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Abstract 

 

In this thesis, I focus on new series of luminescent dipyrrinato complexes. Here, 

I designed dipyrrinato complexes showing fluorescence in solution and aggregate 

states and achieved their synthesis and analysis of their properties, mainly their 

photophysical properties. The contents of each chapter are described in detail below. 

 

In Chapter 1, general introduction of fluorescent molecules and dipyrrins is made. 

The importance, versatility, applications of fluorescent molecules are explained first, 

then dipyrrins, excellent candidates for such molecules, are introduced. 

 

In Chapter 2, solid-state luminescence of bis(dipyrrinato)zinc(II) complexes is 

revealed. The design, synthesis, and analysis of their photophysics are achieved. 

 

In Chapter 3, imine-linked BODIPY oligomers are developed and their 

photophysical, electrochemical, and thermogravimetric properties are revealed. The 

versatility of imine-linked BODIPY is demonstrated, with intense and tunable 

fluorescence. 

 

In Chapter 4, concluding remarks of this thesis are described. 
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Chapter 1 

Introduction 

  



2 
 

1.1 Photofunctional molecules 

Photofunctional molecules – molecules interact with light to give a certain output – have 

been a major field of chemistry, fascinating synthetic and materials chemists, in view of utilizing light 

as energy source, signals, etc. In photofunctional molecules, absorbed light goes through the 

molecules to result in an output. Note that such molecules can contain multiple photofunctional 

subunits, which can cooperate to achieve certain functionalities (Figure 1.1.1). Developed 

functionalities include artificial light-harvesting1-3, photo-catalysis4,5, photo-sensitizing6, 

upconversion7,8, photo-switching9-11, etc. Numerous types of structures have been developed thus far, 

attempting to achieve and improve such functionalities. Although some of them are utilized as devices 

such as organic light-emitting diodes (OLEDs)12-14 and dye-sensitized solar cells (DSSCs)15-17, the 

other ones are still confined to basic development. To improve their functionalities, further knowledge 

and insight into the synthesis and photophysical and photochemical properties of photofunctional 

molecules are in demand. 

 In this thesis, of the diverse fields of photofunctional materials, photoluminescent materials, 

especially fluorescent materials, are the point of focus. Fluorescence has long been of great interest, 

and numerous molecules have been developed not only for scientific interest, but applications as 

luminescent devices13,14, fluorescent dyes18-20, bioimaging markers21-25, and molecular machines26. 

For some of such applications, it is often mandatory to assemble multiple fluorescent structures to 

attain the desired functionalities. In such assemblies, the number, orientation, and distance between 

the fluorescent structures play key roles in determining the type and intensity of the interactions, 

affecting the functionalities of the resultant assemblies. Development of fluorescent structures and 

methods to link the structures in designated distance, orientation, etc, and insight into such assemblies 

would contribute to the field of photoluminescent materials. The next sections portray dipyrrins and 

their complexes, versatile photoluminescent materials. 
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Figure 1.1.1. The concept of a photofunctional molecule. Input light is absorbed into the 

photofunctional molecule with one or more functional subunits, returning an output. 
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1.2 Dipyrrins and their complexes 

1.2.1 Dipyrrins and their metal complexes 

 Dipyrrins, or dipyrromethenes, are a class of organic molecules whose structures are 

characterized by two pyrrolic rings attached with a methine bridge at their α-positions (Figure 

1.2.1.1)27. They are known for intense absorption in the visible region (molar extinction coefficients 

(ε) ~ 105 M-1cm-1 and absorption wavelength (λabs) ~ 500 nm), derived from the 1π-π* transition. The 

intense absorption render them as desirable chromophores, or light absorbents. In addition, thanks to 

their two pyrrolic nitrogen atoms, they can serve as monovalent, bidentate ligands, allowing them to 

coordinate to various cationic species. Overall, dipyrrins can serve as both chromophores and ligands. 

They are also featured by chemical and photochemical stability, rendering themselves as building 

blocks for photofunctional systems. Since there are numerous chemical modification methods known, 

their physical, chemical, spectroscopic, and other properties can be tuned by introducing certain 

functional groups; they can serve as versatile photofunctional materials. 

 As described above, dipyrrins can coordinate to various cations to form complexes. Thus far, 

numerous metal complexes have been reported; the cationic species include Fe(III), Co(II) , Ni(II), 

Cu(I), Zn(II), Ga(III), In(III) 27-32, etc in the forms of mono-, bis-, and tris- complexes. For bis- and 

tris(dipyrrinato) metal complexes, since multiple dipyrrin ligands coordinate the metal center, 

supramolecules and coordination polymers have been developed, utilized as metal organic 

frameworks (MOFs)33-36, energy transfer systems37, charge separation systems38, etc (Figure 1.2.1.2). 

These examples utilize dipyrrins as both the linkage and chromophoric moieties.  

 Although dipyrrins’ transition metal complexes do not emit fluorescence because of non-

fluorescent d-d transition, some of them, without such transition, are known to exhibit intense 

fluorescence; dipyrrinato complexes with Zn(II), Cu(I), Cd(II), Ga(III), and In(III), metal ions without 

a vacant d orbital, are known to show fluorescence depending of the type of the linker moiety28-29. Of 

those, zinc complexes are known as the most fluorescent complexes.  
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Along with the metal ions above, other types of cations can accept dipyrrin ligands. Such 

cationic species include SiR2
2+ 39 and BR2

+ 40-43 (the R stands for a functional group). They are both 

known to be fluorescent, and the latter complexes are often abbreviated as BODIPYs. BODIPYs are 

the most famous dipyrrins’ complexes, often utilized as fluorescent and laser dyes, tags, and numerous 

other purposes owing to their intense fluorescence. 

In summary, dipyrrins and their complexes are versatile materials, especially in terms of 

photofunctionalities. The next sections describe bis(dipyrrinato)zinc(II) complexes and BODIPYs, 

the most fluorescent and promising dipyrrinato complexes. 

 

 

 

 

Figure 1.2.1.1. The structure of a dipyrrin. The numbers represent the positions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.1.2. A charge separation system37 (left) and an energy transfer system38 (right) based on a 

bis(dipyrrinato)zinc(II) complex subunit. Adapted with permission from ref. 37. Copyright 2003 

American Chemical Society (top). 
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1.2.2 Bis(dipyrrinato)zinc(II) complexes 

 As described in Section 1.2.1, bis(dipyrrinato)zinc(II) complexes are known to be 

fluorescent. Although they had been known as weakly luminescent complexes before the work by 

Lindsey44, who has attributed the cause of quenching to the rotation of the meso-aryl rings, which 

provides non-radiative decay channels (Figure 1.2.2.1). They prepared a bis(dipyrrinato)zinc(II) 

complex with a bulky mesityl group at the meso position to eliminate the decay pathways by the 

rotational modes, which fluoresces with ϕF of 0.36 in toluene – a 60-fold enhancement of fluorescence 

from a meso-phenyl complex – showing the efficacy of placing a bulky group on the meso-position. 

