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Abstract 

 

  The glutathione S-transferase (GST) gene superfamily comprises phase Ⅱ 

detoxification enzymes that catalyze conjugation of glutathione (GSH) to xenobiotics 

(Sheehan et al., 2001). GSTs play key roles in cellular protection against xenobiotics 

(McIlwain et al., 2006).  Genetic variants of GSTs have been studied with respect to 

disease susceptibility and drug resistance.  The GST-μ (GSTM) family is encoded by a 

tandem gene cluster on chromosome one; a whole gene deletion of the GSTM1 has been 

found (Xue et al., 1998).  The GSTM1 enzyme impairment is thought to result in 

inefficient detoxification, which leads to genetic damages and increased disease risks 

(Sheehan et al., 2001; McIlwain et al., 2006) and response rates to some chemotherapy 

(Hayes and Pulford, 1995).  

 The GSTM1 deletion homozygous genotypes have extensively been studied in 

various human populations from the viewpoint of epidemiology.  The GSTM1 deletion 

homozygous genotypes can be observed in various human population commonly (Garte 

et al., 2001; Gaspar et al., 2002; Buchard et al., 2007; Saadat, 2007; Fujihara et al., 2009; 

Piacentini et al., 2011).  For example, the prevalence of the GSTM1 deletion 

homozygous genotype in Europeans, Asians and Africans was 47~57%, 42~54% and 

16~36%, respectively (Garte et al., 2001).  Such high frequency and these differences in 

the frequencies of the GSTM1 deletion homozygous genotypes among human populations 

may have been because of an evolutionary advantage; however, the reasons (1) why has 

this deletion been maintained in the human populations at very high frequencies and (2) 

why does frequency of this deletion vary among populations remain unknown.  The aim 

of this study is to reveal evolutionary force which shaped the distribution of the human 



GSTM1 deletion from the viewpoint of biological anthropology.   

 In chapter 1, I investigated geographical distribution of the GSTM1 deletion 

homozygous genotype distribution.  The GSTM1 deletion homozygous individuals 

showed higher sensitivity to UVB than in individuals with GSTM1 wild-type allele.  It 

is thus speculated that UV light irradiation was the selective pressure which facilitated 

relatively low frequencies of the GSTM1 deletion homozygous genotype in Africans 

(Dandara et al., 2002).  Dandara et al (2002) postulated that tropical populations 

adaptively maintained the GSTM1 gene to protect their cells against oxidative stresses 

caused by strong UV irradiation.  Meanwhile, little was known about the GSTM1 

genotype frequency among other populations residing in the tropics such as Southeast 

Asian and Oceanic populations.  I collected the GSTM1 deletion homozygous genotype 

data from 19 populations in Southeast Asia and Oceania, which were lacking in the 

previous studies and incorporated the data from experiments with published GSTM1 

deletion genotype data from 81 human populations.  Comprehensive analysis of 

frequency of the GSTM1 deletion genotype revealed the geographic distribution of this 

polymorphism of 81 populations in the previous studies and 19 populations in Southeast 

Asia and Oceania by the present study.  It revealed that most Southeast Asian and 

Oceanic populations showed high frequencies of the GSTM1 deletion homozygous 

genotype.  There was no correlation between the GSTM1 null allele frequency and the 

absolute latitude in the worldwide populations contrary to the previously raised 

expectation.  This non-latitudinal geographical pattern of the GSTM1 deletion is thought 

to be attributed to human migration, genetic drift or adaptations, but is not due to 

adaptation to UV irradiation.   

 It has been technically difficult to test neutrality of whole gene deletion 



polymorphisms by comparing sequences of the wild-type allele with those of mutant 

alleles.  In chapter 2, I calculated statistics for neutrality tests and analyzed haplotypes 

using the flanking regions of the GSTM1 deletion, following the methods of 

Eaaswarkhanth et al. (2016), using the 1000 genome datasets.   Using 1000 

Genome datasets, I observed that LD between the GSTM1 deletion and SNVs was 

moderately conserved only in CHB.  The decay of LD beyond the GSTM1 deletion 

suggests that gene conversions and recombinations broke the LD between the flanking 

SNVs and the deletion.  However, this result does not disprove the possibility of 

recurrent deletion.  For the Tajima’s D, no difference were observed between the target 

regions which locate on the GSTM1 deletion flanking regions and control regions.  It 

suggests that the GSTM1 deletion is neutral or LD between the deletion and target regions 

were too weak to catch signature of natural selection on the deletion.  Haplotypes of the 

target regions were highly differentiated between East Asia and Africa.  The East Asian-

dominant SNVs on target regions significantly change other GSTM genes according to 

the GTEx-portal data.  It is thus possible that in East Asia, the GSTM1 deletion 

hitchhiked the East-Asian dominant haplotypes which experienced non-neutral evolution.   

