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Abstract

Although discrete models are commonly used in numerical simulation of brick structures, alter-
nated equivalent continuum form can provide some advantages. This continuum form allows one
to analytically study dynamic characteristics of brick structure for given brick-mortar geometric
and material properties. With this analytical solution, we can verify numerical discrete codes. In
addition, the continuum form allows us to formulate finite element model (FEM) for brick struc-
tures. This FEM implementation allows one to use commercial software to analyze brick models
using proper structural elements such as beams or shells without writing computational code. Also
it is convenient to use the analytical solution and FEM implementation in design proposes.

This study aims to use an approximation treatment called continuumniztion to derive the equiv-
alent continuum form of discrete governing equations and obtain analytical prediction of dynamic
characteristic. Once the analytical prediction is verified, continuumniztion based Particle Dis-
cretization Scheme Finite Element Method (PDS-FEM) implementation is formulated. Finally
hypothesis of the role of high frequency rotation is to be explored.

Before applying continuumnzation, a regularly packed brick-mortar systems is constructed. In
this system, bricks are assumed to be rigid blocks and mortar are assumed to be tiny linear springs
with normal and tangential constants. Based on Hamilton principle, discrete equations of motion
of the system are obtained. This equations consist of the equation of translation and equation of
rotation. Also there are coupling term between translation and rotation.

Based on the continuumnzation, it is assumed that brick size are small such that the relative
motions of discrete equations of motion can be replaced by gradient term. With this approach
continuumnized equations of motion are obtained.

mortar systems. Using Fourier transform with respect to length and time, a characteristic equa-
tion in frequency-wavelength domain can be obtained. Solving the characteristic equation, the
relation between frequency and wave number is obtained. For relatively long wavelength, analyt-
ical wave phase velocities of p-wave and s-wave are predicted. Also, the corresponding modes
including rotational wave are obtained.

To verify the analytical solutions based on continuumnzation, a numerical model of 2d brick
wall is constructed. The numerical model is subjected by 2 cases of input condition at the center
of the model. First is translational input to compare the wavefronts for a given travel time. Second
is rotational input to compare the relation between wave frequency and wavenumber for givens
length domain. According to the verification, the analytical wavefront are in good agreement with



numerical wavefront, especially for horizontal and vertical propagation of waves which is com-
monly occur in earthquake engineering. For the frequency-wavenumber relation, the numerical
relation and the analytical relation are in good agreement for wavelengh longer than 7 times of the
size of bricks which is sufficient for civil engineer.

Continuumnized based FEM of brick structures can be derived. Since bricks are rigid particles,
PDS-FEM can be can provide better representation of brick movements. Unlike standard FEM,
the derivatives of translation and rotation are approximate on a triangle formed by centers of 3
neighboring bricks such that characteristic function is 1 for inside the triangle and O for outside.
To obtain the range of applicability of the PDS-FEM, numerical simulations of PDS-FEM were
verified with RBSM and analytically predict frequency wave number relation. According to the
results, the continuumnzation based PDS-FEM is applicable for wavelengh longer than 7 times of
the size of bricks which is sufficient for civil engineer.

According to the analytical solution of continuumnization and numerical solution of PDS-
FEM, high frequency of rotation is observed which is possible to be one of the sources of damping.
To study the effect of the rotational damping, the special care of damping model is required instead
of using Rayleigh damping which lacks of physical explanation. To study the effect of rotation on
the damping mechanism, the rotation in equation of rotation is derived in term of translation and
substituted in to the equation of translation. With this approach the single equation of translation
which include the effect of damping due to high frequency rotation is obtained. According to the
numerical experiment of the damping, small energy dissipation is observed. This can conclude that
high frequency rotation can be one of the sources of damping.

To conclude, this study formulate the governing equations of the equivalent continuum brick
mass-spring system and applied them for three main applications. First, frequency-wavenumber
relation of p-, s- and rotational waves and corresponding wave speed are predicted. Second, PDS-
DEM for brick wall is formulated. According to its verification, PDS-DEM for brick wall is
applicable for civil engineering applications. Finally, the damping term which include brick mortar
properties unlike empirical damping is obtained.
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Chapter 1

Introduction

Although discrete models like DEM and RBSM are useful for analysis of brick structures, con-
tinuum model can provides us advantages in some applications. For example, we can obtain
analytical solutions of governing equations of continuum system. With the obtained analytical
solutions, we can predict dynamic characteristics, like wave frequency or velocity, for given brick
arrangement, size, density, and brick-mortar material property. For verification proposes, we can
use the predicted dynamic characteristics to check the accuracy of numerical simulation of dis-
crete models. For design proposes, we can choose proper brick-mortar geometric and material
property for desired dynamic characteristic without blindly using numerical trial and error as there
are many parameters like brick geometry, arrangement and brick-mortar material properties. Also,
the equivalent continuous governing equation can be simplified to construct simpler model like
beam or shell and make us easy to design brick structures.

The equivalent continuum systems is a bridge to effectively use the numerical methods used
in continuum mechanics, like FEM, to analyze brick structures. With FEM, it is simple to use
powerful commercial software to analyze brick structures without writing computational code.
Further, the brick-mortar FEM can be simulated along with other mostly used materials like con-
crete and steel seamlessly. Obviously, these continuum models, and possibly simplified structural
models like shells based on continuum form for analyzing brick structures, will be quite attractive
solutions for brick structure designers.

The mechanism of damping of brick structures or particle systems, like sand, is poorly under-
stood and current analysis of damping such systems are heavily rely on empirical relations obtained
from experimental observations. Though Rayleigh damping can be empirically used for continuum
system, there is no physical explanation of this kind of damping. Understanding the underlying
mechanism of damping of granular materials, brick structures, etc. is one of the important problem
in engineering and physics. The continuum models would be useful in exploring the mechanism
of damping in granule systems or brick structures.

This research aims to uses an approximation tool called continuumnization proposed by Hori et
al[1] in order to obtain the continuum form of governing equations of brick structures and explore
its applications. Based on the continuumnization, the discrete relative translations and rotations
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of discrete regularly packed particles are approximate to be equivalent continuum vector fields as-
suming that the particles are relatively small compared to wavelength. With this approximation,
continuumnized governing equations of particle motion of the brick-mortar system is obtained.
With this continuumnized governing equations, this research aims to predict dynamic characteris-
tic of brick mortar systems for verification propose. In addition to the continuumnization, higher
accurate continuum forms with wider range of applicability also are developed and their applica-
tions are explored.

For further application, this research aims to develop FEM for brick structures based on the
continuumnization. Since standard FEM might not provide us a good representation of brick move-
ment as the brick structures are generally set of particles, this research uses particle discretization
scheme finite element method (PDS-FEM)[2] of continuumnized brick-mortar system instead of
standard FEM. In PDS-FEM for brick structures, the characteristic function is defined on a brick
itself. As PDS-FEM is particle schemed, the movement of bricks can be well represented. Also,
geometric property like mass moment of inertia in PDS-FEM is well defined.

Though there are lacks of understanding of damping mechanism as explained earlier, there is a
hypothesis that the high frequency rotation of particles can be one of the sources of damping[1]. To
test this hypothesis, this research aims to use the continuumnizaton to analytically investigate the
role of high frequency rotation. Once the damping term due to high frequency rotation is defined,
this research aims to develop PDS-FEM of the damped systems. Then, the effect of the damping
term will be numerically studied..

1.1 Thesis structure

This thesis consists of 8 chapters and several appendices. The contents of the thesis are expressed
as follows. Chapter 2 shows the past researches of several types of modeling of brick structures,
specially for the use of continuum form of brick structures. Chapter 3 explains the continuumniza-
tion of the spherical systems. Dynamic characteristics of the system are predicted and verified with
RBSM to explores its applicable range. Chapter 4 shows the formulation of the continuumnized
governing equations of brick structures and prediction of dynamic characteristics of the system.
Also, the continuumnization of brick structures is verified like chapter 3. Chapter 5 explains the
use of the continuumnization of brick wall to formulate PDS-FEM for conunuumnized brick wall
systems. Then, chapter 6 explains the exploration of the role of rotation on damping mechanism
of brick walls. Finally, chapter 7 expresses the concluding remark of the whole research and some
idea for future research.



Chapter 2

Literature Review

The modeling of brick structures can be characterized by two main types based on assumptions of
the brick-mortar material. The first type is discrete model assuming that the bricks are rigid blocks.
The second type is continuum model assuming continuous material that can represent brick and
mortar properties.

Since brick structures generally consist of brick units and mortar, discrete models are widely
used. For small movement of brick particles, many researchers use rigid body spring model
(RBSM)[3, 4, 5, 6, 7] assuming that bricks are rigid blocks and mortar is infinitesimal small
springs with normal and tangential spring constants. With RBSM, it is simple to include cracking
in mortar[7]. In addition, some simulate the crack of brick units for various cracking modes[5]. In
case of large movement of brick units, it is common to use discrete element model (DEM)[8, 9, 10].
It’s popular in simulations of collapse of brick structures[9].