Our group has found a way to improve the luminescence quantum yields of bis(dipyrrinato)zinc(II) 

complexes by applying a different strategy. Designing bis(dipyrrinato)zinc(II) complexes heteroleptic, 

the fluorescence quantum yields drastically improved to 0.79 (toluene) in solution45,46 (Figure 1.2.2.2).  

Since bis(dipyrrinato)zinc(II) complexes afford the construction of supramolecules and 

coordination polymers, such molecules have also been developed. During my master course, I have 

developed energy transfer systems comprised of heteroleptic bis(dipyrrinato)zinc(II) complexes 

showing quantitative energy transfer46. Maeda et al. developed luminescent coordination polymer 

aggregates and a polygon-like structure showing conductivity47. 
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weak emitter intense emitter 
 

 

 

 

 

 

Figure 1.2.2.1. Bis(dipyrrinato)zinc(II) complexes with meso-phenyl (left) or -mesityl groups. The 

former shows a fluorescence quantum yield (ϕF) of 0.006 in toluene, while the latter emits with an 

improved ϕF of 0.36 in toluene44. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.2.2. A luminescent heteroleptic complex (left)45 and an asymmetric heteroleptic 

bis(dipyrrinato)zinc(II) complex (right)46. Reproduced from ref. 46 with permission from the Royal 

Society of Chemistry (right). 
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1.2.3 BODIPYs (boron-dipyrromethenes) 

 Dipyrrins’ boron complexes, BODIPYs, are the most famous series of dipyrrinato complexes. 

They are a class of organic molecules bearing a disubstituted boron cation, the most common species 

being BF2
+. They are known to show intense fluorescence often reaching a fluorescence quantum 

yield close to unity even in polar solvents, such as methanol. In addition, BODIPYs inherit all the 

favorable properties of dipyrrins such as intense absorption, stability, and the availability of chemical 

modification methods, rendering themselves as excellent chromophores and fluorophores.40-43 

To date, a vast number of reports have been published regarding BODIPYs, from 

fundamental to applied sciences. Many BODIPYs have been developed, showing different absorption 

and emission wavelengths, Stokes shift, molecular levels, sensitivity to the environment, etc. 

BODIPYs are also utilized as fluorescent dyes, probes, laser dyes, photo-sensitizers, etc.6,40-43,48, In 

fundamental sciences, using multiple BODIPYs as photofunctional modules, systems achieving 

certain functionalities are reported. For example, Ziessel et al. have achieved energy funneling 

systems, collecting photo-excited energy from the peripheral to the center (Figure 1.2.3.2)49-51. 

Another example utilizes BODIPYs as photosensitizers, conveying energy from one side to the other 

side, which is passed to the singlet generating BODIPY subunit (Figure 1.2.3.3)52,53. Multiple 

BODIPYs afford energy absorption, mediation, and emission, which cooperate to result in certain 

functionalities. 
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Figure 1.2.3.1. The structure of BODIPY.  

 

 

 

 

  

 

 

 

 

Figure 1.2.3.2. An artificial light-harvesting system by stepwise energy transfer from the peripheral 

to the center.49 Adapted with permission from ref. 49. Copyright 2013 American Chemical Society. 

 

 

 

 

 

 

Figure 1.2.3.3. A BODIPY-based photosensitizer, using BODIPY subunits as the absorbents and 

sensitizers.53 Reproduced from ref. 53 with permission from the Royal Society of Chemistry. 
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1.3 Aim of this study 

 So far, applications and the importance of photofunctional molecules have been described. 

Dipyrrins and their complexes were mentioned as promising and versatile chromophores. In this study, 

exploration of luminescent dipyrrinato complexes was conducted. Molecular design of fluorescent 

dipyrrinato complexes is devised throughout the study, focusing on the distance and orientation of 

dipyrrin cores. Since spacing or bridging units joining dipyrrin cores affect the distance, orientation, 

and electronic communication between the dipyrrin cores, the study focused on the design and role 

of bridging units. The synthesis and analysis on their photophysical properties are conducted. Here, 

the chemistry of dipyrrins is explored, and new series of luminescent dipyrrinato metal complexes 

and their assemblies are developed.   
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Chapter 2 

Solid-state luminescence of bis(dipyrrinato)zinc(II) complexes  
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2.1 Introduction 

To date, fluorescent materials have contributed in technology and science in many respects, 

such as artificial light-harvesting1-3, photo-catalysis4,5, and organic light emitting diodes6-8. 

Bis(dipyrrinato)zinc(II) complexes have attracted much attention as photofunctional materials, owing 

to their intense absorption and emission, availability of various chemical modification methods, and 

chemical and photochemical stability9-14. Although their fluorescence has been studied to a certain 

extent, reports had been confined to fluorescence in solution; there had hardly been any report on the 

fluorescence of bis(dipyrrinato)zinc(II) complexes in the solid state15, which can find potential 

applications as light-harvesting and light-emitting devices.  

Although there is only one report on studying solid-state fluorescence of 

bis(dipyrrinato)zinc(II) complexes, BODIPYs, their analogous complexes, are known to emit in the 

solid state under certain molecular designs. Akkaya et al. reported that by introducing bulky 

functional groups onto the meso-position of BODIPYs, the fluorescence of the BODIPYs enhanced 

because of more spacious packing structures, reducing the effect of aggregation caused quenching 

(ACQ), induced by proximity of fluorophore moieties16. Introduction of bulky functional groups to 

fluorophores is an effective method in enhancing the fluorescence properties of fluorophores. 

In this research, the fluorescence properties of bis(dipyrrinato)zinc(II) complexes with 

different meso-aryl groups were studied, disclosing the fluorescence properties of the complexes in 

the solid state. Their fluorescence was discussed in relation to their crystal structures. 
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2.2 Experimental 

2.2.1 Materials 

1aH, 1cH, 1a2Zn, and 1c2Zn were synthesized according to a previous report.13 All 

chemicals were purchased from Tokyo Chemical Industry Co., Ltd., Kanto Chemical Co., or Wako 

Pure Chemical Industries, Ltd. and used without further purification. The rest of the materials were 

newly obtained according to Scheme 2.2.1. 

 

 

 

 

 

 

 

 

 

 

Scheme 2.3.1. Synthesis of dipyrrin ligands and bis(dipyrrinato)zinc(II) complexes. 

