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Abstract

This thesis explores anomalous transport mechanism of angular momentum transport

via magnetohydrodinamic (MHD) turbulence driven by magnetorotational instabilities

(MRIs) in accretion disks. To trigger mass accretion onto a central compact object and

resultant release of gravitational binding energy, which is believed to be an energy source

for a wide variety of astrophysical phenomena, the angular momentum of the gas must

be transported outwardly; otherwise the matter keeps to rotate around the central object

by the strong centrifugal barrier. However, it is known that the classical Spitzer-type

viscosity carried by Coulomb collision provides a merely much smaller transport e�ciency

than an observationally constrained estimate. While Shakura & Sunyaev (1973) success-

fully advanced accretion disk theories by introducing the well-known ↵-viscosity, which

parameterizes the anomalous turbulent viscosity, the origin of the turbulence sustained

in an accretion disk had been unknown for a long time. Since Balbus & Hawley (1991)

indicated astrophysical importance of the MRI as a strong driver of MHD turbulence, a

number of authors have investigated the nature of the MRI intensively, mainly by non-

linear MHD simulations. We still, however, su↵er from discrepancy between transport

e�ciencies estimated from observations and MHD simulations. In this thesis, the gener-

ation of MHD turbulence is discussed by numerical simulations to seek for mechanisms

which can further enhance the angular momentum transport. In particular, collisional and

collisionless accretion disks are investigated separately.

In chapter 2, we focus on a collisional accretion disk, where the standard MHD ap-

proximation is applicable. Since a toroidal magnetic field becomes dominant through the

so-called ⌦-dynamo commonly in a di↵erentially rotating system, it is of importance to

investigate local behavior of the gas threaded by external toroidal magnetic flux. While

the conventional MRI mode can grow from the seed toroidal field only for essentially ver-

tically propagating waves, we have found that unstable eigenmodes completely confined

within an equatorial plane can be present and drive MHD turbulence if the background

toroidal flux has radial non-uniformity. This instability is termed a magneto-gradient

driven instability (MGDI). It can provide su�ciently large ↵-viscosity mainly contributed

by the Maxwell stress when the imposed toroidal flux is comparable to the saturation

amplitude of three-dimensional local MRIs. The MGDI may work as a new possible path

to drive MHD turbulence in accretion disks in a complementary manner with the toroidal

MRI modes rather than in a competitive manner, and may play a role of significance in
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transport process by coupling with magnetic reconnection occurring along the equatorial

plane.

In contrast, chapters 3 and 4 are devoted to turbulent transport in collisionless ac-

cretion disks, where the gas is so dilute that the mean free path of charged particles

exceeds the scale size of an accretion disk. In this regime, the standard MHD approx-

imation is no longer valid, and anisotropy in a velocity distribution function plays an

important role to transport the angular momentum. Chapter 3 is designed to construct

a new numerical framework to deal with this anisotropy precisely, which is interpreted

as an anisotropic pressure tensor in a fluid-based model, by extending the classical dou-

ble adiabatic approximation. By combination of the second-order moment of the Vlasov

equation and a gyrotropization model for the pressure tensor, we have successfully devel-

oped a new kinetic, scale-free MHD model. In particular, the natural assumption that

the gyrotropization rate is proportional to a local magnetic field strength enables us to

solve magnetized and unmagnetized regions seamlessly without any numerical di�culty,

which cannot be accomplished by the classical model involving singularity at null points.

While we apply this model particularly to the problem of accretion disks in this thesis,

the application also includes other large-scale collisionless plasmas such as the Earth’s

magnetosphere and solar winds.

Chapter 4 works on the first approach to large-scale, collisionless disk simulations using

the model developed in the previous chapter. Specifically, the local assumption is relaxed

in the vertical direction. It yields a stratified shearing box model and involves the con-

cept of the disk’s scale height, which cannot be resolved by fully kinetic approaches such

as particle-in-cell (PIC) and Vlasov simulations. We found that the resultant transport

e�ciency averaged over the whole simulation domain remains at the same level as that ob-

tained in the standard MHD. The anisotropic stress, however, localizes near the mid-plane

with relatively weak vertical gravity and reaches a comparable value to the Maxwell stress,

which is consistent with previous work without stratification. This localization indicates

the strong dependence of angular momentum transport to the background disk structure

when the stress by thermal pressure anisotropy cannot be neglected, and emphasizes the

necessity of global simulations in the future, to which our scale-free kinetic MHD model

could contribute significantly.

Another result of importance is an enhancement of the Maxwell stress by taking a

gyrotropization rate close to a dynamical time scale. Since this parameter is propor-
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tional to the magnetic field, a finite non-gyrotropy remains selectively in the vicinity of

current sheets, where magnetic reconnection takes place. Our result implies that this

non-gyrotropy tends to suppress the magnetic reconnection, which is qualitatively consis-

tent with the test problem of one-dimensional reconnection provided in chapter 3. This

suppression e↵ect by non-gyrotropy suggests a mechanism to enhance the angular mo-

mentum transport in a di↵erent way from the assertion by Hoshino (2013), where the

suppression of the magnetic reconnection was explained by parallel pressure enhancement

by reconnection itself and only the role of gyrotropic anisotropy was taken into account.

While we have to take care of the di↵erence of the suppression mechanisms in PIC and the

present kinetic model, this thesis certainly contributes to fill the significant gap between

the fully kinetic approach and the existing fluid models, and sheds new light on theoretical

understanding of the collisionless accretion disks.
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Chapter 1

General Introduction

1.1 Basics of accretion power

Accretion disks are one of the most ubiquitous astrophysical objects, where gravitational

binding energy of an accretion flow is converted into heat, radiation, and in some cases,

directed bulk flows. In general, the more massive and the more compact the central

object is, the more e�ciently the accretion disk can extract energy from the accreted

matter. Thus many of the highly energetic astrophysical phenomena are thought to involve

accretion flows at the center of which a neutron star (NS) or a black hole (BH) is present.

To make a rough estimate, let us consider an accreted element with mass m onto a central

body of mass M and radius R⇤. The gravitational potential released through the accretion

process onto the surface of the central object is

�E
acc

=
GMm

R⇤
. (1.1)

In the case of a NS with R⇤ ⇠ 10 km and solar mass M ⇠ M�, equation (1.1) shows that

the released energy per accreted mass is

�E
acc

m
⇠ 0.15c2 ⇠ 1.3⇥ 1020 erg/g.

The same estimate for a stellar mass BH yields a rather larger value, �E
acc

/m ⇠ 0.49c2,

but with the surface radius of the central body replaced by the Schwarzschild radius

R⇤ = 2GM/c2 ⇠ 3(M/M�) km. This is an order-of-magnitude estimate, and a reasonable

guess for the case of a stellar mass BH appears to be ⇠ 0.1c2. Anyway, by comparison

1
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with another energy production process, for example, nuclear reaction, which can provide

at most �E
nuc

/m ⇠ 0.007c2 attained in hydrogen burning, the above rough estimates of

conversion e�ciency suggest that an accretion disk does work as a quite powerful engine

to fuel a luminous object.

The released energy in accreted matter will ultimately be radiated away from a system

in a wide range of wavebands, except for the energy dragged by matter swallowed up at

the event horizon of a BH. The predicted shape of a spectrum emitted from each accreting

object strongly depends on an applied accretion disk model. However, a classical maximum

luminosity, integrated over all wavelengths, may not depend on the accretion model under

the assumption of a steady and spherically symmetric accretion flow. Suppose the accreted

gas consists of a fully ionized proton-electron plasma. The gas at the distance r from the

central object is gravitationally pulled inward with the force f
in

= GM (m
p

+m
e

) /r2 '
GMm

p

/r2, where m
p

and m
e

are the proton and electron masses, respectively. On the

other hand, the radiant energy flux S = L/4⇡r2 emitted spherically from the accreting

object with the luminosity L imposes radial momentum upon the gas through scattering

processes. The exerted force arises mainly by Thomson scattering of free electrons with the

cross-section �
T

, which results in the outward force f
out

= �
T

S/c. This force apparently

acts on the electrons, but the ions are also dragged by the accelerated electrons due to

the strong electrostatic Coulomb force between them. By balancing the inward and the

outward forces, then, we obtain a critical luminosity

L
Edd

=
4⇡GMm

p

c

�
T

' 1.3⇥ 1038
✓

M

M�

◆
erg/s. (1.2)

This limiting value is the so-called classical Eddington luminosity, at the luminosity above

which accreted matter will be blown o↵ by too strong radiation pressure, and a steady

accretion flow cannot be accomplished. In spite of a lot of simplification, the Eddington

limit has played a role to explain observed luminosity of accreting BHs like quasars, and

has been of great importance to provide us standard candles.

1.2 Accretion disk models

The spherically symmetric accretion flow mentioned in the previous section occurs only

when accreted gas, which should be provided from a companion star in a binary system

and from a host galaxy or an intergalactic medium in an active galactic nucleus, possesses



1.2. Accretion disk models 3

little angular momentum; it is natural that an axisymmetric accretion disk will arise

preferentially, rather than an accretion sphere. There has been proposed various kinds

of accretion disk models in the literature. In this section we briefly review some of the

representative models by focusing ourselves to steady accretion flow solutions according to

which terms are dominant in a radial momentum equation following Frank et al. (2002).

Let us consider a steady, axisymmetric flow in a cylindrical coordinate system (R,�, z).

Suppose the toroidal or azimuthal velocity is described purely by rotation, v
�

= R⌦,

where ⌦ is the angular velocity as a function of R and z. The momentum equation for

the remaining poloidal component of the velocity v
p

= (v
R

, v
z

) (we require v
R

< 0 for

accretion) is something as follows:

(v
p

·r)v
p

= �1

⇢
rP �r� + ⌦2Rê

R

+ (r · �)
p

, (1.3)

with the mass density ⇢, the sum of the thermal and radiation pressures P , the gravi-

tational potential �, and the stress tensor �. Although the last stress term related to a

dissipation process has great importance, in particular, when discussing an energy equa-

tion using the balance between heating and cooling e↵ects, we will neglect its dynamical

role. A further assumption we make here is that the gravitational potential is dominated

by contribution from the central star; in other words, the total mass of the accreted matter

is su�ciently smaller than that of the central object. This simplification allows us to set

the functional form of � a priori. By keeping in equation (1.3) at least two dominant

terms which always include gravity, we will classify several accretion disk models in the

following sections.

1.2.1 Thin Keplerian disks and ↵-viscosity

The first obvious solution arises when only the e↵ects of advection and gravity are kept;

(v
p

·r)vp = �r�. This corresponds to simple gravitational collapse, or free fall of matter

onto a central attractor. Another natural solution involves stars and stellar envelopes,

where the gravity is supported purely by the pressure gradient force; 0 = �⇢r� � rP ,

i.e., in hydrostatic equilibrium.

An important disk solution appears in the case that the gravity is radially balanced

by the centrifugal force (e.g., Shakura & Sunyaev, 1973; Lynden-Bell & Pringle, 1974;
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Pringle, 1981),

0 = � @

@R

✓
GMp
R2 + z2

◆
+ ⌦2R, (1.4)

where we have made use of the assumption of a light disk. At this point, let the disk being

geometrically thin, which requires |z| ⌧ R. Then the radial momentum equation (1.4)

yields the Keplerian rotation, ⌦ =
p
GM/R3. Considering the vertical force balance, on

the other hand, since the centrifugal force acts only in the radial direction, we retain the

pressure gradient to support the gravity. Denoting the typical scale height of the disk H,

we may set |@P/@z| ⇠ P/H. The z-component of equation (1.3) results in the relation

1

⇢

P

H
⇠ GM

R3
H = ⌦2H.

If we define the speed of sound c
s

=
p
P/⇢ and the azimuthal Mach number M

�

= v
�

/c
s

,

we finally obtain

H

R
⇠ c

s

v
�

⇠ M�1 ⌧ 1.

This relation shows that the geometrically thin assumption requires that the local Keple-

rian velocity is highly supersonic, which is clearly a constraint on the temperature strongly

dependent on heating and cooling mechanisms. In many cases this requirement is satisfied,

but at the inner region of the disk, for example, where irradiation from a central object

raises the local temperature, the thin disk approximation will break down.

In the remaining of this section, we shall make mention of the radial, or accretion,

velocity, and its connection with viscous physics. Suppose small perturbative poloidal

velocity v
p

in equation (1.3) deviated from the equilibrium described by equation (1.4).

With the radial pressure gradient neglected, and under the axisymmetry, the R-component

of the momentum equation yields

v
R

@v
R

@R
=

1

⇢


@�

RR

@R
+

�
RR

� �
��

R
+

@�
Rz

@z

�
, (1.5)

where the viscous stress are

�
RR

= 2⇢⌫
@v

R

@R
, �

��

= 2⇢⌫
v
R

R
, �

Rz

= ⇢⌫

✓
@v

z

@R
+

@v
R

@z

◆
,
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with the kinematic viscosity in the accreted matter ⌫. In an order-of-magnitude estimate,

therefore, we obtain v
R

⇠ ⌫/R using the reasonable assumption that v
z

⇠ (H/R) v
R

⌧ v
R

.

1.2.1.1 ↵-viscosity model

Thus far, we did not concern any physical mechanism to determine a specific value of the

viscosity ⌫. It is known that applying classical molecular viscosity (Spitzer, 1956) evaluated

using typical parameters expected in an accretion flow yields a radial velocity v
R

, which

is directly connected with an accretion rate Ṁ = 2⇡R
R
(�⇢v

R

) dz, much smaller than

estimates on observational grounds. In order to make further advances in accretion theories

without entering deeply into the physics of the required anomalous viscosity, Shakura &

Sunyaev (1973) introduced crude parameterization where the viscosity is assumed to be

proportional to the product of a local speed of sound and a typical scale height;

⌫ = ↵c
s

H. (1.6)

This is the noted “↵-viscosity” model. The non-dimensional coe�cient ↵ is a model pa-

rameter describing the magnitude of the viscous transport of momentum and, in particular,

angular momentum. In practical applications, 0 < ↵ < 1 is assumed generally; otherwise

a too large viscous drift velocity could lead to formation of shock waves and the picture of

a steady accretion flow cannot be associated any longer. We shall leave some more issues

on this ↵-viscosity to sections 1.3 and 1.4, and here we finally note the estimate on the

radial velocity

v
R

⇠ ↵c
s

H

R
⇠ ↵c

s

M�1 ⌧ c
s

,

which shows that v
R

is small in the thin disk approximation self-consistently.

1.2.2 Thick disks

If two di↵erent terms, in addition to the gravity, are kept in equation (1.3), we get three

types of solutions: Bondi accretion, thick disks, and slim disks. Bondi accretion is a

spherically symmetric accretion flow, which is obtained with the centrifugal force omitted

(Bondi, 1952). In this solution, matter within the Bondi radius, at which the escape ve-

locity from a central object v
esc

=
p

2GM/R coincides with the thermal speed of particles

v
th

⇠ c
s

, accretes directly without a substantial centrifugal barrier. This and the following
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subsections are devoted to describe other disk solutions.

Suppose that a rotating cloud is supported by pressure gradient force;

1

⇢
rP = �r� + ⌦2Rê

R

⌘ g
eff

, (1.7)

where g
eff

is the e↵ective gravity defined as the sum of the gravitational force and the

centrifugal force. Equation (1.7) implies that, if the cloud is embedded in an external

medium of constant pressure, the e↵ective gravity becomes perpendicular to the isosurface

of the pressure everywhere. By expressing the isosurface by z
s

= z
s

(R) as a function of the

radial position, and combining the definition of the e↵ective gravity and the orthogonality

g
eff

· ds = 0, where ds is a line element along the isosurface, we obtain

⌦2 (R, z
s

)R =

✓
@�

@R

◆

s

+

✓
@�

@z

◆

s

@z
s

@R
, (1.8)

where ()
s

indicates di↵erentiation along ds. If we assume again that the cloud does not

contribute to the gravitational potential significantly, equation (1.8) provides us the rela-

tion between the surface of constant pressure and the rotation profile of the cloud; once

the geometry of the isosurface z
s

is given, one can immediately obtain the angular velocity

⌦(R, z
s

) by solving equation (1.8), and vice versa.

For an illustrative purpose, let us consider the case that an equation for a certain cross-

section of the disk is given by a straight line with an elevation angle ✓, i.e., let us assume

z
s

(R) = ±R tan ✓, and the gravitational potential is that of the point mass, � = �GM/r,

where r =
p
R2 + z2 is the distance from the central point mass M . Keeping in mind that

� must be di↵erentiated along the surface, we obtain from equation (1.8)

⌦2 (R, z
s

) =
GM cos ✓

R3
.

Note that this is the Keplerian rotation, but corresponding to the reduced mass M cos ✓.

If we take ✓ ! 0, we retain the thin Keplerian disk discussed in section 1.2.1. By the

further assumption that the angular velocity is vertically constant in the disk, ⌦ = ⌦ (R),

the above rotation profile can be extended to the entire disk, which allows us to define the

e↵ective potential

 
eff

= � �
Z

R

⌦2 (⇠) ⇠ d⇠, (1.9)
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such that g
eff

= �r 
eff

and  
eff

= 0 on the surface z
s

. Then we can draw the equipoten-

tial surfaces  
eff

= constant, which are, as already mentioned, identical to the isosurfaces

of the pressure. The picture of the stratification is sketched in Fig. 1.1, where several

equipotential surfaces are shown by solid lines. In particular, the shaded region with

 
eff

< 0 corresponds to the geometrically thick disk with H ⇠ R, contrary to the previ-

ous thin disk, where the short scale height H ⌧ R was initially assumed. The discussion

here is a special case of the theory of rotating masses. See Tassoul (1978, 2000) for a good

summary.

Figure 1.1: Equipotential surfaces in the thick disk model. Each label indicates the value
of the normalized e↵ective potential 2 

eff

/c2. Both axes are measured in unit of the
Schwarzschild radius R

S

= 2GM/c2.

If we allow a small poloidal velocity superposed on the thick disk model, and if the

↵-viscosity is responsible for the radial drift, equation (1.6) holds again. In this case,

however, because of the large thickness of the disk H ⇠ R, the requirement of a subsonic

accretion flow implies ↵ ⌧ 1, which is more severe restriction than in the thin disk model.

In thick disks, in general, ↵ would be more like a function of both R and z than a spatially

uniform constant; nevertheless, there has been no accepted model which enables specific
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choice of such viscosity.

1.2.3 Slim disks

Another type of solutions arises when a substantial radial velocity is assumed. This

solution is called a slim disk, in the sense that the geometrical thickness of the disk is

small H < R for a relatively small accretion rate, while the thickness approaches H ⇠ R

when the accretion rate is near, or slightly larger than, the critical value Ṁ
crit

, at which

the luminosity reaches the Eddington limit. This moderately super-Eddington model was

first proposed in Abramowicz et al. (1988), on which most part of the following discussion

is based. Recent progress by Sa̧dowski (2009) extended the slim disk solution so that it

can be applied to Kerr BHs.

In the previous two models, i.e., the geometrically thin and thick disks, we implicitly

assumed that thermal energy generated by viscous heating is eventually radiated away

from the disk at the same rate as the heating rate in a steady state. The dominant

e↵ect of advection due to nonnegligible v
R

in the slim disk solution, however, allows the

dissipated heat to be advected and carried away from the disk, which provides another

cooling mechanism. To make an estimate of the condition that the advective cooling rate

Q
adv

dominates the radiative cooling rate Q
rad

, let us consider the vertically integrated

energy balance,

Q
vis

= Q
adv

+Q
rad

,

where Q
vis

is the dissipation rate by viscosity per unit surface area. Denoting the surface

density by ⌃ =
R
⇢dz, and assuming optically thick emission, we roughly obtain

Q
vis

' ⌫⌃

✓
R
@⌦

@R

◆2

, (1.10)

Q
adv

' Ṁ

2⇡R2
c2
s

, (1.11)

Q
rad

' 4�T 4
c

3
R

⌃
, (1.12)

where Ṁ = 2⇡R⌃(�v
R

) is an accretion rate, T
c

is a mid-disk temperature, � is the Stefan-

Boltzmann constant, and 
R

is the Rosseland mean opacity. These estimates suggest that,

if the accretion rate satisfies Ṁ >
�
8⇡�T 4

c

c2
s

/3
R

⌃
�
R2, the advection cooling works dom-

inantly and the structure should be modified from the standard thin disk approximation.
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In this sense, the slim disk is a more general model of the optically thick, geometrically

thin Keplerian disk extended to all accretion rates, and has been associated with bright

objects whose luminosities are close to or above the Eddington values.

The spatial structure of a slim disk for specific values of Ṁ , ↵, and so on, are, in

general, calculated numerically, so here we shall only show a simple equation to describe

the relation between the rotation profile ⌦(R) and the surface density ⌃(R). Taking the

toroidal component of the momentum equation yields

v
R

R

@
�
R2⌦

�

@R
+ v

z

@ (R⌦)

@z
=

1

⇢

"
1

R2

@
�
R2�

R�

�

@R
+

@�
�z

@R

#
, (1.13)

where

�
R�

= ⇢⌫R
@⌦

@R
, �

�z

= ⇢⌫
@ (R⌦)

@z
.

Under the condition of rotation on cylinders ⌦ = ⌦(R), which is a reasonable assumption

in many cases, integrating equation (1.13) vertically leads to

(⌃v
R

R)
@
�
R2⌦

�

@R
=

@

@R

✓
⌫⌃R3 @⌦

@R

◆
.

By noticing that the inside of the leftmost parentheses is proportional to the accretion rate

Ṁ and is constant from the equation of continuity, this equation can be further integrated

by R as follows


�2⇡⌫⌃R3 @⌦

@R

�
R

R

in

= Ṁ
�
R2⌦ �R2

in⌦in

�
= Ṁ (l � lin) ,

where l is the specific angular momentum, and the subscript “in” indicates the value at

the inner edge of the disk. If no torque is exerted at the inner edge, i.e., (@⌦/@R)in = 0,

as in the case of an accreting BH, we finally obtain

�2⇡⌫⌃
@ ln⌦

@ lnR
= Ṁ

✓
1� lin

l

◆
. (1.14)

Combined with the vertically integrated equations for poloidal momentum and energy

balance, and with appropriate boundary conditions, this relation is integrated to determine

the rotation profile in the slim disk.
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1.2.4 Advection dominated accretion flows (ADAFs)

The last model we discuss here is an advection dominated accretion flow (ADAF), which

appears when all terms in the momentum equation are retained. The ADAF solution was

first predicted by Ichimaru (1977). As its name indicates, the viscous heating rate Q
vis

is

balanced by the advection cooling Q
adv

, as well as in slim disks. The major di↵erence is

that an accretion rate assumed in the ADAF is relatively small, contrary to a rate more

or less close to the critical value in the slim disk. A smaller Ṁ simply results in a smaller

surface density, and in turn, an optically thin disk with ⌧ < 1 arises in this regime.

Suppose that the fraction f of the viscously generated energy is advected before radi-

ated away. The energy equation is then (see equations (1.11) and (1.10))

Ṁ

2⇡R2
c2
s

= f⌫⌃

✓
R
@⌦

@R

◆2

. (1.15)

This relation and three conservation laws of mass, momentum, and angular momentum

determine the radial profiles of ⌦, v
R

, ⌃, and c2
s

completely, with the help of the ↵-

viscosity model; ⌫ = ↵c
s

H = ↵c2
s

/⌦
K

, where ⌦
K

is a Keplerian angular velocity. Under

the assumption of power-law dependence on R for four variables, one can obtain the simple

relations (Narayan & Yi, 1994)

v
R

/ R�1/2, ⌃ / R�1/2, c2
s

/ R�1 and ⌦ / R�3/2.

More detailed analysis for seeking a full set of solutions reveals that c
s

= c̃v
�

with, in

general, c̃ ' 1, which implies H ' R, since c
s

/v
�

= M�1 ⇠ H/R. Thus the ADAF is

a geometrically thick accretion disk; the di↵erence from the thick disk model previously

discussed in section 1.2.2 is a non-vanishing radial velocity v
R

= ṽv
�

with ṽ ' 1.

1.2.4.1 Collisionless accretion disks

The low surface density in the ADAF has given rise to the idea of collisionless accretion

disks. If we assume that the energy exchange between protons and electrons is due to the

Coulomb collision, its timescale can be estimated by

t
E

(i-e) '
✓
m

p

m
e

◆
m

1/2
e

(kT )3/2

2⇡Ne4 ln⇤
,
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where m
p,e

, k, T , N , e, and ln⇤ denote the proton and electron mass, the Boltzmann

constant, the temperature, the number density, the elementary charge, and the Coulomb

logarithm, respectively. This timescale is compared with the infall time t
infall

= R/v
R

'
R/

�
↵c2

s

/v
�

�
. Taking the ratio between these two timescales, and assuming some typical

values, viz., T ⇠ 1010K, ln⇤ ' 20, R = 3R
S

, and c
s

⇠ v
th

, we obtain

t
E

(i-e)

t
infall

⇠ 3⇥ 1010
↵

N

✓
M

4⇥ 106M�

◆�1

, (1.16)

with N measured in unit of cm�3. The mass is normalized by the value for the BH at the

Galactic center, Sagitarius A* (Sgr A*), whose mass has been confirmed by a number of

astronomical observations based on, for example, motions of gas surrounding Sgr A* (e.g.,

Wollman et al., 1977), and motions of stars (e.g., Genzel et al., 1996; Schödel et al., 2002;

Ghez et al., 2003). Equation (1.16) suggests that, when ↵ ' 0.1, for example, su�cient

relaxation between ions and electrons cannot occur before the entropy is gotten rid of

by advection if N . 109cm�3. Then the resultant disk may become a two-temperature

ADAF. In this sense, it is a collisionless system for the ion-electron collision. The condition

for collisionless behavior for electron-electron and ion-ion collision requires more severe

constraints by factors of (m
p

/m
e

) and (m
p

/m
e

)1/2, respectively.

