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Abstract 

As a general basis for constructing a flexible and cooperative natural language di­
alogue system, we need a model of dialogue participants, in wbich knowledge for 
various dialogue tasks is represented in a common declarative form and a general 
inference mechanism manipulates representation of mental states. We present two 
such models which meet two important requisites for representation systems. The 
first model represents an agent 's mental states in the form called Mental World 
Structure, which has strong expressive power for modalities . We can deal with 
compos ition, quantification and unification of modalities, and thus we can concisely 
express various types of knowledge that are difficult to express in previous represen­
tation systems. We smoothly incorporate into our framework three basic inference 
procedures , that is, deduction , abduction and truth maintenance. With them, we 
explain an agent's inference processes working behind cooperat ive dialogues. Infer­
ences about plans are modeled clearly, using modalities of belief and time together. 
The second model is a logic of mental attitudes based on preference ordering. An 
agent 's model structure includes explicit representations of preferences, that is, the 
plausibility order and the desirabi li ty order. Mental attitudes such as belief, inten­
tion and choice are defined in terms of t he preference orders. In particular, defined 
intentions satisfy most requisites ever proposed such as freedom from consequential 
closure and persistency. We introduce operators for preference between sentences, 
and examine their properties and relationship with other attitudes. Then we apply 
this logic to reasoning about plans. We give a formal account of plan construc­
t ion and selection processes, and we examine several heuristics for plan recognition 
currently used. 
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Chapter 1 

Introduction 

1.1 Motivation 

As a general basis for constructing a flexible and cooperative natural language dia­
logue system, we need to model dialogue participants: their reasoning, mental states 
such as beliefs and intent ions , together with their dynamic change. A dialogue par­
ticipant performs various tasks. First , he understands his dialogue companion's 
utterances. He is flexibl e to interpret possibly ambiguous linguistic expressions us­
ing contexts of the utterances. Second, he recognizes his companion's intentions and 
plans behind the utterances. By extracting information conveyed indirectly, he can 
behave cooperatively toward his companion. Third, he forms intentions and con­
structs his own plans. A dialogue participant usually constructs plans of making an 
utterance in order to inform or request his companion something. Fourth, he gen­
erates linguistic expressions and utters them. He chooses appropriate expressions 
based on his knowledge about his companion and contexts. 

Traditionally, these tasks are processed by separate modules using specialized 
representation frameworks and specialized inference mechanisms. Semantic inter­
pretation models [19, 30 , 38] use specialized frameworks for representing semantic 
information and inference procedures to choose plausible interpretations and refer­
ent . Plan recognition models [1, 6, 21] and plan construction systems [3, 4, 15] 
use specialized frameworks for representing properties of actions and have proce­
dures that find preferable plans. Linguistic generation models [4, 22] use specialized 
grammar and specific inference procedures to generate helpfu l and clear responses . 
Behind these studies exists a typical model of dialogue participants, which we call 
a traditional model of dialogue participants (see Figure 1.1). It consists of four (or 
more) separate modules connected serially. When a dialogue participant gets an 
input (that is , recognizes an utterance), he first uses the semantic interpretation 
module, then uses the plan recognition module, the plan construction module, and 
finally uses the linguistic generation module to output a response. 

A traditional model of dialogue participants has the following problems: 



Input 

Semantic Interpretation Module 

Plan Recognition Module 

Plan Construction Module 

Linguistic Generation Module 

Output 

Figure 1.1: A Traditional Model of a Dialogue Participant 
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1. Modules work only in a fixed order and interact in a fixed way: 
Since modules are designed independently with various assumptions, they work 
only in a fixed order and interact in a fixed way, even if possible. This obstructs 
flexibility of dialogue participants' models. Dialogue tasks need to interact 
with each other during processing. For example, the semantic interpretation 
task often requires information about the speaker's plans obtained in later plan 
recognition task. Furthermore, when semantic interpretation fails , the control 
should go directly to linguistic generation, that is , generation of a clarifying 
response. 

2. Modules do not share knowledge: 
In dialogue processing, a single piece of knowledge can be used in several 
tasks. Linguistic knowledge such as grammar and pragmatic convention is 
used in semantic interpretation and linguistic generation. Knowledge about 
actions and plans is used in plan recognition and plan construction . However , 
such knowledge cannot be shared by modules that use different specialized 
representation frameworks. In particular , heuristic knowledge and preferences 
are usually represented implicitly in inference procedures, and thus they cannot 
be shared. Representing a single piece of knowledge separately in different 
form in several modules makes a model unclear and a dialogue system hard to 
maintain. 

3. Modules do not share mental states: 
A dialogue participant 's mental states consist of his mental attitudes such 
as beliefs and intentions, and they correspond to internal states of a dialogue 
system. They are manipulated and reasoned about by most modules. However , 
existing models deal with mental states in quite different ways and they cannot 
share them. As a result, the notion of mental states is not used enough, and 
interaction among modules through them is restricted. 

On the other hand, we can consider another type of model of dialogue par­
ticipants, which we investigate in th is thesis (see Figure 1.2). Dialogue tasks are 
regarded as a kind of problem solving and processed together in a general formal 
framework for problem solving. Knowledge for these tasks is represented in a com­
mon declarative form and used by a general inference mechanism. This model is 
formal in the sense that represented knowledge bas clear (formally defined or intu­
iti ve) semant ics and is used in accordance with it. Mental states are also represented 
declaratively, and they are referred to and manipulated by the inference mechanism. 
We think that this approach will give us a flexible and clear model of a dialogue 
participant. Dialogue tasks can be processed in arbitrary order and interact freely 
with each other. A single piece of knowledge and a mental state can be used in 
various tasks. 

Providing a representation framework that is express ive enough to represent 
knowledge for dialogue processing is particularly important in this approach. How-
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ever, existing models such as Hasida's dependency propagation [18], Hobbs's abduc­
tive inference schema [20] and Konolige's direct argumentation system [24] simply 
use standard first-order logic, and requisites for such a representation framework are 
not fully studied yet. We t hink there are two important requisites: 

1. A representation framework needs strong expressive power for modalities. 

2. A representation framework can deal with preferences of an agent. 

In this thes is, we present two formal models of dialogue participants, which meet 
these requisites . 

1.2 Outline and Contributions of the Thesis 

In Part 1, we present a model of an agent, which represents mental states in the form 
called Mental World Structure. Mental World Structure has strong expressive power 
for modalities. A dialogue participant deals with pieces of information from various 
modal contexts, that is, points of view such as belief and intention of his companion, 
and a specific state of the world in the past. Modalities are relations between modal 
contexts , or in other words, relative points of view relations. A notion of modality 
is particularly important for dialogue processing. Several modalities such as belief 
and tense are previously formalized as modal operators in modal logics, but these 
logics do not have enough expressive power for modalities to express an agent's 
knowledge and inference concisely. In particular, it is difficult to express general 
properties of modalities and to deal with unknown situat ions in modal logics, since 
modal operators can not be universally quantified and unified with other operators. 
Situation theory represents modalities by situations, which are first class objects of 
the system. But, it is hard to deal with composite modalities in situation theory, 
since they can not compose situations. 

A Mental World Structure cons ists of multiple mental worlds organized in a tree. 
Each mental world is a set of mental propositions and correspond to one modal con­
text . Modalities are represented by path expressions, which are first class syntactic 
objects . Path expressions are used in one mental world to refer to another world. 
Vve can manipulate path expressions in various ways, and we show that we can easily 
express phenomena t hat are difficult to deal with in previous representation systems. 
First , we can compose path expressions to make up one composite path expressions. 
Thus, composite modalities and simple ones are treated in a similar way, and de­
scrip t ion of knowledge is simplified . Second , using path expression variables , we can 
deal with quantification over modalities . We can express commonsenses, which hold 
in all contexts. Third , we can unify path expressions. For example, we represent 
an unknown situation such as the reference time of an utterance by a newly created 
path expression, and unify it with another one afterward. 

The inference mechanism applies equally to each mental world, and it adds or 
deletes propositions. We adopt three procedures as the basic inference procedures, 
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that is, deduction, abduction, and truth maintenance. An agent's all inference 
processes are modeled by successive applications of these three procedures in an 
appropriate order. The deduction procedure is a sound inference procedure that 
uses implications forwardly to obtain new information. On the other hand, the ab­
duction procedure uses implications backwardly to find an explanation of observed 
facts. A dialogue participant does not always draw sound inference, and thus non­
deterministic procedures like the abduction procedure are indispensable. The truth 
maintenance procedure is used to recover consistency of a Mental World Structure 
when it becomes inconsistent for some reason. 

Then, we explain an agent's inference process working behind cooperative dia­
logues in our framework . We show that we can deal with inference about plans in 
a natural way by regarding intentions as a kind of beliefs about the future. The 
problem of inference control , that is, the problem of determining application order of 
inference procedures and selecting the best explanation of a given fact is in general 
very hard to solve. We discuss it in some detail and explain the need of various 
kinds of preferences about the domain . 

The main contributions of Part 1 are as follows: 

1. We present a new formal framework for representing mental states of an agent 
called Mental World Structure, which has strong expressive power for modali­
ties . Modalities can be composed, quantified and unified, and various types of 
knowledge that are difficult to express in previous representation systems are 
shown to be expressed concisely in our framework. 

2. We smoothly incorporate into our framework three basic inference procedures, 
that is , deduction, abduction and truth maintenance. They are defined relative 
to mental worlds, hence are applied equally to each mental world. 

3. We demonstrate the strength of our representation system and inference pro­
cedures by providing an explanation of an agent's inference processes working 
behind example cooperative dialogues. Only a small set of clear background 
beliefs is used . 

In Part 2, we present a model of an agent in the form of a logic of mental atti­
tudes based on preference ordering. Preferences are evaluations about plausibility 
and desirability of propositions or worlds. A dialogue participant uses various pref­
erences to understand and generate linguistic expressions and to recognize plans of 
his companion. In tbe traditional model of dialogue participants, these preferences 
are represented implicitly in inference procedures . However, to deal with sharing 
and interactions of preferences, we need a general explicit representation framework 
for them. 

In this thesis, we deal with qualitative preferences, which are explicitly repre­
sented by partial orders on model structures. An agent's mental state is specified 
by knowledge and two preference orders , that is, the plausibi lity order and the de­
sirability order. The language of our logic is a propositional language extended 
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by adding attitudinal operators : belief, intention, choice, and preference between 
sentences. The satisfaction relation for these operators is defined in terms of the 
preference orders. Besides mental attitudes about the states of the world, mental 
attitudes about another agent's mental states can be dealt with . Furthermore, we 
introduce a construct of sentences, which is used to specify an agent's knowledge and 
the preference orders . Then we apply this logic to reasoning about plans. We give 
a formal account of plan construction and selection process, and examine several 
heuristics for plan recognition currently used. 

The main contributions of Part 2 are as follows : 

1. We present a model of an agent based on two preference orders: one is about 
plausibility and the other is about desirability. Mental attitudes such as belief, 
intention and choice are defined in terms of preference orders. 

2. We introduce operators for preference between sentences, and examine their 
properties. We give several types of preferences frequently used, and show that 
the strongest type of them is closely related to other mental attitudes such as 
belief and intention . 

3. We give an intuitive formulation of a notion of intention which satisfies most 
of requisites ever proposed such as freedom from consequential closure and 
persistency. 

4. We give a formal account of plan construction and selection processes. We 
model plan construction with multiple preferences and dynamic revision of 
plans. 

5. We examine several heuristics for plan recogn ition currently used. Giving pref­
erences that validate widely used heuristics, we demonstrate that our frame­
work can give a good formal basis for plan recognition models . 

This thesis is structured as follows: Part 1 starts from Chapter 2 and ends in 
Chapter 9. In Chapter 2, we give an introduction and overview of Part 1. Chapter 3 
introduces a notion of modalities in an agent 's mental states and discusses problems 
with existing representation systems for modalities . Chapter 4 gives the formal defi­
nition of Mental World Structure, and Chapter 5 describes the three bas ic inference 
procedures. In Chapter 6, we present examples of cooperative dialogues , and an­
alyze them in our framework. Chapter 7 compares our framework with situation 
oriented programming language PROSIT, and Chapter 8 discusses the problem of 
inference control. Chapter 9 concludes Part 1. 

Part 2 starts from Chapter 10. In Chapter 10, we give an introduction of Part 2. 
Chapter 11 discusses need of preference in models of dialogue participants . In Chap­
ter 12, we gives syntax and semantics of our logic and then examine properties of 
beliefs , choices and preferences . Chapter 13 deals with a notion of intention and 
a generalized version of it. In Chapter 14, we apply our logic to reasoning about 
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plans, that is, plan construction and plan recognition. Finally, Chapter 15 concludes 
Part 2. Proofs of main theorems in Part 2 are given in the appendix. 
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Chapter 2 

Introduction 

In order to construct a cooperative and flexible dialogue system, we need to model 
powerful inference capability of an agent who participates in a dialogue. Such an 
agent draws various types of inference, that is, interprets possibly incomplete lin­
guistic expressions, recognizes speaker's plans, and generates own appropriate goals 
and actions , among others, to communicate with other agents successfully. There 
are a number of independent models for each of these types of inference, but most 
of them such as semantic interpretation models [30] and plan-based dialogue pro­
cessing models [1, 4] use specialized frameworks for knowledge representation and 
inference. This is a severe limitation for those models, since it is hard for them to 
realize interaction of different types of inference process which is essential fo r agent's 
inference capability. 

In Part 1 of this thesis, we present a new formal unified framework for agent's 
problem solving, which can be used to explain his inference processes working behind 
various phenomena in dialogues. Like other logic-based problem solving models, our 
framework has two parts, one is declarative representation of knowledge or mental 
states, and the other is the inference mechanism . 

As for representing agent's mental states, two points are important. First, simple 
first order language is not sufficient since as agent's mental objects, relations and 
propositions should be treated as first class citizens of the representation. Second , 
an agent usually has beliefs in various points of view, and strong expressive power 
for modalities is needed. Modalities should also be t reated as first class objects, so 
ordinary formal modal logics are insufficient for this purpose. In our framework, 
we rep resent an agent's mental states in the form called Mental Wol'id StTuctU7·e, 
or MWS for short , which consists of multiple mental woTlds. Each mental world is 
viewed as a set of mental propositions and corresponds to one modal context, that 
is , specific point of view. With MWS, we can handle modalities more flexib ly than 
ordinary modal logics and other representation systems . 

Dialogue participants, or in general, agents in daily life draw not only sound 
deductive inference, but also possibly incorrect and creative inference, such as ab­
duct ive one. Although many problem solving models only use backward-chained 
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deduction, some researchers try to model an agent's general inference ability natu­
rally, to mention a few, Hasida's dependency propagation [18] and Hobbs's abductive 
inference schema [20] for natural language applications . Following these approaches, 
we adopt three distinct procedures as the basic inference procedures, that is, deduc­
tion, abduction and t1"uth maintenance, and integrate them into our representation 
structure. We believe this set of inference procedures suffices for explaining an 
agent's inference processes in most of cooperative natural language dialogues. 
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Chapter 3 

Modalities in Mental States 

3.1 Modal Contexts 

An agent usually has various pieces of information from many points of view. For 
instance, an agent may have pieces of information that belong to the following 
viewpoints: 

(W1 ) his own beliefs, 
(W2 ) his own beliefs about another agent's, say A's beliefs, 
(W3 ) his own beliefs about his own intentions , 
(W4 ) his own beliefs about a specific state of the world in the past , and 
(W5 ) his own beliefs about his own intentions about A's beliefs . 

When information P belongs to the point of view W1 , the agent believes that P holds. 
Similarly when P belongs to W2 , be believes that A believes that P holds, and when 
P belongs to W3 , be believes that he intends to make P true, namely, be in fact 
intends to make P true. Each point of view corresponds to a possibly pa1·tial state 
of the world . For example, W1 corresponds to the state of the world based on the 
agent's own beliefs about the current world , 1¥ 2 corresponds to the state based on his 
own beliefs about A's beliefs, and W3 corresponds to the state into which he intends 
to change the current world state. Hence an agent has representations of many 
states of the world simultaneously in his mind. We call here each of these points of 
view or representations of states of the world a modal context. As representations 
of states of the world, modal contexts should always be consistent and closed under 
logical consequence. 

It is often the case that a modal context corresponds to one point of view con­
tained in another modal context. For instance, modal context W 2 corresponds to a 
point of view i.e ., A's beliefs contained in W1• With respect to this relative "point 
of view" relation, the set of modal contexts in the representation forms a hierarchy, 
as illustrated in Figure 3.1. Here each box represents a modal context and each arc 
represents a point of view relation between two contexts. Labels bel(A), int(i) and 
pasLl represent kinds of the relation , that is , A 's beliefs , agent 's own intentions, 
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w, 

bei(A) pasLl 

7 q] A) ~ 
[::J 

Figure 3.1: A Hierarchy of Modal Contexts 

and a speci fi c past instant of time, respectively. We call W1 , t he top context of the 
hierarchy or the base context . It represents agent's own beliefs of the most simple 
type, and all other contexts are parts of th is context . 

3.2 Local Reasoning 

Having representations of many states of t he world simultaneously in his mind , an 
agent can reason about each state i.e., modal context alike. As an illust rat ion of this 
fact, consider the following pair of simple deductive inferences drawn by an agent . 

p 
P ~Q 

Q 

I intend to make A believe P 
I intend to make A believe P ~ Q 
I intend to make A believe Q 

These two inferences are essentially the same processes, since they are both simple 
applicat ions of the modus ponens rule. What differs is the context where inferences 
are do ne, that is, W 1 and W5 , respectively. So we th ink these two inferences should 
be done in the same manner with similar inferen tial costs, and call this type of 
context-relat ive reasoning local reasoning. In order to realize local reasoning, repre-
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sentat ion frameworks for agent 's mental states must have explicit representations of 
the hierarchy of modal contexts. 

3.3 Modalities 

We call relative points of view relat ions on the set of modal contexts modalities. 
Modalities are in fact functions. That is, if M is a modality and W is a context, 
M(W) is the modal context ' that corresponds to the point of view M contained in 
W. For inst ance, if bel( A) is t he modali ty of A's belief and W 1 and W2 are modal 
contexts mentioned above, then bel(A)(W1) = W 2 holds. Two kinds of modalities 
are important. One is names of states of t he world or situations. They are treated 
as additional arguments of predicates in planning a rea [29], but can be viewed as 
a kind of modalities. Another kind of modalities is obtained from propositional 
att itudes or propositional functions, such as beliefs, in tentions and tenses . From a 
propositional function F and a modal context W, we can get another context W' 
by coll ecting propositions P such t hat proposition F(P) holds in W. In order to 
get a partial state of the world in this way, we require att itudes and propos itional 
functions to be consistent and closed under logical consequence2 So for example, 
neither desires that can be inconsistent nor intentions in a ce rtain sense [5] that are 
not closed under logical consequence can be used to get modalities. 

Modalities can be composed. If /111 and M2 are modalities, we can compose t hem 
to get another modality M that sat isfies the condi t ion M(W) = M1(M2 (W) ) for 
a ll contexts W . For instance, we can compose two modalities, A's beliefs and B 's 
beliefs to get another modality, namely, A's beliefs about B's beliefs . Modalities 
have various properties according to their types, and frameworks for representation 
of agent's mental states must have a strong descriptive power for modalities and 
composition of them . 

3.4 Previous Approaches 

The most widely used ap proach to modali t ies is t hat based on modal logics, where 
modali ties are t reated as modal operators, that is, propositional operators. Knowl­
edges, beliefs [16] and tenses a re formali zed as kinds of modal operators, and dy­
namic logics [17] that deal with actions permit composition of modalities . In modal 
logics, however, modalities are not first class citi zens of the system, and it is unable 
to unify two modalities, nor to quantify over the set of modalities. It is a serious 
defect in planning and dialogue processing. Moreover, modal logics do not support 
facilities for local reasoning , since they have no means to represent modal contexts 
themselves . Since a ll informat ion is represented in one layer, the base context in our 

1 Modalities correspond to relat ive path names in hierarchical file systems, whereas modal con­
texts correspond to absolute pathnames. 

2In terminology of modal logic [9], we on ly deal with 11ormal modalities. 
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words , reasoning about more composite modal contexts , more complex and longer 
reasoning process are required. We think it is unnatural for a model of human 
reasoning ability on modalities . 

Situations in situation theory [12] are par tial descriptions of the world and are 
first class citizens of the theory. They can be used for various purposes in dialogue 
understanding and commonsense reasoning. Regarding the support relation f= 
between situations and infons as a relation dependent on situations it is in, we can 
identify situations with modalities. For example, we can express the fact "Pat knows 
that P" by pk f= P where pk is a situation which expresses Pat's knowledge as in 
[31]. Although situation is a very powerful notion in situation theory, there exist 
no notion of joining two situations in the way parallel to composing two modalities. 
Without such a notion , we can use only the basic modalities , and hence are forced 
to use very complex expressions in order to describe their properties. 
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Chapter 4 

Mental World Structures 

We represent the agent's mental states in the form called Mental Wodd St,·uc­
ture(MWS) which consi ts of multiple mental worlds. Each mental world is viewed 
as a set of mental propositions, basic units of information possessed by t he agent, and 
corresponds to one modal context . With t hese representations of modal contexts, 
local reasoning is realized by context (world) relative definitions of the inference 
procedures given in Chapter 5. We represent modalities by ]Jalh expressions, which 
are ftrst class citizens of the framework and can be freely composed each other. 

4.1 Syntactic Objects 

4 .1.1 Overv iew 

First, we explain syntact ic objects of our framework , namely, objects that can occur 
in mental propositions. Formally, they are classified into six types: (i)1·elation, 
(ii)pola1·ity, (i ii )proposition, (iv)path expression, (v) object, and (v i)function. The 
first four ty pes are subtypes of the fifth ty pe, object type, and they are all first class 
citizens of our representation , i.e., can be arguments of mental propositions . Mental 
propositions are objects of proposition type and usually take the form 

<t:.rel, a1 , •• • , an; pol-:J;> 

where rei is a relation, a1 , . . . , an are objects, and pol is a polarity. This proposit ion 
expresses informat ion t hat objects a1 , ... , an stand at a relation rei if polarity pol 
is 1, and that t hey do not if pol is 0. We call a 1 , . . . , an the arguments of the 
proposit ion and pol its polarity. We represent possibly composite modalities by 
path express ions. 

Mental propositions in our framework are very similar to infons in sit uation 
theory [12] . They can take as their arguments path express ions and situations, re­
spectively, both of which are used to represent modalities. Hence, our representation 
framework is considered to be a (s imple) version of situation t heory that integrates 
a notion of composing modali t ies . 
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4.1.2 Symbols 

We use the following four kinds of symbols besides parentheses and other auxiliary 
symbols : 

• paramete1·s: a, b, c , . .. 

• fresh paramete1·s: $a , $b, $c, ... 

• variables: X, Y, Z, . 

• functions: f , g, h , .. . 

Each parameter, fresh parameter and variab le have their types which are one of the 
above first five types, and each function is of function type. 

