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Abstract 

 
Seismic safety of an important structure is re-examined for severe events or extremely rare 

events. There is a need for more advanced numerical analysis of estimating structural seismic 

response, particularly accounting for effects of soil-structure interaction (SSI). It is also 

necessary to make a link between the conventional analysis and such more advanced 

numerical analysis, in order to improve the former as well as to validate the latter. To this 

end, the meta-modeling theory, which relates structural mechanics to continuum mechanics 

is applied. 

This thesis is aimed at investigating a possibility to improve current analysis models 

for structural seismic responses analysis considering SSI according to the meta-modeling 

theory. Proposed is a methodology of constructing an analysis model or determining model 

parameters such that the model be consistent with a massive solid element model of finite 

element method (FEM) of high fidelity. 

The thesis first carries out literature surveys in the following three fields: 1) structural 

seismic response analysis; 2) evaluation of SSI effects; and 3) the meta-modeling theory. 

The surveys reveal that SSI has been rigorously considered based on continuum mechanics 

but simplified models (which are computable) are constructed. 

The thesis next makes mathematical analysis of general soil-structure problems. A 

Lagrangian of soil and a structure is formulated, and an initial-boundary value problem is 

posed. An ideal rigid-body foundation is introduced to connect the soil and the structure in 

an ordinary model which considers SSI. The presence of this foundation simplifies the model, 

but, at the same time, it makes least transparent to understand what mathematical 

approximations are made in converting the initial-boundary value problem. 

Based on the mathematical analysis, the thesis seeks to clarify SSI in a most rigorous 

manner. The targets are the rigid body foundation and the soil spring that changes depending 

on frequency. The requirements of the soil spring are studied. It is shown that the soil spring 

can work well as approximation, if the structure is symmetric and of simple configuration 

and if the foundation is most stiff and tightly connected to the soil. 

The thesis proposes a methodology of constructing a consistent model which consists 

of a multiple mass-spring system (or a stick model) for a structure, a rigid-body foundation, 

and soil springs for soil, by using an FEM solution of a high fidelity model of the structure 

and the soil. According to the meta-modeling theory, a set of suitable approximate functions 

of displacement which account for seismic responses of the structure and the soil are chosen, 

and the consistent model is constructed by substituting the set into the Lagrangian. This 

methodology is applicable to a case when a structure is located on the ground or partially 

embedded in ground. 
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Next, construction of soil springs for soil according to the proposed methodology is 

studied, under an assumption that a suitable stick model is made for the structure. A simple 

structure of two-story building and a complicated structure which mimics a nuclear power 

plant buildings are considered. The performance of the constructed stick model and soil 

springs is examined. 

Construction of a stick model for a structure according to the proposed methodology 

is studied. A modal analysis of a high fidelity model is used to this end. A methodology is 

proposed to convert a set of natural frequencies and dynamic modes to a stick model. It is 

shown that perfect conversion is not possible except for cases when the structure satisfies 

certain conditions, which is regarded as being “well designed” in the thesis. 

In concluding the thesis, achievements of the research works are summarized. 

Proposal of a methodology of constructing a consistent model considering SSI is emphasized. 

Remarks are made for the future works.
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Introduction 

1.1 Background 

After the recent strong earthquakes such as the Niigataken-Chuetsu-Oki earthquake of July 

2007 and the Great Tohoku Earthquake of March 2011, there is a need for the re-evaluation 

of seismic design of important structures such as nuclear power plant (NPP) for severe 

events of extremely rare possibility. Establishing the methodologies for an accurate and 

reliable seismic analysis of such structures of critical importance is essential to ensure their 

safety. Due to the sheer size of these structures and the limitation of experimental setups, 

computational mechanics and numerical simulation is the only approach that can be used 

to determine the seismic response of these structures for different earthquake scenarios as 

it is not possible to conduct full scale experiments for such massive structures. 

Conventionally, a mass spring modeling has been employed for the seismic analysis 

of structures with the structure modeled as a set of a few or a few tens of masses, connected 

by springs representing the stiffness of the structure. These models, basically developed for 

simple settings of structure in an era of lesser computational resources, require experience 

and need of making several simplifications and hence lack objectivity. There is an absence 

of a unified approach for checking the quality of different simplified models constructed 

for the same structure. Further, these conventional models have been based on conservative 

estimation of response to guarantee higher factors of safety and lack the ability to 

quantitatively show the concrete margin of safety for a structure which is important to know, 

especially after the recent earthquake experiences.  

The change in the dynamic response of the structure because of the presence of 

underlying soil and vice versa is called as soil-structure interaction (SSI). There are two 

aspects of SSI. The first is the modification of the free-field ground motion due to presence 

of the structure and the second is the modification of the structural response due to the 

flexibility of the supporting soil. For the case of flexible structures founded on rigid ground, 

the SSI is not significant and has been ignored in the conventional structural analysis. 

However, for stiff and heavy structures, the soil flexibility can change the response of the 

structure significantly due to SSI.  

 For an accurate seismic response analysis of an important and massive structure 

such as an NPP, SSI is a fundamental issue and its careful consideration is necessary during 

analysis. Conventionally, due to lack of computational resources, SSI has been considered 
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by considering the structure and soil separately and replacing the effect of soil as a soil-

spring. Just like the mass spring modeling for structure, the soil-springs were developed for 

the simple soil system with simplifying assumptions for the foundation and the supported 

structure and lack the objectivity requiring experienced engineers and use of judgement.  

On the other hand, when using the 3D solid elements based FEM analysis, there is 

no need to consider the SSI explicitly and the effect of SSI appears in the solution when a 

model of a soil-structure system is analyzed. The latest computers are able to perform 

seismic response analysis of a soil-structure model with DOF of the order of millions. Even 

with the availability of resources of high performance computing, the importance of 

simplified models cannot be neglected. These models are needed at the beginning of a 

complex analysis to perform preliminary simulations and to see the effect the different 

parameters. These simplified models are also useful during the probabilistic seismic risk 

analysis because of their simplicity and lesser requirement of computational resources. 

Keeping the above facts in mind, there is a need of more advanced numerical 

analysis of estimating structural seismic response, particularly accounting for effects of SSI 

to get a concrete estimate of the safety of the structure for any future earthquake scenario 

which has not been considered previously. It is also necessary to make a link between the 

conventional analysis and such more advanced numerical analysis, in order to improve the 

former as well as to validate the latter. To this end, use of the meta-modeling theory is being 

proposed. 

Meta-modeling theory is being proposed in order to strengthen a link between 

structural mechanics (the conventional models) and continuum mechanics. Meta-modelling 

theory is a modelling methodology to construct a model which is consistent with continuum 

mechanics. The key concept is that all modelings solve the same problem of continuum 

mechanics but use different mathematical approximations, without using any physical 

assumption.  See Appendix A for a summary of meta-modeling theory.   

Meta-modeling theory proves that some structural mechanics problems are 

mathematical approximation of continuum mechanics problem; for instance, beam 

problems which do use only Young’s modulus are regarded as an approximation of 

continuum mechanics problem of elasticity which uses both Young’s modulus and 

Poisson’s ratio. The meta-modeling theory is simple in principle. It only uses a Lagrangian 

of continuum mechanics, from which a continuum mechanics problem or a structural 

mechanics problem is derived by applying no or some mathematical approximations, 

respectively. 

In this thesis, meta-modeling theory is used to clarify the soil structure interaction 

in the view point of structural and continuum mechanics and to show that the conventional 

soil-spring model can be objectively derived from the continuum mechanics by using purely 
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mathematical approximations and without using any physical assumption. Use of physical 

assumptions means solving a different problem and hence the consistency of simplified 

model with that of the continuum mechanics modeling is lost.  

1.2 Objectives 

In the past, simplified models have been developed and used for the SSI analysis. However 

with the resources of HPC becoming increasingly available, there is a possibility of 

improving the analysis models used in practice by making use of the numerical solution of 

the models of high fidelity and this can be achieved by using the meta-modeling theory to 

create a link between the conventional modeling and the modern modeling based on 3D 

solid FEM.  

The field of SSI analysis, however, is diverse and involves several research areas 

such as the earthquake wave propagation, soil mechanics, foundation engineering, 

structural analysis, contact analysis etc. and each field can further have different cases and 

levels of complexity. For example different types of soil and structure of soil, spread or pile 

footing, embedded or surface foundation, complexity of structure, consideration of slip and 

detaching at the interface and automation of high fidelity analysis model development from 

CAD data.  

The long term research plan is to improve the SSI evaluation for the real-life soil-

structure interaction problems. However, keeping the diversity of related fields in mind, it’s 

still a long time until we are able to improve the SSI evaluation just like with the mass-

spring model which has a long history. This study is a first step to this improvement and 

hence the major focus is first of all on the clarification of SSI problem.  

The objective of this study is to apply meta-modeling theory to construct a 

consistent seismic response analysis model to consider SSI. A structure which mimics the 

complexity of a nuclear power plant structure is taken as the target structure to show the 

usefulness of the constructed model. The scope of this study is summarized as follows: 

 Clarifying SSI according to meta-modeling theory, 

 Proposing a methodology to construct a consistent mass-spring model that can 

approximate the solution of solid element FEM model, 

 Showing the usefulness of the proposed methodology with the help of a numerical 

experiment. 
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1.3 Thesis structure 

The contents of this dissertation are summarized as follows. First, the findings of a detailed 

literature survey are presented in Chapter 2. Mathematical analysis of a general soil-

structure problem is then made in Chapter 3. Then, based on the mathematical analysis, SSI 

is clarified in the most rigorous manner in Chapter 4. In Chapter 5, a methodology to 

construct a consistent soil-spring is proposed and a consistent soil-spring model is 

constructed. In Chapter 6, the usefulness of the constructed soil spring is shown with the 

help of numerical experiments. In Chapter 7, the construction of a consistent stick model 

for a structure using the modal analysis results is studied. Achievements of the research 

work are summarized and remarks for the future works are made in Chapter 8. 
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Literature Survey 

2.1 Overview 

In this chapter, the findings of the literature survey in the fields of structural seismic 

response analysis, evaluation of SSI effects and the meta-modeling theory are presented. 

The surveys reveal that it is possible to do the seismic response analysis of a structure and 

to rigorously consider the effects of SSI during the seismic response analysis based on 

continuum mechanics. However, simplified models traditionally developed in the era of 

little computational resources for the seismic response analysis and the SSI analysis are still 

being used.  

Various simplified models have been developed by different researchers for the 

simple structure and soil cases and various physical and mathematical assumptions are 

made for different problems requiring experience and personal judgement and there have 

been a lack of a unified approach to develop a simplified method of desired fidelity for the 

structural seismic analysis and the SSI analysis. However meta-modeling theory is being 

used in this regard which is a model construction technique in which the focus is to ensure 

the consistency between the different models constructed for the same problem. For the 

structural seismic response analysis, the consistent stick, beam, plate and shell models have 

been constructed using the meta-modeling theory and this thesis focuses on the application 

of this theory for the construction of consistent soil spring for the evaluation of SSI effects.   

 The contents of this chapter are organized as follows. First, the literature survey 

related to structural seismic response analysis is presented in Section 2.2. Then the literature 

survey about the evaluation of SSI effects is mentioned in Section 2.3. In the end, the 

literature survey related to the meta-modeling theory is presented in Section 2.4. 

2.2 Structural seismic response analysis 

Structural seismic response analysis involves the computation of deformation and stress of 

a structure when subjected to an earthquake ground motion. The physics behind this 

analysis is simple as the excitation of structure subjected to an input ground motion is 

completely described as a solution of linear or non-linear wave equation of solid continuum 

for the structure and mathematically this equation is given as 4D partial differential equation 

of space and time. Finite element method can be employed as a numerical analysis tool for 

the solution of this partial differential equation. A lot of research is being done in the field 

of structural engineering employing this approach and detailed FEM models are being 
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developed with the DOF of the order of millions for important structures such as NPP 

structure [1, 2, 3], tunnel structure [4, 5], building structure [6, 7], bridges and dams [8] etc.  

The 3D solid element based FEM modeling of structures is the best possible 

approach to perform the seismic response analysis [9]. This is because of its high accuracy, 

need of only few small and cheap material property tests and the uniform accuracy of results. 

However depending on the complexity of the structure and the size of the FEM model, the 

full FEM modeling generally requires long computational time and high performance 

computing resources. Further constructing a detailed analysis model is not an easy task, 

even though research work is being done on the automation of model construction from the 

CAD data. This approach also becomes difficult to apply for the case of seismic 

probabilistic risk analysis for which a significant number of earthquake scenarios need to 

be considered. 

 Conventionally, because of the lack of computational resources, simplified models 

have been developed for the seismic response analysis of both simple and complicated 

structures [10, 11, 12, 13, 14]. These lumped mass models involve the discretization of the 

structure into a set of lumped masses connected by springs by considering the structural 

configuration or the locations of interest where the response is needed. The magnitude of 

the mass for each node of the spring is calculated from the portion of the weight of the 

structure being contributed to that node and is termed as the “tributary area consideration”.  

For the determination of the stiffness of the spring, mainly there are two ways, 

namely a static method and a geometric method [11, 15]. In the static method, an arbitrary 

static load is applied to the FEM model of the structure to determine its stiffness just like 

the static pushover analysis [16]. In the geometric method, the geometric shape of the cross 

section is considered to determine the sectional moment of inertia and the shear coefficients. 

Alternatively, a strain energy method [17] is also proposed to evaluate the equivalent 

stiffness for complex structures.   

 Constructing the lumped mass model as explained above does not ensure the 

consistency of the model with the actual physical problem or with the 3D FEM model of 

the problem and results in different dynamic characteristics of the model than those 

obtained from the 3D FEM analysis [9, 18]. However the simplicity should not destroy the 

consistency of the problem and different models constructed for the same structure should 

share the same fundamental dynamic characteristics. Some efforts have been made recently 

by Roh. et al [9, 19] to ensure the same dynamic characteristics of the lumped mass model 

and the solid element based FEM model by using the mode shapes obtained by solid 

element FEM model for the development of the lumped mass model. These studies use the 

equal number of lumped masses and the target modes and the location of mass points is 

decided by investigating the mode shapes of the structure.  
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However, these studies are limited to the simple cases of axially symmetric 

structures considering their lateral modes and elastic behavior. Tuning of the lumped mass 

models is easy by tuning the stiffness of the springs for the linear case, however in case of 

the non-linear case, since the modes and the frequencies change with the non-linearity of 

the material, using one tuned value for the spring constants is generally not possible.   

