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1. Introduction 

Polyelectrolytes are molecules having many ionizable groups. They dissociate in solution it o 

polyions and a large number of C(l"intelions. Biochemical substances such as proteins and nucleic 

acids are examples of natural polyelectrolytes. Their peculiar behavior in solution has attracted 

many researchers in the field of physical chemistry of elec trolytes and polymers. 

Electric birefringence and electric dichroism are techniques now widely used to study dynan1ic 

properties of polymers in solution. In these experiment, an electric field is applied to the solution 

and its optical response ( birefringence or dichroism ) is recorded. By an.Jyzing the electro-optical 

transient one can detem1ine rela,mtion times of the molecular motion undergone by the polymers. 

The theoret;cal description of response of polyelectrolyte molecules ir. solution to applied 

electric field is an extremely complex and difficult problem even if simple models are assumed for 

the geometry of the polyions. This is because Coulnmbic forces among charges and hydrodynamic 

interactions among diffusing particles arc both long-range and there are involved many field: 

concentrations of small ions , the electrical potential, and solvent viscosity, to be detennined as 

functions of space and time which are coupled with each other through essentially nonlinear 

equation. Consequently in many theoretical studies recourse has been had to somewhat ad hoc 

approximations such that counterions are classified into" free" and " bound " ions, only the IaUer 

contributing to the induced moment whose interaction witl1 the applied electric field causes 

orientation of the polyions along the 1 :etd. 

In this thesis the author used tne Metropolis Monte Carlo ( MC ) simulation 1 method to 

approach the problem in a practical way. The metl1od is one of the standard simulation techniques 

now widely used to study the properties of fluids which are composed of many interacting 



molecule · . It was introduced by Metropolis et al. as a method suited fo r electronic computers to 

carry out a many-dimensional integral over the configuration space. In the scheme a Markov chain 

of states of the liquid is constructed and the elements of transition matrix is devised to genen:llc a 

.rajectory in phase space which san1ples a representati ve portion from the canonical ensemble. The 

method has oce· conventionally regarded as applicable to the s tudy of equilibrium properties. To 

obt..1.i n the dynan1ic properties, a different technique, molecular dynamics, has been required. In 

Chapter 2, however, the au thor shows2 ,3 that the Metropolis Monte Carlo methou ,·hen applied to 

part of the degrees of freedom of a sys tem, e.g. colloidal particles embedded in a solvent 

continuum , turns into a simulation procedure of the Brownian motion of the solute particles. 

Main advan tage of the Monte Carlo s imulation is the s peed of calculation. In th is method , 

onl y the behavior of solu t·' ions is calculated, and the solvent is consi. ered as a continuum . Then, 

il1e MC simulation is more than 1000 times fas ter than me molecular d namics ( MD ) s imulation. 

As shown in Chapter 2 , MC si ""'lulation can reproduce phenomena whose relaxation ti mes are 

longer than I o-9 second. The Langevin dynamics ( ill) s imulation is carried out by numerical ly 

solvtng the Langevin equation. Since the MC simulation in mis thesis is b. ed on the Langevin 

equation, me LD method is al mos t equivalen t to the MC memod. However irs algorithm is a li ttle 

complicated in the case of cons idering discontinuous po tentials, for example colli s ion of the ions. 

Another possible approach for obt..1inin g me behavior or solute ions is numerical calculation or me 

di ffusion equation. However, since it is a multivariable differential equation, some additional 

approxi mation have been used. 

T he memod thus provides a pOI•'erful tool for inves ti gating the dynamics of polymers whose 

motion is usuall y described by diffusion equation. 

In the greater pan of the thesis , me author describes the applications of the memod to 

polyelectrolyte solutions. Simulations carried out step by s tep in order to clarify the rr~chanism of 

orientation of polyelectrolytes in an ex ternal electric field ( Fig. ! ) . Fi rst in Section 3 .2 diffus ion of 



simple ions in studied for NaCI solutions. Dynamics in NaCI solution has been tudied by other 

simulation methods4,5 , and the diffu ion coefficients have been exprimentally measurcct6. In 

Section 3. 3 an algorithm is devised to simulate rotational Brownian motion of a rod-like polyion. 

In Section 3.4 polarization of the counterion atmosphere around a fixed polyion is simulated. This 

is the first attempt to reproduce the polarization of polyclectrolytcs by r'1mputer s imulation 7,8 , 

while static properties have been studied by MC imulation9. Finally in Section 3. 5 simul ~tion of 

coupled rotational and ion atmosphere dynamics of a polyelectrolyte is attempted. 

While extensive calculations with m re realistic models may be needed for comparison with 

experiment, the method developed ir, ·\is r'"esis is expected to be most useful for stud ying 

dynamics of polyelectrolyte solution. 
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2. Method 

In this thesis, ti1e beha ·ior of the solute ion was focused on, and the behaYior and 

structure of the sol ent 1 ere not discussed. Then, the motion of the ions was considered 

as the Brownian motion which obeys the Lmgevin equation. In Section 2.1, ti1e 

Brownian motion of solute ions was dis ussed . The requi red accuracy of simulation 

was the same ns the diffusion equation, by wbic11 various phenomena in colloidal and 

polymer solutions have been described. In Section 2.2, it was shown that t:.c 

Metropolis Monte Carlo method is one of such simulation mc~1od , and parameters and 

errors were discussed. 

2.1 Brownian motion of solute ions 

In this section , we discuss the motion of the solu te ions in electrolyte solu tions. The 

Langevin equation for solute ions is derived 1 , and the mean displacement 

< L\x > and the mean square displacement < L\x2> are calculated for compruison with 

those by the Monte Carlo method. 

2.1.1 Langevin equation 

We consider a electrolyte solu tion which consists of solute ions ( ex. Na+) and 

solvent molecules ( ex. H20 ). The motion of i th solu te ion obeys the follow ing 

equation of motion: 

( 1) 



where Fj(x;,xj) i the force from !.he j i.h solute ions , F2(x;,xj) is !.hat from i.hc k i.h 

solvent molecule, and F3 is !.he external force. In eq(l), we assume ll' at the solution is 

dilute so that !.he effect of !.he solvent molecules is independent of !.he oi.her solute ions . 

Furthcm1ore, assuming !hat !.he effect of the solvent molecules is independent of !.he 

position x;. eq( l ) is written as: 

m .'( = f F1 (x, , x) + F3 - s i + R (t) 

where, ~ X is a fri ctional force and R(r) is the random force. These two tcm1s come 

from the interacti ons between the solute ion and the surrounding solvent molecules . 

The random force R(t) is assumed to have the following stati stical properties I : 

(3) 

< R(t,) R(l,) > = m's5(t,- t, ) (4) 

where < > representS !.he average over the solute ions, fJ is !.he Kronecker del ta 

function. 

We assume that the force from the o!her solute ion F1(x;. Xj) and the external force F 3 

are given by the potential U 

(5) 

From now on, we omit the sufl'ix i , and assume U can be expanded as: 

(6) 
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Then eq ( 2) becomes: 

m.X = - C,- C,(x-x0) - tx + R(t) (7) 

where, 

(8) 

Eq(7) is also written as: 

x = - c,- c,(x-x0) - ~ i: + A.(t) (8) 

where, 

(9) 

In aqueous solutions, the frictional force for the solute ion is so large that its velocity 

becomes equilibrium soon. For example, (; of Na+ ion is 3 X 10-12 kg/s and its 

relaxation time p-1 is estimated to be larger than the order of w- 14 second. Therefore, 

the left hand side of eq(8) i. almost always zero: 

0 = - c,- c,(x-x.) - ~ i: + A.(t) (LO) 

This assumption has been called as theSmolchowski level approximation. The ordinary 

diffusion equation is also based on this assumption. The formal solution of eq(l 0) is 



obtai ned as: 

( II ) 

Since lc(t) is a random variable and onl y its s tochastic properties eq(3) and eq(4) are given, 

we can not reduce cq(ll) any more. 



2.1.2 Expected values of displacement 

The Langevin equation includes the random variable J..(t) . Then only the tatislical 

values such as the mean displacement can be obtained from the Langevin equation. Tbe 

mean disrlaccment < L\.x > and the mean square displacement < L\.x 2> are important, 

because the diffusion equation is defined as 

.!.._ P (x, f) = (- __2_ < Ll x > + 1 ~-- < Ll x
2 >) P (x, t) at a X 2 a X2 

(12) 

Mean displacement < l!.x > 

We consider the displacement of the solute ion L\.x in a period of L\.1 . The average 

of L\.x over the solute ions is written as: 

</:;.X> = <X - X0 > 

= < e-1!-"' r /T'ei'•( J..(t.) -c,)dt, > 

(" e-1"' Jo /T'elf'' ( <A(t,) >-c,) d t, ( 13) 

Since < A(t)> = 0, il becomes: 

</:;.x> (14) 

Expanding the exponent on Ll t , it becomes: 



c 
< tlx> = - __!. tlt + o(M) 

/3 
(l5) 

Considering eq(8) , < Llx > is written as: 

(16) 

Mean square displacement < (llx)2> 

The average of Llx2 in a period of L\1 is written as: 

< tlx' > = < (x-x0)
2 
> 

- c,<A (12 ) > + c~ } dt,dt2 

(l7) 

Since < f...(t) > = 0 and < f...(t, ) f...(tJ > = E 1\(t,-t,);it becomes: 
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Expanding the exponent on L1 t , eq( 18) is written as: 

(19) 



2.1.3 Relations to Temperature and Diffusion coefficient 

The Langevin equation includes the microscopic parameters , e and f3. In order to 

obtain their relati on to the macroscopic quantities, temperature and diffus ion coefficient, 

we consider the motion of an solute ion in infinill• dilute solutions. The Langevin 

equati on of such an ion is: 

x = - f3 X. + }.. (t) (20) 

Temperature 

From eq(20) , the velocity v = ::i: of the ion is obtained as: 

(21) 

Then v2 is: 

v2 = v~ e-2 ~ 1 + 2 v0 e-~ 1 L e2 ~ 11 /.. (1 1) d 11 + e-2 ~~ L L e~ 1 ' e~" /.. (tJ /.. (12) d 11 d 12 

(22) 

The average of v 2 is obtained by similar calculations in 1.1.2: 

(23) 

In the limit of 1 ~ oo, 



< v2> _,. _e_ 
2{3 

(24) 

Therefore, the average of the kinetic energy of the ion is: 

(
1 ) 1 o me 2mv2 =2m <v"">=47J (25) 

Considering tbe equi-partition law, 

(26) 

Therefore, the ratio of f3 and e is expressed by the temperature T. 

