problems discussed in 1.3.1, the derivation process of the kinetic equation need to be recon-

sidered.

1.3.3 Toward the application to numerical ocean models

As for the attenuation time of baroclinic tidal energy, Eden et al. (2014) (hereafter E14)

reflected on Olbers and Pomphrey (1981) and stated that the past calculation had underesti-

mated the resonant processes of baroclinic tides due to the computational restriction. Their

new study, however, still offers suspicious results. The global distribution of the resonant

coupling intensity between baroclinic tides and background waves estimated in E14 failed

to show the rapid attenuation of baroclinic tidal energy near the critical latitudes (Fig. 1.5).

It may be because of their rough treatment of the background energy spectrum. Another

problematic issue in E14 is that their formulation is based on the 3-dimensional Fourier ex-

pansion. In general, far-propagating baroclinic tides are too large to be treated as vertically

propagating sinusoidal waves (Fig. 1.6).

Recent numerical studies such as Oka and Niwa (2013) discuss that the attenuation rate

of baroclinic tides is the key uncertainty factor for the global circulation model. In order

to obtain the accurate energy dissipation rates from a result of tidal simulation, we need

more reliable estimates of attenuation rates of baroclinic tides, using new formulation and
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calculation methods for the nonlinear interaction processes of internal waves.

1.4 Overview of this thesis

In this study, qualitative and quantitative aspects of nonlinear interactions between baro-

clinic tides and surrounding waves are investigated from the theoretical view point. In the next

chapter, visual clarification of the excitation mechanism of disturbance waves in baroclinic

tides are suggested using concepts of ”beats”. In Chapter 3, based on the general theories for

statistical dynamics, existing conflicting studies for the growth rate of parametric instability

are reconciled from a unified view point. In Chapter 4, using the expression derived from sta-

tistical theories, the attenuation rate of baroclinic tidal energy is calculated and its geography

is clarified. The final chapter summarizes this study and discusses the possible practical use

of the results.

General statistical theories for linear and nonlinear waves are systematically introduced

and developed in the appendices. In Appendix A, mathematical description of linear waves

in inhomogeneous media is discussed based on the concept of pseudo-differential operator.

In Appendix B, general formalism of statistical dynamics for interacting waves is reviewed

and rearranged. In Appendix C, a theoretical model of oceanic internal motion is established.

Appendix D describes other complementary issues.
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インターネット公表に関する同意が
得られなかったため非公表

Fig. 1.1 Numerically estimated global distribution of energy conversion rates from barotropic

to baroclinic tides for the sum of the four major tidal constituents, averaged within each 2.5◦ ×
2.5◦ grid area. From Niwa and Hibiya (2014).
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インターネット公表に関する同意が
得られなかったため非公表

Fig. 1.2 Estimated value of diapycnal diffusivity averaged over a depth range of 950 - 1450m

at each location of field observation, using eXpendable Current Profiler (XCP). Colors denote

model-predicted energy of semidiurnal internal tide vertically-integrated at each location of

field observation. Remarkable latitudinal dependence of vertical diffusivity is presumably due

to the occurrence of parametric subharmonic instability. From Hibiya and Nagasawa (2004).
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インターネット公表に関する同意が
得られなかったため非公表

Fig. 1.3 Representation of the characteristics of typical class of triads (a)induced diffusion

(b)elastic scattering (c)parametric subharmonic instability. From McComas and Bretherton

(1977).

インターネット公表に関する同意が
得られなかったため非公表

Fig. 1.4 Global distribution of the diapycnal diffusivity averaged over a depth range of 950

- 1450 m calculated by incorporating the numerically-predicted baroclinic tidal energy at each

longitude and latitude into an empirical formula which reflects the effect of resonant interaction

processes. From Hibiya et al. (2006).
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得られなかったため非公表

Fig. 1.5 Coupling intensity α (10−6s m−3) of the 1st-mode M2 baroclinic tides with back-

ground wave spectra, estimated in Eden and Olbers (2014). The attenuation rate of baroclinic

tidal energy is represented as ν = α
∫
Ecdz, where Ec is the energy density of the background

waves.
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Fig. 1.6 Model-predicted cross-sectional snapshot along 21.5◦N of (a)vertical displacement

and (b)horizontal velocity, excited by the tidal motion. It can be perceived that vertical 1st-

mode structure is composed in far-propagating baroclinic tides. From Niwa and Hibiya (2004).
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Chapter 2

Basic mechanism of PSI

2.1 Introduction

Parametric subharmonic instability (PSI) is known as the key mechanism for tidal dissipa-

tion in the mid-latitude ocean. PSI is, as its name represents, a kind of parametric instability,

where a periodic motion gets unstable and subharmonic disturbances are exponentially en-

hanced. McComas and Bretherton (1977) detected that PSI plays a major role for the energy

balance of the internal wave spectrum in the ocean. They also characterized its property that

two waves of nearly opposite wave numbers and nearly equal frequencies resonate with a

much smaller wave number with almost twice the frequency (Fig. 1.3a). Namely, the reso-

nant conditions (1.1) are rewritten as

k3 = k1 + k2, |k3| ≪ |k1|, |k2| (2.1a)

ω3 = ω1 + ω2, ω3/2 ∼ ω1, ω2. (2.1b)

for PSI.

