論文の内容の要旨

論文題目 Determination of absolute CEP by circularly-polarized few-cycle pulses

and dissociative ionization of methanol in intense UV laser fields

(円偏光数サイクルパルスによる絶対 CEP の決定と

紫外域強レーザー場中におけるメタノールの解離性イオン化)

氏名 深堀 信一

1. 序論

強レーザー場における原子・分子のイオン化過程および分子の解離過程は、レーザーパル スの電場強度、パルス幅、そして電場波形に影響を受けることが知られている。一方、超短 パルスレーザー技術の近年の発展は、パルス内における光電場の振動が数回しかない、数サ イクルパルスを発生させることを可能とした。この数サイクルパルスの電場波形は、搬送波 包絡線位相(CEP)により、鋭敏に変化する。数サイクル強レーザー場における原子・分子 のイオン化過程および分子の解離過程は、レーザーパルスの CEP に依存して変化すること が明らかにされており、イオン化過程および解離過程の CEP 依存性は重要な研究課題とな っている。位相メーターと呼ばれる装置を用いることによって、希ガスの超閾イオン化過程 を利用し、レーザーパルスの CEP を計測することが可能である。しかしながら、位相メー ターにより計測された CEP は、研究対象である光イオン化や光解離が起こる空間位置、す なわち、レーザー場と原子・分子の相互作用位置における絶対 CEP では無く、絶対 CEP か ら一定のずれを持つ相対的 CEP である。そのため、絶対 CEP を決定する方法の確立が待ち 望まれている。本論文では、円偏光数サイクルレーザー場における Ar の角度分解光電子ス ペクトルを計測すれば、絶対 CEP を見積もることができることを示した。

また、紫外強レーザーパルスによって誘起されたメタノール(CH₃OH)の解離性イオン化 過程を、光電子・光イオン運動量同時計測(PEPICO-MI)法によって調べ、イオン化とそれ に引き続く解離過程を明らかにすることを試みた。PEPICO-MI 法を用いれば、単一メタノ ール分子の解離性イオン化によって生成した光電子について、その運動エネルギーと分子 座標系における放出方向を決定することができる。実験結果の解析から、二通りの異なるイ オン化過程を同定し、さらに、分子座標系光電子角度分布に基づいて、レーザーパルスの偏 光軸に対する光電子の放出方向の分布だけでなく、分子軸に対する光電子の放出方向の分 布を明らかにした。

2. 実験

CEP 決定の実験では、チタンサファイアレーザー増幅装置により生成したフェムト秒レ ーザーパルスを、Ar を充填した中空ファイバーに集光し、直線偏光数サイクルパルス (722 nm, 4.1 fs, 5 kHz)を得た。ビームスプリッターを用いて二つに分けたレーザービームのうち の一方を、ショット毎の CEP を計測するために位相メーターに導入した。四半波長板を用 いて、他方のビームの偏光を右回り円偏光に変換し、その円偏光レーザーパルスを光電子エ ネルギー分析器内の Ar の漏れ出し分子線に集光した。放出した光電子のうち±1.2°の範囲に 放出したものを検出し、光電子が 1 m 飛行するのに要した時間から、光電子の運動エネル ギーEelec を算出した。

メタノールの PEPICO-MI 実験では、別のチタンサファイア増幅装置により生成した近赤 外レーザーパルスの第2次高調波である直線偏光紫外レーザーパルス(400 nm, 67 fs, 1 kHz) を、超高真空チャンバー内のメタノールの漏れ出し分子線に集光した。静電レンズを用いて、 単一メタノール分子から生成した光電子と光イオンを互いに反対側に引き出し、それぞれ を位置敏感型検出器によって検出した。光電子と光イオンの検出器への到着時刻と検出位 置から、それぞれの三次元運動量ベクトルを算出した。

円偏光数サイクルパルスによる絶対 CEP の 決定

検出された光電子の信号量 $Y(E_{elec}, \phi_{abs})$ を光電子エネル ギー(E_{elec})と CEP (ϕ_{abs})の関数として図1に示した。ただ し、以下の議論に従って、位相メーターにより計測され た相対 CEP から絶対 CEP に校正した上で表示した。信号 量 $Y(E_{elec}, \phi_{abs})$ から、非対称性パラメーター $A(E_{elec}, \phi_{abs})$ を

図1 検出された光電子の信号量 $Y(E_{elec}, \phi_{abs})$ 。集光点におけるピークレーザー 場強度は 5.1×10^{14} W/cm² と見積もられた。

$$A(E_{\text{elec}}, \phi_{\text{abs}}) = \frac{Y(E_{\text{elec}}, \phi_{\text{abs}}) - Y(E_{\text{elec}}, \phi_{\text{abs}} + 180^{\circ})}{Y(E_{\text{elec}}, \phi_{\text{abs}}) + Y(E_{\text{elec}}, \phi_{\text{abs}} + 180^{\circ})}$$
(1)

と定義し、図 2(a)に示した。さらに、非対称性パラメーターの CEP 依存性を余弦関数

$$A(E_{\text{elec}}, \phi_{\text{abs}}) = A_0(E_{\text{elec}})\cos(\phi_{\text{abs}} - \phi_0(E_{\text{elec}}))$$
 (2)