Parameters are the most basic syntactic objects in our framework, and denote 
atomic mental objects or individual concepts of an agent. For example, apple_! 
might be a parameter of object type which denotes agent's mental object that cor­
responds to an apple in front of him, red is a parameter of relation type, and 1 
and 0 are parameters of polarity type. In the representation, parameters act like 
usual constants except for equality condit ions. A constant is usually equal to itself 
and to nothing else. On the contrary, it is often t he case that an agent who for­
merly thought two objects were different comes to know they are the same, as his 
information grows. For instance, an agent may happen to know that apple_! , the 
apple in front of him, is identical to the apple, say apple_2 , he knows his mother 
bought yesterday. In th is case, he adds to his representation the following equality 
proposition 

~equal, apple_!, apple_2; 1~ 

and identifies these two parameters afterward. 
Fresh parameters and variab les are introduced in relation to quantification, which 

we explain below. We also add function forms to our representations for convenience. 
Each function has its index (at, ... ,an;/3), where a 1 , ..• ,an and /3 are types . It 
means that t hi s funct ion takes n arguments of types a1 , •.. , an respectively and 
then forms a n object of type /3 . We express parameters and fun ctions by atomic 
symbols beginning with small letters, fresh parameters by symbols beginning with 
the letter $, and variables by symbols beginning with capital letters . We also use 
meta-variables that denote syntactic objects , which are expressed by ita lic letters. 

4.1.3 Syntactic Object s 

Now we define objects of six types: (i)relation , (i i)polarity, (i ii )proposition, (iv)path 
expression, (v)object, and (vi)function inductively by the following rules: 

1. parameters, fresh parameters and variables are objects of their types; 
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2. if rei is a relation, a 1 , ... , an are objects, and pol is a polarity, 
then ~rei, a 1 , ... , an; pol ::Pis a proposition; 

3. if p1 , .. . ,Pn are path expressions, then p1 .... ·Pn is a path expression (in par­
ticular, . is a path expression); 

4. relations, polarities, propositions and path expressions are objects of object 
type; 

5. iff is a function with index ( a 1, ... , an; (3) and a 1 , •.. , an are of types a 1 , . .. , an 
respectively, then J(a" ... ,an) is an object of type (3. 

Path expressions are used to express modalities. A composite path expression 
p1 .. . . ·Pn expresses the modality obtained by composing n modalities which are 
expressed by path expressions p1 , •.• ,pn respectively. According to rule 3, each 
path expression has a tree structure. It is redundant, however, since we want to 
treat path expressions as mere sequences of basic ones. So afterwards we identify 
path express ions 

Pi···· ·Pi-l·(q, . · · · .qm)·Pi+I · · · · ·Pn 

with 

PI· · · · ·Pi-l·qJ. · · · .qm·Pi+l· · · · ·Pn> 

and in particular, 

Pt· · · · .p,_,.( ·)·Pi+!· · · · ·Pn 

with 

PI· ·· · ·Pi-l·Pi+I· · · · ·Pn · 

4.1.4 Modalities and Implications 

Various modalities are expressed by parameters and function forms of path ex­
pression type. For instance, modali t ies explained in the example in Chapter 3 are 
expressed by bel(A) , int(i) and past_1 , where past_1 is a parameter of path 
expression type, i is a parameter of object type which denotes the agent himself, 
and bel and int are functions with index (object; path exp1·ession). 

We express the fact that a propos ition P holds in a point of view expressed by 
a path expression PATH by the following proposition. 

~hold, PATH, P; 1-:P 

For example, we express t he fact that an agent A believes that P by 

~hold, bel(A), P; 1-:P. 
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Variables in propositions are considered to be universally quantified , as in logic 
programs. Fresh parameters in propos itions are considered as Skolem constants or 
functions, and act like ex istentially quantified variables . So, t he proposition 

in our framework corresponds to the formula 

VX1 ... VXn:IY! ... 3Ym P(X1 , ... , X n, Yb ... , Ym) 

in t he ordinary form. Quantification has specia l importance in implications, that is, 
propositions of the fo rm 

« imply, ANT, CON ; 1~ 

where relation imply takes as its arguments two li sts1 of propositions, the antecedent 
list and the consequent list, and expresses the fact t hat if a ll t he propositions in 
the antecedent li st hold then all t he propositions in the consequent list bold. For 
instance, t he implication 

« imply, 
[« human, X~], 

[« age, X, $a~] ~2 

expresses the fact which can be expressed by the ordinary first order formula 

VX:IY human(X) :::>age( X , Y ) 

t hat is, the fact that every human has hi s own age. 

4.2 Definition of the structure 

A mental wol'ld is a path expression containing no fresh parameter and no variable. 
Mental worlds are used to represent modal contexts, and composite mental worlds 
represent composite poin ts of view in the same way as composite path expressions 
rep resent composite relative points of view. In particular , mental world "." repre­
sents agent's beliefs of the most simple type, namely, the base context. We call thi s 
world the base world. We say that a world W is an ancestor of a world W' and 
W' is a descendant of W when W is a prefix of W' , and in this case, we call path 
expression W' - W the path from world W to W'. It expresses the point of view 
contained in 1¥ which world W' represents. 

A node is a pair (W , P) where W is a mental world and Pis a propos it ion. It is 
used to rep resent the fact that P holds in W. For example, two nodes 

( , « hold, bel(A), P; 1 ~) 

(bel(A) , P) 
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vv, =. 

p W2 = bel(A) 

Figure 4.1: Equivalent Nodes 

represent the same fact , the agent's believing that A believes proposition P (see 
Figure 4.1). In general, many different nodes can be used to represent one fact, so 
we define here an equ ivalence relation of nodes. At first, we define the normal form 
of a node by the following rewriting rules. 

• (W,«:hold, PATH.PATH', P; pol~)-+ (W',«:hold PATH' , P; pol~) 
where PATH contains no fresh parameter and no variable, and is the path 
from world W to W' 

• (W, «:hold, . , P ; 1~)-+ (W,P) 

Two nodes are said to be equivalent if and only if their normal forms are identical. 
Equivalent nodes represent just the same facts and are treated equally in inference. 
~ow we define a Mental World Structure M to be a set of nodes node(M) together 
with a binary relation C on the set node(M) . We say proposition P holds in a 
world W if node(M) contains a node that is equivalent to (W, P) . The binary 
relation C expresses dependence between propositions contained in the structu re. 
If two nodes N , N' stand at this relation, we say that N' is caused by N, or that 
there is a causality link from N to N'. This dependency information is updated 
constantly through inference, and used to maintain dependency between nodes by 
truth maintenance inference procedure. 

4.3 Examples 

This section gives several examples that demonstrate strong descriptive power of 
our framework for modalities. 

1 Lists are cons idered to be constructed by cons , a function with index (object, object; object). 
2We often omit the pola rity 1 of propositions. 
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4.3.1 Representation of Beliefs 

It is often the case that a mental world inherits propositions from another world. 
We can express t his fact by the form 

«:inherit, PAT H, PATH'-p 

whose meaning is explained by the following implication . 

«:imply, 
[«: inherit, PATH, PATH2'P, 
«:hold, PATH, P; 1'P], 

[«:hold, PATH2, P; 1';t>]';t> (1) 

That is, if path expression PATH' inherits from PATH, a proposit ion solvable in 
the world referred to by PAT If is also solvable in the world referred to byPATH' . 
With this inheritance relation, we can express the fact that if an agent believes some 
proposition then he believes that he believes that proposition as follows: 

«:inherit, bel(A), bel(A) .bel (A)'P (2) 

As for the agent's own beliefs, the agent thinks all his beliefs to be true, so the 
following proposition holds. 

«: inherit, bel(i), . ';}> (3) 

Here, parameter i denotes the agent himself. 

4.3.2 Commonsenses 

Although (3) holds only in the base world, proposition (1), definition of a relation, 
and proposition (2), a general property of beliefs, are considered to hold in all 
mental worlds in the structure. We shall call such propositions commonsenses. In 
our framework , we can express that a proposition PROP is a commonsense by 
adding the following proposition to the base world. 

«:hold, X, PROP; l 'P 

Hence for example, we express t he property of beli efs mentioned above by adding 
t he following proposition to the base world of the structure. 

«:hold, X, «:inherit, bel(A), bel(A).bel(A) ';t> ; 1 ';}> 

Usual axioms and inference rules of the theories are all commonsenses in this sense. 
In our framework , we can express them in the same level as other facts about the 
current state of the world by quantifying over the set of path expressions . 
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4.3.3 Representation of Mutual Beliefs 

As another example of quantification over modalities , we shall take mutual beliefs 
between two agents. Agents A and B have mutual belief that PROP if and only if 
the condition 

G1 believes that G2 believes that .. . Gn believes that PROP 

holds for a ll positive integers n and all combinations of G1 . .. Gn each of which 
is either A or B . We adopt here an indirect approach to mutual beliefs though 
t hey can be expressed directly as a path expression in the same way as private 
beliefs. We introduce a property mbel (A, B) of path expressions by the followin g 
commonsenses. 

~mbel(A,B), bel(A) ~ 

~mbel(A,B), bel(B) ~ 

~imply, 

~imply, 

[~mbel(A,B), PATH~], 

[~mbel (A ,B), PATH.bel(A) ~] ~ 

[~mbel (A,B), PATH~], 

[~mbel(A,B), PATH.bel(B) ~] ~ 

and express the fact that PROP is mutually believed between A and B by 

~imply, 

[~mbel(A,B), PATH~], 

[~hold, PATH, PROP~] ~. 
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Chapter 5 

The Inference Procedures 

The problem of des igning an inference mechanism can be divided in to the following 
two subproblems . 

• From the cogn iti ve viewpoint , what kind of inference procedure is permitted 
to apply? 

• Provided that we have chosen the set of inference procedures, how can we 
appropriately cont rol or schedule them? 

As for the first problem, we adopt three procedures as the basic inference procedures, 
that is, deduction, abduction(hypothesis genemtion), and truth maintenance. They 
are applied to a MWS and transform it, namely, add or delete nodes and causality 
links. The agent's all inference processes are modelled by successive applications of 
these three procedures in an appropriate order. 

We assu me that applications of the procedures are schedu led by a certain in­
ference control unit. The problem of inference cont rol is in general very hard, and 
formulation of the unit is beyond the scope of this t hesis, though we will give some 
further remarks about inference control in Chapter 8. 

Our three basic inference procedures are defined relative to mental worlds, hence 
are applied equally to each mental world in MWS. Before presenting their precise 
description, we need to introduce several notions and conventions. We denote by 
P[f] the proposition obtained from a proposition P by a substitution f of variables, 
and call it an instance of P. If S is a set of propositions, then we denote by S[f] 
the set of propositions of the form P[f] where P E S. 

We define a proposition P being solvable in a world W on the basis of a set of 
nodes BA inductively as follows. 

1. if P holds in W , P is solvable in W on the bas is of { (W, P)}. 

2. if an implication ~imply , ANT, CON-p holds in Wand every proposition 
Q in ANT[!] is solvable in Won the basis of a set of nodes BAQ, then every 
proposition in C ON[!] is solvable in Won the basis of 
{(W, ~imply, ANT, CON-p )} u (uQeANT[JI BAQ) · 
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3. if propositions P and ~equal , OBJ, OBJ':;p is solvable in Won the basis 
of BA and BA' respectively, then propositions obtained from P by substituting 
some occurrences of OBJ with OBJ' are solvable in W on the basis of BA U 
BA'. 

4. if P is solvable in Won the basis of BA, instances of P are solvable in Won 
the basis of EA. 

The inference mechanism can easily check whether a proposition is solvable in a 
world or not in a backward-chaining manner. 

The deduction and the abduct ion procedures add propositions to mental worlds 
in the structure, and add causality links to the structure. The truth maintenance 
procedure deletes them. Here and below, we mean by addition of a proposition P to 
a world Win a MWS M, addition of the normal form of node (W, P) to node(M),1 

and mean by addition or deletion of causality links, extension or restriction of the 
dependency relation C. 

5.1 Deduction 

The deduction inference procedure uses implications forwardly to obtain new infor­
mation. That is, when an implication holds in a mental world and all its antecedent 
propositions are solvable there, we can apply the deduction procedure to add each 
consequent proposition of the implicat ion to that world. Note that most use of 
this procedure is dispensable, since we can get the same information by backward­
chaining in other inference procedures. So deduction functions like pa~·tial com­
putation, and deciding how much of it should be done is mainly a problem about 
computational efficiency. 

When an implication 

~imply, ANT , CON; l ::t> 

holds in a world W and for some substitution f every proposition Q in ANT[!] 
is solvable in W on the basis of a set of nodes BAq, we can apply the deduction 
procedure. The procedure substitutes all occurrences of fresh parameters contained 
in propositions in CO N[f] with newly created parameters, and then adds resulting 
propos itions to W. Moreover, it adds to the structure causality links from each node 
in {(W, ~imply, ANT, CON::t> ) } U UQEANT[JJBAq to each added node. 

Let us take an examp le. Consider an agent beard another agent sp uttering a 
sentence "John runs." As a result of recognition , the following proposition is added 
to the base world of his MWS. 

~done, utter(sp, [john, runs]):;p (1) 
1 We use the nor mal form to promote local reasoning. 
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{1) <<done, utter(sp, [john,runs] )~ 

II II 
(2) « done, utter(SP, s )~ :::} ~express, SP, s, $prop~ 

II II II 
{3) << express, sp, [john,runs] , prop_l~ 

Figure 5.1: An Application of the Deduction Procedure 

Here, relation done takes a name of an action as its argument, and means that 
that action bas just been done. His almost always true that if some agent utters a 
sentence then he expresses by it some proposition, so the base world also includes 
the following proposition . 

« imply, 
[« done, utter(SP, S)~], 
[«express, SP, S, $prop~] ~ 

If he applies the deduction procedure in the base world, proposition 

« express, sp, [john, runs], prop_l~ 

is added to the base world and two causality links 

( . , (1))-+ ( . ' (3)) 
( . , (2))-+ ( . '(3)) 

(2) 

(3) 

are added to the st ructure (see Figure 5.1: the thick arrows denote implications 
and the thin arrows denote causality links). Here, prop_l is a newly created pa­
rameter and corresponds to his image of the meaning of the sentence. Through this 
inference, the agent understands that agent sp means some proposition by uttering 
the sentence "John runs," and will understand the meaning of it when he further 
succeeds to unify parameter prop_l with some definite proposition. 

5.2 Abduction 

An agent does not always draw sound inference. Under circumstances where neces­
sary informat ion is not given enough, he must generate hypotheses and then commit 
himself to t hem. In part icular , when an agent bas information without explanations 
such as an observed fact , he tries to generate a hypothesis which explains that infor­
mat ion. Inference of this type is generally called abduction or abductive reasoning. 
We formulate abduction as one of the basic inference procedures of our framework, 
which adds as an explanation a set of propositions which proves a given proposi­
t ion. To find such a set, it uses implications and unification between parameters. 
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Before giving a precise description of the abduction procedure, we briefly explain its 
significance in our framework. 

In this framework, we must be able to understand agent's inference process purely 
logically or declaratively. On the other hand, it is often the case that the results of 
inference drawn by an agent is not deterrnined completely in logical or declarative 
level, namely, without p1·eje1·ences. For instance, there usually exist many plans 
that achieve a given goal, so when an agent intends some proposition, we cannot 
predict which plan he chooses purely logically. Another example is disambiguation of 
linguistic expressions. In many cases, a given expression has several interpretations 
that satisfy all syntactic, semantic and pragmatic constraints . So we must be able 
to deal with this sort of nondeterminism in our framework, and for this purpose, we 
can use the abduction procedure which nondeterministically chooses an explanation 
of a given proposition. We present examples of application of abduction to reasoning 
about linguistic expressions and planning below and in the next chapter , respectively. 

When we apply the abduction procedure to a proposition P that holds in a 
world W, in order to find an explanation of it, the procedure first substitutes every 
parameter PAR in P with a new variable X PAR· We denote the resulting proposition 
by Q. Then it performs one of the following procedures. 

1. if for some substitution/, Q[f] holds in W , the procedure unifies P and Q[!]. 
That is, it adds equality propositions of the following form to W 

«:equal, PAR, XPAR[f]» 

and then adds causality links from (W, P) and (W, Q[f]) to each added node. 

2. if there exists an implication «:imply , ANT, CON» holding in W such that 
Q[!] is an element of CON[!] for some substitution j, the procedure unifies 
P and Q[f] in the same manner a above, substitutes all variables that occurs 
in ANT[!] but not in Q[f] with newly created parameters, and adds resulting 
instances of ANT[f] to W. Moreover, it adds causality links from (W, P), (W, 
«:impl y, ANT, CON») and each equality node added through unification 
to each added instance of ANT[f]. 

Although we can apply the abduction procedure to arbitrary proposition P in the 
structure, two cases are particularly important. One case is: when P has no expla­
nation yet, that is, is not proved from other propositions in the structure. Such a 
proposition may be introduced through recognition of the outer world or other ap­
plication of the abduction procedure. Another important case is: when P contains a 
parameter created just now. In this case, application of the procedure often results 
in unifying this parameter with other object. 

As an example for use of abduction, we shall continue the above linguistic exam­
ple. Proposition (3) contains a newly created parameter prop_1, so the agent tries 
to find an explanation of this proposition. We assume 
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(I) ~done, utter(sp, [john,runs] )» 

II II 
(2) ~done, utter(SP, s )» => << express , SP, s, 

II II 
(3) < express, sp, 

(4) <:express. SP, N, SBJ» =}~express, SP, 

II II II 
(7) <:express. sp, john, sbj_l» 

II 
(5) <:express, SP, john, SBJ» =} ~name, SBJ, john» 

II 
(8) <:name, sbj _1, john» 

Figure 5.2: Interp lay of Deduction and Abduction 

~imply, 

[~express, SP, N, SBJ~], 
[~express, SP, [N, runs], ~run, SBJ~~]~ (4) 

and 

~imply, 

[~express, SP, john, SBJ~], 
[~name, SBJ, john~] ~ (5) 

which roughly describe the meaning of the verb runs and t he noun john, respec­
tively. Applying the abduction procedure to (3) and (4) , he adds 

<<equal, prop_l, ~run, sbj_l~>> 

<<express, sp, john, sbj_l~ 

to the base world , and causality links 

( . , (4))-+ (. , (7)) 
( . , (6)) -+ ( . , (7)) 

(6) 
(7) 

to the structure (see Figure 5.2). Newly created parameter sbj_l corresponds to 
his image of the referent of "John." Again , the deduction procedure is used to add 

~name, sbj_l, john~ (8) 

to the base world, and causality links, 
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(. ,(5)) --t (. ,(8)) 
(. ,(7)) --t (. ,(8)) 

to the structure. If he further succeeds to unify parameter sbj _1 with another known 
parameter that denotes an agent named John, he understands the referent of the 
noun and simultaneously understands the literal meaning of the sentence. 

5.3 Truth Maintenance 

It is often the case that an agent's mental states representation becomes inconsistent. 
This happens for several reasons. First, an agent can generate incorrect explanations 
by abductive reasoning. Second, implications he believes may be in fact prototypical 
ones, i.e ., contain exceptions. So he can make incorrect inference with them. Third, 
the world around him changes continuously, so a fact that is correct at one moment 
may become false in the next moment. 

When the representation becomes inconsistent, we use the truth maintenance 
inference procedure, which gets rid of inconsistency taking dependency of proposi­
tions into consideration. That is, when a proposition P and its dual P2 a re both 
solvable in a world Win the structure on the basis of sets of nodes BA and BA' 
respectively, this procedure chooses one base (W', Q) from BA U BA', and deletes 
Q from the world W'. Deleting Q, the procedure checks whether there exist nodes 
that are caused by (W', Q), and if there exists such a node N, it deletes N next in 
the same manner. 3 

2In ot her words, P and P are the sa me propositions except for polarities being opposite. 
3This is the simplest formulation of the truth maintenance task. More detailed formulation of 

it is left for the future work. 
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Chapter 6 

Example Dialogues 

Consider a clerk at the information desk in a station who is asked by a customer, 

"I want to go to the museum." 

If the clerk thinks that his customer should take a bus to go there and does not 
think that the customer knows where it starts, he should supply the customer that 
information by saying 

"The bus starts from gate 3." (Response 1) 

In another situation, where the clerk knows that the museum is closed that day 
and the customer cannot enter it even if he goes in front of it by bus, the following 
response is perhaps more helpful to the customer. 

"Sorry, it is closed today." (Response 2) 

Below we exp lain in our framework the clerk's inference processes for generating 
these two responses. 

Cooperative dialogues of this sort have been treated by Allen [1] and many 
followers of plan-based approach to dialogue processing. However, they use special 
data structures for plans and special rules of inference about them, and hence it 
is hard to make those dialogue processing models more flexible by incorporating 
facilities for various other types of inference. 

On the other hand, we explain the above dialogues in a general manner in our 
unified framework for problem solving. That is, both agents' beliefs and states 
of the world in the future are represented as kinds of modalities, and both plan 
construction and plan recognition processes are modelled by applications of the 
abduction procedure. 

We do not here deal with interpretation and generation of linguistic expressions, 
and the clerk's inference processes described below begin with his recognition of the 
customer's performance of an abstract informing illocutionary act [40] with some 
propositional content and end with his own performance of another illocutionary 
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PRE I ~ 
L__ __ -,---__ __j before 

Wafter 

Figure 6.1: Representation of an Action 

act .1 In t he end of this chapter, we briefly discuss how we can incorporate inference 
about linguistic expressions into our examples . 

6.1 Commonsenses 

We list here the clerk's background knowledge used later. They are all considered 
to be commonsenses, that is, hold in all mental worlds in his MWS. 

Actions are regarded simply as transformations of states of the world in this 
chapter. If W after is a mental world wh ich represents the state of the world just 
after a performance of an action ACT, it includes proposit ion 

~done, ACTA> 

and there we can refer by path expression before(ACT ) to the mental world which 
represents the state just before that performance of ACT (we call this world W before), 

as illustrated in Figure 6.1. ACT's precondition PRE holds in W before. and its 
effect EF F balds in W after · We express t hi s fact by propositions of tbe following 
form. 

~imply, 

[~done, ACT::t>], 
[~hold, before (ACT), P RE::t>, 
EFFJ::t> 

\Ve use three kinds of actions in our examples . 

~imply, 

[<<done, inform(SP, HR, PRDP) ;;t>], 
[~hold , before(inform(SP,HR,PROP)).bel(SP), 
~hold, bel(HR).bel(SP), PRDP>>] ::t> 

PROP A>, 
(Cl) 

1 We assume in this framework that an agent performs an act ion when he in tends to perforrn it 
and all its precond itions are solvable in his M WS. 
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That is, an informing illocut ionary act is performed only when the speaker believes 
its propositional content, and as a result of its performance, the hearer knows that 
t he speaker believes the content. 

« imply, 
[« done, go_by_bus(A, BUS) ~ , 

« source, BUS, P1~ , 

« destination, BUS, P2~], 

[« hold, before(go_by_bus(A,BUS)).bel(A), 
« source, BUS, P1~~ . 

« at, A, P2~] ~ (C2) 

An action of going somewhere by a bus is performed only when t he actor knows 
where the bus starts, and after its performance, he is at the destination of the bus. 

« imply, 
[« done, enter(A, PL) ~], 

[« hold, before(enter(A,PL)), « at, A, PL~~ . 