 The GSTM1 deletion allele is thought to have been generated by homologous 

recombination of two SDs (segmental duplications) (Xu et al. 1998).  SDs have been 

defined as long (≥1–5 kb) and highly similar (≥90% similarity) sequences appear to have 

arisen by duplication (Bailey and Eichler, 2006).  SDs account for 5% of the human 

genome (Bailey et al., 2002).  Since SDs can generate gene copy number variations by 

initiating non-allelic homologous recombination, they have been contributed gene family 

evolution in the primate genomes, in particular, in the ape genomes (Bailey and Eichler, 

2006).  SDs and gene copy number variations thus have had considerable impact on the 



primate genomic evolution.  Recently developed genomic datasets make it possible to 

conduct comparative genomic analysis of various species to reveal genomic evolution.  

In chapter 3, I conducted in silico comparative genomic analyses among primates to 

reveal evolutionary history of the GSTM genes and SDs.   Comparative genomic 

analyses revealed the evolutionary history of the primate GSTM genes.  The chimpanzee 

GSTM5, gorilla GSTM4 and rhesus macaque GSTM1 were pseudogenized.  The 

nonhuman primate GSTM1 genes were flanked by the two SD sequences as well as 

humans.  It is thus suggested that the SDs are thought to be generated in the early stage 

of primate evolution.  The nonhuman primate SDs may cause the GSTM1 gene deletion. 

 In chapter 4, experimental comparative studies of the GSTM1 region among 

primates were conducted.  Chimpanzees have the GSTM1 deletion allele as well as 

humans at polymorphic state.  Sliding window analyses and phylogenetic analyses 

demonstrated that the human GSTM1 deletion allele and chimpanzee GSTM1 deletion 

allele were generated independently.  Sliding window analyses also revealed break 

points of SD fusion and gene conversions in the human and the chimpanzee.  A linage-

specific sequence-swapping in chimpanzee lineage was also detected. 

 Studies on this thesis revealed the complexity of the evolutionary history of a 

gene deletion polymorphism which has biomedical importance: recurrent deletions in 

humans and chimpanzee, frequent gene conversions, and recombinations in the flanking 

SDs.  The framework of this study can be expanded to studies on other copy number 

variations.   
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General Introduction  

 

 Studies with recently developed whole-genome sequencing and array-based method indicated the heterogeneity of copy number 

variation in the human genome (Conrad et al. 2010; Handsacker et al. 2011).  Several copy number variations have been associated with 

inter-individual differences in drug response (Feuk et al. 2006; Gamazon et al. 2011).   

  The glutathione S-transferase (GST) gene superfamily comprises phase Ⅱ detoxification enzymes that catalyze conjugation of 

glutathione (GSH) to xenobiotics (Sheehan et al., 2001). GSTs are expressed in response to a variety of stresses and play key roles in 

cellular protection against xenobiotics (McIlwain et al., 2006).  GSTs are involved in the metabolic detoxification of products generated 

by oxidative stress, electrophilic compounds, carcinogens, environmental toxins and therapeutic drugs (McIlwain et al., 2006). GSTs have 

been classified into three families, cytosolic, mitochondrial and membrane-bound microsomal, by their cellular localization (reviewed in 

Frova, 2006). The human cytosolic GST family comprises seven main classes according to chromosomal localization of the genes: α, μ, 

ω, π, σ, θ and ζ (Hayes et al., 2005).  Genetic variants of GSTs have been studied with respect to disease susceptibility and drug resistance.  