While discrete model of brick structures are very useful in brick structural analysis as described
above, it is troublesome for design purposes. What is preferred in design of brick structures is
simple means to predict the characteristics of different combinations of brick mortar properties
and brick arrangement, simplified numerical models like shells and beams for brick structures, etc.
Availability of some equivalent continuum models for brick structures would address these needs.
At the same time, these continuum models can be useful in finding analytical solutions which is
one of the most desired in the verification of RBSM or DEM codes.

There are numbers of method to obtain continuum form of brick structures. Standard finite
element model (FEM) with solid elements smaller than brick sizes and mortar thickness can be
implemented[11, 12] to study micro structural behaviors. In this model, elastic properties of bricks
and mortar can be directly applied to solid elements of brick and mortar. This method can pro-
vide high accuracy since there is no assumption. However, it is not suitable for preliminary design
purposes or simulating large structures since the computational cost is high due to the involve-
ment of a large degrees of freedoms. To model such a large size of brick structures, brick-mortar
materials are converted into equivalent homogeneous material so-called homogenization in order
to reduce degree of freedom. In this method, equivalent material property of the continuous do-
main can be obtained by the average of brick and mortar’s properties[13, 14, 15]. Alternatively,
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equivalent material property can be obtained by validation of experimental wave velocity using
sonic tests[16, 17, 18]. However, assuming the brick-mortar to be isotopic ignoring the effect of
brick arrangement causes the lack of accuracy. Thus, this method is not reliable to predict dynamic
characteristics.

Equivalent continuum form that can provide reliable analytical prediction of dynamic char-
acteristic for verification purpose have been found in regularly packed spherical mass-spring
systems[19, 20, 21]. To obtain the equivalent continuum form, discrete translation and rotation
in discrete governing equations are approximated based on second order Taylor’s expansion[21].
This approximation method can be useful to verify the discrete system with long wavelength. For
example, dynamic characteristics such as the wave frequency-wavenumber relation and wave ve-
locity are predicted analytically. The expansion for short wavelength is also applied assuming the
results of equation of motion to be complex exponential wave function[21] . However, assuming
wave function to be the results of equation is not rigorous as the analytical solutions could be any
functions other than wave function.

Stefanou et al. have obtained equivalent continuum form of regularly arranged brick struc-
tures based on second order Taylor’s expansion[22]. With the equivalent continuous governing
equation, they have analytically predicted frequency-wavenumber relation. Further, they applied
the same method for periodic arrangement of brick wall[23]. With the continuum form of gov-
erning equation proposed by Stefanou et al., FEM which includes rotational degree of freedom
can be constructed [28]. Note that obtaining the continuum form of randomly arranged is also
applicable[26].

Other method of obtaining continuum form is to assume the relative translation and rotation as
gradient term[24, 25]. The main different between this approach and Taylor’s expansion is that the
gradient term directly represent the continuous translational and rotational vector field.

One of the dynamic characteristics of brick structures that have not been explored is the mech-
anism of damping. Understanding the damping mechanism of particle systems is one of the
important problem both in engineering and physics. Though, there are various experimental re-
search, such as effect of damage damping ratio[30], its mechanism cannot be well explained. In
analysis of discrete model, damping term is model by the rate of deformation of springs induce
non-conservative force[31, 32, 33]. For continuum form, Rayleigh damping is used[34]. Though
damping property can be obtained by experiments, there are lack of physical explanation of vis-
cous damping. Though there are some research on energy dissipation due to rocking[37, 38], the
dissipation does not cause viscous damping since it is not velocity dependent.

A key of rational modeling of damping in particle mass-spring system is found in Hori et al’s
research [1]. Hori et al.[1] developed continuumnization to obtain the continuum form of the
rigid spherical mass-spring systems. Unlike the approximation based in second order Taylor’s
expansion described earlier, continuumnization approximate the relative translation and rotation of
neighboring particles to be gradient term in the assumption that wave length is relatively longer
than the size of particle. According to analytical solutions based on the continuumnization, Hori et
al.[1] propose the hypothesis that high frequency rotation might cause damping in particle systems.



CHAPTER 2. LITERATURE REVIEW 5

2.1 Observation from literature review

Though analytical solutions usable for the verification of RBSM or DEM models have been pro-
posed, these solutions can be further improved increasing the accuracy and the range of applica-
bility. Though such improvements are not essential for ordinary engineering applications, some
special engineering applications and most probably some applications in physics may benefit from
these improvements. Also, these accurate solutions with wider range of applicability will be quite
useful in verification of general numerical codes or particle types simulations.

The FEM of brick structure may not proper as the bricks are basically particles. As alternative
method called particle discretization scheme finite element method (PDS-FEM)[2] could provide
better representation of brick translation and rotation as PDS-FEM is particle typed model as well
as brick particles. The formulation of PDS-FEM is expressed in chapter 5.

There are lacks of understanding of viscous damping mechanism of brick structures. However,
Hori et al.[1] proposes a hypothesis that high frequency rotation of particle mass-spring systems
may cause damping. This hypothesis could be explored based on the continuumnization.

2.2 Objectives of the current work

The Objectives of the current work are expressed as follows
e Derive the equivalent continuum forms for brick structures

— Based on Continuumnization

— Based on Taylor series expansion
e Explore the applications of continuum forms

— Obtain analytical solutions for verification of RBSM

— Formulate PDS-FEM for brick structures

e Test the hypothesis that high frequency rotation can be a source of damping in brick struc-
tures or particle systems



Chapter 3

Continuumnization of spherical
mass-spring systems

Continuumnization can be applied to idealize a regularly packed interacting particle system as a
continuum. The resulting equivalent continuum form lead to two major advantages: enable to
analytically predict the particle system’s dynamic characteristics; and enables to use numerical
tools used in continuum mechanics, like FEM, to analyze particle systems. Though only linearly
interacting particle systems are considered in this thesis, it is a possibility to extend to nonliearly
interacting particles.

The original proposal on continuumnization by Hori et al. idealizes a regularly packed particle
system as a continuum by considering the limit of particle size going to zero. Hence the name
continuumnization. Though conceptually different, the same governing equation obtained with of
continuumnization can be derived based on a Taylor series approach. The major difference between
continuumnization and the Taylor series approach is that the latter does not involve the limiting
process. While the author independently developed this Taylor series based approach,Stefanou
et al. have proposed a similar technique in reference [22]. An interesting reader is referred to
Stefanou et al.[22] for a summary of several homogenization techniques used to derive equivalent
continuum forms for regularly packed mass spring systems. In therir work, Stefanou et al. only
considered the case of first order expansion for the rotation. In this thesis, the second order and
infinite order cases are considered. As it is demonstrated in the latter half of this chapter, the
infinite series solution is valid for wider range of frequencies, while continuumnization and second
order Taylor series solutions are applicable for low frequency ranges.

In this chapter, the continuumnization and the Taylor series approaches are presented. 2D
hexagonally packed spherical mas spring system is considered for the simplicity. The analyt-
ically obtained dynamic characteristics are compared with those from Rigid Body Spring Model
(RBSM). Application of continuumnization for regularly arranged brick mortar system is presented
in the next section.
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Figure 3.1: Regularly packed sphere Connection of a sphere ;. and two neighbors y4 with normal
spring constant, k, and tangential spring constant, h.

\

\

1
|
-

Figure 3.2: Contact point of the connection between the sphere y and the neighbor v+ .

3.1 Equations of motion of a discrete sphere system

Consider large collection of regularly packed spherical particles on a plane. The mass of each
spherical particle is m while the radius is a. The spherical particles are assumed to be connected
with elastic springs at the contact surface. Figure 3.1 shows a particle ; and its six neighbors in
three directions; y=+ denotes neighbors in opposite directions. At each contact point, neighbors
are assumed to be connected with infinitesimal small linear elastic springs of stiffness £ and h
in normal and tangential directions, respectively. As shown in Figure 3.2, the normal and two
tangential unit vectors at the contact surface with v* are n"* , 7", and s7*, where n7" =¢7" x

sTt.
3.1.1 Potential energy of the system

Given the translation and rotation of a particle yu, u* and 6%, and those of its neighbor v+, u7"
and 077, their relative movements at the contact point can be expressed as

LM =t —ut—a (97++9N) xn)T. 3.1)

The corresponding elastic potential energy , V#7*, can be expressed as
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VIt — %k(nv+,LM+>2+%h(t7+~L‘”+)2+%h(37+-L“7+)2 (3.2)

3.1.2 First variation of potential energy

From Eq. 3.2, the first variation of spring energy,dV#7*, can be expressed as

ovirt = oK () + K (071407 |our

+{_ <K7+>T. (u7+_uu)+f'y+. (07" +6") }.59u

where

K™ = kn?"@n" +ht" @t T +hs" @87
K" = ah (t7+®37+_87+ ®t7+)
K" = @h(tett+stos1).
Using symmetry, it is straightforward to express the corresponding matrices, K7™, K7~ and
K, for the particle pair y andy—; K'~ =K, K"~ =—K"*, and K =K.