« hold, before(enter(A,PL)), <<open, PL~>> , 

«in, A, PL~] ~ (C3) 

An agent enters some place P L only when he is in front of P Land P Lis open, and 
then he is in PL. We also use the following contraposit ion of C3 . 

« imply, 
[« open, PL; 0~], 
[« done, enter(A, PL); 0~] ~ (C4) 

In tentions are t reated as a kind of beliefs about t he future. If an agent A intends to 
make proposition P true, he believes that P holds in some state of the world in t he 
future, that is, two proposit ions 

« future, T~ 
« hold, T, P~ 

hold for some path expression T in the mental world for A's beliefs. Here, T cor­
responds to a state of the world in a specific instant of time and may be either 
definite or indefin ite. future is a property of path expressions which means that 
its argument represents a state of t he world in a future instant of time. We also use 
property today, which means it argument corresponds to an instant of that day. 
We assume actions complete at once, hence the following implications a ll hold. 

« imply, 
[« fut ure, T~], 

[« fut ure, T.before(ACT) ~] ~ (C5) 
« imply, 
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[<e:future, T.before(ACT)~J. 
[<t:future, T~] ~ (C6) 

<t: imply, 
[<t:today, T~]' 
[<t:today, T.before(ACT) >> ] ~ (C7) 

<t: imply, 
[<t:today, T.before(ACT) ~]. 

[<t:today, T~] ~ (C8) 

The following inheritance rule plays an important role in our explanation of the 
helpful responses. 

<t: imply, [<e:hold, bel(A), P~], [P] ~ (C9) 

If an agent believes that another agent believes proposition P, t hen he comes to 
believe P. This rule should not be appl ied when the agent firmly believes the dual 
of P already. 

When an agent thinks that another agent has beliefs that conflict with his own, 
he may point out the difference. In particular, differences about actions they intend 
to do are so serious that the agent must point it out to behave cooperatively, hence 
we get our last commonsense. 

<t: imply, 
[ <t:hold, bel (A) , <t:future, T~ ~, 

<t:hold, bel(A) .T, <t:done, ACT~~ . 

<t:hold, T, <<done, ACT; 0~~], 
[<t: future, $t~ , 

<t:hold, $t.bel(A) .T, <t:done, ACT; O>>~] ~ (Cl O) 

That is, if an agent thinks that anot her agent A intends to perform an action ACT 
and t hat it is impossible, be intends to let A know that fact. 

Our treatment of actions, intent ions and t ime in this chapter is too naive, though 
it suffices for the current purposes. Utilization of more sophisticated theories of 
rational action [10], speech acts [11] and temporal logic [2] in our framework is left 
for the future work. 

6 .2 Supplying Relevant Information 

The clerk's inference process for generation of Response 1 is shown in Table 6.1. 2 

The normal forms of inferred nodes are li sted in order of application together with 
names of applied procedures (deduction or abduction) and relevant node numbers. 
The hierarchy of mental worlds used in t his example is illustrated in Figure 6.2. 

2\.Ye often omjt arguments of action expressions in tables and figures. 
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2 bel(you) 
3 

Mental World 

4 before(inform).bel(you).t_l 
5 bel(i).bel(you).t_l 
6 bel (you) . L1 
7 t_l 
8 t_l 
9 t_l 

10 t_l 
11 

12 

13 
14 
15 t_l.before(go_by_bus) .bel(you) 
16 t_l.before(go_by_bus) .bel (you) 

. bel (i) 
17 t_l.before(go_by_bus) 

18 t_l.before(go_by_bus) .before( 
inform).bel(i) 

Proposition 
~done, inform(you, i, 
~hold, t_l, ~at, you, m~ ~) ~ 

~future, t_l~ 

~future, L1~ 

~at, you, m~ 
~at, you, m~ 
~at, you, m~ 
~at, you, m~ 
~done, go_by_bus(you, b_l) ~ 

~source, b_l, P-1~ 

~destination, b_l, m~ 
~imply,[~future,T~], [~hold, 

T, ~source,b,gate3~~] ~ 

~imply,[~future,T>> ] ,[~hold, 

T, ~destination,b,m~~] ~ 

<<equal, b_l, b~ 
~equal, p_l, gate3~ 
~source, b, gate3~ 
~source, b, gate3~ 

~done, inform(i, you, 
~source, b, gate3~)~ 

~source, b, gate3~ 

Table 6.1: Clerk's Inference Process for Response 1 
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Procedure 
Given 

Given 
De C9,2 
De C1,1 

De C9,5 
De C9,6 
Ab C2,7 

Given 

Given 

Ab 10,12 
Ab 9,11 
De C2,8,9,10 
Ab C9,15 

Ab C1 ,16 

De Cl ,17 



B ase 
bel( you) 

( ! )«:done ,in£orm~ 
(3)«:<ut=e, '-'~ f----- ------+-1 (2)«:fut=e, t..l~ 

(15) 
~sourc e , b,gate32;> 

'-' 

(6)«:at, you, m~ 

Figure 6.2: Mental Worlds for Response 1 
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The left half of the figure corresponds to the clerk's own beliefs and intentions, 
and the right half of it corresponds to his beliefs about the customer's beliefs and 
intentions. 

When the clerk hears his customer's utterance of the sentence 

"I want to go to the museum.", 

he interprets it, and recognizes the following informing illocu t ionary act performed 
by the customer. 

inform(you, i, <<hold, t_1, ~at, you, m~~) 

Here, parameters you, i and m denote the customer, the clerk himself, and the 
museum with which the clerk identifies the referent of noun phrase "the museum", 
respectively. Parameter t_1 is created newly through the interpretation process, and 
represents the state of the world in an indefinite instant in the future. As a result, 
nodes 1, 2 and 3 in Table 6.1 is added to the clerk 's MWS. 

The precondition (4) and the effect (5) of the informing act are deduced by using 
commonsense Cl. 'ow the clerk believes that his customer intends to be at (in front 
of) the museum (6). Since intentions are represented as a kind of beliefs , by u ing 
the belief inheritance rule C9, the clerk inherits the customer's intention, namely, 
comes to intend the customer's being at the museum (7). 

His belief that the customer is at m in some future instant L1 has no causal 
explanation in L1 yet , so he tries to find an explanation, and uses the abduct ion 
procedure and C2 to hypothesize that the customer has just arrived at m by some 
bus b_1 in t_1 (8). In this way, the clerk plans the customer to go tom by bus in 
order to be at m. If we assume that the clerk knows a bus b which starts from gate 
3 and goes to m at least from now on (11,12), he can identify two buses b and b_1 
(13) . 

In order to get on b, the customer needs to know where it starts (15) . If the clerk 
does not think this precondition already holds, that is, if node 15 is not solvab le 
from the other nodes in the structure, he applies the abduction procedure again to 
provide an explanation of 15, and as a result, intends to perform the following action 
(17) . 

inform(i, you, ~source, b, gate3~) 

The precondition of this illocutionary act (18) is solvable in the base world on the 
basis of nodes C5, C9, 3 and 11, so the clerk performs the act by uttering Response 
1. 

"The bus starts from gate 3." 

To sum up, the clerk 's inference process of construct ing a plan for goal P is mod­
elled here by successive app lications of the abduction procedure to provide a causal 
explan ation of the fact that P will hold in some future instant of time. 
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2 bel(you) 
3 

Mental World 

4 before (inforrn).bel(you) .t_1 
5 bel(i) .bel(you).t_1 
6 bel (you) . L1 
7 bel(you) 
8 bel(you) 
9 bel (you) . t_2 

10 bel(you) .t_2 
11 
12 

13 t _2 

14 t_2 
15 
16 t_3.bel(you) .t_2 
17 t_3.bel(you) .t_2 
18 t_3.bel(you) .bel(i) .t_2 
19 t_3 

Proposition 
~done, inforrn(you, i, 
~hold, t_1, ~at, you, rn~ ~) ~ 

~future, t _ 1~ 

~future, L1~ 

~at, you, rn~ 

~at, you, rn~ 

~at, you, rn>> 
~equal, t_1, t_2.before(a_1 )~ 
~future, t_2~ 

~equal, a_1, enter(you, rn) ~ 

~done, enter(you, rn) ~ 

~today, t_1~ 

~irnply,[~today, T~], 

[~hold, T, ~open,rn;O~~]~ 
~open, rn; 0~ 

~done, enter(A, rn); 0~ 
~future, L3~ 

~done, enter(you, rn); 0~ 
~open, rn; 0~ 
~open , rn; 0~ 
~done , inforrn(i, you, 
~hold , t_2,~open,rn;O~~)~ 

20 t _3 .before(inforrn) .bel(i).t_2 ~open, rn; 0~ 

Table 6.2: Clerk 's Inference Process for Response 2 

6 .3 Pointing out Customer's Plan Failure 

Procedure 
Given 

Given 
De C9 ,2 
De C1 ,1 

De C9,5 
Ab C5,2 

Ab C3,6,7 

Given 
Given 

De 12,11,7, 
cs 

De C4,13 
De C10,8,10, 

14 
Ab C4,16 
Ab C9 ,17 
Ab C1,18 

De Cl ,19 

Next, we consider the situation in which the museum rn is closed that day. The 
clerk 's inference process for generation of Response 2 is shown in Table 6.2 (see also 
Figure 6.3). Hearing the customer's utterance, the clerk infers in the same way as 
the preceding example, and believes that his customer intends to be at (in front of) 
the museum (6). Then he tries to find the reason why the customer has such an 
intention. Applying the abduction procedure, the clerk supposes that the customer 
intends to be at rn just before some action a_1 is done (7,8), and that that act ion is 
his entering rn (9 ,10). In short, the clerk now thinks hi s customer intends to be in 
front of rn as the way to enter it (recognition of the customer's plan). 

We assume that the clerk somehow knows the customer wants to go that day (11 ). 
Since the museum is closed in any instant which belongs to that day (12), he th inks 
that the customer's entering action can never be performed (14) which conflicts with 
his beliefs about the customer's beliefs. In order to resolve this conflict, the clerk 
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Base 
bel( you) (7 9) 

(1)~done,i.U:orm~j------------- ' 
(ll)~today, U~ ~equal, '-1 • 

t_2. beiore(enter) ~ 

t.3 

(13)~open, m; 0~ 

(14) 
<t::done, enter; 0~ 

(17)~open, m; 0~ 

(16) 
<t::done, enter; o>> 

Figure 6.3 : Mental Worlds for Response 2 
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forms an intention to let the customer know the impossibility of his action (15,16) . 
Though the clerk can inform this information directly by uttering a sentence like 

"You cannot enter it today.", 

we assume here that he decides for some reason3 to inform it indirectly by letting 
the customer know that the museum is closed that day (17). He intends to perform 
an informing illocutionary act 

infor m(i, you, ~hold, t_2 , <<open, m; O>>~) 

(19) , and since its precondition (20) is solvable already, the clerk performs the act 
by uttering Response 2. 

"Sorry, it is closed today." 

J\ote that two inference processes presented here are not the only ones possible for 
the clerk in these situations. He may infer in all the same way as the first example 
and simply answer with Response 1 even when he knows that the museum is closed, 
and may recognize the customer's intention of entering the museum even when he 
thinks it is open.4 Chosen inference depends on the inference control strategies. 

6.4 Incorporating Linguistic Inference 

Agent 's inference process about linguistic expressions interacts with other types of 
inference in various ways. For instance, consider a situation in which the clerk has 
two candidates for the referent of noun phrase "the museum" uttered by his customer 
and he must select one of them. If the clerk thinks one museum is commonly 
known to be closed and the other is not, he selects the latter as the referent after 
he recogn izes the customer's intention of entering it . If he is not provided such 
information, he may ask back the customer , 

"\Vhich museum do you mean?" 

Our framework can be used to model such interactions of different types of inference 
process since it does not fix order of inference in advance and has sufficient ly strong 
descriptive power to deal with both linguistic (syntactic, semantic and pragmatic) 
constraints and constraints about rational agents such as C9 and ClO above. 

We have briefly illustrated in Chapter 5 linguistic inference process using propo­
sit ions of the form 

~express, SP , EXP, SEM~ 

3 lt depends on the inference control unit. 
4 ln th is case, however, the clerk still answers with Response 1 after all. 
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which means that a speaker S P expresses SEM by an utterance of a linguistic 
expression EX P. In our framework, various kinds of linguistic constraints are rep­
resented as const raints about this express relat ion, and we can then relate surface 
uttering acts with abstract illocutionary acts by rules such as 

~imply, 

[~done, utter(SP, HR, S) ~, 

~express, SP, S, PROP~ , 

~declarative, S~], 

[~done, inform(SP, HR, PROP) ~] ~ 

though relation between them is in general very complicated and context-sensit ive. 
Now t he preceding example is expl ained as follows . When the clerk tries to 

in terpret the customer's utterance, he generates a new parameter m_1 which corre­
sponds to his image of the referent of noun phrase "the museum." If the clerk knows 
two museum one of which is open and the other is closed, he postpones unifying m_1 
with one of them, until he infers t hat the sentence uttered by the customer expresses 
proposition 

~hold, t _1, ~at, you, m_1~~. 

recognizes tbe performed illocut ionary act 

inform(you, i, ~hold, t_1, ~at, you, m_1~~), 

recognizes the customer's in tention of entering m_1 , and then knows from C3 that 
the customer thinks m_1 is open. 
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Chapter 7 

Related Work 

Our framework is in many aspects similar to a programming/knowledge represen­
tation language PROSJT [31, 39]. PROSIT is a language based on situation theory 
[12] . Situations are partial descriptions of the world and are first class objects in 
PROSTT. The supports relation f= between situat ions and infons is treated to be de­
pendent on situations it is in , hence one can suppose situations to be hierarchically 
structured, like mental worlds in our framework. PROSIT also support facilities for 
local reason ing, since a user can make queries in arbitrary situations in the hierarchy. 

Pieces of information are represented by infons 

(relation object 1 ••• objectn) 

which are akin to our mental propositions. Parameters are also used in PROSIT as 
the basic syntact ic objects , and they have the similar equality conditions as ours. 
That is, a parameter is only equal to itself through backward-chaining inference, but 
can be explicitly asserted to be equal to another object. 

There are two inference procedures in PROSIT, namely, the backward-chaining 
and the forward-chaining inference. The backward-chaining procedure resembles 
that of Prolog using backwa1'd-chaining constmints 

( <; head goal1 . . • goaln) 

and is applied when a user inputs a query. The forward-chaining procedure is similar 
to our deduction procedure using another type of implications, fo1·ward-chaining 
constraints 

and is applied whenever an infon matching head is asserted. Moreover a user can 
explicitly call one inference procedure during execution of the other procedure by 
built-in predicates. 

The main difference between PROSIT and our framework is the way to name 
modalities (situations) . In our framework, modalities are referred by any objects of 
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path expression type. In particular, we can use composite path expressions or func­
tional form s such as bel (A) for names of modalities. In PRO SIT on the other hand, 
situations are referred only by simple parameters . Wi thout facilities of composing 
modalities (s it uations), PROSIT forces its user to use very complex expressions in 
order to describe relations among situations which are far from each other in the 
hierarchy. Perhaps the most serious problem is that PROSIT cannot deal properly 
with quantification over the set of sit uations in a simple manner. For instance, we 
have used in the last chapter the commonsense 

~hold, X, ~imply, [~hold, bel (A), P~] , [P] ~ ~ ( C9) 

in several ways: 

1. unifying X with . , deduce ~future, Ll~ 

from ~hold, bel (you), ~future, t_l~ ~ 

(Step 3) , 

2. unifying X with t_l, deduce ~hold, t_l, ~at, you, m~ ~ 
from ~hold, bel (you) .t_l, ~at, you, m~~ 
(Step 7), and 

3. unifying X with bel(you) . t _l , 
deduce ~hold, bel(you) .t_l, ~at, you, m~~ 
from~hold, bel(i).bel(you).Ll, ~at, you, m~~ 
(Step 6) . 

Among these three deductions, only the second one can be done in PROSIT, since a 
sit uational variable unifies only with a sit uational parameter. Hence, commonsenses 
cannot be represented in PROSIT in the same way as described in this thesis. 

As another example, consider the following discourse: 

"Pat entered the museum. He went there by bus." 

In our framework , the meaning of the two sentences are expressed by 

~hold, t_l, ~done, enter(pat, m) ~~ 
~hold, t_l.before(enter(pat, m)), ~done, go_by_bus(pat, b_l) ~>> 

In general, we can uniformly express the meaning of past tense sentences by propo­
sitions of the form 

~hold, T, PROP~~ 

where Tis a past instance of t ime (reference t ime) and PROP is a tenseless propo­
sit ion . In PROSIT on the other hand, the above discourse is expressed by 

( 1= t_l (done (enter pat m))) 
('= t_l ('= (before (enter pat m)) (done (go_by_bus pat b_l)))) 
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Two infons have quite distinct forms, and there exists neither uniform schema for 
expressing past tense sentences nor concept of reference time. 

Another difference between PROSIT and our framework is the inference mecha­
nism. As a programming language, inference in PROSIT is mainly based on query 
answering. On the other hand, our framework is a general cognitive framework for 
an agent's problem solving, and has a set of the basic inference procedures that 
suffices for modelling the agent' inference processes in most of cooperative natural 
language dialogues. Our inference mechanism is powerful and general one, but as a 
result , we are imposed a hard problem, namely, the problem of inference control. 
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Chapter 8 

Discussion: Controlling Inference 

In Chapter 5, we have described the three available basic inference procedures, that 
is , deduction, abduction and truth maintenance, and assumed that applications of 
them are appropriately controlled and scheduled by some inference control unit. We 
have not designed such a unit completely, but here we discuss some idea about what 
it should be like. 

The principle of local reasoning applies to inference control , also. That is , as 
the basic inference procedures are defined relative to mental worlds, the inference 
control unit applies equally to each mental world in the hierarchy. So, for example, 
a control unit which always gives high priority to inferences about the base world 
does not model an agent's reasoning ability correctly. 

An inference control unit performs the following tasks: 

1. determining which procedure is applied first, 

2. selecting the best explanation of a given proposition in the abduction proce­
dure, and 

3. selecting the most appropriate proposition to delete in the truth maintenance 
procedure. 

The first task is very important in our framework, since we are allowed to apply our 
general abduction procedure freely to arbitrary propositions. We need to restrict 
ourselves to inferences relevant to the agent's interests. There exist several heuristic 
strategies. First , applications of the abduction procedure to find an explanation 
of a proposition that has no explanation yet or contains parameters created just 
now should be given higher priority than other applications of abduction. Second, 
some of implications represented in the agent are mainly used in a forward-chaining 
manner. Deduction with such implications should be done whenever possible. Third, 
there exist domain-specific associative relations between propositions. For example, 
hearing an utterance, the hearer usually tries to recognize speaker's intention behind 
the utterance. Moreover, it is often the case that inferences indirectly related to 
other relevant inferences are also relevant to the agent . For instance, if an agent 
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believes ~p, u~ where u is a newly created parameter, then a deduction which 
concludes ~p, a~ for some object a may be relevant to him. Such an indirect 
relation between inferences can be formulated using a kind of spreading activation 
mechanism [18, 8). 

The second and t he th ird tasks of an inference cont rol unit demand representa­
tion of preferences among cand idates, i.e., possible explanations or propositions to 
delete. Preferences are determined by two factors, plausibility and utility. As an 
illust rat ion of this , recall the example presented in Chapter 5. Hearing an utterance 
of noun phrase "John", the hearer infers that the referent of it ( sbj _1 ) is an agent 
named John. 

~name, sbj_l, john>> 

If he kno ws such an agent, say j ohn_l , 

~name, john_l, john>> 

he can explain parameter sbj_l by unifying it with john_l. 

~equal, sbj _l, john_ l~ 

This explanation is preferred when it is plausible, i.e., he does not know any other 
Johns, or when it has high utility, for instance, when he wants to identify anyhow 
the referent of "John" in order to continue the dialogue. Which factor influences 
more depends on the problem area. In recognition problems such as utterance 
interpretation and plan recognition, plausibility is more influential than utility. On 
the other hand, in planning area both factors are equally important to select the 
best plan. 

Preferences can be represented by numerical costs [20] or more symbolically 
[37] . Furthermore, we can formulate more complicated mechanisms to calculate 
preferences by using meta-level problem solving [34] . Incorporating appropriate 
representations of preferences into our framework is an important future subject. 
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Chapter 9 

Conclusion 

We have presented a new formal framework for problem solving of an intelligent 
agent who participates in a dialogue. We have given a precise definition of the 
representation structure and the basic inference procedures. Then we used this 
framework to explain agent's inference process in cooperative dialogues. 

The main contributions of Part 1 are as follows: 

1. We have presented a new formal framework for representing mental states of 
an agent called Mental World Structure, which has strong expressive power for 
modalities. Modalities can be composed, quantified and unified, and various 
types of knowledge that are difficult to express in previous representation 
systems have been shown to be expressed concisely in our framework. 

2. We have smoothly incorporated into our framework the three basic inference 
procedures, that is, deduction, abduction and truth maintenance. They are 
defined relative to mental worlds, hence are applied equally to each mental 
world. 

3. We have provided an explanation of an agent's inference processes working 
behind example cooperative dialogues, and demonstrated the strength of our 
representation system and inference procedures. 
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Part II 

A Preferential Logic of 
Mental Attitudes 
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Chapter 10 

Introduction 

An agent who participates in a dialogue usually deals with problems that have 
more than one poss ible solution. He uses various kinds of preference to choose one 
or several most preferred solutions from possible ones, and acts according to his 
choice. Let us illustrate this briefly. 

First, an agent understands his companion's utterance, which is generally am­
biguous in some sense, and has several possible interpretations. For example, con­
sider the companion's utterance 

"I want to go to the museum." 

It has the referential ambiguity for the noun phrase '·the museum", since there 
exist more than one museum. The agent uses a preference about plausib ili ty of 
interpretations that the nearest museum is most likely to be referred, and chooses 
the nearest museum as the referent of the noun phrase. 

Next, to behave cooperatively, the agent recognizes his companion's intentions 
and plans from the utterance. Not only one plan can be ascribed to explain the 
given utterance. In our example, one possible plan consists of only one intention, 
the companion's intention to go in front of the museum. Another possible plan 
further includes his intention of entering it. In most cases, the agent chooses the 
latter plan and ascribes it to his companion, using a preference about plaus ibility 
that a person who wants to go in front of the museum usually wants to enter it. 

Finall y, the agent constructs a plan to make a response. T here exist many and 
possib ly infinite plans for him and sentences to utter. Preferences used here to choose 
a plan are not ones about plausibility as is used above but ones about desirability of 
responses. Us ing preferences for simple and helpful responses, he chooses and utters 
a response, for example, 

"Sorry, it is closed today." 

1ote that this view of an agent's problem solving based on preferences gives 
a clear account of defeasibility of inferences, which is one of the most important 
features of human problem solving. As time goes by and a new piece of information is 
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obtained, solutions previously possible may become impossible or implausible. The 
set of the most preferred solutions changes, and thus an agent's previous conclusion 
may be abandoned. 