Bispectrum analysis of a numerically reproduced oceanic internal wave field interacting

with baroclinic tides (Furuichi et al., 2005) suggests that the property (2.1) does hold for the
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tidal component (k3, ω3) and other interacting disturbance components (k1, ω1), (k2, ω2).

Although a large number of numerical and theoretical studies for PSI (e.g. MacKinnon and

Winters (2005), Young et al. (2008)) have been done, the physical interpretation of the res-

onant conditions (2.1) remain obscure. Above all, how do the waves with much different

scales can interact with each other?

In this chapter, the basic mechanism of PSI is clarified and a simple interpretation of the

resonant conditions (2.1) is suggested. Mysterious scale separation of baroclinic tides and

disturbance waves can be easily explained using the concept of beats. It can be said that PSI

is a kind of parametric instability where two disturbance waves propagating in opposite direc-

tions compose beats of velocity vectors locked with the phase of background waves resulting

in successive advection of background momentum causing self-acceleration of disturbances.

Visualization of this property will be shown as follows.

2.2 Concept of beats

As is well known, when two sound waves with slightly different frequencies are interfered,

one can hear a periodic variation of volume of sound. This phenomenon is called beats. As

for the example of sound waves, beats can be explained with a simple expression

cosω1t+ cosω2t = 2 cos

(
ω1 + ω2

2
t

)
︸ ︷︷ ︸

fine waves

cos

(
ω1 − ω2

2
t

)
︸ ︷︷ ︸

envelopes

. (2.2)

Then the frequency of up and down volume (beat frequency) can be expressed as ∆ω =

|ω1−ω2|, which corresponds to the frequency of peak-trough variation of envelopes of rapidly

oscillating fine waves.

Now the concept of beats is extended to spatially propagating waves. A caution is needed

here. Different from the 0-dimensional case, we have to take account of the direction of

wave vectors for propagating waves. One usual case is two waves with slightly different
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frequencies propagating in the same direction. In this case, the envelopes of fine waves

propagate with the intrinsic group cg(k), prescribed by the nature of the medium.

Another interesting case is when two waves with slightly different frequencies are propa-

gating in opposite directions. This situation can be expressed as

cos (k1x+ ω1t) + cos (k2x− ω2t)

=2 cos

(
k1 + k2

2
x+

ω1 − ω2

2
t

)
︸ ︷︷ ︸

fine waves

cos

(
k1 − k2

2
x+

ω1 + ω2

2
t

)
︸ ︷︷ ︸

envelopes

, (2.3)

where wavenumbers k1 ∼ k2 and frequencies ω1 ∼ ω2 are all taken as positive. In this case,

one can observe that the envelopes of the waves seem to propagate with the phase velocity

c =
ω2 + ω1

k2 − k1
, (2.4)

an example of which is described in Fig. 2.1. It should be emphasized that, different from the

previous case, the propagation velocity of envelopes (2.4) does not coincide with the phase

velocity nor the group velocity of component waves. In wavenumber-frequency space, we

can see that the velocity (2.4) corresponds to the slope of a line which connects two points

on different branches of dispersion curves (Fig. 2.2). Hence even for non-dispersive waves,

one can compose various propagating speed of envelopes. In this study, envelopes composed

in this way are defined as beats.

Although the expression (2.3) is for 1-dimensional waves, the concept of beats can be

extended to more general cases. The spatial structure of beats composed of two wave vectors

k1 ∼ k2 is characterized with k1−k2. From this property, we can see that the triad condition

(2.1a) represents the situation where one large-scale wave k3 and beats composed of two

waves k1,k2 possess the same spatial structure. If the frequency condition (2.1b) is also

satisfied, the large-scale wave and the beats are kept in phase with time.

Then, how are the disturbance waves excited when their phases are locked to the back-

ground wave? Answer to this question depends on the specific situations. As for PSI near
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the critical latitudes, it can be explained using the concepts of flow acceleration caused by

background convergence/shear, which will be introduced in the next section.

2.3 Flow acceleration caused by background

convergence/shear

We consider the equations of momentum, continuity and buoyancy in a three-dimensional

rotating stratified fluid under the Boussinesq approximation;

∂u

∂t
+ u · ∇u+ fez × u = −∇p+ bez, (2.5a)

∇ · u = 0 (2.5b)

∂b

∂t
+ u · ∇b+ wN2 = 0, (2.5c)

where variables u = (u, v, w), b, p represent velocity, buoyancy and pressure divided by

density, respectively. Constants f and N represent the inertial and buoyancy frequencies,

with N ≫ f assumed.