Fig. 1.2 shows the radial dependence of the ion and electron temperatures T
i,e

predicted

from the framework of the two-temperature ADAF model, reproduced with permission

from Narayan et al. (1995). At large radii outside 103 times the Schwarzschild radius R
S

,

the ions and the electrons well couple with each other via Coulomb collision, and have

the almost equal virial temperature. As we move to inner orbits R < 102R
S

, on the other

hand, the electrons cool e�ciently mainly by the optically thin synchrotron emission and

the inverse Compton scattering, while the ions keep their virial temperature. Thus we

naturally get a large temperature di↵erence T
i

� T
e

, which implies that the gas pressure

is dominated by the ion contribution, and therefore, only a small deviation of the ion

pressure from its thermal equilibrium, e.g., anisotropy and o↵-diagonal components in a

pressure tensor, can have a non-negligible dynamical role on the disk behavior. We will

investigate the impact of this e↵ect on accretion flows in detail in Chapter 4.
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Figure 1.2: Dependence of temperature for ions and electrons on radial distance from a
central black hole, predicted by the advection dominated accretion flow model. Reprinted
with permission from Macmillan Publishers Ltd: Narayan et al. (1995) c�1995.

1.2.5 Summary of accretion disk models

To summarize this section on the accretion theories, we show several thermally equilibrium

disks on the (Ṁ,↵⌃)-plane in Fig. 1.3 reprinted with permission from Abramowicz et al.

(1995). Fundamental assumptions made in this figure are as follows: opacity is given by

electron scattering, radiation cooling is due to bremsstrahlung emission, and disk param-

eters are M = 10M�, R = 5R
S

, and (a) ↵ = 0.1 or (b) ↵ = 0.01. Other minor di↵erences

from the discussion in this section would lead to no qualitative changes. Optically thick

and optically thin accretion disk solutions are shown by the right solid S-shaped curve

and the left solid curve, respectively. The optically thick branch can be further separated

into two stable solutions with positive slopes. The branch at an intermediate accretion

rate sandwitched by two stable branches is viscously and thermally unstable and breaks

up into discrete rings by small perturbation. The lower branch corresponds to the thin

Keplerian disk, while the upper one belongs to the slim disk model. The left optically

thin equilibrium, on the other hand, shows an ADAF solution. However, the branch cor-

responding to a lower accretion rate for a certain surface density su↵ers from a thermal
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instability. Thus only the upper equilibrium would be present in nature. For more details

on the thermal and viscous instabilities, see Lightman & Eardley (1974); Piran (1978);

Ciesielski et al. (2012) for example.

Figure 1.3: Thermally equilibrium solutions on the (Ṁ,↵⌃)-plane. Assumed disk param-
eters are M/M� = 10, R = 5R

S

, and (a) ↵ = 0.1 while (b) ↵ = 0.01. Reprinted with
permission from Abramowicz et al. (1995) c�2016 American Astronomical Society.

1.3 Constraints on ↵

The steady thin Keplerian disk model has achieved great success in explaining observed

characteristics of many systems. It is mainly because the most properties in the thin

disk model show fairly weak dependence on an actual value of ↵. In the solution derived

by Shakura & Sunyaev (1973), for example, T
c

/ ↵�1/5 for the mid-plane temperature,

⌧ / ↵�4/5 for the optical thickness, and all other variables also have the power indices

less than unity. Ignorance of the detailed physics related to viscosiy, therefore, does not

lead to any severe divergence of the resulting ↵-disk solutions. This fact, on the other

hand, gives rise to a limitation on the direct way to determine ↵; an estimate on ↵ from

observations inevitably involves a large extent of uncertainty, as long as we make use of

the steady disk structure to compare with observed properties, because similar values of
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↵ lead to quite similar structures. Thus, to find a reliable value of ↵ on the observational

ground, time-dependent phenomena should be handled apparently.

One class of such phenomena is dwarf nova outbursts, which belong to a subclass

of cataclysmic variables, and repeat sudden increase and decrease in luminosity within

the timescale of 10-3000 days (Warner, 2003). This outburst is considered to arise in

association with transition between cool, poorly ionized state and hot, highly ionized

state of an accretion disk in a close binary system possessing a white dwarf. Since the hot

state disk evolves with the viscous timescale

t
vis

⇠ R2

⌫
, (1.17)

by measuring the time taken by transition from the outburst light curves, a reasonable

estimate on an underlying value of ↵ can be made, if the disk geometry and the disk tem-

perature are known from other observational e↵orts. Based on several di↵erent techniques

and di↵erent objects, all papers in the literature conclude that ↵ in hot phases must be in

the similar range ↵ ' 0.1–0.3 (e.g., Smak, 1998, 1999; Buat-Ménard et al., 2001; Schreiber

et al., 2003).

Another class of candidates from which information on viscous process may be ex-

tracted is outburst of soft X-ray transients (SXTs), which have longer duration compared

with the dwarf nova case. The SXT outburst possesses a BH or a NS as the central accret-

ing object rather than a white dwarf, so the SXT outbursts are observed in low-mass X-ray

binaries. It would be possible that strong X-rays emitted from the central region irradiate

the outer part of the accretion disk. King & Ritter (1998) proposed that this irradiation

may keep the most part of the disk in hot, highly ionized state while brightening with

large luminosity, until substantial mass of the disk have accreted. This model naturally

explains long duration of SXT outbursts. From detailed analysis of light curves, the vis-

cosity required for SXT outbursts are estimated to lie within ↵ ' 0.2–0.4 (Dubus et al.,

2001). These two estimates from dwarf nova and SXT outbursts are in good agreement

that ↵ ' 0.1–0.4 is required to explain the transient phenomena within the framework of

the standard thin disk model.

When we focus on optically thin ADAFs like Sgr A*, on the other hand, ↵ < 0.1 might

be concluded from consideration about the maximum luminosity. A correspondence of the

optically thin ADAF for a stellar mass BH is likely to have the maximum luminosity of



1.3. Constraints on ↵ 15

a few per cent of its Eddington limit (Zdziarski et al., 2004). This value is su�ciently

smaller than the theoretical largest luminosity inferred from Fig. 1.3 for ↵ = 0.1 and sev-

eral assumptions (Abramowicz et al., 1995), which implies ↵ & 0.1 may not be necessarily

required to explain the observed luminosity. However, there still remains an expectation

for rather large ↵ from a theoretical point of view for another population of disks. Some

active galactic nuclei (AGNs), such as blazars, are thought to be combination of accre-

tion disks and collimated relativistic jets emanated from the central objects with the bulk

Lorentz factors ranging roughly within 10–100 (e.g., Marscher, 2006), while the formation

of moderate non-relativistic jets has been theoretically obtained in global magetohydrody-

namic (MHD) simulations of optically thin BH accretion flows (e.g., Machida et al., 2000,

2001). Observations of some AGNs imply that the energy output exceeds the Eddington

limit of the BH, which suggests an underlying mechanism of very e�cient energy conver-

sion from the input rest mass energy into jets. Blandford-Znajek (BZ) process is one of

the plausible mechanisms to achieve such a high conversion rate by extracting the rotation

energy of the central BH and to produce an ultra-relativistic flow (Blandford & Znajek,

1977). For BZ process to operate, however, it is required to keep a substantial magnetic

field around the rotation axis of the central BH, which should be rapidly dragged along

with the accreting matter from the surrounding disk. Apparently this rapid concentration

of the magnetic flux is driven by e�cient angular momentum transport, and the actual

e�ciency in an AGN is a controversial issue.

Tchekhovskoy et al. (2011) demonstrated by their general relativistic MHD simulations

that if large-scale magnetic flux is dragged e�ciently toward the black hole, a jet with an

extremely high energy conversion rate may be generated by a magnetically arrested disk

(MAD; Narayan et al., 2003). To achieve the MAD state, where ↵ & 0.1 is expected (e.g.,

McKinney et al., 2014), they assumed in their simulations rapid advection of the magnetic

flux via more e�cient angular momentum transport in a geometrically thick ADAF-like

disk than in a standard thin disk. Note that there have been attempts to obtain e�cient

transport of the angular momentum with the help of large-scale magnetic fields rather

than local behavior as in the picture of local ↵-prescription. Matsumoto et al. (1996), for

example, showed by two-dimensional global MHD simulations without radiation that if

the accretion disk is threaded by a large-scale magnetic field parallel to the rotation axis,

the di↵erential rotation of the disk generates torsional Alfvén waves emitted along the

field lines, which e�ciently carry the angular momentum away from the disk. Nowadays
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this mechanism is known as magnetic braking, where the large-scale magnetic field plays

a role of importance. Another example is fully three-dimensional study of global accretion

disks including vertical magnetic flux by Suzuki & Inutsuka (2014). They reported inward

dragging of the vertical magnetic field intensively around the surface regions, which would

also contribute to rapid concentration of the field. Nevertheless, it is still an open question

whether or not such e�cient transport can be sustained by a process of high compatibility

with the description of ↵-viscosity, which is expected to be related to local, or small-scale,

behavior.

1.4 Origin of ↵-viscosity

In section 1.2, we have reviewed several accretion disk models. In particular, the viscosity

was assumed to be proportional both to the local speed of sound and to the disk scale

height, together with a dimensionless parameter ↵ (cf. equation (1.6)). The ↵-viscosity is

useful to obtain a closure of the set of equations without going into details of background

viscous physics. It is, however, equally of great significance to disclose the physical mech-

anism(s) which can produce the required anomalous viscosity, and to validate, quantify,

and if needed, modify the ↵-prescription.

Another role of critical importance played by viscosity is e�cient transport of angular

momentum, which was implicitly assumed in all the accretion flow models. In fact, for

accretion to occur, the angular momentum must be transported outwardly and eventually

extracted from the accreted matter; otherwise the conserved angular momentum would

yield a substantial centrifugal barrier as the matter falls inward, and the outward force

would be inevitably balanced against the attraction of central gravity at the radius

r =
l2

GM
,

with the specific angular momentum l. Once the viscosity is given by equation (1.6), the

e�ciency of the angular momentum transport in the radial direction, which is described

by the R�–component of the stress tensor, can be expressed as

�
R�

= ⇢⌫R
@⌦

@R
' ↵P. (1.18)
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1.4.1 Magnetorotational instabilities (MRIs)

After the realization that simple molecular viscosity cannot provide su�cient ↵ required

to explain observational values, the origin of the strong viscosity has been sought for

in turbulent motion driven by instabilities in a shearing medium (e.g., Lynden-Bell &

Pringle, 1974; Pringle, 1981). In spite of various attempts, however, hydrodynamic shear

flow instabilities have failed to lead to a highly turbulent accretion disk. The major

problem was the Rayleigh criteria for stability

@

@R

�
R⌦2

�
> 0, (1.19)

which shows that a di↵erentially rotating medium is unstable only if the specific angular

momentum decreases outwardly; most accretion flows satisfy the stability condition.

A radical change of the stability criteria occurs when the e↵ect of a magnetic field is

taken into account. The MHD instability in a weakly magnetized, di↵erentially rotating

plasma, first discussed by Velikov (1959) and Chandrasekhar (1960), was rediscovered to

be a potential source of turbulence in the astrophysical context (Balbus & Hawley, 1991).

By linear analysis, this instability, which is known as the magnetorotational instability

(MRI) nowadays, is shown to be able to grow within the rotational timescale of the disk

⌦�1, if the angular velocity decreases outwardly. Namely the stability criteria in the MHD

is

@⌦

@R
> 0, (1.20)

contrary to equation (1.19) in the hydrodynamic case. Subsequent studies using fully-

nonlinear numerical simulations (e.g., Hawley & Balbus, 1991, 1992; Hawley et al., 1995),

furthermore, show that the MRI can surely be a powerful driver of MHD turbulence in its

saturated stage. In this section, the basic properties and the physical picture of the MRI

are illustrated.

We employ the ideal MHD approximation with a polytropic equation of state under
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the e↵ect of gravity of a central point mass. The basic equations are then as follows:

@⇢

@t
+ (⇢v) = 0, (1.21)

⇢

✓
@v

@t
+ v ·rv

◆
= �r

✓
P +

B2

8⇡

◆
+

B ·rB

4⇡
�r�, (1.22)

@B

@t
= r⇥ (v ⇥B) , (1.23)

P / ⇢� , (1.24)

where � is a polytropic index and other notations are standard. Let us confine ourselves

to considering the local behavior of the MRI, that is, suppose a typical lengthscale of a

disturbance under consideration, �, is much smaller than the radial distance; �/R ⌧ 1.

This assumption invokes a shearing box model, which will be used later in chapters 2 and

4. By picking up a fiducial radius R0, and moving on to the frame of reference co-rotating

with the orbital motion at R0, equation (1.22) can be rewritten in the local Cartesian

coordinates as follows

@v

@t
+ v ·rv = �1

⇢
r
✓
P +

B2

8⇡

◆
+

B ·rB

4⇡⇢
� 2⌦⇥ v + 2q⌦2xê

x

, (1.25)

where ⌦ = ⌦ê
z

is the angular velocity vector measured at R = R0, x = R � R0 is the

radial distance from the fiducial radius, and q = �d ln⌦/d lnR is the power index of a

given rotation profile, ⌦ / R�q. The vertical component of the gravity is omitted for

simplicity. The di↵erential rotation is then described in this system by a linearly varying

velocity v0 = �q⌦xê
y

.

1.4.1.1 Linear dispersion

Suppose that a plasma of the uniform mass density ⇢0 and thermal pressure P0, rotating

with v0, is threaded by a weak vertical magnetic field B = B0êz, which is an equilibrium

state in the shearing box. As in the standard procedure of linear analysis, we divide each

variable into the equilibrium value and the small deviation from it, like X = X0+X1. By

keeping only first order terms, and by expanding them into plane waves propagating on

the meridian plane, i.e., X1 / exp(�i!t+ ik ·x) with k = k
x

ê
x

+k
z

ê
z

, the basic equations

in the form of partial di↵erential equations are converted into linear algebraic equations

about ⇢1, v1, B1, and P1. Eventually, they can be reduced to a single dispersion formula
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to relate the frequency ! and the wavenumber k,

�
!2 � k2

z

v2
A

� �
!4 � k2

�
c2
s

+ v2
A

�
!2 + k2k2

z

c2
s

v2
A

�

=
�
!2 � k2

z

c2
s

�✓
2!2 � k2

z

v2
A

d⌦2

d lnR

◆
, (1.26)

where v
A

= B0/
p
4⇡⇢0 is the Alfvén velocity, and  is the epicyclic frequency, such that

2 = 4⌦2 + d⌦2/d lnR. Note that, in the non-rotating case with the right-hand side

vanished, equation (1.26) just tells the dispersion relation of MHD waves in a uniform

medium.

It is useful to take the incompressible approximation by assuming c2
s

� (!/k)2 , v2
A

,

the consistency of which will be justified a posteriori after we find growth rates of the

MRI. Then the dispersion relation can be further reduced to

⇣ !

cos ✓

⌘4 � �
2 + 2k2v2

A

� ⇣ !

cos ✓

⌘2
+ k2v2

A

✓
k2v2

A

+
d⌦2

d lnR

◆
= 0, (1.27)

where ✓ = cos�1 (k
z

/k) is the angle between the magnetic field and the direction of the

wave propagation. Once the rotation profile is given, this equation can be solved ana-

lytically to find an exponentially growing, unstable solution with !2 < 0. The growth

rates of the unstable modes under the Keplerian rotation, q ⌘ �d ln⌦/d lnR = 3/2, are

illustrated in Fig. 1.4 on the (k
x

, k
z

)-plane. The MRIs appear for wavenumbers which

satisfy k2v2
A

< 2q⌦2 for any propagation angle, but the parallel mode with ✓ ' 0 grows

faster than oblique or perpendicular modes. The maximum growth rate,

�
max

⌦
=

qp
2q⌦ + (2/⌦2)

=
3

4
, (1.28)

occurs at the wavenumber satisfying

k
max

v
A

⌦
=

s

q
2 + q⌦2

2 + 2q⌦2
=

p
15

4
, (1.29)

and, we have obtainedO �
!2/k2

� ⇠ O �
v2
A

�
, which validates the incompressible assumption

made above, when c2
s

� v2
A

. The stability condition k2v2
A

> 2q⌦2 implies that, if q is a

negative number, the MRI modes cannot be present. Thus the stability criteria in a

di↵erentially rotating, magnetized medium becomes equation (1.20), as we expected.
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Figure 1.4: Growth rates of the MRI as a function of wave vectors lying on the meridian
plane. The Keplerian rotation with d ln⌦/d lnR = �3/2 is adopted. The fastest growing
mode with �/⌦ = 3/4 appears at kv

A

/⌦ = ± �p
15/4

�
ê
z

, indicated by white plus signs.

1.4.1.2 Nonlinear simulations

The linear theory successfully predicts the presence of instabilities in a di↵erentially ro-

tating medium. To make a quantitative estimate of proper values of ↵ provided by MRI-

driven MHD turbulence, however, three-dimensional fully-nonlinear numerical simulations

are required. Hawley et al. (1995) performed a series of local shearing box simulations

including externally imposed B
z

, and showed that the strong MRI-driven turbulence leads

to ↵ ⇠ O (0.01-0.1) depending on the magnitude of the imposed magnetic flux. This value

of ↵ is calculated by the net angular momentum transport due to turbulent stress,

h�
R�

i = ↵P = h⇢v
x

(v
y

� v
y0)i+

⌧
�B

x

B
y

4⇡

�
, (1.30)

where h·i denotes an ensemble average. It is in general agreement that, in MRI-driven

turbulence, the great body of ↵ is carried by the Maxwell stress related to magnetic tension

force, rather than the Reynolds stress arising from bulk motion. This configuration with

an external B
z

has been furthered by many subsequent publications, and a scaling law
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to make an empirical estimate for isothermal gas is suggested as ↵ ⇠ 2⇡��1/2
z

, where

�
z

= 8⇡P/B2
z

is a plasma beta measured by the gas pressure and the initially assumed

vertical magnetic field (Sano et al., 2004; Pessah et al., 2007). In the case of adiabatic

gas, the resultant ↵ becomes smaller by one or two orders of magnitude when normalized

by gradually increasing thermal pressure.

It appears that ↵ obtained from the shearing box simulations with net vertical magnetic

flux is su�cient to explain observed values if the equation of state is close to isothermal

and �
z

ranges around 250–4000. There is, however, no obvious ground for the presence

of such an external magnetic field threading an accretion disk, and thus it would be more

appropriate to consider a local domain with no net magnetic flux. There also have been

zero-net-flux simulations by a number of authors with and without vertical gravity (e.g.,

Brandenburg et al., 1995; Stone et al., 1996; Sano et al., 2004; Davis et al., 2010), and,

unfortunately, almost all papers report the values of ↵ smaller than observations by at

least one order of magnitude, ↵ . 0.02. It is, therefore, still an open question whether or

not the magnetorotational instability is really able to produce a su�cient rate of angular

momentum transport in fully-ionized, collisional accretion disks.

1.4.2 Collisionless MRIs

As already discussed in section 1.2.4 and section 1.3, there is a strong implication of

collisionless accretion disks on both observational and theoretical grounds. The low-

collisionality of accreted matter leads to significant deviation from its thermal equilibrium

state, which means the standard MHD approach taken in previous studies becomes no

longer valid. The first attempt to investigate the nature of angular momentum transport

in a collisionless disk beyond the standard MHD description was made by Quataert et al.

(2002), where kinetic theory was applied to the MRI with wavelength much longer than

the proton Larmor radius. They assumed a gyrotropic pressure tensor with the form of

p = p?I+
�
p|| � p?

�
b̂b̂, (1.31)

where p||,? denote the pressures measured in the direction parallel and perpendicular to

a local magnetic field, I is the unit tensor, and b̂ = B/B is the unit vector directed to

the magnetic field. By combining this pressure with the second moment of the linearized

drift-kinetic equation (e.g., Snyder et al., 1997), they confirmed the linear growth of kinetic
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MRIs, the properties of which largely depend on the orientation of the magnetic field and

the wavevector, and also on the ratio of the gas pressure to the magnetic pressure. The key

issues of the kinetic MRI are the destabilization e↵ect and additional angular momentum

transport via anisotropic pressure gradient force, which is not present in MHD.

For the purpose of illustrating the impact of anisotropic pressure on linear growth of

MRIs, let us consider a simplified case; we adopt the double adiabatic equations of state

to describe the linear response of p|| and p? (Chew et al., 1956; Kulsrud, 1983) instead of

self-consistent kinetic treatment,

⇢B
D

Dt

✓
p?
⇢B

◆
= �r · q? � q?r · b̂ = 0, (1.32)

⇢3

B2

D

Dt

 
p||B

2

⇢3

!
= �r · q|| + 2q?r · b̂ = 0, (1.33)

which are obtained by the neglect of heat flux in the kinetic MHD, q? and q||. Following

the procedure described in section 1.4.1, in particular for the parallel mode with ✓ = 0,

we obtain quite similar dispersion relation,

!4 � �
2 + 2"k2v2

A

�
!2 + "k2v2

A

✓
"k2v2

A

+
d⌦2

d lnR

◆
= 0, (1.34)

where " = 1 � 4⇡
�
p|| � p?

�
/B2 is a dimensionless parameter to characterize anisotropy

of the background velocity distribution function. This equation is the almost same one

as equation (1.27) except that the Alfvén speed v
A

is replaced by a modified value
p
"v

A

.

This fact implies that a change in " simply elongates (shortens) an unstable wavelength of

the MRI for " < 1 (" > 1), while the maximum growth rate remains at a same value. This

is because the e↵ective magnetic tension force under an anisotropic pressure is corrected

by a factor of ". For small ", centrifugal force of fast particle motion along a bent magnetic

field line tends to reduce the original tension force. Under the opposite anisotropy, on the

other hand, fast cyclotron motion makes the line of magnetic force more rigid.

Showing behavior of oblique modes requires more general treatment, which includes

the e↵ect of compressibility explicitly, and the e↵ect of heat flux as well. We adopt the
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Landau closure model (e.g., Snyder et al., 1997),

q|| = �
r

8

⇡
⇢0c||0

ik||
�
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�
��k||

�� , (1.35)
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✓
1� p?0

p||0

◆
ik||B��k||
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which can correctly capture the linear Landau dumping. Fig. 1.5 illustrates linear growth

rates for various combination of �|| and �?, which are defined as ratios of phase speeds

rather than pressures, with the same format as in Fig. 1.4. Panels (a) and (b) compare

the dependence on �. In spite of the isotropic pressure, i.e. �|| = �?, the highly unstable

regimes are squeezed along the magnetic field, especially for the high-� case, where the dif-

ference in the linear response between the parallel and perpendicular pressures is reflected

more significantly. As mentioned in the case of the parallel and adiabatic mode, panels

(c) and (d) show the shifts of unstable wavelengths. Note that the maximum growth rate

takes the same value � = 0.75⌦ among these four cases. Panel (e) shows the appearance

of a di↵erent unstable mode for a negative ", which is the firehose instability modulated

by the di↵erential rotation. Panel (f), on the other hand, represents another instability in

the oblique direction occurring under opposite anisotropy, i.e., the mirror instability. It

is not surprising that the firehose and the mirror instabilities exhibit larger growth rates

without bound as the wavenumber increases, because any stabilizing e↵ect, such as finite

Larmor radius e↵ect or pitch-angle scattering, is not included in the present system.

To make further quantitative discussion, Sharma et al. (2006) performed a series of

nonlinear simulations of the collisionless MRI with the kinetic MHD framework, paying

special attention to the angular momentum transport due to the anisotropic pressure

gradient force. They employed the shearing box model threaded by an externally imposed

vertical magnetic field without vertical gravity. Although the collisionless MRI has quite

di↵erent properties from those in the collisional regime, their simulations reveal that the

total e�ciency of the angular momentum transport is qualitatively similar to that in

the standard MHD, while ↵ maintained by anisotropic pressure stress reaches a value

comparable to the magnetic stress. Note that, under the assumption of a gyrotropic

pressure tensor, the transport e�ciency of the angular momentum can be written as

h�
R�

i = ↵P = h⇢v
x

(v
y

� v
y0)i+

⌧
�B

x

B
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+
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Figure 1.5: Growth rates of MRIs for various combination of plasma beta, �||,? = c2||,?/v
2
A

.

Panels (e) and (f) show appearance of the firehose and the mirror instabilities under 5%
of pressure anisotropy.

The results, however, still involve a lot of uncertainty. Examples include dependence on

the isotropization model they assumed, which is related to micro-instabilities expected to

occur in an anisotropic plasma, turbulence intensity achieved without external magnetic
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flux, the e↵ect of radial and vertical stratification, and the influence of boundless increase

in thermal energy resulting from exclusion of all possible cooling mechanisms.

Meanwhile, recent increase in computational power has enabled us to solve the kinetic

equation self-consistently by means of the particle-in-cell (PIC) method, where a velocity

distribution function is represented by an ensemble average of Lagrangian particles. Two-

dimensional full PIC 1 (Riquelme et al., 2012; Hoshino, 2013) and hybrid PIC 2 (Kunz

et al., 2014; Shirakawa & Hoshino, 2014) simulations have been reported in this context,

and the growth of MRIs in a collisionless shearing plasma is generally confirmed. For quan-

titative investigation of MRI-driven turbulence, however, three-dimensional calculation is

apparently required. The only report adequate for estimates of ↵ during the saturated

stage of the MRI was given by Hoshino (2015), where they solved the three-dimensional

shearing box without stratification using a full PIC code. They demonstrate that the rate

of angular momentum transport is enhanced in collisionless MRI turbulence to the order of

↵ ⇠ O (0.1) even when normalized by gradually increasing instantaneous pressure. This

↵ is larger than values measured in the same way both in standard and kinetic MHD

simulations without cooling mechanism by at least one order of magnitude. While MHD

simulations employing an isothermal equation of state happen to predict similar values of

↵ ⇠ O (0.1) for the same range of an initial plasma beta � ⇠ 103 (Sano & Inutsuka, 2001;

Minoshima et al., 2015), the relation with the kinetic study is quite ambiguous. It is also

unknown whether the high e�ciency of transport in collisionless MRI turbulence can be

maintained without externally imposed magnetic flux.

1.5 Goal of this thesis

1.5.1 Motivation

In this chapter, we have reviewed that the progress in accretion disk theories largely re-

lies on the crude assumption of ↵-viscosity. The underlying physics of turbulence hidden

behind the ↵-viscosity has been gradually disclosed since the rediscovery of the magnetoro-

tational instability, with the great help of numerical simulations. As we already discussed,

however, there is still large amount of uncertainty in theoretical estimates on ↵, which

strongly depend on the magnetic configuration and strength, presence of the vertical grav-

1

Both ions and electrons are treated as discrete particles.

2

Ions are treated as particles, while electrons are fluid with large or infinite mobility to ensure the

charge neutrality.
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ity, an equation of state, collisionality, and so on. In addition, we have a substantial

discrepancy between observationally estimated values and those obtained from MHD sim-

ulations. In that sense, we have not yet reached full agreement about the mechanism of

the angular momentum transport in accretion disks. Motivated by the theoretical insu�-

ciency of turbulent viscosity, in the prior part of this thesis, we will seek a new possible

path to drive MHD turbulence in a di↵erential rotating plasma, which could contribute

to the angular momentum transport in addition to the MRI.