_§_- 2 kB T 
f3- m (27) 

Diffusion coefficient 

There should be anoU1er equation for e and f3 in order to determine U1e absolute 

values of iliem. Such a equation is obtained by considering ilie diffusion coefficienL 

From eq(21), the displacement L\x of the solute ion in a period of L1r is obtai ned: 

y (' ('' 
.1 x = x- x0 = ; (1- e-P') + Jo e-Pr,Jo eP'•). (1 1) d t 1 d t2 

.· -
(28) 

Then the mean square displacement is : 



(29) 

where, the properties or the random force, <}..( t)> = 0 and <}..(L1)}..(t,)> = E I'>(L 1-t,), are 

considered. In the limit or t ~ oo, 

(30) 

In the experimental study, the diffusion coefficien t in one dimension is defined as: 

D= lim <(x(t+ ,1 t) -x(t) )l> 
A<-~ 2 ,1 t 

(31) 

Therefore, the paran1eters {3 and e are round to be related to the experimental diffusion 

coefficient. 

(32) 

The diffusion coefficient D is obtained by the experiments. It should be noted that D 

is the value or the infinite dilute solution, because Eq(20) is the equation or motion for 

the ion in the inrinitedilutesolutions. 
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2.l.4 Discussion 

The two parumeters are expressed in terms of temperuture T and the diffusion 

coefficient D . 

/3 = k8 T 
m1 D ' 

s= 
2 CkB nl 

mD 

Then, the mean value< D.x > and < D.x2 > become: 

< llx > = - DT (au ) M + o(llt) 
k ax 

B "o 

(33) 

(34) 

(35) 

In thi s thesis, the author requires a simulation method which reproduce the motion 

of solute ions with the same accuracy as the dtffusion equation. In view of the fact that 

diffusion equation negleciS higher other than .11 , we can use a simulation method 

which satisfies eq(35) and eq(36) . As discussed in Section 2.2, Metropolis Monte 

Carlo method is one of such simulation methods. 
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2.2 Monte C· rio method 

The simulations in thi work were carried out by the Metropolis Monte Carlo methodl. 

Advantage of this method is the speed of calculation, and it can be used for phenomena 

whose duration is longer than 10-8 second as shown in Chapter 3 . This method has been 

widely used for the study of fluids and solutions 2. However, the Metropolis scheme is 

originally developed for calculating the average over U1e configuration space 3.4 Then the 

dynamics in solutions have not been s tudied by this method. In this section, we show 

that the Monte Carlo method can be applied to the non-equilibri um system 5.6 

2.2.1 Metropolis scheme 

Fig 2-2-l shows the main part of the Metropolis scheme. The Monte Carlo time L'Jr 

should not be considered as the real time unless the d111 ax is small enough. If N particles 

system is considered, the Metropolis scheme can be applied to 3N dimensional vec tor. 

Maximum trial displacement dmax 

In order to study the dynamics in solutions, the maximum trial displacement d111ax 

should be chosen : 

(1) 

where, D is the diffusion coeffi cient of the solute ions in infinite dilute solutions. Table 

2-2-1 shows the relation of d 111 ax between L'lt for aqueous Na+ ions. As discu~"ed 2.3, 

the accuracy of the simulation depends on .11 In the case of dilute electrolyte solutions, 

Lit is required to be the order of 10-12 second. Then, Lit is set to be 1.25 ps for the 



Start 

Input initial petit ions {x ; (0) } 

Generate uniform random number d 
-dma-:t < d < dmax 

Assume x; (t+Llt) to be x' 
x' = x; ( t ) + d 

Generate uni form random number l; 
0 <I;< 1 

Yes 

I =I+ I 

t=t+Llt 

X i ( t +Llt) = X ' 

Fig.2-2-l Metropolis Monte Carlo schme for the Brownian motion. 

x i (t) : position of the i th particle. !J.t : time interval corresponding to one 

step if d111ax is chosen small enough . 



Table 2-2-l Relation between the time interval L1t and the maximum trial 

di splacement d111ax for the aqueous Na+ ion. 

D I m1s-1 L1t I s dmax I m 

1.33 X 10-9 1.0 X 10- 9 2.82 X 10-9 

1.0 X l0- 10 8.93 x w-1o 

l.Oxl0- 11 2.82 X 10-10 

1.0 X 10- 12 8.93 X 10- 11 

1.0 x w-13 2.82 X 10-ll 

1.0 X 10- 14 8.93 X lQ- 12 

1.0 X 10- 15 2.82 x I0-12 
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Lll is required to be the order of lQ-12 second. Then, L\T is set to be 1. 25 ps for the 

almost simulations in this work. Table2-2-2 shows the values of dmax for the several 

aqueous ions. If the solution consists of more than one spices of ions, dnurr should vary 

for ion spices. 

Boundary condition 

The periodic boundary condition is always used. However, if a ion goes out of the 

unit cell , the energy difference LIU should be calculated before the ion is brought back 10 

the unit cell. Otherwise, U1e stationary flow of the ions due to the external field can not be 

reproduced. In principle, the image ions in the surrounding 26 repli cells are considered 

for calculating the energy difference Ll U . 

Random numbers 

The simulations in this work needs more than J 0 8 random numbers. The congruential 

method were used to generate the random numbers. In the case of using the veclOr 

computer S3800 at The University of Tokyo, the subroutine developed for it were used. 

The uniformity of the random numbers were always checked , however the long range 

coiTclations of the random numbers were ditTicult to be checked. 



Table 2-2-2 The maxim um trial displacement dmax of the aqueous ions 

for the simulation o; .M = lps. 

t'J.t I s ion D I 1Q-9m2s-1 

1.0 X lQ- l2 L+ 1.03 0.0692 
1 

N + 1.33 0.0893 
a 

K• 1.96 0.1315 

c 2+ 1.57 0.1054 
a 

cr 2.03 0.1363 

F 1.45 0.0974 



2.2.2 Application to dynamics 

The Metropoli Monte Carlo method has been believed to be applicable t.o only the steady 

state. If it were true, the dynamic phenomena in electrolyte solutions could not be studied by 

this method. However, the Metropolis Monte Carlo method was found t.o be applied t.o the 

dynamics. In this section, we show that the mean values, < Llx > and< (tJ.x )2 >, from the 

Monte Cado simulation agree wi th those from the Langevin equation in the order of .11 .. 

Mean displacement < l'>.x > 

The mean displacement in one Monte Carlo step ,< L1x > , is wri tten as: 

<-1x>= J dm a., sn(s)ds+ J dm ax sn(s) ex p(-f8~) ds 
iiU<D t&U>O 

(2) 

where, 5 is the uniform random variable ( -1 < 5 < 1 ), n(5) is the probability density of 5 

( n(l;) = 1/:! ) . The fir t term is the integral over the 5 corresponding t.o tJ. U < 0 and the 

second is that to tJ. U > 0. 

lf d
111

ax is small enough for L1U I kBT <<1, the exponent in eq(2) can be expanded as : 

(3) 

Then, eq(2) becomes : 
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-J dma< ~ n: (s) fa ~ d ~ + o (11 U
2

) (4) 

o!IU>O 

The firstt\\'0 terms cancel each other because n(s) is constant: 

< 11 X > =- f dmax S n; (s) fB ~ d S + 0 (11 U
2
) (5) 

L1U>O 

Expanding t1U as: 

(6) 

Then , 

< 11 x > =- f k~ T ( ~ ~) d;., S2 
n: (s) d s + o (d! ax) (7) 

o!IU>O 

Since 5 is unifom1 and n:(T;) is constant , eq(7) becomes: 

1 (a u) 2 2 <11x>=-6kaT ax dmax+o(dma .,) (8) 
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Mean square displacement < (t.x)2 > 

The mean square displacement< (.1x )2 >is written as: 

<.1 X 2 > = f d!ax /;
2 

n: (s) d S + f d;ax /;
2 

1!: (l;) eX p (- f8~) d S 
AU<O .1U>D 

(9) 

Expanding the exponent as discussed above, it becomes: 

<(Llxi>= J d!axs
2

n:(l;)dl;+ J d!axs"n(l;)dl; 

6U<0 6U>0 

- J d!axs2 n(l;) f8~dl;+o(LlU
2) (10) 

6U>0 

Since n(l;) = I 12, the first two terms make dma./ /3 . The third tem1 is higher order than 

d
111
a./ . Therefore, < (.1x )2 > in one Monte Carlo step is obtai ned: 

( 11) 

Comparison with Langevin equation 

Table 2-2-3 shows < L\.x > and < (.1x )2 > from both the Monte Carlo method and the 

Langevin equation . It is seen that < .1x > and < (.1x )2 > by both method agree with each 



Table 2-2-3 The mean displacement <Ax> and the mean square 

displacement< ,ix2 > of the Brownian motion. The relation dma:i = 6Dflt 

holds. 