 

Scheme 2.2.1. Synthesis of dipyrrin ligands and bis(dipyrrinato)zinc(II) complexes. 
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2.2.2 Dipyrrin Ligand 2aH  

 

To a dichloromethane solution (20 mL) of 9-anthracenecarboxaldehyde (0.501 g, 2.4 mmol) 

and 2-methylpyrrole (0.43 mL, 5.0 mmol), was added trifluoroacetic acid (10 L, 0.13 mmol) and 

stirred overnight at room temperature. p-Chloranil (0.603 g, 2.4 mmol) was added and stirred another 

2 h. The reaction mixture was processed by column chromatography (alumina, dichloromethane) and 

recrystallization (methanol/dichloromethane) to give the pure product. Yield: 0.407 g (48 %), brown 

powder. 1 H NMR (500 MHz, CDCl3):  = 8.52 (s, 1H), 8.02 (d, J = 8.6 Hz, 2H), 7.92 (d, J = 8.6 Hz, 

2H), 7.43 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 5.99 (d, J = 4.2 Hz, 2H), 5.87 (d, J = 4.2 Hz, 

2H), 2.48 (s, 6H); 13C NMR (125 MHz, CDCl3):  =153.85, 141.14, 134.49, 131.14, 131.11, 130.88, 

128.59, 128.09, 127.36, 126.87, 125.80, 125.15, 117.89, 16.38; HR-FAB-MS: 349.1687 [M+H]+ , 

calcd. for: C25H21N2
 +: 349.1699.  
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2.2.3 Bis(dipyrrinato)zinc(II) Complex 2a2Zn  

 

To a dichloromethane solution (10 mL) of 2aH (0.18 g, 0.50 mmol), was added a methanol 

(20 mL) solution of zinc acetate (48 mg, 0.25 mmol). After stirring overnight, the amount of the 

solvent was reduced by a rotary evaporator. The brown precipitate was collected and rinsed 

thoroughly with methanol. Yield: 0.183 g (96%), brown powder. 1H NMR (500 MHz, CDCl3):  = 

8.58 (s, 2H), 8.07 (d, J = 8.5 Hz, 4H), 8.00 (d, J = 8.8 Hz, 4H), 7.49-7.46 (m, 4H), 7.41-7.37 (m, 4H), 

6.12 (s, 8H), 2.41 (s, 12H); 13C NMR (125 MHz, CDCl3):  =159.14, 141.04, 140.29, 133.12, 132.93, 

131.44, 130.91, 128.15, 127.25, 127.02, 125.85, 125.13, 117.67, 16.81; HR-ESI-MS: 1539.4674 

[2M+Na]+, calcd. for: (C50H38N4Zn)2Na+: 1539.4646.  

 

2.2.4 Dipyrrin Ligand 2bH  

 

To a dichloromethane solution (30 mL) of 9-anthracenecarboxaldehyde (2.06 g, 10.0 mmol), 

were added 2,4-dimethylpyrrole (2.25 mL, 23.0 mmol) and trifluoroacetic acid (30 L, 0.39 mmol). 

After stirring overnight, p-chloranil (2.45 g, 10.0 mmol) was added to the solution and stirred for 20 

min. The solvent was evaporated and the residue was purified by alumina column chromatography 

(hexane: dichloromethane = 2:1). The orange-brown band was collected and evaporated to give the 

product. Yield: 0.910 g (24 %), yellow powder. 1H NMR (500 MHz, CDCl3):  = 8.52 (s, 1H), 7.99 

(t, J = 7.5 Hz, 4H), 7.46-7.43 (m, 2H), 7.38-7.35 (m, 2H), 5.76 (s, 2H), 2.41 (s, 6H), 0.51 (s, 6H); 13C 

NMR (125 MHz, CDCl3):  =151.69, 140.08, 137.41, 134.97, 131.87, 131.42, 130.60, 128.16, 127.30, 



20 
 

126.25, 125.88, 125.42, 119.44, 16.19, 13.57; HR-FAB-MS: 377.2011 [M+H]+ , calcd. for: 

C27H25N2
+: 377.2018.   

 

2.2.5 Bis(dipyrrinato)zinc(II) Complex 2b2Zn  

 

To a dichloromethane solution (10 mL) of 2bH (0.116 g, 0.500 mmol), was added a methanol (20 

mL) solution of zinc acetate (0.048 g, 0.26 mmol). After stirring overnight, the amount of the solvent 

was reduced by a rotary evaporator. The brown precipitate was collected and rinsed thoroughly with 

methanol. Yield: 0.110 g (100%), brown powder. 1H NMR (500 MHz, CDCl3):  = 8.56 (s, 2H), 8.06 

(t, J = 8.5 Hz, 8H), 7.48-7.45 (m, 4H), 7.40-7.36 (m, 4H), 5.89 (s, 4H), 2.33 (s, 12H), 0.48 (s, 12H); 

13C NMR (125 MHz, CDCl3):  =156.81, 143.92, 140.82, 136.56, 134.08, 131.65, 130.93, 128.16, 

127.23, 126.31, 125.66, 125.40, 120.35, 16.60, 14.97; HR-ESI-MS: 1651.5920 [2M+Na]+ , calcd. 

for: (C54H46N4Zn)2Na+: 1651.5925.  

 

2.2.6 Dipyrrin Ligand 2cH  

 

To a dichloromethane solution (50 mL) of 9-anthracenecarboxaldehyde (1.03 g, 5.00 mmol), were 

added 3-ethyl-2,4-dimethylpyrrole (1.05 mL, 11.3 mmol) and trifluoroacetic acid (50 L, 0.65 mmol). 

After stirring overnight, p-chloranil (1.23 g, 5.00 mmol) was added to the solution and stirred for 20 

min. The solvent was evaporated and the residue was purified by alumina column chromatography 

(hexane: dichloromethane = 2:1). Yield: 0.642 g (30 %), brown powder. 1H NMR (500 MHz, CDCl3): 
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 = 8.52 (s, 1H), 8.02-7.99 (m, 4H), 7.45-7.42 (m, 2H), 7.37-7.33 (m, 2H), 2.38 (s, 6H) , 2.14 (q, J = 

7.6 Hz, 4H) , 2.48 (t, J = 7.6 Hz, 6H) , 0.40 (s, 6H) pyrrolic proton signal (1H) missing due to 

broadening; 13C NMR (125 MHz, CDCl3):  =150.20, 137.03, 134.44, 133.38, 132.78, 131.40, 131.03, 

130.80, 128.06, 127.04, 126.24, 125.98, 125.33, 17.48, 14.83, 14.55, 10.66; HR-FAB-MS: 432.2648 

[M+H]+ , calcd. for: C31H33N2
+: 432.2643.  

2.2.7 Bis(dipyrrinato)zinc(II) Complex 2c2Zn  

 

To a dichloromethane solution (10 mL) of 2cH (0.18 g, 0.50 mmol), was added a methanol (20 mL) 

solution of zinc acetate (48 mg, 0.26 mmol). After stirring overnight, the amount of the solvent was 

reduced by a rotary evaporator. The brown precipitate was collected and rinsed thoroughly with 

methanol. Yield: 0.191 g (82%), orange powder. 1H NMR (500 MHz, CDCl3):  = 8.59 (s, 2H), 8.09 

(d, J = 8.5 Hz, 4H), 8.06 (d, J = 8.5 Hz, 4H), 7.51-7.48 (m, 4H), 7.43-7.40 (m, 4H), 2.29 (s, 12H), 

2.19 (d, J = 7.6 Hz, 8H), 0.87 (d, J = 7.6 Hz, 12H), 0.39 (s, 12H); 13C NMR (125 MHz, CDCl3):  

=155.62, 139.14, 137.96, 136.28, 135.28, 131.65, 131.33, 131.24, 128.04, 126.91, 126.16, 125.99, 

125.28, 17.88, 15.06, 14.83, 11.92; HR-ESI-MS: 926.4224 [M]+, calcd. for: C62H62N4Zn+: 926.4266.  