Taking the summation over all the three directions of +’s for all the particles in the domain, we
can express the first variation of the total potential energy of the mass spring system as

Vo= > (svrrtgsve)
T
_ ZZ{_Kv.(uv+_2uu_u%)+K7.(07+_0%)}.(5uﬂ (3.3)
T

+ { —~ (K”) y (W —u"")+K (077 +20"+07") } 00" (3.4)

3.1.3 First variation of Kkinetic energy

For given translational and angular speeds of, @* and 0", the kinetic energy, T, of the mass spring
system is

1 1. .
T:Z <§muﬂ-uﬂ+§0”-1-0ﬂ) .
17

It is straightforward to obtain the first variation of kinetic energy as
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5T=Z{%(muu-au“)—mm-auu%{u -0M)-50"} — (I -é“) -50“}- (3.5)

m

3.1.4 Equations of motion

According to the hamilton’s principle, the above conservative system evolves such that

[2)
5 / (T—V)dt=0 (3.6)

t1

Substituting Eq. 3.4 and 3.5 into Eq. 3.6, we can obtain

0 = —/t22{{K7-(u7+—2u“—u7_)—R’V-(OW—O”_)}-5u“
t1 v

{ (Kv) T. (u”*—u'y_) K. (97++29u+9'y—) }.(mu
i gu+ (1-6)-50" |t

Since the above equation should hole for compatible arbitrary variations du” and du*, we can
obtain the following pair of governing equations for our spherical mass-spring system.

miit =y K- (u 2w 4w )+ ) K7-(071-677) = 0
v Y
193 (K0) (@ w )e K o) — 0 6)
v

v

In the above pair, the first is the governing equation for translational components, while the second
is that for the rotational components. It is seen that these pair of equations are coupled via the
matrix K.

3.2 Equivalent continuum form for the discrete system

In this section, we derive an equivalent continuum form for the above considered discrete govern-
ing equations for the mass-spring system. The above obtained governing equations for the discrete
variables, u* and 6", are of little use in identifying the characteristics of the mass spring system.
Often, characteristics fo such discrete systems are analytically studied using equivalent contin-
uum forms. Stefanou et al.[22] has summarized several homogenization techniques used to derive
equivalent continuum forms for regularly packed mass spring systems. Instead of these standard
homogenization techniques, we use continuumnization proposed by Hori et al. and a Taylor series
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@ Continuumnization

0(x —2an’*)  6(x) 0(x f 2an’™)
W— Zanﬁ)&u(x) iju(x + 2an’t)

Continuous vector field

Figure 3.3: Concept of the continuumnization of the spherical system.

based approach with which higher order accurate predictions can be made. Details of formulations
of these two methods are presented in the rest of this sub-section.

In deriving equivalent continuum forms, we assume that there exists two vector fields () and
0(x) which satisfy u(z")=u" and 0(x")=06" (see Figure 3.3).

3.2.1 Continuumnization

Continuumnization proposed by Hori et al. [1] assumes that, in a regularly packed particle system,
the particles are small compared to the dimensions of the domain occupied by the particles or the
wave lengths of interest, and idealizes the particle system as a continuum considering the limit of
particle size going to zero. This assumption of particle size is small compared to a certain length
scale of interest allows to approximate relative discrete displacement gradients of discrete vector
field as a directional derivative of a continuous vector field. As examples, we can make following
approximations involving first and second order directional derivatives.

u’*t

’U,M
lim ————~4n""-Vu (3.8)
a—0 2@

T _ut L
lim &Y o Y (V) (3.9)

a—0 4&2

Based on the above pair of approximations, we can approximate the following discrete terms
in terms of continuous vector fields as
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W 2uttu’T & 4d’nTV (n7FVu), (3.10)
w—u"" =~ 4an’"-Vu, (3.11)
0" —0"" ~dan™t-V0, (3.12)
0"t +20"+0"" ~ 46. (3.13)

Substituting Eq. 3.10 and 3.11 into Eq. 3.7, we get the continuum for of the governing equa-
tions for translations.

. %)
mii; = 4a° E 8 (knd ™ n) ] 0] T+ hn] T 0 T T ] T Tl TS (—ul
€T;

Ga:k
0
—4a? E h t7+nz+37+ 7+nz+t7+) (8 k@;)

Note that we use the fact that 3~ =95* =9t =(. Similarly, substituting Eq. 3.12 and Eq. 3.13, we

can obtain the the continuum form for the Eq. 3.7 as

0
Zh st s ) <a_xk“l) —4a® "R 4515 (0)
v

Thus, the continuumnized equations of motion can be written as

mii—4a*V-(c: Vu)—4a*q*: VO = 0
I-0+4a*q: Vud—a*d-0 = 0, (3.14)

where
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k h
c = Z { —nTentTeon’Ten T+— (n7+®t7+®nV+®t7++nw+®sv+®nv+®sw+) }
a a
.

h
- ht'er Y+ v+ —h Y+ v+ t'er
q » ; (T en" T ®@s"T —hs"ten ot ")

h
- T+t 87 T Tttt
d &% (hs"" @87+t @t7) (3.15)

We call the above set of equations in Eq. 3.14 governing equations of continuumnization
(GEC). The tensors ¢, q and d depends only on the radius of spheres, spring constants and unit
vectors which are defined by the particle arrangement. In Eq. 3.14, mi—4a®V-(c: Vu) cor-
responds to wave equations in the continuum mechanics. The tensor g couples the two sets of
equations in Eq. 3.14; note that qiTj = Qcji-

3.2.2 Continuum form based on second order Taylor expansion (CFSTE)

As mentioned at the start of this chapter, a continuum form for our discrete system can be derived
based on a Taylor series approach. Based on homogenization techniques, Stefanou et al. have
proposed a similar technique in reference [22]. While they have considered only the case of first
order approximation for 8, here we consider a second order approximation. For the sake of brevity,
we use the abbreviation CFSTE for this method.

In the Taylor expansion approach, as described in section 3.2, it is assumed that there exist
smooth fields u(x) and @(x) which satisfy u(x*)=u* and 0(x")=6" (see Figure 3.3).Provided
u(x) and O(x) are sufficiently smooth, we can obtain the following relations for u(x+2an ")
considering Taylor expansion up to second order terms.

+ (2(1)282“(1:) Y+, v+
TUL) v 1
ar, " T2 dmor, (3-16)

w(z+2an’t)—u(x)~—2a

du() .. (20)Pul@) .. .
ar, " T2 omoz,

Combining Eq. 3.16 and Eq. 3.17, we can approximate the following discrete vector expres-

u(x—2an"")—u(x)~—2a (3.17)

sions of translations as
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W 2uttu"T & u(z+2an’t)—2u(z)tu(z—2an")

J*u
~ da’n] Tn)t——— 3.18
an j 851718:16] ( )
wW—u" & u(z+2an’t)—u(xz—2an")
0
~ dan)t 2% (3.19)
0301-
Similarly, we can approximate discrete vector expressions of rotations as
0"—0"" =~ O(x+2an’t)—0(x—2an")
00
~ dan]T — (3.20)
al‘i
07" 4+20"+0"" ~ O(x+2an"")+20(x)+0(x—2an")
0%0
~ 40+4a’n] )" 321
aam 8@8% ( )

As it seen, the approximations in Eq. 3.18, 3.19, 3.20 and Eq. 3.21 are the same as those of
continuumnization, except that the last contains a second order term.
Substitute Eq. 3.18, 3.19 into Eq. 3.7, we obtain

0
10; = a Zh () sl T =T T ) (8_kul) —4a Zh (7] s T) (6)
9,
—4a4Zha—xi (nz+t;+nz+t7++n7+ W+nz+s7+) (8791)
y

Thus, the continuumnized equation of motion of the regularly packed spherical system for SOC
can be written as

mii—4a*V-(c: Vu)—4a’q": VO =
I-6+4ad°q: Vu—4a*d-0—4a°V-(v: VO) = 0 (3.22)
where

h
= ) —(netten et T tnTes T on e ). (3.23)
v

@
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As seen, the above continuum form based on second order Taylor expansion is identical to that
of continuumnization, except the second order term V-(v: V@) in the former. . Unlike continuum-
nization, the Taylor series approach does not involve the limiting process, lino’ in approximating
the difference of discrete variables in terms of derivatives of continuous \;lector fields. Although
both approaches produces exactly the same governing equations, there is a fundamental differ-
ence; continuumnization idealizes the discrete particle system as a hypothetical continuum while
the Taylor series approach approximates the discrete vector fields with a sufficiently smooth con-
tinuous vector fields.