 Overall, for the conventional lumped mass modeling, fixing the locations of the 

mass points and the lumping of the mass requires experience and personal judgement and 

doesn’t provide a unified approach for the simplified modeling. Even though the HPC 

resources are becoming increasingly available, the conventional lumped mass modeling is 

still being used widely in practice for important structures such as NPP [2, 9, 20, 21, 22]. 

Simplified models are useful especially at the initial stages of the analysis however it is 

necessary to ensure the consistency of the developed simplified models with the high 

fidelity models to ensure the accuracy.   

2.3 Evaluation of soil-structure interaction 

The consideration of the effect of soil-structure interaction during the seismic response 

analysis is an important issue that has been considered during the analysis since long as it 

can affect the actual behavior and design of the structure [23, 24]. Observations made 

during the large earthquakes in past have specifically emphasized the importance and need 

of considering SSI effect in seismic response analysis. SSI changes the response of the 

structure compared to that of the fixed base structure depending on the characteristics of 

the structure and the soil and its effect is generally significant for the case of heavy and stiff 

structures founded on relatively weaker soils [25]. 

  The first attempt to study the phenomenon of dynamic SSI was carried out in Japan 

by K. Sezawa and K. Kanai [26, 27] in 1935. However, the theory of dynamic SSI has been 

properly formulated for the first time in 1936 by E. Reissner [28] in which the behavior of 

circular foundation lying on the elastic half-space and subjected to vertical time-harmonic 

loading is considered. Since then, a numerous amount of analytical, numerical and 

empirical researches have been made on the evaluation of SSI for more accurate seismic 

response analysis [29, 30, 31, 32].  

  There are two general approaches for considering the SSI effect [23]. One is the 

Direct Method in which the soil and structure are directly modeled and solved together by 

directly integrating numerically through the time domain. The other one is called the 

Substructure Method in which by defining a rigid interface between the structure and soil 

domains, both the domains are separately considered and solved in frequency domain. The 

concept of dynamic impedances is used for the soil part and it is represented as spring and 

dashpot. Details of the researches done in this method are discussed below.   
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2.3.1 Direct method for evaluation of SSI 

In this approach, the soil and structure domains are both part of the same model and it is 

analysed in a single step by using a numerical discretization scheme such as FEM in the 

time domain. Just as the seismic response analysis of structure discussed in previous section, 

the physics of this approach is simple and involves the solution of linear or nonlinear solid 

wave equation for the soil-structure system.  

  One of the issues of this approach is the consideration of size of soil domain and the 

boundaries for the soil domain in order to simulate the effect of the surrounding soil as well 

as to avoid the trapping of waves inside the considered soil domain after being reflected 

from the boundaries. For this reason one option is to use a sufficiently large soil domain so 

that the wave is dissipated before reaching the boundary. Alternatively, several studies have 

been done to introduce various boundaries to reduce the scale of the problem and to simulate 

the radiation of energy in an unbound continuum. The studies include the introduction of 

viscous boundary [33], consistent boundary [34], unified boundary [35], transmitting 

boundary [36] and the viscous spring boundary [37]. These boundaries act either as non-

reflecting boundaries or as adsorbing layers and avoid the reflections of the outward 

propagating waves from the soil-domain.  

 Other than FEM, boundary element method (BEM) is a numerical method that only 

discretizes the boundary of the domain of interest. BEM is advantageous in the sense that 

it requires only a surface discretization and doesn’t require complicated non-reflecting 

boundaries, which are required for FEM [38, 39]. However application of BEM requires 

the evaluation of appropriate Green’s function and its applicability is difficult in the case 

of heterogeneous soil domain. Further, the above mentioned advantage won’t be there if 

BEM is used for non-linear problem due to the presence of the integral component in the 

total domain. 

   Despite the presence of artificial boundaries, for an accurate calculation, it is 

required for the model to have a significant volume of soil supporting the structure. As a 

result, the size and the DOF of the soil-structure system becomes significantly large. Further, 

to capture the response of the soil and structure at relatively large frequencies, a very fine 

discretization of the domains is required which in turn requires a significant computational 

effort, especially for the case of 3D non-linear analysis. For this reason, conventionally the 

direct approach hasn’t been used much and simplified models were developed, which are 

discussed in next subsection.  

However in recent years, the increased availability of the resources of HPC has 

made it possible to analyse a soil-structure model comprising of solid elements of the order 

of millions and the 3D non-linear analysis can be performed in the time domain without 

having to specially consider the SSI as the effect of SSI is automatically accounted for 
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during the analysis. There have been several studies conducted making the detailed solid 

element based FEM models for the seismic response analysis of soil-structure systems, see 

for example [1, 40, 41, 42].  

2.3.2 Substructure method for evaluation of SSI 

In the substructure approach or the indirect method, the structure and soil are considered 

separately with the assumption of a rigid foundation in between. Seismic response analysis 

of structure considering SSI using this approach consists of 3 steps [43]. First is the 

determination of the foundation input motion which is different from the free-field motion 

due to presence of the structure and is termed as the kinematic interaction. Second step 

involves the calculation of frequency dependent impedance functions for the foundation.  

For this, a unit harmonic excitation of displacement/rotation at a particular frequency is 

given to the foundation, and the reactional force/moment of the soil is computed and the 

ratio of the two is an impedance function. The third step involves the calculation of dynamic 

response of the structure supported by the springs with impedance functions calculated in 

second step and subjected to the foundation input motion which is computed in first step. 

This is termed as the inertial interaction. 

Conventionally, analytical solutions have been tried for the substructure approach 

for the simple shapes, configuration and material properties of the structure and soil. For 

the first step of substructure approach, until now there has been research done about the 

input ground motion that involves the surface, piled and embedded foundations [43, 44, 45]. 

Conventionally the 1D approach is used for the evaluation of the amplified ground motion 

[24] with the assumption of earthquake source at a sufficiently large depth and 

homogeneous soil or stratified soil and hence the earthquake wave is considered as a 

vertically propagating shear wave only. For the case of surface foundations, with the above 

assumption of shear waves only, the kinematic interaction effect has been ignored [46].   

For the second step of substructure approach which involves finding the soil springs 

is mathematically a mixed boundary value problem and conventionally several empirical 

and analytical solutions have been found for this problem such as the empirical relations by 

Gazetas [47, 48] and the analytical solutions by Veletsos et al [49], Luco et al [50, 51] and 

Kausal et al [52, 53] and these solutions have been applied for the modelling of soil as 

sway-rocking springs for different structures including the NPP structures [2, 22, 54, 55] 

and for the development of commercial analysis softwares such as CLASSI [56], FLUSH 

[57] and SASSI [58].  

However these studies have been limited to the cases of specific geometries 

involving circular and rectangular rigid foundations bonded to the linear-elastic, isotropic 

and homogenous half space subjected to the harmonic excitation at the centroid of the 

foundation which limits the applicability of these solutions. There are studies which show 
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significant differences in response obtained by using these different analytical solutions 

[59]. The impedance functions can also be found by using the numerical modeling for the 

soil domain. It is important to mention here that for the direct method as mentioned before, 

the concept of determination of these functions becomes superfluous as there is no need to 

consider the interaction effect separately.  

2.4 Meta-modeling theory 

Even though the increased availability of resources of HPC has made it possible to perform 

the detailed 3D seismic response analysis of a soil-structure system, but simplified models 

are still needed and have significance especially at the initial stages of analysis and during 

the seismic probabilistic risk analysis or when the resources of HPC are not available. 

However it is important that the developed simplified analysis models should be consistent 

with the high fidelity models to ensure the accuracy and same dynamic characteristics. As 

explained before, the simplified analysis models which have been developed for the seismic 

response analysis of structure considering SSI often involve various simplifying 

assumptions which may not to be satisfied for the real soil-structure system. These 

conventional models require the experience and judgement of the engineer and there is a 

lack of a unified approach for simplified model development for SSI analysis.  

  The state as mentioned above is not limited to the SSI analysis only but it’s the same 

in overall structural mechanics. With this background, meta-modeling theory is developed 

by Hori et al [60], which is a model building technique with the focus on ensuring the 

consistency between the different models constructed for the same problem. This approach 

is based on continuum mechanics and models are constructed by solving variational 

problem of Lagrangian of continuum mechanics by using a displacement function which is 

approximated without any physical assumption. This gives a unified approach to 

objectively construct different fidelity models and the difference of each model can be 

evaluated as the difference of the approximated displacement functions used. 

  So far, the beam theory, plate theory and shell theory have been formulated using 

meta-modeling theory [60, 61, 62] and it is shown that certain structural mechanics 

modelings are approximation of the continuum mechanics modeling. Further, the meta-

modeling theory has been used to construct consistent mass spring model for the seismic 

response analysis of structures, to rigorously convert the solid element solutions to the beam 

element solutions and for the analysis of buried pipelines [63, 64, 65]. 

2.5 Observations from literature survey 

The literature survey reveals that even though it is becoming increasingly possible to do the 

detailed solid element based FEM analysis of real life civil engineering problem, yet the 

conventional simplified models are still being used even for the analysis of important 
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structures such as nuclear power plants. The conventional models which have been 

developed for the simplified cases of structure and soil in the era of lesser computational 

resources have limitations in applicability and do not ensure the consistency with the 

continuum mechanics modeling. Meta-modeling theory is being used as a solution to this 

issue in structural mechanics to ensure the consistency of simplified models with the 

continuum mechanics. 
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Mathematical Analysis of 

Soil-Structure Interaction Problem 

3.1 Overview 

The main aim of this chapter is to perform mathematical analysis of a general soil-structure 

interaction (SSI) problem. This analysis is needed to clarify the mathematical 

characteristics of the problem and to rigorously formulate the problem in the framework of 

the meta-modeling theory. The assumption of an ideal rigid foundation is explained, which 

is the basis of the sub-structuring approach that is used for SSI analysis.   

The contents of this chapter are organized as follows. First, a Lagrangian of soil-

structure system is formulated in Section 3.2, and an initial boundary value problem is 

posed in Section 3.3. The introduction of a rigid body foundation is explained in Section 

3.4. Finally, the decomposition of the solution for the posed initial boundary value problem 

is discussed in Section 3.5. 

3.2 Formulation of Lagrangian 

In a general SSI problem, an analysis domain of a soil-structure system is regarded as a 

domain which consists of a structure and soil. More precisely, denoting the domain of a 

structure and soil by S and G, respectively, we denote the domain of the soil-structure by V, 

Figure 3.1: Analysis domain for the seismic response analysis considering SSI 

 

Structure S 

Ground G 

Interface I 

Virtual boundary 

Bed rock Input earthquake 

motion 

V = S U G 
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the union of S and G; see Fig. 3.1. G is a finite region with an appropriate boundary 

condition with which there does not occur unnecessary reflection of input waves.  

Assuming small deformation and linear elasticity, the Lagrangian for this soil-

structure system is given as the kinetic energy minus the potential energy of the system. 

The Lagrangian is thus formulated in terms of a displacement function in V, denoted by 

𝒖(𝒙, 𝑡),  as 

ℒ[𝒗, 𝝐] = ∫
1

2
𝜌𝒗 ⋅ 𝒗 −

1

2
𝝐: 𝒄: 𝝐 d𝑣

𝑉

 (3.1) 

where 𝜌 and c are density and elasticity tensor, respectively, ⋅ and : are inner product and 

the second order contraction, respectively, and 𝒗 and 𝝐 are velocity and strain, respectively. 

We compute 𝒗 = �̇�  and 𝝐 = 𝑠𝑦𝑚{𝛁𝒖} , using 𝒖  which satisfies prescribed initial and 

boundary conditions; 𝑠𝑦𝑚 stands for the symmetric part of the second-order tensor, (( . )̇ ) 

and 𝛁( . ) being temporal derivative and gradient of ( . ) respectively. Note that a bold 

character indicates a vector or tensor quantity, and x and t are spatial coordinate and time, 

respectively. The domain does not have to be uniform, and the value of 𝜌 and c changes in 

soil and structure. For simplicity, the variables x and t are omitted in the equation. 

The initial-boundary value problem for 𝒖(𝒙, 𝑡) in V together with the continuity 

condition at interface I is derived from the variational problem of the Lagrangian given in 

Eq. (3.1). The variational problem is formulated as 

𝛿∫ℒ[�̇�, 𝑠𝑦𝑚{𝛁𝒖}]d𝑡 = 0
𝑇

 (3.2) 

where T is an appropriate time domain. For a general displacement function (which is not 

subjected to any restrictions), the variational problem of the Lagrangian results in a 

mathematical problem of continuum mechanics, i.e. the wave equation; a 4D partial 

differential equation, which is analyzed numerically by FEM and the continuity of the 

traction is automatically satisfied provided the continuity condition of displacement at I is 

guaranteed. 

Another mathematical problem can be posed for a mass spring model from the 

variation problem by using a displacement function which is particularly specified. The 

continuity of displacement and traction at the interface needs to be satisfied for the 

displacement function. This is not an easy task at all, since the displacement function of the 

structure that is determined by the mass spring model is spatially uniform at the interface 

but this restriction of the displacement function does not guarantee that the accompanying 

traction at the interface is spatially uniform. 

  Because of the coupling of the structure and soil, the natural frequency of the 

structure changes in the soil-structure system; see Appendix B. Therefore, care should be 
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taken about this change because the dynamic properties of structure cannot be determined 

by the parameters of the structure only. Designing a structure becomes more difficult in the 

case of considering SSI. 

3.3 Introduction of rigid body foundation 

According to the sub-structure approach, there is a room to pose conditions for I between 

S and G.  Indeed, it is possible to introduce a rigid body plate of infinitely thin thickness for 

I  so that the both displacement and traction are continuous there. This treatment simplifies 

the soil-structure system because the structure and soil domains can be treated separately.  