The GST-μ (GSTM) family is encoded by a tandem gene cluster on chromosome one as 5’-GSTM4-GSTM2-GSTM1-GSTM5-GSTM3–3’; 

a whole gene deletion of the GSTM1 has been found (Xue et al., 1998).  The GSTM1 enzyme impairment is thought to result in inefficient 

detoxification, which leads to genetic damages and increased disease risks. In fact, the GSTM1 deletion homozygous genotype is associated 

with various types of cancer (Sheehan et al., 2001; McIlwain et al., 2006), asthma (Minelli et al., 2010), diabetes (Yalin et al., 2007) and 
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response rates to some chemotherapy (Hayes and Pulford, 1995).  

 The GSTM1 deletion homozygous genotypes have extensively been studied in various human populations from the viewpoint of 

epidemiology.  The GSTM1 deletion homozygous genotypes can be observed in various human population commonly (Garte et al., 2001; 

Gaspar et al., 2002; Buchard et al., 2007; Saadat, 2007; Fujihara et al., 2009; Piacentini et al., 2011).  For example, the prevalence of the 

GSTM1 deletion homozygous genotype in Europeans, Asians and Africans was 47~57%, 42~54% and 16~36%, respectively (Garte et al., 

2001).  Such high frequency and these differences in the frequencies of the GSTM1 deletion homozygous genotypes among human 

populations may have been because of an evolutionary advantage; however, the reason why this deletion has been maintained in the human 

populations at very high frequencies remains unknown.  Recently, evolution driven by gene loss was discussed (Albalat and Cañestro, 

2016).  An experimental study showed that loss-of-function mutations, especially of metabolizing genes, can be adaptive in bacteria, by 

modifying gene expression and the flow of metabolites to better fit new environments (Hottes, et al., 2013).  The aim of this study is to 

reveal evolutionary background of the common human GSTM1 deletion from the viewpoint of biological anthropology.   

 In chapter 1, I investigated geographical distribution of the GSTM1 deletion homozygous genotype distribution.  I collected the 

GSTM1 deletion homozygous genotype data from 19 populations in Southeast Asia and Oceania, which were lacking in the previous 

studies and incorporated the data from experiments with published GSTM1 deletion genotype data from 81 human populations. 

 It has been technically difficult to test neutrality of whole gene deletion polymorphisms by comparing sequences of the wild-type 
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allele with those of mutant alleles.  In chapter 2, I calculated statistics for neutrality tests and analyzed haplotypes using the flanking 

regions of the GSTM1 deletion, following the methods of Eaaswarkhanth et al. (2016), using the 1000 genome datasets.   

 The GSTM1 deletion allele is thought to have been generated by homologous recombination of two SDs (segmental duplications) 

(Xu et al. 1998).  SDs have been defined as long (≥1–5 kb) and highly similar (≥90% similarity) sequences appear to have arisen by 

duplication (Bailey and Eichler, 2006).  SDs account for 5% of the human genome (Bailey et al., 2002).  Since SDs can generate gene 

copy number variations by initiating non-allelic homologous recombination, they have been contributed gene family evolution in the 

primate genomes, in particular, in the ape genomes (Bailey and Eichler, 2006).  SDs and gene copy number variations thus have had 

considerable impact on the primate genomic evolution.  Recently developed genomic datasets make it possible to conduct comparative 

genomic analysis of various species to reveal genomic evolution.  In chapter 3, I conducted in silico comparative genomic analyses 

among primates to reveal evolutionary history of the GSTM genes and SDs.  Experimental comparative studies of the GSTM1 region 

among primates were conducted in chapter 4. 
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Chapter 1. Geographical distribution of the human GSTM1 gene deletion polymorphism 

 

1.1. Introduction 

 The GSTM1 deletion homozygous genotype frequency among African was lower than that of European (Garte et al. 2001; 

Dandara et al., 2002; Roodi et al., 2004).  People live in low-latitudinal area are exposed to high dose of UV.  UVB irradiation correlates 

with latitude and positive natural selection has operated upon many of these candidate genes to result in a latitudinal cline in human skin 

pigmentation (Jablonski and Chaplin 2010).  Latitudinal clines of frequencies of the polymorphisms on the human vitamin D receptor 

and skin color genes were reported, suggesting adaptation to UVB irradiation (Tiosano et al., 2016).  UV light irradiation induces 

oxidative stresses in cells (McIlwain et al., 2006) and GSTs detoxify reactive metabolites generated by oxidative stresses (Hayes et al., 