3.3 Analytical solution to the characteristic equation

Unlike the governing equations of discrete vector fields, the continuum forms allows one to study
the characteristics of the system analytically. In this section, the analytical relations between wave
speeds and wave numbers are obtained by solving characteristic equations of two continuum forms
we obtained in section 3.2. In addition to those two, we study the characteristics of one additional
continuum form obtained considering all the infinite terms in Taylor series; follows the same steps
as in section 3.2.2 with whole Taylor series. Characteristic equations of continuum forms

The characteristic equations of the continuum forms are obtained taking the Fourier
transform, 7, with the kernel of €"¢®~“*) The Fourier transform of the derivatives appearing
in the continuum forms can be expressed as

_-7:<V‘(C3vu)j) = &i&kcijnl
F((q:V0),) = 1£;qirOk
—f((qT:Vu)i) = —1&§;qx5iUs
F((d-9),) = di;0;
f((v‘(v:ve))j) = —&&in0y, (3.24)

where Fourier transform of a function f(x,t) is denoted as F(f(x,t)), and U;=F (u;) and ©;=
F(6;).

For 2D settings being considered, let vector £={¢;,&»} in Fourier domain be expressed as
€=¢{cosb,sinf; }, where ¢ is the magnitude of the wave number (i.e. § :% where A is the wave
length) and 0; is the direction of the propagation of the wave (Figure 3.4).

substituting Eq. 3.24 into Eq. 3.22 the characteristic equation for continnumnization can be
obtained as

(Leyshyez_mp,2 (3k_3h)e2in00, gy g,

8a ' 8a 3 8a  8a ,2a
det | (2£-31)¢2sin20, (Z+3h) 2202 BhE 0520 =0 (3.25)
< 2 2
3he 6in 26 3het 00520 Sh_ 2ma_pw”
2a 3 2a 3 a 15



CHAPTER 3. CONTINUUMNIZATION OF SPHERICAL MASS-SPRING SYSTEMS 15

&= E{cos 0¢,sin 05}

Figure 3.4: Wave number and direction of the propagating wave

while that for the second order Taylor expansion obtained from Eq. 3.22 is

9k | 3h 2 mp, 2 3k 3h 243 3hér :
(%—i—%)fz—?w (98—1?—%)52 sm20§2 —3h§& sin26;
: TP 7 o
det | (Go—ra) ¥sin20 (G54 ) € —Fw Do c0s20; =0 (3.20)
3357, sin29£ _ 3h& 008265 %_3ha§2_27ra pw
a 2a a 2 15

3.3.1 Characteristic equations based on infinite Taylor series

In section 3.2.2, Taylor series up to the second order terms are considered in deriving continuum
form. Unlike in that second order approach, here we consider another continuum form taking all
the infinite terms of Taylor series into account. We use the abbreviation CFITE for this method.
While the process is the same as that of section 3.2.2, the resulting continuum form is of no practice
use. Interestingly, the presence of some series solutions makes it possible analytically study the
characteristic equations of this continuum form with infinite terms. The characteristic equations
from this infinite Taylor series approach is (see Appendix C for details of the derivation)

43" K7 sin?(a&-n")—mw? 43" K,sin?(ag-n) 23 e /2 K, sin(2a€-n)
Y ¥ 5
det 43" KJ sin?(agé-n") 43" K3sin®(agnY)—mw?® 2> e™/?K);sin(2a€n?) |
¥ Y 5
2> e 2Ky sin(2a€-m) 2> e"/2K,sin(2a€-nY) 4> Kjscos?(ag-n?)—Iz3w?
¥ ¥ ¥

(3.27)
For the sake of brevity, we call this Taylor series approch with infinite terms as ISC.

3.3.2 Relation between frequency and wavenumber

Solving the Eq. 3.25, we can obtain the following w—¢ relations for the continuum form obtained
with continuumnization

2 (3k+h) (£a)®
Wie{ 21 (€a)’ (3h+k)—20h—av/A (3.28)
21 (€a)* (3h+k)—20h+av/A
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Table 3.1: Wave speeds and corresponding modes {u,us,03}

wave speed mode shape

p a\/gw/% {cosbg,sinf¢,0}
S a\/gw/kimh {—sineg,coseg,g}

r - {—sinf,cost, 2 (k+3h)¢}

where A= (% ) (a)'+ +2EL (¢q) {3 €a) —20}+( ) {400—40(6@)2+9(§a)4}, and m is the mass
of a particle.

Similarly, solving Eq. 3.26, we can obtain following w—¢ relations for the continuum from
from second order Taylor approximation (CFSTE)

%(3k+h>(§a)
P (a2k+{20 7(€a)*}h—aVB (3.29)
21 (€a)*k+{20~7(¢a)’} ht-av/B

where B=(£)?(¢a)"+255 (¢0)? {13-20(£a)* }+ (%) {400-360 (¢a)*+169 (¢a)"}.

As seen, itis predlcted that the frequency, w, does not depend on the direction of propagation,t;.
The w—¢ relations for continuum from from infinite Taylor series approach (CFITE) are too com-
plicated and long to write. Instead, plots of w—¢ relations are shown in section 3.4.

3.3.3 Wave speed estimation

From the above obtained w—¢ it is straight forward to analytically estimate the wave speed, w/¢.
Further, it is straight forward to find the mode shapes of each wave from the characteristic equa-
tions.. The corresponding wave speeds and the modes of each wave are given in Table 3.1. The first
mode corresponds to primary wave (p-wave) since the movements are parallel to the direction of
wave propagation. In the case of the second and third modes, the movements are perpendicular to
the direction of wave propagation. As the translation is dominant for the second mode, this mode
is considered to be secondary-wave (s-wave). Finally, the third mode represents rotational-wave
(r-wave), because the rotation is dominant.
These analytical predictions have several advantages. As an example, these are useful in

e understanding dynamic characteristics of systems idealized as mass spring systems
e verification of numerical codes
e design purposes, as it will be shown in the next chapter

e ctc.
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3.4 Verification of the predictions made with continuum forms

Prior to any applications of the above derived analytical w—¢ relations with the continuum forms
(i.e. Eq. 3.28 and Eq. 3.29), it is essential to verify their accuracy and the range of applicability.
To that end, in this section, we compare the predicted wave speeds given in Table 3.1 and the
w—¢ relations from Eq. 3.28 and Eq. 3.29 with those obtained from numerical simulations of a
mass-spring system. To make it more precise, the comparison of w—¢ relations is done in Fourier
domain. On the otherhand, comparisons of wave speeds is relatively low in accuracy due to the
simple technique used in estimating wave speeds.

3.4.1 Problem setting

A circular domain of radius 72m shown in Figure 3.5 is considered. The circular domain is filled
with hexagonally packed spheres of radius a=0.1m and density p=1800kg/m?. Spring constants,
k and h, are 7x10° N/m and 3x10° N /m, respectively.

The center particle in the domain is excited with three different boundary conditions as shown
in Figure 3.7. In cases (a) and (b), the center particle is excited in horizontal and vertical transla-
tions, while in case (c) it is excited with in-plane rotational motion. In all the cases, the profile of
the excitation is set to be f(t)

4 ot 1
t)=——=A| sin——=sinwt |, 3.30
)= 5= (sin G~ i) 330

where A is the amplitude of the input and @ is input frequency. The amplitude, A, of translation
and rotation are set to be 0.002m and 0.035rad, respectively (Figure 3.7). To obtain the wavelength
20 times longer than particle size but short enough to observe propagating waves, w is set to be
62.8 rad /s and 1088 rad/s for translation and rotation excitation, respectively.

3.4.2 Comparison of analytical and numerical wave speeds

Figure 3.8 shows the numerically simulated wavefronts at t=1s. For the sake of convenience the
wave amplitudes are normalized dividing by the largest amplitude (i.e. %/ ,,q,). In both horizontal
and vertical excitations, shown in Figure 3.8, the p- and s-waves are clearly visible. The pair of
closely located parallel semicircular narrow bands close to letter A and B are the p and s-waves.
The semicircular wave fronts indicates that the hexagonnlly packed spherical mass-spring system
is isotropic, which proves the analytical predictions.