With the assumption of the rigid foundation, the displacement continuity at the 

interface is readily satisfied as it is shown in Fig. 3.2 and Fig. 3.3. However, the traction 

continuity condition has to be posed, which leads to SSI. Speaking specifically, we restrict 

the form of 𝒖 which is associated with the movement of the interface. Denoting by 𝒖∗ and 

𝜣∗, i.e. the rigid body translation and rotation of the interface respectively, we restrict 𝒖 at 

the interface as follows: 

𝒖(𝒙, 𝑡) = 𝒖∗(𝑡) + 𝜣∗(𝑡) × 𝒙       on I, (3.3) 

where × is the cross (outer) product. We assume that rotation is small and the coordinate 

origin is at the centre of I. 

The 𝒖(𝒙, 𝑡)  as given in Eqn. (3.3) can be regarded as boundary condition for 

displacement function of structure S because 𝐼 is a part of the boundary of S. As a nature of 

the boundary value problem, we have to consider a homogeneous solution and a particular 

solution for both the structure and soil domains to ensure the continuity of displacement 

and traction at interface I. The rigid plate is horizontally moved and rotated by the 𝒖 of Eq. 

(3.3) to return the reaction force from the soil to the structure. A physical model 

representing the relationship of this movement of rigid plate and the reaction force is the 

soil spring. 

Figures 3.2a and 3.2b show the movement of the plate induced by the discontinuity 

of traction for the cases of homogeneous and particular solution respectively. 𝒕 denotes the 

traction, a “+” superscript shows the traction between plate and structure whereas a “-” 

shows the traction between plate and soil. Subscripts “H” and “P” represent the case of 

homogeneous solution, and particular solution respectively. As will be mentioned in next 

Section, the homogeneous solution here is actually the modal displacement, whereas the 

particular solution is the amplified displacement induced by the input ground motion. 𝒃 

stands for the amplified ground motion in the soil domain at the interface I. Finally for each 

mode of the homogeneous solution and the movement of the plate, and for the particular 

solution, the continuity of the traction is guaranteed as shown in Fig. 3.3. 
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3.4 Decomposition of solution  

As mentioned before in this chapter, to consider the dynamic behaviour of a soil-structure 

system subjected to seismic wave as shown in Fig. 3.1, the variational problem of the 
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Figure 3.2: Satisfaction of continuity of traction by movement of plate 
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Lagrangian of the soil-structure system results in an initial boundary value problem of 

solving the wave equation that is a partial differential equation of 4D. The general solution 

for this problem can be represented as a sum of homogeneous solution i.e. general solution 

of homogeneous equation and a particular solution of the inhomogeneous equation. With 

the introduction of rigid body foundation as explained in previous Section, we separate the 

structure and soil domains and decompose the solution of this soil-structure problem into 

homogeneous and particular solution of individual structure and soil-domains. This gives 

the ease of separately considering and solving the problem of soil-structure interaction for 

the structure and soil domains without having to consider the whole soil-structure system 

together. This decomposition is schematically shown in Fig. 3.4 and it is explained below. 

 First of all for the soil part, the particular solution is the amplified ground motion in 

the soil domain which is the solution of wave equation in soil subjected to the input 

excitation. In Fig. 3.4, 𝒃(𝒙, 𝑡) is the amplified ground motion in the soil domain and 𝒃∗(𝑡) 

is the average amplified ground motion at the foundation level. The particular solution for 

the structure is the solution of wave equation in the structure domain subjected to the 

amplified ground motion at the foundation level.  

 Next the homogeneous solution for structure in the frequency domain is the solution 

of the wave equation, Eqn. (3.4a) in structure domain S with the displacement 𝒖 = 𝟎 at the 

interface I.  
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𝜌�̈� + 𝛁. (𝒄: 𝛁𝒖) = 𝟎    in S, 

               𝒖 = 𝟎          on I. 
(3.4) 

As seen, a set of the above differential equation and the boundary condition poses a 

homogeneous problem, and a non-trivial solution of this problem is the mode for a certain 

natural frequency, i.e. a solution of 

𝜌𝜔2𝝓(𝒙) + 𝛁. (𝒄: 𝛁𝝓(𝒙)) = 𝟎, 

where 𝜔  and 𝝓  are the natural frequency and the corresponding mode. The structure 

vibrates with displacement at the base fixed, and the natural frequency and natural modes 

can be determined without considering SSI. So in this way we can separate the soil and 

structure domains without changing their dynamic characteristics, with the help of the 

assumption of rigid body foundation. 

 For the movement of the plate to ensure continuity of traction, as given in Eq. (3.1), 

we get the displacement functions 𝜼𝑈𝛼  and 𝜼Θ𝛼 in soil domain corresponding to the 

translation and rotation of the rigid interface respectively, in frequency domain, see Fig. 3.4. 

By using these displacement functions, soil spring corresponding to the rigid body 

translation and rotation is calculated. 

  The homogeneous solution for soil, similar to the homogeneous solution for 

structure, is the solution of the homogeneous wave equation. However, it should be noted 

that in this case the natural mode of the soil is not the one with free boundary condition at 

soil surface, as shown in Fig. 3.4, rather it is the mode with boundary condition 𝒖 = 𝟎 at I 

and is sometimes referred to as “surface wave” and it can be mathematically determined, 
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Figure 3.4: Decomposition of solution 
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independent of the structure, as the homogeneous solution of the wave equation for the soil 

domain with the boundary conditions as mentioned above.  
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Clarification of SSI 

4.1 Overview 

In this chapter, the underlying approximation that is made in introducing the soil spring for 

SSI is clarified by rigorously formulating SSI. It is the approximation that determines the 

applicability and limitations of the soil spring. As mentioned in the previous chapter, there 

are some simplifications which are made when modeling the SSI in terms of the soil spring. 

Those simplifications should be understood to study the applicability and limitations of the 

soil spring. The key simplification, which is regarded as an approximation, is the 

introduction of rigid body foundation. It is natural to model soil as a spring if we consider 

the translation and the movement of the foundation that are induced by the reaction force 

and bending moment of the soil. 

While the modeling is simple, it is not a trivial task to determine the properties of 

the soil spring. Indeed, the properties change depending of the frequency, if we consider 

SSI in frequency domain. The dependence on the soil spring properties on the frequency 

leads to quasi-non-linear characteristics of soil, which is favored by conventional analysis.   

 The contents of this chapter are organized as follows. First, the rigid-body 

foundation is discussed in Section 4.2. Then the frequency dependence of the soil spring is 

explained in Section 4.3. In the end, the requirements of soil spring for SSI evaluation are 

presented in Section 4.4. 

4.2 Rigid-body foundation 

As explained in Section 3.4, in order to estimate the dynamic characteristics of a structure 

which are estimated without considering SSI, we pose suitable null boundary conditions, 

one of which is zero displacement at the bases, which corresponds to the case that the 

foundation is a rigid body. This is because the introduction of an ideal rigid body leads to 

spatially fixed displacement boundary condition and zero displacement boundary condition 

does not disturb this boundary condition. 

The introduction of the rigid-body foundation is reasonable if we consider that 

practically the foundations are stiffer for the parts of structures. We also point out an 

advantage of the rigid-body foundation is that the soil-structure problem can be separated 

into a structure problem and a soil problem, without changing the dynamic properties of the 

structure. In this way the soil and structure domains are separately solved by additionally 
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considering SSI via the soil spring, instead of solving the soil-structure system as a whole, 

which will require larger computations.  

 Another advantage is that continuity of traction at every point at the interface does 

not have to be satisfied. The equilibrium of the reaction force and moment of the structure 

and the soil is sufficient (see Section 5.2). This reduces the problem size considerably. 

 In reality, however, there is no rigid body foundation; it is only theoretically possible 

to have an ideally rigid foundation. For the case of a realistic foundation which has 

sufficiently high (but not rigid) stiffness, the spatially non-uniform response of the 

foundation inevitably leads to the non-uniform floor response. It is expected that the quality 

of the prediction of the floor response becomes poor if a soil spring that is based on the 

introduction of the rigid-body foundation is used.   

4.3 Frequency dependent soil spring 

According to the meta-modeling theory, we interpret a soil spring is the consequence of 

introducing the rigid-body foundation. Hence, it is straightforward to compute the spring 

property by considering the rigid-body translation and rotation of the foundation. 

 In practice, it is often a case that such displacement functions for soil as explained in 

Section 3.5 are used for the evaluation of the soil spring properties. The displacement 

functions are considered in the frequency domain, rather than in the time domain, so that 

the computation needed for the evaluation is reduced. A unit harmonic excitation of 

displacement/rotation at a particular frequency is given to the foundation, and the reactional 

force/moment of the soil is computed so that the soil spring properties are determined from 

the ratio of the reaction force/moment to the displacement/rotation. 

 The properties of the soil spring change, depending on the selection of these 

displacement functions, and as long as the input ground motion is a simple harmonic motion, 

the soil spring is expected to give a good approximate solution. But since a real ground 

motion has wide range of frequencies, theoretically it is not possible to make a ground 

spring that can approximate the response because of any ground motion. However, 

considering the displacement functions for the movement of rigid plate for a range of 

frequencies, the application range of the soil spring can be improved. 

4.4 Requirements of soil spring for SSI evaluation 

Since soil spring modeling that is made for the evaluation of SSI is a simplification of the 

continuum mechanics problem, its applicability is limited; in other words, the soil spring 

modeling could be either a good or bad modeling, depending on the continuum mechanics 

problem. For a simple soil-spring to be a good modeling or to be applicable, there are some 

requirements which need to be satisfied for a structure, soil and an input ground motion. 
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However, we have to emphasize that this simplified modeling may not be applicable to any 

soil-structure problem and cannot give a good approximate solution for a particular set of 

structure, soil and input ground motion. 

 A structure which is suitable for the application of the soil spring modeling is the 

one which is simple and symmetric. These two conditions ensure that center of rotation of 

the plate remains at the center of the plate (as assumed in Section 3.4) and there is no 

significant shift in the center of rotation of the plate during the seismic excitation. However 

for a complicated and unsymmetrical structure, this condition is hardly satisfied and the soil 

spring may give a poor evaluation of SSI. 

 The next important requirement is the satisfaction of the condition of a rigid 

foundation. A foundation which is significantly stiffer than both the structure and the soil 

is required. Furthermore, the foundation should be rigidly connected to the structure and 

the soil to avoid any separation and slip which are not accounted for in constructing the soil 

spring. 

In general, a site consisting of few geological rock layers has a more or less 

continuous distribution of natural frequencies of surface waves, and hence it is difficult to 

select a limited number of frequencies in which the soil spring is constructed. However, a 

uniform and stratified geological structure has a scattered distribution of surface waves, if 

the direction of the propagation is restricted to the vertical direction only. This condition 

ensures the applicability of the soil spring modeling. As for a site of soil layers which has 

a scattered distribution of vertical surface waves, the applicability of the soil spring 

modeling is ensured as well. 
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Construction of 

Consistent Mass-Spring Soil-Spring Model 

5.1 Overview 

This chapter seeks to develop a methodology of constructing a consistent mass-spring soil-

spring model for the structural seismic response analysis that accounts for soil-structure 

interaction (SSI). Starting from the Lagrangian of continuum mechanics and selecting 

suitably approximated displacement functions, the variational problem of the Lagrangian is 

converted to an initial value problem of the mass-spring soil-spring model. A key issue is 

the explicit expressions of the mass and the stiffness constants, which are rigorously derived 

from the Lagrangian. 

 As the simplest case, the governing equation of a single mass-spring system for a 

structure with rigid body foundation and a soil spring is derived, based on an assumption 

of one-dimensional deformation (or uni-directional displacement). Since the objective of 

this dissertation is the seismic response analysis of an NPP building considering SSI, the 

characteristics of an NPP building and underlying soil are discussed in order to clarify the 

applicability and limitations of the mass-spring soil-spring model that is constructed 

according to the developed methodology.    

The contents of this chapter are organized as follows. First, the approximation of 

displacement functions is discussed in Section 5.2. A governing equation for the simplest 

case of a mass-spring soil-spring model is derived in Section 5.3. A modified governing 

equation which includes the effects of surface waves is derived in Section 5.4. The 

characteristics of a typical NPP building and underlying soil are discussed in Sections 5.5 

and 5.6, respectively. 

5.2 Approximation for displacement function 

The variational problem of the Lagrangian of Eq. (3.1) for a displacement function, denoted 

by 𝒖, is regarded as a physical problem; various mathematical problems each of which has 

a distinct solution are derived from the physical problem by making suitable 

approximations for 𝒖 . Note that the exact solution of the variational problem, which 

corresponds to the mathematical problem of continuum mechanics, is numerically obtained 

as a converged solution of FEM that uses a sufficiently large number of solid elements. 
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 Based on the meta-modelling theory, we construct a lower fidelity model for a 

mathematical problem which is derived with making suitable approximations. A mass-

spring soil-spring model is one of this lower fidelity model. This model is constructed just 

by using a suitably approximated displacement function 𝒖 . Here, the mathematical 

approximation of 𝒖  means the specification of the form of 𝒖 . Substitution of this 

approximated displacement function into the Lagrangian automatically leads to a consistent 

mass-spring soil-spring model; taking the variation for the resulting Lagrangian, the 

governing equation is derived, in which the mass and the spring constant are rigorously 

determined in terms of density and elasticity. 

In the above methodology of constructing a consistent model, we should not make 

any physical assumptions. Setting physical assumptions means changing the Lagrangian, 

which results in another physical problem. We have to validate the assumption. Moreover, 

the altered physical problem has a solution different from the continuum mechanics 

problem, and the consistency with the continuum mechanics is lost. 

In constructing a low fidelity model, we have to keep these points in mind; the 

mathematical approximations ought to be made for the displacement function, so that a 

mass-spring soil-spring model with rigorously determined mass and spring constants are 

constructed. The first point is the separation of displacement function in the structure and 

soil regions, denoted by S and G, respectively.; the continuity of the displacement at the 

interface, denoted by I, must be guaranteed. The second point is the input of the amplified 

ground motion to the base of the structure; the amplified ground motion is computed in the 

absence of the structure. The third point is that the natural frequency and the corresponding 

mode of the mass-spring model are required to match with those of the continuum 

mechanics problem, in order to achieve higher accuracy of the mass-spring soil-spring 

model. 