2005); Smith et al. (2011) reported that the GSTM1 genotypes were associated with sensitivity to UVB.  The GSTM1 deletion 

homozygous individuals showed higher sensitivity to UVB than in individuals with GSTM1 wild-type allele.  It is thus speculated that 

UV light irradiation was the selective pressure which facilitated relatively low frequencies of the GSTM1 deletion homozygous genotype 

in Africans (Dandara et al., 2002).  Dandara et al (2002) postulated that tropical populations adaptively maintained the GSTM1 gene to 

protect their cells against oxidative stresses caused by strong UV irradiation.  Meanwhile, little was known about the GSTM1 genotype 

frequency among other populations residing in the tropics such as Southeast Asian and Oceanic populations.  Because there has been no 

systematic review of geographic distribution of the GSTM1 deletion, studies about anthropological background of this gene has been 
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limited.   

 Conventional PCR assays used in most of previous studies detect the deletion homozygous genotype but do not distinguish 

homozygous wild-type individuals from heterozygous wild/deletion individuals.  Distinguishing three genotypes is important because 

gene expression level and corresponding enzyme activity as conjugators change with the copy number of the GSTM1 gene (McCarrol et 

al. 2005; Moyer et al 2007; Smith et al. 2011; Arakawa et al. 2011).  Several newly designed PCR methods are capable of identifying 

three genotypes, wild/wild, deletion/wild and deletion/deletion, of the GSTM1 (Roodi et al., 2004; Buchard et al., 2007).  By these 

methods or real-time quantitative PCR, the GSTM1 genotypes and allele frequencies were identified in European (Buchard et al., 2007), 

Han Chinese-American (Moyer et al., 2007), African-American (Roodi et al. 2004, Moyer et al., 2007), European-American (Roodi et al. 

2004; Moyer et al., 2007), Mexican-American (Moyer et al., 2007) and Japanese (Tatewaki et al., 2009).   

 To test the UV-adaptation hypothesis, I first reviewed previous studies and collected data of the GSTM1 deletion homozygous 

frequency data in 81 human populations from previous studies.  I also revealed the GSTM1 genotypes for 1339 individuals from 19 

populations in Southeast Asia and Oceania.  I then analyzed geographic distribution of the GSTM1 null polymorphism, incorporating 

data from the populations in Southeast Asia and Oceania with the data from previous studies. 
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1.2. Materials and Methods 

1.2.1. Publication search  

 To perform a meta-analysis, publications were selected with the following protocol (Figure 1.1).  I searched for studies 

comprising keywords “GSTM1 null population genotype NOT meta” on PubMed up to December 2012, and then used the PubMed filters 

“Abstract available”, “English”, “Human”, and “MEDLINE” for the further selection. References of related studies were manually 

searched and added.  

  

1.2.2. Inclusion/exclusion criteria  

 I included publications (1) reporting frequencies of the GSTM1 deletion homozygous genotypes for more than 50 healthy 

individuals; (2) using another gene as a internal control in the PCR for assurance that specimens are successfully amplified and detected 

or using the real-time PCR; (3) with a description of ethnic background of the subjects; (4) stating the location of the study population. 

We excluded publications (1) of meta-analyses and review; (2) of studies based upon families; (3) for the subjects with relatively recent 

migrations and/or genetic admixtures. Hence a large number of studies on populations such as in the United States, Brazil, Canada, 

Argentina, Australia, Mexico, Puerto Rico, Hong Kong, Taiwan, Singapore, Hawaii, Shanghai, Greenland and United Kingdom were 

excluded. When there were multiple publications for a given population, data for the largest sample size was adopted. Latitude of each 

location was obtained by Google search or published maps.  Decimal system of latitude was adopted.  When the location of the 
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subjected population was not clearly mentioned in the literature, I substituted the state capital for it (Table 1.1).  