<flx> 

Monte Carlo 

Simulation 

27 

Langevin equation 

(Smolchowski level) 

- _12_ (!lll) ,1 t +0 (,1 t) 
k o T a X 

2 D fl t+ o (fl t) 



other , if the higher orders than d111ax2 and .11 are neglected, and if the following relation 

holds: 

(12) 

That is, if d
111

ac is determined by cq( 12) , the Monte Carlo simulation can reproduce< Llx > 

and< (Llx )2 > in the order of .11 . Furthermore, this means that the Monte Carlo s imulation is 

equivalent to the diffusion equation: 

-P(x, t)=D - +-- P(x,t) a ( a a f ) a l a x2 a X k B T 
(13) 

because eq(l3) comes from eq( 14) and the higher order than 12 are neglected in the derivation 

ofeq( l4): 

_!____ p (.x, f) = (- __Q_ < ,1 X> + _21 a2 2 < ,1 X2 >) p (.x, t) ( 14) 
at ax ax 
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2.2.3 Estimation of the error 

ln this section, < L1x > and < L1x2 > are considered up to the order of L11 2. By 

using these expressions, the divers ion of the results of the Monte Carlo method from the 

analytical results of the Langevin equation is discussed. Then, the error of the simulation 

of the polyelectrolyte solutions is f.ound to be sufficientl y small at L11 = 1.25 ps. 

< L1x > and < ,1x2 > up to the order of L1t 2 

Considering the hi gher order than L1r of eq(2) and eq(9) , < L1x > and < L1x2 > 

of the Monte Carlo method are written as: 

< LU > D (au ) - k T ax t1t + 
B -'<> 

(6 D)"' (au )2 t1t' ' ' 
16 k~T' ax Xo 

+ o(.1t') ( 15) 

<M> = 2Dt1t -

+ 9D' (aU)2 
t1l- 9D' (a'U) t1t' + o(t1t') (!6) 

5 k~T' ax Xo 5 kBT ax' Xo 

Considering the higher order than L1t of eq(l4) and eq( 18) in 2. I , < L1x > and 

< L1x2 > from the Langevin equation are written as: 

29 



< L1x> 
D' +---

2 k';r' ( a' u ) (au ) .M' ar ax X xo o 

+ o(L1l) 

2 D' (a' u) L1t' + o(L1t') 
k;r ar xo 

Error· under exter·nal fields. 

(17) 

(18) 

Fig. 2-2-2 shows the error of < L1x > for the aqueous Na+ ion under an uniform 

external field. The fi eld strength E = 10.6 MV I m is almost upper limit of the 

experiments 8. Fig. 2-2-3 shows the error o f < L1x2 > In this case, the error of the 

s imulation comes from the tem1 of L1l 3/2 only , as shown in Fig. 2-2-2 and Fig.2-2-3. 

If L11 = 1.25 ps, the error of the simulation is expected to be below 1 %. 

Er-ror in Coulombic potential 

Fig.2-2-4 shows the error of < L1x2 > for the aqueous Na+ ion near a negati ve 

charge ( ex. Cl - ). In the s imulation of the polyelectrolyte solutions, the error is 

expected to be below 2 % for L1t = I. 25 ps, because the minimum di stance between 

Na+ and the negative charge of the poly ion is 1 nm. However in the s imulation of NaCl 

solutions, the error is 10 o/o at wors t, because the minimum dis tance between Na+ and Cl 

-is about 0.5 nm. 
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Fig.2 -2 -2 .11 dependence of the accuracy of the Monte Carlo simulation of 

the Na+ ion under the electric field E . < .1x >M and < .1x >A are the mean 

displacements in .1t < .1x >M: Monte Carlo,< .1x >A: analytical result. 

T= 298K. 
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Fig.2-2-4 .11 dependence of the Accuracy of the Monte Carlo simulation of 
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Error in Coulombic potential 

Fig.2-2-S haws the error of< Llx2 > for the aq ueous Na+ ion near a positive 

charge. Since two cations are not likely to approach each olher, the error can be 

neglected. !n the simulation of th.e polyelectrolyte solutions, two cations can approach 

each other on the s urface of the polyion. However, the distance of them is longer than 

2nm in many cases. 

Erro1· in harmonic potential 

Fig.2-2-6 s hows the error of < Llx2 > for the aqueous Na+ ion in a harmonic 

poten tial. 

As discussed in 2.4, the counteri on in polyelectrolyte solution is harmonically bounded at 

the end of polyion. The potential of Fig.2-2-6 is the model of such potential. The error is 

expected to be below I% for Lit = 1.25 ps. 

Other simulation method 

D.L.Errnak 9,10 proposed a simulation method based on the same Langevin 

equation di scussed l.l. 

mx = - {; :X + R(t) + F (19) 

fn this method , the force F is assumed to be constan t in a period of Lll.. Ass uming 

the Smolchowski level approximation, eq(l 9) becomes: 

o = - ,-r + t t..(t) + t I (20) 
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where, {3 = s; I m , f...(t) = R(t) I m , f = F I m. 

In this method, the time evolution of x(t) is calculated by: 

f
i+At 

x(t+bt) =x(t) +, /...(r;)d-r:+fL1t (2 1) 

The integral is assumed to be the random variable 6x : 

f
t +6t 

f...(r;) d-r: = bx (22) 

The probability density of 6x is : 

p ( 6x) = ( 4nDL1tfiexp (- 6x' I 4DL1t) (23) 

If F in eq( 19) is constant, eq(23) is analytically obtained. 

The mean values of the displacement < L1x > and< &2 > from this method agree 

with those of the Langevin equation in the order of Lll as well as the Monte Carlo 

method. < Llx > and< Llx2 > up to the order of Lit 2 are written as: 

< L1x> D (au) L1t 
- k

8
T ax ,. (24) 

(25) 



The diversions of< L\x > and < Llx2 > depend on the shape of the potential . In some 

cases, the diversion of this Em1ak' s method is smaller than that of the Monte Carlo 

method. However, the Brownian motion in a harmonic potential was successfully 

reproduced by both melhod. 



2.2.4 Discussions 

The Monte Carlo method has some advantages on the other methods for studying the dynamics in 

jXll yelectrol yte solutions. 

The molecular dynamics (MD) is now a popular simulation technique and can provide the most 

precise information on the dynamics in the solutions. However, it requires much longer 

computation time than the MC method. The time s tep in MD simulation should be usually the order 

of w -15 second, because the equation of motion should be stably solved for al l the atoms in any 

situation. On the o ther hand, the time step in the MC simulation can be above J0-12 second, if the 

error of a few percents is allowed. Since no differential equation is solved in the MC algorithm, the 

computation continues without any trouble if the time step is too large for specifi.c atoms 

incidentall y. In addition , the computation time of the MD simulation becomes longer with the 

decrease of the solution concentration. because the motion of the solvent molecules should be 

considered as well as the solute molecules. The computation time of MC simulation does not 

depend on the concentration because the solven t is considered as continuum. There have been few 

reports on the MD simulation of electrolyte solutions. 

The Langevin dynamics ( LD ) simulation is carried out by the numerical integration of the 

Langevin equation. Since the MC simulation in this work is also based on the Langevin equation. 

both simulations have the same physical meaning and should provide the same results . This 

method may be applicable to the polyelectrolyte solution, and the behavior of NaCI solution has 

been studied by this method, as discussed in section 3. 2 . The LD method is almost equivalent to 

the MC method, however its algorithm is a little complicated in the case of considering 

discontinuous potentials, for example collisions of tlie ions. 

Another possible approach for analyzing the behavior of the solu te ions is the calculation of the 

diffusion equation. The diffusion equation is also based on the Langevin equation and the 

Smolchowski level approximation as well as the MC simulation. However, since the distribution 



function is the multivariable function of the posi ti ons of all the ions, the algorithm becomes 

complicated and requires longer computation time. Some additional approximations such as the 

Debye-Huckel one have been introduced for solving the diffusion equation. 

Therefore, U1e Monte Carlo simulation is suitable for studying the behavior of the solute ions in 

dilute aq ueous solutions. 
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3. Applications 

In this chapter , applications of the Monte Carlo simulation to polyelectrolyte solutions 

were shown and discussed. First of all, the Brownian motion in a harmonic potential was 

simulated in order to sho\ the validity of the Monte Carlo simulation . Then, diffusion of 

ions in NaCl solu tion ( section 3.2 ), rotational Brownian motion of a rod-like polyion ( 

section 3.3 ) , polarization of counterion atmosphere around a fixed polyion ( section 3.3 ), 

and coupled rotational and ion atmosphere dynamics of a polyelectrolyte ( section 3.4) 

were simulated and discussed. 