 

2.2.8 Dipyrrin Ligand 3bH  

 

To a dichloromethane solution (100 mL) of 4-tert-butylbenzaldehyde (1.7 g, 10 mmol), were added 

2,4-dimethylpyrrole (2.2 mL, 22 mmol) and trifluoroacetic acid (25 L, 0.33 mmol). After stirring 
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overnight, p-chloranil (2.70 g, 11.0 mmol) was added to the solution and stirred for 20 min. The 

solvent was evaporated and the residue was purified by alumina column chromatography (hexane: 

dichloromethane = 2:1). Yield: 0.904 g (27 %), brown powder. 1H NMR (500 MHz, CDCl3):  = 7.41 

(d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 5.88 (s, 2H), 2.34 (s, 6H), 1.36 (s, 9H), 1.29 (s, 6H) 

pyrrolic proton signal (1H) missing due to broadening; 13C NMR (125 MHz, CDCl3):  =151.57, 

151.34, 140.50, 139.23, 136.57, 134.92, 128.78, 125.29, 119.41, 34.69, 31.49, 16.04, 14.35; HRFAB-

MS: 333.2333 [M+H]+ , calcd. for: C23H29N2
+: 333.2330.  

 

2.2.9 Bis(dipyrrinato)zinc(II) Complex 3b2Zn  

 

To a dichloromethane solution (10 mL) of 3bH (0.102 g, 0.306 mmol), was added a methanol (20 

mL) solution of zinc acetate (28 mg, 0.15 mmol). After stirring overnight, the amount of the solvent 

was reduced by a rotary evaporator. The orange precipitate was collected and rinsed thoroughly with 

methanol. Yield: 0.085 g (78%), orange powder. 1H NMR (500 MHz, CDCl3):  = 7.44 (d, J = 8.5 

Hz, 4H), 7.20 (d, J = 8.5 Hz, 4H), 5.94 (s, 4H), 2.04 (s, 12H), 1.37 (s, 18H), 1.29 (s, 12H); 13C NMR 

(125 MHz, CDCl3):  =156.58, 151.41, 145.01, 144.31, 137.01, 135.83, 128.88, 125.31, 120.11, 34.67, 

31.53, 16.18, 15.50; HRESI-MS: 1475.7158 [2M+Na]+ , calcd. for: (C46H54N4Zn)2Na+: 1475.7178.  
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2.2.10 Dipyrrin Ligand 3cH  

 

To a dichloromethane solution (100 mL) of 4-tert -butylbenzaldehyde (0.84 mL, 5.0 mmol), were 

added 3-ethyl-2,4-dimethylpyrrole (1.07 mL, 11.0 mmol) and trifluoroacetic acid (100 L, 1.30 

mmol). After stirring overnight, p-chloranil (1.23 g, 5.00 mmol) was added to the solution and stirred 

for 20 min. The solvent was evaporated and the residue was purified by alumina column 

chromatography (hexane: dichloromethane = 2:1). Yield: 0.407 g (48 %), brown powder. 1H NMR 

(500 MHz, CDCl3):  = 7.40 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 2.31 (s, 6H), 2.27 (q, J = 

7.6 Hz, 4H), 1.35 (s, 9H), 1.19 (s, 6H), 0.87 (t, J = 7.6 Hz, 6H), pyrrolic proton signal (1H) missing 

due to broadening; 13C NMR (125 MHz, CDCl3):  =151.32, 149.88, 137.84, 136.16, 135.65, 134.83, 

131.11, 129.12, 125.11, 34.64, 31.47, 17.58, 14.86, 14.36, 11.64; HRFAB-MS: 389.2935 [M]+ , calcd. 

for: C27H37N2
 +: 389.2957.  

 

2.2.11 Bis(dipyrrinato)zinc(II) Complex 3c2Zn  

 

To a dichloromethane solution (10 mL) of 3cH (0.390 g, 1.00 mmol), was added a methanol (20 mL) 

solution of zinc acetate (0.096 mg, 0.52 mmol). After stirring overnight, the amount of the solvent 

was reduced by a rotary evaporator. The orange precipitate was collected and rinsed thoroughly with 

methanol. Yield: 0.401 g (95%), orange powder. 1H NMR (500 MHz, CDCl3):  = 7.43 (d, J = 8.5 
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Hz, 4H), 7.23 (d, J = 8.5 Hz, 4H), 2.25 (q, J = 7.5 Hz, 8H), 1.96 (s, 12H), 1.39 (s, 18H), 1.19 (s, 12H), 

0.92 (t, J = 7.5 Hz, 12H); 13C NMR (125 MHz, CDCl3):  =155.59, 151.24, 143.80, 138.40, 137.94, 

135.61, 131.32, 129.42, 125.14, 34.66, 31.56, 17.90, 15.01, 14.40, 12.67; HRESI-MS: 838.4840 [M]+ , 

calcd. for: C54H70N4Zn+: 838.4892. 
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2.2.12 Apparatus 

1H NMR and 13C NMR data were collected in CDCl3 on a Bruker DRX 500 spectrometer. 

Tetramethylsilane (H = 0.00) was used as an internal standard for the 1H NMR spectra, and CDCl3 

(C = 77.00) was used as an interrnal standard for the 13C NMR spectra, respectively. High resolution 

mass spectrometry was performed on either of a JEOL JMS-700MStation mass spectrometer 

(HRFAB-MS) or a Waters LCT Premier XE spectrometer (HRESI-MS). UV-vis absorption spectra 

were recorded with a JASCO V- 570 spectrometer. Steady-state fluorescence spectra were collected 

with a HITACHI F-4500 spectrometer. Absolute photo luminescent quantum yields were collected 

with a Hamamatsu Photonics C9920-02G. Fluorescence lifetime measurements were performed 

using a Hamamatsu Photonics Quantaurus-Tau C11367-02. Thermogravimetric analysis was 

performed under a nitrogen atmosphere using Rigaku Thermo Plus2 TG8120. Al2O3 was used as a 

reference compound, and both nanosheet and Al2O3 were mounted on an Al pan. The temperature 

was controlled from r.t. to 500 °C with a scan rate of 10 °C s−1. 
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2.2.13 Single-crystal X-ray diffraction analysis 

Single crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion, for 

each single crystal, solvents used (good/poor) are: 1a2Zn (chloroform / methanol); 1c2Zn·MeOH 

(dichloromethane / methanol); 2a2Zn·3CH2Cl2 (dichloromethane / ethanol); 2b2Zn·2CH2Cl2 

(dichloromethane / n-hexane); 2c2Zn·CH2Cl2 (dichloromethane / methanol); 3b2Zn 

(dichloromethane / methanol); and 3c2Zn (dichloromethane / ethanol). Synchrotron radiation (SR) 