Based on the above, the displacement function corresponding to the mass-spring 

soil-spring model in three domains, i.e. soil G, the interface I and the structure S is 

considered as follows; 

𝒖(𝒙, 𝑡) = {
𝒃(𝒙, 𝒕) + 𝒖𝐺(𝒙, 𝒕) 𝑖𝑛 𝐺,
𝒃∗(𝑡) + 𝑼(𝑡) + 𝜣(𝑡) × 𝒙 𝑜𝑛 𝐼,

𝒃∗(𝑡) + 𝑼(𝑡) + 𝜣(𝑡) × 𝒙 + 𝒖𝑆(𝒙, 𝑡) 𝑖𝑛 𝑆.

 (5.1) 

where 𝒃 is the amplified ground motion in G without the presence of S; 𝒖𝐺 is the additional 

displacement to 𝒃 by the presence of S;  𝒃∗ is the rigid body translation at the interface I 

induced by 𝒃; 𝑼 and 𝜣 are, respectively, the rigid body translation and rotation of I induced 

by SSI; and 𝒖𝑆 is the additional displacement induced in the structure by (𝒃∗ + 𝑼 + 𝜣 ×

𝒙)  because of the inertia of the structure. Among these displacements, 𝒃  and 𝒃∗  are 

computed separately, and unknown functions are 𝒖𝑆(𝒙, 𝑡), 𝒖𝐺(𝒙, 𝑡), 𝑼(𝑡) and 𝜣(𝑡). 



 24 

When G is homogeneous or layered (parallel stratification), 𝒃  varies only with 

depth and  

𝒃∗ =
1

𝐼
∫ 𝒃
𝐼

d𝑆 

matches 𝒃 of the ground surface and the rigid body rotation becomes zero. 1/I in above 

equation is the area of the interface I. Hence, for a simple setting of stratified soil, 𝒃∗ and 

𝒃 can be regarded as same. With this assumption, the interpretation of Eq. (5.1) is that the  

amplified ground motion 𝒃 input into S through I induces displacement 𝒖𝑆 in S, and its 

reaction force induces displacement 𝒖𝐺  in G through I. The displacement of I 

corresponding to the rigid foundation is given as discussed in Chapter 3 in Eq. (3.3), as 

combination of rigid translation and rotation, in addition to 𝒃. 

As mentioned above, the use of a mode of the structure in discretizing 𝒖  is a 

reasonable choice, in order to match the natural frequency and mode of the mass spring 

model with those of the continuum mechanics problem; they are the dynamic characteristics 

of the structure. Denoting by 𝝓𝛼 the 𝛼𝑡ℎ mode of the structure, we now approximate 𝒖𝑆 as 

𝒖𝑆(𝒙, 𝑡) = 𝑎𝛼(𝑡)𝝓𝛼(𝒙)

𝛼

. (5.2) 

Here 𝑎𝛼 is the amplitude of the 𝛼𝑡ℎ mode. In the mass spring model, 𝒖𝐺, the displacement 

of soil, is induced when I is given forced displacement. Denoting by 𝜼𝑈𝛼  and 𝜼Θ𝛼  soil 

displacements that are induced by forced vibration of 𝑼 and 𝜣, respectively, 𝒖𝐺 is set as 

𝒖𝐺(𝒙, 𝑡) = ∑ 𝑈𝛼(𝑡)𝜼𝑈𝛼(𝒙) +𝛼 𝛩𝛼(𝑡)𝜼Θ𝛼(𝒙). (5.3) 

Here 𝑈𝛼 and 𝛩𝛼 are amplitudes of 𝜼𝑈𝛼 and 𝜼Θ𝛼, respectively. 

With substitution of Eq. (5.1) using Eqs. (5.3) and (5.2), into Eq. (3.1), the 

expression for Lagrangian is as follows, 

ℒ[𝑎𝛼 , 𝑈𝛼, 𝛩𝛼] = ℒ𝑆[𝑎𝛼] + ℒ𝐺[𝑈𝛼, 𝛩𝛼] + ℒ𝐼[𝑎𝛼 , 𝑈𝛼, 𝛩𝛼]. (5.4) 

Here ℒ𝑆 and ℒ𝐺  are the Lagrangian for the structure and soil alone respectively, whereas 

the third term ℒ𝐼 corresponds to SSI and the detailed expressions are given as follows, 

ℒ𝑆 = 
1

2
𝑀𝛼𝛼(�̇�𝛼)2 −

1

2
𝐾𝛼𝛼(𝑎𝛼)2 +𝑀𝑏𝛼�̇�∗�̇�𝛼

𝛼

, (5.5) 

ℒ𝐺 =  
1

2
𝑀𝑋𝛼𝑌𝛽�̇�𝛼�̇�𝛽 −

1

2
𝐾𝑋𝛼𝑌𝛽𝑋𝛼𝑌𝛽 + 𝑀𝑏𝑋𝛼�̇�∗�̇�𝛼 −𝐾𝑏𝑋𝛼𝒃∗𝑋𝛼

𝑋,𝛼𝑋,𝛼,𝑌,𝛽

. (5.6) 
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Here X and Y are replaced by U or 𝛩. Mass 𝑀𝛼𝛽and spring constant 𝐾𝛼𝛽 are computed by 

the following equation, 

𝑀𝛼𝛽 = ∫ 𝜌 𝝓𝛼 ∙ 𝝓𝛽 d𝑣
𝑆

, 

𝐾𝛼𝛽 = ∫ 𝜵𝝓𝛼 ∶ 𝒄 ∶ 𝜵𝝓𝛽 d𝑣
𝑆

 

(5.7) 

Mass 𝑀𝑋𝛼𝑌𝛽 and the stiffness 𝐾𝑋𝛼𝑌𝛽 are calculated by above equations replacing 

from S to G for the integral domain and from 𝝓𝛼 to  𝜼𝑈𝛼 or  𝜼Θ𝛼 for integrand. Similarly 

𝑀𝑏𝛼, 𝑀𝑏𝑋𝛼 and 𝐾𝑏𝑋𝛼 are also integrated in the S or G domain. 

The third term of Lagrangian in Eq. (5.4) is, 

ℒ𝐼 = 𝑀𝑈𝛼�̇�𝛼 ( �̇�𝛽

𝛽

)+𝑀𝛩𝛼�̇�𝛼 ( �̇�𝛽

𝛽

)+𝑀 �̇�𝛼

𝛼

+𝑀𝐼 �̇�𝛼

𝛼𝛼

+𝑀𝑆𝑈𝛩 �̇�𝛼�̇�𝛽

𝛼,𝛽

. 

(5.8) 

Where M is the total mass of the structure and the remaining constants are as follows; 

𝑀𝑈𝛼 = ∫ 𝜌 𝝓𝜶 d𝑣
𝑆

 

𝑀𝛩𝛼 = ∫ 𝜌 𝝓𝜶 × 𝒙 d𝑣
𝑆

 

𝑀𝐼 = ∫ 𝜌 𝒙 ⨂ 𝒙 d𝑣
𝑆

 

𝑀𝑆𝑈𝛩 = ∫ 𝜌 𝒙 d𝑣
𝑆

 

It should be noted that 𝝓𝜶  is the 𝛼-th mode, and hence we have 𝑀𝛼𝛽 = 0 and 

𝐾𝛼𝛽 = 0 for the case of 𝛼 ≠ 𝛽.  For the case of 𝛼 = 𝛽, we have non-zero 𝑀𝛼𝛼 and 𝐾𝛼𝛼, 

satisfying √𝐾𝛼𝛼/𝑀𝛼𝛼 = 𝜔𝛼 with 𝜔𝛼 being the 𝛼-th natural frequency. 

We consider the simplest case of one mode (𝛼 = 1). The mass-spring model has 

one degree-of-freedom, 𝑎1, and the rigid foundation has two degrees-of-freedom, (𝑈1, 𝛩1). 

The expression for the resulting Lagrangian is given as follows: 

ℒ[𝑎, 𝑈, 𝛩] =
1

2
𝑀𝑆�̇�2 −

1

2
𝐾𝑆𝑎2 +𝑀𝑏�̇�∗�̇� +

1

2
𝑀𝑈𝑈�̇�2 +

1

2
𝑀ΘΘΘ̇2 +𝑀𝑈𝛩�̇��̇� −

1

2
𝐾𝑈𝑈𝑈2

−
1

2
𝐾𝛩𝛩𝛩2 −𝐾𝑈𝛩𝑈𝛩 +𝑀𝑈�̇��̇� + 𝑀𝛩�̇��̇� +

1

2
𝑀�̇�2 +

1

2
𝑀𝐼�̇�2 +𝑀𝑆𝑈𝛩�̇��̇�. 

(5.9) 

Here, the superscript 1 is omitted. 
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The sum of the first three terms on the right side of above equation corresponds to ℒ𝑆 
of Eq. (5.5) and is a Lagrangian of a one mass-spring model that receives input ground 

motion 𝒃∗. The sum of the fourth to ninth terms in the above Lagrangian corresponds to ℒ𝐺  
of Eq. (5.6) and the remaining terms correspond to ℒ𝐼  of Eq. (5.8), and these can be 

considered as the Lagrangian of the soil-spring model considering SSI. It should be noted 

that the explicit expressions for the mass and stiffness constants are derived and once given 

the displacement functions for the soil and structure domains, it is objectively and easily 

possible to determine the mass and spring constants without any need of experience or any 

physical assumption as the expressions only include the integration of the approximated 

displacement functions in the corresponding domains. 

5.3 Governing equation for the 1D mass-spring soil-spring model 

For simplicity, consider a ground structure system installed in a uniform soil. Considering 

the orthogonal coordinates with x-axis and y-axis in the horizontal direction and z -axis in 

the vertical direction. Since the soil is uniform, 𝒃 of the ground G is a function only of z 

having a component in the x-direction only. We consider only the x-direction response of 

the structure by considering rigid body translation 𝑈 of boundary I in the x direction only 

and rigid body rotation 𝛩 only about the y-axis. The right side of the function of Eq. (5.1) 

is as follows. 

𝒖𝑆 = 𝑎𝜙(𝒙)𝒆𝑥 + (𝑈(𝑡) + 𝛩(𝑡)𝑧)𝒆𝑥, 

  𝒖𝐺 = (𝑈(𝑡)𝜂𝑈(𝒙) + 𝛩(𝑡)𝜂Θ(𝒙))𝒆𝑥, (5.10) 

where 𝜙 is the x-direction component of 𝝓1, the mode of the minimum natural frequency 

of the structure; 𝜂𝑈  and 𝜂Θ  are the x-direction components of 𝜼𝑈1  and 𝜼Θ1 , the soil 

displacement induced by rigid body translation and rigid rotation of I; and 𝒆𝑥 is the unit 

vector in the x-direction. Note that the natural frequency of the rigid body translation and 

rigid rotation is the same as that of the structure. 

Substituting Eq. (5.10) into Eq. (5.1) and substituting the resulting 𝒖 into Eq. (3.1), 

ℒ[𝑎, 𝑈, 𝛩] of Eq. (5.9), a functional of three functions, is obtained. Using the Hamilton’s 

principle, following governing equation is derived from the variational problem of 

𝛿 ∫ ℒ d𝑡 = 0: 

[𝑀][{�̈�} + [𝐾]{𝑢} = −{𝑓}. (5.11) 

Here the vectors {𝑢} and {𝑓} are 

{𝑢} = {
𝑎
𝑈
𝛩
},   {𝑓} = {

𝑀𝑈�̈�∗

𝑀 �̈�∗

𝑀𝑆𝑈𝛩 �̈�∗
}. 
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And the matrices [𝑀] and [𝐾] are 

[𝑀] = [
𝑀𝑆 𝑀𝑈 𝑀𝛩

𝑀 +𝑀𝑈𝑈 𝑀𝑆𝑈𝛩

𝑠𝑦𝑚 𝑀𝐼 +𝑀𝛩𝛩
], 

[𝐾] = [
𝐾𝑆 0 0
𝐾𝑈𝑈 0

𝑠𝑦𝑚 𝐾𝛩𝛩
]. 

The explicit expressions for the objective determination of mass and spring constants of the 

above matrices are given in the preceding section and since the expressions involve the 

spatial integration of the displacement functions, problem of any arbitrary shape of the 

structure, soil or foundation can be solved. This versatility and objectivity is an advantage 

of using the meta-modeling theory.  Equation (5.11) takes on the same form as the 

governing equations of a conventional mass-spring model with a soil-spring; unknown 

functions are displacements 𝑎  and 𝑈  in the 𝑥  direction and rotation 𝛩  about 𝑦  axis, as 

shown in Fig. 5.1. It is seen that 𝐾𝑈𝑈  and 𝐾𝛩𝛩 , which are derived from the purely 

mathematical procedures, correspond to the soil-spring. 

5.4 Mass-spring soil-spring model accounting for natural modes of soil 

It is possible to include the mode 𝝓𝐺  of the soil to the displacement of ground 𝒖𝐺 as given 

in Eq. (5.3) to satisfy the continuity of displacement. Then  𝒖𝐺 is set as;  

𝒖𝐺(𝒙, 𝑡) = ∑ 𝑎𝐺𝛼(𝑡)𝝓𝐺𝛼(𝒙) + 𝑈𝛼(𝑡)𝜼𝑈𝛼(𝒙) +𝛼 𝛩𝛼(𝑡)𝜼Θ𝛼(𝒙), (5.12) 

where 𝑎𝐺𝛼 is the amplitude of the 𝛼𝑡ℎ mode. It should be noted that this natural mode of 

soil  𝝓𝐺  is not the one with free boundary condition at soil surface, rather it is the mode 

with boundary condition 𝒖 = 𝟎 at I and is sometimes referred to as surface wave and it can 
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Figure 5.1: Conventional mass-spring soil spring model 
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be mathematically determined, independent of the structure, as the homogeneous solution 

of the wave equation for the soil domain. 