3.1 Brownian motion in a harmonic potential 

In order to demonstrate the applicability of the Monte Carlo method, the simulations of 

the Brownian particles in a harmonic potential were carried out. Then the time evolution of 

the dis tribution function and the mean square displacement were found to agree with the 

analytical result~ . 

3.1.1 Analytical results from the Langevin equation. 

We consider a Brownian particles in a harmonic potential: 

U (x) = tkx2 (1) 

The Langevin equation of the particle is: 

m x =- k x - ~ x + A (t) (2) 



As discussed in 2. l , we assume that the frictional force is so large that the left hand side 

of is considered to be zero. The analytical solution of the probability density P(x, t) has 

been known as 1 : 

p x t = k , ex - k x2 
( 

.l ( ) 
( · )- 2Jrk8 T{I-exp(-(2k l s)t)}) P 2k8 T 1- exp(-(2k!S) t) 

(3) 

and the mean square displacement is: 

k T 
< (,1 x)2 > = + {1- ex p (- (2 k I') t)} (4) 

3.1.2 Model and Simulation 

The simulation was carried out by the Metropolis Monte Carlo method 2 . The auther 

considered the aqueous Na+ ion in a harmonic potential . In polyelectrolyte solutions, the 

counterions are bounded harmonically near the polyion in some cases. The time step, L11 , 

is 1.0 ps , which was found to be short eoough for this case, as is discussed in section 2.2 . 

The results were obtained by accumulating I 0,000 trajectories. 

3.1.3. Results 

Fig.3-1-1 shows the probability density of the particle at two different times . The 

results from the simulation well agree with the analytical results. Fi.g 3-1-2 shows the 

mean square displacemen~ < (L1x )2 > = < ( x( 1) - x( 0 ) )2 >, of the particles . These 

results were found to agree to the analytical ones. 
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3.1.4 Discussion 

It was clearly demonstrated that the Monte Carlo simulation can be used for investigating 

the dynamic properties of the Brownian particles such as solute ions. The harmonic potential 

is one of the simplest examples of potentials. However, as discussed in chapter 2, more 

-than second derivatives of potentials are mixed in the error of this simulation method. 
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3. 2 Diffusion of ions in NaCI solution 

It is very important to investigate the motion of the aqueous Na+ and CJ- ions , because 

the Na+ ion is the most common counterion in polyelectrolyte solutions, and NaCl are a 

popular added salt in the experiments. 

There have been some computational studies on the NaCl solutions. Wood and Friedman 

1 calculated the diffusion coefficient by solving the Smolchowski equation ( diffusion 

equation ) . Turq et a12 obtained the diffusion coefficient by solving the generalized 

Langevin equation. 

The Mante Carlo simulation has been used for calculating the ion dis tribution and the 

thermodynamic quantities. Card et al.3 obtained the excess energy, the heat capacity, and 

the osmotic pressure. StPJ"ensen eta!. 4 carried out more precise simulations of dilute NaCl 

solution. Their results agreed with ll10se from the Debye Hucke! theory. 

The diffusion coefficients of ions in electrolyte solutions have been measured by using 

the isotopes. Mills 5 measured the diffusion coefficients of ions in several 1:1 sal t 

solutions. Especially, the concentration dependence of the diffusion coefficient was 

precisely obtained for NaCI solutions. The concentration dependence from our results was 

found to agree to that by Mills. 

3.2.1 Model 

The model system is shown in Fig.3-2-l. The restrictive primitive m.Oclel 3 was used for 

Na+ ions and CI- ions. In this model, all the ions are considered to be hard spheres with 

point charges. The minimum distance R111 ;11 between Na+ and CI- ions was chosen to be 
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0.425 nm . Card carried out the simulations using this restrictive primitive model, and 

calculated several thermodynamic quantities such as excess internal energy, heat capacity, 

and osmotic pressure. These calculated values have been reported to agree with the 

experimental data for R111111 = 0.425 nm. Thus, this value bas not been proved to be 

appropriate for calculating dynamic quantities such as the diffusion coefficients. However, 

as s hown below, the diffusion coefficients calculated from our simulations also agree to the 

experimental data. 

The potential energy for the Metropolis scheme is given as: 

(!) 

where r ij is the distance between i th ion and j th ion, Zi is valence of i-th ion, D is the 

dielectric constant of water at 25 C. The second te.rrn is a short range interaction such as the 

effect of the exclude volume. Since the restrictive primitive model is used, U j(r,jJ becomes: 

3.2.2 Simulation 

r, J<R. ,. 

r,J "<I:.R. ,. 
(2) 

The simulations were carried out by . the Metropolis scheme. The periodic boundary 

condition was imposed. The 26 image cells and -all the interactions between the ions in the 

unit cell and the image cells. The mal(imum displacement dmax for Na ions and Cl ions are 

calculated from: 
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(3) 

(4) 

where, DrJNa+) (= 1.33 m2is) and DrJCI-) (= 2.00 m2/s) are the diffusion coefficients of 

Na+ ions and CI- ions in the infinite dilute solution. The time step Lit is chosen to be I. 25 

ps . The number of the -Na+ ions N in the unit cell is 30 in many cases. We carried out 

se era! simulations for N = 30, 60, and 100. The diffusion coefficients obtained from 

them were found to be equal within 5%. 

3.2.3 Resu lts 

The positions of Na ions and Cl ions are recorded every 10 steps. Several kind of 

motions were observed. In the short time rdiJge, the ions shows the rotational and 

vibrational motions. In the long time range, the ions shows diffusion processes , which 

satisfies the Einstein law. We discuss about the motion of the ions in terms of the following 

quantity: 

D(-r)= <(x(t+-r)-x(t)?> 
6-r 

where, the < > represents the average over all the ions. 

(5) 

Fig.3-2-- shows D(-c:) of the both ions. These values decrease with the increase of the 

sampling time -c;. The broken lines in this figure shows the diffusion coefficients in infinite 

dilute solutions. The large D(-c:) for small -c; resul t from their rotational and vibrational 

motion in short time range. The diffusion speed D(-c:) converges for large 't . Such a 
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dependence of D(-r:) on -,; results from the Coulombic interactions between the ions. 

Fig.3-2-3 s hows D(-r:) obtained the simulations in which the Coulombic interactions are 

ignored. 1 n this case, [)(-,;)is independent of the time interval -.;. 

Since D(-r:) converges for large ,; , the diffusion coefficient can be calculated by: 

D = li < (x (t + -r)- x (t) / > 
,_riJ. 6 1: 

(6) 

This is the definition of the diffusion coefficients usually used in experiments. Therefore, 

the calculated values according to the definition above can be oompared to the experimental 

data. 

The diffusion coefficients of the ions obtained from our simulation well agree to the 

experimental results . Fig.3-2-4 shows the concentration dependence of the diffusion 

coefficients of Na ions. Fig.3-2-5 shows that of Cl ions. In these simulations, the system 

consist of 30 Na ions and 30 Cl ions. Tbe diffusion coefficients were calculated from the 

mean square displacement during over 12.5 ns. 

ln these simulations , the diameter of the both ions R111 ;11 was set to be 0.425 nm as 

discussed above. In order to investigate the effect of the diameter, several simulations 

were carried out for Rm;
11 

= 0.5 run and R111 ;11 = 0.6 nm. The diffusion coefficients 

obtained from the both imulations were found to be lower than those for R111 ; 11 = 0.425 run 

The diffusion coefficient depends on the solvent Several simulations were carried out 

for different dielectric constant. The diffusion coefficient was found to decrease with the 

decrease of their dielectric constant The decrease of the dielectric oonstant causes strong 

interaction between the ions. In our simulation scheme, the decrease of the dielecllic 

constant of the solvent is completely same as the decrease of the temperature. Therefore, the 

decrease of the diffusion coefficient can be the influence of the low temperature. However, 
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the diffusion coefficient is not proportional to the square root of the temperature. This 

means that the motion of the ions are not only thermal ones. 

3.2.4 Discussion 

The diffusion coefficients are successfully obtained by the Monte Carlo method. 

Table 3-2-1 shows the comparison of them with those from other method. Turq eLal . 

obtained these values by solving the generalized Langevin equation. Wood and Friedman 

obtained them by solving the Smolchowski equation. As is seen in this table, our Monte 

Carlo method gives the diffusion coefficients with a equal accuracy to other calculations. 

The advantage of our method is that the time step t.t can be chosen to be larger than these 

methods (Monte Carlo 1.25 ps, other two methods : tbe order of 0.01 ps) . 

There are several subjects to be considered in order to improve our simulations. The 

restrictive primitive model causes the satisfactory results in the case of NaCl solutions. 

However, this model can not be used for the system with more than two species of ions . 

Furthermore, the hard sphere ass umption can not be made for more complicated system 

s uch as colloidal suspensions and polyeleclrolyte solutions. Therefore, the models of inter 

molecular potentials for these systems are desired to be developed. 

The boundary conditions should be considered more precisely. The use of Ewald 

method is preferable for systems with long range interactions such as the Coulombic 

potentials. We have already developed the program including the Ewald method. Several 

simulations with the Ewald method were carried out However, no significant differences 

were observed between the simulations with and without the Ewald method. Card et al. 

successfully obtained the thermodynamic quantities in NaCl solutions without using the 

Ewald method. Therefore, the Ewald method was not applied to the simulations in this 



Table 3-2-1 

solution. 