 

インターネット公表に関する共著者全員の同意が得られていないため、1.2.3-1.2.5については、非公開 

 

1.2.6. Statistical Analysis 

 Correlations between the absolute latitude and the prevalence of the GSTM1 null genotype were tested by Spearman’s rank 

correlation coefficient with R (version 2. 14. 1).  Deviation from the Hardy–Weinberg’s equilibrium was tested by the chi-square tests.  

A p-value less than 0.05 was considered to be significant. 

 

 

1.3. Results  

 Starting from 400 publications in the PubMed, 63 publications for 81 populations were finally included in the study (Figure 1.1). 

These populations were located from 64.1°N to 23.5°S. Number and origin of the populations were as following; 14 from Africa, two 

from America, 46 from Asia and 19 from Europe. Table 1.1 shows the frequency of the GSTM1 deletion homozygous genotype with the 

absolute latitude in each population. The frequency of the GSTM1 deletion homozygous genotype ranged from 0.04 in Guarani (Brazil) 

(Gaspar et al., 2002) to 0.65 in Southern Thais (Kietthubthew, 2006).  
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インターネット公表に関する共著者全員の同意が得られていないため、1.3の以降の部分及び 1.4については、非公開 
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Table 1.1. GSTM1 null genotype frequencies in 84 worldwide populations 

Population (Location) Latitude1 Number 

Freq. of the 

GSTM1 deletion 

homozygous 

Reference  

AFRICA      

Ibo (Abuja) 9.1 101 0.23 Ebeshi et al., 2011 

Hausa (Abuja) 9.1 98 0.37 Ebeshi et al., 2011 

Ethiopian (Addis Ababa) 9 153 0.44 Piacentini et al., 2011 

Egyptian (Cairo) 30 200 0.56 Hamdy et al., 2003 

Mandinka (Gambia) 13.5 114 0.28 Kirk et al., 2005 

Fula (Gambia) 13.5 77 0.23 Kirk et al., 2005 

Wollof (Gambia) 13.5 50 0.16 Kirk et al., 2005 

Yoruba (Abuja) 9.1 101 0.31 Ebeshi et al., 2011 

Sudanese (Khartoum) 15.5 114 0.39 Tiemersma et al., 2001 

Tunisian (Mahdia) 35.5 182 0.54 Lakhdar et al., 2010 

Somali (Mogadishu) 2 100 0.4 Buchard et al., 2007 

Ovambo (Windhoek) 22.6 134 0.11 Fujihara et al., 2009 

Cameroonian (Yaoundé) 3.8 126 0.28 Piacentini et al., 2011 

Tunisians (Sousse) 35.8 186 0.63 Salem et al., 2011 
      

AMERICA      

Guarani (Brazil) 23.2 51 0.04 Gaspar et al., 2002 

Ache (Paraguay) 23.5 67 0.36 Gaspar et al., 2002 
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ASIA      

Bahrainis (Manama) 26.2 167 0.5 Salem et al., 2011 

Thailander (Bangkok) 13.8 320 0.6 Pakakasama et al., 2005 

Lebanese (Beirut) 33.9 141 0.53 Salem et al., 2011 

Chinese (Beijing) 39.9 481 0.44 Li et al., 2012 

Indian (Mumbai) 19 82 0.17 Nair et al., 1999 

Chinese (Chengdu) 30.6 410 0.51 Jing et al., 2012 

Indian (Delhi) 28.6 309 0.21 Singh et al., 2009 

Chinese (Guangzhou) 23.1 412 0.47 Zhang et al., 2011 

Vietnamese  

(Ha Nam) 
20.5 100 0.42 Agusa et al., 2010 

Chinese (Harbin) 45.8 226 0.46 Lu et al., 2011 

Han (Henan) 33.9 212 0.51 Song et al., 2009 

Pakistani (Islamabad) 33.7 162 0.36 Khan et al., 2010 

Indonesian (Jakarta) 6.2 162 0.56 Amtha et al., 2009 

Druze 31.8 159 0.6 Karban et al., 2011 

Non-Ashkenazi Jews 31.8 172 0.55 Karban et al., 2011 

Arab Moslem 31.8 101 0.56 Karban et al., 2011 

Ashkenazi Jews 31.8 96 0.55 Karban et al., 2011 

Chinese (Yangzhong) 32.1 419 0.51 Setiawan et al., 2000 

Kabul, Pashtuns 34.5 257 0.42 Saify et al., 2012 

Kabul, Tajiks 34.5 217 0.48 Saify et al., 2012 
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Kabul, Hazaras 34.5 120 0.53 Saify et al., 2012 