P- and s-wave speed from numerical results are roughly estimated by measuring the distance
traveled by a selected wave crest between ¢t=0.2s and t=1.0s. Figure 4.7 and 3.10 show the p- and
s-wave profiles used for speed estimations. According to this rough estimations, the numerically
obtained p-and s-wave speeds are 69m/s and 45 m/s, respectively, while the analytically predicted
speeds are 69 m/s and 45 m/s, to the nearest Im accuracy. . It is seen that the numerical and
analytical results are in good agreement.
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Disk domain

Figure 3.5: Domain setting.
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Figure 3.6: Input excitation function.
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(a) horizontal excitation (b) verticle excitation (c) rotational excitation

Figure 3.7: Input boundary conditions
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Figure 3.8: Wave field due to translational excitations at t=1s.
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Figure 3.9: Cross sections along P-P of Figure 3.8 showing p-wave profiles at t=0.2s and t=1s .
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3.4.3 Comparison of the relation between wave frequency and wave number

Figure 3.11 shows the numerically obtained r-wave field at t=1s; the wave field is normalized
05/0mq.- Unlike the p- and s-wave fields, the r-wave field is complicated, even thought the input
wave is simple. Although isotropic behavior is predicted by continuumnization and the continuum
model second order Taylor expansion, the hexagonal wave front indicates that the numerically
obtained wave field is anisotrpoic. Though the outer most wave front is clearly hexagonal, it is
nearly circular, indicating the analytical predictions can be considered sufficiently accurate for
some engineering applications.

More precise measurement is taken to verify the results of rotational input. w—£&a relation from
the numerical results are extracted taking Fast Fourier Transform (FFT) with respect to time and
space, and compared with the analytical predictions. Specifically, the two slender domains shown
with straight white lines in Figure 3.11 are considered for FFT analysis of normalized rotation
obtained from numerical simulations.

Figure 3.12, 3.13, and 3.14 compare the analytically predicted w—&a relations with those from
numerical results. Note that the white areas indicate the amplitude above the scale. In these
figures red and green line represent the analytical w—E&a relations for s-wave and r-wave based
on continuumnization and the continuum form from second order and infinite Taylor expansions.
Noted that the amplitude of p-waves are negligibly small in this simulation.

3.4.3.1 Prediction with continuumnization

According Figure 3.12, the analytical prediction of s-wave has a perfect match with the numerical
results in the range £a < 0.6 (or A>10a), while they are in reasonable agreement even up to {a=1.5
(or A=4a). However, the analytical and numerical w—¢ relations for r-wave have a good agreement
only within a small neighborhood of £a=0. This good agreement in s-wave but bad agreement
in r-wave indicate that the predictions based on continuumnization is useful for the cases when
translational wave is considered.

3.4.3.2 Prediction with continuum form based on second order Taylor expansion

As seen in Figure 3.12, the predictions based on the second order Taylor expansion has a better
agreement for r-waves, compared to the above case. However, this reduce applicable range of
s-wave. The s-waves are in good agreement in the range 0<&a<0.5, while that of r-waves is
0<&a<0.6. Outsize these regions, both the s- and r-wave predictions rapidly diverge form the
numerical simulations. Compared to predictions with continuumnization, this model is suitable for
most engineering applications since both s- and r-wave charanterristics can be accurately predicted
in the range £a < 0.5 or (A>13a).
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Figure 3.11: Normalized wave field at t=1s due to rotational input; 03 /6, -

3.4.3.3 Prediction with continuum form based on infinite Taylor series

Surely, the analytical predictions with CFSTE is sufficient for most engineering applications. The
motivation to derive the continuum form based on infinite Taylor series (CFIS) was our sheer
curiosity to find an analytical form to predicting dynamic characteristics in much wider range.
As seen in Figure 3.14, the numerical solution and CFIS predictions are in excellent match in the
range {a<0.5m or A>4a, which is the shortest possible wavelength of the discrete particle systems.
CFIS is a useful in scientific applications demanding higher accuracy even in short wavelengths, or
verification of general RBSM codes. However, it is difficult to implement in FEM since continuum
form contains trigonometric functions (Appendix C).

3.5 Summary

In this chapter, the concepts of continuumnization for spherical mass spring system for different
approximation are explained. Based on the continuumnization, the 2d hexagonally packed spheri-
cal mass spring system are predicted as an isotropic system as frequency-wavenumber relations are
independent of direction of wave propagation. The predicted dynamic characteristic are verified
with numerical RBSM simulation.

For p-and s-waves, translational wave velocities are compared and shows that the numerical
and predicted analytical wave velocities are in good agreement.

For r-wave, frequency-wavenumber relations for different continuuumnzation methods are ver-
ified using double fast Fourier transform with respect to length and time. As the results, Each
method have show advantage and disadvantaged.

Original continuumnization (OC) provides a fairly good applicable range for s-wave. However,
it is not applicable to verify r-wave. This is suitable for simulation which rotational wave is not
considerd
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Figure 3.12: Comparison of numerical results and the analytical predictions with continnumniza-
tion . Contour plots show the numerically obtained amplitude of w vs. a relation. The curved
lines show the analytical prediction for s- and rotational waves
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Figure 3.13: Comparison of numerical results and the analytical predictions with the continnum
model based on second order Taylor expansion (CFSTE). . Contour plots show the numerically
obtained amplitude of w vs. a; relation. The curved lines show the analytical prediction for p-, s-
and rotational waves.
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Figure 3.14: Comparison of numerical results and the analytical predictions with the continuum
form based on the infinite Taylor series expansion (CFIS). Contour plots show the numerically
obtained amplitude of w vs. £a; relation. The curved lines show the analytical prediction for p-, s-
and rotational waves

Second order Taylor’s expansion (CFSTE) provides a fairly good applicable range for s-wave
and r-wave. The range of applicable is where the wavelength is 13 time longer than the radius of
particle which is useful for typical discrete simulations

Infinite series (CFIS) shows the widest range of applicable for verification propose. This ver-
ification tool is useful for some scientific fields which relatively short wavelength compared to
particle size appears However, it is difficult to construct numerical model since it contents sine and
cosine terms.



Chapter 4

Continuumn forms of brick mass-spring
systems

In this chapter, three equivalent continuum forms for brick mortar systems are developed following
the similar steps of spherical particles presented in section 3.2. These continuum forms have
two major practical applications; analytically predict the dynamic characteristics of the discrete
system, and make it possible to use numerical tools of continuum mechanics like FEM to analyses
brick mortar systems. The analytical predictions can be used to verify numerical simulations of
brick mortar systems, find rational elastic properties based on dynamic experiments like sonic or
ultrasonic test, and rationally choose brick-mortar properties for desired dynamic characteristics in
structural designs.

The first half presents the formulations of continuumnization and CFSTE and CFIFT and pre-
dictions of wave characteristics. In the latter half, these predicted wave characteristics are verified
comparing with numerical results.

4.1 Equations of motion of idealized brick mortar system

We idealize a regularly arranged brick-mortar system as a network of rigid rectangular blocks,
with mass m and size of 2a; X2a9%x2a3 , connected with elastic springs at the interfaces (Figure
4.1 shows a 2D example). In the idealized model, the domain is completely tessellated with rectan-
gular blocks such that each block includes the space occupied by a brick and portion of the space
occupied by mortar layer. The elastic springs represent elasticity of both the bricks and cement
layers, and we restrict our models to linear elastic springs; it is straight forward to extend to non-
linear elastic springs. This idealized model is a reasonable representation of brick mortar systems
consists of bricks with higher rigidity compared to that of mortar.

As shown in Figure 4.1, the pair of neighbors in v*-direction are denoted by v+ and y—. 77+
denotes the relative position of the centroid of the contact area with the neighbor ~. The tangential
and shear spring constants per unit area are set to be £ and h, respectively. When there is no
confusion, we omit & and use v to denote any neighboring block.

24
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Figure 4.1: Idealized 2D block-spring model.

Figure 4.2: Contact surface.

4.1.1 Lagrangian of the idealized block-spring system

Let u* and 6* denote three dimensional translation and rotation of " block. The contact area
is assumed to be of size 2b; x2b] (see Figure 4.2)., and unit vectors n?, 7, and s denote the
orthonormal coordinate systems on contact surfaces with any neighboring block ~ as shown in
Figure4.1. For given set of infinitesimal displacements and rotations, the relative displacement
L#7* at the a point (z,x,) on the contact surface with the neighbor v+ can be expressed as

L (zy,2,) = (W —u!)—(077+0") xr"" +(077—0") x (2,0 T +a,87T).  (4.1)

Here, the origin of (x;, ) is located at the centroid of the contact area. The corresponding total
elastic energy contribution from the contact surface is

bl b/
vt — %//k:(nﬂ'-LwJ“)z—l—h{(t7+-LW+)2+(87+-L“W+)2}dxtdxs. (4.2)
b1y

Similarly, the elastic energy V#7~ can be obtained using —n”, —t7, s7, —r". The Lagrangian for
the whole discrete system is
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1 1. .
L = Z(ému“-u“—kiO"-I-O’*—V“), (4.3)

o

where V#=3"_ 5(V#*4-V#77), and I is the inertia tensor of a block.