Separate variables into the already-known background componentsU = (U, V,W ), B, P ,

which are supposed to be the exact solution of the basic equation (2.5), and infinitesimal

disturbances u′ = (u′, v′, w′), b′, p′. Then the time evolution of disturbances is written as

∂u′

∂t
+U · ∇u′ + u′ · ∇U + fez × u′ = −∇p′ + b′ez, (2.6a)

∇ · u′ = 0 (2.6b)

∂b′

∂t
+U · ∇b′ + u′ · ∇B + w′N2 = 0. (2.6c)

Multiplying (2.6a) by u′ and (2.6c) by b′/N2 and summing them up, we obtain the distur-

bance energy equation,

∂E

∂t
+∇ · F +G = 0, (2.7)
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with

E =
1

2

(
u′2 + v′2 + w′2 +

b′2

N2

)
(2.8a)

F = p′u′ + EU (2.8b)

G = u′ · (u′ · ∇)U +
b′

N2
(u′ · ∇)B, (2.8c)

where F represents the energy flux and G represents the energy production caused by the

background field. We can see that the spatial gradient of background components causes

production of the disturbance energy.

Now we further assume that the aspect ratio of disturbance motions is much small, namely,

u′, v′ ≫ w′,
b′

N
. (2.9)

Then the dominant factors in the energy production rate (2.8c) is

G ∼ u′2
∂U

∂x
+ v′2

∂V

∂y
+ u′v′

∂U

∂y
+ u′v′

∂V

∂x
. (2.10)

The physical interpretation of (2.10) can be given as follows. At first, the horizontal equations

of motion in (2.6) are expressed as

∂u′

∂t
+ u′

∂U

∂x
+ v′

∂U

∂y
= (other terms) (2.11a)

∂v′

∂t
+ u′

∂V

∂x
+ v′

∂V

∂y
= (other terms), (2.11b)

where terms representing the horizontal advection of background momentum are specified.

From these equations, we can see two types of acceleration effects;

i). The convergence of the background flow causes the acceleration of the disturbance

flow in the convergence direction (Fig. 2.3a). In other words, ∂|u′|/∂t ≥ 0 (or

∂|v′|/∂t ≥ 0) occurs when ∂U/∂x < 0 (or ∂V/∂y < 0).
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ii). The shear of the background flow causes the acceleration of the fluctuating flow

obliquely crossing the background shear layers (Fig. 2.3b). In other words, ∂|u′|/∂t ≥

0 (or ∂|v′|/∂t ≥ 0) occurs when u′v′∂U/∂y < 0 (or u′v′∂V/∂x < 0).

It should be noted that if the direction of the background flow in Fig. 2.3(a,b) is reversed,

disturbances are subject to deceleration, as is described in Fig. 2.3(c,d).

As for PSI near the critical latitudes, the convergence and shear of the background semidi-

urnal baroclinic tidal flow causes the steady acceleration of near-inertial disturbances, which

will be examined in the next section.

2.4 PSI in baroclinic tides

2.4.1 Basic solutions

Let the background componentsU(x, t), B(x, t) introduced in the previous section repre-

sent baroclinic tides. Although the exact solution of equations (2.5) is difficult to obtain, a

natural assumption

U∗T ∗

L∗ ≡ ϵ≪ 1, (2.12)

where T ∗, L∗, U∗ are the characteristic scales of time, length and velocity, yields the approx-

imate solution of equations (2.5) as

(u, v, w, b, p)T =
∑
k

(ũk, ṽk, w̃k, b̃k, p̃k)
T ei(k·x−ωt) + c.c.+O(ϵ) (2.13)
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with the polarization relation

ũk =
kω + ilf

ω2 − f2
ak (2.14a)

ṽk =
lω − ikf

ω2 − f2
ak (2.14b)

w̃k = − (k2 + l2)ω

m(ω2 − f2)
ak (2.14c)

b̃k =
i(k2 + l2)N2

m(ω2 − f2)
ak (2.14d)

p̃k = ak. (2.14e)

and the dispersion relation

ω =

√
N2(k2 + l2) + f2m2

k2 + l2 +m2
. (2.15)

If we regard the tidal components as a monochromatic wave train with wave vector and

frequency (kT , ωT ) in an infinite domain, O(ϵ) term in (2.13) vanishes, and hence strict

stability analysis can be done for (2.6) based on the Floquet theory (for its general framework,

see Sonmor and Klaassen (1997)). As is well known, in the lowest approximation, an unstable

solution is written in the form of

(u′, v′, w′, b′, p′)T ∼ q1ei(k1x+l1y+m1z−ω1t) + q2e
i(k2x+l2y+m2z+ω2t) + c.c. (2.16)

where k1 = (k1, l1,m1),k2 = (k2, l2,m2) and ω1, ω2 satisfy the resonant conditions

k1 − k2 = kT , ω1 + ω2 = ωT . (2.17)

The imaginary part of an eigenvalue ω1 represents the growth rate of disturbances correspond-

ing to an eigenvector (q1,q2). It is expected that, because the amplitude of the background

wave is assumed to be sufficiently small, q1,q2 and Re(ω1), Re(ω2) are well approximated

by the basic solutions (2.14) and (2.15).
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When we take account of the bottom and surface boundaries, the most simple solution

for a baroclinic tide is represented in the normal mode form, where vertically symmetrical

components are superimposed;

(U, V,W,B, P )T = (ũkT , ṽkT , w̃kT , b̃kT , p̃kT )
T ei(kT x+lT y+mT z−ωt) + c.c.