により最小二乗解析をして得た位相オフセット $\phi_0(E_{elec})$ についても併せて図 2(a)にプロット した。位相オフセットは、各光電子エネルギーにおいて、光電子信号量が最大となる CEP に 対応している。 *E*_{elec} > 30 eV の高エネルギー領域において、位相オフセットはほぼ一定値を

図2 非対称性パラメーターA(Eelec, ϕ_{abs})。黒点は位相オフセット $\phi_0(E_{elec})$ を表す。(a) 実験結果。(b) 計算結 果。(c) 中性 Ar 原子の減少の効果に加え、光電子と Ar⁺の間に働くクーロン引力の効果を考慮した場合の 計算結果。(b)および(c)の縦軸は、CEP が 0°のときの光電子の放出角度を示している。

示した。

イオン化過程がトンネルイオン化であると仮定し、CEP が 0°のときの非対称性パラメー ターA(Eelec, θ)を計算した。ADK 理論によりトンネルイオン化速度を計算し、さらに、トン ネルイオン化した後のレーザー場における光電子の運動をニュートンの運動方程式を解く ことによって、光電子の生成量 $Y(E_{elec}, \theta)$ を求めた。ただし、光電子の放出角度 θ は円偏光 レーザーパルスの偏光面内にて定義し、最大振幅における電場の向きに平行な方向に光電 子が放出した場合を $\theta = 0^{\circ}$ とした。計算された CEP が 0° のときの θ は、実験における狭い 捕集角度において光電子が検出されたときの ϕ_{abs} と同一である。なぜならば、円偏光レーザ ーパルスの CEP が変化したとき、偏光面における電場の向きのみが、CEP の変化と同じだ け変化するからである。図2(b)に計算された非対称性パラメーターと位相オフセットを示し た。*E*elec > 13.5 eV における位相オフセットは一定値 90°となった。

位相オフセットが 90°からずれる大きな二つの要因として、イオン化によって中性 Ar 原 子がレーザーパルス内で減少する効果と、光電子と Ar+の間に働くクーロン引力の効果が考 えられる。これらの効果を考慮に入れて計算された非対称性パラメーターと位相オフセッ

トを図 2(c)に示す。*E*elec < 30 eV の低エネルギー領域にお いては位相オフセットが 90°からずれるが、*E*elec > 30 eV の 高エネルギー領域において、位相オフセットはほぼ一定値 90°となった。従って、レーザー場強度 5.1×10¹⁴ W/cm² にお いては、実験で得られた高エネルギー領域における位相オ フセットを90°とすることによって絶対 CEP を決定できる ことが示された。

4. 紫外城強レーザー場中におけるメタノールの 解離性イオン化

図 3(a)および 3(b)に CH₃OH⁺ と CH₃⁺ の生成に伴う光電 子の光電子スペクトルを示した。CH₃OH⁺ 生成チャンネル の光電子スペクトルに観測される Eelec~1.1 eV のピーク構 時計測された光電子の運動エネルギ 造は、CH₃OH⁺の電子基底 X 状態への 4 光子イオン化に帰 クレーザー場強度は 3.1×10¹³ W/cm²

図 3 CH₃OH⁺ (a)および CH₃⁺ (b)と同 ースペクトル。集光点におけるピー と見積もられた。

属される。また、CH₃+生成チャンネル (CH₃OH⁺ \rightarrow CH₃⁺ + OH) の光電子スペクトルにも、 $E_{elec} \sim 1.1 \text{ eV}$ にピーク構造が観測される。解離チャンネルにおけるこのピークは、光電子放 出時に CH₃OH⁺ の X 状態が生成した後に、レーザーパルス内でさらに紫外光の光子が吸収 され電子励起が起こることを示している。CH₃⁺ 生成チャンネルの低光電子エネルギー領域 $E_{elec} = 0.2 \sim 0.5 \text{ eV}$ に観測される信号は、CH₃OH⁺ の第2電子励起 K 挑への5 光子イオン 化によるものと帰属できる。

また、レーザー偏光軸がメタノール分子の CO 結合軸に対して、角度 θ_{pol} を向いたときの、 CH₃⁺ 生成チャンネルの光電子角度分布についても調べた。 $E_{elec} = 0.9 \sim 1.2 \text{ eV}$ における光電 子角度分布では、角度 θ_{pol} に依らず、光電子は主にレーザー偏光軸に沿って放出することが 示された。また、 $E_{elec} = 0.2 \sim 0.5 \text{ eV}$ における光電子角度分布から、(i) レーザー偏光軸が CO 結合軸に平行な場合 ($\theta_{pol} \sim 0^{\circ}$) には、光電子はレーザー偏光に平行な方向に放出し、その 際、C 原子側よりも O 原子側から放出しやすいこと、そして、(ii) レーザー偏光軸が CO 結 合軸に垂直な場合 ($\theta_{pol} \sim 90^{\circ}$) には、光電子はレーザー偏光軸に平行な方向だけでなく、偏 光軸に垂直な平面上にも放出することが示された。CH₃OH⁺の X 状態の電子配置は主として (2a^{*})⁻¹、 B 状態の電子配置は主として(6a^{*})⁻¹と表せることから、測定された光電子角度分布 は、エネルギー的に深い 6a^{*}軌道(HOMO-2)から電子が放出されてイオン化した場合では、光 電子がより強くレーザー電場の方向に偏って放出されることを示している。