In the traditional model of a dialogue participant, preferences are treated sep­
arately in each module for the dialogue task. In some models [1, 52], a part of 
preferences are represented explicitly by the evaluation rules. In the other models, 
preferences are generally not taken seriously and represented implicitly in the infer­
ence procedures. Semantic interpretation models [19, 38] use the specific procedures 
to choose plausible interpretations and referents. Plan recognition models [6] have 
procedures that find plausible plans of other agents, and linguistic generation models 
[4, 22] have procedures to generate helpful and clear responses. 

However, such a module-specific or domain-specific treatment of preferences ob­
structs flexibility and clarity of dialogue participants' models. First, it is difficult to 
deal with interactions between preferences separately represented in different mod­
ules. It is often the case that a solution preferred in one module is defeated by 
another solution in another module. Let us take the problem of choosing the ref­
erent of the noun phrase '·the museum" in the above example. In the semantic 
interpretation module the nearest museum is preferred. But, if the speaker's inten­
tion of entering '·the museum" is inferred in the plan recognition modu le and the 
speaker is believed to know that the nearest museum is closed that day, another 
open museum may be preferred to the nearest closed museum in that module. To 
decide which museum is referred to , these two modules must interact each other. 

Moreover, like logical constraints about the discourse domain, a single preference 
can be used in several modules. A linguistic preference, for example, that the 
referent of the expression should be obvious to the hearer, can be used in semantic 
interpretation and linguistic generation . A preference about actions, fo r example, 
that the speaker goes to a closed museum is generally not desirable, can be used 
in the plan recognition module and the plan construction module. Representing 
a single preference separately in different form in several modules makes a model 
unclear and a dialogue system hard to maintain. Therefore, we need a formal general 
framework for explicit representation of preferences. In fact , such a framework can 
also serve as a new basis for logics of mental attitudes, which is another approach 
to modeling a dialogue participant. 

Mental attitudes are notions such as belief, knowledge and intention, which are 
attributed to agents. Logical analysis of these notions is a particularly important 
subject for dialogue process ing, as well as other AI areas such as multi-agent systems, 
and it is intensively studied in recent years [10, 16, 27, 44]. 1evertheless , existing 
work only deals with more or less restricted phenomena, and the gap between logical 
theories and procedural models is still wide. One of the reasons of this is , in my 
opinion, that it ignores preferential aspects of mental attitudes. An agent forms his 
belief on the basis of his preferences about plausibility, and adopts intentions and 
plans based on his preferences about desirability. Moreover, the notion of preference 
itself can be considered to be a kind of mental attitudes. Analyzing mental attitudes 
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by preference will lead us to a natural and powerful theory of mental attitudes, and 
in particular, a proper treatment of the dynamics and interactions of attitudes . 

In this thesis , we take this approach, and propose a preferential logic of mental 
attitudes. We deal with qualitative preferences, which are explicitly represented by 
partial orders on model structures . An agent 's mental state is specified by knowl­
edge and two preference orders, that is, the plausibility order and the desirability 
order. The language of our logic is a proposit ional language extended by adding 
attitudinal operators : belief, intention, choice, and preference between sentences. 
The satisfaction relation for these operators is defined in terms of the preference 
orders . Besides mental attitudes about the states of the world, mental attitudes 
about another agent's mental states can be dealt with. Furthermore, we introduce 
a construct of sentences, which is used to specify an agent ' knowledge and the 
preference orders. Then we apply this logic to reasoning about plans. We give a 
formal account of plan construction process and examine several heuristics for plan 
recognition currently used. 

49 



Chapter 11 

Need of Preference 

11.1 Typology of Preference 

We take the word "preferences" in a general and wide sense and imply an agent's 
evaluations for propositions or possible worlds. Here, each possible world is consid­
ered to be expanded in temporal order. By specifying a possible world, we specify 
a complete history of the world . We begin with discussions on the typology of 
preferences. 

First, preferences are classified by their objects: those for proposit ions and those 
for possible worlds. Preferences for possible wo rlds are clearer in their mean ing. An 
instance of them is a preference for a world w 1 to another world w2 . On the other 
hand, preferences for propositions are those such as a preference of a proposition ¢ 
to another proposition 'if; . It is this type of preferences that is expressed by daily 
natural language utterances like 

(1) " It is likely to rain tomorrow." 
(2) "[ prefer sushi to saba." 

Sentence (1) expresses t he speaker's preference for its raining the next day (to its 
being fine or snowing) . Sentence (2) expresses the speaker's preferences for occurring 
his action of eating sushi to occurring his action of eating saba. We must be careful 
in dealing with preferences for propositions, since their real meanings are somewhat 
ambiguous. Regarding propositions as collections of possible worlds, we can reduce 
preferences for propositions to those for possible worlds . One poss ible reduction of a 
preference for a proposition ¢ to another proposition 'if; is that possible worlds that 
satisfy ¢ are collectively or averagely preferred to those that satisfy 'if; . Sentence 
(1) has this reading and can be interpreted as expressing that t he probability of its 
raining tomorrow is high. Another possible reduction of the preference for ¢ to 'if; 
is that each world that satisfies ¢ is preferred to each world that satisfies 'if;. In th is 
case, there is a further ambiguity whether the parts of the world other t han ¢ and 
'if; must be fixed or may vary through the compari son. Sentence (1) also has this 
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1. Object: 
2. Content: 
3. Possessor: 
4. Form: 

propositions or possible worlds 
plausibility or desirability 
own or other agents' 
numerical or symbolical 

Table 11.1 : Typology of Preference 

reading and can be used to assert that the conditional probabilities of raining are 
high for all or certain many conditions. Sentence (2) has the latter reading only. 

Second , we can d istinguish preferences by what they are about. In this respect, 
an agent uses two types of preferences, one is about plausibility and the other is 
about desirability. Plausibi lity preferences are epistemological and particularly used 
in interpretative tasks . They serve as a supplementary role to an agent's knowledge 
which is always incomplete. An agent can judge whether a proposition (or a world) 
is plausible or not even when he does not know its actual truth. O n the other 
hand, desirability preferences are related to an agent 's behavior in general, and to 
generative tasks in particular. An agent evaluates the desirability of possible worlds, 
and plans and acts to make desirable worlds true. 

The third classification concerns the posses ors of preferences. In addition to 
reasoning with his own preferences , an agent can reason about other agents ' prefer­
ences . Using knowledge about other agents ' preferences, an agent recognizes their 
plans and predicts their actions. Most of daily preferences are shared by agents. 
Hearing the thunder rumbling, agents think it plausible to begin to rain, and agents 
think it undesirable to go out in the rain without an umbrella. However, agents may 
differ in their liking, and we assume that different agents generally have different 
preferences even when their states of knowledge are equal 

Fourth, preferences are represented in two distinct forms: quantitative approaches 
to preferences use their numerical representations and qualitative approaches use 
symbolical representations. The most widely known instance of the former ap­
proach is subjective Bayesian decision theory [26, 42]. Plausibility preferences are 
represented by a subjective probability function, and desirability preferences are rep­
resented by a utility function. Both functions assign to each possible world a real 
value, the probabili ty and the utility of that world. Some AI systems use the similar 
numerical representations such as certainty factors [45] and assumability costs [20], 
though meanings of those values are comparatively vague. The key assumption of 
the qualitative approach is the totality of evaluation functions . Their values are 
linearly ordered and additive in the sense that they can be added and subtracted. 
On the other hand, the qualitative app roach to preferences focuses only on their 
ordering, whose linearity is not necessarily assumed. Preferences are represented 
by an order relation on propositions or possible worlds. Order relations are usually 
assumed to be linear in decision theory, whereas partial orders are recently used to 
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represent plausibility of models in the study of nonmonotonic logics [37, 43] . 

11.2 Belief and Preference 

Beliefs of an agent are consistent with each other and closed under logical conse­
quence. That is, an agent never believes both a proposition tjJ and its negation -.q, 
simultaneously, and an agent believes (at least implicitly) all consequences of his 
beliefs. Possible world model of belief [16] is used to formulate such static aspects 
of belief. An agent's state of belief is identified with the set B of all possible worlds 
that can be actual in t he light of that state of belief. A proposition is said to be 
believed if it is true in all elements of B. 

In addition to static properties, beliefs have dynamic properties. In particular, 
beliefs are non monotonic. An agent may abandon his beliefs when he obtains a new 
piece of information that contradicts with them. In terms of possible worlds, the set 
B may not be monotonically reduced along t he passage of t ime. The dynamics of 
belief is separately st udied as a t heory of belief revision [14] , where postulates for 
revision are proposed. 

To deal with the dynamics properly in poss ible world models, we need to intro­
duce a notion of preference about plausibility, which ranks possib le worlds. Then 
the set B is identified with the set of most preferred worlds that are consistent with 
knowledge. This idea is by no means new. Sboham and Cousins [44] presented the 
simi lar arguments, and Satoh [37] examined the relationship between poss ible world 
model with partial orders and the theory of bel ief revision. 

11.3 Intention and Preference 

In tent ion is an important notion when we consider communicat ion between agents . 
An agent recogn izes his companion 's intentions to pred ict his actions and to beh ave 
cooperat ively. Conversely, an agent indicates his intentions to his companion by 
actions. Natural language is a soph isticated tool for express ing intentions. Like 
beliefs, intentions have both static and dynamic properties . Intentions of an agent 
are consistent with each other, but they are not necessarily closed under logical 
consequence. That is, an agent does not need to intend all consequences of his 
intentions . Intentions are also nonmonotonic, but they have a certain persistency. 
Once an agent adopts an intention, be never drops it without special reasons. 

Formal models of intention are proposed in recent years. For instance, Cohen 
and Levesque [10] analyzed intention based on a notion of persistency, and Kono­
lige and Pollack [25] investigated a representat ionalist approach. However, none of 
t he models is ent irely satisfactory so far. Some of them establish counterintuitive 
assumptions, and the others fail to satisfy desirable properties such as ones noted 
above. 
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What is missing in previous work is consideration of the close relationship be­
tween intentions and preferences about desirability. This relationship is obvious: an 
agent generally adopts intentions in accordance with his preferences. A preference­
based analys is of in tention will help us to deal particu larly with the dynamics of 
intentions and the relationship to other attitudes such as belief, choice and desire. 

11.4 Reasoning about Plans and Preference 

An agent constructs plans for the most desirable possible worlds and acts according 
to them . In the literature of plan construct ion and plan recognition, desirability is 
not directly dealt with. Rather a notion of goal is used as primitive, and plans for 
goals are studied. 

There are a large number of plan const ruction models and planning systems 
[3, 7, 15] . Most of them only concern with providing plans that can be adopted by 
an agent for given goals rather than with determining what plans are really adopted. 
To determine what plans are adopted, we need preferences about desirability. An 
agent chooses the most desirable plans from many possible ones. Furthermore, if he 
gets new pieces of information, his preferences for plans may change, and then his 
plan may be revised. For example, consider an agent planning to go to a sushi bar 
to eat lunch . If he happens to know the bar is crowded, he may revise his plan and 
go to another restaurant, say, a noodle shop . Such phenomena must be explained 
in any sat isfactory model of an agent . 

Procedural models of plan recognition in dialogue understanding [1, 6] infer plau­
sible plans of another agent from observed actions or intentions of that agent by 
using heuristic rules and inference procedures. Their theoretical foundations should 
be given by formal models of plan recognition, but existing form al models such as 
Kautz's [23] are not sufficient for this role. It is because they have no means to spec­
ify preferences and use only restricted type of preferences that come from structural 
properties of the domains like a preference for plans that consist of fewer actions. 
An instance of preferences they can not deal with is: it is plausible that an agent 
does not prefer eating in crowded restaurants. To model plan recognition properly, 
we need a general framework for representing desirability preferences of the planner, 
as well as the recognizer's plausibility preferences for mental states of the planner. 

11.5 Our Approach 

Our approach is based on two decisions. Our first decision is : we take a qualitative 
approach to preferences, treating preferences, bo th about plausi bility and about 
desirability, simply as ordering, not numbers . There are two reasons for this decision . 

First, we are skeptical about the totality of evaluation functions. It is doubtful 
that an agent assigns a definite value to every possible world (or proposition), since 
such thorough evaluation is hard to do and not necessary for him. In fact, we doubt 
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further the linearity of preference ordering. With two simi lar worlds, an agent may 
judge wh ich one is preferred, or he may judge they are indifferent . But, an agent 
deals generally with worlds that have little in common. It is particularly the case 
when he reasons about anot her agent's mental states. With such a pair of worlds, 
he may not even think of comparing them. From a practical point of view, assigning 
values or linear orders to worlds in a consistent way is a troublesome task . On t he 
other hand , it is convenient if we can deal with an agent's reasoning with partial 
informat ion about preferences. 

Second , we want to abstract t he addi t ive character of preferences to focus our 
interest on their ordering. It is ordering of preferences t hat directly influences an 
agent 's attitudes and behavior. The most plausible worlds generally determine an 
agent's belief, and the most desirable worlds generally determine his plans and 
actions. Abstracting add itiv ity of preferences, we lose composite notions such as 
probability of propositions calculated from probabili ty of worlds and expected utility 
of actions [26]. which are useful to select propositions and act ions from those tying in 
the most preferred worlds . Nevertheless, as the first approximat ion of a full theory 
of an agent, we st udy an agent's qualitative reasoning about preferences. 

Our second decision is: we use preference for model st ructures rather than use 
preference for propositions, which is a somewhat ambiguous notion, as a cent ral 
semant ic component of our logic. Here, a model structure consists of a poss ib le 
world and a representation of another agent's mental state. T his enables us to deal 
with preferences for the other agent's mental states, as well as preferences for poss ible 
worlds. Preferences are represented by two stri ct part ial orders on model structures: 
the plausibility order represents plausibility preferences, and the desirability order 
represents desirability preferences. 'ote that these two orders are generally not 
related with each other. Then an agent 's mental state is specified by three things: 
the plausibility order , the desirability order, and knowledge, which is represented by 
a set of model structures . 

Preference for sentences is cons idered to be a kind of mental attitudes. We define 
it as well as other attitudes such as belief and intent ion in terms of the preference 
orders on model structmes. Conversely, we give a method of specifying a preference 
order on model structures by a set of preferences between sentences . Then we apply 
this logic to reasoning about plans. We give a formal account of plan const ruction 
and plan revision processes, and we examine several heuri stics for plan recognition 
cu rren tly used . 
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Chapter 12 

Belief, Choice and Preference 

12.1 Syntax and Semantics 

In this section, we give a full syntax and semantics of our logic of mental attitudes. 
In this logic, we express mental attitudes of a dialogue participant called Agent 
A: attitudes about a planning domain and attitudes about mental attitudes of his 
companion, called Agent B , about that domain. Therefore, the language of our 
logic is three-layered. The bottom layer is a propositional language£, by which the 
planning domain is described. The second layer consists of B-sentences, by which we 
express mental attitudes of Agent B. Finally, the top layer consists of A-sentences, 
by which we express mental attitudes of Agent A. We give these layers, together 
with their semantics, in turn. 

12.1.1 A Propositional Language with Time Function 

The language of our logic is based on a standard propositional language £ , which 
consists of a set of atoms atom( C), II, --,, and other defined connectives . We denote 
atoms of C by p, q, r, . .. , a, b, c, ... , and sentences of C by a, {J, "(,.... We write 
atom( a) to mean the set of all atoms occurri ng in a. We express in C facts about 
a planning domain, such as some property's truth at some time and some action's 
occurrence at some time. To deal with a notion of t ime, We use a time function for 
C that assigns an element of a set 0 to each atom of£, where 0 is linearly ordered 
by a temporal precedence relation~. We usually use the set of integers Z (with its 
standard numerical ordering) for 0. In those cases, the value of the time function 
is displayed in the name of an atom. For example, a sentence 

expresses the fact that if Agent A eats something at time 1 then he is not hungry at 
time 2, where time(eatA1) = 1 and time(hung,·yA 2 ) = 2. An agent name is omitted 
from t he name of an atom when it is clear from the context . 
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A W01'ld w is a function from atom(£) to {true, J alse}. The satisfaction relation 
w f= a is defined in a usual way as follows: 

Definition 12.1 

1. For p E atom(£) , w f= p iff w(p) =true. 

2. w f= a 1\ /3 iff w f= a and w f= /3. 

3. w f= -,a iff w ~a . 

If w f= a, we call w a model of a. 
If w f= a for all worlds w, we write f= a. 

12.1.2 B -Sentences and B-Structures 

B-sentences are used to express objects of Agent A's mental attitudes, that is, facts 
about the planning domain and Agent B's attitudes about it . To express mental 
attitudes , we introduce attitudinal opemto1·s forB: BELB, CHOB , P-PREF'£ , 
D-PREF'£, IN18, SBGB and GI NT8 . 

Definition 12 .2 

1. Atoms of[. a re B-sentences. 

2. If a and /3 are sentences of[. and T C atom(£), then BEL8 (a), CH08 (a) , 
P-PREF'£(a,/3), D-PREF'£(a,/3), INTB (a), SBG8 (a,/3), and GJNTB(a) 
are B -sentences. 

3. If ,P and 'if; are B-sentences, then ,P 1\ 'if; and -, q, are B-sentences. 

We denote B-sentences by¢, 'if; , x, .... The intended meanings of att itudinal opera­
tors are as fo llows : 

BELB(a) B believes a . 
CH08 (a) B chooses a. 
P-PREF'£(a,/3) B plausibly prefers a to /3 if all atoms in Tare equal. 
D-PREF'£(a, /3) B desirably prefers a to /3 if all atoms in Tare equal. 
INT8 (a) B has an intent ion a. 
SBG8 (a,f3) B thinks that a is a subgoal of /3 . 
GINTB(a) B bas a generalized intention a. 

Model structures forB-sentences are called B-structures. Before presenting their 
definition, we need several notions for orders. A strict partial order is an irreflexive 
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and trans itive relation. The set of maximal and minimal elements of a set U with 
respect to a strict partial order < are defined as follows : 

Max(U,<) 

Min(U,<) 

{ x E U I there is no y E U such that x < y} 
{ x E U I there is no y E U such that y < x}. 

We say a strict partial order < is bounded in a set U if for all nonempty U' C U, 
both Max(U', <)and Min(U', <)are nonempty. 

Definition 12.3 M = (W, --<ap, --<80 , w0 ) is a B-structu1·e iff 

1. W is a nonempty set of worlds, 

2. --<ap and --<ao are strict partial orders on worlds which are bounded in W, 
and 

3. w0 E W. 

The first three constituents of a B-structure specify Agent B's mental state, and the 
last constituent repersents an '·actual" state of the domain. W specifies B's knowl­
edge; it is the set of all worlds that can be actual in the light of his knowledge. The 
truth of B's knowledge is ensured by Condition 3 of the definition . Orders --\apand 
--< 80are B's preference orders: the plausibility order and the desimbility order, re­
spectively. w1--<apw2 means that B plausibly prefers w2 to w1 , or in other words, 
that B thinks w2 is more plausible than w1 . If we assume B's subjective probabil­
ity function P8 on worlds, w1 --<apw2 implies Pa( wi) < P8 ( w2 ). The converse of 
this implication does not necessarily hold, since the plausibility order is partial and 
directly influences mental att itudes of an agent. Similarly, w1 --<80w2 means that 
B desirably prefers w2 to w 1 , or in other words, that w2 is more desirable for B 
than w1 . If U8 is a utility function forB, w1--<80w2 implies U8 (w1 ) < U8 (w2). We 
impose the cond ition that the preference orders are bounded in order to simplify 
definitions and resulting properties when we formulate mental attitudes using max­
imally (minimally) preferred worlds. Note that when atom(£) is finite, there are 
only finitely many worlds, and thus this condition is automatically satisfied . 

Now we define the satisfaction relation for B-sentences. Propositional sentences 
are evaluated with respect to w0 , the actual state of the domain. Satisfaction of 
attitudinal sentences for B is defined in a completely parallel way with satisfaction 
of those for Agent A, so we give no further explanat ion of it here. 

Definition 12.4 Let M = ( w0 , W, --<aP, --<ao) be a B-structure. 

1. For p E atom( .C), M f= p iff wo(P) =true. 

2. M f= BELa( a) iff w f= a for all wE Max(W, --\ap). 

3. M f= CHO a(a) iff w f= a for all wE Max(Max(W,--<ap),--<ao). 
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4 . M f= P-PRE F'fi(a,f3) iff w1-<. 8 pw2 for all pairs w1 ,w2 E W such that 

(a) w 1 f= •a 1\ (3, 

(b) w2 f= a 1\ •f3, and 

(c) w1(p) = w2(p) fo r all pE T. 

5. M f= D-PREF'fi(a , f3) iff w1 -<aDW2 for all pairs w1 , w2 E Max(W,-<ap) 
such that 

(a) w1 f= •a 1\ (3, 

(b) w2 f= a/\ •(3 , and 

(c) w,(p) = w2(p) for a ll pET. 

6. M f= I NT8 (a) iff 

(a) wf=a forall wEMax(Max(W,-<.8 p) , -<aD),and 

(b) w ~a for all wE Min( Max(W, -<ap) , -<aD) · 

7. If f3 is eit her p or •p, then M f= S BGa(a, f3) iff 

(a) M f= BELa(f3 :::J a), and 

(b) time(q)::; time(p) for all q E atom(a) . 

8. M f= SB Ga(a,f3 1\ -y) iff there are (3' a nd -y' such tha t 

(a) a is log ically equi valent to (3' 1\ -y', 

(b) atom( a)= atom(f3') U atom(-y'), and 

(c) M f= SB Ga(f3' ,(3) 1\ S BGa(-r',-y) . 

9. M f= S BGa(a , •(!3 1\ -y)) iff there are (3' and -y' such that 

(a ) a is logically equi valent to •(!3' 1\ -y' ), 

(b) atom( a)= atom(f3' ) U atom(-y' ), a nd 

(c) M f= S BGa(•f3' , •f3) 1\ SBGa(•-y', •-y) . 

10. M f= SB Ga(a, .. (J) iff M f= SB Ga(a,f3) . 

11. M f= GJN Ta(a) iff there is f3 such that 
M f= · B E L8 (a) 1\ S BGa(a , (3) 1\ I N T8 ((3) . 

12. M f= rjJ 1\ 1/J iff M f= rjJ a nd M f= 1/J . 

13. M F •r/J iff M ~ rjJ . 

If M f= rjJ, we call M a model of rjJ . 
If M f= rjJ holds for a ll B -s tructures M , we wri te f= rjJ . 
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12.1.3 A- Sente n ces and A-Structures 

A-sentences are used to express facts about Agent A's mental att it udes. They are 
obtained by applying at t itudinal operators for A, which are simi lar to t hose forB , 
to B -sentences . 

Definition 12.5 

1. If </> and ..Pare B -sentences and T C atom( .C ), then B E LA(</>), CHO A(</>), 
P -PRE F'f.(</>,.,P), D-PREF'f.(</>,7/J), JNTA(</>), SB GA(</>,.,P), and GJNTA(rP) 
are A -sentences. 

2. If <r> and lji are A-sentences, t hen <r> 1\ lji and • <I> are A-sentences. 

We denote A-sentences by <r> , \jJ , .. .. 

Model st ructures for A-sentences are called A- tructures. 

D efi n it ion 12.6 S = (M , -<AP, -<Ao) is an A-structure iff 

1. M is a oonempty set of B-st ructures, and 

2. -<AP and -<Ao are strict part ial orders on B-structures which are bounded in 
Jvt. 