+ (mT → −mT ) +O(ϵ). (2.18)

Even in this case, numerical experiments (e.g. Furuichi et al. (2005)) show that a pair of

mode waves gets unstable. Namely, we can suppose an unstable solution of (2.6) as

(u′, v′, w′, b′, p′)T ∼ q1ei(k1x+l1y+m1z−ω1t) + q2e
i(k2x+l2y+m2z+ω2t) + c.c.

+ (m1 → −m1) + (m2 → −m2) (2.19)

again with the conditions (2.17). Without loss of generality, lT = 0 is taken so that the

baroclinic tides are propagating in the x-z plane.

Here we consider a special situation where the tidal frequency is slightly larger than twice

the local inertial frequency (ωT ≳ 2f ), wave vectors of disturbances are much larger than

that of baroclinic tides (i.e. (2.1) is satisfied) and l1, l2 = 0. It is noted that these conditions

are not essential but intended to make explanation simple.

2.4.2 Flow field

The flow fields corresponding to the baroclinic tide and the disturbance waves described in

(2.18) and (2.19) are visualized in Fig. 2.4: (a) represents the semidiurnal baroclinic tidal flow

field projected on the vertical two-dimensional plane, (b) and (c) represent those associated

with the near-inertial waves with slightly different wave vectors k1,k2 with the condition

k1 − k2 = kT propagating in opposite directions, and (d) represents the superposition of

(b) and (c). In Fig. 2.4(d), wave groups of maximum velocity regions, namely near-inertial

beats, become visible and propagate with a phase velocity of (ω1 + ω2)/(k1 − k2) in light
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of the discussion in Section 2.2. Comparing Fig. 2.4 (a) and (d), convergence and divergence

areas in (a) correspond to the maximum and minimum velocity regions in (d) respectively.

It follows that the acceleration effect of convergence exceeds the deceleration effect of di-

vergence so that the net energy production of disturbances results. The additional condition

ω1 + ω2 = ωT ensures that the areas of convergence of the semidiurnal baroclinic tidal flow

and the near-inertial beats are continuously coupled so that efficient energy transfer from the

background semidiurnal tidal flow to near-inertial waves takes place.

Figure 2.5 depicts a vertical profile of horizontal velocity vectors of near-inertial distur-

bances. Envelopes of velocity vectors construct double helix while their component waves

rapidly oscillate in the vertical direction. The rotating frequency of envelopes is written as

ωE =
ω1 + ω2

2
=
ωT
2
, (2.20)

which is the notable feature of parametric excitation.

2.4.3 Parametric excitation

Figure 2.6 is a top view of a flow field in some local area, where the horizontal direction of

the envelopes of velocity vectors, as is defined in Fig. 2.5, and the background semidiurnal

tidal flow around them are represented as green and blue arrows. Time evolution for two tidal

periods, namely 24 hours, is depicted. At 0H and 12H, because the envelopes of disturbances

are along the convergence direction of the background flow, acceleration occurs by the effect

of convergence, corresponding to u′∂U/∂x in (2.11a). At 3H, 9H, 15H, and 21H, because

the envelopes of disturbances obliquely cross the background shear layer, acceleration oc-

curs by the effect of shear, corresponding to u′∂V/∂x in (2.11b). At 6H and 18H, because

the envelopes are normal to the divergent direction, they escape deceleration. Accordingly,

summing up over 24 hours, net acceleration of disturbances occurs.

It should be emphasized that the frequency property (2.20) is the necessary condition for
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the steady acceleration of disturbances. Similar situations can be seen in more simple sys-

tems. Pumping a playground swing by periodically standing and squatting to increase the size

of the swing’s oscillations is a typical example. This type of phenomena is called paramet-

ric excitation, which is generally characterized with periodically-varying parameter whose

frequency matches with some integer multiple of intrinsic frequency of a system. As for

PSI near the critical latitudes, horizontal convergence/shear of background waves acts as the

time-varying parameter whose frequency matches with twice the rotation frequency of the

envelopes of disturbances (not the frequency of component waves!).

2.4.4 More general cases

The consideration above is restricted to the vertical two-dimensional case (l = 0). Some

modifications will be needed to discuss three-dimensional cases. Besides, leaving the critical

latitudes toward the equator, waves with more broadband frequency get unstable. Then, as

can be inferred from (2.14), vertical velocityw′ and buoyancy b′ become important. Hence all

the energy production terms in (2.8c) need to be considered to discuss the specific mechanism

of PSI.