X-ray diffraction data of 2a2Zn·3CH2Cl2 and 2c2Zn·CH2Cl2 were collected at 100K. The 

diffractions were recorded on a CCD detector at SPring-8 beam line BL02B1 (Hyogo, Japan) (SR, λ 

= 0.3540 Å).X-ray diffraction data of 3c2Zn were collected at 93 K on a Rigaku Saturn724 (Varimax 

dual) diffractometer with multi-layer mirror monochromated MoKα radiation (λ = 0.71075 Å). X-ray 

diffraction data of 1a2Zn, 1c2Zn·MeOH, 2b2Zn·2CH2Cl2, and 3b2Zn were collected at 113 K with 

an AFC10 diffractometer coupled with a Rigaku Saturn CCD system equipped with a rotating-anode 

X-ray generator producing graphite-monochromated MoKα radiation (λ = 0.7107 Å). The structures 

were solved by direct methods using SIR-92 program (1a2Zn, 2b2Zn·2CH2Cl2), SIR-2004 program 

(2a2Zn·3CH2Cl2, 2c2Zn·CH2Cl2) or SHELXS97 (3b2Zn) and were refined by the full-matrix least-

squares techniques against F2 implementing SHELXL-2013. The structure of 3c2Zn was solved by 

the direct method using SIR-2004 program and refined against F2 using SHELXL-97 Crystallographic 

data for the structure of 1c2Zn – 3c2Zn have been deposited with the Cambridge Crystallographic 

Data Centre as supplementary publication nos. CCDC 1438041, 1438430, 1438431, 1438015, 

1438024, 1438038 and 1438025. 
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2.3 Molecular design and synthesis 

 Here, I prepared seven bis(dipyrrinato)zinc(II) complexes to investigate their photophysical 

properties, which had not been reported to date. As described in Section 2.1, the solid-state 

luminescence of BODIPYs bearing bulky functional groups can be enhanced because their crystal 

packing structures are affected by the bulky functional groups. In this context, I designed several 

dipyrrin ligands bearing a bulky substituent at the meso-position of the dipyrrin core, so that the 

packing structure of the resultant bis(dipyrrinato)zinc(II) complexes would be affected, showing 

different fluorescence properties.  

Here, I have designed a series of dipyrrinato ligands with either of a mesityl, 9-anthracenyl, 

or 4-tert-butylphenyl group on the meso-position of the dipyrrin core as the bulky peripheral group. 

Since alkyl groups affect the electronic structure of the dipyrrin core, dipyrrins with different alkyl 

substituents were synthesized (Scheme 2.2.1). 

 The seven dipyrrin ligands 1aH – 3cH were prepared through the condensation of an 

aldehyde and a pyrrole under trifluoracetic acid (TFA) as the acid catalyst, followed by oxidation 

using p-chloranil. The obtained ligands were reacted with zinc acetate to obtain complexes 1a2Zn – 

3c2Zn. 
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2.4 Single-crystal X-ray diffraction analysis  

 Crystal structures and their numerical data are summarized in Figures 2.4.1 – 2.4.7 and Table 

2.4.1 – 2.4.7, respectively. In general, the meso-aryl group and the dipyrrin core of the complexes in 

the crystal structure are orthogonal to each other, resulting in minimal electronic interactions of the 

two subunits. In Figures 2.4.1 and 2.4.3 – 2.4.7, the closest distance of the dipyrrin – dipyrrin planes 

are depicted (There is no parallel dipyrrin planes showing a distance < 5 Å in 1c・MeOH). 1a, 2a・

3CH2Cl2, 2b・2CH2Cl2, and 2c・CH2Cl2 show closest dipyrrin – dipyrrin distances of 3.321, 3.191, 

3.754, and 3.512 Å, respectively. On the other hand, the distances in 3b and 3c are 4.601 and 4.433 

Å, respectively, significantly larger than those in the rest of the complexes. The difference in the 

distance arises because of different π-π and CH-π interaction modes between the meso-aryl group and 

the dipyrrin plane. For example, in 2a・3CH2Cl2, the 9-anthracenyl groups affords CH-π interactions 

between the anthracene plane and one of C-H bonds on the 9-anthracenyl group, two molecules can 

come close together, resulting in the small dipyrrin – dipyrrin distance. On the other hand, 4-tert-

butylphenyl groups cannot accept such interactions, serving as simple bulky functional groups, setting 

two dipyrrin planes apart. Since π-π interactions are effective when the distance of the two planes are 

below 4 Å17,18, 1a, 2a・3CH2Cl2, 2b・2CH2Cl2, and 2c・CH2Cl2 are expected to show effective 

interactions, while 3b and 3c show weaker interactions between the dipyrrin planes. The 

photophysical properties of the complexes in the solid state are discussed in detail in Section 2.5. 
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Empirical formula C40H42N4Zn V / Å3 3407.5(8) 

Fw / g mol-1 644.15 Z 4 

Crystal system monoclinic Dcalcd g/cm-3 1.256 

Space group P21/c λ / Å 0.71070 

Crystal size / mm 0.6× 0.5 × 0.2 μ / mm-1 0.754 

Temperature / K 113 Reflections collected 22668 

a / Å 25.853(4) Independent reflections 7562 

b / Å 8.0214(11) Parameters 406 

c / Å 16.439(3) Rint 0.0297 

α / º 90 R1 (I>2.00σ (I)) a 0.0409 

β / º 91.6890(10) wR2 (All reflections) b 0.1166 

γ / º 90 GoF c 1.057 

Figure 2.4.1. Crystal structure (top) and packing structures (middle and bottom) of 1a2Zn (thermal 

ellipsoids set at 50% probability). Hydrogen atoms and solvent molecules are omitted for clarity. C: 

gray, N: purple, Zn: dark purple. 

aR1 = Σ||Fo| − |Fc||/Σ|Fo| (I > 2 (I)). bwR2 = [Σ(w(Fo2 − Fc2)2/Σw(Fo2)2]1/2 (I > 2(I)). cGOF = [Σ(w(Fo2 − Fc2)2/Σ(Nr − Np)2] 

Table 2.4.1. Selected crystallographic data of 1a2Zn 

Å 
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Empirical formula C53H69N4OZn V / Å3 7227.7(4) 

Fw / g mol-1 840.51 Z 6 

Crystal system trigonal Dcalcd g/cm-3 1.159 

Space group P-3c1 λ/ Å 0.71070 

Crystal size / mm 0.8 × 0.4 × 0.3 μ/ mm-1 0.550 

Temperature / K 113 Reflections collected 53931 

a / Å 18.4026(4) Independent reflections 5500 

b / Å 18.4026(4) Parameters 285 

c / Å 24.6441(9) Rint 0.0372 

α / º 90 R1 (I>2.00σ (I)) a 0.0448 

β / º 90 wR2 (All reflections) b 0.1272 

γ / º 120 GoF c 1.080 

Figure 2.4.2. Crystal structure (top) and packing structure (bottom) of 1c2Zn・MeOH (thermal ellipsoids 

set at 50% probability). Hydrogen atoms and solvent molecules are omitted for clarity. C: gray, N: purple, 