In collisionless disks expected to realize in ADAFs, on the other hand, PIC and kinetic

MHD simulations shows that the anisotropic pressure gradient force seems to contribute

to the angular momentum transport to the extent comparable to the contribution of the

Maxwell stress. In particular, the PIC simulations demonstrate a possibility for MRI

turbulence in the collisionless regime to provide su�ciently large viscosity close to an

observationally expected level. Nevertheless, to the same degree or more than in the

collisional disk cases, substantial theoretical uncertainty that must be elucidated remains.

In the posterior part of this thesis, we will tackle numerical investigation to give new insight

into the transport process of angular momentum in collisionless disks from the viewpoint

of large-scale dynamics. In particular, we focus ourselves on the e↵ect of vertical disk

structure, or the stratification, by inclusion of the vertical component of the gravity. For

this purpose, the fully kinetic approach, like a PIC simulation, is unable to be applied,

because there is a large scale gap between disk scales which are of interest and kinetic

scales to be resolved in kinetic simulations. Instead, we adopt a variant of the kinetic

MHD model. The fluid-based approach, which possesses a scale-free property as in the

standard MHD, gives us a powerful tool to study the large-scale behavior of the collisionless

disks. We will work out the role of an anisotropic pressure tensor in the context of viscous

and transport process, and furthermore, make attempts to give an integrated knowledge.

1.5.2 Structure of this thesis

This thesis consists of five chapters. Here in chapter 1, we provide general introduction

related to various accretion disk theories, the role of ↵-viscosity in them, and its possible

origin. In chapter 2, we propose a new type of instability which is expected to occur in col-

lisional accretion disks dominated by toroidal magnetic field, to compete/cooperate with

the conventional MRIs, and to contribute to the angular momentum transport. Results in

this chapter is reported in Hirabayashi & Hoshino (2016). Chapter 3 explains our numeri-
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cal technique newly developed to carry out collisionless MHD simulations accompanied by

su�cient test problems, most part of which is published in Hirabayashi et al. (2016). By

using the method introduced in chapter 3, we discuss the angular momentum transport in

collisionless accretion disks in the framework of local shearing box including the e↵ect of

vertical gravity in chapter 4. This is the first attempt to approach the large-scale dynamics

of collisionless disks. Finally, chapter 5 is devoted to general discussion and concluding

remarks.
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Chapter 2

Instability of Toroidal Magnetic

Field in Collisional Accretion

Disks

2.1 Introduction

Accretion disks are one of the most ubiquitous astrophysical objects, comprising dynamics

such as astrophysical jets, disk winds, and particle acceleration. It is widely believed that

these dynamical phenomena are driven by the anomalous transport of angular momentum

and the subsequent release of gravitational binding energy. Several mechanisms have

been proposed in attempts to explain the origin of this angular momentum transport.

Examples include magnetic braking by external, large-scale magnetic fields (e.g., Blandford

& Payne, 1982; Stone & Norman, 1994), non-axisymmetric wave excitation (e.g., Fragile &

Blaes, 2008), and hydrodynamic/hydromagnetic turbulence (e.g., Papaloizou & Pringle,

1984; Balbus & Hawley, 1998). In this chapter, we consider a mechanism related to

the third example, which is the sole candidate that possesses a high correlation with

conventional ↵-viscosity model (Shakura & Sunyaev, 1973). In the ↵-viscosity model, the

e�ciency of angular momentum transport, which is determined by the R�-component of

the stress tensor, is determined as the product of the pressure and a given parameter ↵.

The value of ↵ depends significantly on viscosity physics, but the simple molecular viscosity

in an accretion disk cannot provide a high e�ciency of angular momentum transport

suggested by observations (Cannizzo et al., 1988). Since the astrophysical importance of

29
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magnetorotational instability (MRI) as the origin of required turbulence was pointed out

(Balbus & Hawley, 1991, 1998), a number of authors have investigated the nature of MRIs

and the resultant turbulence in accretion disks over a wide range of plasma parameters

(e.g., Stone et al., 1996; Sano & Stone, 2002; Kunz & Lesur, 2013; Hoshino, 2015; Bai,

2015; Zhu et al., 2015; Simon & Hawley, 2009; Simon et al., 2012).

In order to study the basic behavior behind the nonlinear time evolution of MRIs,

most numerical studies on the local properties of MRI-induced turbulence have adopted

the shearing box model (Hawley et al., 1995; Sano & Inutsuka, 2001; Sharma et al., 2006),

which can capture the wave vector toward an arbitrary direction in a di↵erentially rotating

plasma. Since an MRI with a vertical wave vector has the maximum growth rate for

an axisymmetric perturbation when the background magnetic field is purely poloidal,

fully three-dimensional simulations, or at least two-dimensional ones including a vertical

axis, are necessary. (Note that the final states in two- and three-dimensional cases are

rather di↵erent from each other, and that the three-dimensional simulations are required

to investigate the saturation stage.)

The situation is similar when the unperturbed magnetic field is purely toroidal. For

example, Balbus & Hawley (1992) investigated the linear stability of an accretion disk

threaded by a uniform toroidal magnetic field assuming three-dimensional wavevectors

in the cylindrical coordinates, whose R-component varies with time because of the back-

ground shear velocity. They showed that the perturbation satisfying k · V
A

. ⌦ can

become unstable, in the sense that the amplitude of oscillation increases with time. More-

over, a finite vertical wavenumber, k
z

, is required for the instability to occur, and the

larger k
z

leads to the faster amplification. The nonlinear evolution of this oscillatory in-

stability was also examined by Hawley et al. (1995) using three-dimensional ideal MHD

simulations, and the contribution to turbulence generation was confirmed.

Other examples include linear eigenvalue analyses and the corresponding MHD simu-

lations by Matsumoto & Tajima (1995). They revealed that purely growing eigenmodes

can exist in a shearing plasma, in contrast to the above oscillatory unstable modes. For

a Keplerian disk, only the non-axisymmetric perturbations with k2
y

/k2
z

< 0.015 become

purely growing modes, where k
y

and k
z

are the azimuthal and vertical wavenumbers, re-

spectively. The vertical waves, therefore, again contribute to the unstable modes most

significantly, although a finite azimuthal wavenumber is required.

Such a situation, where the toroidal magnetic field is dominant, is thought to appear
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easily in the nonlinear stage of an MRI even when starting from a poloidal field. For

understanding the dynamics and the nature of turbulence in well-developed disks, there-

fore, it should be important to investigate a plasma stability under a purely toroidal field.

On the other hand, the toroidal magnetic field is subject to parasitic instabilities such

as a Kelvin-Helmholtz and a tearing instabilities, which is expected to induce spatially

non-uniform magnetic field. We found that, once the non-uniformity in a toroidal field

is taken into account, a new type of unstable modes which does not require any finite

k
z

appears, in contrast to the previous studies that always required k2
z

> k2
y

under a

uniform field. In this chapter, we provide the results of linear and nonlinear analyses on

this issue, and suggest another possible path leading to turbulence generation. We will

call the unstable modes proposed here as “magneto-gradient driven instability (MGDI)”

reflecting its driving source as shown in the succeeding sections. An instability bound to

the equatorial plane may play a crucial role in plasma transport, as it could potentially

couple with magnetic reconnection occurring in the plane and contribute to the saturation

mechanism of MRIs.

The outline of this chapter is as follows. In section 2.2, we briefly introduce the

setup of our theoretical study and show the existence of unstable eigenmodes by linear

analysis. Section 2.3 discusses the results of the fully-nonlinear two-dimensional numerical

simulations. The nonlinear calculations corresponding to the linear study and ones which

can lead to more turbulent states are presented. Finally, section 2.4 is devoted to the

summary and conclusion of our results.

2.2 Linear analysis

In this section we investigate the linear stability of a non-uniform toroidal magnetic field

in a di↵erentially rotating plasma. In particular, a simplified situation with a localized

toroidal magnetic field channel is considered to extract the physical essence of underlying

unstable modes.
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2.2.1 Equilibrium state and linearized equations

The ideal MHD equations incorporated with the standard shearing box model are em-

ployed as the basic equations (Stone & Gardiner, 2010):

@⇢

@t
+ v ·r⇢ = �⇢r · v, (2.1)

⇢

✓
@v

@t
+ v ·rv

◆
= �r

✓
p+

B2

2

◆
+B ·rB� 2⇢⌦⇥ v � 2⇢⌦xv0

y0êx, (2.2)

@B

@t
= r⇥ (v ⇥B) , (2.3)

@p

@t
+ v ·rp = ��pr · v. (2.4)

The radial and azimuthal directions are then interpreted as the x- and y-axes in the local

Cartesian coordinate system, where the di↵erential rotation is described by a linearly

changing background velocity defined as v
y0 (x) = �q⌦x, using an angular velocity at the

center of the computational domain, ⌦, and a positive constant, q. Since ·0 denotes the

radial dirivative, v0
y0 = �q⌦ is a constant. Note that the factor 1/

p
4⇡ is absorbed into

the definition of a magnetic field. The specific heat ratio, �, is set to be 5/3, and the other

notations are standard.

When a purely toroidal magnetic field is imposed, the background shearing plasma is

kept in an equilibrium state as long as the total pressure is spatially constant. We can,

therefore, choose an arbitrary magnetic structure with a finite gradient. Here, we focus

on the idealized case with a simple localized toroidal field,

B
y0 (x) = B0 cosh

�2 (x/d) , (2.5)

where B0 is the field strength at x = 0 and d is the typical width of the localized field. The

gas pressure is determined so as to satisfy the total pressure balance, and the background

density is distributed so as to keep the temperature uniform.

Next, we linearize the MHD equations around this equilibrium state, assuming the

functional form of a small perturbation as

f1 (x, y, t) = f1 (x) exp (�i!t+ ik
y

y) . (2.6)

The vertical dependence is ignored to pick up horizontally confined modes. Using the

vector potential instead of the magnetic field, linearization of the basic equations leads to
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the following eigenvalue problem:

!U1 = MU1, (2.7)

where U1 = (v
x1 v

y1 A
z1 p1)T is a first-order perturbation vector, and M is a coe�cient

matrix whose components are given as follows,

M = k
y

v
y0I+D,

D =

0

BBBBBB@

0 2i⌦ D13 � (i/⇢0) @x

D21 0 �k
y

B0
y0/⇢0 k

y

/⇢0

iB
y0 0 0 0

D41 �k
y

p0 0 0

1

CCCCCCA
,

D13 = (i/⇢0)
⇥
B

y0

�
@2
x

� k2
y

�
+B0

y0@x
⇤
,

D21 = �iv0
y0 � 2i⌦,

D41 = �ip00 � i�p0@x.

Here, I is the identity matrix, and @
x

and ·0 indicate di↵erentiation operators by x. Note

that the equations for v
z1 and B

z1 are decoupled as ordinary shear Alfvén waves. Although

the density perturbation, ⇢1, appears to disappear from the basic equations, compressional

modes remain in the system and ⇢1 can be obtained passively from r · v1.

Finally, equation (2.7) is discretized in the computational domain |x/L
x

|  1 with 400

grid points using a fourth-order central di↵erence. The width of the localized field is set

to be d = 0.05L
x

. As a boundary condition, a conducting wall is assumed at |x/L
x

| = 1.

The eigenvalues, !, and the eigenvectors, U1, are then computed numerically.

2.2.2 Growth rates

From our calculations of the eigenvalue problem described above, we obtained at most one

growing mode of the MGDI for each particular wavenumber. The results are summarized in

Fig. 2.1, where the color contour shows the imaginary parts of the eigenvalues as a function

of the wavenumber, normalized by the width of the localized field, and the plasma beta,

� = 2p/B2, measured at x = 0. Note that the real parts are zero in a machine precision.

Fig. 2.1 indicates that the purely growing mode appears if � is lower than about 100,

and that the growth rate becomes larger with the initial magnetic field strength. When �
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Figure 2.1: The color contour of growth rates as a function of the plasma beta and the
wavenumber normalized by d, which is the width of the localized toroidal field. The
gradient of the angular velocity, q, is set to unity.

is equal to unity, the maximum growth rate reaches 0.765⌦, which is comparable to that

of the axisymmetric MRI, i.e., 0.75⌦, as far as the linear approximation is appropriate.

We emphasize here that the magnitude of the velocity shear, q, is assumed to be unity in

Fig. 2.1 for theoretical simplicity, which is smaller than in the case of Keplerian rotation,

where q = 1.5. In the Keplerian rotation case, we expect more unstable eigenmodes due

to the stronger shear motion.

A physical picture of the MGDI can be explained as follows. Let us consider an outward

going perturbation in v
x1 away from x = 0, i.e., positive for x > 0 and negative for x < 0.

Since the linearized equation for the azimuthal magnetic field can be written as

dB
y1

dt
= �B

y0
@v

x1

@x
�B0

y1vx1 � q⌦B
x1, (2.8)

where d/dt = @/@t+ v0 ·r is a Lagrangian derivative, such outward v
x1 directly induces

the increment in B
y1 through the second term in the right-hand side. This term comes

from the linearized advection, which represents the fact that a fluid element brings the

frozen-in magnetic field line from the original position of the stronger magnetic field. On

the other hand, a linearized version of the equation of motion for the radial velocity is as
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follows,

⇢0
dv

x1

dt
= �@p1

@x
� @

@x
(B

y0By1) +B
y0
@B

x1

@y
+ 2⇢0⌦v

y1. (2.9)

Note that the tidal force term is exactly canceled by the Coriolis force working on the

zeroth-order velocity. The second and third terms in the right-hand side represent the

magnetic pressure gradient and the magnetic tension force, respectively. The magnetic

pressure can be further decomposed into two contribution from �B0
y0By1 and �B

y0@xBy1.

The increase in B
y1, then, leads to further expansion force via the first component of the

magnetic pressure, which implies a positive feedback. This feedback process will continue

to work as long as the finite gradient in the background magnetic field is available.

As well as the growth rates, the range of unstable wavenumbers also tends to broaden as

the plasma beta decreases, especially toward the long-wavelength side. The smallest scale,

on the other hand, seems to always be limited roughly by k
y

d < 0.5, which corresponds

to the wavelength one order of magnitude larger than d. This bound could be understood

qualitatively by competition between the magnetic pressure gradient force, which is a

driver here, and the magnetic tension force working as restoring force. For the feedback

mechanism described above to work, it is clear that the expansive nature of the magnetic

pressure needs to dominate over the tension e↵ect. These promoting and restoring e↵ects

can be rearranged into the form of the Lorentz force, J1⇥B0 and J0⇥B1. The schematic

view of the situation is illustrated in Fig. 2.2. Then, the condition that the expansive term

outpaces the restoring force is roughly estimated as

����
@B

y0

@x
B

y1

���� >
����
@B

x1

@y
B

y0

���� .

Replacing the derivatives by typical scales like 1/d and k
y

, we obtain the rough estimate,

1/d > k
y

, which is consistent with the unstable range in Fig. 2.1. The situation seems

similar to the case of a magnetic bouyancy instability, where the magnetic buoyancy plays

a role of a driver instead(e.g., Parker, 1955; Mo↵att, 1978). Although the non-uniformity

of a magnetic field is essential in both instabilities, the present mode is related to radial

velocity perturbation, rather than the vertical velocity as in the magnetic buoyancy mode.

The destabilization mechanism described above seems not to be related to the di↵eren-

tial rotation. For the comparison purpose, growth rates in a rigid-rotating plasma, which

is described by q = 0, are shown in Fig. 2.3 with the same format as in Fig. 2.1. This panel
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x

y

x

y

Figure 2.2: Schematic view of first-order Lorentz forces. In the left panel, the background
current (J0; gray circles) makes expansive Lorentz force (black arrows) combined with
the perturbed magnetic field (B1; black lines). The resultant force works to increase
the perturbation, like shown by the red arrows. In the right panel, on the other hand,
a cross product of the first-order current (J1; black circles), which is generated by the
perturbed magnetic field, and the background magnetic field (B0; gray lines) makes the
inward Lorentz force, which always works as the restoring force.

indicates the existence of unstable modes over a range similar to that in the di↵erentially

rotating case. The qualitative dependence on k
y

and � also resembles that in Fig. 2.1, but

the magnitude of the growth rate becomes smaller by a factor of 2 for � = 1, and much

more for larger �. Therefore, it can be concluded that this instability arises originally from

the gradient of the magnetic field itself, and can attain a large growth rate comparable to

that of the standard MRI only when incorporated with the shearing motion.

2.2.3 Eigenfunctions

Let us discuss the structure of the eigenfunctions. Fig. 2.4 shows two-dimensional rep-

resentation of the Fourier decomposed eigenfunction, U1, superposed on the background

equilibrium state, U0, where U1 is normalized to satisfy |U1| / |U0| = 1. Based on the

normalized case in panel (b), the states before and after twice the e-folding time are shown

in panels (a) and (c), respectively. The plasma beta and the wavenumber are chosen to

be � = 100 and k
y

d=0.223, and the corresponding point on the k
y

-� diagram is plotted

in Fig. 2.1 by an outlined circle. In each panel, the color contour, the solid lines, and the
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Figure 2.3: The color contour of growth rates in a rigid-rotating plasma, q = 0, with the
same format as in Fig. 2.1.

vector field show the gas pressure distribution, the lines of magnetic force, and the bulk

velocity, respectively.

Fig. 2.4 shows that bending of the field line broadens with time, and eventually spreads

out beyond the initial width of the equilibrium field, d = 0.05L
x

. This broadening of the

field line is explained by the destabilization process described in the previous subsection,

i.e., the outward magnetic pressure gradient force exceeding the inward magnetic tension

force may further expand the magnetic field explosively. In addition to the expansion in

the x-direction, the field lines are also stretched in the y-direction by the so-called ⌦-e↵ect

due to the background shear motion, and thus the magnetic field lines become inclined

downward to the right. In other words, B
x

and B
y

tend to have negative correlation. It

can, therefore, be expected that the MGDIs have the potential to contribute to powerful

angular momentum transport, creating the averaged Maxwell stress, h�B
x

B
y

i, once they

develop to nonlinear turbulence.

Other features of importance include vortex structure around the nodes of the magnetic

field lines in panel (c). In particular, the clockwise vortices at every other node, which

align with the di↵erential rotation, are selectively enhanced. Since the Coriolis force works

rightward to the direction of motion, the inside of the clockwise vortex is compressed, and

the other is expanded. The selective enhancement, on the other hand, makes the magnetic
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Figure 2.4: Two-dimensional views of an unstable eigenfunction with the wavenumber
k
y

d = 0.223, superposed on the background plasma with � = 100. The corresponding
growth rate is 0.039⌦. The color contour, the solid lines, and the vector map indicate
the gas pressure, the magnetic field lines, and the velocity, respectively. The first-order
eigenfunction U1 is normalized by |U1| = 1. From left to right, the amplitude of the
eigenfunction increases 2e-fold.

field lines loosened around the clockwise vortex as if a tightly stretched rope is reeled up.

This leads to the negative correlation between the gas pressure and the magnetic pressure,

which implies that the present unstable mode is essentially related to slow-magnetosonic

waves.

Looking at Fig. 2.4, one may associate the MGDIs with current-driven instabilities

(CDIs), which are thought to contribute fast dissipation of magnetic energy in various

astrophysical contexts (e.g., Mignone et al., 2010; O’Neill et al., 2012; Mizuno et al.,

2014). Although the characteristic that both unstable modes are driven by magnetic non-

uniformity is common, we consider the MGDI as a fundamentally di↵erent mode from

the CDI. To clarify the di↵erence, for example, notice that the wavevector of the CDI is

essentially parallel to the background electric current, which drives the instability. In the

case of the MGDI, on the other hand, the background current has only an out-of-plane

component, which is obviously perpendicular to wavevector of the perturbation.

Figs. 2.5 and 2.6 show the eigenfunctions for the cases with �=10 and 1, respectively,

in the same format as in Fig. 2.4. The wavenumber is again assumed to be k
y

d=0.223.
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Since the magnetic tension force, working as a restoring force, becomes stronger with

an increase in the magnetic field strength, it becomes more and more di�cult to bend

the magnetic field lines significantly, and the unstable mode seems to localize around the

initial channel. It should be noted that the localization of the eigenfunction and its growth

rate is a di↵erent matter. The growth rate actually becomes greater with the background

magnetic field strength increased, as shown in Fig. 2.1, due to a large gradient of the field.

Figure 2.5: Unstable eigenfunction with � = 10 and k
y

d = 0.223. The format is same as
in Fig. 2.4. The growth rate is 0.430⌦.

While this localization implies a small B
x1 compared with the initial B

y

, how it a↵ects

the average value of the Maxwell stress is not trivial. The estimate of the e�ciency of the

angular momentum transport is tightly connected with the nonlinear behavior and the

problem of the saturation mechanism. In the next section, we will discuss the significant

contribution of the present instability to the stress, using nonlinear simulations.

2.3 Nonlinear simulations

This section provides the results of fully-nonlinear MHD simulations designed to validate

the presence of MGDIs suggested in the previous section and to investigate the nonlinear

time evolution. Specifically, we focus on the e�ciency of angular momentum transport.
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Figure 2.6: Unstable eigenfunction with � = 1 and k
y

d = 0.223. The format is same as in
Fig. 2.4. The growth rate is 0.675⌦.

2.3.1 Basic equations and simulation codes

We solve the same equations as used in the previous section, i.e., from equation (2.1) to

(2.4), but rewritten in the semi-conservative form:

@⇢

@t
+r · (⇢v) = 0, (2.10)
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where e = ⇢v2/2 + p/(� � 1) +B2/2 is the total energy density, and the other notation is

same as in the linear analysis. The specific heat ratio is again set to be � = 5/3. All quan-

tities are spatially discretized by using the finite di↵erence approach in a computational

domain, (x, y) 2 [�L
x

, L
x

]⇥ [0, 2⇡L
x

], which is resolved with 200⇥600 grid points.

We calculate the flux with the help of the HLL approximate Riemann solver (Harten

et al., 1983) at the face center, where the primitive variables, i.e., ⇢, v, B, and p, are evalu-

ated as point values by combining a 5th-order weighted essentially non-oscillatory (WENO)
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interpolation (Liu et al., 1994; Jiang & Shu, 1996) and the monotonicity preserving lim-

iter (Suresh & Huynh, 1997). The point-value flux is then converted to the appropriate

numerical flux with a 6th-order formula (Shu & Osher, 1988). The cell-centered conser-

vative variables are finally updated using the 3rd-order TVD Runge-Kutta method (Shu

& Osher, 1988). To avoid a spurious magnetic monopole, the HLL-upwind constrained

transport (UCT; Londrillo & del Zanna (2004)) treatment is employed for updating the

face-centered magnetic field, in which the edge-centered electric field is evaluated using

WENO interpolation and the HLL average. Note that the results to be shown in this

section will not largely change, even if the HLLD Riemann solver, which is more accurate

than the HLL Riemann solver especially in high-� plasmas (Mignone et al., 2007, 2009),

is employed instead. The quantitative behavior of statistics, however, slightly di↵ers due

to the higher resolution of each wave mode. In particular, less di↵usivity is preferable to

larger stress related to turbulent motion in small scales.

2.3.2 A single localized magnetic field

Our initial condition is set to be a superposition of exactly the same equilibrium state

considered in the linear analysis and a random perturbation of the in-plane velocity, the

amplitude of which is fixed to 1% of the sound speed measured in an unmagnetized region.

Without the random perturbation, the system would remain in the initial equilibrium

state. To calculate the long time evolution of the system, we implement the standard

shearing periodic boundary condition. Even if one adopts a conducting wall boundary,

the results do not change in the early stage, before the distorted magnetic fields approach

the radial boundary.

From left to right in Fig. 2.7, snapshots of the simulations with �=100, 10, and 1

taken at time ⌦t/2⇡ = 20 are shown. The format of each panel is same as in Figs. 2.4

to 2.6 except for the range of the y-coordinates. All of these cases show the negative

correlation between B
x

and B
y

reflected as the downward-sloping magnetic field lines,

which contributes to angular momentum transport. While the linear theory discussed

in the previous section predicts broadband growth for a stronger initial field, the typical

scale of the bending of the field line is clearly larger for smaller �, which suggests that the

magnetic tension force works more e�ciently in nonlinear evolution and then the growth

of short waves is suppressed. In larger � cases, on the other hand, the bent mean structure

and other small-scale magnetic structures appear. Such structures first grow along the both
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sides of the initial field, where the large gradient |@B
y

/@x| exists, and then they are torn o↵

from the mean field by magnetic reconnection. (Note that magnetic reconnection occurs

via numerical resistivity, but the nonlinear evolution does not change by assuming a finite

resistivity.) In any case, the nonlinear growth up to torsion of the localized magnetic field

is ascertained. Note that the stage where the linear theory is applicable finishes instantly,

since the growing perturbed field quickly breaks the background structure of the initial

magnetic field.

Figure 2.7: Snapshots of the MHD simulations at twenty times the orbital period. The
color contours, solid lines, and arrows represent the gas pressure, the lines of magnetic
force, and the in-plane velocity, respectively.

Fig. 2.8 summarizes the box-averaged stress as a function of time. The xy-components

of the Reynolds stress and the Maxwell stress normalized by the initial gas pressure, or

the so-called ↵-parameters, are plotted in each panel. The instantaneous Reynolds stress

generally fluctuates significantly with time, but the temporal average over the interval

15  ⌦t/2⇡  20 takes a positive value of the order of 10�3. The Maxwell stress, on

the other hand, remains positive during the nonlinear evolution, which is still smaller by

one or two orders of magnitude compared with the local three-dimensional simulations of



2.3. Nonlinear simulations 43

MRIs (Hawley et al., 1995, 1996, etc.). Note that the case of � = 100 shows a remarkably

small value in spite of a more broken structure, due to the weakness of the initial field.

Figure 2.8: Time histories of the box-averaged stress. The left and right panels show the
xy-components of the Reynolds stress and the Maxwell stress normalized by the averaged
initial gas pressure, that is, the ↵ parameters.