4.1.2 Governing equations for the discrete system

According to the Hamilton’s principle , the discrete governing equations of block spring system is

given by
to
/ oLdt = 0
t1
t
0 = =) / 2(mil“-5u“~|—é“-1-(50“)dt
p vt
t
S5 / K (2w ) @S K (0707 ) @bu
poy U
—(BY) (w0 —w ) @0 K (07 4200407 ) 950"
—K": (07" —20"+077) @50#} dt (4.4)
where

K" = 4b/b] (kn""@n "t +ht" @t +hs' T8 ")

K7 = 400} {kn""@(r" " xn ) +ht" @ (r7t x ) +hs T @ (r' T xs7) )

K' = 45l {k(r"xn )@ (r " xn? ) +h (r T @ (r T x 7T
+h(rFxs)e(rtxs')}

= b/ bY

K = 4= {n(*+0%) noten kb ot kb s T s ) (4.5)

Since fff 0Ldt=0 should hold for arbitrary du* and 66", which are admissible variations of
u* and 6*, Eq. 4.4 holds when

mut = Z{K”-(u“’+—2u“—|—u7_)—f{“’~(0”—0”‘)}
Y
16" — Z{(va.(uw_m)_F-(muzeum)+?7~(07+—20“+m)}(4.6)

~
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The above set is the equation of motions for idealized brick mortar system. Like the governing
equation of the spherical systems, K couples translations and rotations. The above obtained
equations of motion for the discrete system can be used to simulate a brick structure as a mass
spring system, in which the K 7,f( v, F, and, 7are determined in Eq. 4.5 by given brick
arrangement, geometry, and spring constants.

4.2 Equivalent continuum forms

As we did with the mass spring system in section 3.2, we obtain two equivalent continuum forms
for the idealized brick-mortar system; continnumnization and CFSTE. Just as in section 3.2, we as-
sume that there exists two vector fields u(x) and €(x) which satisfy u(x*)=u* and 0(x")=60" in
deriving equivalent continuum forms. As mentioned at the beginning of this chapter, these contin-
uum forms have multiple advantages; analytical prediction of dynamic characteristics, application
of numerical tools in continuum mechanics, etc.

4.2.1 Continuumnization

As presented in the section 3.2.1, continuumnization assumes the blocks are negligibly small small
compared to the dimensions of the considered domain or the wave lengths of interest, and idealizes
the particle system as a continuum considering the limit of particle size going to zero. With this
assumption, continuumnization approximates relative discrete displacement gradients of discrete
vector field as a directional derivative of a continuous vector field. As an example, we can make
the following approximations where 277 is the relative positions of neighbor v= of brick .

uYE—ut
o % /\Fy+‘
Cng)no—%7+ +77"-Vu 4.7)
u't—2ut+u7"
- ~ P 7+,
Jim i ~ PV (V) (4.8)

Here, 7+ and 77" are the magnitude and corresponding unit vector of 77", respectively. Based on
the above approximations, the relative rotation and translation are approximated as

w T 2utHu) T &~ 4r”+-V(r7+-Vu)
W —u'" ~ 4r"T.Vu

0" +20"+0" =~ 460 (4.9)

Substituting the above approximated relative translation and rotation in to Eq. 4.6, the following
continuum forms of governing equations can be obtained
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T = V(e:Vu)—q:V0

Vi

1 .

—I60 = q":Vu—dao, (4.10)
Vi

where

X
¢ = Zmyb/—tbz(’97“”+®""’®T”+®n”+hr”’+®t"’+ Rttt hr Tt es  ertesT)
b
v

_ 16[)?[)3 kn)@r’t v+ N+ht" T et LRve 2
@ = Y et e (rtxn) Hht e e (1 k)

¥
+hs"TRrt@(rtxs’t)}
166757

d = ZT {k: (r7+ ><n7)®(7”+><Tﬂ)+h(r7+ ><t7+)®(r7+ ><t7+)
¥

+h(rtxs ) (rtxs’t)}, (4.11)

and V}, is the volume of a block.

4.2.2 Continuum form based on second order Taylor expansion (CFSTE)

In developing continuum forms based on Taylor expansion, it is assumed that there exists suffi-
ciently smooth vector fields w(x,t) and @ (x,t) which can approximate the discrete fields u* and
0" for a sufficiently large wave lengths. Under this assumption, the translation of neighbor u’* =
u(x+r,t) and we can approximate u (x+r,t) using Taylor series expansion as

au(m)r_w 2_262u($) T7+ T+
8@ ! 2! 8%8% ! J

Ou(x) 22 0%u(x)
_op7ty  — ) Dt S b o Hen e S0 0 (0
u(x—21r"") u(x)—2 o T 51 8x¢8xjrz T =

w(x+2rt) = u(x)+2

Addition and subtraction of the above two provide

22 0%u(x)
v+ 9Vt — Il S/ pte (o e &
w(x+2r"")+u(x—2r"") 2{ a:)+2! a%axjrz r] —i—} (4.12)

(
au(w) v+ 2_3 agu(m) T"H*T“H*T“H“
ox; 3! 0x;0x;0xy, J

u
u(x+2r"")—u(x—2r"") = 2{2 +} (4.13)
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In developing a second order continuum form, we assume that the vector fields w(x,t) and
0 (x,t) to be at least twice differentiable and obtain the following second order approximations
based on the above Taylor series expansions.

aQUi (ZL’) 7,'y+ v+

uf —2uitu; A~ Rt (4.14)
uf—u; 487”5—;?@* (4.15)
07 =0 =~ 48?;@@’* (4.16)
j
0F 20,107 ~ 40 0®) e 4.17)

8$jal‘k Ik

020;(x) o

0 +20,+07 ~ 46,+4——"- .
! + + ¢ + 8%8% g k

(4.18)

Substituting the above second order approximations to Eq. 4.6 , we can obtain the following
second order continuum form of governing equations.

M = V-(c:Vu)—q:Vo

Vi

VLI-é = q":Vu—d-0+V-(v:V0), (4.19)
b

where v is the following 4*-order tensor introduced by the the additional second order term of 6.

v = ZE%{h((b7)2+(bz>2)T’Y+®n’7®r7+®n'¥
" Ww 3 s

+k ()@t or ot Tk (6]) T @s T or st
160, b7

W

+hr" @ (P x0T @r @ (P x )

—I—hr7+®(r7+ XS“’+)®T7+®(T7+XSV+) } (4.20)

{ Er’te® (’r” xn' M) @r’t@(r’tx nw)

The constants ¢, q, d, and v are 4", 374, 274 and 4*"-order tensors comprise of material and
geometric (i.e. block geometry and packing) properties.
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4.3 Analytical solution to the characteristic equation in 2D

With the aim of predicting the dynamic characteristics of the idealized brick mortar system, we
analyze the characteristic equations of the above obtained two continuum forms. All the above
derived equations are valid for 3D regular packing. For the sake on simplicity, we restrict our
discussion to 2D brick walls with the brick arrangement shown in Figure 4.3.

4.3.1 Characteristic equations of continuum forms

Evaluating the four tensors c, g, d, and v for the 2D packing shown in Figure4.3and taking Fourier
transform with the kernel e¢®=“%)we can obtain the characteristic equations for each continuum
form. As we did in section 3.3, we express the vector £ as = {cosb;,sinf}, where ¢ is the
magnitude of the wave number (i.e. & :27” where A is the wave length) and 0; is the direction of
the wave propagation as shown in Figure 4.3.

For continuumnization, , characteristic equation is

AH_%MQ 0 —2ash€sinb
2uashgsindy  —4* (4h+%) Ecost; A33_%w2

where

Ay = ﬂ<M+4k> €2 cos? Oc+2ash&?sin? 0,

2 ag
k
Ay = % (4h+&> 5200529§+2a2k§2sin2 O
a2

2 3 16 3 ]{Z 2

Asz = 2m h+2a2h+&k+M£2 cos? 0 — 4142 k&?sin® O
2&2 24@2 6

For CFSTE, characteristic equation is
All—vﬂboﬂ 0 —21ashEsinbg
det O AQQ—%W2 % <4h+%> 500806 g 0

21a2hEsinf,  —4L <4h+%> & cosbe Agg—%w2

where
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h
Ay = %<&+4k) €2 cos® Oc+2ashE?sin? 0,
)
k
Ayy = %(ZUH—&) €2 cos® Oc+2akE?sin’ b
45
2 3416ad)k 1 ik
Aszz = 2a1h+2a2h+&k+ M——a% 16(1171—1—40t2h+aL 52C0829§
2as 24a4 8 a2
2
+(—2a3h— "2 ) e2sin0.

Solving these characteristic equations, the relations between the wave frequencies and wave
number (i.e. w—¢ relation) can be obtained. The obtained w—¢ relation are not included in this
thesis due to space limitations.

|
L ]

-

Figure 4.3: A single layered 2 dimensional brick arrangement.