As in the previous section, we can derive the governing equation for the mass-spring 

system including surface wave by considering 𝑥-direction response only and the first mode 

of structure and soil. Then substituting the displacement functions of Eq. (5.2) and Eq. 

(5.12) into Eq. (3.1) and solving the variational problem of the resulting Lagrangian, the 

governing equation of the same form as Eq. (5.11) is obtained with the mass and stiffness 

matrices as; 

 

[𝑀] = [

𝑀𝑆 𝑀𝑈 𝑀𝛩 0
𝑀 +𝑀𝑈𝑈 𝑀𝑆𝑈𝛩 𝑀𝐺𝑈

𝑀𝐼 +𝑀𝛩𝛩 𝑀𝐺𝛩

𝑠𝑦𝑚 𝑀𝐺

],
 

 

[𝐾] = [

𝐾𝑆 0 0 0
𝐾𝑈𝑈 0 𝐾𝐺𝑈

𝐾𝛩𝛩 𝐾𝐺𝛩

𝑠𝑦𝑚 𝐾𝐺

],
 

and the displacement and force vectors are as follows 

{𝑢} = {

𝑎
𝑈
𝛩
𝑎𝐺

},   {𝑓} =

{
 

 
𝑀𝑈�̈�∗

𝑀 �̈�∗

𝑀𝑆𝑈𝛩�̈�∗

𝐾𝐺𝑏 + �̇�𝐺𝑏}
 

 

, 

where  𝑀𝐺 , 𝑀𝐺𝑈, 𝑀𝐺𝛩and 𝑀𝐺𝑏 are computed by replacing in the mass expression of Eq. 

(5.7) 𝝓𝛼  with 𝝓𝐺  and 𝝓𝛽  with 𝝓𝐺  for 𝑀𝐺 , 𝜼𝑈  for 𝑀𝐺𝑈 , 𝜼Θ  for 𝑀𝐺𝛩  and �̇� for 𝑀𝐺𝑏  and 

integrating over the soil domain. Similarly, 𝐾𝐺 , 𝐾𝐺𝑈 , 𝐾𝐺𝛩 and 𝐾𝐺𝑏  are computed by 

replacing Eq. (5.7)  𝝓𝛼  with 𝝓𝐺  and 𝝓𝛽  with 𝝓𝐺  for 𝐾𝐺 , 𝜼𝑈  for 𝐾𝐺𝑈 , 𝜼Θ for 𝐾𝐺𝛩  and 𝒃 

for 𝐾𝐺𝑏 and integrating over the soil domain. 

It should be noted that although Eq. (5.11) is an ordinary differential equation of an 

unknown 3D vector functions, this governing equation for the case of surface wave is an 

ordinary differential equation of an unknown 4D vector functions. 

5.5 Stick (mass-spring) model for NPP building 

An NPP building is a complex structure consisting of several structures such as the reactor 

enclosure building and the fuel storage building, etc. The most important structure of the 

NPP building is the nuclear reactor. Due to safety hazard associated with the NPP structure 

and the need of higher safety factors, the structure is usually massive with thick concrete 

sections of high stiffness.  
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The widely used simplified structural analysis model for an NPP building is a 

lumped mass stick model which is created by discretizing the actual structural and non-

structural components by a series of massless beam elements considering the configuration 

of the structure i.e. beam to column connections or certain locations of interest. Each beam 

element has two nodes at its ends and the mass is lumped at those two nodes. Each beam 

element represents stiffness of the structure’s section it approximates. These beam elements 

together form a stick representing a structure as a combination of several lumped masses 

and stiffness. Since a general nuclear power plant consists of more than one structure in the 

vicinity of each other, often more than one sticks are needed, which are joined at the base 

with the rigid foundation, to model the complete NPP structure as a lumped mass stick 

model.   

 There is a need for having a consistent stick model for NPP structure in order to 

have the same dynamic characteristics as that of a high fidelity model, so as to use it as a 

replacement of the high fidelity model at the initial stages of the design for the preliminary 

studies. 

5.6 Soil-spring for NPP building 

Nuclear power plants are generally founded on hard rock. Since the mass and the stiffness 

of the structure is significant, the SSI effect can be significant and for the simplified 

modeling, traditionally a sway-rocking model is used to consider the soil structure 

interaction effect with the foundation considered as the surface foundation and ignoring any 

effect of the embedment by the surrounding soil. Further the foundation is considered as 

ideally rigid. However, for a significant embedment depth, the effect of embedment may 

be significant and should be considered during modelling.  

 The methodology for the development of mass-spring soil-spring model proposed 

in this chapter is applicable for a case of surface foundation or a partial embedment with 

negligible effect of embedment. For, the consideration of effect of embedment of 

foundation, the improvement of this formulation is needed.  
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Numerical Experiments for Soil-Spring 

Determination 

6.1 Overview 

In this chapter, numerical experiments are performed to show the usefulness of the mass-

spring soil-spring models constructed in Chapter 5. A simple two-storey structure and an 

NPP structure with sufficiently large soil-domains are considered. The solid elements based 

FEM, the modal analysis and the mass-spring modeling is presented. The performance of 

the constructed simplified models is examined by comparing the frequency and the dynamic 

displacement response results of simplified model with those of the FEM model.       

The contents of this chapter are organized as follows. First, the outline of the 

experiment procedure is described in Section 6.2. In Section 6.3, a simple two-storey 

building is considered and its frequency and dynamic response obtained from FEM and 

mass-spring soil-spring model is compared. Same comparison is made considering an NPP 

structure in Section 6.4.   

6.2 Experiment procedure 

The objective of the numerical experiment is to confirm that the response obtained from the 

developed mass-spring model is an appropriate approximation of the 3D FEM solution. For 

the two structures considered, first of all the modal analysis using solid element FEM 

analysis is carried out to determine the natural frequency and mode shapes of the structure 

and the soil and the approximated displacement functions of soil domain are determined by 

subjecting the rigid plate to unit harmonic translation and rotation. The amplified ground 

motion in the soil domain and the average amplified ground motion at the rigid plate level 

are determined by carrying out the dynamic analysis of soil domain subjected to input 

seismic excitation at the base, using solid element FEM analysis.  

The mode shapes and displacement functions along with the amplified ground 

motion are then used in the closed form expressions derived in Chapter 5 for the mass-

spring soil-spring models and by integrating these functions over the corresponding 

domains, the mass and stiffness values for the mass-spring soil-spring models are 

determined. The Eigen and dynamic analyses of the soil-structure system are carried out 
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using solid element FEM analysis and the results are compared with the results of the mass-

spring soil-spring model. 

6.3 Two storey building 

The target system consists of a two-storey building and uniform soil as shown in Fig. 6.1 

and Fig. 6.2. Each floor of the structure comprises of concrete columns supporting rigid 

slab. The plan and cross-sectional dimensions for the structure are given in Fig. 6.2. Soil 

domain considered is in the shape of a cube with dimensions 200m×200m×150m. The 

structure rests directly on a stiff foundation laying on the surface without any embedment. 

The mechanical properties of the materials used are listed in Table 6.1. Rayleigh 

damping is used with the damping ratio of 5% and the Rayleigh damping coefficients for 

mass and stiffness matrices are 0.9 and 0.002 respectively. 

Figure 6.1: Two storey building with the soil domain considered 

 

Figure 6.2: Two storey building considered 

 

Slab plan area   = 10 m×10 m 

Column height  = 3.4 m 

Slab thickness   = 0.6 m 

Column section = 0.6 m×0.6 m 

Total height       = 8.6 m 
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Table 6.1: Mechanical properties of materials used 

 Column Slab Soil Plate 

ρ (kg/m3) 2400 20000 2500 ≈ 0 

E (GPa) 30 2000 0.96 ∞ 

ν 0.2 0.2 0.2 0.1 

 

Figure 6.3: Input ground motion GM1 in time and frequency domains 

Figure 6.4: Input ground motion GM2 in time and frequency domains 

 

 

Figure 6.5: Input ground motion GM3 in time and frequency domains 
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The details of the mesh are given in Table 6.2. Three input ground motions, GM1 and 

GM2 and GM3 shown in Figs. 6.3, 6.4 and 6.5 respectively, having different distribution 

of dominant frequency, are input at the bottom of the soil domain. Using a sufficiently large 

soil domain, the one dimensional wave solution is imposed as boundary conditions on the 

side surfaces, in order to reduce reflection; the present dimension of the soil domain is 

sufficiently large so that little reflection is observed. 

Table 6.2: Mesh details for FEM model of soil-structure system 

 Structure Soil Total 

No. of nodes 9738 67540 77278 

No. of elements 4542 62016 66558 

Element type Linear hexahedron 
 

To calculate the values of the mass and the spring constants for the mass-spring model, 

dynamic modes of the structure and soil are determined using the 3D FEM analysis. The 

minimum natural frequency and the corresponding mode of the structure and the soil 

Figure 6.6: Minimum natural frequency of the structure =1.84 Hz 

 

Displacement Norm 
1.0 

0.0 

Figure 6.7: Minimum natural frequency of soil (surface wave) = 0.54 Hz 

 

Displacement Norm 
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0.0 
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domain are shown in Figs. 6.6 and 6.7, respectively. The amplified ground motion 𝒃 is 

computed by using the 3D FEM analysis, too. Time step used is 0.01sec.  

The displacement functions of the ground  𝜂𝑈  and 𝜂Θ  are determined from the 

dynamic analysis of the ground, which is vibrated by the rigid body translation and rigid 

rotation of I that oscillates at the minimum natural frequency of the structure. Using a 

different frequency is also possible. However for a common case of a structure founded on 

relatively stiffer rock, the excitation frequency of the structure is dominant and  it is rational 

to use the natural frequency of the structure for the determination of displacement functions 

𝜂𝑈 and 𝜂Θ. However for the opposite case, the natural frequency of the soil or some value 

in between the natural frequency of the structure and soil can be used for the determination 

of 𝜂𝑈  and 𝜂Θ  functions. Depending on this frequency value used and the dominant 

frequency of the input ground motion, the performance of the soil spring can be different 

as mentioned in Chapter 4. 

The mass and the spring constants are calculated using the closed form expressions 

that are derived in Chapter 5. The values are summarized in Table 6.3. Here, 𝑀𝑆 is the 

modal mass for the first mode of structure, 𝑀 is the total mass of the structure, 𝐾𝑆 is the 

modal stiffness for the first mode of structure, 𝑀𝐺  is the modal mass for the first mode of 

soil, 𝐾𝐺  is the modal stiffness for the first mode of soil and similarly all the other constants 

are determined by the integration of the approximated displacement functions for the 

corresponding structure of soil domain. Recall that the normalized Eigen mode function (or 

mode shape) is applied, and the modal mass participation ratio for the first mode is 67%.  

Table 6.3: Mass and stiffness constants 

Constant Value (×106) Constant Value (×108) 

𝑀𝑆 (kg) 2.25 𝐾𝑈𝑈 (N/ m2) 132.0 

𝑀𝑈 (kg) 1.91 𝐾𝜃𝜃 (N/ m2) 1410.0 

𝑀𝜃 (kgm) 13.0 𝑀𝐺𝑈 (kg) 1.25 

𝑀 (kg) 2.42 𝑀𝐺𝜃 (kg) 0.166 

𝑀𝑈𝑈 (kg) 20.7 𝑀𝐺 (kg) 89.0 

𝑀𝑆𝑈𝜃 (kgm) 15.2 𝐾𝐺𝑈 (N/ m2) 113.0 

𝑀𝐼 (kg m2) 105.0 𝐾𝐺𝜃 (N/ m2) 9.42 

𝑀𝜃𝜃 (kg m2) 16.4 𝐾𝐺 (N/ m2) 1030.0 

𝐾𝑆 (N/ m2) 301.0  
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Table 6.4 shows the primary natural frequency of the finite element model and the 

mass-spring model. It is seen that these approximately coincide, which is expected since 

the first natural mode of the structure is used. There is a reduction in the natural frequency 

of the structure from 1.84 to 1.73, because of the use of the stiff foundation and not an 

ideally rigid-body foundation, which is assumed in the construction of the mass-spring soil-

spring model. The similarity of the frequency value obtained from FEM analysis and the 

mass spring models shows the consistency of the constructed mass spring model. 

Table 6.4: Comparison of natural frequency 

FEM model Mass-spring model 

1.73 1.76 
 

The constructed mass spring model with and without the effect of surface waves is 

used to determine the displacement response in the 𝑥-direction at the top of the structure, 

and the results are compared with those obtained from 3D FEM analysis. The comparison 

Figure 6.8: Comparison of x-direction displacement response at the top of structure without the 
inclusion of surface wave 

 
 a) Mass-Spring Model vs FEM for GM1 b) Mass-Spring Model vs FEM for GM2 

 
 c) Mass-Spring Model vs FEM for GM3 
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for GM1, GM2 and GM3 without including the surface wave is shown in Figs. 6.8a, 6.8b 

and 6.8c respectively. It is seen that the solution of the mass-spring model is fairly 

consistent with that of the finite element model. The accuracy of the response can be further 

improved by considering more than one modes of the structure. 

In Figs. 6.9a, 6.9b and 6.9c, the comparison for GM1, GM2 and GM3 with including 

the surface wave is shown, respectively. As seen, the inclusion of the surface wave results 

in an increased response because of the inclusion of the soil homogenous solution however 

there is not a significant difference in the response for this particular soil-structure setting. 

However, it is expected that with the increase in the scale of structure, this effect will be 

more significant, since larger forces have to be transmitted from the structure to the soil. It 

is important to mention here that for the case of inclusion of surface wave, as shown in 

Section 5.4, the two parameters 𝑀𝐺𝑏 and 𝐾𝐺𝑏 need to be evaluated at each time step of the 

input ground motion which results in an increased computational effort.  

Figure 6.9: Comparison of x-direction displacement response at the top of structure for mass 
spring system with and without inclusion of surface wave 

 
b) GM2 a) GM1 

 

c) GM3 
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6.4 Nuclear power plant structure 

The target soil-structure system consists of NPP structure and uniform soil as shown in Fig. 