In such general situations, it can still be said that beats composed of disturbance waves

with half the frequency of baroclinic tides get unstable. The concept of beats is widely useful

to link complicated wave-wave interaction processes to simple parametric excitation.

2.5 Conclusions

Parametric subharmonic instability is a kind of resonant interaction processes in the oceanic

internal wave field, which transfers energy from baroclinic tides to small-scale waves. In this

chapter, an intuitive image of its mechanism is presented based on a combination of simple

concepts such as beats and parametric excitation without adhering to a strict mathematical
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formula. It has been shown that beats are created by a superposition of two small-scale near-

inertial waves with slightly different wave vectors propagating in opposite directions. When

the resulting beats have the peak-to-peak length and the phase velocity equal to the wave-

length and the phase velocity of the large-scale baroclinic tidal flow, respectively, they are

resonantly coupled with each other so that near-inertial waves are intermittently accelerated

under the effects of convergence and shear of the background baroclinic tides.

One key result in this chapter is that the energy production of disturbances is localized in

some depth. As is apparent in Fig. 2.4, the 1st-mode baroclinic tides in constant stratification

produces disturbance waves most efficiently near the surface or the bottom. In the real ocean

with general stratification, the problem becomes more complicated, which will be discussed

in Chapter 4.
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インターネット公表に関する同意が
得られなかったため非公表

Fig. 2.1 (a)Two sinusoidal waves with slightly different wavenumbers k1, k2 and frequencies

ω1, ω2 propagating in opposite directions. (b)Combining two waves produces large-scale en-

velopes, i.e. beats, with a large phase velocity. The resulting beats have peak-to-peak length of

2π/(k1 − k2) and a phase velocity of (ω1 + ω2)/(k1 − k2).
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O

Fig. 2.2 The propagation velocity of beats is defined as the slope of a line (blue arrow)

which connects two points on the different branches of dispersion curves (black curves) in

the wavenumber-frequency space.
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インターネット公表に関する同意が
得られなかったため非公表

Fig. 2.3 (a)Convergence of the background flow (blue) causes the acceleration of the fluctuat-

ing flow (green) in the convergence direction and (b)shear of the background flow (blue) causes

the acceleration of the fluctuating flow (green) obliquely crossing the background shear layer.

(c) and (d) are the other situations where the fluctuating flow (green) are decelerated by the

divergence or shear of the background flow (blue).
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Fig. 2.4 (a)Vertical cross section of the 1st-vertical-mode baroclinic tidal flow. The ar-

eas of horizontal convergence and divergence are colored with green and red, respectively.

(b)Horizontal velocity u of near-inertial waves with wave vector k1. Blue (red) areas repre-

sent a flow directed to the the right (left). (c)As in (b) but for the near-inertial waves with wave

vector k2, slightly different from k1 . (d)Near-inertial beats resulting from the superposition

of (b) and (c). The areas of convergence of the baroclinic tidal flow in (a) and the near-inertial

beats in (d) are continuously coupled.
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Fig. 2.5 Three-dimensional display of the horizontal velocity vectors of near-inertial beats

along a fixed line in the vertical direction. Time variation is depicted in (a) → (b) → (c) → (d).
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インターネット公表に関する同意が
得られなかったため非公表

Fig. 2.6 Time variation of a baroclinic tidal flow (blue arrows) with 12-hour period and the

near-inertial beats (green arrows) with 24-hour period both rotating in a horizontal plane. At 0H

and 12H, the inertial beats are along the convergence direction of the background flow, so the

acceleration occurs by the effect of convergence. At 3H, 9H, 15H, and 21H, the inertial beats

obliquely cross the background shear layer, so the acceleration occurs by the effect of shear.
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Chapter 5

General conclusions

In this thesis, qualitative and quantitative aspects of nonlinear interactions among the

oceanic internal waves, one of main processes for tidal dissipation in the ocean interior, are

investigated. This chapter summarizes the main results obtained in each chapter and also in

appendix. After that, their implication and possible future works are discussed.

5.1 Summary

In Chapter 2, the quantitative aspect of parametric subharmonic instability (PSI), the most

significant phenomenon among resonant interactions in the ocean, is investigated without

adhering to a strict mathematical formula. The visual image of PSI is offered using basic

concepts, including beats and parametric excitation. Near the latitudes where half the tidal

frequency coincides with the local inertial frequency, PSI is defined as a kind of parametric

instability where two disturbance waves propagating in opposite directions compose beats of

velocity vectors locked with the phase of background waves resulting in successive advection

of background momentum causing self-acceleration of disturbances. An important implica-

tion is that the most effective interactions occur in some specific locations where horizontal

velocities of both baroclinic tides and disturbance waves take their maximum values. This
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finding offers a good perspective to detect the vertical distribution of energy dissipation rates,

as will be discussed in Chapter 4.