To put it another way, however, once the magnetic field lines are stretched to the point

of crossing the radial boundary, much stronger azimuthal fields could be expected. The

point is a stretching term in the governing equation for the azimuthal magnetic energy,

d

dt
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y
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@y
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where the first and the second terms in the right-hand side represent the energy change by

stretching and compressive motions, respectively. Especially, the energy increase through

the background velocity shear, B
x

B
y

v0
y0, is called the ⌦-dynamo. In a radially periodic

system like the shearing box, if a fluid element can move largely across the radial bound-

aries, the total velocity shear which the element feels becomes much larger than the shear

just within one simulation domain, q⌦L
x

. The larger radial fluctuation, therefore, leads

to the stronger azimuthal magnetic energy. The next subsection is devoted to suggest-

ing such a possible path leading to a more amplified magnetic field and a resultant large

Maxwell stress.
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2.3.3 Multiple localized magnetic fields

As a phenomenon expected to occur in accretion disks, let us consider the situation where

a toroidal magnetic field has multiple structures rather than a single localized field. The

motivation of this idealized setup comes from, for example, the existence of a parasitic

instability occurring on a current sheet, which induces periodic variation of plasma pa-

rameters along an equatorial plane (Goodman & Xu, 1994; Pessah & Goodman, 2009;

Rembiasz et al., 2016). The physical mechanism driving the instability in the linear stage

does not change even in this case, but a more turbulent state could be expected in the

nonlinear stage as a result of coupling between neighboring fields. This section shows a

possible path through which the MGDIs may contribute to stronger turbulence generation

and anomalous angular momentum transport.

The simulation setup is the same as described in the previous subsection except for

the initial profile of the magnetic field. Here we assume the functional form of the toroidal

magnetic field as follows:

B
y0 (x) = B

c

cos4
✓
3⇡x

L
x

◆
, (2.15)

which reproduces both the locality within 0.05L
x

and the periodicity of the localized

structure. The pressure and density profiles are also modified to keep dynamical and

thermal equilibrium. The plasma beta is defined using the peak value of the magnetic

field, B
c

, and the gas pressure at the same site.

Figs. 2.9, 2.10, and 2.11 show snapshots at characteristic stages in the cases with

�=100, 10, and 1, respectively. The three panels in each figure are taken at times ⌦t/2⇡

= 5, 10, and 20 from left to right, and the format of each panel is the same as in Fig. 2.7. In

the leftmost panel in Fig. 2.9, we can see that the discrete magnetic field lines are distorted

individually in the early stage by the nonlinear growth of MGDIs, just as demonstrated

in the simulations with a single localized field. The bending of the field lines grows as

time goes on, and before 10 orbits they drastically overlap and merge with the neighboring

magnetic fields. The mixing of the magnetic field completes by 20 orbits, and the simula-

tion domain is filled with a lot of magnetic islands as a result of the repetitive reconnection

process. Recall that, in a single channel case, the reconnected field simply gets torn o↵ the

background field and shows no further turbulent development. At this stage, the energy

contained in the magnetic field increases to about 10% of the kinetic energy of the back-

ground di↵erential rotation. Even if the di↵erence of the initial magnetic energy is taken
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into account, this ratio is rather large compared with the case of a single localized field,

where the magnetic energy at the saturated stage is smaller by three orders of magnitude.

Figure 2.9: Snapshots of the simulation started from a wavy toroidal field with � = 100,
taken at 50, 100, and 200 orbits. The format of each panel is the same as in Fig. 2.7.

The detailed time history of the box-averaged energy is summarized in Fig. 2.12(a),

which shows that the dynamo process works e�ciently on both B
x

and B
y

at an early stage

before 20 orbits, and roughly speaking, an equi-partition is eventually attained between

the kinetic energy in the x-direction and the magnetic energy in the x- and y-directions.

The production of the strong azimuthal field is understood as a natural consequence from

equation (2.14), which tells the e↵ect of ⌦-dynamo. A similar relation holds with regard

to the radial field energy as

d

dt

✓
B2

x

2

◆
= B

x

B
y

@v
x

@y
�B2

x

@v
y

@y
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which shows that shear motion in the radial velocity newly generates the radial magnetic

field. It is clear that in the MGDI this radial velocity is driven by the magnetic pressure
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Figure 2.10: Snapshots of the case of � = 10, with the same format as in Fig. 2.9.

gradient force, while the gravity-related terms play the same role in the case of MRI.

In this sense, the dynamo process working here looks quite similar to that in the MRI

not only in the azimuthal field, but also in the radial field. At the saturated stage, the

gas pressure gradually increases through magnetic reconnection, creating many magnetic

islands.

Even when the initial magnetic energy is ten times as large, that is, � = 10, the

same instability grows as shown in Fig. 2.10. Compared with the case of � = 100, it

can be seen that the typical scale of the growing mode becomes larger, as does the size

of the magnetic islands in the final stage. The gas pressure at 20 orbits increases about

twofold, which implies that the total amount of energy input into the system across the

boundaries is enhanced and continuously converted to the internal energy of the plasma

through magnetic reconnection. In other words, the total stress integrated along the radial

boundary gets larger, since the time variation of the total energy, e, can be described as

follows:
@

@t

Z
e dV = 2 |v0y(Lx

)|
Z

x=L

x

W
xy

dy �
Z

2⇢⌦xv00yvxdV, (2.17)
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Figure 2.11: Snapshots of the case of � = 1, with the same format as in Fig. 2.9.

where W
xy

= ⇢v
x

�v
y

� B
x

B
y

is the total stress. The second term on the right-hand side

of equation (2.17), which represents the change in the total gravitational potential in the

simulation domain, becomes nearly zero on average. The detailed time history of each

energy component is plotted in Fig. 2.12(b). As in the case of � = 100 shown in panel

(a), the growing mode is saturated before 20 orbits, after which the kinetic energy related

to v
x

and the magnetic energy reach a level comparable to the background di↵erential

rotation, but slightly larger than those in the case with a weaker initial field.

However, this situation changes significantly for the strong magnetic field with � = 1

shown in Fig. 2.11. The initial equilibrium state remains and no growing mode can be

observed. It is interesting to note that the nonlinear evolution is accomplished in the

single field case discussed in the previous subsection. The energy history in Fig. 2.12(c)

also shows a quite calm variation. The suppression of the growing mode is indeed the

result of the nonlinear magnetic tension force, since we confirmed the presence of unstable

modes in linear analyses under the initial magnetic profile described here.

We summarize the time histories of the Reynolds and Maxwell stresses in Figs. 2.13(a)

and 2.13(b), respectively. The result of � = 1, denoted by the red line, shows no stress
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Figure 2.12: Temporal development of the box-averaged energy divided into the contribu-
tion from the x and y directions, all of which are normalized by the gas pressure measured
in a magnetized region. Each panel shows the results for (a) � = 100, (b) � = 10, and (c)
� = 1, respectively.

for either the Reynolds or Maxwell components, because the initial equilibrium state is

almost preserved. In the cases with � = 10 and 100, denoted by the green and blue lines,

the Reynolds and Maxwell stresses averaged after 20 orbits are -0.00109 and 0.0235 for

� = 100, and -0.0164 and 0.126 for � = 10, respectively. The Maxwell stress, therefore,

is larger by about two orders of magnitude than the results in the single field case, which

means a qualitative change in the nonlinear behavior, rather than the simple quantitative

superposition due to an increase in the initial total magnetic flux. In addition, the result

for a stronger shear motion with q = 1.5, which corresponds to the Kepler rotation, is also
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plotted as a cyan line. The basic mechanism driving the instability is same as in the case

with q = 1.0, but thanks to the more powerful ⌦-dynamo e↵ect, the MGDI can grow more

quickly nonlinearly and a larger Maxwell stress can be attained at the saturated stage.

Figure 2.13: The xy-components of the (a) Reynolds and (b) Maxwell stress tensors as
functions of time.

The �-dependence of the Maxwell stress averaged during the saturated stage between

30  ⌦t/2⇡  50 is summarized in Fig. 2.14. It can be clearly seen that the results are

well fitted by a power law of ��1/2 as long as � > 2, which indicates the proportionality

to the initial magnetic flux rather than magnetic energy density, while the cases starting

with � < 2 result in almost no stress.

The suppression of instabilities for a small � is highly relevant to the large character-

istic spatial scale under the strong magnetic tension force, which works less e�ciently for

longer waves. Although this mode has a broad unstable range in wavelength with respect

to the linear theory around a single channel, the nonlinear growth is actually quenched in

the multiple channel case. Once the simulation box is extended double in the azimuthal

direction, however, the drastic growth in the Maxwell stress via channel merging process

is activated even for � = 1. This certainly happens because the extended box allows the

growth of the fluctuations with the scale larger than the original domain size. Fig. 2.15

shows the time histories of the Reynolds and Maxwell stress for �=1, 10, and 100, respec-

tively, normalized by the volume averages of the instantaneous thermal pressure, hp (t)i.
From the right panel, we can clearly observe the enhancement of the Maxwell stress by the

nonlinear growth after 50 orbits for � = 1. Except for the shifted time when this drastic
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Figure 2.14: The Maxwell stress averaged during the saturated stage as a function of the
initial �.

merging is switched on, the statistical behavior is quite similar in all cases, which implies

that the MGDI works as the common underlying mechanism to drive the turbulence.

Figure 2.15: Time histories of the Reynolds and Maxwell stress normalized box averages
of the instantaneous gas pressure in the elongated simulation box, (x, y) 2 (2L

x

, 4⇡L
x

),
for di↵erent initial �.
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2.4 Discussion and summary

In the present chapter, we have proposed a new plasma instability, MGDI, which can gen-

erate a highly turbulent state in an accretion disk and contribute to the enhanced transport

of angular momentum. Driven by the spatial non-uniformity of a toroidal magnetic field,

an unstable mode completely confined within the equatorial plane can be realized, in con-

trast to the previous studies on the toroidal MRI, in which a vertical wavenumber always

dominates over a finite azimuthal component.

The growth rates and eigenfunctions of this instability are calculated by linear eigen-

value analysis, and the corresponding nonlinear evolution is then demonstrated using

two-dimensional MHD simulations. While the simulations beginning with a single local-

ized toroidal field reveal the nonlinear growth of the MGDIs, it is shown that the angular

momentum transport does not work so e�ciently in the saturated stage. If the instabili-

ties occur in the neighboring field lines under the multiple localized magnetic fields rather

than in an isolated situation, however, they drastically overlap with each other and a well-

developed turbulent state can be realized. In such a case dynamo action by di↵erential

rotation begins to work e�ciently on magnetic field lines crossing the radial boundaries,

which contributes to a large Maxwell stress. Furthermore, we have shown that a toroidal

field with a larger magnetic flux is favorable for the Maxwell stress to reach a large value,

but this drastic transition does not occur for a magnetic field that is too strong with

� < 2, as long as we employ the box size, 2L
x

⇥ 2⇡L
x

. Once the simulation domain is

elongated, the transition is reactivated, but it takes much longer time to switch on the

drastic merging. It is worth noting that the situation with 1  �  10, which is favorable

to the growth of the MGDI, often appears during a nonlinear phase in a local simulation

of the MRI for a relatively small initial beta, � ⇠ O �
102

�
. In the cases with larger initial

� values, like � ⇠ O �
103�6

�
, the final states still seem to be in the unstable regime (e.g.,

Hawley et al., 1995; Sharma et al., 2006; Minoshima et al., 2015).

Although the profile of the toroidal magnetic field discussed here is one of the most

idealized situations, the physical essence to drive the instability does not change even

under a di↵erent structure, as long as an enough radial gradient of the magnetic field is

available. There is, therefore, possibility that the present unstable mode will arise around

various kinds of fluctuation in the toroidal field, like via parasitic modes including the

Kelvin-Helmholtz instability and the tearing instability.
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It should be emphasized again that the e�ciency of the angular momentum transport

obtained here is comparable to that obtained in evaluation in three-dimensional simula-

tions of MRIs assuming an initial toroidal field, in spite of the low dimensionality, and

therefore, the MGDIs are capable of driving strong turbulence alone. One might expect

not just the sole contribution, but also coupling with magnetic reconnection occurring

parallel to the equatorial plane during the nonlinear phase of MRIs, and with the toroidal

MRIs as considered in previous studies if vertical variation is also taken into account.

It is still not obvious that how large contribution the instabilities have in a fully three-

dimensional shearing box. Nevertheless, since they provide new paths toward turbulence

without any finite k
z

in contrast to the conventional toroidal MRIs, the complementary

growth between azimuthally and vertically propagating waves, rather than competitive

growth, should be expected. The present instability could possess the ability to play a

wide variety of crucial roles in the mechanism of turbulence generation in di↵erentially

rotating systems.



Chapter 3

New Fluid Model for Collisionless

Magnetohydrodynamic

Simulations with Anisotropic

Pressure

3.1 Introduction

Space and astrophysical phenomena often occur in collisionless plasmas, where the gas

is so hot and dilute that the mean free path of charged particles becomes longer than

the system’s scale size. To investigate such complicated collisionless systems, numerical

simulations can be powerful tools. In fact, particle-in-cell (PIC) and Vlasov simulations

are typical numerical methods to solve the Vlasov-Maxwell system, which represents a

set of fundamental equations describing the time evolution of the velocity distribution

function and the electromagnetic fields. Although these models can capture all important

kinetic physics self-consistently, because of limited computational resources it is still hard

to apply these methods to phenomena occurring on scales that significantly exceed the

kinetic scales, such as those associated with Larmor radii and/or inertial lengths (but

which are still smaller than the relevant mean free paths). The Earth’s magnetosphere

(e.g., Heinemann, 1999; Dumin, 2002; Karimabadi et al., 2014; Burch et al., 2015) and

the solar wind (e.g., Hollweg, 1976; Zouganelis et al., 2004; Chandran et al., 2011) are

typical examples of such large-scale collisionless plasmas in the solar system. Using an

53
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astrophysical example, radiatively ine�cient accretion flow models applied to accretion

disks are also thought to represent collisionless plasmas (e.g., Ichimaru, 1977; Narayan &

Yi, 1994; Quataert, 2003).

One classical way of dealing with both dynamical and kinetic scales is the so-called

kinetic magnetohydrodynamics (MHD) approach, which can take into account some kinetic

e↵ects. This philosophy has given rise to the well-known double adiabatic approximation,

also known as the Chew-Goldberger-Low (CGL) model (Chew et al., 1956), which pays

special attention to the e↵ects of anisotropy in a distribution function. Given that the

orbit of a charged particle in a magnetized plasma essentially consists of a combination

of its gyromotion around a magnetic field line and its parallel motion along the field line,

the distributions of the kinetic energies contained in these independent motions may di↵er

from each other. This situation requires us to extend the standard MHD model with

a scalar pressure so as to handle the anisotropic pressure tensor. The double adiabatic

approximation is a natural extension of the one-temperature MHD approach, where only

the parallel and perpendicular components of the pressure tensor are solved. This is one

of the simplest equations of state as a closure model of the moment hierarchy, assuming

that the pressure is completely gyrotropic and the third- and higher-order moments are

neglected. The properties of this formulation have been studied for decades and it has

achieved a certain degree of success (e.g., Holzer et al., 1971; Hau & Sonnerup, 1993; Hau

& Wang, 2007; Kowal et al., 2011).

There have been several approaches to construct models beyond the double adiabatic

approximation. One noteworthy e↵ort retains the contribution of the higher-order mo-

ments by employing a sophisticated heat-flux model, such as Landau closure (e.g., Ham-

mett & Perkins, 1990; Snyder et al., 1997). A di↵erent approach was taken by Hada et al.

(1999). It relaxes the assumption of the presence of a gyrotropic pressure tensor and

introduces a new timescale to describe gyrotropization. This allows finite non-gyrotropy

to remain. Wang et al. (2015) attempted to combine these two approaches together. In

addition, asymptotic-preserving (AP) schemes (Jin, 1999) may also shed new light on the

treatment of anisotropic pressure in some extreme cases.

The gyrotropic formulation in the CGL approximation, however, involves numerical

and theoretical di�culties in handling magnetic null points. This comes from the fact that

the direction of the magnetic field must be defined for the decomposition of a pressure

tensor into its parallel and perpendicular components. From a numerical point of view,
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determination of the unit vector parallel to the magnetic field, b̂ = B/ |B|, will cause
division by zero in a magnetic null point, which severely hampers numerical simulations.

If one employs the form of a conservation law, the conservative variable pertaining to

the first adiabatic invariant includes the magnetic field in the denominator as well. This

drawback may become critical when, for example, considering a current sheet without

a guide field, which contains a magnetically neutral line in its own right. The role of

pressure anisotropy as pertaining to collisionless magnetic reconnection cannot be studied,

therefore, in the framework of the CGL equations.

This breakdown apparently comes from the strong assumption that a pressure ten-

sor can be well described by the gyrotropic form. In other words, the gyro-motion is

well-defined on a much shorter timescale than the relevant dynamical timescale. If the

magnetic field is so weak that the gyro period becomes comparable to the dynamical

timescale, the parallel and perpendicular motions cannot be distinguished from each other

and the gyrotropic approximation is no longer valid. As long as we are stuck with the

gyrotropic limit, therefore, the problem of division by zero at magnetic null points will

not be eliminated completely, regardless of the form of the equations of states employed.

With this in mind, we relax the assumption of gyrotropic pressure and extend the

equations of state so as to allow finite deviations from the gyrotropic formulation. This

chapter focuses on such a natural extension of the MHD approach following the context of

a governing equation that describes a more general form of the pressure tensor. Desirable

characteristics of the newly defined theoretical and numerical framework are (1) avoidance

of numerical di�culties owing to division by zero in magnetically neutral regions; (2)

removal of any temporal and spatial scales related to kinetic physics; (3) convergence to

the gyrotropic and isotropic formulations, respectively, under appropriate limits; and (4)

a simple modification of an existing MHD code. In this chapter, we successfully derive a

new framework that satisfies these requirements by evolving a 2nd-rank pressure tensor

directly, and we develop a corresponding, extended MHD code.

The present chapter is organized as follows. First, we derive our analytical formulation

in section 3.2. Next, section 3.3 describes the actual implementation of our simulation code

based on the finite-di↵erence approach. The numerical behavior is tested in section 3.4.

Finally, section 3.5 contains a summary as well as our concluding remarks.
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3.2 Formulation

3.2.1 Generalized energy conservation law

In this subsection, we will briefly derive our fluid model, starting from the Vlasov equation,
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where the subscript s indicates the species of charged particles — in this thesis, ions, i,

and electrons, e. The other notations are standard. Taking the second moment of the

particle velocity v
s

in Eq. (3.1), we obtain a kinetic stress tensor equation:
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where the superscript S denotes symmetrization. More specifically, (VP)S
ijk

= V
i

P
jk

+

V
j

P
ik

+ V
k

P
ij

and (VE)S
ij

= V
i

E
j

+ V
j

E
i

, respectively. The cross product between a

2nd-rank tensor and a vector is calculated as (P
s

⇥B)
ij

= "
ikl

P
s,jk

B
l

, where "
ikl

is the

Levi-Civita symbol. The moment variables are defined as

n
s

=

Z
f
s

dv
s

, (3.3)

n
s

V
s

=

Z
v
s

f
s

dv
s

, (3.4)

P
s

= m
s

Z
(v

s

�V
s

) (v
s

�V
s

) f
s

dv
s

, (3.5)

Q
s

= m
s

Z
(v

s

�V
s

) (v
s

�V
s

) (v
s

�V
s

) f
s

dv
s

. (3.6)

Note that the last term in Eq. (3.2) becomes zero if P
s

is exactly gyrotropic. As for the

derivation of the standard MHD model, let us define the one-fluid moments as
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Then, it is straightforward to show that taking the sum of Eq. (3.2) for a given species s

leads to
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where J =
P

s

q
s

n
s

V
s

is the total current density, ⌦
cs

= q
s

B/m
s

c is the cyclotron fre-

quency of species s, and b̂ = B/B is the unit vector parallel to the magnetic field. In

this derivation, we assume quasi-neutrality, n ' n
i

' n
e

, and neglect the electron inertial

e↵ect; i.e., we assume m
e

/m
i

⌧ 1. Note that the right-hand side of Eq. (3.11) becomes

much simpler by employing Ohm’s law under ideal MHD or Hall-MHD ordering. The elec-

tric field related to convection, Econv = �(V/c) ⇥B, and that related to the Hall e↵ect,

EHall = (J/enc) ⇥ B, vanish exactly, while the e↵ect of the electron pressure remains if

Hall-MHD ordering is assumed. Another characteristic of this approach is that the trace

of the right-hand side reduces to just J · E, which is consistent with the conservation of

kinetic and thermal energy in scalar form.

In addition to the kinetic components, we will derive the semi-conservative form using

Faraday’s law, which is a counterpart of the conservation law of the total energy in the

standard MHD. Throughout this chapter, the factor 1/
p
4⇡ will be absorbed into the

definition of the magnetic field. After some algebra, we obtain the following equation for

the ij-component,
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where Einstein’s summation convention is applied to repeated indices. The newly intro-

duced notations, S
kij

and J
kij

, are defined as
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which reduce to the Poynting flux and the current density, respectively, if one takes their

trace with respect to i and j.

Eq. (3.12) is a general result, which is valid for a large mass ratio or, in other words,

when the scale size of the system is much larger than the electron skin depth. In the

particular case where ideal MHD ordering can be reasonably applied, that is, where all

temporal and spatial scales are much larger than the cyclotron period and the inertial

length of the ions, respectively, we can employ the simplest form of Ohm’s law,

E+
V

c
⇥B = 0. (3.15)

The right-hand side of Eq. (3.12), except for the last two terms related to the cyclotron

frequencies, is then simplified to
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Again, Eq. (3.16) reduces to zero by taking the trace. Inclusion of other physics such as

finite resistivity and the Hall e↵ect is straightforward by direct application of Eq. (3.12)

and appropriate modification of Ohm’s law.

In this chapter, for simplicity we will neglect the generalized heat-flux tensor, Q.

Generally speaking, it is very common for a collisionless plasma to not reach local thermo-

dynamic equilibrium, and its deviation from the Maxwellian distribution plays a crucial

role in dynamical phenomena in collisionless systems. Nevertheless, since the purpose of

this chapter is to develop a method to treat anisotropic pressure, we do not take into

account the heat-flux tensor. If one wants to include the e↵ects of the heat flux, Q should

be determined by incorporating an appropriate closure model (e.g., Hesse et al., 2004;

Wang et al., 2015).

3.2.2 Gyrotropization model

The last two terms in Eq. (3.12) contain the cyclotron frequencies, ⌦
cs

, which cannot be

resolved under MHD ordering. Therefore, these terms may be replaced by an e↵ective

collision model. Hada et al. (1999) describe a gyrotropization model for an anisotropic

pressure tensor, which assumes that the pressure tensor approaches the gyrotropic tensor,

P
g

= P?I+
�
P|| � P?

�
b̂b̂, within a certain relaxation timescale. The functional form of
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the collision operator used here is


@P

@t

�

collision

= �⌫
g

(P�P
g

) . (3.17)

The e↵ective collision frequency, ⌫
g

= ⌫
g

(B), is a function of the local magnetic-field

strength and must be much higher than the system’s highest frequency. While Hada et al.

(1999) adopted a constant ⌫
g

in both space and time, we assume that ⌫
g

is proportional

to the local magnetic-field strength, because the original timescale is determined by the

cyclotron period. This dependence on the magnetic field is consistent with the physical in-

sight that finite non-gyrotropy will remain in unmagnetized regions because of the absence

of any cyclotron motion.

Employment of the e↵ective collision model successfully eliminates any scales related

to the cyclotron motion, and we can thus solve the set of basic equations in the framework

of only fluid-based variables. Moreover, it is remarkable that, by introducing the non-

gyrotropic pressure tensor and the gyrotropization model described here, any numerical

di�culty in dealing with magnetically neutral regions, or singularities at magnetic null

points, is completely removed. In other words, the system is regularized by our model.

Although we still need to determine the direction of the local magnetic field to calculate an

asymptote in the collision model, the gyrotropic pressure will never be used at magnetic

null points because ⌫
g

vanishes there owing to the assumption that ⌫
g

/ B.

To clarify the asymptotic behavior of our regularization model, let us consider a few

extreme cases. When a plasma is threaded by a su�ciently strong magnetic field, the

e↵ective gyrotropization frequencies are much higher than any dynamical frequencies,

which leads the system to display double adiabatic behavior in an asymptotic manner.

Given that in this case our regularization procedure does nothing other than make the

relaxation timescale su�ciently short, the result does not change from the case when

instantaneous gyrotropization, or the double adiabatic approximation, is assumed.

Next, let us consider the opposite case, that is, when the magnetic field is nearly

neutral. A model without implementation of our regularization, such as the classical

CGL model, assumes instantaneous gyrotropization even if the gyro-period may become

comparable to or even longer than the dynamical time. This leads to a singularity related

to the division by zero, which results in di�culties in constructing a robust numerical

model. Indeed, such a model does not have any physical basis. The gyrotropization model
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proposed here, on the other hand, retrieves the regularity at magnetic null points by

allowing each component of the gas pressure to evolve individually, without imposing any

relaxation processes. Since the gas obeys the 2nd-order moment equation derived from the

Vlasov equation, the moment variables will evolve appropriately within the applicability

of closure models of the moment hierarchy.

Note that the regularization procedure described here may be closely related to an AP

scheme, which was first proposed by Jin (1999). This allows us to apply the same scheme

to solve the equations in regions characterized by a wide range of perturbation parameters.

For instance, Degond et al. (2009) provided a method to handle the fluid equations for

a plasma containing a strong magnetic field in an AP manner, where the perturbation

parameter " representing the non-dimensional gyro-period can attain both a finite value

and an arbitrary infinitesimal. Our framework presented here, on the other hand, could

be interpreted as applicable to the opposite limit, where the gyro-period can have both

finite and infinite values. For details about AP schemes for plasmas, see Degond (2013)

for example.

To conclude this section, all governing equations employed in the present model are

summarized here. We solve the set of (generalized) conservation laws for the mass, mo-

mentum, and total energy, as well as the induction equation under ordering of an ideal

MHD,

@⇢

@t
+r · (⇢V) = 0, (3.18)

@ (⇢V)

@t
+r ·

✓
⇢VV +P+

B2

2
I�BB

◆
= 0, (3.19)
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As the pressure tensor is symmetric by definition, we have a total of 13 independent

variables: i.e, ⇢, V
x

, V
y

, V
z

, B
x

, B
y

, B
z

, P
xx

, P
yy

, P
zz

, P
xy

, P
yz

, and P
zx

.
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3.3 Numerical implementation

This section describes our model implementation. Existing MHD codes written in conser-

vative forms can be readily extended to the present model by introducing slight modifi-

cations, because we can derive the basic equations in the form of semi-conservation laws

accompanied by several directional energy-exchange terms and a collision term. Here we

describe the spatial and temporal 2nd-order finite-di↵erence algorithms and highlight the

di↵erences with respect to standard MHD codes. Unless otherwise stated, test problems

described in the next section employ this 2nd-order implementation. Of course, other

methods, such as finite-volume approaches, can be used as well.