Kabul, Uzbeks 34.5 62 0.4 Saify et al., 2012 

Kashmiri (Srinagar) 34.5 195 0.42 Malik et al., 2010 

Indian (Kerala) 8.5 146 0.27 Sreeja et al., 2005 

Thai (Khon Kaen) 16.4 94 0.6 
Settheetham-Ishida et al., 

2009 

Japanese (Kitakyusyu) 33.8 126 0.44 Katoh et al., 1996 

Tibetan (Lhasa) 29.4 86 0.61 Yan et al., 2006 

Maharashtrian (Nagpur) 21.3 314 0.35 Devi et al., 2008 

Bahrainis (Manama) 26.2 167 0.5 Salem et al., 2011 

Filipino (Quezon) 14.7 127 0.59 Baclig et al., 2012 

Chinese (Meizhou) 23.4 512 0.62 Pan et al., 2011 

Mizos (Mizoram) 23.4 204 0.48 Malakar et al., 2012 

Japanese (Nagoya) 35.2 320 0.58 Niwa et al., 2005 

Chinese (Qingdao) 36.1 366 0.43 Jiang et al., 2011 

Saudi (Riyadh) 24.7 513 0.55 Al-Dayel et al., 2008 

Korean (Seoul) 37.5 549 0.51 Uhm et al., 2007 

Iranian (Shiraz) 29.6 169 0.51 Moasser et al., 2012 

Southern Thai (Songkhla) 7.2 164 0.65 Kietthubthew, 2006 

Southern Punjab 30.1 111 0.45 Shaikh et al., 2010 

Iranian (Tehran) 35.7 336 0.28 Safarinejad et al., 2011 

Japanese (Tokyo) 35.4 203 0.5 Tamaki et al., 2011 

Mongolian (Ulan Bator) 47.9 207 0.46 Fujihara et al., 2009 
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North Indian (Lucknow) 26.9 300 0.22 Singh et al., 2010 

Han (Wenzhou) 28 152 0.48 Chen et al., 2012 

Han (Xi'an) 34.3 763 0.52 Liu et al., 2009 

Turkish (Ankara) 39.9 231 0.54 Ada et al., 2012 
      

EUROPE      

Greek (Athens) 38 171 0.52 Dialyna et al., 2001 

German (Heidelberg) 49.4 1251 0.51 Timofeeva et al., 2010 

Mediterranean 

(Barcelona) 
41.4 192 0.49 To-Figueras et al., 1997 

Normanean (Basse-

Normandie) 
49.2 120 0.49 Abbas et al., 2004 

Danish (Copenhagen) 55.7 200 0.53 Buchard et al., 2007 

European (Covilha) 40.2 102 0.4 Ramalhinho et al., 2011 

Scottish (Aberdeen) 57.1 383 0.58 Little et al., 2006 

Finnish European 

(Helsinki) 
60.3 478 0.42 Mitrunen et al., 2001 

Ukrainian (Kiev) 50.5 253 0.51 Ebrahimi et al., 2004 

Slovenian (Ljubljana) 46.1 116 0.54 Dolzan, et al., 2006 

Polish (Lodz) 51.8 233 0.48 Kargas et al., 2003 

Spanish (Madrid) 40.4 94 0.55 Piacentini et al., 2011 

European (Martin) 49.1 220 0.48 Matakova et al., 2009 

Czech (Bruno) 49.1 331 0.5 Holla et al., 2006 
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Norvegian (Oslo) 59.9 357 0.51 Skjelbred et al., 2011 

Icelander (Reykjavik) 64.1 395 0.54 Gudmundsdottir et al., 2001 

Italian (Rome) 41.9 143 0.53 Piacentini et al., 2012 

Italian (Florence) 43.4 546 0.5 Palli et al., 2005 

European (Vienna) 48.2 305 0.55 Gundacker et al., 2009 

1absolute latitude 

 

 

 

 

 

 

 

 



16 

 

インターネット公表に関する共著者全員の同意が得られていないため、第二章、第三章、第四章
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