In the following chapters, nonlinear interactions are quantitatively discussed from the view

point of statistical mechanics. In Chapter 3, energy growth of disturbances in quasi-periodic

waves is investigated. A nonlinear eigenvalue problem is systematically introduced using a

temporal integro-differential equation and its approximate solution is derived as

λ =
−µ+

√
µ2 + 4CEB
2

(5.1)

(written again from (3.64)), where µ,EB are the spectral width and the energy density of

the background wave and C is some constant. Conventional results which come from two

approaches, called dynamic and kinetic theories, are unified in this formula. It is pointed out

that µ is a new parameter which has been overlooked in the past numerical studies.

In the derivation of (5.1), it is also found that the classical kinetic theory is based not on the

random phase assumption but on the Markovian approximation, which bankrupts when the

time-variation of the energy spectrum is not slow enough compared to auto-correlation time

of baroclinic tides. From this viewpoint, the kinetic equation is valid in steady states as far as

the nonlinearity is sufficiently weak, which acts as the basis of the analysis in the following

chapter.

In Chapter 4, the geographical features of the attenuation rates ν of baroclinic tides in

a standard energy spectrum are calculated using new formulation of the kinetic equation.

Remarkable enhancement of the attenuation rates is demonstrated near the critical latitudes

of PSI, both for the diurnal and semidiurnal tidal constituents. Ocean depth and density

stratification are additional factors which determine the local feature of interaction intensity

among internal waves. In the subtropical region, shallow pycnocline in the eastern Pacific

confines the wave structure of the lowest-mode baroclinic tides near the surface resulting in

the rapid attenuation of them. Equivalent depth D̃m is a simple index which explains well the
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variation of attenuation rates in a given latitude, with its scaling law ν ∝ D̃
−1/2
m established

in the lowest 5 modes.

The attenuation rate is further decomposed into the form of vertical integration as ν =∫
ν′dz, integrand of which depends on the vertical structure functions, or velocity amplitudes,

of interacting waves. The new index ν′ takes large values in the upper ocean where horizontal

velocities of each wave become maximum, as is inferred in Chapter 2. Those of the lowest-

mode baroclinic tide are particularly concentrated near the surface, reflecting its characteristic

vertical structure with its node located at subsurface. These results are expected to play a

crucial role in the future study to compose the next generation ocean circulation models.

Although not explained in detail in the main text, this study is related to mathematical

physics. In Appendix A to C, its theoretical fundamentals are lined up with minimal com-

ments.

In Appendix A, as a preparation for the following part, general description of linear waves

is made utilizing concepts of the pseudo-differential operator. Spatial differential operators

characterizing the properties of waves in general media are transformed into symbol matrices.

Introducing algebraic operations among symbol matrices, a general algorithm is arranged to

separate intrinsic wave components from an original equation. After that, using the concepts

of Wigner distribution function, quantum and classical Liouville equations in physical and

wave vector space are systematically derived. The latter one appears in Chapter 4 as the en-

ergy transfer equation of baroclinic tides. A notable result in this section may be the assertion

that energy flux is generally written as the product of energy density and intrinsic group ve-

locity of it, like F = Ecg, even for inhomogeneous media, as far as some conditions (which

are trivial for a rotating stratified fluid) are satisfied.

In Appendix B, formal statistical theories for nonlinear stochastic dynamical systems are

systematically introduced, utilizing quantum field theory. The most fundamental one, called

the Martin-Siggia-Rose formalism (MSR), is extended so as to be applicable to general sys-
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tems with additive and multiplicative stochastic forces. After the bare vertex truncation,

MSR is reduced to the direct interaction approximation (DIA) equation, which is expected

to be valid even in strongly nonlinear systems. To derive the famous kinetic equation, ad-

ditional two approximations are introduced: the weak interaction approximation (WIA) and

the Markovian approximation (MA). It is pointed out that, even in weakly nonlinear systems,

validity of MA is uncertain, which is the main issue in Chapter 3.

In a steady state, the kinetic equation is directly derived from WIA. Then, utilizing the

methods in Appendix A, energy transfer equation (4.1) is derived with the specific expres-

sion of the attenuation term. It is also noted that, even in the case when WIA is not valid,

another assumption of dissipation fluctuation relationship makes it possible to define the ra-

diative transfer equation in the same form (4.1). In this case, the renormalized vertex and

reaction function determine the property of the system, including the group velocity and the

attenuation rate of each component. Therefore it may be said that the expression of attenu-

ation rates derived from the kinetic equation is an approximate form of other accurate one.

Along this sense, it is expected that the expression derived in this study will be replaced with

more precise form.

In Appendix C, formal description in Appendix A,B are applied to oceanic internal motion.

Starting from the variational principle, equations of motion are systematically introduced and

transformed. Then we derive a kinetic equation applicable to vertical-low-mode internal

waves, which is utilized for the calculation in Chapter 4.