Zn: dark purple. 

aR1 = Σ||Fo| − |Fc||/Σ|Fo| (I > 2 (I)). bwR2 = [Σ(w(Fo2 − Fc2)2/Σw(Fo2)2]1/2 (I > 2(I)). cGOF = [Σ(w(Fo2 − Fc2)2/Σ(Nr − Np)2] 

Table 2.4.2. Selected crystallographic data of 1c2Zn·MeOH 
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Empirical formula C53H44Cl6N4Zn V / Å3 2323.6(7) 

Fw / g mol-1 1015.07 Z 2 

Crystal system triclinic Dcalcd g/cm-3 1.351 

Space group P-1 λ / Å 0.35400 

Crystal size / mm 0.9 × 0.8 × 0.2 μ/ mm-1 0.137 

Temperature / K 100 Reflections collected 40527 

a / Å 11.3092(16) Independent reflections 10655 

b / Å 13.973(2) Parameters 577 

c / Å 16.046(3) Rint 0.0981 

α / º 102.672(8) R1 (I>2.00σ (I)) a 0.1136 

β / º 107.805(8) wR2 (All reflections) b 0.3625 

γ / º 94.872(7) GoF c 1.294 

Figure 2.4.3. Crystal structure (top left) and packing structures (top right and bottom) of 2a2Zn・

3CH2Cl2 (thermal ellipsoids Hydrogen atoms and solvent molecules are omitted for clarity. set 

at 50% probability). CH-π interactions in the complexes are also displayed (bottom right, blue 

plane: dipyrrin, red plane: anthracene) C: gray, N: purple, Zn: dark purple. 

aR1 = Σ||Fo| − |Fc||/Σ|Fo| (I > 2 (I)). bwR2 = [Σ(w(Fo2 − Fc2)2/Σw(Fo2)2]1/2 (I > 2(I)). cGOF = [Σ(w(Fo2 − Fc2)2/Σ(Nr − Np)2] 

Table 2.4.3. Selected crystallographic data of 2a2Zn·3CH2Cl2 

Å 

Å Å 
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Empirical formula C56H50Cl4N4Zn V / Å3 9653(7) 

Fw / g mol-1 988.25 Z 8 

Crystal system monoclinic Dcalcd g/cm-3 1.360 

Space group C2/c λ / Å 0.71070 

Crystal size / mm 0.2 × 0.2 × 0.05 μ/ mm-1 0.773 

Temperature / K 113 Reflections collected 37213 

a / Å 25.180(10) Independent reflections 11011 

b / Å 20.397(8) Parameters 586 

c / Å 18.983(7) Rint 0.0594 

α / º 90 R1 (I>2.00σ (I)) a 0.0696 

β / º 98.106(5) wR2 (All reflections) b 0.2237 

γ / º 90 GoF c 1.039 

Figure 2.4.4. Crystal structure (top) and packing structures (middle and bottom) of 2b2Zn・2CH2Cl2 

(thermal ellipsoids set at 50% probability). Hydrogen atoms and solvent molecules are omitted for 

clarity. C: gray, N: purple, Zn: dark purple. 

aR1 = Σ||Fo| − |Fc||/Σ|Fo| (I > 2 (I)). bwR2 = [Σ(w(Fo2 − Fc2)2/Σw(Fo2)2]1/2 (I > 2(I)). cGOF = [Σ(w(Fo2 − Fc2)2/Σ(Nr − Np)2] 

Table 2.4.4. Selected crystallographic data of 2b2Zn·2CH2Cl2 

Å 
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Empirical formula C63H64Cl2N4Zn V / Å3 5066.3(3) 

Fw / g mol-1 1013.51 Z 4 

Crystal system monoclinic Dcalcd g/cm-3 1.329 

Space group P21/c λ / Å 0.35400 

Crystal size / mm 0.210 × 0.100 × 0.037 μ/ mm-1 0.119 

Temperature / K 100 Reflections collected 70431 

a / Å 19.6231(4) Independent reflections 19310 

b / Å 8.60965(16) Parameters 683 

c / Å 30.9024(6) Rint 0.0617 

α / º 90 R1 (I>2.00σ (I)) a 0.0407 

β / º 103.976(8) wR2 (All reflections) b 0.1092 

γ / º 90 GoF c 1.056 

Figure 2.4.5. Crystal structure (top) and packing structures (middle and bottom) of 2c2Zn・CH2Cl2 

(thermal ellipsoids set at 50% probability). Hydrogen atoms and solvent molecules are omitted for 

clarity. C: gray, N: purple, Zn: dark purple. 

aR1 = Σ||Fo| − |Fc||/Σ|Fo| (I > 2 (I)). bwR2 = [Σ(w(Fo2 − Fc2)2/Σw(Fo2)2]1/2 (I > 2(I)). cGOF = [Σ(w(Fo2 − Fc2)2/Σ(Nr − Np)2] 

Table 2.4.5. Selected crystallographic data of 2c2Zn· CH2Cl2 

Å 
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Empirical formula C46H54N4Zn V / Å3 11704(7) 

Fw / g mol-1 728.34 Z 12 

Crystal system monoclinic Dcalcd g/cm-3 1.240 

Space group C2/c λ / Å 0.71070 

Crystal size / mm 0.8 × 0.3 × 0.1 μ/ mm-1 0.667 

Temperature / K 113 Reflections collected 36454 

a / Å 48.682(15) Independent reflections 10137 

b / Å 11.495(4) Parameters 690 

c / Å 21.478(7) Rint 0.0649 

α / º 90 R1 (I>2.00σ (I)) a 0.0737 

β / º 103.158(5) wR2 (All reflections) b 0.1863 

γ / º 90 GoF c 1.095 

Figure 2.4.6. Crystal structure (top) and packing structures (middle and bottom) of 3b2Zn (thermal 

ellipsoids set at 50% probability). Hydrogen atoms and solvent molecules are omitted for clarity. C: 

gray, N: purple, Zn: dark purple. 

aR1 = Σ||Fo| − |Fc||/Σ|Fo| (I > 2 (I)). bwR2 = [Σ(w(Fo2 − Fc2)2/Σw(Fo2)2]1/2 (I > 2(I)). cGOF = [Σ(w(Fo2 − Fc2)2/Σ(Nr − Np)2] 

Table 2.4.6. Selected crystallographic data of 3b2Zn 

Å 
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Empirical formula C54H70N4Zn V / Å3 14138(9) 