An A-st ructure specifies Agent A's mental state: M specifies A's knowledge, -< AP is 
A's plausibi li ty order, and -<AD is his desirabili ty order. Again , we impose the con­
dition that these orders are boun ded, which is automat ically sati sfi ed when atom( .C) 
is fi nite. 

Now we define the sati sfaction relat ion for A-sentences. Motivat ions for the main 
part of the defini t ion are explained in later sect ions. 

D efin it ion 12.7 LetS= (M , -<AP, -< Ao) be an A-st ructure. 

1. S /= B E LA(</>) iff M /= </> for all M E Max(M, -<Ap) . 

2. S /= CHOA(rP) iff M /=</> for all M E Max(Max(M ,-<AP),-<Ao) . 

3. S/= P-PREF'f.(</>,7/J) iff M1-<APM2 for allpairs M~,M2 E M sucb that 

(a) M 1 /= •</> 1\ .,P , 

(b) M2 /= </> 1\ •..P, and 

(c) M 1 /= p iff M2 /= p for a ll pE T. 

4. S /= D-PRE F'f.(</>,7/J) iff M1-<AD M2 fo r all pairs M, , M:, E M ax(M, -< AP ) 
such that 
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(b) M2 I= <P 1\ •..P, and 

(c) M 1 I= p iff M2 I= p for all pET. 

5. S I= IN1"A (</>) iff 

(a) M I= <P for all ME Max(Max(M,--<AP ),--<Av ), and 

(b) M ~</>for all ME Min(Max (M ,--<AP),--<Ao) . 

6. If </> or ,P contain attitudinal operators , S ~ SBGA(¢>, ,P) . 

7. If <P contains no attitudinal operators and ,P is either p or •p, then 
S I= SBGA(</>,,P) iff 

(a) S I= BELA(tP :::> ¢), and 

(b) time(q)::; time(p) for all q E atom(¢) . 

8. If </>, ,P and X contain no att itudinal operators, then 
S I= SBGA(¢>, ,P 1\ x) iff there are tj; ' and x' such that 

(a) <P is logically equivalent to ..P' 1\ x', 
(b) atom(¢)= atom(1J!') U atom(x'), and 

(c) M I= SBG8 (,P',,P) 1\ SBGa (x',x). 

9. If </>, ,P and X contain no attitudinal operators, then 
S I= SBGA(</>, •(..P 1\ x)) iff there are ,P' and x' such that 

(a) <P is logically equivalent to •(..P' 1\ x'), 
(b) atom(¢)= atom(,P') U atom(x'), and 

(c) M I= SBGa(•,P', • t/;) 1\ SBGa(•x', •x). 

10. If <P contains no attitudinal operators , then 
S I= SBGA(¢>, .. ..p) iff S I= SBGA(</>,,P) . 

11. S I= GI NTA(¢>) iff there is ,P such tbat 
S I= ·BELA(¢) 1\ SBGA(<f>,tj;) 1\ INTA(tj;). 

12. S I= <l> 1\ \)i iff S I= <l> and S I= \)i. 

13. s I= ·<l> iff s ~ <l>. 

If S I= <l> , we call S a model of <l> . 
If S I= <l> holds for all A-structures S, we write I= <l>. 
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To deal with the dynamics of mental attitudes, we make two assumptions about 
the dynamics of A-structures. First, we assume that the set M is monotonically 
reduced along the passage of time. It means that A's knowledge expands monoton­
ically and A never gives up any piece of his knowledge. Second , we assume that 
the preference orders -<Apand -<Aodo not change along the passage of time. We 
think this assumption is valid in daily situations, though preferences do change in a 
long time. Then we introduce a notion of monotonicity of attitudinal operators as 
follows : 

D efinition 12.8 An attitudinal operator att for A is monotonic iff 
if (M , -<AP, -<Ao) f= att(¢) (or att(¢,,P)) and M' is a nonempty subset of M , 
then (M', -<AP, -<Ao) f= att(¢) (or att(¢, 1/J)) . 

Most of attitudinal operators are nonmonotonic in our logic: 

Theorem 12.1 

1. P-P REFJ. is monotonic, and 

2. the othe,- opemtors BELA , CHOA, D-PREFJ. , I NTA, SBGA and GINTA 
are nonmonotonic. 

12.2 Belief 

When an agent thinks about how the state of the world is, he considers only the 
most plausible possible worlds that are consistent with his knowledge. He believes 
sentences that are true in all these worlds. Therefore, we define Agent A's belief as 
follows : 1 

D efinition 12.9 (Repeated) (M , -<AP, -<Ao) f= BELA(¢) iff 
Mf=¢ for all MEMax(M,-<Ap). 

We can easily show that beliefs satisfy the following desirable properties: 2 

Theorem 12.2 

1. If f=¢, then f= BELA (¢). 

2. F BELA(¢) :J ·BELA(•¢). 

3. F BELA(¢) 1\ BELA(¢ :J ,P) :J BELA(,P) . 

1Hereaft.er, we omit definitions for Agent B, since they are simi lar to those for A. 
2It is clear that B 's att itudes satisfy similar properties to A's, though we do not mention them 

in this thesis. 
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Agent A's beliefs include all valid B-sentences, they are consistent, and they are 
closed under logical consequence. Note that we need boundedness of the plausibility 
order to obtain consistency of beliefs. In addition to these stat ic properties, beliefs 
have dynamic properties. Nonmonotonicity is one of such properties, but more 
detailed analysis is presented as a t heory of belief 1·evision [14] . Satoh [37] examines 
the relat ionsh ip between possible world model of belief with partial orders and the 
theory of belief revision, using a standard first-order language. Here, we try to get 
a similar result in our logic. 

Gii.rdenfors [14] proposes a set of postulates for belief revision . A belief set f( is 
a set of sentences that is closed under logical consequence. We denote by K¢ the 
revised set of sentences obtained from f( by adding a sentence¢>. We denote by K t 
the set of all logical consequences of!( U {¢>}. T hen, Gii.rdenfors's postulates are 
stated as follows: 

(W1) K¢ is a belief set. 
(!("2) </> E K¢. 
(!<"3) I<¢ c Kt. 
(!<"4) If •</> if. !( , t hen Kt C K;. 
(!<"5) J\¢ is the set of all sentences if and only if I= •</>. 
(I<"6) If I=¢>= 1p, then J\¢ =I<~ . 
(I<"7) I<;,", c (K¢)S 
(!<"8) If • .P if. J<; , then (I<¢)S C K¢".p · 

Let (M , --<AP, --<Ao) be an A-structure. We define a belief set BM by 

Since our belief sets are always consistent, we cannot define a revision function* for 
cont radictory inputs¢>. We write Mod(¢>) to mean t he set of all models of¢>. For¢> 
such that M n Mod(¢>) is nonempty, we define a revision function * by 

(BM)¢, = BMnMod(¢) · 

Then we get the follo wing resul t : 

T heorem 12.3 For a belief set }{ = BM and sentences </> and ,P such that A-1 n 
Mod(¢> II,P) is nonempty, the revision function* satisfies Gii1Ylenfo1·s's postulates 
(I<"1),{W2),(I<"3),(W5),(I<"6) and (I<"7) . 

12.3 Choice 

An agent plans and acts to make the most desirable possible worlds t hat are con­
sistent with hi belief true. He chooses the most desirable worlds to pursue, and as 
a result, he chooses all their consequences . Therefore, we say an agent chooses a 
sentence ¢> if ¢> is t rue in all the most desirable worlds that are consistent with his 
belief. 
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Definition 12.10 (Repeated) (M, -<AP, -<Av) p CHOA(<!>) iff 
M p </> for all ME Max(Max(M, -<AP), -<Av). 

We can easily show the fo llowing properties of choices : 

Theorem 12.4 

1. F BELA(<!>):::) CHOA(<f>). 

2. F CHOA(</>):::) ·CHOA(•<f>). 

3. F CHOA(<I>) 1\ CHOA(</>:::) .P):::) CHOA( Ij; ). 

Agent A's choices include all his beliefs, they are consistent , and they are closed 
under logical consequence. 

An agent's choices are not always desirable for him. For example, an agent who 
chooses his action of eating lunch at a restaurant also chooses his spending money 
on the bill, which is probably not desirable for him: 

p CJ-JOA(eatA1 ) 1\ 

BELA(eatA1 :::) spendMoneyA2 ) 

:::) CHOA(spendMoneyA 2 ). 

Choices determine the output of an agent, that is, actions. Although performance 
of actions is outside our logic, we make several informal assumptions about the 
relationship between A-structures and Agent A's performance of actions. Our first 
assumption says that Agent A performs an action when he chooses it: 

(Al) If S p CHOA(actA;) and i is the time of S, then A performs act. 

The converse o f (Al) does not hold because of well-known Buridan cases [5] . Con­
sider that there are two actions act and act' that are equally desirable for Agent A 
to do. In this case, some of the most desirable worlds include A's performance of act 
and the others of them include his performance of act' . According to our definition , 
Agent A chooses neither one of these actions, but in reality, he after all performs 
one of them. Therefore, we adopt the following weaker assumption : 

(A2) If A performs act , then S p ·CHOA(•actA;). 

An agent's actions do not necessarily make all his choices true. An agent never 
chooses implausible sentences, but he may choose contingent sentences. For example, 
an agent may choose its being fine the next day, though he has nothing to do to 
make it true. We might restrict the notion of choice to make its relationship with 
actions closer if needed. 
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12.4 Preference 

In this section, we investigate a notion of preference between sentences. Like pref­
erence for model structures, there are two types of preference, that is , preference 
about plausibility and preference about desirability. As mentioned in Section 11.1, 
this notion is somewhat ambiguous and can be reduced to preference ordering on 
model structures in two different ways. The first possible reduction of a preference 
for a sentence </; to another sentence 7/J is that models of</; are collectively or aver­
agely preferred to models of 7/J . This means that </; is materially preferred to 7/J with 
respect to the current situation. For example, a sentence 

"It is more likely to rain than to snow tomorrow." 

expresses a preference of this type, that the probability of its raining the next day is 
higher than the probability of its snowing. Such a preference is studied in connection 
with conditional [46, 51]. We can partly deal with this type of preference using the 
most preferred structures. That is, Agent A plausibly prefers </; to 7/J if -.BELA(-.¢;) 
ABELA(-.,P) holds. Similarly, Agent A desirably prefers</; to 7/J if -.CHOA(-.<f;) 
ACHOA(-.,P) holds. 

The second possible reduction of the preference for </; to 7/J is that each model of 
</; is preferred to each model of 7/J. This means a general fact, that </; is preferred to 
7/J under all conditions. For example, a sentence 

"In summer, it is more likely to rain than to snow." 

expresses a preference of this type, that for every day in summer the probability 
of its raining is higher than the probability of its snowing. An agent learns and 
uses many such general preferences in his daily life. In this thesis, we deal with 
preferences of this second type. We said that we compare each model of </; and 
each model of 7/J, but this statement is not correct because models of </; A 7/J must 
be excluded from the comparison. In fact , we compare each model of </; A -.,p and 
each model of -.<f; A 7/J . Moreover , we must decide whether the parts of the world 
other than </;and 7/J must be fixed or may vary through the comparison . We take a 
general approach and use a parameter T C atom( .C) to specify which atoms must be 
fixed. Now we define plausibility preference P-P REFJ. and desirability preference 
D-PREFJ. as fo llows: 

D efinition 12. 11 (R ep eated) 

1. (M, --<AP, --<Ao) I= P-PREF'J. (¢;,1/J) iff 
M 1 --<ApM2 for all pairs M 1 , M2 E M such that 

(a) J\1/1 I= -.<f; A 7/J, 

(b) M 2 I= </;A -.,p, and 

(c) J\1/1 I= p iff J\1/2 I= p for all pET. 
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2. (M,-<AP,-<Ao) 'f=D-PREFJ(t/>,1/J) iff 
M1-<AoM2 for all pairs M"M2 E Max(M , -<AP) such that 

(a) M 1 'f= •t/> 1\ ,P, 

(b) M2 'f= t/> 1\ •1/J , and 

(c) M1 'f= p iff M2 'f= p for all pET. 

It is convenient if we have a notation for expressing conditional preferences. To 
express a preference for t/> to ,P under a condition x, we introduce the following 
abbreviations: 

P-PREFJ(t/>,1/J 1 y) = P-PREFJ(x :::J t/>,x :::J 1/J). 
D-PREFJ(t/>,1/J 1 A.) = D-PREFJ(x :::J t/>,x :::J 1/J) . 

First , we list general properties that hold for all T and for both P-P REFJ and 
D-PREFJ (written X-PREFJ, for short) . 

Theorem 12.5 

1. If 'f= t/> :::J 1/J, then 'f= X -P REFJ( t/>, ,P) 1\ X -PREFJ( ,P, ¢>) . 
In pa1·ticular, 

(a) 'f= X-PREFJ( t/>,t/>) . 

(b) If t/> o1· 1/J is eithe1· a tautology or a falsity, 'f= X -P REFJ ( ¢>, 1/J). 

2. If 'f= (¢> = ¢>') 1\ (,P = 1/J'), then 'f= X -P REFJ( t/>, ,P) =X -P REFJ(t/>', ,P'). 

3. 'f= X-PREFJ( ¢>,1/J) = X-PREFJ(• ,P,•t/>) . 

4- 'f=X-PREFJ( t/>,1/J I x) =X-PREFJ(t/>Ax,.P~'~x). 

5. 'f= X-PREFJ(t/>,1/J) :::J X-PREFJ(t/>,1/J 1 x). 

6. IfpET, 

'f= X -PREFJ(t/>,1/J I p) 1\ X -PREFJ(t/>,1/J I •p) :::l X -PREFJ(t/>, ,P) . 

7. IfT C T' , 'f= X-PREFJ( ¢>,1/J) :::l X-PREFJ'(¢> ,1/J) . 

Item 1 of the theorem says that for two sentences one of which is a logical conse­
quence of the other, preference relations always hold . 3 says that preferring ¢> to 
1/J is equal to preferring • 1/J to •¢>. 4 deals with a preference under a condition X· 
From 5, we see that if t/> is preferred to ,P, it is preferred under all conditions. On 
the other hand, ¢>is preferred to ,P if it is preferred under both cond itions p and •p 
for some atom p as is shown in 6. 7 says that if a parameter set T is the smaller, 
the preference X-PREFJ is the st ronger. Note that transitivity of preferences 

X-PREFJ(t/>, 1/J ) 1\ X-PREFJ( ,P,x) :::l X-PREFJ( t/>,x) 
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does not hold. To obtain a counterexample, let 1/J = <P 1\ X· 
Although we allow T to be any set of atoms, we mainly use three patterns ofT, 

for which we in t roduce the following notations (Y denotes either A or B): 

(1) X -PREF$(<P,I/J) = X -PREFJ(<P,I/J) where Tis an empty set . 
(2) X-PREn1 (<fo,I/J) = X-PREFJ(<fo,I/J) 

where T = {JJ E atom( .C) I i < time(p) < j}. 
(3) X -PREF:"(<fo,I/J) = X-PREFJ(<fo,I/J) 

where T =atom(£. )\ (atom(<P) U atom( I/;)). 

(1) expresses the st rongest preference, that <P is preferred to If; unconditionally. This 
type of sentence is widely used to express an agent's default preferences about plausi­
bility and desirability. For example, a sentence D-P REFJ., ( •hungry, hungry) means 
t hat Agent A prefers to be not hungry even if he must spend much money and time 
to satisfy his hunger. The strongest preference (1) satisfies strong and interesting 
properties . For example, it sat isfies the following restricted form of transitivity: 

Theorem 12 .6 

1. f= X-PREFJ..(<P,I/J)AX-PREFJ.,(V;,;,.)A·BELA(<PAx :::J 1/;) :::J X-PREFJ..(<P,x 11/J). 

2. F= x -PREFJ.,(<P,I/J)AX-PREFJ.,(I/J,x)A·BELA(I/J :::J <P v x) :::J X -PREFJ..(<P,x 1 •1/J) . 

(2) is used to express a kind of frame axioms [29], which are representations of 
persistency of properties . A sentence P-P REF} 3

( atH ome3 , •at If ome3 I atH ome1 ) 

expresses the fact that if Agent A is at home at t ime 1, he is more likely to be at 
home at time 3 than to be not at home if states of the world between time 1 and 
t ime 3 (namely, at time 2) are equal. 

(3) expresses the weakest preference, that <P is preferred to 1/J if all else are equal. 
If <P and 1/J cause different effects on other parts of t he world , they are not compared. 
For example, a sentence D-P REF~'( •hungry, hungry) means that Agent A prefers 
to be not hungry if the other conditions are equal. Tn this case, he may not want to 
spend money and t ime to satisfy his hunger. 

Preference between sentences has a close relationship with other attitudes . In 
particular, for the strongest type of preferences where T = 0, we get t he following 
in teresting results: 

Theorem 12 .7 

1. F P-PREFJ..(<P,•<P) 1\ ·BELA(•<P) :::J BELA(<fo). 

2. F D-PREFJ..(<P, •<P) 1\ ·BELA(•<P) :::J CHOA(<fo). 

3. F P-PREFJ..(<P,I/J) 1\ · BELA (<P :::J 1/;) :::J BELA(I/J :::J <fo) . 

4- F D-PREFJ..(<P,I/J) 1\ · BELA (<P :::J 1/;) :::J CHOA(I/J :::J <fo) . 
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5. F P-P REF!(<P, ·<P I..P) 1\ ·BELA(..P :::J •<P) :::J BELA(..P :::J </J). 

6. F D-PREF!(<P,•<P I..P) 1\ ·BELA(..P :::J •</J) :::J CHOA(..P :::J </J). 

Item 1, 2 of the theorem show that preference of the form X-PREF!(<P,•<P) cor­
respond to a notion of defaults: if <P is consistent with his belief, Agent A believes 
(chooses) </J. These results are generalized in two ways, which are shown in Items 3, 
4 and Items 5, 6. If Agent A prefers <P to "if;, he normally believes (chooses) "if; :::J </J . 
Preferences of the form X-PREF!(<P, •<P I..P) correspond to conditional defaults: 
Agent A normally believes (chooses) "if; :::J </J. 

Before endi ng this section, we introduce a notion of the o1·der represented by a 
sentence, which is used in the next section. 

D efini t ion 12.12 The orde1· -<X -P REF'J(<P, "if;) repn~sented by a sentenceX-P REF'J(<P, "if;) 
(X is either P or D) is a st rict partial order on B-structure defined as follows : 
M 1-<X-PREF'J(</J,"if;) M2 iff 

1. Ml F ·<P 1\ "if;, 

2. M2 F rfJ/\ •..P. and 

3. M1 F p iff /JI2 F p for all ]J E T. 

With this notion, we can rephrase the satisfaction relation for P-P REF'J and D­
p REF'J as follows : 

Theorem 12.8 

1. (M,-<AP,-<AD) f=P-PREF'J(</J,"if;) iff 
-<P-PREF'J(</J, "if;) n (M x M) C -<AP· 

2. (M , -<AP, -<AD) F D-PREFJ(<P, "if; ) iff 
-<D -PREF'J(<P, "if;) n (Max(M, -<AP) X Max( M ,precap)) c -<AD· 

12.5 Structure Specification Lists 

Agent A 's mental state is represented by an A-structure (M , -<AP, -<AD), which 
consists of a know ledge state M , a plausibili ty order -<AP , and a des irability order 
-<AD· In this section, we introduce constructs of sentences called sl!·ucture specifica­
tion lists, which are used to specify these constructs of A-structures . For a set X of 
sentences, we define Mod(X) = n ¢Ex Mod( <fJ) . We say X is consistent if Mod(X) 
is nonempty. 

D efinition 12.13 U = (K, P, V) is a structure specification list iff 

1. K is a consistent set of B-sentences. 
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2. P is a set of sentences of the form P-P REFJ.( ¢>,If;) which is well-ordered by 
a relation '·precedes". (That is , for all nonempty P' c P, there is a P E P' 
that p1·ecedes all the other elements of P'.) 

3. 1J is a set of sentences of the form D-PREFJ.(t/>,tf;) which is well-ordered by 
the relation "precedes". 

A knowledge state M is specified by a consistent set K. of B-sentences, which 
corresponds to an axiom system possessed by Agent A . We simply let M = M od(K.). 

A plausibility order -<A pis specified by an ordered set P of sentences of the form 
P-P REFJ. (¢>,If;) , and a desirab ility order -<A Dis specified by an ordered set 1J of 
sentences of the form D-P REFJ (¢>,If;) . That is, we construct preference orders from 
Agent A 's preferences between sentences . An agent generally has many preferences, 
to which be gives priority ranking. His preferences may conflict with each other, 
and such conflicts are solved according to priority. 

There are two typical sources of conflicts. First, general preferences are often 
overridden by more specific preferences. For example, a preference (a conditional de­
fault) that animals do not normally fly P-P REF~'( •fly, fly I animal) is overridden 
by a more specific preference that birds normally Oy P-PREF~'(Jly,•fly I bird). 

Second, an agent usually has conflicting desires . Consider that choosing a restau­
rant to eat lunch, Agent A has both of the following preferences : 

( 1) D- P REF~ ( •atCrowded, atC1·owded) 
( 11 prefers not to eat at a crowded restaurant.) 

(2) D-P REF~(eatSushi , eatSoba) 
(A prefers to eat sushi rather than to eat soba.) 

Then, which restaurant does he prefer , a crowded sushi bar or a noodle shop that 
is not crowded? The answer depends on his priority for these preferences: if (1) has 
higher priority than (2), he prefers the noodle shop that is not crowded. If (2) has 
higher priority than (1), he prefers the crowded sushi bar. 

Before we give a method of constructing preference orders from sets of sentences, 
we clarify a notion of conflict among preferences . For a binary relation R, we write 
R+ to mean the transitive closure of R. 

D efini t ion 12. 14 A set X of sentences of the form X-PREFJ.(t/>,tf;) (X is either 
P or D) is compatible iff (UxEX -<X)+ is a strict part ial order. 

Remember that -<X is the order represented by a sentence X. For example, both 
of the following sets are compatible: 

{P-PREF~(t/>, tf; 1 ;..),P-PREF~(t/>', tf; ' l·x)}, 
{D-P REF~'(p, q), D-P REF~'(r, s)} 

where p, q, r and s are distinct atoms of£. 
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Now we define the order --<A· on B-structures that is represented by an well­
ordered set of sentences X. Note that if X is compatible, we can simply put --<x= 
(UxEX --<X)+. In general, however, we need to remove parts of preferences that 
cause conflicts, according to priority. For a binary relation R, we write R- 1 to mean 
the inverse relation of R. 

Definition 12.15 Let X be a set of sentences of the form X-P REF'{(¢, 1/;) which 
is well-ordered by a relation 7n·ecedes. Then , we define 

--<x= ( U --<X)+ 
XEX 

where --<X is defined by transfinite induction as follows: 

--<X= --<X- ((--<Xu U --<X')+t 1 

X 1precede$X 

For every X E X, we remove elements of --<X that cause conflicts when they 
are linked with other preferences that have higher priority. We say X' is an initial 
segment of ,y if X' C X and every element of X' precedes every element of X- X'. 
We have the following desirable results: 

Theorem 12.9 

1. --<x is a strict ]Ja7'tial orde1·. 