4.3.2 Characteristic equations based on infinite Taylor series

With a little bit of mathematical manipulations, the following two relations for the Fourier trans-
form of Eq. 4.12 and Eq. 4.13 can be established.

/(uW++uV)ez(ﬁ'w”t)dwdt ~ 2(1-2sin’(€r7))u

[ —w)e s Daad ~ 2fsin2¢7)) (21)

Note that all the terms in the infinite series are included, and @ and 0 are the Fourier transform of
w and @ with respect to the kernel e*¢*~“!) Substituting Eq. 4.12and Eq. 4.13 to Eq. 4.6 and
taking the Fourier transform, we can obtain the following charateristic equations.

43K sin? (€-77) —mw? 43" K], sin?(€-r7) N> K7,sin(2€-17)
v v v
det 43 K sin®(&-77) 43" K3psin®(€r7)—mw? 203 Kjysin(26-17) | (4.22)
v v v
-2y KJ;sin(2€-r7) —21y KJysin(2€-r7) A—TI330°
v v
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Table 4.1: Predicted wave speeds and corresponding modes. (=ay/a; and n=~h/k.

32

0 =90° 0e=0°
wave
phase speed mode shape phase speed mode shape
a ka 4
P v {0,1,0} Lol tic) {1,0,04
S 2kasn(14-49C) {1 0. — —Ang2¢i } 2kagn(1+4n() {0 1 — _(+anQsi }
p(1+4n¢+4n¢?) 7 1AnG+HAnG? p(1+4n¢+4n¢?) 7T 1AnG+HAnG?
r - {0,0,1} - {0,0,1}

where A=4>"KJ,cos? (E-’l‘”)+4zf@3 sin®(&-r7)
o Y

I is the moment of inertia tensor of a brick and 1 is the identity matrix. The details of the derivation
is given in Appendix C.

The resulting set of characteristic equations are complicated and cannot be solved to obtain
simple analytical expressions for wave properties. However, we can numerically solve it to find
relation between frequencies and wave numbers; i.e. w and &.

4.3.3 The estimation of wave velocities

Like the spherical system, the frequency-wave number relations of primary, shear and rotational
waves due to in-plane deformation are obtained. Unlike the the brick-wall has anisotropic wave
characteristics (i.e. wave velocities depend on the direction of wave propagation). Table 4.1 shows
the wave speeds estimated by lim¢_,o«/¢, for the two cases with §;=0° and §,=90° where p=
m/Vi. Note that all the three continuum models produce the same p- and s-wave speeds in the
neighborhood of {=0; i.e. lim¢_, w/¢ estimated with all the three models are equal. This is clearly
visible in the w vs. £ graphs shown in the latter half of this chapter.

4.3.4 The estimation of rotational wave frequency

According to the continuum forms, the speed of rotational waves are undefined; i.e. lim¢_g w/e— 00
for both i=1,2. This indicates that the rotational waves for the case {—0 (i.e. 27/x—0, where A
is the wave length) are stationary waves. However, for this £ —0 case, a finite wave frequency for
rotational waves can be estimated as.

(4.23)

3ka?+12ha,ay+12ha?
Wspin =
P 2patas+2pal
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Figure 4.4: Input function.

4.4 Verification of the predictions made with continuum forms

Like with the spherical mass spring model, in order to verify the analytically predicted w—& rela-
tions for brick mortar system, we compare the predicted wave speeds given in Table 4.1 and the
w—E& relations from the characteristic equations of section 4.2 with those obtained from numerical
simulations.

4.4.1 Basic problem settings

A single layered brick wall model with the width and height of 20.3m and 13.0m, shown in
Figure5.2, was used for the simulations. The dimensions of the bricks is 60mm in width, 30mm
in height and 40mm in thickness[11]. The density of each block is assumed to be 1850kg/m?.
The average elastic properties of the brick mortar system are approximately evaluated to be
k=5.12x10"N/m? and h=2.22x 10" N/m? [11].

The brick at the center of the domain is subjected to three different in-plane displacement
boundary conditions. First and second cases are with transnational waves of vertical and horizontal
excitation. The third case is with a rotational wave input. In all the cases, following smooth input
function is used (Fig 4.4).

f(t)zgi\/gfl (sin%t—%sind)t) , (4.24)
where A is the amplitude of the input, w is the input circular frequency. The amplitude is set to be
2mm for vertical and horizontal inputs, while amplitude of 0.035rad is used for rotational input.
To obtain a narrow waves such that peaks and valleys of waves are clearly visible, input circular
frequency, W, is set to be 1.57x10%rad /s for vertical and horizontal input, and 2.11x10°rad /s for
rotational input.

To obtain accurate numerical results, second order velocity Verlet algorithm with 1ps time in-
crements is used for time integration. It is observed that the energy and momentum of the whole
system remain constant through ot the simulation. These indirect measures indicate that the simu-
lations results have a high accuracy.
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13.0m

20.3m

Figure 4.5: Domain for the numerical experiments.

4.4.2 Comparison of translational waves

Figure 4.6(a) and (b) compare the locations analytically predicted p- and s-wave front locations
with that of numerically obtained. The color contours shows the distribution of numerically ob-
tained translational wave amplitudes at ¢=2ms. Note that the amplitudes are normalized dividing
with maximum amplitude (u/u;q..). The two black curves are the predicted location of p- and
s-wavefronts at t=2ms; the outermost indicates the p-wavefront, while the innermost indicates
the s-wavefront. Analytic wave front locations are estimated with the wave speeds of Table 4.1.
Primary or pressure wave

In Figure4.6(a), red color regions farthest above (region A) and below the point of input ex-
citation are the p-wave fronts. The wave profiles along section P-P shown in Figure4.7 clearly
indicates that the analytic predictions are in good agreement with the numerical results. Since the
input excitation is vertically oriented, region A of Figure4.6(a) has high p-wave amplitudes, while
p-wave amplitudes are negligibly small in all the other directions. This is why no p-wave front
is present in the numerical results except farthest up and down (or left and right) in Figure 4.6a
(Figure 4.6b). For the region C, the nearly straight wavefronts are the shear shock waves gener-
ated by the p-wave front in region A. Being an anisotropic medium, deformation due to p-, s- or
rotational waves generates each other. s-waves generated by the p-wave front forms a shockwave,
since p-wave speed is higher than s-wave.

4.4.2.1 Shear-wave

The red color stripes in the region B of Figure 4.6 show the major s-wave front. The amplitude
of this main s-wave is weak in most directions, except in the directions orthogonal to the direc-
tion of input excitation. Especially, the shear wave in the directions of excitation have extremely
small amplitudes. As shown in Figure4.8, in regions marked with B (or along section S-S), the
theoretically predicated s-wavefronts are in good agreement with that of numerical results.
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Analytical p-wavefront

~0.100
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Analytical s-wavefront Analytical s-wavefront
(a) with vertical input (b) with horizontal input

Figure 4.6: Comparison of predicted p- and s-wave fronts with those of numerical results, at t=2
ms. The colors indicates the amplitude of translational waves.

(a) Vertical input (b) Horizontal input

Figure 4.7: Translational wave profiles, along sections P-P, in the vicinity of p-wave front at t=2
ms. The arrows indicates the analytically predicted wave front location.

____________ W iy
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(a) Vertical input (b) Horizontal input

Figure 4.8: Translational wave profiles, along sections S-S, in the vicinity of s-wave front at
t=2ms. The arrows indicates the analytically predicted wave front location.
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4.4.3 Comparison of rotational-waves

Figure 5.5 shows the distribution of the normalized amplitudes of rotational waves generated by the
rotational wave input at time t=2ms. Unlike the translational wave, the dispersion of the rotational
wave is observed. To verify the analytical predicted dynamic characteristic of the rotational wave,
double Fast Fourier Transform (FFT) with respect to length and time was conducted. FFT was
conducted for two sets of narrow domains oriented horizontally and vertically; shown with white
lines in Figure5.5.

Vertical domain for double FFT 6 Magnitude

I 8.0e-04

6.0e-04

4.0e-04

S
-

)z
/;,

2.0e-04

Horizontal domain for double FFT t=2ms 0.0e+00

Figure 4.9: Magnitude of the rotational waves at 2 ms, generated by rotational wave input. Two
white lines indicates the thins domains used for double FFT.

The color contours in Figure4.10 to 4.12 show the results of the double FFT and analytical
solutions of w—¢ relation obtained from the three continuum models. The vertical axis is circular
frequency and the horizontal axis is the normalized wave number. Recall that a; and a, are the
half of the length and height of a brick (see Figure4.3). The red, green, and yellow color curves
are the the analytical solutions for p-, s- and r-waves, respectively. The orange lines in each figures
indicate the numerical relation. The numerical results include not only the r-wave, but also s-wave.
Though the p-wave also present, it’s amplitude is very weak. This gives us another opportunity to
check the accuracy of the predicted s-wave properties.