6.10. The structure is shown in detail along with the dimensions in Fig. 6.11. The part of 

the structure considered comprises of 7 floors resting on a thick foundation slab. The floors 

are numbered from bottom to top. Each floor comprises of slabs, walls and an inner concrete 

dome which accommodates the nuclear reactor. The mechanical properties of the materials 

used for structure model are shown in Table 6.5.  

Soil domain considered is in the shape of a cube with dimensions of 

1000m×1000m×400m and for this experiment, the structure rests directly on the soil and 

embedment is not considered. The mechanical properties of the soil are shown in Table 6.6 

and the mesh details are given in Table 6.7. 

 

Figure 6.10: NPP structure with the soil domain considered 

 

Figure 6.11: Elevation and cross-section view of the NPP structure 

5
7
m
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Table 6.5: Mechanical properties of materials used for structure 

Component 
ρ (ton/mm3) 

(x 10-9) 

E (ton/mm2) 

(x 103) 
ν 

1F walls 3.893 20.580 0.17 

1F slab 3.893 20.580 0.17 

1F inner concrete dome 0.251 2.139 0.3 

2F walls 4.541 20.580 0.17 

2F slab 4.541 20.580 0.17 

2F inner concrete dome 0.940 2.943 0.3 

3F walls 4.188 20.580 0.17 

3F slab 4.188 20.580 0.17 

3F inner concrete dome 0.274 2.878 0.3 

4F walls 4.381 20.580 0.17 

4F slab 4.381 20.580 0.17 

4F inner concrete dome 1.908 1.967 0.3 

5F walls 4.824 20.580 0.17 

5F slab 4.824 20.580 0.17 

5F inner concrete dome 0.415 2.444 0.3 

6F walls 4.056 20.580 0.17 

6F slab 4.056 20.580 0.17 

6F inner concrete dome 0.458 1.124 0.3 

7F walls 4.256 20.580 0.17 

7F slab 4.256 20.580 0.17 
 

 

Table 6.6: Mechanical properties of soil used 

ρ (ton/mm3) E (ton/mm2) ν 

2.5 x 10-9 960 0.2 
 

 

Rayleigh damping is used with the damping ratio of 5% and the Rayleigh damping 

coefficients for mass and stiffness matrices are 1.5 and 0.0017 respectively. 
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Table 6.7: Mesh details for FEM model of soil-structure system 

 Structure Soil Total 

No. of nodes 2070372 2159019 4229391 

No. of elements 1086595 2090200 1295615 

Element type Quadratic tetrahedron Linear hexahedron  
 

 

First 1000 time steps of the ground motion GM1 shown in Fig. 6.3 are input at the 

bottom of the soil domain. Same treatment for the boundary of soil domain is adopted as in 

previous example to avoid the reflection of waves. To calculate the values of the mass and 

the spring constants for the mass-spring model, dynamic mode of the structure is 

determined using the 3D FEM analysis as it is shown in Fig. 6.12.  

 

The amplified ground motion 𝒃 is computed by using the 3D FEM analysis, too. 

Time step used is 0.01sec. The displacement functions of the ground  𝜂𝑈  and 𝜂Θ  are 

determined from the dynamic analysis of the ground, which is vibrated by the rigid body 

translation and rigid rotation of I that oscillates at the minimum natural frequency of the 

structure. 

The mass and the spring constants are calculated using the closed form expressions 

that are derived in Chapter 5. The values are summarized in Table 6.8. Here also, 𝑀𝑆 is the 

modal mass for the first mode of structure, 𝑀 is the total mass of the structure, 𝐾𝑆 is the 

modal stiffness for the first mode of structure, 𝑀𝐺  is the modal mass for the first mode of 

soil, 𝐾𝐺  is the modal stiffness for the first mode of soil and similarly all the other constants 

are determined by the integration of the approximated displacement functions for the 

corresponding structure of soil domain.  

Figure 6.12: Minimum natural frequency of the structure = 3.80 Hz 

 

Displacement Norm 
1.0 

0.0 
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Table 6.8: Mass and stiffness constants 

Constant Value  Constant Value 

𝑀𝑆 (ton) 63142 𝐾𝑈𝑈 (ton/mm2) 7.79×108 

𝑀𝑈 (ton) 53670.7 𝐾𝜃𝜃 (ton/mm2) 6.04×1017 

𝑀𝜃 (ton mm) 2.569×108 𝐾𝑆 (ton/mm2) 3.66×107 

𝑀 (ton) 353601 𝑀𝜃𝜃 (ton mm2) 1.06×1015 

𝑀𝑈𝑈 (ton) 1.35×106 𝑀𝐼 (ton mm2) 8.47×1014 

𝑀𝑆𝑈𝜃 (ton mm) 1.82×1010   
 

Table 6.9 shows the primary natural frequency of the fixed base finite element 

model of structure and the mass-spring soil-spring model. The natural frequency of the soil-

structure system could not be determined for the first 500 modes considered because of the 

high stiffness of the structure and the relatively weaker soil. There is however, a reduction 

in the natural frequency of the structure from 3.80 to the 2.61 value obtained by mass spring 

model which is because of the use of the stiff foundation and not an ideally rigid-body 

foundation. 

Table 6.9: Comparison of natural frequency 

Fixed base FEM model Mass-spring model 

3.80 2.61 
 

The constructed mass spring model without the effect of surface waves is used to 

determine the displacement response in the 𝑥-direction at the top of the structure, and the 

Figure 6.13: Comparison of x-direction displacement response at the top of structure obtained 
from mass spring model and FEM without the inclusion of surface wave 
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results are compared with those obtained from 3D FEM analysis. The comparison for first 

1000 time steps of GM1 is shown in Fig. 6.13. It is seen that the solution of the mass-spring 

model is fairly consistent with that of the finite element model however a better response 

can be obtained by including more number of modes as in this model, only first mode of 

the structure has been used. The mass spring model with the inclusion of surface waves is 

not used for this example because the effort involved in integrating the functions for whole 

soil domain for each time step exceeds the benefit obtained from the simplicity of the model. 
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Conversion of Modal Analysis to Mass-Spring 

Model 

7.1 Overview 

This chapter explains the possibility of using modal analysis performed using a high fidelity 

model to get a consistent mass-spring model for a complicated structure. A methodology to 

construct a consistent mass-spring model is already developed but it has certain limitations, 

such as the need to have equal number of Eigen modes and mass points of the mass-spring 

model. This requirement may easily be satisfied for a simple structure for which knowing 

the response at top of structure or each floor’s response is sufficient, but for a complicated 

structure such as an NPP, for which the response at several locations where critical 

instruments are to be placed is needed other than the floor response, an improvement of the 

methodology is needed for the conversion of modal analysis to mass-spring model.  

The target is to construct a consistent mass-spring model which, using the first few 

dominant modes of the structure, can approximate the solution of a high fidelity model. The 

characteristics of solution of a high fidelity model and modal analysis are explained and 

using the same methodology as discussed in previous chapter for the construction of a 

consistent model, a methodology for conversion of modal analysis to a mass-spring model 

is presented. However, a perfect conversion is not possible and the difficulties in the 

conversion are described.       

The contents of this chapter are organized as follows. First, the solid element based 

FEM solution and its characteristics are discussed in Section 7.2. Physical and mathematical 

interpretation of modal analysis is presented in Section 7.3. General linear conversion of 

modal analysis to a mass-spring model and the difficulties faced in an exact conversion are 

discussed in Section 7.4. An example for the conversion of modal analysis according to the 

proposed methodology is presented in Section 7.5. 

7.2 FEM solution 

The variational problem of the Lagrangian of continuum mechanics of Eq. (3.1) results in 

a mathematical problem of continuum mechanics i.e. the wave equation. This 4D partial 

differential equation is solved numerically by FEM using sufficient solid elements to get 
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the solid elements based FEM solution. This solution considers the effect of all the possible 

modes of a structure and needs the simple material properties as input. 

Instead of using solid elements based FEM analysis, shell element models are often 

used. The major reason for this preference is the lesser computational time and disk space 

needed for a shell element analysis. However, the assumption of shell type structure i.e. 

having two dimensions greater than the third one, is not always possible especially for the 

massive structures such as NPP which have structural components with thick cross sections. 

Further the contact problems can also be better solved by the use of solid elements. 

7.3 Modal analysis 

Modal analysis is the determination of the dynamic properties of the structure which include 

the natural frequency and the dynamic modes. The deformation of a linear structural system 

can be expressed as a linear combination of these modes. The modes show how the structure 

will deform when excited. Mathematically, modal analysis of a structure in continuum 

mechanics is the solution of the homogeneous wave equation with the displacement at the 

base fixed, and a non-trivial solution of this equation is the mode for a certain natural 

frequency, i.e. a solution of   

where 𝜔 and 𝝓 are the 𝛼-th natural frequency and the corresponding mode. 

Modal analysis has been used to construct consistent lumped mass models for 

structures [11]. In case of simple structure, a particular mode shape generally shows the 

deformed shape of the whole structure and the movement of the structure is generally 

uniform along the plan dimension, especially for the case of relatively stiffer slabs as 

compared to the columns. However for a complicated structure, it is difficult to have this 

kind of global mode shape and different parts of the structure excite differently and the local 

behavior is dominant in the mode shapes. These local behaviors can easily be modeled in 

FEM analysis however to make a simplified model for such a complicated structure is a 

challenging task. For this reason, to determine the local behavior of the structure at the 

points of interest, which can be significantly different than the average floor response, more 

than one sticks in the stick model of a complicated structure are preferred and it is also 

preferable for the model to have the ability to capture the behavior of all the points of 

interest, and not just the average floor responses, which is the case for the mass-spring 

models for the simple structures.  

7.4 Conversion of modal analysis 

For a back ground of this conversion, consider a simple case of a structure modeled as a 

one mass-spring model. A Lagrangian for this mass-spring model is 

𝜌(𝜔𝛼)2𝝓𝛼(𝒙) + 𝛁. (𝒄: 𝛁𝝓𝛼(𝒙)) = 𝟎, (7.1) 
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ℒ𝑠[𝑈, 𝑉] = 𝒦𝑠[𝑉] − 𝒫𝑠[𝑈], (7.2) 

where, U and V are the displacement and velocity of the mass in a particular direction with 

𝑉 = �̇� and  𝒦𝑠  and 𝒫𝑠  are kinematic and strain energy defined as 

𝒦𝑠[𝑉] =
1

2
𝑀𝑉2, 

𝒫𝑠[𝑈] =
1

2
𝐾𝑈2, 

(7.3) 

where M is the lumped mass and K is the spring constant for the lateral stiffness. 

The same structure when modelled according to the continuum mechanics 

considering a three dimensional displacement function u, has a Lagrangian of continuum 

mechanics as given in Eq. (3.1) and here it is written as  

ℒ𝑐[𝒗, 𝝐] = 𝒦𝑐[𝒗] − 𝒫𝑐[𝝐], (7.4) 

Where  

𝒦𝑐[𝒗] = ∫
1

2
𝜌𝒗 ⋅ 𝒗 dv

𝑉

, 

𝒫𝑐[𝝐] = ∫
1

2
𝝐: 𝒄: 𝝐 dv

𝑉

. 

(7.5) 

The form of ℒ𝑠 and ℒ𝑐 given by Eqs. (7.2) and (7.4) is similar to each other, even though 

the functions and the functionals given by Eqs. (7.3) and (7.5) are totally different.  

To derive a consistent simplified model, the meta-modeling theory takes advantage 

of this similarity of ℒ𝑠 and ℒ𝑐 and derives ℒ𝑠 from ℒ𝑐. The procedure of deriving ℒ𝑠 from 

ℒ𝑐 is simple, as we have to approximate the vector valued displacement function 𝒖. if we 

approximate it as the product of an unknown temporal function, 𝑈(𝑡), and a known three-

dimensional vector-valued function, 𝜳(𝒙), as 

𝒖(𝒙, 𝑡) = 𝑈(𝑡)𝜳(𝒙), (7.6) 

then substituting Eq. (7.6) into  ℒ𝑐, ℒ𝑠 is obtained. Here the mass and spring constants, M 

and K, are explicitly and objectively computed in terms of 𝜌  and 𝒄  together with the 

assumed 𝜳(𝒙) as follows, 

𝑀 = ∫𝜌𝜳 ⋅𝜳 dv
𝑉

, 

𝐾 = ∫𝜵𝜳: 𝒄: 𝜵𝜳 dv
𝑉

. 

(7.7) 
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As explained above, it is clear that the derivation of  ℒ𝑠 from ℒ𝑐 is rigorously made 

in a mathematical manner, without the need to make any physical assumptions and the 

Lagrangian problem of a continuum model with 𝜌 and 𝒄 is reduced to another Lagrangian 

problem of mass spring model of M and K by using an approximated displacement function. 

Therefore the solution of ℒ𝑠 is regarded as an approximation of the solution of ℒ𝑐. 

 Since the target is to make a simplified model having same dynamic properties as 

those of continuum mechanics modeling, the use of mode shapes obtained from solid 

elements based FEM analysis to get the displacement function  𝜳  is rational. A 

methodology to approximately convert the modal analysis results to the approximated 

displacement functions for a mass-spring model has been proposed by Jayasinghe et al [18]. 

However, that conversion has the limitation of the need to have equal number of mode 

shapes and mass points of the mass-spring model. This requirement may easily be satisfied 

for a simple structure for which knowing the response at top of structure or each floor’s 

response is sufficient, however as discussed in the previous section, for a complicated 

structure such as an NPP, for which the response at several locations where critical 

instruments are to be placed, is needed other than the average floor response, an 

improvement is needed for the conversion of modal analysis to mass-spring model for such 

structures. Hence there is a need to construct a consistent mass-spring model which, using 

the first few dominant modes of the structure, can approximate the solution of a high fidelity 

model.  

For the above mentioned reason, we start with the Lagrangian of continuum 

mechanics, writing it as 

ℒ[𝒗, 𝝐] =
1

2
⟨𝒗, 𝒗⟩

𝜌
−
1

2
⟨𝝐, 𝝐⟩

𝑐
, (7.8) 

Where 

⟨𝒗, 𝒗⟩
𝜌
= ∫𝜌𝒗 ⋅ 𝒗 dv
𝑉

, 

⟨𝝐, 𝝐⟩
𝑐
= ∫𝝐: 𝒄: 𝝐 dv
𝑉

. 