As a summary, Fig. 5.1 shows a schematic flow chart of the contents in this thesis. Al-

though several themes are discussed in this study, all the chapters are linked and indispensable

to sustain the main conclusion: theory of statistical dynamics is an effective method for the

study of nonlinear wave dynamics in the ocean and for the quantification of tidal dissipation.

In the next and final section, we discuss the future study following this work.
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5.2 Discussions and concluding remarks

Wave dynamics in the ocean is one of the biggest issues in physical oceanography. Even

though innumerable studies have been done, global distribution of wave energy and its dissi-

pation rate remain to be discovered. This is an obstacle to understand the global deep ocean

circulation. From such view, results in this thesis should not be regarded as the goal, but as a

step toward the final destination. In this section, conceivable studies following this thesis are

discussed.

First, although the basic mechanism and quantification of PSI are clarified in Chapter 2 and

3, the author does not answer to a simple question;

Why are the disturbances most effectively excited near the latitudes where half the

tidal frequency coincides with the local inertial frequency?

This problem arises from numerical studies such as MacKinnon and Winters (2005) (here-

after MW05) who reported spontaneous enhancement of disturbance energy from sufficiently

small homogeneous noise concentrated near the critical latitudes. The results of Chapter 4,

where the background spectrum is prescribed, are not directly related to those of MW05. One

phenomenological explanation for the latitudinal dependence of the resulting disturbances

shown in MW05 is

Because the group velocity of subharmonic disturbances vanishes at the critical

latitudes, accumulation of energy enlarges local instability.

This plausible mechanism has not been considered in this thesis. A possible theoretical model

reflecting this issue may be constructed by implementing flux terms into equation (3.54),
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yielding

∂n′

∂t
+ µ∇x · (cxn′) + µ∇k · (ckn′)

=ϵ2
∫∫ ∫ 0

−∞

{
R†(t− t′)R(t− t′)R†(t− t′)|V |2NB(k2)n′(k3, t′)δ(−k + k2 − k3)

+R†(t− t′)R(t− t′)R†(t− t′)|V |2NB(k2)n′(k, t′)δ(−k + k2 − k3)
}

dt′dk2dk3 + c.c., (5.2)

where all the variables are functions of (x,k). Stability analysis of (5.2) may be an effective

approach, though it’s not an easy way. Other studies about localized effects on paramet-

ric instability are seen in Karimi and Akylas (2014) and Bourget et al. (2014), which treat

instabilities in tidal beams, although these studies may be still insufficient to completely re-

solve the problem. Any way, enhancement processes of disturbance waves are further to be

investigated to detect the wave energy distribution in the ocean.

Second, assessment of wave-vortex interaction is an available task in near future. From

theoretical consideration, in the weak interaction limit, the vortices act only as catalysts for

waves. That is, vortex energy does not vary during the interaction with waves (Appendix C.5).

In this situation, scattering rates of wave energy associated with wave-vortex interactions can

be defined in the same way as attenuation rates associated with wave-wave interactions. Spe-

cific expression for the scattering rate is derived from the statistical theory. Given a spectrum

of vortex energy, scattering rates of baroclinic tides will be calculated. Relative intensity of

the scattering of baroclinic tides caused by vortices and its geography are significant concerns

along with those for resonant interaction processes. Basic theoretical consideration and nu-

merical studies of wave-vortex interaction have been done until now (Riley and Lelong, 2000;

Ward and Dewar, 2010; Dunphy and Lamb, 2014; Zaron and Egbert, 2014). The statistical

approach may become a new and effective method for this issue.

Wave scattering on ocean bottom topography is also a key factor for the energy loss of
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baroclinic tides. However, steep bottom topography, which effectively scatters tidal energy,

is difficult to be dealt with by weak-nonlinear theories. Because topography does not change

with time, different from waves and vortices, deterministic approaches such as numerical sim-

ulation may be more suited to investigate the energy loss of baroclinic tides over topography

than statistical methods.

It should be kept in mind that the energy lost from the tidal components does not necessarily

dissipate locally, but may propagates as small-scale waves in both horizontal and vertical

directions and will be dissipated through other dynamical processes. As has been mentioned

in Section 1.3.2, the ray-tracing method will be useful to deal with this issue. It is expected

that the kinetic equation and the ray-tracing method will be collaborated to investigate more

thoroughly the spatial distribution of the mixing intensity associated with the dissipation of

baroclinic tides.

Theoretical results in this thesis should be compared with those in direct observations.

Above all, vertical distribution of interaction intensity between baroclinic tides and surround-

ing waves estimated in Chapter 4, which is a significant progress from the conventional stud-

ies, need to be compared with vertical profiler data of real ocean. Discussion in Chapter 3 is

also aimed to be collaborated with observation studies. It has never been assessed so far how

much the temporal variation of baroclinic tides affects the local energy spectrum of oceanic

internal waves. The new formula (5.1) will act as a touchstone for this issue. Although the

background spectrum is assumed to be a simple rational function in this thesis, the eigen-

value equation (3.54) is applicable to more general cases. Combination of line and smooth

spectra may be a more proper model for the vicinity of generation sites of baroclinic tides.