Fw / g mol-1 840.55 Z 12 

Crystal system monoclinic Dcalcd g/cm-3 1.185 

Space group C2/c λ / Å 0.71075 

Crystal size / mm 0.240 × 0.160 × 0.090 μ/ mm-1 0.561 

Temperature / K 93 Reflections collected 40373 

a / Å 61.25(2) Independent reflections 13159 

b / Å 11.159(4) Parameters 795 

c / Å 21.726(8) Rint 0.0946 

α / º 90 R1 (I>2.00σ (I)) a 0.1000 

β / º 107.814(5) wR2 (All reflections) b 0.2287 

γ / º 90 GoF c 1.100 

Figure 2.4.7. Crystal structure (top) and packing structures (middle and bottom) of 3c2Zn (thermal 

ellipsoids set at 50% probability). Hydrogen atoms and solvent molecules are omitted for clarity. C: 

gray, N: purple, Zn: dark purple. 

aR1 = Σ||Fo| − |Fc||/Σ|Fo| (I > 2 (I)). bwR2 = [Σ(w(Fo2 − Fc2)2/Σw(Fo2)2]1/2 (I > 2(I)). cGOF = [Σ(w(Fo2 − Fc2)2/Σ(Nr − Np)2] 

Table 2.4.7. Selected crystallographic data of 3c2Zn 

Å 



36 
 

2.5 Photophysical properties 

2.5.1 Spectroscopic properties in toluene solution 

 The appearance of 1a2Zn – 3c2Zn in toluene solution are shown in Figure 2.5.1.1. 

Photophysical properties of 1a2Zn – 3c2Zn in toluene solution are summarized Table 2.5.1.1. Their 

absorption spectra are depicted in Figure 2.5.1.2. The complexes show absorption maxima in the 

range of 488 – 511 nm, whose molar extinction coefficients, ε, are 1.21 to 1.6 ×105 M-1 cm-1. The 

values are in the typical range of bis(dipyrrinato)zinc(II) complexes, which originate in their 1π-π* 

transition13. 2a2Zn – 2c2Zn exhibit an additional absorption band centered at approximately 370 nm 

with vibronic structures, attributed to the 1π-π* transition of the 9-anthracenyl unit.14 

Emission spectra of the complexes are depicted in Figure 2.5.1.3. The emission maxima of 

the complexes are in the range of 510 – 558 nm, corresponding to the emission of the 1π-π* excited 

state. The complexes bearing 2,6-diethyl groups on the dipyrrin cores of the ligands (1c2Zn, 2c2Zn, 

and 3c2Zn) show slightly red-shifted emission maxima compared to the rest of the complexes, 

presumably due to elevated HOMO levels by the electron-donating alkyl groups, reported in 

analogous structures13. The fluorescence quantum yields of the complexes in solution are below 0.20, 

four of them showing below 0.01; this can be attributed to the symmetry-breaking charge transfer 

process between the two identical dipyrrinato ligands, often observed in bichromophoric systems 

including homoleptic bis(dipyrrinato)zinc(II) complexes reported10,13,19,20. The fluorescence lifetimes 

obtained for the complexes are 2.4 – 4.5 ns, which are in the typical range for similar structures, 

corresponding to the 1π-π* transition10,14. Their fluorescence decay is monoexponential, suggesting 

their fluorescence solely from the 1π-π* excited state without any additional photophysical processes.  

Overall, there is little difference in their photophysical properties upon the structural 

difference; the alky groups on the dipyrrin core and the aryl group on the meso-position only perturb 

the electronic structure of the dipyrrin core slightly.  
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Figure 2.5.1.1. Complexes 1a2Zn – 3c2Zn under ambient light (top) and 365 nm irradiation 

(bottom). 

 

 

 

 

 

 

 

Table 2.5.1.1. Spectroscopic properties of complexes 1a2Zn – 3c2Zn in toluene 

aabsorption maximum bmolar absorptivity cemission maximum (λem) and excitation wavelength (λex) 
dfluorescence quantum yield efluorescence lifetime fitted from fluorescence decay curve fradiative 

decay constant, kF = ϕF/τ gnon-radiative decay constant, kNR = (1 - ϕF)/τ hfrom ref. 13 

 

 λabs
a / nm εb / M-1 cm-1 λem (λex)c / nm ϕF

d  τe / ns kF
f / s-1 kNR

g / s-1 

1a2Zn 495h 1.6h 507 (495)h 0.28h 4.5 6.2 × 107 1.6 × 108 

1c2Zn 508h 1.4h 532 (508)h 0.20h 2.4 8.3 × 107 3.3 × 108 

2a2Zn 498 1.39 513 (484) 0.090 2.8 3.2 × 107 3.3 × 108 

2b2Zn 493  1.45 519 (480) < 0.05 - - - 

2c2Zn 511 1.29 558 (496) < 0.01 - - - 

3b2Zn 488 1.39 510 (470) < 0.05 4.5 - - 

3c2Zn 506 1.21 538 (490) < 0.05 - - - 

1a2Zn 1c2Zn 2b2Zn 2c2Zn 3b2Zn 3c2Zn 2a2Zn 
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Figure 2.5.1.2. Absorption spectra of complexes 1a2Zn (red), 1c2Zn (blue), 2a2Zn (orange), 2b2Zn 

(green), 2c2Zn (light blue), 3b2Zn (pale green), and 3c2Zn (dark blue) in toluene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.1.3. Emission spectra of complexes 1a2Zn (red), 1c2Zn (blue), 2a2Zn (orange), 2b2Zn 

(green), 2c2Zn (light blue), 3b2Zn (pale green), and 3c2Zn (dark blue) in toluene. 
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2.5.2 Spectroscopic properties in the aggregate and solid state 

 In sharp contrast to the spectroscopic properties in solution, those in the solid state are 

remarkably different. Their appearance under ambient light and 365 nm irradiation is shown in Figure 

2.5.2.1. Spectroscopic properties of the complexes in the solid state are summarized in Table 2.5.2.1.  

 Absorption spectra of the complexes as drop cast films are shown in Figure 2.5.2.2. The 

spectra show 15 – 30 nm red-shifts compared to those in solution, presumably due to stronger 

intermolecular interactions between the molecules in the aggregate state. Emission in the solid state 

is depicted in Figure 2.5.2.3.  

Emission of the complexes in the solid state exhibits significantly different spectral shape 

and emission maxima. For example, 1a2Zn, the complex with meso-mesityl and 1,7-dimethyl groups 

on the dipyrrin core, emits at 615 nm, 108 nm red-shifted from that in solution (507 nm). 2a2Zn, 

bearing the same number of methyl groups at the same positions, with a meso-anthracenyl group, 

shows an emission maximum of 635 nm, which is 122 nm red-shifted from that in solution (513 nm) 

and 20 nm red-shifted from that of 1a2Zn in the solid state. 3b2Zn, a complex with a meso-4-tert-

buylphenyl group and 1,3,5,7-tetramethyl groups on the dipyrrin moieties, shows an emission 

maximum of 560 nm, only a 47 nm red-shift from that in toluene (510 nm). Since the spectral shape 

of the emission spectra of the complexes are distorted from that in solution, and different from each 

other, the meso-aryl group seems to play important roles in modifying their emission spectra. Since 

the molecules in the solid state are tightly packed, it is expected that the intermolecular interactions 

are far stronger than those in solution. As described in Section 2.4, 9-anthracenyl groups allows 

intermolecular π-π stacking and CH-π interactions, bringing the distance of the molecules close, while 

4-tert-butylphenyl groups cannot host such interactions as much as 9-anthracenyl groups, simply 

functioning as bulky functional groups.  