(7.9) 

Let (𝜔𝛼, 𝝓𝛼) be a pair of 𝛼-th natural frequency and mode satisfying Eq. (7.1), then 

the modal mass and stiffness for each mode are as follows 

𝑚𝛼 = ⟨𝝓𝛼, 𝝓𝛼⟩
𝜌
, 

 

𝑘𝛼 = ⟨𝜵𝝓𝛼, 𝜵𝝓𝛼⟩
𝑐
. 

(7.10) 
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Further the modal matrix {𝝓𝛼} satisfies ⟨𝝓𝛼 , 𝝓𝛽⟩
𝜌
= 0 and ⟨𝜵𝝓𝛼, 𝜵𝝓𝛽⟩

𝑐
= 0 for 𝛼 ≠ 𝛽.  

The Lagrangian for a mass spring model with N number of masses as shown in Fig. 7.1 is 

as follows; 

ℒ (𝑁) = 
1

2
𝑀𝐼

𝑁

𝐼=1

(�̇�𝐼)2 −
1

2
𝐾1(𝑈1)2 − 

1

2
𝐾𝐼

𝑁

𝐼=2

(𝑈𝐼 − 𝑈𝐼−1)2, (7.11) 

To derive Lagrangian of Eq. (7.11) from that of Eq. (7.8), as mentioned in previous 

section, we approximate the displacement function 𝒖  as the product of an unknown 

temporal function, 𝑈𝐼(𝑡), and a known three-dimensional vector-valued function, 𝜳𝐼(𝒙), 

as 

𝒖(𝒙, 𝑡) = 𝑈𝐼(𝑡)𝜳𝑰(𝒙)

𝑁

𝐼=1

. (7.12) 

Here, unknown {𝜳𝐼} are determined in terms of {𝝓𝛼} as follows 

𝜳𝑰(𝒙) = 𝐶𝐼,𝛼𝝓𝛼(𝒙)

𝛼

, (7.13) 

Where 𝐶𝐼,𝛼 is a constant. Substituting Eq. (7.12) into the Lagrangian of Eq. (7.8), we get 

the continuum Lagrangian of the following form 

ℒ =  
1

2
( 𝑚𝛼

𝛼

𝐶𝐼,𝛼𝐶𝐽,𝛼) �̇�𝐼�̇�𝐽 −

𝑁

𝐼,𝐽=1

1

2
( 𝑘𝛼

𝛼

𝐶𝐼,𝛼𝐶𝐽,𝛼)𝑈𝐼𝑈𝐽, (7.14) 

Figure 7.1: Mass-spring model 

𝑀2 

𝑀1 

𝑀𝑁 

𝐾𝑁 

𝐾2 

𝐾1 

𝑈𝑁(𝑡) 

𝑈2(𝑡) 

𝑈1(𝑡) 



 47 

For the case of a two mass spring system with 𝐼 = 2, if the Lagrangian of Eq. (7.14) 

is to be of the same form as the Lagrangian of Eq. (7.11), {𝐶𝐼,𝛼} ought to satisfy 

 𝑚𝛼

𝛼

𝐶𝐼,𝛼𝐶𝐽,𝛼 = 0,   for (𝐼, 𝐽) = (1,2) 

 𝑘𝛼𝐶2,𝛼(𝐶2,𝛼 + 𝐶1,𝛼) = 0

𝛼

 
(7.15) 

And for a three mass spring system with 𝐼 = 3, {𝐶𝐼,𝛼} ought to satisfy 

 𝑚𝛼

𝛼

𝐶𝐼,𝛼𝐶𝐽,𝛼 = 0,   for (𝐼, 𝐽) = (1,2), (2,3), (3,1)  

 𝑘𝛼𝐶𝐼,𝛼(𝐶𝐼,𝛼 + 𝐶𝐼−1,𝛼) = 0

𝛼

,     for 𝐼 = 2, 3 

 𝑘𝛼𝐶1,𝛼𝐶3,𝛼 = 0

𝛼

.     

(7.16) 

Unlike the previous formulation done by Jayasinghe et al considering the modes as 

3D vectors, in this study, the one direction component of modes at a time is considered. 

Suppose that {𝜳𝐼} satisfy 

𝑃𝛼 𝜙1
𝛼(𝒙𝐼)𝜳𝐼(𝒙) = 𝝓𝛼(𝒙)

𝐼

, (7.17) 

Where {𝒙𝐼} are a set of suitable points in the structure domain and 𝑃𝛼 is a suitable number. 

In terms of {𝐶𝐼,𝛼}, the left side of Eq. (7.17) is  

𝑃𝛼 ( 𝜙1
𝛼(𝒙𝐼)

𝐼

𝐶𝐼,𝛽)

𝛽

𝝓𝛽(𝒙), 

And due to the independence of the modes, it is necessary that the following should hold, 

 𝜙1
𝛼(𝒙𝐼)𝐶𝐼,𝛽 = 0

𝑁

𝐼=1

,      for 𝛼 ≠ 𝛽 (7.18) 

Equation (7.10) for 𝑚𝛼 and 𝑘𝛼 and Eq. (7.18) implies that 

(𝑃𝛼)2[𝜙1
𝛼(𝒙𝐼)]𝑇[⟨𝜳𝐼, 𝜳𝐼⟩

𝜌
][𝜙1
𝛼(𝒙𝐽)] = 𝑚𝛼, 

 

(𝑃𝛼)2[𝜙1
𝛼(𝒙𝐼)]𝑇[⟨𝜵𝜳𝐼, 𝜵𝜳𝐼⟩

𝑐
][𝜙1
𝛼(𝒙𝐽)] = 𝑘𝛼, 

(7.19) 

Where [𝜙1
𝛼(𝒙𝐼)] is an N component vector, and [⟨𝜳𝐼 , 𝜳𝐼⟩

𝜌
] and [⟨𝜵𝜳𝐼 , 𝜵𝜳𝐼⟩𝑐] are N×N 

matrices.  

Writing Eq. (7.19) as 
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(𝑃𝛼)2[𝜙1
𝛼(𝒙𝐼)]𝑇[𝑀][𝜙1

𝛼(𝒙𝐽)] = 𝑚𝛼, 

 

(𝑃𝛼)2[𝜙1
𝛼(𝒙𝐼)]𝑇[𝐾][𝜙1

𝛼(𝒙𝐽)] = 𝑘𝛼, 

(7.20) 

shows that (𝜔𝛼, [𝜙1
𝛼(𝒙𝐼)]) are a pair of natural frequency and mode. And 𝑀𝐼𝐽 = 0, and 

𝐾𝐼𝐼−1 = −𝐾𝐼𝐼 give conditions for {𝐶𝐼,𝛼}. 

Further it is also required that the total mass of the structure i.e. 𝑀 = ∫ 𝜌(𝒙) dv
𝑉

, is 

conserved which gives 

 𝑚𝛼(𝐶1,𝛼)2 = 𝑀

𝛼,𝐼

. (7.21) 

Where 𝑀𝐼𝐽 = 0 for 𝐼 ≠ 𝐽 is used. Hence for a perfect conversion of modal analysis results 

to a mass-spring model, the conditions given in Eqs. (7.15), (7.16) and (7.18) and the 

conditions 𝑀𝐼𝐽 = 0, and 𝐾𝐼𝐼−1 = −𝐾𝐼𝐼should be satisfied. 

As an example, for the conversion of two modes of the structure to a mass spring 

model with two masses, the conditions given above result in the following equations. 

 𝜙1
1(𝒙𝐼)𝐶𝐼,2 = 0

2

𝐼=1

,       

 𝜙1
2(𝒙𝐼)𝐶𝐼,1 = 0

2

𝐼=1

, 

𝑀12 = 0, 

𝐾21 = −𝐾22, 

𝑀11 +𝑀22 = 𝑀. 

(7.22) 

The explicit forms of these equations are given in Appendix C. Here {𝐶𝐼,𝛼} are four 

unknowns. It can be seen that the first two equations are linear equations whereas the last 

three equations are the non-linear equations of the unknowns  𝐶𝐼,𝛼. 

Similarly for the conversion of two modes to a mass spring model with three masses, 

the resulting equations are 

 𝜙1
1(𝒙𝐼)𝐶𝐼,2 = 0

3

𝐼=1

,       

 𝜙1
2(𝒙𝐼)𝐶𝐼,1 = 0

3

𝐼=1

, 

𝑀12 = 0, 

𝑀23 = 0, 

𝑀31 = 0, 

𝐾33 = −𝐾32, 

(7.23) 
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𝐾22 = −𝐾21 +𝐾33, 

𝐾13 = 0, 

𝑀11 +𝑀22 +𝑀33 = 𝑀. 

The explicit forms of these equations are also given in Appendix C. Here {𝐶𝐼,𝛼} are six 

unknowns and the first two equations are linear while the seven equations are non-linear. 

From the two cases of two and three mass spring models considered above, we have 

two or four unknowns and three or seven non-linear equations by suitably choosing two or 

three points for  {𝒙𝐼}, respectively. This existence of non-linear equations and the over-

determined system of equations for the determination of {𝐶𝐼,𝛼} makes it necessary to 

approximately solve these equations with some acceptable error. However, the satisfaction 

of first two linear equations is essential to reproduce the two modes. 

7.5 Example for the construction of consistent mass spring model  

As explained in the previous section, an ideal conversion of dynamic modes to a mass 

spring model is not possible and we need to approximately convert with relaxation of some 

conditions and some acceptable error. As an example of such conversion, a mass spring 

model as shown in Fig. 7.2 is constructed for the NPP structure as shown in Fig. 6.11. The 

detailed FEM model for this NPP is given in [66]. This mass spring model comprises of 6 

masses and 7 springs. Spring K4 is introduced for demonstration of method’s versatility and 

for this example K4 = 0. 

Starting with the Lagrangian of Eq. (7.8), we need to determine a suitable function 

set 𝝍𝛽(𝒙), such that it satisfies 𝒖(𝒙, 𝑡) ≈ ∑𝐴𝛽(𝑡)𝝍𝛽(𝒙). The Lagrangian for the mass 

spring model of Fig. 7.2 is as follows 

Figure 7.2: Mass-spring model to be constructed 
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ℒ =
1

2
[𝐴]̇ 𝑇[𝑀][𝐴] −

1

2
[𝐴]𝑇[𝐾][𝐴] (7.24) 

where the mass and stiffness matrices are given as follows 

[𝑀] =

[
 
 
 
 
 
𝑀1 
𝑀2 
𝑀3 
𝑀4 
𝑀5 
𝑀6 ]
 
 
 
 
 

 

 

[𝐾] =

[
 
 
 
 
 
𝐾1 −𝐾1

𝐾1 + 𝐾2 −𝐾2

𝐾2 + 𝐾3 + 𝐾4

𝐾5 −𝐾5

𝐾5 + 𝐾6

−𝐾4

−𝐾6

𝐾6 + 𝐾7 +𝐾4]
 
 
 
 
 

 

Using the dynamic modes (𝜔𝛼 , 𝝓𝜶 ), 𝝍𝛽(𝒙) is determined in terms of  𝝓𝜶  as 

𝝍𝛽(𝒙) = ∑ 𝑐𝛽𝛼𝝓𝛼(𝒙)𝛼 , with the unknowns 𝑐𝛽𝛼 . Here 𝛽  is the number of mass points 

and 𝛼 is the number of modes. Substituting 𝒖(𝒙, 𝑡) ≈ ∑𝐴𝛽(𝑡)𝝍𝛽(𝒙), into Lagrangian of 

Eq. (7.8) yields, 

ℒ = ∑
1

2
𝑚𝛽𝛽

′
�̇�𝛽�̇�𝛽

′
−
1

2
𝑘𝛽𝛽

′
𝐴𝛽𝐴𝛽

′
, (7.25) 

with 𝑚𝛽𝛽′ = ∫ 𝜌𝝍𝛽 ⋅ 𝝍𝛽′ d𝑣
𝑉

 and 𝑘𝛽𝛽′ = ∫ 𝛁𝝍𝛽: 𝒄: 𝛁𝝍𝛽′ d𝑣
𝑉

, where 𝐴𝛽(𝑡)  is the 

displacement of 𝛽-th mass at 𝒙𝛽.  

The computation of 𝑚𝛽𝛽′ and 𝑘𝛽𝛽′ in terms of unknown 𝑐𝛽𝛼 and known (𝑚𝛼, 𝑘𝛼) 

is made as follows 

𝑚𝛽𝛽′ = ∑ 𝑐𝛽𝛼𝑐𝛽′𝛼𝑚𝛼𝛼    and   𝑘𝛽𝛽′ = ∑ 𝑐𝛽𝛼𝑐𝛽′𝛼𝑘𝛼𝛼 . (7.26) 

The conditions for the 𝑐𝛽𝛼  are obtained by ensuring the orthogonality of 

approximated displacement functions and comparing the mass and stiffness matrices of 

mass spring system with those obtained from the expressions of Eq. (7.26). These 

conditions are given as follows  

∑ 𝑐𝛽𝛼′𝛽 𝜙1
𝛼(𝒙𝛽) = 0,    (for 𝛼 ≠ 𝛼′) 

∑ 𝑐𝛽𝛼𝑐𝛽′𝛼𝑚𝛼𝛼 = 0,     (for 𝛽 ≠ 𝛽′) 

𝑘12 + 𝑘11 = 0, 

𝑘45 + 𝑘44 = 0, 

𝑘22 + 𝑘12 + 𝑘23 = 0, 

𝑘55 + 𝑘45 + 𝑘56 = 0. 

(7.27) 
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Then the mass and stiffness values for the mass-spring system in terms of 𝑚𝛽𝛽′and 

𝑘𝛽𝛽′ of Eq. (7.26) are as follows, 

𝑀𝛽 = 𝑚𝛽𝛽 (𝛽 = 1,  2,  ⋯ ,  6) 

𝐾1 = 𝑘11, 

𝐾2 = −𝑘23, 

𝐾3 = 𝑘33 + 𝑘23+𝑘36, 

𝐾4 = −𝑘36, 

𝐾5 = 𝑘44, 

𝐾6 = −𝑘56, 

𝐾7 = 𝑘66 + 𝑘56+𝑘36. 