2. --<xC (UxEX --<X)+· 

3. If X is compatible, --<x= (UxEX --<X)+ 

4- If X' is an initial segment of X, --<x•C--<x . 

It is useful if we can transform a set of sentences in to a compatible set of sentences 
that represents the same order. We show that for a finite set of sentences of the 
form X-P REF!(¢, 1/;) such transformation is possible. In order to represent an well­
ordered set of sentences, we often use a list notation (X, X' , ... ,X", . . . ) which li sts 
its elements in precedence order. 

Let X= (X1 , ... , X n) where X;= X-PREF!(¢;, 1/;;) for all i = 1, ... ,n. For all 
i = 1, .. . , n, we define 

C(X;) = {X-PREF!(¢;,1/;; I C,/\ . . ·I\ C;_,) I 
cj is either ¢j v -,,pj or .,q,j v 1/;j for all j = 1, .. . 'i- 1} 

and then define 
n 

C(,Y) = U C(X;). 
i=l 
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We can consider the precedes relation on C(X) to be any well-order, since it is not 
essential in compatible sets. Then we can easily show that C(X) is compatible and 
-<c(x)=-<x . 

We give an example of transformation as follows: 

X = (D-P REF~( -.atCrowded, atCrowded), 

D-P REF~(eatSushi , eatSoba) 

). 

(D-P REF~( -.atCrowded, atC1·owded), 

D-PREF!(eatSushi,eatSoba 1-.atCrowded), 

D-P REF~ ( eatSushi, eatSoba I atCrowded) 

). 

Let us return to structure specification lists. A structure specificat ion list U = 
(JC, P, D) specifies an A-structure (M od(JC), -<p, -<v) if both -<P and -<v are bounded 
in M od(JC). Therefore, we can regard a structure specification list U as a model of 
Agent A. An input to U is a new piece of knowledge expressed by a B-sentence 
¢>. Then, the new state of Agent A is represented by U' = (JC U {¢>}, P , D) . The 
output of U obeys assumptions presented in Section 12.3. A-structures specified by 
structure specification lists sat isfy the following properties: 

Theorem 12 .10 Let (JC, P, D) be a st7·uctU?·e specification list that specifies an 
A-st1·ucture (M od(JC), -<p, -<v). 

1. Forall rf>EJC, (Mod(JC),-<p,-<v)f=BELA(¢>). 

2. If P' is a compatible initial egment of P , then for all PEP', 
(Mod(JC), -<p,-< D) f= P . 

3. If D' is a compatible initial segment of D, then for all D E D', 
(Mod(JC),-<p,-<D) f=D. 

4. IfP' is an initial segment ofP and (Mod( !C) , -<p•, -<v) f= BELA( ¢>) , 
then (Mod( !C), -<p, -<v) f= BELA(¢>) . 

5. lf D' is an initial segment ofD and (Mod( !C) , -<p, -<v•) f= CH OA(¢>) , 
then (Mod( !C), -<p , -<v) f= CHOA(¢>). 
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Chapter 13 

Intention and Generalized 
Intention 

13.1 Introduction 

In recent years, it has become increasingly obvious that intention, a kind of mental 
att itudes of an agent, plays an important role in communications in multi-agent 
environment [11, 27, 40]. An agent recognizes his companion 's intentions to predict 
his actions and to behave cooperatively. Conversely, an agent indicates his intentions 
to his compan ion by actions. Natural language is a sophisticated tool for expressing 
intentions. For example, the following sentences express the same intention of the 
speaker, that is, an intention of knowing where the bus starts. 

"I want to know where the bus starts." 
"Please tell me where the bus starts ." 
"Do you know where the bus starts?" 

The relat ionship between natural language sentences and inten t ions that they ex­
press is studied in a theory of speech acts [40, 41]. 

In this chapter , we give a logical formulation of intention by using preference of 
an agent. First, we need to clarify a notion of intention that we try to form ulate, 
since intention is a notoriously ambiguous notion. Intuitively speaking, an intention 
of an agent is a sentence t/> such that (1) the agent is go ing to ach ieve t/>, and (2) t/> is 
desirable for him. With what we have defined already, Condit ion (1) is paraphrased 
into a condition that t/> is a choice of the agent. Therefore, we consider intention to 
be a kind of choice, that is, desirable choice, though a notion of desirable sentences 
has not formally defined yet . Note that a ll choice are not intentions. For example, 
consider an agent who believes a sentence 

eatSushi2 :::> spendM oney3 1\ goSushiBa1·1 

which expresses t hat i[ he eats sushi at a sushi bar, he spends money after eating 
and goes to that bar before eating. Assume that he intends eatSushi2 . Since 
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intentions are choices and choices are closed under logical consequence, we see that 
both spendM oney3 and goSushiB ar1 are his choices. spendM oney3 is obviously not 
an intention, si nce it is not desirable for the agent. We think that goSushiBar1 is 
also not an intention, since it is not desirable for itself. (Consider a situat ion where 
the agent has no money and he is unable to eat sushi .) But unlike spendM oney3 , we 
can consider goSushiBar1 to be desired by the agent as a way to achieve eatSushi2 , 

and thus we consider it to be an intention in a general sense. In fact, it corresponds 
to a notion of subgoal used in planning t heory. Although we mainly deal with 
intention (I NT) which is desirable for itself in this chapter, in the last sect ion of the 
chapter we formulate notions of subgoal (SBG) and generalized intention (G I NT) . 

The following is t he main properties of intentions ever proposed in the li terature 
[5, 33, 36]: 

1. Intentions are consistent with each other and with beliefs. 

2. In tentions are not believed to hold already. 

3. Intentions are not closed under logical consequence. 

4. Intentions have persistency. 

5. Intentions are closely related to preferences about desirability. 

Unlike simple desires , intention s are sentences an agent is going to achieve, and thus 
they must be consistent . If an agent believes that a sentence </> is satisfied already, 
he never intends to make </> true, since such an intention is unnecessary. Intentions 
are generally not closed under logical consequence; an agent does not need to intend 
all consequences of his in tentions. For example, an agent who in tends¢ (e.g., going 
to a library) does not need to intend </> V 'lj; (e.g., go ing to a zoo) . Intentions are 
nonmonotonic, but they have cer tain persistency. Once an agent adopts an intention, 
he never drops it without special reasons. Intent ions are related to preferences in 
various ways. If two intentions of an agent become inconsistent, the agent gives up 
the intention which he does not prefer to the other intention. If an agent knows 
two plans for achieving an intention and he prefers one plan to the other, be usually 
intends to perform t he preferred plan . Conversely, if an agent intends to perform 
a plan, we can infer under certain condi tions that be in tends the result of the plan 
and that he prefers that plan to the other plans. 

The first attempt to formalize in tent ion is made by Cohen and Levesque [10]. 
They used persistency to characteri ze intention s. According to their definition , a 
choice 1 is persistent if it will not be dropped un ti l the agent thinks it bas been sat­
isfied or he t hinks it will never be t rue. Then they identified intention wit h a special 
kind of persistent choice. Although defined intentions have strong and interesting 
consequences, there are two problems. First, persistent choices are essentially closed 
under tautological consequence. For example, if </> is a persistent choice, then so is 

1T hey use a term "goal" to mean what we call "choice". 
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</> V 1/; for arb itrary 1/J. Second, their definition of persistency is too strong, since an 
agent may drop his intentions for various reasons. For instance, if an agent comes 
to know that his intentions</> and 1/; are mutually exclusive, he must give up at least 
one of these intentions, while each of them may be still achievable. 

I<onolige and Pollack [25] took another approach, a representationalist approach 
to intention. They represent intentions directly in a cogn itive structure of an agent . 
Restricting admissible structures, they showed that intentions can satisfy desirable 
basic properties without suffering from the consequential closure. However, the 
dynamics of intention must be provided from outside the model, therefore we cannot 
at all examine such properties as persistency in their formalism. 

Moreover, neither of these theories considers the relationship between intentions 
and preferences of an agent. We think it is a severe limitation of them particularly 
when we deal with interactions among intentions and reasoning about plans. 

In this thesis, we define intention in terms of desirability preference. Defined 
intentions satisfy all of the five properties mentioned above. In particular, a new 
preference-based account for the consequential closure problem and persistency is 
given. Bratman [5] argues that intention is not reducible to a combination of other 
mental attitudes like belief and desire, because intention concerns an agent's com­
mitment to future act ions. An agent has incomplete reasoning capabili ty and limited 
resources, and thus his actions do not necessarily agree with his preference all the 
time. Although this argument is correct, it is a lso true that an agent's adoption and 
abandonment of intentions are determined mainly by his preferences. Therefore, we 
think our formulation properly model most aspects of intention of a rational agent. 

13.2 Intention and Preference 

To define intention as desirable choice, we need to formulate a notion that a sentence 
</> is desirable for Agent A. This notion is ambiguous, and it is hard to choose the 
best definition from possible ones, though some of them are clearly inadequate; for 
example, a condition D-PREF!( </>, •</>) is clearly too strong for </>'s being desirable 
for A. Therefore, we define this notion simply by a minimal requirement that </> is 
not bad for Agent A. That is, </> is desirable for A if </> is satisfied in no minimally 
preferred structure. This requirement is reasonable, because if there exists a model 
of q, that is minimally preferred, attempting to satisfy</> may result in that minimally 
preferred model, that is , may not make the things better, and thus there is no reason 
for Agent A to pursue </> . Now intention is defined as follows: 

Definition 13.1 (R ep eated) (M ,-<AP,-<Ao) f= I NTA(<P) iff 

1. Mf=</> for all ME J\1ax(Max(M,-<AP),-<Ao),aod 

2. MV=<P forall MEMin(Max(M,-<AP),-<Ao). 

We can easily show the following properties of intentions: 
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Theorem 13.1 

1. F JNTA(</>) ::J CHOA (¢>). 

2. F JNTA (¢>) ::J ~BELA(¢>) II ~BELA (~¢>). 

3. F I NTA(¢>) II BELA(¢= I/;) ::J I NTA(I/;). 

4- F I NTA(¢>) II I NTA(..P) ::J I NTA(</>111/;) . 

5. f= I NTA(<f>)II !NTA ('if;)::J ! NTA(¢>vlj;). 

An agent does not intend sentences which he believes to be satisfied already. In­
tentions are cons istent with each other and with beliefs, and they are closed under 
conjunct ion and disjunction. The converse of 4 and 5 does not hold in general. 
In tending a conjun ction does not imply intending its conjuncts. However, if one 
conjunct is preferred to the other , we can conclude that at least t he preferred con­
junct is intended: 

Theorem 13.2 

1. F JNTA(</> Ill/;) II D-PREF,~(</>,1/;) II·BELA(..P ::J </>) ::J I NTA(¢>). 

2. F I NTA(¢> vI/;) II D-PREF!(</>,1/;) II ~BELA(¢> ::J I/;) ::J I NTA(¢>). 

To demonstrate that our definition agrees with our intuitions, let us take a n 
example. Consider that Agent A goes to a bookstore intending to buy a paperback 
and also intending to buy a magazine, because he likes to buy them. This situation 
is descri bed by the following st ructure specificat ion list : 

K: = {} 
P =() 
D = ( D-P REF~q ( buyPaper·back, ~buy Paperback), 

D-P REF~q(buyM agazine, ~buyM agazine) 
) . 

Then we have the following : 

(Mod(K), -<p, -<v) f= I NTA(buyP aperback ) II 

INTA(buyMaga zine) . 

Consider a sentence buyPaper· back = buyM agazine which means buying both 
or neither. Although this sentence is a tautological consequence of an intention 
buy Paperback II buyM agazine and hence it is a choice, it is not intended, because 
• buyPaper·back II ~buyMagazine is satisfied in minimally preferred models. This 
shows that in tentions are not closed under tautological consequence in our logic: 

(Mod(K) , -<p, -<v) f= 1 NTA(buyPaper·back II buy Magazine) II 

~INT.4(buyPaperback = buyMagazine) . 
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At a bookstore, Agent A happens to know that he has not enough money to buy 
both of them. If he has no preference between buying the paperback and buying 
the magazine, he d rops in tentions to buy each of them, and now only in tends to buy 
one of them: 

(Mod(JC' ), -<p, -<v) f= I NTA(buyPaperback V buyMagazine) 1\ 

-,JJVTA(buyPaperback) 1\ 

• 1 NTA ( buyM agazine) 

where the new state of knowledge}(' is given as follows: 

JC' = { •buy Paperback V •buy Magazine}. 

On the other hand , if he prefers the paperback to the magazine, he continues in­
tending to buy the paperback, while he gives up t he intention to buy the magazine: 

where 

(M od(JC'), -<p, -<v•) f= I NTA(buyPape1·back V buy Magazine) 1\ 

I NTA(buyPaperback) 1\ 

-,JJVTA(buyMagazine) 

1Y = ( D -P REF~9 (buyPaperback, •buyPaperback), 
D -P REF~9(buyM agazine, •buyM agazine), 
D-P REF~9 (buyPape1·back, buyM agazine) 

) . 

We have shown t hat in tentions defined in our logic satisfy good properties. They 
are consistent with each other and with beliefs . They are not believed to hold 
already. They are not closed under logical conseq uence. They are closely related to 
preferences, as is demonstrated by Theorem 13.2 a nd the last example. (We give 
further examples in the next chapter.) Moreover, we show t hat they have a kind of 
persistency in the next section. 

13.3 Persistency of Intentions 

Intentions have pe1·sistency. Once an agent adopts an intention, he never drops 
it without special reasons. Bratman [5] argues that th is property of in tentions is 
essential to the practical reasoning capability of an agent, since the stabili ty of 
intentions enables an agent to coordinate his current activities in accordance with 
his intentions about the future. Persistency mainly stems from resource limitations 
of an agent, who refuses reconsideration of in tentions. Cohen and Levesque [10] 
t reat persistency as a characLerist ic of intentions that distinguishes t hem from other 
simple choices. According to their definition, an intention is a special kind of choice 
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which will never be dropped until an agent thinks it has been satisfied or he thinks 
it is impossible to achieve. 

However, this formulation of persistency is obviously too strong. Vve already 
have a counterexample, the bookstore example presented in the last section. Agent 
A drops the intention to buy the magazine although he does not think either that 
he has bought the magazine or that he cannot buy the magazine. It only conflicts 
with another intention , the intention to buy the paperback . Cohen and Levesque 
also introduce in [10] a notion of t·e/ativized persistency, persistency as long as some 
pre-specified condition is consistent . But, it is not clear whether such conditions are 
exhaust ively expressible in real situations . After all, persistency of intentions is a 
prototypical phenomenon and we cannot completely specify the condition of when 
to give up an intention. 

In our view, there is another type of persistency which comes from invariability of 
the preference order of an agent. An agent prefers his intentions, and if hi preference 
order does not change, the agent will continue to have those intentions. Of course, it 
is not always the case. As illustrated by the example, an intention is dropped when 
it becomes inconsistent with other intentions to which it is not preferred. But even 
in such cases, if the agent later thinks its rivals are unachievable, the intention will 
be recovered . In our example, if the paperback is sold out and Agent A comes to 
know that fact, he again adopts the intention to buy the magazine. 2 This suggests 
that we can formalize a weaker form of persistency of intentions, but before we can 
proceed, some preparations are required. Here, we only deal with monotonic growth 
of belief, that is, we assume that the plausibility order is an empty order f/J . 

D efinition 13.2 M' is a partial restriction of ;\It with respect to </> iff 

1. M 'c;llt , 

2. M' \ J\1/od(</>) = M \Mod(</>), and 

3. M' n Mod(</>) is nonempty. 

A partial restriction with respect to </> corresponds to Agent A's adopting a new 
belief q, :::J 'if; for some 'if; . It restricts models of</> partially, in the sense that it never 
makes q, inconsistent. The following theorem says that if Agent A drops an intention 
</>by adopting a belief about</>, it is possible that he will recover that intention later. 
3 

Theorem 13.3 If (M, 0, -<-AD) f= I NTA(</>) , then for every pat·tial restt·iction ;\It' 
of M with t·espect to </>, thet·e exists a partial restriction M" of M' with respect to 
•</> such that (M", 0, -<-Ao) f= INTA(<I>). 

2 ote that a simple choice buy Paperback = buyA1 agazine , on the other hand 1 will never be 
recovered unless he comes to believe it . 

3[n other words, as long as Agent A's belief monotonically expands by adopting a belief about 
¢> and ¢> is consistent, he continues to intend </J, at least conditionally. 
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Furthermore, this property characterizes intentions among choices. 

Theorem 13.4 (M,0,-<Ao) 'FINTA(¢) iff 
(A1, 0, -<Ao) F CHOA(¢) and joT eve1·y pa1·tial restl·iction M' of M with respect 
to ¢, there exists a pa1'lial restl·iction M" of M' with respect to •¢ such that 
(M",0,-<Ao) 'F CHOA(¢). 

13.4 Generalized Intention 

In the preceding sections, we indentify intentions with desirable choices. But, we of­
ten use a word "intention" in a more general sense. For example, a natural language 
sentence "I want to go to a sushi bar." is said to express the speaker's intention of 
going to a sushi bar. However, going to a sushi bar is not necessarily desirable for 
him for itself. He may want go there only to achieve another goal, that is , eating 
sushi. In the terminology of planning theory, his going to a sushi bar is a subgoal 
of his eating sushi. Since this use of "intention" is also important for dialogue pro­
cessing, we introduce a notion of generalized intention , which includes a notion of 
sub goal. 

A subgoal of a goal is a sentence that must be satisfied in order to achieve that 
goal. For example, a precondition of an action is a subgoal of that action, and a 
conjunct of a conjunction is a subgoal of that conjunction. We formulate this notion 
as follows: Agent A thinks that¢ is a subgoal of ,P (written SBGA(¢,1/1)) if he 
believes that ¢ is a necessary condition of 1/J and ¢ is not temporally preceded by 
1/J . Since we consider attitudinal operators to be temporally neutral, the subgoal 
relation is defined only on sentences that contain no attitudinal operator. The 
precise definition is given as follows: 

D efinit ion 13 .3 (Repeated) LetS= (M, -<AP, -<Ao) be an A-structure. 

1. If¢ or 1/J contain attitudinal operators, S V= SBGA(¢, ,P) . 

2. If ¢ contains no attitudinal operators and 1/J is either p or •p, then 
sF SBGA(¢,1/1) iff 

(a) SF BELA(.P ::J ¢), and 

(b) time(q) :":: time(p) for a ll q E atom(¢). 

3. If ¢, 1/J and A contain no attitudinal operators, then 
SF SBGA(¢, ,P 1\ x) iff there are 1/J' and x' such that 

(a) ¢ is logically equivalent to 1/J' 1\ x', 
(b) atom(¢)= atom( ,P') U atom(x') , and 

(c) M F SBGa(,P',,P) 1\ SBGa(x' ,x). 
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4. If ¢> , 'if; and I' contain no attitudinal operators , then 
S I= SBGA(¢>, •(1/J 1\ x)) iff there are 'if;' and x' such that 

(a) q, is logically equivalent to •(1/J' 1\ x'), 
(b) atom(¢>)= atom( 'if;') U atom(x'), and 

(c) M I= SBGa(•'f/;', • 'if;) 1\ SBGa(•x', •x). 

5. If ¢> contains no attitudinal operators , then 
S I= SBGA(¢>, .. ,p ) iff S I= SBGA(¢>, ,P ). 

We can eas ily show the following properties of subgoal: 

Theorem 13.5 

1. I= SBGA(¢>,'1j; ) :::J BELA(lj; :::J ¢>). 

2. I= SBGA(¢>,¢>). 

3. I= SBGA(¢>,'1j;) 1\ SBGA('f/; , ¢>) :::J BELA(¢>= 1/J). 

4- I= SBGA( ¢>, 'if;) 1\ SBGA (,P, \) :::J SBGA(¢> , \) -

5. I= SBGA(¢>, '1j; ) 1\ SBGA( ¢>' ,'1j;') :::J SBGA(¢>11 ¢>' , 1/J 1\ 1/J') . 

6. I= SBGA(¢>, 'if;) 1\ SBGA(¢>' , ,P') :::J SBGA(¢> V ¢>' , 1j; V 'if;'). 

A subgoal of a sentence is a necessary condition of that sentence. The subgoal 
relation is a partial order relation. 

We say a sentence ¢> is a generalized intention if ¢> is not believed and ¢> is a 
subgoal of some intention : 

Definition 13.4 (Repeated) (M , -<AP, -<Ao) I= GI NTA(¢>) iff 
there is a 'if; such that (M , -<AP , -<Ao) I= ·BELA(¢>) 1\ SBGA( ¢>,'if;) 1\ I NTA(,P). 

For example, when Agent A has an intention of eating sushi, he has generalized 
intention of going to a sushi bar: 

I= I NTA(eatSushi 2 ) 1\ 

BELA(eatSushi2 :::J goSushiBart) 

:::J GI NTA(goSushiBar 1). 

We have the following properties of generalized intentions: 

Theorem 13.6 

1. If¢> contains no attitudinal operator, I= I NTA(¢>) :::J GI NTA(¢>). 
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2. F GINTA(<P):) CHOA(</>) . 

3. F GINTA(<P):) ·BELA(</>) 1\ ·BELA(•</>) . 

4. F GINTA(<P) 1\ GINTA(,P):) GINTA(<P 1\ ,P). 

Generalized intentions are consistent and closed under conjunction. Furthermore, 
we can easily show that generalized intentions are also not closed under logical 
consequence. 
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Chapter 14 

Reasoning about Plans 

14.1 Basic Nat ions 

In this chapter, we apply the preferential logic of mental attitudes to reasoning about 
plans . We analyze various examples of plan construction and plan recognition in 
our logic. Before we give examples, we need to introduce several basic notions about 
plans. 

A notion of plan is widely used in AI in different ways. According to Pollack [32], 
there are two views of plans: plans as recipes for actions and plans as complex mental 
attitudes, and we deal with the latter of them. But, we will not further discuss what 
"plans" are. In fact , we regard plans simply as collections of an agent's intentions 
and generalized intentions, which are connected with each other by various relations 
such as subgoal, causation and equivalence. Some intentions are thought to be 
subgoals of other intentions. Some intentions are thought to cause other intentions. 
And, some intentions are believed to be equivalent to other intentions. 

Action is a central notion for plans. Actions are specified in a way originated 
in the STRIPS system [13], using their ]J1'econditions and effects. Although notions 
of preconditions and effects of actions are ambiguous in both causal and tempo­
ral respects [32], we use these notions in later sections, and thus we define them 
informally here. We say a sentence ¢; is a precondition of another sentence (ac­
tion) if; if if; implies ¢; and ¢; is temporally precedes if; . We say ¢; is an effect of if; 
if if; implies ¢; and if; is temporally precedes ¢;. For example, if an agent believes 
eatSushi2 ::> spendM oney3 1\ goSushiBar 1, then he thinks that goSushiBa1·1 is a 
precondition of eatSushi2 and that spendftf oney1 is an effect of eatSushi 2 • 

Plan consl!·uction is the process of inferring intentions and generalized intentions 
in reverse temporal order, from top goals to subgoals and actions. An agent con­
structs his own plans and constructs other agents' plans (that is, simulates other 
agents' plan construction). Plan recognition is the process of inferring intentions and 
generalized intentions in temporal order, from observed actions and subgoals to top 
goals. Since we model plan construction and plan recognition in a single framework, 
we can use the same knowledge and preferences both in plan construction and in plan 
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recognition. For example, consider a preference of the form D-PREF~"(~act,act) 
where act is an occurrence of an action . It expresses that Agent A prefers not to 
perform act rather than to perform it if all else are equal, that is, if all effects of act 
are satisfied already. Since most actions are performed at some (physical or mental) 
cost, we think that an agent generally has thi type of preference, and we can use it 
both in plan construction and in plan recognition. 