In the following, for simplicity let us consider a one-dimensional case and formulate

the combination of equations (3.18) – (3.21) as

@U

@t
+

@F

@x
+A

@U

@x
= �⌫

g

(U�U
g

) , (3.22)

where U = {⇢, ⇢V, B, ⇢VV +P+BB} 2 R13 contains conservative variables, and

A 2 R13 ⇥ R13 describes the energy-exchange terms. Note that A has non-zero elements

only in relation to equation (3.21) and all elements are composed of the products of the

velocity and the magnetic field, V
↵

B
�

.

Extension to a multi-dimensional problem is straightforward, while the numerical di-

vergence error of the magnetic field must be resolved similarly as for standard MHD. In

our code, the constrained transport (CT) treatment (Evans & Hawley, 1988; Tóth, 2000)

is adopted to avoid this problem. In particular, we used the Harten-Lax-van Leer (HLL)

upwind-CT method (Londrillo & del Zanna, 2004; Amano, 2015), where the electric fields

are interpolated to the edge centers using the same interpolation scheme as used for other

fluid variables and the HLL approximate Riemann solver (Harten et al., 1983). One may

employ any other divergence cleaning techniques, as the present model does not alter the

properties of the induction equation.

3.3.1 Conservative part

We solve equation (3.22) by splitting the operator into three parts: i.e., a conservative term

@F/@x, a non-conservative term A@U/@x, and an e↵ective collision term �⌫
g

(U�U
g

).

In this subsection, we first review the integration method for the conservative part.

Let us consider an equally spaced one-dimensional computational domain, where the
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range of the j-th cell is denoted as x 2 [x
j

� �x/2, x
j

+ �x/2] with mesh size �x. All

primitive variables W = {⇢, V, B, P} are defined at each cell center, x
j

, as point values.

Then, W
j

is interpolated linearly to the face center, x
j±1/2, using the minmod limiter

to suppress numerical oscillations around discontinuities. Once the left and right states

across the cell faces {W
L,R

} have been interpolated, we can immediately obtain the cor-

responding conservative variables and fluxes, {U
L,R

} and {F
L,R

}, respectively.
Next, we consider a self-similarly expanding Riemann fan at the cell face. The outer-

most signal speeds in the present system can be evaluated by considering the largest and

smallest eigenvalues of the matrix (@F/@U) +A, where @F/@U is a Jacobian matrix, as

follows:

�± (U) = V
x

±
q

b+
p
b2 � c, (3.23)
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] .

These are the counterparts to fast magnetosonic waves in standard MHD. We define the

left- and rightward expansion speeds of the Riemann fan in the form of their absolute

values,

s
L

=
��min

�
0,�� (U

L

) ,�� (U
R

)
 �� , (3.24)

s
R

=
��max

�
0,�+ (U

L

) ,�+ (U
R

)
 �� . (3.25)

As in the usual implementation, s
L

and s
R

are chosen such that they tend to zero in

supersonic cases.

Denoting the intermediate state inside the Riemann fan as U⇤, the conservative and

non-conservative parts in equation (3.22) can be integrated over a control volume, (x, t) 2
[�Ts

L

, T s
R

]⇥ [0, T ], resulting in

U⇤ (sR + s
L

)� (U
R

s
R

+U
L

s
L

) + (F
R

� F
L

) +

Z U
R

U
L

A (U) dU = 0, (3.26)

where the last term on the left-hand side requires an integral along a phase-space path from
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a left state through a right state. Following the path-conservative HLL scheme proposed

by Dumbser & Balsara (2016), we evaluate this integral by assuming two piecewise linear

paths from U
L

to U⇤, and from U⇤ to U
R

, respectively. This linear segment assumption

immediately leads to an implicit equation for U⇤,

U⇤ (sR + s
L

)� (U
R

s
R

+U
L

s
L

) + (F
R

� F
L

)

+Ã (U
L

,U⇤) (U⇤ �U
L

) + Ã (U⇤,UR

) (U
R

�U⇤) = 0, (3.27)

with

Ã (U
a

,U
b

) =

Z 1

0
A (U

a

+ (U
b

�U
a

) s) ds. (3.28)

In our implementation, the integral over s is calculated by means of a three-point Gaussian

quadrature. Equation (3.27) must, in general, be solved iteratively for U⇤. In the present

system, however, we do not need to iterate in practice, as Ã (U
a

,U
b

) (U
b

�U
a

) can be

evaluated only for ⇢⇤, (⇢V)⇤, and B⇤, which are obtained explicitly from equation (3.27).

For more details about the path-conservative HLL scheme, see Dumbser & Balsara (2016).

Using the intermediate state obtained above, we can calculate the path-conservative

HLL fluctuations—which quantify the modification of the flux from the original point-value

flux—as

D
L

=
s
L

s
R

+ s
L

[F
R

� F
L

� s
R

(U
R

�U
L

) +D
A

] , (3.29)
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+ s
L
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� F
L

+ s
L

(U
R

�U
L

) +D
A

] , (3.30)

where the contribution from the non-conservative term is

D
A

= Ã (U
L

,U⇤) (U⇤ �U
L

) + Ã (U⇤,UR

) (U
R

�U⇤) . (3.31)

Finally, the conservative part in equation (3.22) can be discretized as

@U
j

@t
+

1

�x

�
F
L,j+1/2 � F

R,j�1/2

�
+

1

�x

�
D

L,j+1/2 +D
R,j�1/2

�
= 0. (3.32)

In particular, if the non-conservative terms are not present, or if D
A

= 0, this scheme

simply reduces to the usual HLL scheme with FHLL = F
L

+D
L

= F
R

�D
R

.
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3.3.2 Energy exchange part

While considering an intermediate state inside an expanding Riemann fan in the previous

subsection, the e↵ects of non-conservative terms, A (@U/@x), were also taken into account

to maintain consistency of the hyperbolic system. This only applies, however, to the

determination of the conservative flux, and time integration of the non-conservative terms

must be carried out separately.

This evaluation requires calculating the magnetic field’s derivatives. For the purpose of

avoiding spurious oscillations near discontinuities, one may need to carry out this evalua-

tion using an appropriate limiter function. Our implementation simply adopts the minmod

limiter, spatially discretized as

@U
j

@t
+A

j

1

�x
minmod (U

j+1 �U
j

,U
j

�U
j�1) = 0. (3.33)

Then, it is straightforward to temporally integrate both equations (3.32) and (3.33)

by means of the 2nd-order total variation diminishing (TVD) Runge-Kutta method (Shu

& Osher, 1988),

U⇤ = Un � �tL (Un) , (3.34)

Un+1 =
1

2
Un +

1

2
[U⇤ � �tL (U⇤)] , (3.35)

where

L (U) =
@F (U)

@x
+A (U)

@U

@x
. (3.36)

The time interval, �t, is determined to satisfy the CFL condition for the fastest propa-

gating waves,

�t  ⌫
�x

max
j

{|�+ (U
j

)| , |�� (U
j

)|} (3.37)

where ⌫ is a safety parameter set to ⌫ = 0.4 in this chapter.

3.3.3 E↵ective collision part

After calculating the pressure tensor based on the updated conservative variables, the

e↵ective collision model, equation (3.17), is applied at every time step and at every grid
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point. The procedure starts from the determination of the direction of the magnetic field,

b̂ = B/B, at each site. Note that, as stated in the previous section, we do not require

b̂ in unmagnetized regions, since there the e↵ective collision frequency becomes exactly

zero, and therefore no singularity owing to division by zero exists.

Our actual implementation is as follows. The pressure tensor defined in xyz space is

rotated to the coordinate system aligned with the local magnetic field, so that the index

1 represents the direction parallel to b̂, and indices 2 and 3 correspond to two di↵erent

perpendicular directions. Then, the gyrotropic asymptote, P
g

, can be defined as

P
g

= P?I+
�
P|| � P?

�
b̂b̂, (3.38)

with

P|| = P11, P? =
P22 + P33

2
. (3.39)

Alternatively, if one does not need any other components except for the parallel and

perpendicular ones, the simpler expressions

P|| = b̂ ·P · b̂ and P? =
TrP� P||

2
, (3.40)

can also be used. Note that by enforcing isotropy, P|| = P? = TrP/3, the model will

reduce to the standard MHD limit.

Once the gyrotropic asymptote has been determined, we use the exact solution to

equation (3.17) to avoid explicit integration of a sti↵ equation,

P (t+ �t) = P
g

+ (P (t)�P
g

) e�⌫

g

�t, (3.41)

which is applied for every sub-cycle of the Runge-Kutta time integration.

3.3.4 Summary of the numerical method

We have discussed separately the integration method of each term following the spirit of

an operator splitting technique. It is useful to summarize our implementation here. The

procedure followed for one Runge-Kutta subcycle proceeds as follows:

1. Convert all conservative variables defined at cell centers {U} to primitive variables
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{W}.

2. Interpolate {W} into cell faces to evaluate {W
L,R

}.

3. Calculate the corresponding conservative variables {U
L,R

}, fluxes {F
L,R

}, and ex-

pansion speeds {s
L,R

}.

4. Solve equation (3.27) for the intermediate state {U⇤}.

5. Obtain HLL fluctuations {D
L,R

} through equations (3.29) and (3.30).

6. Define the matrix {A
j

} required for evaluation of the non-conservative term.

7. Integrate equations (3.32) and (3.33) simultaneously as follows:

Ur+1 = Ur � �t

�x

�
F
L,j+1/2 � F

R,j�1/2

�
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�x

�
D

L,j+1/2 +D
R,j�1/2

�

� A
j

�t

�x
minmod (U

j+1 �U
j

,U
j

�U
j�1) (3.42)

where r represents the substep index of the Runge-Kutta procedure.

8. Define parallel and perpendicular pressures, P||,? using equation (3.39) or (3.40).

9. Gyrotropize the pressure tensor with the solution (3.41) depending on the local

magnetic-field strength.

10. Isotropize the pressure tensor if necessary.

11. Set boundary conditions.

This subcycle is repeated twice in each 2nd-order Runge-Kutta cycle for computing Un�
�tL (Un) and U⇤ ��tL (U⇤) in equations (3.34) and (3.35), respectively. The procedure

described here can easily be extended to multi-dimensional problems in a dimension-by-

dimension fashion, because our implementation is based on the finite-di↵erence approach.

Note that the fluxes and the fluctuations here are defined as point values. Since

the present implementation only has second-order accuracy in space, the point-value and

numerical fluxes are identical. If one desires to use a higher than second-order accuracy

scheme, however, an appropriate conversion formula from the point-value to the numerical

flux must be applied (Shu & Osher, 1988). In Appendix A, we describe an example of
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a higher-order implementation using the 5th-order weighted essentially non-oscillatory

(WENO) scheme (Jiang & Shu, 1996) and a 3rd-order TVD Runge-Kutta scheme (Shu &

Osher, 1988).

3.4 Test problems

This section explores a series of test problems, including one-, two-, and three-dimensional

applications. In addition to non-gyrotropic cases, we will place a certain degree of emphasis

on gyrotropic and isotropic limits, which can be compared with published results.

3.4.1 Circularly polarized Alfvén waves

First, in this subsection, we demonstrate the numerical convergence of our model in the

limit of fast isotropization and fast gyrotropization. In these two asymptotic cases, we can

derive an exact solution for finite-amplitude circularly polarized Alfvén waves propagating

along ambient magnetic field. In the isotropic MHD limit, the well-known exact solution

for Alfvén waves propagating in the x direction is

V
y

= �V sin (kx� !t) , V
z

= �V cos (kx� !t) , (3.43)

B
y

= �B sin (kx� !t) , B
z

= �B cos (kx� !t) , (3.44)

for constant density, pressure, normal velocity, and a normal magnetic field. The ampli-

tudes of the velocity and the magnetic field are related through the Walen relation,

�V

V
A

=
�B

B
x

. (3.45)

In the gyrotropic MHD limit, on the other hand, the pressure anisotropy modulates the

e↵ective strength of the magnetic tension force by a factor of " = 1 � �
P|| � P?

�
/B2

with respect to standard MHD. This modulation leads to a modified Alfvén velocity,

V ⇤
A

=
p
"V

A

, and the original Alfvén velocity V
A

in the Walen relation (3.45) should also

be replaced by V ⇤
A

.

In this test we employ the following initial parameters for an ambient plasma: ⇢ = 1,

P = 1, V
x

= 0 and B
x

= 1. For waves, we assume �B = 0.1 and k = (2⇡)�1. In each

gyrotropic run, a specific value of " is adopted, and the initial P|| and P? are calculated

so that the average pressure P =
�
P|| + 2P?

�
/3 is identical to P for the relevant ". Note
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that while P|| and P? are spatially constant, each component of the gyrotropic pressure

tensor, P = P?I+
�
P|| � P?

�
BB/B2, varies spatially, because it is a function of the local

magnetic field, including the wave components. The domain size is unity, L
x

= 1, which

corresponds to one wavelength. We stop the simulation after five periods, t = 5L
x

/V ⇤
A

,

and compute the errors by comparing the final state with the initial conditions.

The results are summarized in Table 3.1. We list the errors and the orders for four

cases: i.e., the isotropic MHD limit and the gyrotropic MHD limit for three di↵erent initial

values of ". In the isotropic run we observe nearly 2nd-order convergence, particularly for

the L1 norm. The reduction of the order by 0.1-0.2 may be attributed to the e↵ects

of operator splitting in the collision model. The gyrotropic runs show somewhat worse

convergence. We regard this deviation as a result of selective heating of the perpendicular

pressure through numerical dissipation. The wave variations in this test are driven by the

y and z components of the velocity and the magnetic field, dissipation of which heats the

perpendicular temperature more e�ciently, because the normal magnetic field is relatively

large compared with the wave field. The background value of ", which increases with time,

causes the propagation speed of the Alfvén wave to become slightly faster, which leads to

a small gap between the five modulated periods and the exact end time of our simulation.

This discrepancy, then, may be remedied by employing a less dissipative limiter, like a

superbee limiter function, or by employing a higher-order interpolation scheme.

3.4.2 Shock tube problem

3.4.2.1 Fast isotropization

Analysis results of the shock tube problem described by Brio & Wu (1988) are discussed

in this subsection. The shock tube problem is one of the most widely used test problems

for MHD system, in particular, for checking the accuracy and resolution of propagating

waves, including discontinuities such as shock waves and contact discontinuities.

A one-dimensional simulation domain with x 2 [�1, 1] is discretized by defining 1000

equally spaced grid points. The initial state is given as

(⇢, V
x

, V
y

, V
z

, B
y

, B
z

, P ) =

8
<

:
(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0) (x  0),

(0.125, 0.0, 0.0, 0.0,�1.0, 0.0, 0.1) (x > 0).
(3.46)

The normal component of the magnetic field, B
x

, is constant in time and space, B
x

= 0.75,
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Table 3.1: Circularly polarized Alfvén waves for five periods

L1 L1

Run N
x

Error Order Error Order

Isotropic 16 5.94⇥ 10�2 — 9.16⇥ 10�2 —

32 3.15⇥ 10�2 0.92 5.50⇥ 10�2 0.74

64 9.57⇥ 10�3 1.72 2.30⇥ 10�2 1.26

128 4.21⇥ 10�3 1.18 9.55⇥ 10�3 1.27

256 1.12⇥ 10�3 1.91 3.78⇥ 10�3 1.34

512 3.17⇥ 10�4 1.82 1.36⇥ 10�3 1.48

Gyrotropic (" = 1.00) 16 5.95⇥ 10�2 — 9.16⇥ 10�2 —

32 3.29⇥ 10�2 0.85 5.51⇥ 10�2 0.73

64 1.12⇥ 10�2 1.55 2.23⇥ 10�2 1.30

128 4.13⇥ 10�3 1.44 8.22⇥ 10�3 1.44

256 1.43⇥ 10�3 1.53 3.02⇥ 10�3 1.44

512 4.76⇥ 10�4 1.59 9.27⇥ 10�4 1.70

Gyrotropic (" = 0.81) 16 6.12⇥ 10�2 — 9.41⇥ 10�2 —

32 3.71⇥ 10�2 0.72 6.07⇥ 10�2 0.63

64 1.34⇥ 10�2 1.46 2.49⇥ 10�2 1.28

128 4.70⇥ 10�3 1.52 9.45⇥ 10�3 1.40

256 1.73⇥ 10�3 1.44 1.44⇥ 10�3 1.63

512 6.04⇥ 10�4 1.52 9.97⇥ 10�4 1.61

Gyrotropic (" = 1.21) 16 5.72⇥ 10�2 — 8.84⇥ 10�2 —

32 2.88⇥ 10�2 0.99 4.96⇥ 10�2 0.83

64 9.33⇥ 10�3 1.63 2.00⇥ 10�2 1.31

128 3.61⇥ 10�3 1.37 7.77⇥ 10�3 1.37

256 1.15⇥ 10�3 1.65 2.95⇥ 10�3 1.40

512 3.60⇥ 10�4 1.68 9.75⇥ 10�4 1.60

because of the constraint r ·B = 0. As we now have to provide the gas pressure in tensor

form, let us assume that the initial plasma has an isotropic distribution in velocity space,

that is, P = P I at t = 0. Next, we integrate the governing equations (3.18)–(3.21) until

t = 0.2.

Fig. 3.1 shows the results under an isotropic limit. In addition to gyrotropization, fast

isotropization is also assumed by enforcing P|| = P? in equation (3.39), as described in
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section 3.3.3. The solid line overplotted in each panel represents the reference solution,

which was calculated using the Athena code with 20000 grid points (Stone et al., 2008).

The solution under the isotropic limit converges properly to the standard MHD result.

A pair of fast rarefaction waves propagate in both directions at first, each followed by a

slow shock and a slow-mode compound wave. Between these slow-mode related waves,

a contact discontinuity is formed, where only the density profile exhibits a discontinuous

jump. Note that the e↵ective adiabatic index is � = 5/3 rather than � = 2 as pertaining

to the original problem setting. Nevertheless, the basic structure is still rather similar for

both problem settings, except for a slight modification of the wave propagation speeds.

Figure 3.1: Brio-Wu shock tube problem under an isotropic MHD limit. The data have
been taken at t = 0.2. The solid line overplotted in each panel is the reference solution,
calculated using the Athena code with 20000 grid points. In the reference run, a Roe
approximate Riemann solver, piecewise constant interpolation, and a corner-transport
upwind integrator are employed.

3.4.2.2 Fast gyrotropization

Next, we consider the case under the gyrotropic limit. Although the present formulation

preserves the total energy exactly, the amount of heating caused by numerical viscosity and

resistivity distributed to each pressure component cannot be determined self-consistently.
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This results in the absence of exact Rankine-Hugoniot jump conditions and a dependency

of the solutions on the numerical schemes employed in a specific code. One possible ap-

proach to avoid this undesired dependency is by incorporating viscosity and/or resistivity

models that describe the heating rate in any direction. The simplest assumption regard-

ing resistivity is, for example, the isotropic heating: i.e., one-third of the Joule heating

is deposited equally in each P
xx

, P
yy

, and P
zz

, based on the physical consideration that

resistive heating is mainly carried by electrons, which may isotropize much faster than

the dynamical timescale. Nevertheless, we particularly focus on the ideal Ohm’s law to

demonstrate the capability of our model to track dynamical developments.

The results under the gyrotropic constraints are plotted in Fig. 3.2, using the same

format as in Fig. 3.1. Note that since the simulation domain includes a finite magnetic

field throughout and because we assume a very high gyrotropization rate, the governing

equations reduce asymptotically to the double adiabatic approximation or CGL limit.

There is, unfortunately, no reference solution to which we can reasonably compare our

nearly double adiabatic results, so here we only address the most notable di↵erences from

the isotropic case.

Figure 3.2: Brio-Wu shock tube problem under the gyrotropic MHD limit. The data have
been taken at t = 0.2.
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One noteworthy di↵erence is that the contact discontinuity around x ⇠ 0.2 involves

variations not only in ⇢ but also in B
y

, P||, and P?. This modified jump condition can

be understood from the momentum conservation law applied across a boundary without

mass flux,


P? +

B2

2
�
✓
1� P|| � P?

B2

◆
B2

x

�2

1

= 0, (3.47)


�
✓
1� P|| � P?

B2

◆
B

x

B
y

�2

1

= 0, (3.48)

where [X]21 = X2 � X1 indicates a di↵erence between two spatially separated regions.

These relations imply that the total pressure, P? + B2/2, and the tangential magnetic

field, B
y

, may change across the boundary if the pressure anisotropy also changes while

satisfying the conservation laws. As regards linear waves, a newly introduced degree

of freedom related to the pressure anisotropy produces a di↵erent kind of entropy waves,

whose eigenfunction can have perturbations associated with the pressure and the magnetic

field.

Another notable feature is the selective enhancement of the parallel pressure across the

slow shock. This firehose-type anisotropy is consistent with being a direct consequence

of the conservation of the first and second adiabatic invariants. The combination of the

first and second adiabatic invariants, P?/ (⇢B) = const. and B2P||/⇢
3 = const., tells us

that, in the context of the motion of a fluid element, increasing density and decreasing

magnetic-field strength lead to a significant enhancement of the parallel pressure. The

first adiabatic invariant, on the other hand, implies that the perpendicular pressure is

proportional to the product of the density and the magnetic-field strength, which results

in a smaller increase in the perpendicular pressure across the slow shock.

Once again, we emphasize that the present test should not show any significant dif-

ferences between cases with and without implementation of our regularization procedure,

because the simulation domain does not contain any magnetic null points due to the

prevailing constant and uniform normal field.

3.4.2.3 Without gyrotropization

Our implementation works well, even when gyrotropization is completely turned o↵, i.e.

⌫
g

= 0. Note that in the conventional framework for dealing with anisotropic pressure

without our regularization, there is no counterpart to compare with the solution presented
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here. This problem is intended purely for testing the implementation’s numerical robust-

ness and capabilities. Although we only provide the results for the ideal Ohm’s law here

for theoretical simplicity, a more general electric field can be employed in a straightforward

manner by implementing equation (3.12) instead of (3.21).

Roughly speaking, the qualitative behavior discussed above does not change signifi-

cantly even without gyrotropization. The profiles of the variables in this case are shown in

Fig. 3.3. Again, the wave structure consists of a pair of fast rarefaction waves, slow-mode

shock and compound waves, and a contact discontinuity accompanied by variations in

the tangential magnetic field and the pressure anisotropy. Note that in one-dimensional

problems, P
yy

and P
zz

only act as passive variables described by

@P
ii

@t
+

@

@x
(V

x

P
ii

) + 2P
ix

@V
i

@x
= 0, (3.49)

where i = y, z, so the relatively large jump of P
yy

across the contact discontinuity, for

instance, cannot have a back reaction to the plasma flow. In particular, the coplanarity

in the present setup (i.e., V
z

= 0 and B
z

= 0) reduces the energy equation about the

zz component to a simple continuity equation for P
zz

, which makes the behavior of P
zz

quantitatively the same as that of ⇢.

3.4.3 One-dimensional reconnection layer

This subsection provides another set of solutions to the one-dimensional Riemann problem

described by Hirabayashi & Hoshino (2013) (hereafter HH13), who discussed the wave

structure in a self-similarly developing reconnection layer by focusing on the properties of

slow-mode and Alfvén waves under the double adiabatic approximation (i.e., the gyrotropic

limit). In contrast to the coplanar case discussed in the previous subsection, we focus

particularly on the non-coplanar problem, where the degeneracy of a shear Alfvén wave

and other modes may be removed.

The initial condition is an isotropic and isothermal Harris-type current sheet with a

uniform guide field,

B
y

(x) = B0 cos� tanh (x/L) , (3.50)

B
z

(x) = B0 sin�, (3.51)

where B0 is the magnetic field strength in the lobe region, � is the angle between the
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Figure 3.3: Brio-Wu shock tube problem with no gyrotropization. The data have been
taken at t = 0.2.

lobe magnetic field and the x-axis, and L is the half width of the current sheet. The

initially isotropic pressure balance is determined so as to set the plasma beta, � = 2P/B2,

measured in the lobe region, to 0.25. Once the normal magnetic field, B
x

, is superimposed,

fast rarefaction waves, rotational discontinuities, and slow shocks propagate away from

the current sheet toward both lobes. The magnitude of B
x

is adopted as 5% of B0. The

simulation domain, �200L  x  200L, is discretized by 2000 grid points, and the free

boundary conditions are assumed to be located at |x| = 200L. For normalization, we set

L, B0, and the lobe density, ⇢0, to unity, which implies that the velocity and pressure are

normalized by V
A

= B0/
p
⇢0 and B2

0 , respectively.

3.4.3.1 Fast isotropization

First, Fig. 3.4 shows snapshots for fast isotropization at t = 3500, prior to which a pair of

fast rarefaction waves propagated away from the simulation domain. The angle � is set at

30�. Note that this figure is comparable to the left-hand panels of Fig. 1 in HH13. From

the panel showing the profiles of the magnetic field, we can see that a pair of rotational

discontinuities around |x| ⇠ 110 rotate the entire magnetic field in the z direction. Then,



3.4. Test problems 75

slow shocks at |x| ⇠ 75, which we can observe in all panels, dissipate the field energy

contained in B
z

. This behavior is common to the standard MHD approach, independent

of the initial angle �, and our model properly and qualitatively retains the same structure

as in the isotropic MHD case, even with the inclusion of the propagation of shearing Alfvén

waves.

Figure 3.4: Results of a one-dimensional Riemann problem set up to imitate a self-similar
reconnection layer, assuming fast isotropization. The data have been taken at t = 3500

3.4.3.2 Fast gyrotropization

Fig. 3.5, on the other hand, shows the same plots, except that only gyrotropization is

assumed. Since a uniform and constant normal magnetic field is imposed in this one-

dimensional problem, each grid point always has a finite magnetic-field strength, which

leads to almost the same result as in the double adiabatic limit. Fig. 3.5 is, therefore, now

comparable to the right-hand panels of Fig. 1 in HH13, and again all profiles quantitatively

agree well with each other. In particular, the reversal of the propagation speeds of slow-
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mode waves (|x| ⇠ 150) and Alfvén waves (|x| ⇠ 90), the weakness of the slow shocks in

terms of the released magnetic energy, and the parallel pressure enhancements across the

slow shocks are captured correctly. As already discussed in the previous subsection, in

addition, the contact discontinuity remaining around x ⇠ 0 can sustain variations in the

magnetic field and the pressure anisotropy in contrast to the flat profiles in Fig. 3.4.