(7.28) 

For this example, we take three dynamic modes of the NPP structure as shown in 

Fig. (7.3), with the mass and stiffness values given in Table 7.1. 

 

 

 

 

Figure 7.3: The three dynamic modes for the structure used 

 

f = 3.61 Hz f = 3.64 Hz 

f = 5.46 Hz 
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Table 7.1: Parameters for the three dynamic modes used 

Mode 𝜔𝛼 𝑚𝛼 (ton) 𝑘𝛼 (ton/mm2) 

1 22.68 78553.76 40420400 

2 22.88 81025.78 42415300 

3 34.33 111063.13 130875000 
 

The 25 conditions given in Eq. (7.22) are solved approximately to determine the 18 

𝑐𝛽𝛼 values, by minimizing the error. The mass and stiffness matrices for the mass-spring 

model are given as follows.     

[𝑀] =

[
 
 
 
 
 78.6  −28.8  

18.83

𝑠𝑦𝑚

−15.4  
−0.1
7.8

−70.0  
27.8
13.4
64.7

33.9    

−20.0  
−1.8
−33.0
21.9

−20.1
5.1
22.2
12.4
−4.5
19.9 ]
 
 
 
 
 

 x 103 

[𝐾] =

[
 
 
 
 
 4.06  −1.47  

0.98

𝑠𝑦𝑚

−0.785  
0.0001
0.42

−3.6  
1.46
0.72
3.41

1.72    

−1.06 
−0.12
−1.7
1.18

−1.12
0.17
0
0.34
0
2.0 ]
 
 
 
 
 

 x 107 

The obtained mass and stiffness matrices result in the same natural frequency as that of 

the 3D FEM analysis. However, the presence of non- zero and negative terms in the mass 

matrix are due to the approximate solution and the purely mathematical treatment of the 

problem. One option can be to further force the off diagonal terms of mass matrix to zero 

by minimization and checking the effect on the frequency, however it is expected to 

significantly change the frequency since some of the off-diagonal terms are of the same 

order as those of the diagonal terms. 
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Concluding Remarks 

8.1 Overview 

In this chapter, the achievements of this research work are summarized and 

recommendations are given for the possible improvement of the developed models and for 

achieving the long-term research plan of improving the conventional seismic response 

analysis approach. 

8.2 Achievements 

This thesis presents an application of meta-modeling theory to the construction of consistent 

seismic response analysis model which can consider the effect of SSI during analysis. Such 

structural response analysis modeling can be used as a more rational and accurate estimation 

method for possible earthquake damage to structures.  

Following are the three main achievements of this study which were the objectives: 

1) Clarifying SSI analysis according to the meta-modeling theory in structural mechanics 

and continuum mechanics and pointing out the benefits and limitations of the simplified 

mass spring modeling approach for the SSI analysis. 2) Proposition of a methodology for 

the construction of a consistent mass-spring model that can approximate the solution of 

solid element FEM model, with and without the consideration of SSI effect. 3) Showing the 

useful of the proposed methodology with the help of numerical experiments. 

It is shown that there are simplifications which are made when modelling SSI in 

terms of soil-spring and it is these approximations which determine the applicability and 

limitations of the soil-spring and should be understood before applying the soil-spring 

modeling to any soil-structure system. The key simplifications are the assumptions of a 

rigid body foundation and a symmetric structure resting on uniform or stratified soil domain. 

Next a methodology is developed for constructing a consistent mass-spring soil-

spring model. Starting from the Lagrangian of continuum mechanics and selecting suitably 

approximated displacement functions, the variational problem of the Lagrangian is 

converted to an initial value problem of the mass-spring soil-spring model. As the simplest 

case, the governing equation of a single mass-spring system for a structure with rigid body 

foundation and a soil spring is derived, based on an assumption of uni-directional 

displacement. Explicit expressions of the mass and the stiffness constants are rigorously 

derived from the Lagrangian and can be applied to any shape of the foundation/structure. 
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Two simple numerical experiments performed to show the usefulness of the developed 

methodology and expressions show that the solution of the mass-spring model is fairly 

consistent with that of the finite element model. 

Next a possibility of using modal analysis performed using a high fidelity model to 

get a consistent mass-spring model for a complicated structure and to improve the already 

existing consistent mass spring model for a simple structure is shown. Mass and spring 

constants for a mass spring model for a complicated structure are determined ensuring its 

consistency with the 3D FEM model results in terms of the dynamic characteristics. 

8.3 Future works 

The developed mass spring soil spring model should be extended to reproduce more than 

one modes of the structure as well as the soil which is the case in this study. The 

applicability and limitations of the stick model should be studied and its performance for 

the evaluation of the dynamic response of the structure should be examined. The developed 

models should be extended to consider the non-linear cases to get more benefits of the 

simplicity and the lesser computational effort needed for a simplified model. It is 

straightforward to apply meta-modeling to non-linear elasto-plasticity problem in which 

strain and stress increments are linearly related.  
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Appendix A  

Summary of Meta-modeling Theory 

In the meta-modeling theory, the variational problem using a Lagrangian is called as a 

physical problem, and obtaining an approximated solution of this physical problem is called 

a modeling. Many kinds of modelings can be made for the same physical problem. Hence, 

a theory of making such modelings is called meta-modeling in the sense that modeling is 

modeled. 

There are many ways to develop a distinct mathematical problem, depending on the 

accuracy that is expected in solving the physical problem. The meta-modeling theory 

delivers a set of consistent modelings which produce an approximate solution of the original 

modeling. As an example in structural mechanics problems, the meta-modeling theory uses 

continuum mechanics modeling as the basic modeling. Some of structural mechanics 

modelings are specified as consistent with continuum mechanics modeling. Then, those 

consistent structure mechanics modelings produce an approximate solution of the 

continuum mechanics modeling. 

For simplicity, we assume a homogeneous elastic body (𝑉 ) with an isotropic 

elasticity tensor and density, denoted by c  and ρ. If velocity and strain are denoted by v and 

ϵ respectively, the Lagrangian of 𝑉 is 

ℒ[𝐯, 𝛜] = ∫
1

2
𝜌𝐯 ∙ 𝐯 −

1

2
𝛜: 𝐜: 𝛜 d𝑣,

𝑉

 (A.1) 

where ∙ and : are the inner product and second-order contraction, respectively. We compute 

𝒗 = �̇�  and 𝛜 = 𝑠𝑦𝑚{𝛁𝒖} , using a displacement function 𝐮  which satisfies prescribed 

boundary and initial conditions; 𝑠𝑦𝑚 stands for the symmetric part of the second-order 

tensor, (( . )̇ ) and 𝛁( . ) being temporal derivative and gradient of ( . ). 

Structure mechanics employs a one dimensional stress-strain relation that is not 

validated in any experiment. That is, Young’s modulus, 𝐸, is used rather than the fourth-

order tensor 𝐜 as a material property of 𝑉. As an example, in the Cartesian coordinate of 
(𝑥1, 𝑥2, 𝑥3), the normal stress and strain components in the 𝑥1-direction are related as 

𝜎11 = 𝐸𝜖11, 

rather than 𝛔 = 𝐜: 𝛜 or 

𝜎11 = 𝑐1111𝜖11 +⋯ =
(1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
𝜖11 +⋯, 

where 𝛔 is stress. 

According to the meta-modeling theory, we do not have to assume the one-

dimensional stress-strain relation, but we employ the following alternative Lagrangian:, 
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ℒ∗[𝐯, 𝛜, 𝛔] = ∫
1

2
𝜌𝐯 ∙ 𝐯 − (𝛔: 𝛜 −

1

2
𝛔: 𝐜−1: 𝛔)  d𝑣,

𝑉

 (A.2) 

where 𝐜−1  is the inverse tensor of 𝐜 . Since the terms in the parenthesis in Eq. (A.2) 

equal 
1

2
𝛜: 𝐜: 𝛜, for 𝛔 satisfying 𝛜 = 𝐜−1: 𝛔, this Lagrangian is equivalent to the ordinary one 

of Eq. (A.1). It is easy to show that, if non-zero components of 𝛜 and 𝛔 are 𝜖11 and 𝜎11 only, 

the second term in the integrand of ℒ∗ becomes 𝜎11𝜖11 −
1

2
𝜎11
2 /𝐸, and the variation with 

respect to  𝜎11 is 

𝛿 (𝜎11𝜖11 −
1

2

𝜎11
2

𝐸
) =
𝛿𝜎11
𝐸
(𝐸𝜖11 − 𝜎11). 

As is seen, the one-dimensional stress strain relation is derived from the mathematical 

operation of taking variation, without making any assumption such as the one-dimensional 

stress-strain relation. 

The meta-modeling theory leads to consistent modeling which solves the variational 

problem of ℒ∗. If no approximation is made for 𝐮 (that produces 𝐯 and 𝛜) and 𝛔, it results 

in continuum mechanics modeling, and the governing equation for 𝐮 is the wave equation, 

i.e., 

𝜌(𝐱)�̈�(𝐱, 𝑡) − 𝛁 ∙ (𝐜(𝐱):𝛁𝐮(𝐱, 𝑡)) = 0. (A.3) 

If certain approximations are made for 𝐮 and 𝛔, it results in a consistent modeling that 

solves a different mathematical problem. (See Fig. A.1). However, this problem is to solve 

the same physical problem (that is described in terms of the variational problem) using the 

mathematical approximations. 

 

 

Figure A.1: Development of a set of consistent models using meta-modeling theory. 
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Appendix B  

Effect of SSI on Natural Frequency of Structure 

Consider a mass spring model with a single mass, 𝑀(1), connected to a spring of spring 

constant, 𝐾(1). A natural frequency of this model, denoted by 𝜔, is given by the following 

equation; 

𝜔2𝑀(1) − 𝐾(1) = 0. 

Now, if this mass spring model is connected with another mass-spring model with mass and 

stiffness of 𝑀(2) and 𝐾(2), the natural frequency of this two-mass model is calculated by 

solving the following equation: 

det {𝜔2 [𝑀
(1) 0
0 𝑀(2)

] − [ 𝐾
(1) −𝐾(1)

−𝐾(1) 𝐾(1) + 𝐾(2)
]} = 0. 

The natural frequency of the first mass spring model, i.e.  𝜔 = √𝐾(1)/𝑀(1) changes 

when it is connected with a second mass-spring model. This change is considered as 

interaction between the two masses. 

We now regard the two masses of the spring model as the structure and the soil. The 

natural frequency of the structure is changed depending on the soil. This change could be 

interpreted as another interaction of the structure with the soil. This change, however, can 

be fully ignored by introducing the rigid body plate foundation, which corresponds to 

sufficiently stiff foundation of the structure. 
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Appendix C  

Explicit Expressions for the Conversion of Modal 

Analysis 

The explicit form of the conditions given in Eq. (6.22) is as follows 

 𝜙1
1(𝒙𝐼)𝐶𝐼,2 = 0

2

𝐼=1

:       

𝜙1
1(𝒙1)𝐶1,2 + 𝜙1

1(𝒙2)𝐶2,2 = 0 

 𝜙1
2(𝒙𝐼)𝐶𝐼,1 = 0

2

𝐼=1

:       

𝜙1
2(𝒙1)𝐶1,1 + 𝜙1

2(𝒙2)𝐶2,1 = 0 

𝑀12 = 0:       

𝑚1𝐶1,1𝐶2,1 +𝑚2𝐶1,2𝐶2,2 = 0 

𝐾21 = −𝐾22:       

𝑘1𝐶2,1(𝐶2,1 + 𝐶1,1) + 𝑘2𝐶2,2(𝐶2,2 + 𝐶1,2) = 0 

𝑀11 +𝑀22 = 𝑀:       

𝑚1((𝐶1,1)2 + (𝐶2,1)2) + 𝑚2((𝐶1,2)2 + (𝐶2,2)2) = 𝑀 

The explicit form of the conditions given in Eq. (6.23) is as follows 

 𝜙1
1(𝒙𝐼)𝐶𝐼,2 = 0

3

𝐼=1

:      

𝜙1
1(𝒙1)𝐶1,2 + 𝜙1

1(𝒙2)𝐶2,2 +𝜙1
1(𝒙3)𝐶3,2 = 0 

 𝜙1
2(𝒙𝐼)𝐶𝐼,1 = 0

3

𝐼=1

:      

𝜙1
2(𝒙1)𝐶1,1 + 𝜙1

2(𝒙2)𝐶2,1 +𝜙1
2(𝒙3)𝐶3,1 = 0 

𝑀12 = 0:      

𝑚1𝐶1,1𝐶2,1 +𝑚2𝐶1,2𝐶2,2 = 0 

𝑀23 = 0:      

𝑚1𝐶2,1𝐶3,1 +𝑚2𝐶2,2𝐶3,2 = 0 

𝑀31 = 0:      

𝑚1𝐶3,1𝐶1,1 +𝑚2𝐶3,2𝐶1,2 = 0 

𝐾33 = −𝐾32:      

𝑘1𝐶3,1(𝐶3,1 + 𝐶2,1) + 𝑘2𝐶3,2(𝐶3,2 + 𝐶2,2) = 0 

𝐾22 = −𝐾21 + 𝐾33:      

𝑘1((𝐶3,1)2 − (𝐶2,1)2 − 𝐶2,1𝐶1,1) + 𝑘2((𝐶3,2)2 − (𝐶2,2)2 − 𝐶2,2𝐶1,2) = 0 

𝐾13 = 0:      

𝑘1𝐶1,1𝐶3,1 + 𝑘2𝐶1,2𝐶3,2 = 0 
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𝑀11 +𝑀22 +𝑀33 = 𝑀:      

𝑚1((𝐶1,1)2 + (𝐶2,1)2 + (𝐶3,1)2) + 𝑚2((𝐶1,2)2 + (𝐶2,2)2 + (𝐶3,2)2) = 𝑀 

 

 

 

 

 

 

 

 

 

 