14.2 Plan Construction 

14.2.1 Introduction 

To make the most desirable possible worlds true, an agent constructs a plan and 
coordinates his future actions . In this sense, an (ideal) agent always chooses a plan 
that is the most desirable for him. Since plans consist of intentions and generalized 
intentions, they are nonmonotonic. \Nhen an agent gets new pieces of information, 
his preferences for plans may change. Moreover, his plan may turn out to be im­
possible to perform. In those cases, the agent revises his plan to make it the most 
desirable for him. 

There are a large number of plan construction models and planning systems 
[3, 7, 15]. Most of them have no means to express preference among plans, and thus 
they only concern with providing plans that can be adopted by an agent for given 
goals rather than with determining what plans are really adopted. There are several 
exceptions. The I<AMP planning system [4] uses a c·ritic procedure [35] that tries 
to find action subsumption to generate simpler (that is , more desirable) English 
sentences. The SUDO-PLA NER system [50] constructs plans under uncertainty. 
It chooses plausible plans by eliminating plans that are proved to be less likely to 
achieve given goals than other plans. However, only restricted types of preference 
can be represented in such systems. Furthermore, preferences are often represented 
implicitly in planning procedures, and it is hard to reason about them and their 
relationship with other attitudes. 

Our logic provides a formal model of plan construction which has strong expres­
sive power fo r preferences. An agent adopts desirable sentences as his goals (that is, 
intentions). Since properties are generally persistent (we express this fact by frame 
axioms), the agent needs to perform some action in order to achieve these goals. 
Then he chooses the most des irable actions that achieve them. In this way, an agent 
chooses his goals and plans for them which are the most desirable for him. 

To illustrate this process, we give three examples of plan construction in the rest 
of th is section. The first example illustrates plan construction and revision with 
conflict ing preferences. In the second example, we deal with simulation of another 
agent's plan construction processes. In the third example, we deal with cooperative 
plan construction, that is, construction of plans that achieve another agent's goals. 
In these examples, we speci fy an agent's mental states by structure specification 
lists. To ensure that preference orders are bounded, we assume that atom(.C) is 
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finite in this section . 

14.2.2 Constructing a Plan with Multiple Preferences 

Consider that Agent A is hungry and plans to eat lunch. He knows two restaurants, 
a sushi bar where he can eat sushi , ptand a noodle shop where he can eat soba and 
udon. Agent A has several preferences which confli ct with each other. F irst of a ll , he 
wants to be not hungry. This preference has the highest priority. He prefers to eat 
sushi rather than to eat soba, and he prefers soba to udon. Bu t, he does not want 
to eat lunch at a crowded restaurant . This situation is described by the following 
structu re specification list : 

JC = { (1) goSushiBa1·1 ::::> atSushiBar2 , 

} 

(2) goNoodleShop 1 ::::> atNoodleShop2 , 

(3) eal3 = eatSushi3 V eatSoba3 V eatUdon3, 
(4) ealSushi3 ::::> atSushiBar2 , 

(5) eatSoba3 V eatUdon3 ::::> alNoodleShop2 , 

(6) eat3 ::::> •hungry4 , 

(7) alCrowded2 = (atSushiBar2 1\ crowdedSushiBa1·2 )V 
(atNoodleShop2 1\ crowdedNoodleShop2 ), 

(8) •atSushiBar0 , 

(9) •atN oodleS hop0 , 

(10) hungryo 

P = ( (11) P-P REF'//( •atSushiB ar2 , atSushiBar2 I •atSushiBar0 ), 

) 

(12) P-PREF~·2 (•atNoodleShop2,atNoodleShop2 l •atNoodleShop0 ), 

(13) P-P REF'}.•4 (hungry4 , •hungry4 I hungry0 ) 

V = ( (14) D -P REF!( •hungry4 , hungry4 ) , 

) 

(15) D-P REF! ( •atCrowded2 , atCrowded2 ), 

(16) D-P REF!(eatSushi3, eatSoba3), 
(17) D-PREF!(eatSoba3,eatUdon3) 

JC consists of Agent A's knowledge about general properties of act ions and facts 
about the current situation: he is hungry and not at restauran t at time 0. P 
consists of frame ax ioms. For example, Sentence 11 expresses that if Agent A is 
not at a sushi bar at time 0, then his being not at the sushi bar at time 2 is more 
plausible than his being at the sushi bar if states of the world between time 0 and 
t ime 2 are equal. We think t hat Agent A has such frame axioms for every interval 
of time, though here we give on ly those which we really use. V specifies Agent A's 
preferences about desirabili ty. Sentence 14 has the highest priority, Sentence 15 is 
the second, and Sentence 16 is the third. T hen, we have the following resu lt: 

82 



Theorem 14.1 

(Mod(K),-<p,-<v) f= BELA(..,flungry4 ::)eat3 )11 

I NTA( ..,hungry4 II ..,atC1·owded2 ) II 

INTA(..,hungry4 ) II 

INTA(eat3 ) II 

I NTA(eatSushi 3 ) II 

GINTA(atSushiBar2 ) II 

G I NTA (goSushiBar1 ) II 

G I NTA ( ..,atC1·owded2 ) . 

Agent A intends to be not hungry and not to eat at a crowded restaurant. Since 
he does not believe that these restaurants are crowded, he chooses to eat sushi and 
plans to go to the sushi bar. 

Before leaving for the sushi bar, Agent A happens to know that the bar is 
crowded: 

K' = K U { crowdedSushiBa1·2 }. 

His intention of eating sushi becomes inconsistent with a stronger intention not to 
eat at a crowded restaurant, and thus it is abandoned. In other words, he prefers to 
eat at the noodle shop rather than to eat at the crowded sushi bar and revises his 
plan as follows: 

T heorem 14.2 

(Mod(K'),-<p,-<v) f= INTA(eatSoba3 )11 

GI NTA(atNoodleShop2 ) II 

GINTA(goNoodleShop,) 11 

G I NTA ( -,atSushiBar2 ) II 

GI NTA( ..,goSushiBm·1 ). 

At the noodle shop, Agent A is told that saba is out of stock: 

K" = K'U {..,eatSoba3 } . 

His plan is now impossible to perform, and he constructs a new plan to eat udon: 

Theorem 14 .3 

(Mod(K"), -<p, -<v) f= INTA(eatUdon3 ). 
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14.2.3 Simulating Plan Construction of Another A gent 

An agent constructs not only his own plans but also other agents' plans using knowl­
edge about their belief and preferences. If he has complete knowledge about them, 
he gets as strong conclusions as for his own plans . If he has only incomplete knowl­
edge, he gets weaker conclusions. The following example demonstrates how our logic 
models this capability of simulating other agents' plan construction. 

We use the same lunch situation except that the actor is Agent B . We transform 
the previous structure specification list into a new one in the following way: First , 
to make the new actor clear , we add "B" to the names of atoms and attitudinal 
operators. Next, we apply an operator EELs to every sentence in K. For frame 
axioms in P , we replace them for brevity by beliefs they actually express in this 
situation and add them to K. We transform D into an equivalent compatible set 
C(D) by using the method explained in Section 12.5. Then, we have the following 
list: 

K = { (1) BELs(goSushiBarB1 ::J atSushiBarB2 ), 

(2) BELs(goNoodleShopB1 ::J atNoodleShopB2 ), 

(3) BELs(eatB3 = eatSushiB3 V eatSobaB3 V eatUdonB3), 
(4) BELs(eatSushiB3 ::J atSushiBa1·B2 ), 

(5) BELs(eatSobaB3 v eatUdonB3 ::J atNoodleShopB2 ), 

(6) BELs(eat B3 ::J --.hungryB4 ), 

(7) BELs(atCrowdedB 2 = (atSushiBarB2 1\ crowdedSushiBar2 )V 
(atNoodleShopB2 1\ aowdedNoodleShop2 )) , 

(8) EELs( --.atSushiBa1·B0 ), 

(9) BELs(--.atNoodleShopB0 ) , 

(10) BELs(hungryBo), 
(11) BELs(--.atSushiBa?·B0 1\ atSushiBarB2 ::J goSushiBarB1 ), 

(12) EELs( --.atNoodleShopB0 1\ atNoodleShopB2 ::J goNoodleShopB!), 
(13) BELs(hungryB0 1\ --.hung,·yB4 ::J eatB3), 
(14) D-P REF~( --.hungryB4 , hungryB4 ) , 

(15) D-P REF~( •atCrowdedB2 , atC1·owdedB2 I •hung1·yB4 ), 

(16) D-P REF~( •atCrowdedB2 , atCrowdedB2 I hungryB4 ) , 

(17) D-P REF~(eatSushiB3 , eatSobaB3 I --.hungryB4 1\ •atC1·owdedB2), 
(18) D-P REF~(eatSushiB3, eatSobaB3 I •hungr·yB. 1\ atCrowdedB,), 
(19) D- P REF~( eatSushiB3, eatSobaB3 I hungryB4 1\ •atC1·owdedB2 ), 

(20) D-P REF~( eatSushiB3, eatSobaB3 I hungryB4 1\ atCrowdedB2), 
(21) D-P REFMeatSobaB3, eatUdonB3 I --.hungryB4 1\ •atCrowdedB2 /\ 

eatSushiB3), 
(22) D-P REF~(eatSobaB3 , eatUdonB3 I --.hungryB4 1\ •atCrowdedB2 /\ 

--.eatSushiB3), 
(23) D-P REF~( eatSobaB3, eatU donB3 I --.hungry B. 1\ atC,·owdedB2/\ 

eatSushiB3), 
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(24) D-P REF~(eatSobaB3 , eatUdonB3 I •hung1·yB4 II atC1·owdedB2 11 

•eatSushiB3), 
(25) D-PREF~(eatSobaB3 ,eatUdonB3 1 hungryB4 11 •atCrowdedB2 11 

eatSushiB3), 
(26) D-P REF~(eatSobaB3 , eatUdonB3 I hung1·yB4 II •atCrowdedB2 11 

•eatSushiB3), 
(27) D-P REF~(eatSobaB3, eatUdonB3 I hungryB4 II atC1·owdedB2 11 

eatSushiB3), 
(28) D-P REF~( eatSobaB3, eatU donB3 I hungryB4 II atCrowdedB2 11 

•eatSushiB3) 
} 

p = () 
D=() 

We let 1) be an empty set, because Agent A's desire is not the matter here. We 
have the following : 

T heorem 14.4 

(Mod(K), --<p, --<v) I= BELA((Cl ::J JNT8 (•hungryB4 )) II 

(Cl ::J INTa(eatB3 )) II 

(Clll C2 ::J INTa(eatSushiB3)) II 

(Clll C211 C3 ::J GJ NT8 (atSushiBarB2 )) 11 

(Clll C211 C3 ::J GINT8 (goSushiBa,-B,)) 11 

(Clll C4 ::J JNT8 (eatSobaB3)) II 

(Clll C411 C5 ::J GJNT8 (atNoodleShopB2 )) 11 

(Clll C411 C5 ::J GJNT8 (goNoodleShopB1 ))) 

Cl ·BEL8 (hungryB4 ) 11 ·BELa(•hungryB4 ), 

C2 •BEL8 (eatSushiB3 II •eatSobaB3 ::J atC1·owdedB2)11 

·BEL8 (•eatSushiB3 11 eatSobaB3 11 •eatUdonB3 ::J atCrowdedB2 ), 

C3 ·BEL8 (atSushiBarB2 ), 

C4 BELa(eatSushiB3 11 •eatSobaB3 ::J atC,·owdedB2 )11 

·BEL8 (•eatSushiB3 11 eatSobaB3 II •eatUdonB3 ::J atC1·owdedB2), 

C5 ·BEL8 (atNoodleShopB2). 

We have an weak result with conditions on Agent B's belief. It is because we use 
only positive knowledge about Agent B, that is, knowledge about what B believes 
and prefers, and we does not use knowledge about what B does not believe and 
does not prefer. In general, an agent thinks by default that another agent does not 
believe ,P, for every ,P that belongs to a certain class of sentences. For simplicity, we 
assume this type of preference for all propositional sentences a : 
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P' = { P-PREF!(~BELa(a). BEL8 (a)) I a is a propositional sentence} 

where the precedence order on P' is an arbitrary wel l-order. Then, we have the 
following: 

T heore m 14.5 

(Mod(JC),-<p•,-<v) f= BELA(INTa(~hungryB.))!\ 

I NTa(eatB3 ) 1\ 

I NT a( eatSushiB3 ) 1\ 

GINT8 (atSushiBarB2 ) 1\ 

GINT8 (goSushiBarB1)). 

14.2.4 Cooperative Plan Construction 

An agent often constructs plans that achieve another agent 's goals. When an agent 
believes that another agent has an intention, he usually intends to achieve that 
intention for that agent . In Chapter 6 of Part 1, we express this fact by an inheritance 
rule (C9). This rule says , in terms of our logic, that we can infer I NTA(a) from 
BELA(INTa(a)) . However, th is inference is a default one, and it is not always 
applicable. In particular, this inference is not valid when Agent A believes either a 
or ~a and when Agent A has stronger preferences that conflict with a. 

In our logic, we can deal with this type of inference using preferences of the 
following form: 

D-PREF!(a,~a I JNTa(a)). 

Consider that Agent A knows that his companion Agent B wants to go to a museum. 
To go to the museum, B needs to know where the bus for the museum starts , and 
A knows it. This situation is described by the following structure specification list : 

K = { (1) informGateA1 :::J knowGateB2 , 

} 

(2) gotoMuseumB3 :::J knowGateB2 1\ atMuseumB4 , 

(3) enterMuseumB5 :::J atMuseumB,1 1\ openMuseum4 , 

( 4) ~knowGateB0 , 

(5) ~atMuseumB0 , 

(6) JNTa(enterMuseumB5 ) 

P = ( (7) P-P REF~·\ ~knowGateB2 , knowGateB2 I ~knowGateB0), 
(8) P-PREF~·''(~at,atMuseumB4 I ~atMuseumB0) 

) 
D = ( (9) D-PREF!(watchParadeB6 , ~watchParadeB6), 

(10) D-PREF!(enterMuseumB5 , ~enterMuseumB5 I INTa(ente1·MuseumB5 )) 

) 
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In this situation, Agent A inherits B's intention of entering the museum and con­
structs a plan for it. He intends to inform B of where the bus starts: 

T h eorem 14.6 

(Mod(K), -<p, -<v) f= BELA(knowGateB2 :> informGateAJ) 1\ 

BELA(atMuseumB4 :> gotoMuseumB3 ) 1\ 

INTA(watchParadeB6 ) 1\ 

INTA(ente1·MuseumB5 ) 1\ 

GJNTA(atMuseumB4 ) 1\ 

GINTA(gotoMuseumB3 ) 1\ 

GJNTA(knowGateB2 ) 1\ 

GINTA(informGateAJ) 1\ 

GJNTA(openMuseum4 ) . 

On the other hand, if Agent A knows that the museum is not open 

K' = K U { •openM useum4 } 

and B's intention of entering it is not achievable, he does not inherit this intention . 
Similarly, if this intention conflicts with A's stronger intention, say, an intention of 
letting B watch the city parade 

K" = K U {enterMuseumB5 :> •watchPa1·adeB6 } . 

it does not inherited. 

T h eor em 14 .7 

(Mod(K'),-<p,-<v) f= •lNTA(enterMuseumB5 ). 

(Mod(K"), -<p, -<v) f= •lNTA(enterMuseumB5 ). 

14.3 Plan Recognition 

14.3.1 Introduction 

In multi-agent environments, an agent recognizes other agents' intentions and plans 
in order to coordinate his actions with them and to behave cooperatively. Plan 
recognition is part icularly important when we want to construct a dialogue system 
that generates helpful responses, and it is intensively studied in relation to dialogue 
understanding. 

P rocedural models of plan recognition [1, 6, 24] infer plausible plans of another 
agent from observed actions or intentions of that agent by using heuristic rules and 
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inference procedures. Two heuristic rules are widely used [1]: the Action-Effect Rule 
says that if an agent intends to perform an action, it is plausible that he intends 
to achieve its effects. The Precondition-Action Rule says that if an agent intends to 
achieve a precondition of an action , it is plausible that he intends to perform that 
action . 

Formal studies of plan recognition, wh ich give theoretical foundations to these 
procedural models , have not made much so far. Kautz [23] applied circumsc1·iption 
[28] to plan recognition in domains where actions are hierarchically structured with 
respect to decomposition and abstraction. He gave a nice account of plan recognition 
in these restricted domains . However, it is hard to extend this model to allow 
various domain-specific preferences as inputs, since circumscription deals with only 
restricted form of preferences. 

In this section, we apply our logic of mental att itudes to model ing plan recog­
oition . We can specify arb itrary preferences between sentences as inputs to the 
recognition. In fact, we can use two kinds of preferences: a planner 's preference 
about desirability, and a recognizer's preferences about the planner's mental atti­
tudes . 

To examine how such preferences can be used to explain typical phenomena in 
plan recognition, we give four examples in the rest of this section . The first and the 
second examples examine the Action-Effect Rule and the Precondition-Action Rule, 
respectively. We show that under certain cond itions on preferences, these rules are 
valid. ln the third example, we deal with an extension of the Action-Effect Rule . 
When an intended action has several effects, the most preferred effects are consid­
ered to be in tended. The fourth example deals with a recognizer's preference for 
simpler plans. We give comparatively small examples here. In order to explain larger 
examples, we need many preferences which are not necessarily easy to understand . 
Therefore , we need to know much about regularities in an agent's preferences . In 
examples presented in th is section , we assume that atom( C) includes no atom other 
than t hose occurring in t he structure specificat ion lists . 

14.3.2 Inferring Effects from A ct ions 

Consider that Agent A knows that Agent B intends to perform an action, an action 
of his going to a museum by bus. A knows that B can get to the museum by 
performing this action or another action, go ing there on foot . A knows that B does 
not prefer to go to the museum if other things are equal (that is, B does not prefer to 
perform a going action if he is already at t he museum). This situation is described 
as follows: 
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K = { (1) BELa(gobyBusB2 V goOnFootB2 :::l atMuseumB3 ), 

(2) D-PREF~q(•gobyBusB2 ,gobyBusB2 ) , 
(3) D-P REF~q(•goOnFootB2 ,goOnFootB2 ), 
(4) D-P REF~q( •gobyBusB2 1\ •goOnFootB2,gobyBusB2 1\ goOnFootB2), 
(5) I NT8 (gobyBusB2) 

} 
p = () 

D= () 

Then we can infer B's intent ion of achieving the effect of the going act ion , that is, 
h is intention of being at the museum : 

Theore m 14.8 

(Mod(K),--<.p,-<v) I= 
BELA( BELa(atMuseumB3 :::l gobyBusB2 V goOnFootB2) 1\ 

(•BEL 8 (gobyBusB2 :::l •goOnFootB2) :::l INTa(atMuseumB3 )) 1\ 

D -P REF~q(gobyBusB2 , goOnFootB2)) . 

In fact, we get information about Agent B's preference, that he prefers to go by bus 
rather than to go on foot. This example shows that agents· preferences not only 
serve as inputs to plan recognition, but also they are sometimes obtained as a part 
of the output of it. 

14.3.3 Inferring Actions from Preconditions 

Consider that Agent B has a generalized intention of knowing where the bus starts, 
which is a precondition of his going somewhere by bus. 

K = { (1) BELa(gobyBusB2 :::l knowGateB!), 
(2) GI NTa(knowGateB 1) 

} 
P = ( (3) P-PREF!(• I NT8 (knowGateB1 ),INT8 (knowGateB1 )), 

(4) P-P REF! (I NTa(gobyBusB2), 1 NTa(knowGateB1 1\ •gobyBusB2 )) 

) 
D=() 

ote that knowing where the bus starts is usually not desirable for itself, and thus it 
is not an intention as is expressed by Sentence 3. Sentence 4 says that a simple inten­
tion I NT8 (gobyBusB2) is more likely to be adopted than a complex and unnatural 
intention I NT8 (knowGateB1 1\ •gobyBusB2). Then we can conclude that Agent 
B has t he generalized intention knowGateB1 simply as a subgoal of his intent ion of 
performing an act ion gobyBusB2: 
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Theorem 14 .9 

(M od(JC), -<p, -<v) I= BELA(! NTa(gobyBusB2) II 

-, ] NTa(knowGateB1 )). 

To get the similar result, we can use another set of preferences: 

P' = ( P-P REF! (I NTs(gobyBusB 2), -,J NTa(gobyBusB2) I GJNTa(knowGateB1 ))) 

This preference directly expresses our heuristics fo r plan recognition : 
from GJNTa(knowGateB1) infer INT8 (gobyBusB2). 

Theorem 14.10 

(M od(K), ..;p,, -<v) I= BELA(! NTa(gobyBusB2)) . 

14.3.4 Actions with Several Effects 

We have seen that we can infer an intention of achieving effects of an action from an 
intention of performing that action using a certain set of preferences. In situations 
where an intended action has several effects, we need to choose which effect is 
intended. For example, an action of going to a museum by bus has two effects, 
hi s being at the museum and his spending money on the bill. Since the latter effect 
is clearly not desirable, we can easi ly choose the intended effect. 

JC = { (1) BELa(gobyBusB2 :::> atMuseumB3 II spendM oneyB3 ) , 

(2) D-P R EF[/( -,gobyBusB2,gobyBusB2), 
(3) D-PREF~•(-,gobyBusB2 11-,spendMoneyB3 ,gobyBusB2 ) , 
(4) I NTa(gobyBusB2) 

} 
p = () 

V =() 

We have the following: 

Theorem 14.11 

(Mod(JC), -<p, -<v) I= BELA(I NTa(atMuseumB3 11 spendMoneyB3 ) II 

I NTa(atJI!JuseumB3 )) . 

In many cases, we do not have B's desirability preferences like above. Never­
theless, we can choose among effects if we have plausibility preferences about B's 
intentions : 
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K' = { (1) BELa(gobyBusB2 :::J atMuseumB3 1\ spendMoneyB3 ), 

(2) D-PREF8"(~gobyBusB2 ,gobyBusB2 ), 
(4) I NT8 (gobyBusB2 ) 

} 
P' = ( (5) P-PREF!( I NTa(atMuseumB3 ) V INT8 (spendMoneyB3 ), 

~(INTa(atMuseumB3 ) V INTa(spendMoneyB3 )) I 
I NTa(atMuseumB3 1\ spendM oneyB3 )), 

(6) P-PREF!(INTa(atMuseumB3 ), TNT8 (spendMoneyB3 )) 

) 
D' = () 

Then we have the following: 

Theorem 14.12 

(M od(K' ), -<p•, -<v•) I= BELA(! NTa(atMuseumB3 1\ spendM oneyB3 ) 1\ 

INTa(atMuseumB3 )). 