Figure 3.5: Results of a one-dimensional Riemann problem set up to imitate a self-similar
reconnection layer, assuming fast gyrotropization. The data have been taken at t = 3500.

3.4.3.3 Without gyrotropization

It is remarkable that if any gyrotropization and isotropization e↵ects are neglected, the

present model does not show any evidence of magnetic reconnection accompanied by a

release of magnetically stored energy, as demonstrated in Fig. 3.6. The final state, in this
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case, is simply a dynamical equilibrium sustained by a contact discontinuity satisfying


⇢V 2

x

+ P
xx

+
B2

2

�1

2

= 0, (3.52)
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zx

�B
x

B
z

]12 = 0, (3.54)

where the leftmost term in each equation vanishes, because V
x

is zero across the contact

discontinuity. Focusing on the y direction, for example, the initial state is dynamically

imbalanced by the magnetic tension force, �B
x

B
y

, owing to the presence of an additionally

imposed B
x

component. The present assumption adds five additional degrees of freedom,

making this system characterized by a total of six independent entropy modes: i.e.,

(�⇢, �V, �B
y

, �B
z

, �P
xx

, �P
yy

, �P
zz

, �P
xy

, �P
yz
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zx
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>>>>>>>>>>>><

>>>>>>>>>>>>:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

(0, 0, 1, 0, �B
y

, 0, 0, B
x

, 0, 0),

(0, 0, 0, 1, �B
z

, 0, 0, 0, 0, B
x

),

(3.55)

which can be obtained easily by picking up non-propagating eigenmodes from the linearized

equations in the present system. Then, the P
xy

profile induced by the preceding waves

can soon regain dynamical balance (3.53) by means of the P
xy

-related entropy wave—the

fifth mode in equation (3.55).

Once the redistribution of the thermal pressure is enforced through gyrotropization

and/or isotropization, however, an imbalance develops. In the isotropic limit, in particular,

the imbalance for �B
x

B
y

can be resolved only through V
x

V
y

, because P
xy

= 0. The

induced V
x

drives the reconnection process, as we have seen already. Whether or not the

reconnection is actually quenched for certain initial parameters cannot be predicted until

the Riemann problem has been solved.

At a much earlier stage, on the other hand, we can recognize the propagation of slow-

and Alfvén-related waves, as well as of fast rarefaction waves. Fig. 3.7 shows a snapshot

taken at t = 100 using the same format as in Fig. 3.6. The vertical dashed lines indicate

the positions of di↵erent waves predicted from the parameters pertaining to the right-hand
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Figure 3.6: Results for a one-dimensional Riemann problem at t = 3500, without inclusion
of gyrotropization or isotropization e↵ects.

upstream regions. Note that the speeds of the slow and Alfvén waves are much faster than

those in the gyrotropic cases. In the absence of gyration, the counterpart of the Alfvén

wave is no longer completely decoupled from the thermal pressure in the propagation

direction. In this case, the phase velocity of Alfvén-like waves becomes

V
A

=

s
P
xx

+B2
x

⇢
, (3.56)

which can be obtained as an intermediate eigenvalue of the Jacobian matrix, (@F/@U) +

A, as discussed in section 3.3.1. This velocity is much larger than the usual Alfvén

speed measured in the present configuration. The slow mode also becomes faster than

its gyrotropic counterpart because of the reduction of the number of degrees of freedom

related to the internal energy through the absence of directional coupling of the pressure

tensor. This leads to an increase in the e↵ective adiabatic index and also in the sound
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speed. The phase speeds of both waves tend to become very close, and the resulting

profiles exhibit a compound structure. Nevertheless, our result shows that these waves

induce only small variations, and the downstream quantities remain in almost the same

state as the initial current sheet, supported by the additional entropy waves.

Figure 3.7: Results of the one-dimensional Riemann problem at t = 100, without inclusion
of gyrotropization or isotropization e↵ects.

The present problem is particularly designed for one of the numerical tests to extract

the e↵ect solely associated with the anisotropic pressure. For detailed analysis and a

comparison with kinetic simulations or observations, one may need to consider including

the Hall e↵ect, pitch-angle scattering, and the finite Larmor radius e↵ect, among other

options (Galeev & Zeleny̌i, 1976; Del Sarto et al., 2011; Liu et al., 2012).

3.4.4 Field loop advection

The field-loop advection problem was originally designed to test multidimensional MHD

codes (Gardiner & Stone, 2005). This problem contains a spacious, magnetically neutral
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region, making it suitable for investigating the capability to deal with anisotropic pressure

even in unmagnetized regions, which is one of the critical advantages of the present model.

In this problem, a weakly magnetized field loop is advected obliquely across the simu-

lation domain (x, y) 2 [�L,L]⇥ [�L/2, L/2] with a velocity

V = (V0, 2V0, 0) , (3.57)

which indicates that the field loop returns to the initial position after a time interval

t = 2(L/V0). The magnetic field loop is given in the form of a vector potential as

A
z

(x, y) =

8
<

:
B0 (R� r) (r  R)

0 (otherwise)
, (3.58)

where r =
p
x2 + y2 is the distance from the origin, R = 0.3L is the radius of the

field loop, and B0 is the magnetic field strength inside the loop. The magnetic field is

initialized by taking a finite di↵erence of the vector potential; otherwise a considerable

error in r ·B will seriously a↵ect the results. The gas pressure is assumed to be isotropic

and spatially uniform with � = 2⇥106 inside the field loop. The density is also distributed

uniformly, satisfying P/⇢ = V 2
0 . We adopt the normalization where L, V0, and B0 are

unity. The computational domain is discretized with 400⇥ 200 grid points. The e↵ective

collision frequency for gyrotropization is now set to be close to the dynamical timescale

by assuming ⌫
g

= 10 |B| /B0.

The simulation result at the time when the field loop returns to the initial position is

shown in Fig.3.8. The four panels show (a) the magnetic pressure, (b) the magnetic field

lines, (c) the deviation of the diagonally-averaged pressure from the uniform initial value,

and (d) the in-plane, o↵-diagonal component of the pressure. All quantities are normalized

by the initial magnetic pressure inside the field loop, B2
0/2. Fig.3.8(a) is comparable to

the top left-hand panel in Fig.3 in Gardiner & Stone (2005), and both figures agrees well

with each other. From the top two panels, (a) and (b), which are related to the magnetic

field, any spurious e↵ects cannot be observed either inside the loop, where inadequate

treatment of the electric field would result in a certain pattern, and in the vicinity of the

edge of the loop, where the magnetic field changes discontinuously. Therefore, we conclude

that introduction of the pressure tensor does not induces any numerical di�culties in our

extension to multidimensional problems.
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Figure 3.8: Snapshot at t = 2 for the field-loop advection problem. All variables are
normalized by the initial magnetic pressure inside the field loop, B2

0/2. Relatively slow
gyrotropization is assumed with ⌫

g

= 10 |B| /B0.

The bottom two panels, (c) and (d), are related to the pressure tensor. Although the

diagonally-averaged pressure, TrP/3, is maintained isotropic, a finite o↵-diagonal com-

ponent, P
xy

, induces a quadrupole pattern because of the di↵erence between P|| and P?

inside the loop. Because the xy component is given by P
xy

= (P|| � P?)b̂xb̂y under the

assumption of gyrotropic pressure, this pattern indicates the presence of a firehose-type

anisotropy with P|| > P?, as deduced by considering the direction of the magnetic field.

Qualitatively speaking, this anisotropy can also be understood by considering the behav-

ior associated with the double adiabatic approximation, because the decomposition of the

pressure tensor into parallel and perpendicular components is allowed inside the magnetic-

field loop. The intuitive form of the double adiabatic equations of state can be formulated

as follows,

D

Dt

✓
P?
⇢B

◆
= 0, (3.59)

D

Dt

 
B2P||
⇢3

!
= 0, (3.60)

where D/Dt = @/@t+V ·r indicates a Lagrangian derivative. Equations (3.59) and (3.60)

indicate that a decrease in the magnetic-field strength naturally leads to an enhancement

of the parallel pressure. In the present case, the magnetic field changes almost discon-

tinuously across the outer edge of the field loop and also across the loop’s center, which
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results in a decrease of magnetic-field strength through significant numerical dissipation.

Finally, we emphasize that the present model can successfully solve the equations for

the vast unmagnetized regions in this problem without any numerical di�culties. The

boundaries between the magnetized and unmagnetized regions are also captured seam-

lessly. Note that, except for the early stages, each cell might contain a non-zero magnetic

field below or around the level of the machine precision. Nevertheless, it may no longer

be meaningful to define P|| and P? there, and we strongly recommend the direct use of

the non-gyrotropic pressure tensor in essentially neutral regions.

3.4.5 Magnetorotational instability

The previous tests involved only weak anisotropy so that the resultant situations were

stable with respect to anisotropy-driven instabilities (i.e., firehose and mirror instabili-

ties). If one of these instabilities were to turn on, a rapidly growing eigenmode would

lead to the simulation crashing. This happens, because the growth rate becomes larger

without bounds as the wavelength becomes shorter. The maximum growth rate of the

kinetic counterpart of the MHD instability, on the other hand, will be limited by the finite

Larmor radius e↵ect. A compromise to avoid the disruption was presented by Sharma

et al. (2006) (hereafter SHQS06). They limited the maximum degree of the pressure

anisotropy by assuming that, once the anisotropy exceeds the threshold of one of the ki-

netic instabilities, the wave instantaneously reduces the anisotropy to the marginal state

through pitch-angle scattering (hard-wall limit). This model is applied to their simula-

tions of magnetorotational instabilities (MRI) in a collisionless accretion disk based on

the gyrotropic formulation and the Landau fluid model, and it succeeds in tracking the

non-linear evolution of the MRIs. In this subsection, we follow their pitch-angle scattering

model and show the result of the MRI simulation as a test problem for highly non-linear

evolution of an anisotropic plasma.

While the same thresholds—see Eqs (32)–(34) in SHQS06—are employed in the present

test, we slightly modified the numerical procedure of the scattering model compared

with the implementation of SHQS06, where the collision terms in the equations of state,
⇥
@P||/@t

⇤
c

= � (2⌫/3)
�
P|| � P?

�
and [@P?/@t]

c

= � (⌫/3)
�
P? � P||

�
, were solved implic-

itly. Instead of the implicit treatment, we use an analytic approach. Once the parallel

and perpendicular pressures in a marginal state, P||,s and P?,s

, have been determined, the
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analytic solution for the isotropized pressure tensor can also be obtained by solving


@P

@t

�

c

= �⌫iso (P�P
s

) , (3.61)

where ⌫iso is the e↵ective collision frequency of the pitch-angle scattering, which should

be set to a much larger value than any dynamical frequencies of the system, and P
s

is the

marginal pressure tensor. For detailed calculation of the marginal state, see Appendix B.

The other setup of our simulation is the same as that in SHQS06. With the help

of the shearing box model (Hawley et al., 1995; Stone & Gardiner, 2010), the radial,

azimuthal, and vertical coordinates in a cylindrical system are converted to x, y, and z

in a local Cartesian coordinate system, respectively, and the simulation domain is fixed

to (x, y, z) 2 [�L/2, L/2]⇥ [0, 2⇡L]⇥ [0, L]. At the edges, the so-called shearing periodic

boundary conditions are employed. A di↵erentially rotating plasma is then described by

the shear velocity V0 = (0,�q⌦0x, 0), where ⌦0 is the angular velocity of a disk at the

center of the simulation box, and the dimensionless parameter q = � ln⌦/ lnR is set at 1.5.

We assume that a plasma characterized by a uniform and isotropic pressure, P = P0I,

is initially threaded by a weak vertical magnetic field with � = 400. The initial mass

density, ⇢0, is also uniform. To trigger the growth of the MRIs, we add a random velocity

perturbation with a magnitude of 0.1% of the isothermal sound speed, c
s

=
p

P0/⇢0, which

is equated to ⌦L by assumption of a geometrically thin disk. In this problem, we employ

the 5th-order WENO scheme and the 3rd-order TVD Runge-Kutta scheme rather than

2nd-order methods for the purpose of resolving MRI-driven turbulence more accurately.

The number of grid points is set at 64⇥ 128⇥ 64.

The time evolution of the volume-averaged energy density and the xy component of the

stress tensor, normalized by P0, are shown in the top and bottom panels of Fig. 3.9, respec-

tively. The results under the isotropic MHD limit are plotted in the two left-hand panels for

comparison purposes. They show common behavior of the MRIs in unstratified shearing

box simulations. During the early stages, all unstable modes start to grow exponentially.

After the fastest growing mode captured in the simulation box, which has a wavelength

of � = L/2, becomes dominant, the non-linear growth of the longest-wavelength mode,

� = L, soon forms a pair of in- and outward channel flows. The amplitude of this channel-

flow structure continues to increase, because it is an exact solution of the shearing box

system (Goodman & Xu, 1994). At roughly three orbits, the channel solution drastically
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Figure 3.9: Volume-averaged energy density and stress, normalized by the initial thermal
pressure, as functions of time. The two left-hand panels (a) show the results for an isotropic
MHD limit, while the right-hand panels (b) show the results for anisotropic MHD models
with pitch-angle scattering.

breaks down into a turbulent state because of magnetic reconnection across the dense

current sheet. During the subsequent saturated stage, the MHD turbulence continues to

fill the simulation domain while repeating the formation of local channel flows and their

breakdowns through reconnection. The kinetic energy contained in motion deviated from

a Keplerian orbit and the magnetic energy are in equi-partition during this phase. The

stress, however, is highly dominated by magnetic contributions, also known as Maxwell

stress. This large stress caused by MHD turbulence is considered to play an important role

for angular-momentum transport in accretion disks. Note that the thermal energy contin-

ues to increase gradually, because the energy input into the simulation domain through

the boundary condition finally dissipates to thermal energy, and no cooling mechanism is

included in the system.
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The anisotropic MHD calculation incorporated with the pitch-angle scattering model,

on the other hand, leads to the two right-hand plots in Fig. 3.9. There are two noticeable

di↵erences from the isotropic case in the energy history. One is a dent of the kinetic

energy around two orbits. As described by SHQS06, this happens because the mirror-

type pressure anisotropy with P? > P|| generated by the growth of the MRI suppresses

further growth of the MRI itself. If the scattering model is not included, the MRI stops at

this level, and subsequently the simulation box will be filled with vertically propagating

Alfvén waves.

The other major di↵erence is the excessive peak of magnetic energy around four orbits,

just before the channel flow breaks down because of magnetic reconnection. This feature

was also pointed out by SHQS06 but not discussed in detail. To understand this issue, it is

useful to consider the e↵ect of the pressure anisotropy on the dynamics of the magnetic re-

connection, as suggested in Hoshino (2015). The author demonstrated the enhancement of

angular-momentum transport in collisionless accretion disks by means of PIC simulations

from the perspective just discussed. He states that, although the mirror-type anisotropy

with P? > P|| induced by the MRI is favorable for reconnection, or tearing instabilities,

to grow (Chen & Palmadesso, 1984), the opposite firehose-type anisotropy with P|| > P?

occurring in a dense current sheet as a result of reconnection will suppress further recon-

nection. The spatial distribution of the mass density and pressure anisotropy observed

in our calculations during the epoch of the largest channel flow, ⌦t/2⇡ = 4.2, are shown

in Fig. 3.10. The rightmost panel, which displays the occurrence frequency as a function

of ⇢ and P?/P||, clearly shows that the inside of the dense current sheet is dominated

by relatively isotropic or firehose-type anisotropic plasma compared with the dilute lobe

regions, which is consistent with the ideas discussed above. It is, however, not an obvious

issue as to whether or not the suppression or enhancement of the tearing instability in an

anisotropic current sheet are captured in the present fluid model, either qualitatively or

quantitatively. Further discussion of this issue is beyond the scope, and will be the subject

of future work.

3.5 Discussion and summary

In this chapter, we have proposed a natural extension to the double adiabatic approxima-

tion, or simply the CGL limit, to deal with the e↵ects of an anisotropic pressure tensor
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Figure 3.10: Slices of the density and pressure anisotropy distributions along y = 0 at time
⌦t/2⇡ = 4.2, just before the largest channel flow structure breaks down. The rightmost
panel shows the occurrence frequency as a function of the density and the anisotropy,
which demonstrates that the dense current sheet consists of a relatively isotropic plasma
or a slightly anisotropic plasma with P|| > P?.

in the framework of magnetohydrodynamics. The features of our fluid model can be

summarized as follows:

1. All six components of the pressure tensor are evolved according to equation (3.2),

which is the 2nd-moment equation of the Vlasov equation without assuming isotropy

or gyrotropy.

2. The e↵ect of gyrotropization is introduced through an e↵ective collision term, with

the collision rate set proportional to the local magnetic-field strength, which is a

natural assumption from the physical insights into the last term of equation (3.2).

3. With the help of features 1. and 2., the present model successfully eliminates the

singularity at magnetic null points, where the CGL equations cannot be applied.

4. By employing a large gyrotropization rate or a large isotropization rate, our model



3.5. Discussion and summary 87

correctly reduces to the CGL limit (when a finite magnetic field is present) or to

standard MHD, respectively, in an asymptotic manner.

The present model contains one free parameter, ⌫
g

, which controls the speed of gy-

rotropization. This timescale is, in general, considered to be much shorter than the dy-

namical time of a given system. In (almost) unmagnetized regions, however, such an

ordering fails because of the lack of any cyclotron motion or owing to a rather large gyro

period and, hence, a singularity in the mathematical expression appears inevitably. Our

fluid model represents one of the main e↵orts to recover regularity by adequately adopting

a functional form of ⌫
g

that is consistent with the physical consideration of the ⌦
c

P ⇥ b̂

term in the 2nd-moment equation.

We also emphasize that it is a relatively easy task to extend an existing MHD code

written in a conservative form to the present model, because we derive the basic equations

as clear counterparts to the standard MHD equations. However, one should keep in mind

that the e↵ect of the directional energy exchange by the Lorentz force cannot be included

into the conservative term. This requires an appropriate treatment for a Riemann solver,

as discussed in section 3.3; otherwise the calculation will fail to return a physically and

mathematically consistent solution.

The prospective applications of the present formulation include a wide variety of large-

scale phenomena in collisionless plasmas, particularly where the e↵ect of anisotropic pres-

sure plays an important role. The magnetospheric plasma environment around Earth is

a typical example, where the mean free path of charged particles and the typical spatial

scale di↵er by roughly three orders of magnitude. Large temperature anisotropy has been

measured by satellite observations, particularly near current sheets accompanied by mag-

netic reconnection (e.g., Hoshino et al., 1997; Artemyev et al., 2015; Hietala et al., 2015).

These magnetically neutral sites can also be solved seamlessly without any numerical and

theoretical di�culties by this model.

Finally, focusing on the method to handle a pressure tensor, we neglect the 3rd- and

higher-order moments of the Vlasov equation, such as the heat fluxes. Establishment of a

more sophisticated fluid model that can track other kinetic aspects is very challenging in

the field of collisionless plasma physics. The model proposed here may shed light on this

issue as a basis and as a guiding idea.
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Chapter 4

Stratified Simulations of

Collisionless Accretion Disks

4.1 Introduction

To explain e�cient angular momentum transport required for mass accretion in accretion

disks is one of the fundamental issues in astrophysics. As already reviewed in chapter 1,

since the astrophysical importance of the magnetorotational instability (MRI) was pointed

out (Balbus & Hawley, 1991), the MRI has been investigated elaborately as a driver of

strong magnetohydrodynamic (MHD) turbulence to provide substantial turbulent trans-

port of angular momentum. While numerical studies of MRIs developed under the MHD

framework, where collisional state is assumed, has achieved success, it is also of great

importance to understand dynamics in collisionless regime. For instance, Sagittarius A*

(Sgr A*), which is a compact radio source at the center of our galaxy, is believed to be

combination of a collisionless accretion disk and a relativistic jet possessing a supermas-

sive black hole at the center (e.g., Narayan et al., 1995; Falcke & Marko↵, 2000; Doeleman

et al., 2008; Kusunose & Takahara, 2012).

Given this fact, Hoshino (2015) conducted a three-dimensional, local shearing box sim-

ulation in collisionless regime using particle-in-cell (PIC) technique. He pointed out that

the angular momentum transport carried by anisotropy in velocity distribution function,

which is interpreted as an anisotropic pressure tensor in fluid-based models, reached a

value comparable to that carried by Maxwell stress, �B
x

B
y

/4⇡. It was also argued that

the total transport e�ciency measured by instantaneous thermal pressure was enhanced

by an order of magnitude compared with standard MHD results. In terms of ↵-viscosity

89
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proposed in Shakura & Sunyaev (1973), which is defined as the xy-component of the stress

tensor normalized by the thermal pressure, ↵ ⇠ O (0.1) was achieved.

Sharma et al. (2006), on the other hand, investigated the e↵ect of the anisotropic stress

under the fluid framework based on combination of the double adiabatic approximation,

or Chew-Goldberger-Low (CGL) model after Chew et al. (1956), and Landau fluid model

(Hammett & Perkins, 1990). The CGL model assumes a gyrotropic pressure. It means

that a pressure tensor can be described by only two independent components parallel and

perpendicular to a local magnetic field, rather than one scalar value. These two variables

are evolved with time in association with MHD-type equations, while other kinetic e↵ects

are neglected. The CGL results agreed with the more lately published PIC calculation

in the sense that the anisotropic and Maxwell stresses had the same contribution to the

angular momentum transport. A puzzling di↵erence between these two approaches is,

however, the total e�ciency of the transport. Although the PIC simulation predicts a

quite large value of ↵, the local simulations using the CGL model lead to values similar

to those obtained in standard MHD calculations.

One of the possible keypoints to solve this discrepancy may be a treatment of magnetic

reconnection under anisotropic pressure. In both fully-kinetic and fluid-based approaches,

the perpendicular pressure, p?, tends to dominate the parallel pressure, p||, in shearing

box simulations. This is qualitatively because the MRI is a process to enhance the mag-

netic field, which naturally results in anisotropy with p? > p|| from conservation of the

first and the second adiabatic invariants. In contrast, magnetic reconnection dissipates

the magnetic energy and makes opposite anisotropy in neutral sheets where reconnection

takes place. According to Hoshino (2015), it is this parallel pressure enhancement via

reconnection that suppresses successive reconnection itself (Chen & Palmadesso, 1984).

As a result, larger magnetic energy, and hence larger Maxwell stress, are likely to be

maintained in the system. It is, however, still ambiguous whether and how much the

e↵ect of suppression of reconnection by the pressure anisotropy is retained in the CGL

framework. A part of this ambiguity arises from the fact that CGL-based models cannot

deal with pressure anisotropy at magnetically neutral regions in its own right, due to the

presence of singularity near B = 0. To take a step forward beyond previous fluid mod-

els with anisotropy, in this chapter, we adopt a newly invented model which has already

been explained in detail in chapter 3. Our new model enables us to define and resolve

an anisotropic pressure tensor both in magnetized and unmagnetized regions seamlessly
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without any peculiar treatment. Thus we can investigate the role of the pressure tensor

at the deep inside of neutral sheets.

In spite of limited kinetic e↵ects included in the system, it is of significance to em-

ploy a fluid-based model possessing the scale-free property, when large-scale dynamics is

considered. Since the fully kinetic approach must resolve particle scales such as Debye

lengths and gyro radii, it is quite unrealistic to analyze disk-scale behavior, which in gen-

eral occurs in a scale much larger than the kinetic scales. In this sense, this work can be

placed in one of the attempts to fill the gap between the small-scale, kinetic approach and

the scale-free, fluid approach. In particular, we tackle a series of stratified shearing box

simulations by retaining vertical gravity of a central object. The stratification introduces

a concept of the disk’s scaleheight, or the disk thickness, into the system, which cannot

be reproduced in PIC simulations apparently.

The di↵erences between stratified and unstratified shearing box simulations have been

discussed by a number of authors, based on the standard MHD framework in collisional

regime (e.g., Brandenburg et al., 1995; Stone et al., 1996; Miller & Stone, 2000; Davis

et al., 2010). One of the major changes is generation of buoyantly rising patches of strong

toroidal magnetic fields, even when the simulation domain does not contain any external

magnetic flux. The previous studies have suggested that these magnetic patches work

just like a global or an external field for local MRIs, which can sustain strong MRI-

driven turbulence and enhance the angular momentum transport by roughly one order of

magnitude in terms of ↵ compared with an unstratified simulation started from the same

initial condition. It is still unclear what makes these patches. Nevertheless, investigating

this e↵ect in the collisionless regime as well would be of importance to understand global

behavior of collisionless accretion disks. In this chapter, we revisit this point for the first

time in the collisionless framework.

This chapter is organized as follows. In section 4.2, we describe numerical settings.

In particular, procedures specific to the present problem are explained in detail. Section

4.3 discusses our simulation results while comparing with cases under isotropic pressure

calculated using the same code. Finally, section 4.4 is devoted to summary and concluding

remarks.
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4.2 Simulation setup

4.2.1 Basic equations

In all calculations presented in this chapter, we employ the local shearing box approxi-

mation (Hawley et al., 1995) along with the vertical component of gravity. The pressure

anisotropy is handled with the model described in chapter 3, while the shearing source

terms and Coriolis force are additionally included. Then the basic equations are as follows:
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where ⌦ = ⌦ê
z

is an angular velocity vector, S
kij

is a generalized Poynting flux tensor

introduced in the previous chapter, "
ijk

is the Levi-Civita symbol, � is a gravitational

potential, and other notations are standard. Note that the ideal Ohm’s law, E+(v/c)⇥B =

0, is assumed throughout this chapter. The gravitational potential � in the shearing box

with vertical gravity is given by

� = �q⌦2x2 +
1

2
⌦2z2, (4.5)

where q = �d ln⌦/d lnR is a shear parameter and we assumed q = 3/2, which corresponds

to Keplerian rotation.

To mimic pitch-angle scattering owing to micro-instabilities driven by the pressure

anisotropy, we adopt the hard-wall limit introduced in Sharma et al. (2006). This model

sets maximum extent of the anisotropy, beyond which the pressure tensor is isotropized

immediately till the marginal value. The detailed implementation of isotropization via the

scattering model in our code is described in Appendix B.