Monte Carlo 

Simulation 

Turq et.al. 

Wood et.al. 

Mills 

(experimenr) 

Diffusion coefficients of the Na+ and Cl- ions in the 1M NaCl 

D I l0-9 m2 s-1 .1£ I ns 

Na+ Cl· 

1.25 1.92 1.25 

1.30 1.90 0.012 (Na) 0.029(Cl) 

1.272 1.859 0.005 

1.234 1.77 
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work in order to reduce the computational time. 

The hydrodynamics interactions should be taken into account in order to improve our 

simulations. We have already developed the program with the hydrodynamic interactions 6. 

The simulation with the hydrodynamic interactions requires much long calculation time , 

because thousands of correlated random numbers should be generated. However, the 

hydrodynamics interactions play significant roles in the sys tems including various size of 

particles. 
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3.3 Rotational Brownian motion 

of rod-like polyion 

Polyelectrolyte solution containes large polyions and small counterions . The motion of 

the counterion such as Na+ can be simulated by the Monte Carlo method as discussed in 

3.2. However the rotational motion of the polyion is important phenomenon in 

polyelectrolyte solutions, beause orientational motion of polyions is detected in the 

electro-optical measurements . Therefore the rotational Brownian motion was discussed in 

this section. The Monte Carlo simulation is applicable to the rotational Brownian motions 

~welf'1i's' !he! translational ones. Ho\vevet, !he scheme can not be directly applied to !he 

polar coordinate systems, because the absolute value of !he trial displacement should be 

independent of the pos ition. The algorithm for this spherical diffusion was shown in 

section 3.3.2 

3.3.1 Model 

A rod like molecules with a permanent or induced dipole moment was considered 

(Fig. 3.3.1). Its center was fixed and it shows anisotropic distributions under !he external 

electric field. In this work, t11e orientational motion of !his molecule was simulated by !he 

Monte Carlo method. This corresponds to the assumption !hat !he rotational relaxation time 

is much shorter than that of translational one. 

The orientation of the molecules is usually expressed by the following orientation 

function: 
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cp = < ?2 (cos 8) > 

f p (8) p2 (cos 8) sin 8 d 8 

f p (8) sin 8 d 8 

f p (8) P2 (cos 8) sin 8 d 8 

f p ( 8) sin 8 d 8 
(I) 

where, () is the angle between the axis of lhe rod and the direction of the field , p ( () ) is 

the distribution function, and P2 ( x) is the second order Legendre polynomial : 

P _ ( 
0 8) _ 3 cos2 8- 1 

z - c s - 2 (2) 

The electric birefringence signal 2 is proportional to lhis value, if lhe optical polarizability 

has cylindrical symmetry. The steady state value of tP is calculated from lhe Botzmann 

distribution for p ( ()) : 

( u (8)) p (8) =p ex p - kB T (3) 

where, U( 8) is the potential energy and p is a normalization constant. The di pole 

moment m under the electric field E is written as: 

m = 1-1- + a. E + o(E) (4) 

where, 1.1. is the permanent dipole moment and a is the electric polarizability. The potential 
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energy of the rod under the electric field is given by: 

(5) 

The time evolution of the dis tribution function p ( 8, t ) is assumed to be given by the 

following diffusion equation: 

a p D n 2 D d . ( M ) at = v P- l v p kuT (6) 

where, D is a rotational diffusion coefficient, and M is the torque which effect the 

molecule. The relaxation of the orientation function without the external field is obtained 

from the diffusion equation above: 

(7) 

w here, <Po is the initial value of the orientation function. The time evolution of <P under 

week fi elds can be written simply for the following two cases. If the molecule has only a 

permanent dipole moment 1-1, the time evolution of <P has been known as 1 : 

(8) 

where, <Po is the initial value of <P , and D is the rotational diffus ion coefficient in the 

diffus ion equation above. And if the molecule bas a induced dipole moment which is 

parallel to its axis , it lias been known as: 

(9) 

In this thesis, two si mulations corresponding to eq(8) and eq(9) were carried out . 



3.3.2 Metropolis scheme for rotational motion 

Fig.3-3-2 shows the main part of the scheme. The maximum rotation dma.r should be 

chosen: 

d111ax 2 = 6 D llt (10) 

where, D is the rotational cliffusion coefficient. The characteristic of this algorithm is that 

the displacement on the sphere is expressed by the rotation along the longitude and that 

along the large circle. Therefore ¢' in Fig.3-3-2 is complicated. 

The displacement on a sphere (P1 ~P2) is expressed by two angle L1 8 and .11/J . 

The angle L1 8 corresponds to the rotation along the longitude The angle L1 "ljJ 

corresponds to the rotation along the large circle, which makes a right angle with the 

longitude at P1• The direction of lJF is same as that of the bearings ¢. We consider that a 

pointatP1 (81, 1/J.,) moves to P2 (82, 1/JJ by the rotations L1 fJ and L1 tjJ. The new position 

P1 (82 , 1/JJ is obtained by the following procedure. 

(1) The rotation L1 8 does not change¢, therefore 82 and¢;_ are: 

(11) 

(12) 

(2) The rotation .11/J along the large circle mentioned above change both 8 and tjJ . For 

simplicity, the bear-ings tjJ is assumed 10 be zero, then the large circle and the 1/J axis are in 
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the same plane. 

( i ) The height of P2 from the z=O plane is: 

h =cos (,1 'ljJ) sin (:n: I 2- 81) =cos (,1 'ljJ) cos 81 (13) 

because the the projection of OP2 toy= 0 plane is: 

11 =cos (,1 'ljJ) (14) 

On the other hand, h can also be written by using 82 : 

(15) 

Comparing these two expressions for h, 82 is obtained as: 

cos 82 = cos (,1 'ljJ) cos 81 (16) 

therefore, 

(17) 

(ii) The x component of the projection of OP2 to the x-y plane is: 

(18) 

and '1jJ component is: 

4 =sin (,1 'ljJ) (l9) 
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Therefore , ~ - cf!t is wri lten as: 

tan(~- 1M= sin (.11/J) I {cos (.11/J) sin e,} (20) 

then 

(21) 

Thus , 82 ~ are expressed by .1 8 and .11/J. 
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3.3.3 Results 

Fig.3-3-5 shows the relaxation process of the polyions. The polyion was pam! lei to the z 

axis at t = 0 , then the initial value of cp was unity. The time evolution of iP is obtained 

from eq (7) and it was found to agree with the theoretical curve. Therefore, it was proved 

thatt e Monte Carlo simulation can be used for the rotational Brownian motion. 

Fig 3-3-6 shows the orientation process of the polyion under the external electric field . 

The direction of the polyion was random at t = 0, then the initial value of cp was zero. The 

theoretical curves were obtained from eq (8) for the induced dipole moment and eq(9) for 

the permanent dipole moment The rise of <P was found to be slightly faster than the 

theoretical curve, because eq(8) and eq(9) are obtai ned for infinitely weak field. 

3.3.4 Discussion 

As discussed above, the simulations of the polyion with the dipole moment were 

carried out in order to check the algorithm. In addition, these simulation can be used for 

analysis of the electro-optical measurements . Fig.3-3-7 shows the simulated responses of 

the electric birefringence measurements. In this thesis, only two type of dipole moments 

were considered, however simulations can be carried out for any kind of dipole moment 

which is described as a function of the angle 8 and the field strength£. Thus, the Monte 

Carlo simulation is also a helpful tool for theoretical approach of the electro-optic.'!] 

measurements. 
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Fig .3-3-5 Decay process of the orientation factor c[J (I)=< picosB (1))>. 

The polyion is parallel to rhe z axis at 1:::: 0. : simulation ( 100,000 

trajectories are accumulatied) , solid line: theory. 
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The polyion is randomly oriented at t = 0, the external electric field is applied 

parallel to the z axis ( l > 0 ). e : simulation (500,000 trajectories are 
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3.4 Polarization of polyelectrolyte solution 

The motion of the counterions in polyelectrolyte solutions were investigated by the 

Monte Carlo simulation. In this section, the author focused on the effect of external electric 

fields. That is, the origin of the induce dipole moment of polyelectrolyte was discussed. 

Furthermore, the relaxation times of the polarization were successfu lly obtained. 

3.4.1 Model and Simulation 

The models used in this work are shown in Fig.3-4-l. The model of the polyion is a 

cylinder, which is fixed at the center of the unit. ll has negative point charges on its axis at 

intervals of the separation , b. The effect of the charge density has been discussed in terms 

of s parameter: 

(1) 

where, e is the quantum of electricity, EO is the permillivity of vacuum, and D is the 

dielectric constant of water at temperature T. Then separation b is written as b =sIB, 

where I B is the Bjerrum length: 

(2) 

T~ model of the counter ion is a hard sphere with a positive point charge at its center. 

The number of counter ions is determined so that the net charge in the system is zero. The 
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concentration of the solution were expressed by two unit polyion concentration Cp and 

residue concentration ( counterion concentration) CR == N Cp . 