14.3.5 Prefere nce for Simpler Plans 

Consider a situation taken from (23]: Agent A knows that Agent B has two intention, 
an intention of getting a gun and an intention of going to a bank . B intends to get 
a gun only when he intends to go hunting or he intends to rob a bank. He intends 
to go to the bank only when he intends to check cash or he intends to rob the bank. 

K = { (1) I NTa(getGunB1) :::J I NTa(huntB3 ) v I NTa(,·obBankB3 ) , 

(2) I NTa(gotoBankB2 ) :::J I NTa(cashCehckB3 ) v I NTa(,.obBankB3 ) , 

(3) I NTa(getGunB1 ) , 

(4) I NT8 (gotoBankB2) 

} 
P=() 
D=() 

Then we have the following : 

Theore m 14 .13 

(M od(K), -<.p, -<v) I= BELA((INTa(huntB3 ) 1\ I NT8 (cashCheckB3 )) V 

JNT8 (TobBankB3 )). 

There are two possible plans for B, one consists of an intention of hunting and an 
intention of checking cash, and the other consists of a single intention of robbing 
the bank. Usually, the latter plan is preferred, since it contains fewer actions. A 
preference for simpler plans is called Occam's mzoT and used widely. It is particu­
larly important in d ialogue understanding where coherence of utterances is assumed. 
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Kautz [23] formulated this preference by extending circumscription. He minimizes 
the number of End actions in plans, where an End action is an action that is not 
a component of any other actions. In our logic, this preference is expressed by 
sentences of t he following form : 

P-PREF!( I NT8 (El) II·· ·II I NT8 (En),INT8 (E'l) II·· ·II I NT8 (E'm)) 

where El, · · ·,En, E'l, · · · , E'm are di stinct End actions and n < m. Our example 
has three End actions, huntB3 , cashCheckB3 and robBankB3 , and thus we get the 
following list: 

P' = ( P-P REF!(INTa (robBankB3 ), I NT8 (huntB3 ) II I NT8 (cashCheckB3 )), 

P -P REF! (I NT8 (huntB3 ), I NT8 (cashCheckB3 ) 11 I NT8 (robBankB3 )), 

P -P REF!(I NTa (cas hCheckB3 ), 1 NT8 (robBankB3 ) Il l NT8 (huntB3 )) 

) 

T he precedence order is not the matter here. Now we can choose the simpler plan: 

Theorem 14 .14 

(Mod(K), -\p,, -<v) I= BELA (I NTa(robBankB3 )). 

Tb is general preference for simpler plans can be overridden by specific domain­
dependent preferences. For example, consider that Agent A knows that Agent B 
likes hunting, and be thinks that it is more plausible for B to intend hunting than 
to intend robbing a bank . We assume this preference has higher priority than his 
preference for simpler plans: 

P" = ( P-P REF! (I NTa(huntB3 ) , 1 NTa(robBankB3 )), 

) 

P- P REF! (1 NTa(robBankB3), 1 NTa(huntB3) Il l NT a( cashC heckB3 ) ), 

P-P REF! (I NTa(huntB3) , 1 NTa(cashCheckB3) II I NTa(robBankB3)), 
P-P REF! (I NTa(cashC heckB3), JNTa(robB ankB3) Il l NTa(huntB3)) 

Then , we get a different conclusion as follows: 

Theorem 14 .15 

(M od(K), -;p,, -<v) I= BELA (I NTa(huntB3) II 

(JNTa (cashCheckB3) V JNTa(robBankB3)). 
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Chapter 15 

Conclusion 

We have presented a model of an agent in the form of a logic of mental attitudes 
based on preference ordering. We have dealt with qualitative preferences, which 
are explicitly represented by partial orders on model structures. An agent's mental 
state is specified by knowledge and two preference orders, that is , the plausibility 
order and the desirability order. The language of our logic is an extended proposi­
t ional language with attitudinal operators: belief, intention , choice, and prefe rence 
between sentences . We define the satisfaction relation for these operators in terms 
of the preference orders. Furthermore, we have introduced a construct of sentences, 
wh ich is used to specify an agent's knowledge and the preference orders. We have 
applied this logic to reasoning about plans. We have given a formal account of 
plan construction and select ion process, and examined several heuristics for plan 
recognition currently used. 

The main contributions of Part 2 are as follows: 

1. We have presented a model of an agent based on two preference orders: one is 
about plausibility and the other is about desirability. Mental attitudes such 
as belief, intention and choice have been defined in terms of preference orders . 

2. We have introduced operators for preference between sentences, and examined 
their properties. We have given several types of preferences frequently used , 
and have shown that the strongest type of them is closely related to other 
mental attitudes such as belief and intention. 

3. We have given an intuitive formulation of a notion of intention which satisfies 
most of requisites ever proposed such as freedom from consequential closure 
and persistency. 

4. We have given a formal account of plan construction and selection processes. 
We have modeled plan construction with multiple preferences and dynamic 
revision of plans. 



5. We have examined several heuristics for plan recognition currently used. We 
have given preferences that validate widely used heuristics , and demonstrated 
that our framework can give a good formal basis for plan recognition models . 
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Appendix A 

Proofs of Theorems 

Theorem 12.1 

1. P-PREFJ is monotonic, and 

2. the other opemto1·s BELA , C HOA, D-PREFJ, INTA, SBGA and GI NTA 
m·e nonmonotonic. 

P1·ooj: 

1. Directly follows from the definition. 

2. We give a counterexample as follows : Let p and q be distinct atoms of C. that 
satisfy time(p) = time(q). We take 

M 1 { M I M F p II -.q} 
M 2 {MIMf=pllq} 

M 3 {MIMf=-.p} 

a nd define orders -<AP, -<Aoby 

M 1-<APM2 iff M 1 E M 3 andM2 E M 1 U M 2 . 

M, -<AoM2 iff M, E ;\A 1 andM2 E J'-'1 2. 

Then, (M 1UM 2UM 3 , -<AP, -<Ao) satisfies BELA(P), CHO A(q), D-PREFJ(q, -.q), 
I NTA(q), SBGA(pllq,q) and GI NTA(pllq), but (;'-'1 3 ,-<AP,-<Ao) sat isfies 
none of them. 

D 

Theorem 12.3 For a belief set f{ = BM and sentences ¢ and 7/J such that M n 
Mod(¢ II 7/J) is non empty, the revision function * satisfies Giirdenfo1·s 's postulates 
(K*l },(K*2},(W3),(W5},(K*6) and (W7). 
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Proof: (1<"1) follows from the fact that beliefs are closed under logical consequence 
in our logic. (I<"2) is true because (M n Mod(r/>),~AP,~AD) obviously sat isfies 
BELA(¢>). To prove (1<"3 ), it is sufficient to show that if ME Max(M, ~AP) and 
M I= rP then M E M ax(M n Mod(¢>), ~AP ), which can be eas ily proved. (1<"5) 
holds t ri vially, since both sides of the condi tion are always true. (I<"6) is true 
because Mod(¢>) = Mod(,P). (I<" 7) is a special case of (1("3) and thus sat isfied, 
since I<¢""' = (!<¢)~ by our definition. 0 

Theorem 12 .9 

1. ~X is a strict partial 01·de1'. 

2. ~xC (Uxex ~X)+ 

3. If X is compatible, ~x= (Uxex ~X)+ 

4. If,'\:'' is an initial segment of X, ~X' C ~x. 

Proof: 

l. We only need to show that ~~Y is irreflexive. Assume that ~x is not irreflex­
ive. Then there exist B-structures M1 , ••• , M~ and sentences X 1 , .. . , Xn E ,'\:' 
such that M1 ~X1 Mz~Xz···~Xn-iMn~XnM1 • Without loss of generali ty, 
we may assume that Xn is preceded by all of X1 , .. . , and Xn-J · Then 
(~XnU Uxprecede.x.~X)+ includes (M~,Mn), and thus (Mn,MI) is removed 
from ~Xn, which contradicts our assumption. 

2. Since ~XC ~X for all X EX, we have ~x= (Uxex ~x)+ C (Uxe,r ~X)+ 

3. We prove ~X = ~X for all X E X by transfinite induction. Assume that 
~X' = ~X' fo r all X' E X that precedes X . Since it is clear that a subset 
of a compatible set is also compatible, (~XU Ux•precede.X ~X')+ is irreflexive, 
and thus ((~XU Ux• precedesX ~X')+J- 1 and ~X have no common element. It 
follows that ~X= ~X. 

4. Obvious from the definition of ~X· 

0 

Theorem 13.3 If (M , 0, ~AD) I= I NTA(r/>), then joT every partial1·est1·iction M' 
of M with respect to ¢>, the1·e exists a pa1·tial rest1·iction }.A" of M' with respect to 
•r/> such that (M",0,~AD) I= I NTA(¢>). 

Proof: Let M " ={ME M ' I ME Mod(¢>) or there exists M' E A1 ' n 
Mod( ¢>) such that M~AoM'}. 
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Theorem 13.4 (M ,0,-<Ao) 'p- 1NTA(rP) iff 
(M ,0,-<Ao) F C HOA (<P) andfo1· every pa!'lial restriction M' of A1 with 1·espect 
to </J, there exists a partial restriction M" of M' with respect to -.<!J such that 
(M" , 0, -<AD) F CHOA( </J). 

P1·oof: Left-to-right follows directly from Theorem 13.1 and Theorem 13.3. To prove 
right-to-left, assume (M ,0,-<Ao) F- CHOA (<P) 11-.INTA( </J). It follows that there 
exists ME Min(M, -<Ao) n Mod(¢), and let M' = (M \Mod(¢)) U {M}. Then it 
is easy to see that for every partial restriction M" of M' , 
(M" ,0,-<Ao) F- -.CHOA(<P). o 

Theorem 14.1 

(Mod(K),-<p,-<v) F- BELA(-.hungry4 :Jeat3 )11 

1 NTA ( -.hung1·y4 II -.atCrowded2 ) II 

1 NTA ( -./wngry4 ) II 

INTA (eat 3 ) II 

INTA(eat5ushi3 ) II 

GI NTA(atSushiBar2 ) II 

G I NTA (goSushiBari) II 

G1 NTA(-.atCrowded2 ) . 

Proof: For all M E Mod(K) such that M F -.hungry4 II -.eat3 , we can take 
M' E Mod(K) that satisfies M' F hungry4 and M' F p iff M F p for all 
the other atoms p. From a frame ax iom 13, we have M -.<p M'. It follows 
that (Mod(K),-<p,-<v) F- BELA(-.hung1·y4 :::l eat3 ). In the similar way, from 
11 and 12, we have (M od(K), -<p, -<v) F- BELA(atSushiBar2 :::l goSushiBa1·1 ) II 

BELA(atNoodleShop2 :::l goNoodleShop1 ). 

To show that -./wng1·y4 II -.atC1·owded2 , -.hungry4 , eat3 , and eat5ushi3 are in ­
tentions, it is sufficient to show that M I= eat5ushi3 II -.atCrowded2 for all J\11 E 
M ax(M ax(M od(K), -<p ), -<v ), and N F- hungry4 for all N E Min(M ax(M od(K), -<p 
), -<v ). This can be established as follows: First, there exist M 1 , M 2 E M ax(M od(K), -.<p 
) such that J\111 )= eat5ushi3 II -.eat5oba3 II -.atCrowded2 and M2 I= -.eatSushi3 II 

eat5oba3 II -.eatUdon3 II -.atCrowded2 . From 14 and 15 , all models of -.eat3 V 

atCrowded2 are defeated (that is, less preferable with respect to -<v) by M 1 . From 
16, all models of -.eat5ushi3 11 eat5oba3 are defeated by M 1 . From 17, all models of 
-.eat5ushi3 II -.eatSoba3 11 eatUdon3 are defeated by M2 , which is defeated by M 1 

from 16. Max(M od(K), -<p) includes a model of hung1·y4 , which is defeated by all 
models of -.hungry4 (14). 
For generalized intentions , we can easily show that atSushiBar2 , goSushiBar1 and 
-.atC1·owded2 are not believed , and they are subgoals of eat5ushi3 , eat5ushi3 and 
-.hung1·y4 II -.atCrowded2 , respectively. 0 
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Theorem 14.2 

(Mod(K' ),-<p,-<v) f= JNTA (eatSoba 3 )!\ 

GJNTA(atNoodleShop2) 1\ 

GJNTA(goNoodleShop1 ) 1\ 

GJNTA(-.a t Sushi Bar2) 1\ 

GJ NTA( -.goSushiBar1 ) . 

Proof: To show (M od(K'), -<p, -<v) f= 1 NTA ( eatSoba3 ), it is sufficient to show that 
all models of -.eatSoba3!\eat3 are defeated by models of eatSoba3. M ax(M od(K'), -<,p 
) includes a model of -.eatSushi3 1\ eatSoba3 1\ -.eatUdon3 1\ -.atCrowded2, wh ich 
defeats all models of eatSushi3 1\ -.eatSoba3 (15) and all models of -.eatSushi3 1\ 

-.eatSoba3 1\ eatU don3 (17). 
For generalized intentions. atNoodleShop2 and goNoodleShop1 are su bgoals of 
eatSoba3, and -.at Sushi Bar2 and -.goSushiBar1 are subgoals of -.hungry4 !\-.atCrowded2, 
which is also an in tention. They are obviously not believed . 0 

Theorem 14.3 

(Mod(K"),-<p,-<v) f= JNTA (eatUdon3). 

Proof: We only need the following observations : 
M f= -.hungry4 1\ -.atCrowded2 1\ -.eatSushi3 1\ -.eatSoba3 1\ eatUdon3 for a ll ME 
Max(Max(J\Jod(K"), -<p ), -<v), and N f= hung•·y4 for all N E Min(Max(Mod(K"), 
-<p),-<v) . o 

Theorem 14.4 

(Mod(K), -<p, -<v) f= BELA ((C l ::l JNTa(-.hung•·y B 4 )) 1\ 

(C1 ::l JNTa(eatB3)) 1\ 

where 

(C1 1\ C2 ::l JNTa(eatSushiB3)) 1\ 

(C1 1\ C2 1\ C3 ::J GJNT'a(atSushiBa•·B2)) 1\ 

(C1 1\ C2 1\ C3 ::l GJNT8 (goSushiBarB1)) 1\ 

(Cl 1\ C4 ::l JNTa(eatSobaB3)) 1\ 

(Cl 1\ C4 1\ C5 ::l GJ NTa(atNoodleShopB2)) 1\ 

(C1 1\ C4 1\ C5 ::J GJNT8 (goNoodleShopB1))) 

C l -.BEL8 (hungryB 4 ) 1\ -.BELa (-.hungry B4 ), 

C2 -.BEL8 (eatSus hiB 3 1\ -.eatSobaB3 ::l atCrowdedB2)!\ 
-.BELa(-.eatSushiB 3 1\ eatSobaB3 1\ -.eatUdonB3 ::l atC•·owdedB2), 

C3 -.BELa( atSushiBa1·B2), 
C4 BELa(eatSushiB 3 1\ -.eatSobaB3 ::l atCrowdedB2)!\ 

-.BELa( -.eatSushiB3 1\ eatSobaB3 1\ -.eatUdonB3 ::l atC1·owdedB2), 
C5 -.BELa (atNoodleShopB2). 
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Proof: Let M = (W, -< 8 p, -< 80 , w0 ) be an element of M ax(Mod(!C), -<p) that sat­
isfies Condition Cl. M ax(W, -<ap) includes both a model of hung1·yB4 and a 
model of ~hungryB4 , and from Sentence 14, all models of hungryB4 are defeated 
by models of ~hungryB4 . It follows that M I= I NT8 ( ~hungryB.1 ), and since 
~hungryB4 and eatB3 are equivalent in Max(Mod(!C),-<p), M I= INT8 (eatB3). 
Suppose M satisfies C2. To show M I= INT8 (eatSushiB3), it is sufficient to show 
that all models of ~eatSushiB3 II eatB3 are defeated by models of eatSushiB3. 
From 15 and 17, all models of ~eatSushiB3 II eatSobaB3 are defeated by mod­
els of eatSushiB3 II ~eatSobaB3 II ~atCrowdedB2 • From 15 and 22, all models of 
~eatSushiB3 11 ~eatSobaB3 11 eatUdonB3 are defeated by models of ~eatSushiB3 11 
eatSobaB3 11 ~eatUdonB3 II ~atCrowdedB2 . 

For generalized intentions. Since atSushiBarB2 and goSushiBarB1 are subgoals 
of eatSushiB3, if they are not believed, they are generalized intentions. 
Next, suppose M satisfies C4. To show M I= I NT8 (eatSobaB3), it is sufficient to 
show that all models of ~eatSobaB3 II eatB3 are defeated by models of eatSobaB3. 
From C4, M ax(W, -<ap) includes a model of ~eatSushiB311eatSobaB3 11~eatUdonB311 
~atCrowdedB2 , which defeats all models of eatSushiB3 II ~eatSobaB3 (15) and all 
models of ~eatSushiB3 11 ~eatSobaB3 11 eatUdonB3 (15 and 22). 
For generalized intentions. Since atNoodleShopB2 and goNoodleShopB1 are sub­
goals of eatSobaB3, if they are not believed, they are generalized intentions. 0 

T h eorem 14.5 

(Mod(!C),-<p•,-<v) I= BELA(INTa(~hungryB4 ))11 

INTa(eatB3) II 

INT8 (eatSushiB3) II 

GINTa(atSushiBarB2 ) II 

GI NTa(goSushiBarB.)). 

Proof: In view of the last theorem, we only need to show that C1, C2 and C3 are 
satisfied in all M E i\1/ ax(M od(!C), -<p• ). This is established by the following easy 
observation : for all M E M ax(M od(!C), -<p•), M I= BELa( a) if and only if 01 is a 
logical consequence of B's beliefs specified by Sentences 1-13. 0 

Theorem 14.6 

(Mod(!C), -<p, -<v) I= BELA(knowGateB2 :::> informGateA1 ) II 

BELA(atMuseumB4 :::> gotoMuseumB3) II 

I NTA(watchParadeB6 ) II 

I NTA(enter MuseumB5 ) II 

G I NTA ( atM useumB4 ) II 

GINTA(gotoMuseumB3) II 
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GINTA(knowGateB2 ) II 

GINTA(informGateAJ) 11 

GJN7"A(openMuseum 4 ) . 

P•·oof: This theorem is easi ly proved in the similar way to Theorem 14.1. 0 

Theorem 14.7 

(Mod(K'), -<p, -<v) f= -, J NTA(enterMuseumB5 ). 

(Mod(K"),-<p,-<v) f= -, JNTA(enterMuseumB5 ). 

Pmof: For all ME Max(Max(Mod(K'),-<p),-<v), M f= -,openMuseum4 , and 
thus M f= -,enterMuseumB5 . For a ll M' E Max(Max(Mod(K"), -<p), -<v), M' f= 
watchParadeB6 (9), and t hus M' f= -,enter MuseumB5 . 0 

Theorem 14.8 

(M od(K), -<p, -<v) f= 
BELA( BELa(atMuseumB3 ::::> gobyBusB2 v goOnFootB2 ) 11 

(-,BELa(gobyBusB2 ::::> -,goOnFootB2 ) ::::> I NT8 (atMuseum B 3 )) II 

D-P REF'j/ (gobyBusB2 , goOnFootB2 )). 

Pmof: Let IV! = (W, -<ap, -<80 , w0 ) be an element of Max(Mod(K), -<p ). First, 
we want to show that M ax(W, -<aP) does not include a model of atMuseumB3 II 

-,gobyBusB2 II -,goOnFootB2 . If it includes such a model, that model defeats a ll 
models of gobyBusB2 (2, 4), but this conflicts with 5. 
Next, suppose M f= -,BELa(gobyBusB2 ::::> -,goOnFootB 2 ) . This means that there 
is wE M ax(W, -<aP) such that w f= gobyBusB2 11goOnFootB2 . Since w is a model 
of an intent ion gobyBusB2 and defeated by all the other models of atMuseumB3 , it 
must defeat t he only model of -,atMuseumB3 . It follows that M f= INT8 (atMuseumB3 ) . 

Finally, we have M f= D-PREF~'(gobyBusB2 ,goOnFootB2 ), because if there is 
w' E M ax(W , -<aP) such that w' f= -,gobyBusB2 II goOnFootB2 , from 2 and 5, w' 
is defeated by a model of gobyBusB 2 II -,goOnFootB2 . 0 

Theorem 14 .9 

(Mod(K),-<p,-<v) f= BELA(INTa(gobyBusB2 )11 

-,JNTa( knowGateBJ)). 

Proof: knowGateB1 is a sub goal of knowGateB 1, gobyBusB2 , or knowGateB 1 II 

-,gobyB usB2 • Therefore, for all M E Max(Mod(K), -<p ), we have M f= -, J NTa(knowGateB 1) 

from 3, and then we have M f= I NT8 (gobyBusB2 ) from 4. 0 
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Theorem 14.10 

(Mod(K) , -<p•, -<v) f= BELA(INTs(gobyBusB2)). 

Proof: This theorem fo llows obviously from 2 and P'. 0 

T heorem 14.11 

(Mod(!C), -<p , -<v) f= BELA(INTs(atMuseumB3 1\ spendMoneyB3) 1\ 

I NTs(atMuseumB3)). 

Proof: Let M = (W, -<sp, -<so, w0 ) be an element of M ax(M od(!C), -<.p ). To 
prove the theorem, it is sufficient to show that atMuseumB3 1\ spendM oneyB3, 
atMuseumB3 and gobyBusB2 are equivalent in Max(W,-<sp). To show this, 
we want to show that M ax(W, -<sp) includes neither a model of •gobyBusB2 1\ 
atMuseumB3 1\ spendMoneyB3 nor a model of •gobyBusB2 1\ atMuseumB3 1\ 
•spendM oneyB3. If it includes either of these models, the only model of gobyBusB2 
is defeated by that model (2, 3), but this conflicts with 4. 0 

Theorem 14.12 

(Mod(!C'), -<p•, -<v•) f= BELA(INTs(atMuseumB3 1\ spendMoneyB3) 1\ 

INTs(atMuseumB3)). 

Proof: The first conclusion is obtained in the same way as the last theorem, and 
then the second conclusion follows obviously from 5 and 6. 0 

T heorem 14 .13 

(Mod(!C), -<.p, -<v) f= BELA((INTs(huntB3) 1\ INTs(cashCheckB3)) V 

I NTs(robBankB3)) . 

P1'0oj: This theorem follows directly from Sentences 1,2,3 and 4. 

The orem 14 .14 

(Mod(!C) , -<p•, -<v) f= BELA(! NTs(robBankB3)). 

Proof: This theorem follows obviously from the last theorem and P'. 

Theorem 14.15 

(Mod(!C),-<p",-<v) f= BELA(INTs(huntB3)1\ 

(INTs(cashCheckB3) V INTs(robBankB3)). 

0 

0 

Proof: Since •l NT8 (huntB3) implies I NTs(robBankB3) in M ax(M od(!C) , -<P" ), 
all models of •l NT8 (huntB3) are defeated by models of I NTs(huntB3)11•l NTs(1·obBankB3). 
In view of Theorem 14.13, this proves the theorem. o 
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