A two-peak spectrum in a narrow band will represent that of spring-neap tides. Although

satellite observation in the last decades enables the global detection of vertical-low-mode

baroclinic tides, temporal fluctuation of them induced by geostrophic eddies has been hardly

analyzed because of the coarse temporal resolution of the satellite data (Zhao et al., 2012).
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It is suggested that various approaches including numerical simulation, mooring observation

and remote sensing need to be combined to discuss this issue.

One of the mid-term objectives of our study is to construct a practical method to estimate

the energy dissipation rates of baroclinic tides in the ocean interior, and to implement them

into general ocean models. Spherical distribution of the attenuation rates of baroclinic tides

and the vertical distribution function of energy dissipation rates are typical ongoing param-

eters. A series of results obtained in Chapter 4 are prototypes of them and will be replaced

with more reliable ones. Theoretical basis established in this thesis will become a milestone

for the research that follows.
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Fig. 5.1 A schematic flowchart for the contents in this thesis.
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Appendix D

D.1 Specific expressions of functions in (3.67)

For simplicity, we choose c1 = 1, c2 = −1. After some analytical calculation, we obtain

F̃0 =
2r2

((c+ 1)µ+ λ)(r22 − µ2)
− 2µ

((c+ 1)r2 + λ)(r22 − µ2)
(D.1a)

F̃2 =
8µ

((c+ 1)r2 + λ)3(r22 − µ2)
− 8r2

((c+ 1)µ+ λ)3(r22 − µ2)

− 8µr2
((c+ 1)r2 + λ)2(r22 − µ2)2

+
8µr2

((c+ 1)µ+ λ)2(r22 − µ2)2
− 8(c+ 1)µ

((c+ 1)r2 + λ)3(r22 − µ2)

+
2λ

((c+ 1)2µ2 − λ2)(r2 + µ)3
− 2(c+ 1)4µ

((c+ 1)2µ2 − λ2)((c+ 1)r2 + λ)3
(D.1b)

G̃0 =
2

(c+ 1)µ+ λ
(D.1c)

G̃2 = − 8

((c+ 1)µ+ λ)3
(D.1d)

H̃0 =
2r1

((c− 1)µ+ λ)(r21 − µ2)
− 2µ

((c− 1)r1 + λ)(r21 − µ2)
(D.1e)

H̃2 =
8µ

((c− 1)r1 + λ)3(r21 − µ2)
− 8r1

((c− 1)µ+ λ)3(r21 − µ2)

+
8µr1

((c− 1)r1 + λ)2(r21 − µ2)2
− 8µr1

((c− 1)µ+ λ)2(r21 − µ2)2
+

8(c− 1)µ

((c− 1)r1 + λ)3(r21 − µ2)

+
2λ

((c− 1)2µ2 − λ2)(r1 + µ)3
− 2(c− 1)4µ

((c− 1)2µ2 − λ2)((c− 1)r1 + λ)3
(D.1f)

Ĩ0 =
2

(c− 1)µ+ λ
(D.1g)

Ĩ2 = − 8

((c− 1)µ+ λ)3
. (D.1h)
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D.2 Solution of the inequality (4.7)

Solution of the inequality (4.7) is classified into five types, which are geometrically shown

in Fig. D.1. In order to obtain the value of each endpoint of the integration interval, we need

to solve a fourth-order algebraic equation

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0 (D.2a)

a4 ≡ (c22 − c23)
2 (D.2b)

a3 ≡ −4c43κ1 + 4c22c
2
3κ1 (D.2c)

a2 ≡ −2ω2
1c

2
2 + 6c43κ

2
1 − 2c22c

2
3κ

2
1 − 2ω2

1c
2
3 (D.2d)

a1 ≡ −4c43κ
3
1 + 4ω2

1c
2
3κ1 (D.2e)

a0 ≡ −4f2ω2
1 + ω4

1 + c43κ
4
1 − 2ω2

1c
2
3κ

2
1, (D.2f)

with the condition of |ω2(κ2) − ω1| > f . Letting the roots of (D.2) be x, endpoints are

specified as κ2 = |x|. In Chapter 4, this equation is numerically solved by the Bairstow

method in quadruple precision. In this iterative method, initial values and the convergence

condition are carefully arranged to prevent fatal numerical errors.

Because there is no upper limit of the solution in Fig. D.1(d), which occurs only in the case

of m2 = m3, a proper truncation is taken.
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Fig. D.1 Geometric view of the inequality (4.7). Each term is depicted as a function of x = κ2.

Depending on the combination of (m1,m2,m3), five types of situation occur. Blue lines in the

horizontal axis show the intervals where the inequality is satisfied.
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