The energy of the system for the Metropolis scheme is given by: 

(3) 

\ here, Zi is !he valence of i ill counter ion, Zj is that of jill one, and Zk is that of k ill poin t 

charge on !he polyion. The lhird and fourlh terms represent !he effect of !he exclude 

volume. In !his work, it is con idered as !he repuls ion of hard bodies . This is !he same as !he 

res trictive primitive model discussed in section 3. 2. Since all !he movable ions have positive 

charges in !his work, they are not likely to approach each other. Therefore, the exclude 

volume of the counter ions is not important. The last term is the interaction between the 

counter ions and tbe external electric field. 

Simulations were carried out by the Metropolis Monte Carlo method. The unit cell for 

tbe simulation consi sts of one polyion and some counter ions. Periodic boundary condition is 

imposed. The unit cell are surrounded by 26 image cells. fn many cases , the image cells 

have little innuence on the results of the simulation because !he counter ions are distributed 

near !he polyions. Since the simulations of dynamic processes requires long time, the 

simulations were carried out using two image cells ( Fig.3-4-2) . 
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Fig.3-4-2 Replica cells in the case of calculating the relaxation times. 
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3.4.2 Results(!) Counterion distribution without field 

The counterion distribution around a polyion without the external field was investigated 

by the Monte Carlo simulation. This is a basis of considering the polarization of the 

polyelectrolyte. 

Potential in the polyelectrolyte solution 

Fig. 3-4-3 is the contour map of the potential in the unit ceU. Fig.3-4-4 shows the 

potential along the surface. It is seen that the potential increases sharply at the end of the 

polyion, such a well-l ike potential corresponds to conventional theories. 

Fig.3-4-5 shows the potential in the function of r = ( x2 + y2) 112, the shape of the potential 

curve is almost same as the coulomb potential by the negative charge. 

Counterion distribution 

The amount of counter ions near the polyion is shown in Fig.3-4-6. The polyions is 

represented by a hatched rectangle at the bottom. The amount is shown in terms of the 

number of counter ions P(z,ro) 

t+! 

P(zJJ= J / p(z, ,)2n,hdz 

l-! 
(4) 

That is, P(z, ro! is the number of counterions in a cylinder of radius ro and height b . 

The number of ions was found to be almost independent of the position along the polyion, 

except at the end of the polyion. This sharp decrease has been known as the end effect 

Fig.3-4-7 shows the polyion length dependence of the end effecl The decrease of the 

number of the counterions becomes sharper with the increase of the polyion length . 
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Fig .J-4-3 Contour map of the potential tp . s =1, T = 298 K, l = 12nm, 

N = 16, concentration of polyion: cp = 3.0mM, concentration of 

counterion : cR = 48mM. 
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Fig.3-4 -4 Potential tp along the polyion surface (r == 0.5 ). s =l, T = 298 K, 

I = 12nm, N = 16, cp = 3.0mM CR = 48mM. 
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Fig.3-4-S Potential tp in z = 0 plane. s =1, T = 298 K , l = 12nm, N = 16, 

cp = 3.0mM CR = 48mM. 
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Fig .3-4 -6 Counterion di stribution near the polyion (r o = lnm) . 

.; = 1, T = 298 K, I = 12nm, N = 16, cp = 3.0mM cR = 48mM . 
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Fig.3-4-7 Counrerion disuibution at the polyion end . .;= l, T = 298 K 

l = 6nm (N =8), 12nm (N =16), 18nm (N =25), 24nm (N =31). 
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However, if the length along z-a,xis is scaled by the Debye length do. , the four curves agree 

with each other (Fig.3-4-8). Fig.3-4-9 shows the radial dis tribution of the counterions. The 

end eff eel above is also seen. 

Dependence on ~ parameter 

The counter ion dis tribution depends on the charge density of the polyion. Fig.3-4-10 

shows ; dependence of the number of counterions near the polyion. The polyion length is 

fi xed at 12 nm, then the separation b is changed. In this figure, the radius ro is chosen to 

be do I 4 in order to a\·oid the effect of the concentration. The broken line in Fig. 3-4-10 is 

U1e theoretical res ults from the Manning's model . !L is seen that some amount of the 

counterions are still associated near the polyion, even if ~is below unity. 

Effect of boundary condition 

Boundary condition is very important factor for the simulations. In this section, the 

periodic boundary condition was always inlposed. In principle, the image ions in the 

surrounding replica cells are taken into account for calculating the energy difference Ll U in 

the Metropolis scheme. Fig. 3-4-11 shows the potentials from the simulations with and 

without image cells. The potential without image cells is higher than that with the image 

calls near the polyion. 

Effect of temperature 

Simulations were carried out for 298K. However, in order to check the accuracy of 

the calculation, several simulations for different temperatures were carried ouL Then the 

temperamre dependence were found to agree with that from the Boltzmann distribution. 
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Fig .3-4-9 Integrated radial distribution of the counter ions. 

l; = 1, T = 298 K , l = 12nm, N = 16, Cp = 3.0mM cR = 4SmM 

6 



1 

.8 ---.. 
~-~ 

_ .. -
~ ~~ .. ~ 

0 --.. .... .... 
~ . 6 

" 
........ 

0 " I ... 
N 

, ... , ......__ .4 , 0 , 
~ 

, , , , 

.2 
/0 

r 0=d0/4 0 

0 
0 1 2 3 4 5 

~ 

Fig.3 -4-10 Polyion charge density s dependence of the number of 

counterions near the polyion. 0 : simulation, broken li ne : 1 - 1 Is. 
CR = 48mM, T = 298 K. 

88 



0 

§ 0 
0 

h 8 
8 

Q:l 
0 ~ 

........_ -2 0 

~ 0 

CD 0 

-4 

0 2 4 6 

r I nm 

Fig.3-4-ll Effect of the boundary condition on the potential lfJ . 

0: simulation with replica cells, D: simulation without replica cells. 

s = 1, T = 298 K, l = 12nm, N = 16, cp = 3.0mM CR = 48mM· 
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3.4.3 Results (2) Polarization under electric fields 

Polarization of the counterions under an external electric field was simulated . The 

external electric field was applied parallel to the axis of the polyion. Periodic boundary 

conditions arc imposed. In order to reproduce the stationary now of the counterions, at 

least two image cells should be taken into account for the energy calculation (Fig.3-4-2). 

Since, the system under the external field is no more steady state, the maximum trial 

movement dmax should be small enough as discussed in chapter 2. The time step Lit 

was chosen to be 1.25 ps for the simulations in this section. 

Counterion distr·ibution 

The coumer ion distributions under the external electricfield are shown in Fig.3-4-12. 

It is seen that the counter ions near the polyion sh ift in the direction of the field. Fig.3-4-13 

shows the field strength dependence of the counterion distribution near the polyion surfaoe. 

The vertical axis is the amount of the counter ions : 

I p (z, r ) 2 n r d r d z 
(5) 

0 

The percentages in tllis figure are calculated as: 

l f"' x= N p(z,r0) dz 
-1 / 1 

(6) 

where, N is the number of counter ions in the unit oell, and the integral corresponds to the 
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Fig.3-4-12 Counterion density under the external electri c field E. 

~ = l , T = 298 K, l = 12nm, N = 16, cp = 3.0mM cR = 48mM. 
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Fig .3-4-13 Effect of the external field E on the counterion distribution near 

the poly ion. s = 1, T = 298 K, I = 12nm, N = 16, cp = 3.0mM CR = 48mM-
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number of ions in a cylinder of radius ro and height I . The decrease of the percentage 

suggeslS that the counterions escape. fonn the polyion. This can be said robe the Wien effect, 

because the field strength E is the order of I o6 V /m . 

The radial dislribution of the counterions are shown in Fig.3-4-14, Fig.3-4-15, 

Fi g.3-4-16. The vertical ax.es of these figures are : 

f
-4>. 

q~ (c) = p (z, r) 2 ;r r d z 
-4>. 

(7) 

f
,/, 

q:~ (r) = p (z, r) 2 ;r r d z 
'h. 

(8) 

f
-1(, f lfz 

q~ (r) = + p (z, r) 2 n r d z 
-4>. '/, 

(9) 

Fig.3-4-14 shows that the counterions escape fonn the polyion by the effect of the 

external field . Fig.3-4-l5 also shows the similar tendency. On the other hand, Fig.3-4-16 

shows that the number of counter ions increase with the increase of the field strength. 

Therefore, the escape from the polyion resullS from their now in the direction of the 

external field. 

The now of the counter ions can be predicted from the potential curves ( Fig. 3-4-17 and 

Fig.3-4-18 ). Fig.3-4- l7 shows the potential curves on the surface of the polyion. The well 

is inclined and the threshold becomes lower under the external fields . This causes the ion 

now in the direction of the applied field. Fig.3-4-18 shows the potential curves away from 

the polyion. The potential well is very shallow even at lo\ field strength . Then, under the 

strong fields, the well- like potentials vanishes. 
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counterion. l; = l , T = 298 K, I = l2nm, N = 16, cp = 3.0mM CR = 48mM. 
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Fig.3-4-15 Effect of the external field E on the radial distribution of the 

counterion. s = l, T = 298 K, l = 12nm, N = 16, cp = 3.0mM cR = 48mM. 
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Fig.3 -4 -16 Effect of external field E on the radial distribution of the 

counterion. s = 1, T = 298 K, l = 12nm, N = 16, cp = 3.0mM CR = 48mM-
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Induced dipole moment 

As discussed above, the polarization of the counterions is successfully reproduced by 

the Monte Carlo simulation. However it is difficult to define the induced moment of the 

polyion. In experimental studies, the induced dipole moment are obtained from the torque 

which causes U1e rotation of the polyion. That is, the induced dipole moment is not the 

polarization of all the counlerion. Since it is difficult in the simulation to distinguish the 

counterions responsible for the rotation , we divide the counterions into two groups for the 

sake of convenience (Fig.3-4- J9) according to the conventional theories 2,3.4. Then, 

masso denotes the polarization of associated ions , mjree denotes that of free ions, and 

m10a deno tes that of all the ions. 