In addition to gyrotropization and isotropization, furthermore, we implement the e↵ect

of cooling, or isothermalization, in a rather artificial manner. This step is required to
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maintain vertical structure of the disk; without any cooling, the gas in a simulation box

is heated up continuously, which makes the disk thicker and thicker. For the purpose of

investigating long-term evolution under a statistically constant disk structure, therefore,

the dissipated thermal energy must be removed from the computational domain. To

achieve this, we employ a technique similar to the gyrotropization model. Once ⇢ and

p
ij

are found from equations (4.1) and (4.4), respectively, we can define the isothermal

pressure tensor,

p
cool

= ⇢c2
s

3p

p
xx

+ p
yy

+ p
zz

, (4.6)

where c
s

is the speed of sound assumed to be uniform and constant. Equation (4.6) renor-

malizes the pressure tensor so that the diagonal average of p, which is directly proportional

to the total thermal energy, becomes identical with the isothermal value ⇢c2
s

, while the

ratios between every two components of the pressure tensor unchange. Then, the pressure

is made to approach p
cool

nearly instantaneously by

@p

@t

����
cool

= �⌫
cool

(p� p
cool

) , (4.7)

with ⌫
cool

assumed to be a large number compared to, for example, the disk rotation

frequency ⌦.

4.2.2 Initial and boundary conditions

Equations (4.1)–(4.4) in combination with isotropization and cooling models are solved as

an initial- and boundary-value problem. Initially, we assume purely azimuthal di↵erential

rotation expanded linearly in the local shearing box,

v
K

= �q⌦xê
y

. (4.8)

Suppose that the gas pressure is isotropic at t = 0. The stratified disk is, then, given by

a vertical hydrostatic balance. By the use of isothermal relation, we obtain

⇢ = ⇢0 exp
��z2/H2

�
, (4.9)

p = p0I exp
��z2/H2

�
, (4.10)
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where ⇢0 is the mid-plane density, p0 = ⇢0c
2
s

is the mid-plane pressure, and H =
p
2c

s

/⌦

is a disk thickness. A magnetic field is imposed upon this disk structure. In this chapter,

the sinusoidally changing vertical field is considered,

B = B0 sin

✓
2⇡x

L
x

◆
ê
z

, (4.11)

where B0 is the maximum field strength, and L
x

is the radial dimension of the simulation

domain. It is known that the intensity of MRI-driven turbulence is highly sensitive to the

net vertical magnetic flux, which vanishes in the present configuration. As mentioned in

section 1.4.1, this zero-net-flux model is motivated by the fact that there is no obvious

observational ground that a black hole accretion flow is threaded by large-scale, external

magnetic flux.

The above initial configuration is in magnetohydrodynamical equilibrium. To drive

growth of MRIs, we superpose a random, isentropic perturbation on the density and the

gas pressure, the amplitude of which is 0.1% of the local background value. For the

consistency with Hawley et al. (1995), a velocity perturbation is also added with the

amplitude of 0.02% of c
s

.

We adopt the shearing periodic boundary condition in x-direction, which is an essen-

tially periodic boundary while the e↵ect of the background shear is taken into account

(Hawley et al., 1995; Stone & Gardiner, 2010). Practically, this is achieved by data shift

along the azimuthal flow after the periodic boundary condition is applied. In y-direction,

a purely periodic boundary is employed.

A particular issue on stratified disk simulations comes into discussion when the vertical

boundary is considered. We assume a periodic boundary in z-direction, while it appears

to be unrealistic in a present stratified box. The extent to which the employment of

the periodic vertical boundary a↵ects the disk dynamics has been discussed by several

authors. Stone et al. (1996) compares two runs each of which adopts the periodic boundary

condition or the outflow boundary condition with an additional vertical domain including

strong viscosity and resistivity. This extended region works as a dumping layer, which is

necessary to avoid spurious Lorentz force arising from an artificially snipped magnetic field

line at the boundary. They concluded that both vertical structure and volume averaged

quantities do not show any significant di↵erence between two runs. Davis et al. (2010),

on the other hand, performs simulations with vertical dimensions of 4H and 6H using a
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periodic boundary. They also made conclusion that the nature of MRI turbulence and the

angular momentum transport in both cases look quite similar to each other, and hence,

the four-scaleheight run associated with the periodic boundary yields robust estimates

on properties of disk turbulence. In our implementation, the gravitational potential is

modified to connect values at top and bottom boundaries smoothly, as described in Davis

et al. (2010), i.e.

1

2
⌦2z2 ! 1

2
⌦2

✓q
(z0 � |z|)2 + �2 � z0

◆2

, (4.12)

where z0 indicates the position of the top or bottom boundary, and � is a thickness of the

smoothing region. We set � = 0.1H.

4.2.3 Code

The code we use in this chapter is a higher-order version of that described in the previous

chapter, namely, fifth order of accuracy in space and third order in time. The gyrotropiza-

tion, isotropization, and cooling procedures are combined in an operator splitting manner.

For the purpose of reducing and homogenizing errors which arise from the background

shearing velocity, we employ the orbital advection technique introduced in Stone & Gar-

diner (2010). The orbital advection scheme decomposes basic equations (4.1)–(4.4) into

two systems by making use of the fact that the background shear flow velocity v
K

is con-

stant in time. One is the usual MHD system where v0 = v� v
K

is evolved rather than v

itself, with slight modification on the shearing source terms. The other system describes

the linear advection due to the background shear flow, which can be solved analytically.

See Stone & Gardiner (2010) for technical details developed in the standard MHD. For

completeness sake, implementation in the present model with an anisotropic pressure is

summarized in Appendix C.

4.3 Results

Important parameters and spatially and temporally averaged stress in our simulations are

summarized in Table 4.1. The three-dimensional simulation domain of radial, azimuthal

and vertical coordinates is (x, y, z) 2 [�H/2, H/2]⇥ [0, 4H]⇥ [�2H, 2H] in all cases. Each

run is labeled by A (with anisotropic pressure) or I (with isotropic pressure), and 32 and

64 indicate the number of grid points per scaleheight, shown in the second column. Runs



4.3. Results 96

A32 are further distinguished by lower-case alphabets. The third column is the simulation

end time. The plasma beta and the gyrotropization frequency employed in each run

are shown in the forth and fifth columns, respectively. Throughout this chapter, double

brackets hhfii represent spatial averages over the whole simulation domain and temporal

averages after 50 orbits unless otherwise specified, while single brackets hfi indicate only

spatial averages. The averaged Reynolds, Maxwell, and anisotropic stress normalized by

the mid-plane pressure are recorded in the remaining columns.

Table 4.1: Simulation summary

Run Resolution Orbits � ⌫
g0/⌦ hh⇢v

x

v
y

ii /p0 hh�B
x

B
y

ii /p0 hhp
xy

ii /p0
A32a 32/H 300 102 1013 0.0014 0.0044 0.0020

A32b 32/H 100 103 1013 0.0013 0.0040 0.0020

A32c 32/H 100 104 1013 0.0015 0.0050 0.0019

A32d 32/H 100 102 108 0.0016 0.0049 0.0019

A32e 32/H 300 102 103 0.0016 0.0065 0.0020

A64 64/H 20 102 1013 0.0034 0.0124 0.0040

I32 32/H 300 102 — 0.0017 0.0062 —

I64 64/H 20 102 — 0.0018 0.0082 —

Note: Double brackets denote spatial averages over whole simulation domain and temporal averages after

50 orbits expect for A64 where averages are taken after 10 orbits.

Comparison among Runs A32a–A32c shows that the magnitude of the initial magnetic

field does not a↵ect statistics in the later stage both in qualitative and quantitative man-

ners. This agreement essentially arises from the fact that, in zero-net flux simulations,

the system has no typical scale of a magnetic flux. Once the initial magnetic structure is

stirred by nonlinear growth of MRIs, therefore, information on the initial field is forgotten

completely and the systems tend to reach the same statistical steady state. Then, we fix

the value of the initial � at 100 in other runs.

4.3.1 Fiducial run

We regard Run A32a as a fiducial case, and let us review the result in this section. In

Fig. 4.1, color contours of the density (left half) and the azimuthal magnetic field (right

half) normalized by ⇢0 and B0, respectively, during the initial stage from 2 to 3.25 orbits

are shown with the time interval of 0.25 orbits. At first, the growth of the MRI becomes

prominent at the outer regions with roughly |z| > H, while the linear theory in a uniform

medium predicts that the maximum growth rate is 0.75⌦ ubiquitously. As time goes on,
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MRI-driven channel sheets appear inside the disk as well. After 3 orbits, they finally

break down into turbulence through magnetic reconnection. This compressible turbulence

disturbs the disk structure as seen in the density contours at 3 and 3.25 orbits, but the

stratification is maintained statistically throughout the simulation even under the presence

of pressure anisotropy, which is discussed in detail later.

Figure 4.1: Snapshots during the initial phase of the MRI from Run A32a. The left and
right halves in each panel show contours of the mass density and the azimuthal magnetic
field, normalized by the mid-plane density and the maximum field strength at the initial
state, respectively.

4.3.1.1 Statistics

After 3–4 orbits passes, the simulation box is filled with chaotic turbulent motion. Statis-

tics of various quantities are summarized in Table 4.2. For a comparison purpose, we also

show statistics for Run I32, where all conditions are the same as in Run A32a except for
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the use of isotropic pressure. The second and fourth columns from the left represent aver-

ages both in space and in time, while the third and fifth columns show standard deviations

of volume averaged values, which indicate magnitude of temporal fluctuation.

From energy distribution in Table 4.2, we can see that the properties of turbulent

fluctuation in two runs are quite similar with each other. Magnetic energy, for example,

is distributed into each directional component related to B
x

, B
y

and B
z

, respectively,

roughly in the ratio of 0.1:0.85:0.05 in common, and kinetic energy is ⇠ 40% of the total

magnetic energy. The magnitudes both in the kinetic and magnetic energy, however, de-

crease by ⇠ 20% in A32a compared with in I32. The qualitatively same relation holds as

well for stress; both Reynolds and Maxwell stresses are reduced by ⇠ 20% with the nearly

constant ratio between them. In Run A32a, we also have additional angular momentum

transport by anisotropic stress, p
xy

. The value of this anisotropic stress seems merely

comparable to contribution from the Reynolds stress. However, the 20 percent reduction

of other stress is compensated by p
xy

, and the total transport e�ciency does not change

significantly. The bottommost two rows in Table 4.2 compare parallel and perpendicular

pressures averaged over the simulation. As qualitatively predicted from the double adia-

batic approximation, in an average sense p? dominates p||, which causes the positive p
xy

by combination with the positive Maxwell stress, because the anisotropic stress can be

written as p
xy

' ��B
x

B
y

/B2
� �

p? � p||
�
when the gyrotropic assumption holds well. 1

4.3.1.2 Volume-averaged stress

Fig. 4.2 exhibits the time histories of volume-averaged Reynolds, Maxwell, anisotropic,

and total stress for Runs A32a and I32. Each quantity shows highly chaotic behavior.

In particular, the Maxwell stress is strongly intensified intermittently with the interval

which sometimes exceeds several dozen orbits. This is the reason why considerably long

duration like 300 orbits is required to obtain a temporally averaged, representative value

in shearing box simulations of MRI-driven turbulence (Winters et al., 2003).

Fig. 4.3 also shows each stress averaged over the whole simulation domain after 50

orbits, but plotted as functions of the instantaneous magnetic energy. The green scattered

points clearly indicate strong correlation between the Maxwell stress and the magnetic

energy. The slope of the regression line is 0.27, while the Reynolds stress shows weaker

dependence with the slope of 0.054. The anisotropic stress, on the other hand, exhibits

1

Taking the xy-component of a gyrotropic pressure tensor p = p?I+
�
pk � p?

�
BB/B

2

.
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Table 4.2: Statistics for Runs A32a and I32

A32a I32

Quantity f hhfii ⇥ 102 �hfi ⇥ 102 hhfii ⇥ 102 �hfi ⇥ 102

⇢v2
x

/2p0 0.27 0.081 0.35 0.112

⇢v2
y

/2p0 0.15 0.054 0.22 0.095

⇢v2
z

/2p0 0.17 0.044 0.19 0.066

B2
x

/2p0 0.12 0.057 0.19 0.091

B2
y

/2p0 1.18 0.576 1.51 0.823

B2
z

/2p0 0.06 0.029 0.10 0.046

⇢v
x

v
y

/p0 0.14 0.050 0.17 0.068

�B
x

B
y

/p0 0.47 0.181 0.60 0.239

p
xy

/p0 0.20 0.058 — —
�
p|| � hpi

t=0

�
/p0 -0.49 0.165 — —

(p? � hpi
t=0) /p0 0.15 0.083 — —

Note: Single brackets denote spatial averages over whole simulation domain.

�

X

is a standard deviation for a quantity X.

Figure 4.2: Time variation of ↵-parameters averaged over the whole simulation domain in
Runs A32a (left) and I32 (right). Contribution from Reynolds (blue), Maxwell (green),
anisotropic (red, only in the anisotropic run), and total (cyan) stress are plotted with
di↵erent colors.

no clear dependence with a slightly negative slope for the linear regression line. This

tendency looks quite di↵erent from that observed in an unstratified simulation (see Fig. 3

in Sharma et al. (2006)). For more details, we need to see spatial structure, which will be

discussed in the next section.
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Figure 4.3: Dependence of each stress on instantaneous magnetic energy. The solid lines
are results of linear fitting.

4.3.1.3 Vertical structure

Since the present system involves stratification, it becomes possible to study vertical de-

pendence of various quantities, which is a great advantage of the scale-free model. One of

the graphical methods helpful to understand the vertical structure is a spacetime diagram.

It shows a quantity averaged along a horizontal plane as a two-dimensional function of both

a vertical position and time. Figs. 4.4 and 4.5 compare the spacetime diagrams for Runs

A32a and I32, respectively. From top to bottom, we plot the color contours of the plasma

beta in logarithmic scale, the radial and azimuthal magnetic flux, the Maxwell stress, and

the anisotropic stress (only in A32a), each of which is properly non-dimensionalized by

the initial mid-plane pressure.

From the top three panels, we can see the evidence that strongly magnetized patches

generated near the disk mid-plane buoyantly rise toward the boundary regions. The

magnetic flux piled up near the boundaries is apparently the spurious result of the use of

periodic boundary condition in the vertical direction. As we already mentioned, however,

this structure does not a↵ect the behavior inside the disk with |z/H| . 1, where the MRI

is highly active. In particular, the bottom two panels show that both the Maxwell and

anisotropic stress do not have any corresponding structure near the boundaries, so the

statistics of each stress in the previous section should not be largely altered by the choice

of boundary condition. Looking at a sign of the azimuthal field in the rising patches (and

also in the piled up field near the boundary), we can observe quasi-periodic reversals. This
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characteristic pattern is thought as an indication of an underlying dynamo e↵ect, and has

been observed commonly in previous MHD simulations in the collisional regime.

Figure 4.4: Horizontally averaged structure of various quantities in the anisotropic run as
functions of vertical position and time in Run A32a. From top to bottom, we plot the
plasma beta, the radial magnetic field, the azimuthal magnetic field, the Maxwell stress,
and the anisotropic stress.
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Figure 4.5: Spacetime diagrams in the isotropic Run I32 with the same format as in
Fig. 4.4.

By comparison with Run I32 shown in Fig. 4.5, it can be said that the magnetic struc-

ture described here is qualitatively same as in the isotropic case. The vertical distribution

of the anisotropic stress, however, is rather di↵erent from other two components. To make

this point clearer, we take a further average about time after 50 orbits. It yields tempo-

rally and horizontally averaged, one-dimensional vertical profiles of the stress in Fig. 4.6,

where each stress is colored in the same way as in Fig. 4.2. Again, the left and right panels

represent the results for Runs A32a and I32, respectively.

It is remarkable that the anisotropic stress localizes around the disk mid-plane, while
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the Maxwell and Reynolds components have broader structure over the wide range of

height as well as in the isotropic MHD run. As a result, the total e�ciency of angular mo-

mentum transport also has a localized profile rather than a flat, or two-peak, distribution

like obtained in I32 and previous studies (Davis et al., 2010). This localization indicates

that, for angular momentum transport in collisionless disks, the e↵ect of the background

structure of an accretion disk could be more essential than expected in collisional disks. In

particular, although unstratified shearing box simulations have predicted the magnitude

of anisotropic stress comparable to the Maxwell stress, our stratified model shows it is

true only at the deep inside of the disk, |z/H| . 0.5, and the anisotropic stress decreases

gradually, but more sharply than other stress, as z moves away from the disk mid-plane.

Note that it is not surprising that the results of unstratified models well agree with the

activity around the mid-plane, because the vertical gravity is proportional to z.

Figure 4.6: Comparison of vertical structure of horizontally and temporally averaged stress
between Runs A32a and I32.

The localization of the anisotropic stress seems to be explained as follows. ↵
A

, which

is a part of ↵ carried by anisotropic stress, can be written as

↵
A

=
p
xy

p0
'
✓
p? � p||
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B
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, (4.13)

where ↵
M

is the Maxwell stress normalized by p0. It means that, even if anisotropy is

somewhat uniform in the sense of p?/p||, ↵A

can vary largely depending on the magnitude

of diagonal components in the pressure tensor itself. This argument is illustrated in

Fig. 4.7. From top to bottom, plotted are the horizontally and temporally averaged

profiles of the parallel and perpendicular pressure, the ratio and the di↵erence between
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them, and the magnetic energy density, respectively, within |z/H|  1.5 where the spurious

boundary e↵ect is relatively weak. The first and second panels show that the anisotropy

p?/p|| is rather uniform inside the disk, |z/H| ' 1, in the sense of their ratio, with the

stratification maintained. The anisotropic stress, however, is determined by the di↵erence

of p? and p||, which is plotted in the third panel, and it shows a convex profile due to

the stratification. Since the magnetic energy density has quite flat structure as shown in

the bottommost panel, the profile of anisotropic stress becomes nearly proportional to the

stratified pressure. Although it might seem an apparent consequence, this is undoubtedly

the first quantitative estimate of the anisotropic stress in a collisionless accretion disk

including the disk scale.

Figure 4.7: Horizontally and temporally averaged profiles of the variables related to
anisotropic stress, p

xy

.
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4.3.2 Resolution dependence

Convergence of solutions with respect to the number of grid points is an issue of importance

for numerical simulations. The grid convergence of statistics in a shearing box model

during a saturated stage of the MRI has also been investigated intensively. Focusing

ourselves to calculations with no net magnetic flux, it is known that the turbulent stress in

cases without explicit dissipation and vertical gravity becomes smaller and smaller without

bound as the higher resolution is employed (Pessah et al., 2007; Fromang & Papaloizou,

2007; Guan et al., 2009). This absence of convergence has been a long-standing mystery

of a shearing box model. A resolution study using Athena code reported in Davis et al.

(2010), however, argued that they observed convergence of the saturation amplitude of

MRI-driven turbulence with the resolution up to 128 grid points per scale height, once

the vertical gravity and the resultant stratification is retained. In contrast, Bodo et al.

(2014) revisited the same problem with ampler computational resources by PLUTO code,

and observed no evidence of convergence with resolution up to 200 grid points per scale

height. The grid convergence of turbulent stress in a shearing box model is still an open

question.

In the case of our model as well, it is significant to assess the dependence of the

transport e�ciency on the number of grid points. We list in Table 4.1 the results using

di↵erent resolutions with 32 and 64 grid points per scale height in Runs A32a and A64

(I32 and I64 for isotropic pressure). Note that the Reynolds and Maxwell stress in Run

I64 are in remarkably good agreement with those obtained in Run S64R1Z4 reported in

Davis et al. (2010), which corresponds to the same calculation with our Run I64. Run

A64, on the other hand, shows more sensitive increase in every component of stress, and

the total transport e�ciency exceeds the isotropic counterpart. The duration of the high

resolution run, however, is limited to only 20 orbits due to the restriction of currently

available computational resource. This duration is apparently not su�cient at all to

obtain a meaningful representative value from highly chaotic turbulence, since the interval

of intermittent behavior can reach several dozens of orbits, as we already mentioned. We

leave more precise and robust study on convergence by simulations lasting several hundreds

of orbits to future work.
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4.3.3 Dependence on gyrotropization model

Our model to deal with an anisotropic pressure tensor introduces a new timescale, or a

frequency, to control how fast the pressure tensor approaches to its gyrotropic asymptote.

It would be necessary to clarify the dependence of our results on this parameter. The

gyrotropization frequency enters into the system through the last term in equation (4.4),

where

⌫
g

=

✓ |B|
B0

◆
⌫
g0, (4.14)

is set to be proportional to the local magnetic field strength normalized by a fiducial

value, B0. In all our calculations, B0 is fixed at the initial maximum value of the magnetic

field for � = 100, i.e., B0 =
p
2p0/102, which is also a typical field strength during the

saturated stage. Runs A32a, A32d and A32e in Table 4.1 employ di↵erent values of ⌫
g0:

1013, 108 and 103 in unit of the rotation frequency of the disk, ⌦. These choice of ⌫
g0

roughly yield ⌫
g0�t ' 1010, 105 and 1, respectively, at a site of the typical magnetic field,

using a simulation time step defined to satisfy the CFL condition (3.37). We, therefore,

expect the quantitatively similar results for Runs A32a and A32d, where ⌫
g

�t � 1, and

the statistics shown in Table 4.1 successfully demonstrate it.

Run A32e, on the other hand, shows the Maxwell stress increased by ⇠ 40%, while the

Reynolds and anisotropic contribution remain unchanged. The magnetic energy is also

increased by 35%. This enhancement may be traced to reduction of released magnetic

energy via magnetic reconnection under the presence of large non-gyrotropy. In section

3.4.3.3, we illustrated that the eigenmodes which are not present in a gyrotropic frame-

work can support a current sheet without raising up an explosive reconnection event and

releasing magnetically stored energy. To obtain a supporting evidence for this assertion,

we make plots for occurrence frequencies of non-gyrotropy in Fig. 4.8. The vertical axis

indicates a measure of non-gyrotropy, which is defined as an L2-norm of a residue of a

pressure tensor from its gyrotropic limit normalized by the mid-plane pressure;
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The horizontal axis is a magnetic field strength in a logarithmic scale, and the number of



4.3. Results 107

cells counted during 50–100 orbits is shown by the color contour. From left to right, each

panel shows the result for Runs A32a, A32d and A32e, respectively.

Figure 4.8: Occurrence frequencies of a measure of non-gyrotropy and magnetic field
strength, for Runs A32a, A32d and A32e using di↵erent gyrotropization frequencies.

Again, the left two panels for Runs A32a and A32d show the quite similar results; a

majority of data crowds around a narrow region along �p̂ ' 0. Note that ⌫
g

�t � 1 holds

over all the range of the field strength in these two runs. In the rightmost panel for the

smallest value of ⌫
g0, however, the large non-gyrotropy with at most �p̂ ' 0.1 remains in

weakly magnetized regions, which can be thought as sites where magnetic reconnection

takes place. The extent to which this highly nonuniform non-gyrotropy alters the dynamics

of reconnection is still unclear. Nevertheless, in a qualitative sense at least, our result seems

consistent with the suppression of reconnection by the non-gyrotropic entropy modes.

The enhanced stress in Run A32e highlights the important role of deviation from

gyrotropic pressure, which updates the previous result of the shearing box simulation with

the gyrotropic framework by Sharma et al. (2006). Even though the volume occupancy of

weakly magnetized regions with finite non-gyrotropy is not so large, it can have a significant

impact on entire large-scale dynamics through the process of magnetic reconnection. This

is a good example of multi-scale coupling typical in collisionless plasmas, and we have

suggested a new aspect of micro-physics to be taken into account in large-scale collisionless

plasmas.

4.3.3.1 Combined model of rotation and gyrotropization

For the purpose of showing one of the possible orientations toward improvement of our

gyrotropization model, we have tried numerical experiments including the e↵ect of rotation
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of a pressure tensor in addition to gyrotropization; we solve

@p
ij

@t
= ⌦

c

⇣
"
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p
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+ "
jkl

p
ik

b̂
l

⌘
� ⌫

g

(p
ij

� p
g,ij

) ,

instead of only the gyrotropization represented by the last term. This is motivated by the

fact that the original form of this operator simply describes rotation of a pressure tensor by

cyclotron motion of particles (see equation (3.12)). By solving this term analytically in an

operator splitting manner, the e↵ect that a particle incoming into a neutral sheet quickly

changes its direction of cyclotron motion, which is one of the essential physics in magnetic

reconnection, may be incorporated into a system. Practically, since our model employs

a one-fluid framework, we have to determine the direction in which particles rotate. In

the present application, suppose the pressure is mainly supported by ions, and a positive

value is adopted for ⌦
c

.

In order to clarify the role of this rotation term particularly on magnetic reconnection,

let us reconsider the same one-dimensional Riemann problem as described in section 3.4.3

by setting ⌦
c

= (B/B0)⌦
c0 and ⌫

g0 = 0. The results adopting di↵erent values of the

rotation frequency, i.e., ⌦
c0L/VA

= 100, 10�2 and 10�4 are shown in Figs. 4.9 to 4.11,

respectively. By comparison of Figs. 3.5 and 4.9, it is remarkable that when ⌦�1
c0 takes

the same order as the Alfvén transit time across the initial current sheet, the resultant

structure of the reconnection layer is the almost same as that observed under a gyrotropic

limit in spite of the absence of any explicit gyrotropization term. The resemblance with the

gyrotropic case would be traced to redistribution of non-gyrotropic components generated

at a certain gyrophase into a wide range of gyrophases. The fast rotation, therefore, tends

to randomize non-gyrotropy, which e↵ectively works like gyrotropization, although it is not

guaranteed that the non-gyrotropy vanishes eventually. The only major di↵erence from

the gyrotropic limit is behavior of the rotational discontinuities around |x/L| ⇠ 90, where

the response of various quantities are anti-symmetric between leftward and rightward

propagating waves. This symmetry breaking apparently arises from the assumption that

the pressure is supported only by positive charges, i.e., ⌦
c

> 0, and thus reflects the

direction of the local magnetic field.