The proximity of the dipyrrin cores in the crystals allows various types of interactions to 

modify the spectroscopic properties of the complexes. Although quantitative analysis is far 
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complicated from the data obtained, it is assumed that such interactions include exciton coupling and 

excimer formation. The former is interactions between the transition dipole moments of 

chromophores in proximity, creating new transition dipoles with different excitation energies, which 

can be interpreted as “fusion of adjacent chromophores” (Figure 2.5.2.4). The transition dipole of a 

dipyrrin core is oriented along its long axis. Thus, for the complexes in the solid state, the transition 

dipoles are aligned in head-to-tail type orientations, resulting in red-shifted transitions.21 Excimer 

formation can also be one of the reasons for the red-shifted spectra. The formation of an excimer 

between the dipyrrin cores would result in a stabilized system, emitting at longer wavelengths. Since 

there are multiple possible interaction modes in their aggregate states, the resultant spectra are 

broadened.  

 Here, bis(dipyrrinato)zinc(II) complexes are found to be fluorescent in the solid state. The 

meso-aryl group plays important roles in modifying the emission spectra of the complexes, which 

affects the packing structures in the solid state, thus the dipyrrin – dipyrrin interactions and the 

resultant emission properties. 

 

 

Table 2.5.2.1. Spectroscopic properties of complexes 1a2Zn – 3c2Zn in the solid state 

 λabs
a (thin film) / nm λem (λex)b (solid) / nm ϕF

c  τ1(f1), τ2(f2)d / ns  <τ>e / ns 

1a2Zn 519 615 (500) 0.02 0.64 (65%), 2.0 (35%)  1.2 

1c2Zn 530 575 (510) - -  - 

2a2Zn 528 635 (510) 0.03 0.43 (57%), 1.0 (43%)  0.68 

2b2Zn 517 609 (510) <0.01 -  - 

2c2Zn 526 581 (510) 0.01 -  - 

3b2Zn 511 560 (470) 0.03 0.37 (98%), 1.7 (2%)  0.50 

3c2Zn 521 608 (510) <0.01 -  - 

aabsorption maximum bemission maximum (λem) and excitation wavelength (λex) 
cfluorescence 

quantum yield dfluorescence lifetime fitted from fluorescence decay curve eaverage fluorescence 

lifetime  
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Figure 2.5.2.1. Complexes 1a2Zn – 3c2Zn under irradiation at 365 nm (top) and ambient light 

(bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.2.2. Absorption spectra of complexes 1a2Zn (orange cross marks), 1c2Zn (light blue 

cross marks), 2a2Zn (red solid line), 2b2Zn (green solid line), 2c2Zn (blue solid line), 3b2Zn (light 

green open circles), and 3c2Zn (purple open circles) on quartz substrate. 
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Figure 2.5.2.3. Emission spectra of 1a2Zn (red), 1c2Zn (blue), 2a2Zn (orange), 2b2Zn (green), 

2c2Zn (light blue), 3b2Zn (pale green), and 3c2Zn (dark blue). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.2.4 Exciton coupling of two chromophores. Note that in oblique orientations, both the 

transition to the X’ and X’’ states are possible.21 Fluorescence can be interpreted as a transition from 

X’ or X’’ to GS, the opposite transition of the depicted ones. Reproduced from ref. 21 with 

permission from the Royal Society of Chemistry. 
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2.6 Conclusion 

 In this chapter, fluorescence properties of bulky-substituent bearing bis(dipyrrinato)zinc(II) 

complexes have been revealed. Their spectroscopic properties in solution, drop-cast film, and the 

solid-state have been obtained, showing distinctly different spectral shape, absorption and emission 

maxima, and fluorescence lifetimes. Single-crystal X-ray diffractional analysis was performed and 

their crystal structures were obtained. Each crystal structure shows unique packing structure, resulting 

in different spectroscopic properties in the solid state. Through this study, bis(dipyrrinato)zinc(II) 

complexes were found to be fluorescent and the packing structure was found to be important for the 

luminescence properties. 
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Chapter 3   

Synthesis and Spectroscopic Properties of Imine-linked BODIPYs 
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第３章 
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Chapter 4 

Concluding remarks 

  



51 
 

 Throughout this thesis, I focused on the synthesis and photophysics of dipyrrinato metal 

complexes. I have developed and evaluated the newly synthesized dipyrrinato metal complexes, 

which were found to be luminescent under “assembled” states. 

 In Chapter 1, I described the importance of photofunctional molecules and their applications. 

I also portrayed dipyrrins and dipyrrinato metal complexes, whose chemical and photochemical 

properties are favorable in constructing photofunctional molecules. 

 In Chapter 2, I developed a series of bis(dipyrrinato)zinc(II) complexes bearing bulky meso-

aryl groups. The complexes were revealed to be luminescent in the solid state, whose emission was 

concluded to be dependent on the packing structure, especially the dipyrrin – dipyrrin distances. 

Exciton coupling and excimer formation are two possible interactions for the complexes in the solid 

state. In this chapter, bis(dipyrrinato)zinc(II) complexes were demonstrated to be fluorescent in the 

solid state. 

 In Chapter 3, I designed several types of imine-linked BODIPYs. Formyl group(s) were 

appended on the 2- and 6- positions of the BODIPY core, and several types of amine were reacted to 

the BODIPYs. The reaction proceeded quickly under mild conditions, such as room temperature and 

ambient atmosphere. The photophysical properties of the complexes were found to be dependent on 

the type of the linkage. For example, the alkylimine-bridged ones showed relatively unmodified 

photophysical properties, while the hydrazone-bridged ones showed π-extension through the 

hydrazone bridge. The imine-linked BODIPYs, both the alkylimine-bridged ones and hydrazone-

bridged ones are found to be fluorescent, in moderate to high fluorescence quantum yields, showing 

applicability as fluorophores. BODIPYs were also immobilized onto amino-terminated silica gel. The 

reaction also proceeded quickly and the BODIPY-supported silica gel was intensely fluorescent. The 

synthetic convenience of the imine linkage and compatibility with BODIPYs in terms of fluorescence 

were illustrated through this chapter.  
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 To conclude my thesis, a series of dipyrrinato metal complexes and their assemblies were 

developed and synthesized. Their synthesis and molecular design were carefully devised under the 

concept of distance and orientation of the resultant assembled states. The synthesized complexes were 

demonstrated to be fluorescent in the assembled states. The distance and orientation of the assembled 

dipyrrin complexes influence the photophysical properties. The projects contribute to the chemistry 

and photophysics of dipyrrins by providing knowledge and insight of multi-chromophoric systems. 

The concepts and results in this thesis also lead to development of photofunctional materials with 

multiple chromophoric units.  
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