E dependence of induced dipole moment 

Fig. 3-4-20 shows the field strength dependence of the induced dipole moments. The 

dipole moment m10tl and 111Jree increase witl1 the increase of the field strength in the region 

E < 7 MV/m However ,the dipole moments are not proportional to the field strength. 

Then, if m is written as m =a E. However ,the dipole moments from the simulations are 

not proportional to the field strength. 

These dipole moments , m10a and m free saturate at about E = 7 MV/m, and then they 

decrease with the increase of the field strength. Such decreases at high field strengtl1s are 

caused by the Oow of the counter ions as discussed above. Since the values of these field 

strength are the order of 106 V/m , the decrease of the dipole moments can be said to be the 

Wien effect. This reduction is results form the flow of the counter ions as mentioned above. 

The dipole moment will be zero if the counter ions flow at constant velocity. 

On the other hand , the dipole moment m as so and m av do not decrease in the same 
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range. The contribution of the associated counter ions is defined as mav = masso l nas50, 

Then, mav increases with the increase of the field strength. 

s dependence of induced dipole moment 

Fig.3-4-21 sho' s the dependence of the dipole moment on the charge density of the 

polyion. The induced dipole moments mroll and masso increase with the increase of s. In 

these sinmlations, the length of the polyion and the size of the unit cell are kept constant 

Then, the number of the counter ions N increases with the increase of s . Therefore, the 

increase of mwtl and masso are caused by the number the counter ions. Fig.3-4-22 shows 

the increase of the associated ions lias so . However the average dipole moment mav ( = 

masso I n0550 ) decreases due to the repulsion between the associated ions ( Fig.3-4-23 ) . 

Polyion length dependence of induced dipole moment 

Fig.3-4-24 shows the polyion length dependence of the induced dipole moment . The 

charge density 1; is kept unity. Since the number of counter ions increases with the polyion 

length, the number density of the counter ions will change if the volume of the cell is kept 

constant In order to clarify the effect of the density, we carried out two series of 

s imulations . The one is the si mulation of a constan t volume and the other is those of constan t 

density. In the latter case, the volume of the system is changed by stretching the celJ in the 

direction of the field. 

The dipole moments, masso and mroll , are found to be proportional to the third power 

of the polyion length , if the density of the counter ions is kept constant This result agrees 

to that from electro-optical measurement Even if the density of the ions is not kept constant, 

the moment ma~so i al so proportional to the third power of the polyion length. This implies 
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that the environments of the associate ions does not much depend on the total density. 

However, m1011 is almost proportional to the polyion length, that is, the density of the 

counter ions. 



3.4.4 Results (3) Relaxation times of polarization 

The rela"Xation time of the polarization was successfully obtained from the Monte Carlo 

simulation. Since the relaxation time of mono-disperse DNA fragments were measured by 

Perschke, simulation for a model DNA fragment was carried out, and the polarization of all 

the counterions m1011 were analyzed and discussed. 

Time evolution of polarization 

Fig.3-4-25 shows the transient of the polarization of the simulation . Since the DNA 

fragment of 64 base pairs is considered, the degree of polymerization N is 128. The field 

strength is 7.0 MY I m. The counterions were considered as Na+ ions. This transient curve 

was obtained from the accumulation of 100 runs. It took about 50 hours by our work 

station HP9000-715 of31 MOops. 

The transient curve can be fitted by a single exponential. 

m= m0 ( 1 - exp ( - 1 h) ) (10) 

Then the relaxation time is defined as -1: . In the case of Fig.3-4-25, the relaxation time 1: 

was obtained as 3. 6 ns . This single exponential curves can be analyzed by ass uming the 

motion of the ions as the harmonic oscillation : 

( ll) 

where, x is the displacement of the ions, F is the external force, the second term represents 

the frictional force, and the last term represent the force of restitution proportional to the 
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Fig.3-4-2S Time evolution of the induced dipole moment of 64 base-pair 
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displacement . The solution of this equation is known: 

F + F exp (A.1t) + F exp (~t) 
x = A. 1 ~ A.1exp (A.1 - ~ ~exp (~- A.t) 

(12) 

where, A 1 and A 2 is the solution of A 2 + {3 A + W2 A= F , A 1 >A 2 . Assuming the 

over dumping process, {32 > 4 uJ , the third term is not dominant in the equation. 

Therefore, if the third term is neglected, the relaxation time -c obtained from the simulation is 

written by {3 and w : 

2 (13) •= 

The spring constant <,J. is given by : 

o;l =Fix(oo) ( 14) 

Then friction coefficient {3 , which reflect the dynamic properties , is written as: 

{3 = 1/ .- + w2 
.- ( 15) 

Thus, the s pring constant <,J. and the friction coefficient {3 are calculated from the 

relaxation time 1:. 
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Polyion length dependence of 1: 

Table 3-4-1 shows the dependence of the degree of polymerization. The rel a;~:ation timeT 

was found to increase with the increase of the degree of polymerization. This is caused by 

the increase of the displacement of the counter ions, because the polyion length which is 

proportional to N . The increase of the displacement reflected the decrease of the spring 

constant W2 . The fri ction constant fJ was found to be independent of the degree of 

polymerization N . This implies that the environment of around a counter ion does not 

change. 

Dielectric constant dependence of 1: 

Table 3-4--2 s hows the dependence on the dielectric constant D of the solvents. The 

relaxation time was found to decrease with the decrease of the dielectric constant The steady 

state value of the dipole momen ts m10 11 and masso also decrease with the decrease of the 

dielectric conslant. Therefore, the decrease of the relaxation time is caused by the decrease of 

the displacement of counter ions due to the strong repulsive interaction between tl1e counter 

ions. T he decrease of the dielectri c constant is equivalent to the decrease of the temperature. 

Field strength dependence of • 

Table 3-4-3 shows the dependence of the relaxation time on the field s trength E. The 

relaxation time T becomes s horter with the increase of the field s trengtl1 E . The spring 

cons tant w 2 in eq( 14) increases witl1 the increase of E . Therefore, the decrease of T 

results from eq(13). 
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Table 3-4-1 DNA length dependence of the relaxation timer. 

T = 298K, E = 10.6 MV/m, CR = 41 mM (in the unit of nucleotide residues). 

Nucleotide residues, N Base pairs -r I ns 

64 32 0.73 

96 48 1.9 

128 64 2.7 
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Table 3-4-2 Effect of solvent dielectric constant £on relaxation time r 

of 64 nucleotide residues DNA. T=298K, £=10.6 MV/m, cR =4lmM. 

£ 

78.3 

20.0 

• I ns 

0.833 

0. 157 



Table 3-4-3 Field strength E dependence of the relaxation time -r of 

the 128 nucleotide residues DNA ( 64 base pairs). T = 298K, cR = 41 mM. 

(in the unit of nucleotide rediues) . 

E I MVm-l -r I ns 

3.5 5.0 

7.0 3.6 

10.6 2.7 
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Concentration dependence of -r: 

Table 3-4-4 shows the dependence of 1: on the concentration of the solutions. The 

relaxation time -,; becomes slower with the increase of the field strength E . The spring 

constan t co 2 in eq( 14) increases with the increase of the concentration . Therefore, the 

decrease of 1: results from eq(13). 

Effect of added salt 

Finally, the effect of added salts was also investigated. This is important for comparing to 

the experimental data, because a salt is added in almos t measurements including Porschke' s 

one. Table 3-4-5 shows that the relaxati on time increases if the salt is added_ 
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Table 3-4-4 Concentration CR dependence of the relaxation time -r 

of the 128 nucleotide residues DNA ( 64 base pairs) . T = 298K, E = 7.0 

MV /m . ( CR is given in the unit of nucleotide residues ) 

• I ns 

164.0 2.6 

41.0 3.6 

10.3 4.8 



Table 3-4-5 Effect of the added salt on the relaxation time -r: of the 

64 nucleotide residues DNA ( 32 base pairs). T = 298K, E = 10.6 MV/m. 

CR = 4lmM (in the unit of nucleotide residues). NaCl is added so that the 

concentration of the total Na+ is 61.5mM. 

• Ins 

Added salt 1.1 

Without salt 0.73 
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3.4.5 Discussion 

The polarization of the oounterions was obtained by the Monre Carlo method 1. This was the 

first simulation work which reproduced the counterion polarization. The simulated polarization can 

be oompared to the induced dipole moments in experiments . However, there have been various 

definitions of the induced dipole moment . Schwartz 2, 3, 4 proposed that the longitudinal 

movement of 'bound ions' on the surface of the polyion is the origin of the induced dipole 

moments. The polarization of the ' associated ion' in this work may correspond to the model. 

However, definition of 'bound ions' and 'associated ions' are vague and arbitrary . Rau and 

Charney 5, 6 calculated the induced dipole moment as the polarization of the Debye Hucke! 

distribution of the counter ions. The results in this thesis may correspond to those by Rau and 

Charney. 