When the rotation is slower than the dynamical timescale like shown in Fig. 4.10 with

⌦
c0 = 10�2V

A

/L, the reconnection layer becomes quite complicated and highly asymmet-

ric. It is no longer straightforward to understand the structure based on propagation of
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Figure 4.9: Results of the one-dimensional Riemann problem at t = 3500 including only
the rotation term with ⌦

c0 = 100.

isolated waves. Once the rotation frequency is further decreased by two orders of magni-

tude, however, the system shows no explosive reconnection as shown in Fig. 4.11. This

naturally occurs by the same mechanism described in section 3.4.3.3 and Fig. 3.6 there,

while the assumption of positive ⌦
c

causes a slight leftward migration of the contact dis-

continuity.

As we have seen in this section, the rotation term works in a qualitatively similar

way to the gyrotropization model used in this thesis, which reinforces the validity of

our parameterization to some extent. In spite of the similarity, inclusion of this original

rotation term still has an advantage. We observed that, when applied to stratified disk

simulations, it becomes possible to employ smaller ⌫
g0 than listed in Table 4.1 for the

first time by the use of the combined model; otherwise the simulation with, for example,

⌫
g0 = 10⌦ breaks down due to appearance of negative density. To the contrary, a merit

of incorporating with the gyrotropization model is to guarantee the consistency with a

gyrotropic limit in an asymptotic manner by reducing non-gyrotropy explicitly.

4.3.3.2 Application to stratified disk simulations

In this section, let us apply the combined model described above to our stratified disk

model. For simplicity we assume ⌦
c0 = ⌫

g0 here. Simulation parameters and the resultant
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Figure 4.10: Results of the one-dimensional Riemann problem at t = 3500 including only
the rotation term with ⌦

c0 = 10�2.

Figure 4.11: Results of the one-dimensional Riemann problem at t = 3500 including only
the rotation term with ⌦

c0 = 10�4.

stress averaged both in space and in time are summarized in Table 4.3 with the same

format as in Table 4.1. Each run is labeled with R (with rotation). From Run R32a to

Run R32d, the frequency common to gyrotropization and rotation procedures is changed.
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Table 4.3: Simulation summary for rotation + gyrotropization model

Run Resolution Orbits � ⌫
g0/⌦ hh⇢v

x

v
y

ii /p0 hh�B
x

B
y

ii /p0 hhp
xy

ii /p0
R32a 32/H 300 102 1013 0.0014 0.0045 0.0019

R32b 32/H 300 102 108 0.0015 0.0048 0.0020

R32c 32/H 300 102 103 0.0016 0.0057 0.0021

R32d 32/H 300 102 101 0.0019 0.0121 0.0090

The dependence of the stress on ⌫
g0 are illustrated in Fig. 4.12 along with the averaged

plasma beta. The A32 and R32 serieses are represented by circles and squares, respectively.

We can clearly see that two serieses are in both qualitative and quantitative agreement

for ⌫
g0 & 103⌦, which ensures that the current model is an appropriate extension of the

original model when a pressure tensor is well gyrotropized. The intensive enhancement

in the Maxwell and anisotropic stress is, however, observed when ⌫
g0 is further decreased

to 10⌦ in Run R32d, and the magnetic energy also increases roughly by three times

compared with the case of ⌫
g0 = 103⌦. Although these facts seem to imply a more

e�cient dynamical suppression of magnetic reconnection by a non-gyrotropic pressure, the

increase not only in the Maxwell stress but also in the anisotropic stress may be related

to a process slightly di↵erent from the case in A32e or R32c. For example, it is known in

kinetic description that charged particles entering a reconnection layer experience Speiser

orbits toward the direction of the electric field along an X-line. The situation particularly

in a shearing box is illustrated in Fig. 4.13. Since the magnetic field is continuously

stretched to x-direction by the MRI and to y-direction by the background di↵erential

rotation, the reconnection is expected to occur in a plane inclined both from (x, z)- and

(y, z)-planes, like the shaded region in Fig. 4.13. Thus the population in Speiser orbits

tends to have the correlation of hv
x

v
y

i > 0, which contributes to positive p
xy

in a quite

non-gyrotropic manner. Getting back to our fluid model, although each particle’s orbit

is not resolved, it could be possible to generate this non-gyrotropic p
xy

by distorting and

rotating the pressure of incoming flux with large p?. This e↵ect cannot be captured

when only gyrotropization is assumed, where the anisotropy around the magnetic field

remains in the constant direction. To demonstrate this hypothesis, however, requires more

detailed study on magnetic reconnection itself in an isolated system. Anyway, the result

here emphasizes the striking dependence of an angular momentum transport e�ciency on

the ratio between the cyclotron frequency and the disk’s rotation frequency. Note that,

since the previous PIC simulations by Hoshino (2015) assumed a small ratio ⌦
c

/⌦ =
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10 for saving computational resources, there might be a possibility to overestimate the

suppression e↵ect due to the non-gyrotropic distribution function. It is to be hoped that

future research will clarify this point.

Figure 4.12: Dependence of stress and plasma beta on a gyrotropization and cyclotron
frequency. The circles connected with solid lines are the cases with only gyrotropization,
and the squares connected with dashed lines indicate the result of the gyrotropization and
rotation model.

4.4 Discussion and summary

In this chapter, we have conducted a series of stratified shearing box simulations in colli-

sionless regime using our newly developed kinetic MHD model. This is the first approach

to large-scale dynamics of collisionless accretion disks. In particular, it is designed to fill

the gap between the double adiabatic simulations assuming gyrotropic pressure and fully

kinetic simulations, which cannot handle disk scales.

The main results of importance are summarized as follows:

1. The volume- and time-averaged total e�ciency of angular momentum transport

remains at the same level as in isotropic MHD simulations.
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Figure 4.13: A schematic picture of a reconnection layer expected in a shearing box
simulation.

2. The distribution ratio of the Reynolds, Maxwell, and anisotropic stress agrees with

unstratified simulations only near the disk mid-plane, and anisotropic stress de-

creases outwardly.

3. The results are not a↵ected by the choice of an artificial parameter to determine the

gyrotropization rate, as long as it is su�ciently large.

4. Once the gyrotropization rate approaches a dynamical time scale of a disk, finite

non-gyrotropy around neutral sheets tends to enhance the Maxwell stress.

Although the result 1 looks the same argument claimed in the previous study of unstrati-

fied simulations using the double adiabatic model (Sharma et al., 2006), the contribution

from the anisotropic stress is only comparable to the Reynolds stress, rather than to the

Maxwell stress as predicted in the unstratified case. The properties of the unstratified

shearing box model is well reproduced only around the disk mid-plane, where the e↵ect

of vertical gravity is weak and stratification can be ignored in good approximation. The

stratified pressure, however, yields strong dependence of the anisotropic stress on the

vertical position. Specifically, as stated in result 2, the anisotropic stress decreases out-

wardly away from the mid-plane reflecting stratification of the diagonal pressure, while the

Maxwell and the Reynolds stress have broader distribution. This fact apparently suggests
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that the large-scale structure be more essential for angular momentum transport in a col-

lisionless accretion disk than expected in a collisional disk where thermal pressure cannot

carry angular momentum. Our results must be an important foothold to understand more

global behavior of collisionless disks in the future.

A self-similar solution for Sgr A* based on the ADAF model (Narayan & Yi, 1994)

predicts that the ratio of the cyclotron frequency to the rotation frequency of the disk

largely depends on an orbital radius, but it is in general expected to be much greater than

unity. Result 3 relieves us of a distress about the practical choice of a gyrotropization

frequency. When it is artificially set to a value comparable to a dynamical frequency, on

the other hand, the energy release through magnetic reconnection could be suppressed

by finite non-gyrotropy, and e�cient transport is likely to be sustained by the increased

Maxwell stress. This result 4 is qualitatively consistent to PIC simulations in Hoshino

(2015), though we have to take care that the physics to suppress the reconnection process

would be quite di↵erent. It is a highly challenging matter of interest to improve our

current model to capture this suppression e↵ect, which is believed to reflect micro-physics

in part, while a large gyrotropization rate is maintained outside the current sheets, where

macro-physics plays a role. Note that the role of non-gyrotropy in the context of MRIs was

not discussed either in fully kinetic PIC simulations by Hoshino (2015), where suppression

of magnetic reconnection and the resultant enhancement of angular momentum transport

were accounted for only in terms of the gyrotropic anisotropy with p|| > p?. While there

have been theoretical and numerical studies on non-gyrotropic electron pressure, which

strongly a↵ects the physics of resistivity, and hence the magnetic reconnection, through

the generalized Ohm’s law (e.g., Hesse & Winske, 1993, 1994; Yin & Winske, 2003), the

dynamical role has not been discussed with interest. The simple test problem provided in

section 3.4.3.3 and its indirect application to a larger system demonstrated here emphasize

the necessity to see the importance of non-gyrotropic components of a pressure tensor in

a new light.

It should be noted that our model currently does not include the e↵ect of resistivity,

which is another large issue to determine saturation amplitudes of the MRI-driven turbu-

lence. The lack of resistivity is because the distribution of thermal energy generated by

Joule heating into each component of a pressure tensor cannot be determined within the

fluid framework. This means that magnetic reconnection occurs only through numerical

dissipation in the current model, and the heating rate of each component of a pressure
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tensor is not under control. We, however, could employ a model of the heating rates, for

example, based on the idea that the Joule heating is mainly carried by electrons which

isotropize instantaneously. Conversely, it is possible to construct a model of anisotropic

heating of ions. To investigate the dependence of the present results on resistivity models

is also left for future work to be discussed.



4.4. Discussion and summary 116



Chapter 5

General Discussion

5.1 Summary of this thesis

Throughout this thesis, we have investigated the anomalous angular momentum transport

by magnetohydrodynamic (MHD) turbulence in accretion disks, particularly in the context

of ↵-viscosity. More specifically, in chapter 2, the magneto-gradient driven instability

(MGDI) is proposed as a new process to drive MHD turbulence from a toroidal magnetic

flux in a collisional disk. The MGDI has the property that it occurs along a horizontal

plane of the disk, in contrast to the case of the conventional magnetorotational instability

(MRI), where vertically propagating waves play essential roles. Thus, these two unstable

modes are more likely to grow complementarily rather than competitively. As we have seen,

the Maxwell stress induced by the MGDI is proportional to the externally imposed toroidal

magnetic flux, and ↵ ⇠ O (0.1) seems to be attained for a relatively strong magnetic field

with � . 10. It is widely confirmed that the strong toroidal field commonly arises in three-

dimensional simulations even without any external flux. This internally induced toroidal

field would work just like an external flux for local perturbations, which can seed the

MGDI. We, however, have to keep in mind that the nature of turbulence can be di↵erent

between two- and three-dimensional problems. More precise quantitative estimates on

contribution of the MGDI requires fully three-dimensional analyses; nevertheless we believe

that the physical essence of the instability is quite general and does not change even in

more complicated three-dimensional cases.

In contrast, chapters 3 and 4 have discussed dynamics of more dilute gas which should

be treated as a collisionless plasma. While chapter 3 was designed to make preparations for

collisionless disk simulations provided in chapter 4, the methodology newly developed in

117
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chapter 3 itself has an importance from the viewpoint of plasma physics. The new kinetic

MHD model is a successful attempt at including the e↵ect of an anisotropic distribution

function into the framework of one-fluid MHD as much as possible by allowing a pressure

tensor in a more general form than gyrotropic formulation, which enables us to resolve

magnetically neutral regions without any numerical di�culty. While there still remains

several courses of improvement to be considered particularly related to the relaxation pro-

cedure, the fluid model introduced in this thesis is a first step of great significance to make

a closer link between the MHD theory to govern macro-scale phenomena and the kinetic

theory to describe micro-scale physics. The future applications include much variety of

large-scale collisionless phenomena studied in the discipline of space and astrophysics.

Chapter 4, in particular, applied the developed kinetic MHD model to a series of shear-

ing box simulations of accretion disks incorporated with vertical gravity, and investigated

the impact of an anisotropic pressure on angular momentum transport in a collisionless

disk. The results provided in this thesis shows that the total e�ciency of the angular mo-

mentum transport is not so much di↵erent from the level predicted in collisional regime,

while the additional transport due to anisotropic pressure is revealed to localize near the

disk mid-plane. This localization apparently the consequence of the stratification, which

cannot be studied by a fully kinetic approach. It implies that the transport process ex-

pected in a collisionless disk, particularly due to the pressure anisotropy, depends on the

background disk structure more largely than in a collisional disk, where only the Maxwell

and Reynolds stress can contribute to the angular momentum transport, and strongly

invokes the necessity of collisionless global simulations, for which the present model will

be expected to play an e↵ective role.

Another significant result is a moderate enhancement of the Maxwell stress by bring-

ing a newly introduced time scale of gyrotropization and a dynamical time scale close to

each other. We obtained the indirect evidence that finite non-gyrotropy remaining partic-

ularly in the vicinity of neutral sheets may reduce the amount of magnetic energy released

via magnetic reconnection, which eventually increases the Maxwell stress as well. The

reduction of released energy is qualitatively consistent with anticipation from the simple

one-dimensional problem to mimic magnetic reconnection without any gyrotropization in

chapter 3. This result revises the argument in Hoshino (2015) that the parallel pressure

enhancement in reconnection exhaust suppresses the successive reconnection itself, where

only gyrotropic pressure is taken into account, although a di↵erence in the parameter
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range resolved in kinetic and fluid approaches need to be kept in mind. We must, further-

more, remind you that other existing MHD codes incorporated with anisotropic pressure

based on the double adiabatic formulation cannot explore the role of non-gyrotropy as

demonstrated in this thesis. Research on the e↵ect of non-gyrotropy in the framework of

completely scale-free, one-fluid magnetohydrodynamics is just getting started.

Finally, let us summarize our current understanding of MRI-driven turbulence with and

without vertical gravity obtained by di↵erent approaches in Table 5.1. Note that the basic

properties of the MRI are adequately captured in all frameworks: standard MHD, CGL-

based gyrotropic MHD, the present kinetic MHD with non-gyrotropy, and fully kinetic

PIC/Vlasov model. The capability to describe kinetic e↵ects increases from left to right.

The standard MHD, which does not involve any kinetic e↵ect due to the assumption of

high collisionality and/or isotropization, is applicable both to a totally local shearing box

model without any typical spatial scale of a disk and to a vertically stratified shearing

box model in association with the disk’s scale height. Although the estimated e�ciencies

of angular momentum transport are smaller than the observational requirement roughly

by an order of magnitude, the e↵ects of excessive numerical viscosity and resistivity on

saturation amplitude of MRI-driven turbulence are still an open question. Our attempt at

extension of a one-fluid framework to include kinetic physics more is located between the

previous CGL-based kinetic MHD model and fully kinetic PIC or Vlasov model, in the

sense that handling of the pressure anisotropy in the vicinity of neutral sheets is taken into

account, while the scale-free property is retained. Although the obtained enhancement of

angular momentum transport by inclusion of non-gyrotropy was moderate and did not

reach the stage to account for e�cient transport on observational ground, it should be

recognized as a great step to put forward our understanding on the role of collisionless

e↵ects in black-hole accretion flows.

5.2 Future prospects

As a closing section of this thesis, we would like to mention future work and applications.

As we already pointed out, angular momentum transport by anisotropic pressure in a

collisionless accretion disk seems to be largely subject to the structure of the disk. In

this thesis, the e↵ect of vertical stratification has been considered. A real accretion disk,

however, stratifies also in radial direction. Such an e↵ect can no longer be captured by
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Table 5.1: Summary of simulation studies of MRIs.

Collisional Collisionless

Model MHD MHD+CGL This thesis PIC/Vlasov

Kinetic
e↵ect

⇥ Anisotropy
Anisotropy

Nongyrotropy
�

Micro
instability

— PAS model PAS model �

MRI � � � �
Disk scale � � � ⇥
Neutral
sheets

— ⇥ 4 �

↵ (local) 10�4–10�2 ⇠MHD ⇠MHD ⇠ 0.1

↵ (stratified) . 10�2 10�3–10�2 ⇥
Note: PAS = pitch-angle scattering

a shearing box model, and a genuinely global model is necessary. A global disk simu-

lation is one of the apposite future applications of this work, and it would bring about

more quantitative understanding of advection-dominated accretion flows, which might be

comparable with observational understandings. In particular, once the relativistic ver-

sion of our model is developed, the jet formation at a collisionless, black-hole accretion

flow will become accessible, although it has been investigated by collisional MHD models

conventionally.

It is also a fundamental issue to be worked out in more detail how the anisotropy and

the non-gyrotropy of a pressure tensor regulate the reconnection process in the present

model. To organize this point necessarily involves elucidating which physical process is or

is not included in the system, compared with the original Vlasov-Maxwell system. Note

that there have been investigation of the e↵ect of electron pressure anisotropy, the diver-

gence of which enters the system electromagnetically through the generalized Ohm’s law.

It is known that the inertia resistivity and/or the anisotropy of the electron pressure work

as a source of anomalous resistivity to enhance the magnetic reconnection in a collisionless

system. Our one-fluid kinetic MHD model, on the other hand, involves the dynamical role

of a pressure tensor in the equations of motion and energy, but the simplest ideal Ohm’s

law is still employed in the induction equation so far and the reconnection takes place via

numerical resistivity. To integrate the spontaneous mechanism of anomalous resistivity

into the present model is a highly challenging matter, since what we really need is a one-
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fluid model by which we can enjoy the scale-free property; nevertheless, the methodology

itself to resolve all components of a pressure tensor should work even when the system is

extended to a multi-fluid model. The role of anisotropic pressure in magnetic reconnection

is still an open question, and we believe that there will be a lot of aspects which our model

can contribute to in the future.
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Appendix A

Higher Order Implementation

In the text, our 2nd-order implementation is described in detail to clarify the di↵erences

from the standard MHD code. Here, we provide an example of a more accurate imple-

mentation by employing a 5th-order spatial scheme and a 3rd-order temporal scheme.

In terms of the procedure in Section 3.3.4, step 2 is first replaced by the 5th-order

WENO interpolation (Jiang & Shu, 1996),

W
L,j+1/2 = w1W

(1) + w2W
(2) + w3W

(3), (A.1)

where W(i) represents the 3rd-order linear interpolation using di↵erent stencils,

W(1) =
3

8
W

j�2 � 5

4
W

j�1 +
15

8
W

j

, (A.2)

W(2) = �1

8
W

j�1 +
3

4
W

j

+
3

8
W

j+1, (A.3)

W(3) =
3

8
W

j

+
3

4
W

j+1 � 1

8
W

j+2. (A.4)

The normalized nonlinear weights, w
i

= ŵ
i

/(ŵ1 + ŵ2 + ŵ3), are chosen to reduce to small

numbers around discontinuities as

ŵ
i

=
�
i

(�
i

+ 10�6)2
, (A.5)

with optimum weights

�1 =
1

16
, �2 =

5

8
, �3 =

5

16
, (A.6)

which ensures convergence to the 5th-order linear interpolation in smooth regions. �
i

, the
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global smoothness indicator (Levy et al., 2000), is the weighted average of the smoothness

indicator for each variable,

�
i

=
1

N
d

N

dX

d=1

�d

i

||W d||2 , (A.7)

where N
d

= 13 indicates the number of independent variables, and �d

i

is the smoothness

indicator for the d-th variable, defined as

�d

1 =
13

12

⇣
W d

j�2 � 2W d

j�1 +W d

j
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W d

j�2 � 4W d

j�1 + 3W d

j

2

!2

, (A.8)
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. (A.10)

By employing reverse stencils, W
R,j�1/2 can also be obtained in the same way. Note that

the coe�cients described here are not for reconstruction, but for interpolation. Employing

the interpolation scheme as a point value enables us to use various kinds of Riemann solvers

in the context of a finite-di↵erence approach as well, and to couple the scheme with the

CT method.

Next, the conversion from a point-value to a numerical flux must be carried out for

F
L,R

and D
L,R

before taking two-point di↵erences in step 7. This can be achieved by

comparing the coe�cients in the Taylor expansion (Shu & Osher, 1988). The 6th-order

formula, for example, is obtained from

f̂
j±1/2 = f

j±1/2 �
�x2

24

@2f

@x2

����
j±1/2

+
7�x4

5760

@4f

@x4

����
j±1/2

. (A.11)

The 2nd- and 4th-order derivatives are evaluated by means of the simple central di↵erences

with 4th- and 2nd-order accuracy, respectively, which guarantees the 6th-order overall

accuracy.

The derivatives for non-conservative terms using the minmod limiter in step 7 must also

be replaced by a higher-order scheme. In our implementation, the face-centered values,

U
L,j+1/2 and U

R,j�1/2, are calculated from the cell-centered values, U
j

, as numerical

fluxes in the WENO scheme as well as in step 2. In this case, however, the coe�cients

are adjusted for reconstruction, as we do not need the interpolated value elsewhere. Now
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Eqs. (A.2)–(A.4) are modified to

U(1) =
1

3
U

j�2 � 7

6
U

j�1 +
11

6
U

j

, (A.12)

U(2) = �1
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U
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5

6
U

j
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1

3
U

j+1, (A.13)

U(3) =
1

3
U

j

+
5

6
U

j+1 � 1

6
U

j+2. (A.14)

The optimum weights also change to

�1 =
1

10
, �2 =

3

5
, �3 =

3

10
. (A.15)

Use of these coe�cients ensures that the two-point di↵erence,

@U

@x

����
j

' 1

�x

�
U

L,j+1/2 �U
R,j�1/2

�
, (A.16)

has 5th-order of accuracy in smooth regions, while exhibiting non-osclillatory behavior

around discontinuities.

Finally, the 2nd-order time integration (3.34) and (3.35) is replaced by the 3rd-order

TVD Runge-Kutta method (Shu & Osher, 1988):

U(1) = Un � �tL (Un) , (A.17)

U(2) =
3

4
Un +

1

4

h
U(1) � �tL
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U(1)

⌘i
, (A.18)

Un+1 =
1

4
Un +

2

3

h
U(2) � �tL

⇣
U(2)

⌘i
. (A.19)
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Appendix B

Isotropization Model

In this thesis, the hard-wall limit employed by Sharma et al. (2006) is modified to use the

analytic solution of Eq. (3.61), or explicitly,

Pn+1 = P
s

+ (Pn �P
s

) e�⌫

iso

�t, (B.1)

where P
s

is a marginal state of a certain kinetic instability. For the firehose, mirror, and

ion-cyclotron instabilities, the following relations are satisfied, respectively:

P?,s

P||,s
� 1 +

B2

P||,s
= �1

2
, (B.2)

P?,s

P||,s
� 1 =

⇠B2

P?,s

, (B.3)

P?,s

P||,s
� 1 = S

✓
B2

P||,s

◆1/2

, (B.4)

where ⇠ = 3.5 and S = 0.3 are used here. Each equation can be solved for P||,s and

P?,s

if we impose the condition that the total thermal energy, which is proportional to

a trace of the pressure tensor, is unchanged through scattering: i.e., the relation Pn

|| +

2Pn

? = P||,s+2P?,s

holds. Note that this condition guarantees energy conservation exactly,

TrPn+1 = TrPn. If the firehose instability turns on, for example, solving Eq. (B.2) leads

to

P||,s = TrPn + 2B2, (B.5)

P?,s

=
TrPn

2
�B2. (B.6)
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The marginal states for the mirror and ion-cyclotron instabilities can also be calculated

in the same way.

To avoid duplicated gyrotropization, it may be better to construct the marginal pres-

sure tensor in a non-gyrotropic form. We adopt, therefore, the following prescription,

P
s

= R

0

BBB@

P̂11,s 0 0

0 ↵P̂n

22 ↵P̂n

23

0 ↵P̂n

32 ↵P̂n

33

1

CCCA
RT , (B.7)

where R is a rotational matrix from the coordinate system aligned with a local magnetic

field to the xyz coordinate system, P̂
ij

(i, j = 1, 2, 3) is a pressure component measured

in field-aligned coordinates (the parallel direction is assumed for i = 1), P̂11,s = P||,s,

and ↵ = P?,s

/Pn

?. Convergence to this marginal state allows the pressure to retain

finite non-gyrotropy, while the thermal energy contained in the parallel and perpendicular

components is correctly redistributed.



Appendix C

Orbital Advection Scheme with

Anisotropic Pressure

The orbital advection scheme introduced in Stone & Gardiner (2010) is a numerical tech-

nique to integrate MHD equations in a shearing box accurately and e�ciently by de-

composing the system into two subsystems; one is the simple linear system to describe

advection by background di↵erential rotation, and the other is the standard hyperbolic

system with modified shearing source terms. Since the detailed numerical implementation

is provided in Stone & Gardiner (2010), in this appendix, we only reproduce practical

equations employed in our simulation code for the sake of completeness, along with com-

ments on a few modifications required to apply the orbital advection scheme to the kinetic

MHD model with an anisotropic pressure tensor.

We will decompose basic equations (4.1)–(4.4). The subsystem for linear advection

can be written simply as follows;

@⇢

@t
+ v

K

@⇢

@y
= 0, (C.1)

@⇢v0

@t
+ v

K

@⇢v0

@y
= 0, (C.2)

@B

@t
�r⇥ (v

K

ê
y

⇥B) = 0, (C.3)

@E0

@t
+ v

K

@E0

@y
= s

E

0 , (C.4)

where v
K

= �q⌦x represents the background Keplerian velocity, v0 = v � v
K

ê
y

is a

deviation from the Keplerian rotation, E0 = ⇢v0v0+p+BB is a generalized energy tensor,
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and

s
E

0 = � �
⇢v0

x

v0
y

+ p
xy

�B
x

B
y

� dv
K

dx

0

BBB@

0 1 0

1 2 1

0 1 0

1

CCCA
.

Since the advection velocity is purely along y-axis and constant in time, these equations

can be integrated using their analytic solutions without constraint on the CFL condition.

In practice, this procedure is implemented by the similar way as the shearing periodic

boundary condition, although we must take special care of the divergence-free condition

for a magnetic field. The right-hand side in equation (C.4) cannot be gathered up in a

flux form, and is treated as a source term separately.

By subtracting equations (C.1)–(C.4) from equations (4.1)–(4.4), we find that the

remaining part yields the following subsystem;
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where quantities with prime is evaluated using v0 rather than v itself, and

s0
g

=

0

BBB@

2⇢⌦v0
x

�2⇢⌦v0
y

�⇢⌦2z

1

CCCA
.

The gravitational and Coriolis forces are slightly modified from the original shearing box

system. These equations are integrated in a standard manner as described in chapter 3.

Note that equations (C.4) and (C.8) are reduced to equations (51) and (55) in Stone &

Gardiner (2010), respectively, by taking their trace.
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