The relaxation times of the polarization were obtained in the Monte Carlo simulation 7 The 

s low induced dipole moment model has been proposed in order to explain experimental data. The 

resuiL~ in this section implies that the slow induced moment can be realized in a simple system 

which consists of coulombic interacting ions. Since the relaxation times were the order of J0-9 

second, the speed of the Monte Carlo calculation was made the best use of. Table 3-4-6 shows 

comparison with the experiments of Porschke 8. The simulated relaxation time was found to be 

rather shorter than that from Porschke' s experiment. This may results from the difference of t11e 

concentration. The concentration of Perschke's measurement is about 1 I 500 of our simulation, 

and the relaxation time was found to becomes longer with the decrease of the ooncentration. 

Simulation for s uch dilute solution is desirable for oomparison with experiments, however it is 

future subject because of the computation time. The definition of the induced dipole moment is also 

different even if simulation for dilute solutions are carried out. The best way for comparison 10 

the experiment will be to simulate the rotation of the polyion due 10 the polarization of the 

counterions as discussed section 3.5. 
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Table 3-4-6 

Monte Carlo 

Simulation 

Experiment 

(Perschke) 

Comparison with experimental results. 

Nucleotide 

residues E /MVm-1 

128 10.3 7.0 

152 0.02 6.88 
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r: Ins 

4.8 

16.6 
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3.5 Rotation of polyion coupled 

with counterion polarization 

The origin of !he induced dipole moment of polyelectrolytes that is strong enough to orientll1e 

polyion is sti ll poorly understood even if s imple models are assumed for the geometry of the 

polyions. In many theoretical studies, ad hoc approximations have been postulated such that 

counterions are classified into " free" and " bound " ions, only the latter contributing to the induced 

moment. 

In the previous sections we have determined amplitudes and relaxation times of the counterion 

polariwtion by accounting for onl y small ion distribution around a fixed polyion. While extensive 

calculations with more realistic models may be needed for comparison with experiment, our 

greatest concern th rougho ut this thesis is whether simulations without constraining the polyion at a 

fixed alignment reproduce its orientation. Counterions in the immediate vicinity of the polyion are 

so fim1ly bound to polyion that their contribution to the induced dipole moment is s mall. On the 

otl1er hand counterions far away from the polyion are easily polarized and even s tripped from the 

electrostatic inOuence of the polyion at high electric fi eld . Then we may well wonder whether the 

diffuse ion cloud around the polyion when polarized under the inOuence of an ex ternal field can 

indeed exert a torque strong enough to orient il1e polyion. In view of the fact that the counterion 

polarization processes in an applied electric Field is measured experimentally via the orientation 

of the polyelectrolyte molecule, simulation of the coupled rotational and ion atmos phere dynamics 

of a polyelectrolyte might be mos t helpful in the interpretation of the electric polariwbili ty data. In 

thi s section, we auempt to reproduce orientation dynamics of polyelectrolytcs by computer 

simulation. 
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3.5.1 Model and Simulation 

The polyion is modeled on a 64 base-pair DNA fragment as an impenetrable cylinder or 

radius I. 0 om with !28 negative charges spaced at 0.17 nm intervals along its axis. The cylinder is 

extended 0.17nm beyond the terminal charges at both ends The hydrated uni valent counterions are 

modeled on sodium ions as hard spheres of radius 0. l5nm. The solven t is treated as a diele tric 

continuum with relative permittivity of pure water at 298K, e = 78.3 and no salt added. The MC 

cell is a rectangular parallelepiped with squared base of side length 12nm and of height36nm and 

the center of the polyion is fixed at the center of MC cell leading to a DNA concentration of 41 mmol 

of nucleotide residues I dm3. An electric field is applied along the height of the cell and the angle q 

specifying the orientation of the polyion rod is defined in Fig.3-5-l. 

Periodic boundary conditions are imposed at each face of the MC cell. The energy of 

configurations is calculated as a sum of interactions of each counterion in the MC cell with all the 

other coun terions and the polyion charges in the cell and two image cells adjacent along the 

direction or U1e electric field plus interactions of the ions with the applied electric field. 

Polyion-polyion interactions between the adjacent eel Ls are neglected. 

O.lnm is chosen as the size of the maximum allowed displacement d 111a.x of counterions along 

each coordinate direction. The time interval for the simulation Llt is fixed as l.25ps by the relation: 

dma.r: 2 = 6DL'1t (1) 

using U1e diffusion coefficient of a sodium ion in bulk water D = 1.33 · w-9 m2s-2 . The 

maximum allowed rotation angle for polyion L16111 ar is somewhat arbitrarily chosen as 1.0 degree 

because our primary concern here is to test the feasibility of the s imulation. The rotatory diffusion 

coefficient for the polyion DR calculated by the relation: 
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(2) 

us ing Lli =1.25 ps is about ten times larger than that expected for the dimension of Lhe polyion 

cylinder from hydrodynamics. 

l nitiall y . Lhe polyion is directed 5 degrees off the direction of Lhe applied field. The dis tribution 

o f counterions are equilibrated. At t = 0 , an electric field E of 7.0 MV/m is applied. Then Lhe 

angle e is followed as a function of timet and averaged over 300 trajectories. 

3.5.2 Results 

Fig.3-5-2 shows the results of the simulation. Relaxation of q from its initial value 5 degree 

to an equilibrium value is observed indicating that the orientation of the polyion is reproduced by 

the si mulation. 

3.5.3 Discussion 

Although we used a rather restrictive model , we have shown that Lhe orientation dynamics of 

polyeleclrolytes under Lhe influence of an applied electric field can be studied by computer 

simulation. The approach eliminates Lhe distinction between " free " and '' bound " counterions 

ol"ten ass umed in analytical s tudies . We view our work as a sound first attempt presumable leading 

to Lhe clarification of the mechanism of the orientation of polyelectrolytes in an electric field . 

However, extensive calcu lations wilh more realistic models are necessary for comparison with 

experiment. 
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F' ig.3-5-2 Rotational motion of the polyion coupled with the polarization of 

the counterions. Initial direction of the poly ion: 8 = 5 degrees . The electric field 

applied in the direction of the z axis ( t > 0 ). Polyion: 64 base pair DNA. 

Concentration of the polyion: Cp = 0.32 mM, T=298 K, E = 7.0 MV/m 
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4. Conclusion 

The subject of this thesis has been to study the mechanism of the orientation of 

polyelectrolytes in an electric field by computer simulations. The author has shown that the 

Metropolis Monte Carlo is a powerful method for this purpose and developed simulation 

procedures step by step finally to be able to simulate the coupled rotational and ion atmosphere 

dynamics of a polyelectrolyte. 

In section 3.1, the Brownian motion in a harmonic potential was simulated and the time 

evolution of its distribution function was found to agree to the analytical onel. In Section 3.2, 

diffusion of ions in NaCI solution was discussed. The diffusion coefficients were successfully 

obtai ned, and their concentration dependences were found to agree to the experimental results2 In 

section 3.3, the simulations of rotational Brownian motion of rod-like polyion were carried out. In 

Section 3.4, the behavior of the counterions around the polyion was simulated. First, we obtained 

the counterion distribution and electrostatic potentials without external field3. The electrostatic 

potential on the polyion surface was found to be constant except for the polyion ends. Second, the 

polarization of the counterions under the inOuence of an electric field was simulated3. The 

saturation and reduction of the polarization under strong fields , which has been observed in tl1e 

experiments, was also reproduced by the simulation. The reason was found to be that counterions 

are s tripped away from the polyions. Thus, the simulation ean provide a microscopic explanation 

for the experimental resu lts. Finally, relaxation times of cou nterion polarization were calculated4. 

The relaxation times were longer than the order of J0-9 second, the merit of Monte Carlo 

simulation of calculating fast was appreciated. Their dependences on the polyion length, the 

concentration, and the field strengtl1 were found to qualitatively agree to the experimental resuJrs5. 

ln Section 3.5, the simulation of the coupled rotational and ion atmosphere dynan1ics of rod-like 

polyelectrolytcs was carried out. This is a basis of simulations for the response of electro-optical 
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measurements. 

Although most of the simulations performed in this thesis are preliminary and exr.ensl\·e 

calculations with more realistic models are needed for comparison with experiment, the author 

believes that his method can be or general use fo r studying dynamics of polymers and colloids in 

solution whose motion is usually described by diffusion equation. 

In order to carry out simulations corresponding to the experiments, there are some subjects to 

be considered. First, simulations in this thesis were carried out for simple rod-like model 

molecules. More precise structure of the polyion should be considered , however it is not a 

difficult problem. fn principle, the accuracy and computation time do not depend on the shape 

of the molecule. Second, simulations for more dilute solutions should be carried out, however it 

requires more computation time due to the increase of the Ouctuations. Thus, improvement of 

algorithm may be needed for reducing computation time. Then, most of simulations in this thesis 

were carried out for salt free solutions, however in experimental approach polyelectrolytes have 

been studied in salt added solutions. In this case, the boundary conditions should be carefully 

introduced. Finally, the hydrodynan1ic interaction between ions should be considered in some 

cases. Algorithm for this interaction has been already developed6 

While the author foc used on the simulations for the response of electro-optical measurement, this 

s imulation technique can also be applied for the study or colloid suspensions and polymer 

solutions. 
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