One interesting observation is that the the rotational waves have strong frequency dispersion
behavior (i.e. waves of different speeds travels at different phase speeds). As a future study, it
would be interesting to check whether rotational waves also have amplitude dispersion character-
istics (i.e. waves of different amplitudes have different phase speeds).

4.4.3.1 Continuumnization

In Figure4.10, analytical solutions obtained from the continuumnization proposed by Hori et al.[1]
is compared. It is seen that the rotational frequency matches the analytical results only within a
small neighborhood of |£a;|=|£as|=0, and rapidly diverge when moving away from |{a;|=|{as|=
0. The s-wave prediction also start to diverge when |€a;|<0.5.
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4.4.3.2 Continuum form from the second order Taylor expansion (CFSTE)

The analytical result from CFSTEis shown in Figure4.11. As is seen, the increase in the order of
approximation for 6 has significantly increased the accuracy r-wave predictions producing a good
agreement in the ranges |{a;|<0.5 and |£as| <0.5. In other words, these predictions are valid for
wavelengths grater than 7 times of the size of bricks (A>14a;). One unexpected observation is
that s-wave predictions start to diverge rapidly outside the ranges |£a;|<0.5 and |as|<0.5. As
mentioned above, the s-wave prediction of continuumnization also diverge beyond |£a;|=0.5.

4.4.3.3 Continuum form from the infinite series approximation (CFIS)

The advantage of this continuum form is clearly seen in Figure4.12. Analytical predictions for
s- and rotational waves are in near perfect agreement with the numerical results for the range
0<&a;<1.5. Note that £a;=1.5 is the the shortest meaningful wavelength which is twice the
respective dimension of a brick (i.e. A~2a;).

Obviously, Figure4.12 indicates that this continuum form can accurately reproduce the the
strong frequency dispersion characteristics of r-waves. Thought the amplitudes of p- and s-waves
are quite weak, except the s-wave in horizontal domain, still it is possible to identify the p- and
s-wave signals with the help of analytic predictions. In Figure4.12 a, we can observe strong dis-
persion characteristics of p-wave in the range 1.0<£a; <1.5. Also, Figure4.12 b, shows weak dis-
persion characteristics of s-wave in the same range. Though the analytic prediction shows strong
dispersion of s-waves in the range 1.0<£a;<1.5, this cannot be verified since s-wave amplitudes
of the numerical results are extremely weak. However, this 1.0<£a; <1.5 range may not be of
importance for engineering applications.
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Figure 4.10: Comparison of numerical results and the analytical predictions from original contin-
uumnization model. Contour plots show the numerically obtained amplitude of w vs. £a; relation.
The curves shows the analytical prediction for p-, s- and rotational waves.
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Figure 4.11: Comparison of numerical results and the analytical predictions from the second order
Taylor expansion. Contour plots show the numerically obtained amplitude of w vs. {a; relation.
The curves shows the analytical prediction for p-, s- and rotational waves.
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Figure 4.12: Comparison of numerical results and the analytical predictions from inifinite series
((CFIS). Contour plots show the numerically obtained amplitude of w vs. £a; relation. The curves
shows the analytical prediction for p-, s- and rotational waves.
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4.5 The estimation of spring constants based on experiment

One advantage of the continuumnization is that for known wave velocities, the equivalent normal
spring constants, k£ and h can be accurately estimated using Table 4.1 . Note that although the
spring constants, k£ and h, can be simply obtained by experiments like compression test or shear
test[41, 42, 43], the obtained properties may not be suitable for studying dynamic behavior in
brick structures. This is because the elastic properties obtained from static experiments may be
different from the corresponding dynamic properties. Based on the above wave speed predictions,
an accurate estimation of k£ and h for any given regular brick packing can be made with a several
experimental measurements of wave speeds[16, 17, 18].

To demonstrate the application, consider the wave speed measurements by Schullerl et al.[40].
In their experiments, they used a horizontal input on the left side of a brick wall, with the packing
shown in Figure4.3, and measured the arrival time at the right side edge at different locations.
In this approach, wave velocity can be obtained for different propagation directions as shown
in Figure4.13 where 0, denotes the direction of propagation in Figure4.3. Brick size is about
250mm x 33mm x 63mm and the density is assumed to be 1850kg/m3. Based their experimental
results and roughly approximated size and density, and our analytical predictions of wave speeds,
the spring constants k and % are estimated to be 15.5N/mm? and 1.16N/mm?. Only the experi-
mental results at : =0° and the highest angle are used for this estimation. As seen in Figure4.13,
when we use these estimated k£ and h our analytically predicted wave speeds are in a good agree-
ment with the observations. There is a mismatch at the two points between 6, =30° to 60°range.
This is probably due to the measurement errors; according to the simulations in the next section,
p-wave amplitude at these angles are quite weak.

——p-wave - - - s-wave L experiment
2000 -
= 1500 4 .
g
21000 - y
Q
= -~
2 500 - T (N
————— .\ ~ o
0 T T 1
0 30 60 90
0

Figure 4.13: Experimentally obtained wave speeds by Schullerl et al.[40], and predicted wave
speeds based on the estimated %k and h.



CHAPTER 4. CONTINUUMN FORMS OF BRICK MASS-SPRING SYSTEMS 40

4.6 Summary

The continuumnization for brick structures is formulated in this chapter. By solving characteristic
equation of the continuumnizaed governing equations, frequency-wavenumber relations of for p-,
s-, and r waves of brick wall are predicted. Further, analytical p-and s-wave speeds are analyt-
ically predicted. Based on these predictions, it is simple to learn the dynamic characteristic of
brick systems for given packing and brick-mortar properties without the requirement of numerical
simulation. Also, for known dynamic characteristic like wave velocity obtained by dynamic exper-
iments, continuumnization allows us to rationally estimate equivalent dynamic elastic properties.

To verify the predicted dynamic characteristics based on the continuumnization, the predicted
dynamic characteristics are compared with numerical RBSM simulation. For translational wave,
the numerical and analytical predicted wavefront at a given travel time are compared. It is found
that both numerical p- and s- wave are in good agreement with the corresponding predicted wave-
fronts’ positions.

For r-wave, frequency-wavenumber relations for different approach are verified using double
fast Fourior transform with respect to length and time domain. In this verification, the analytical
relation based on the second order Taylor expansion (CFSTE) is also predicted.

For the comparison, continuumnization can predict wave properties accurately especially for
s-wave while CFSTE approximation provides better prediction of r-wave dynamic characteristic.

Since CFSTE is applicable for wavelength 7 times longer than brick size, it is suitable for most
of civil engineering application. Further, for the applications involving low relative wavelength,
the analytical predictions based on the infinite series (CFIS) is recommended.



Chapter 5

PDS-FEM of brick mass-spring systems

An advantage of the developed continuum forms is that those allow us to use numerical methods
in continuum mechanics like Finite Element Method (FEM) to simulate brick structures. This
eliminates the need of coupling particle type simulators with FEM in simulating strutures made
of bricks, steel, concrete, etc.; we can use FEM to simulate everything seamlessly. Futher, we
can develop simplified models like plates and beams for simulating brick walls or columns. Such
advantages would be attacrtive in structural designs. In this section, we implement PDS-FEM|2]
extension for simulating brick structures based on the second order continuum model developed in
section 4.2.2.

We chose PDS-FEM due to three main reasons: the particle nature of the PDS-FEM allows to
consider brick arrangement itself as the tessellation for function approximation; straight forward
to include moment of inertia of bricks, which are treated as rigid blocks in the starting discrete
model; PDS-FEM provides a simple and efficient numerical treatment for modeling cracks. The
formulation of PDS-FEM for brick structures and its verification are presented in this chapter. For
the sake of simplicity, we only consider the 2D settings; straight forward to extend to 3D.

5.1 Particle Discretization Scheme (PDS)

A unique feature of PDS-FEM[2] that it uses characteristic functions of conjugate tessellations,
{®“} and {\Ifﬂ }, for approximating functions and its derivatives, respectively. Originally, PDS-
FEM uses characteristic functions of Voronoi and Delaunay tessellations. However, in this study,

--------------------------------

_________________________________

(a) (b)
Figure 5.1: Dual tessellations used for PDS-FEM.

41
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we uses the bricks themselves as the tessellation elements %; to be exact, each ®“ includes half
thickness of the cement layer along the perimeter of the brick (see Figure 5.1(a)). The conjugate
tessellation{\Ifﬁ } is formed with the triangles connecting the centroids of neighboring blocks; see
Figure 5.1(b). Characteristic functions of ®“, denoted by ¢“ (), is defined as

v [ lifzede
¢ <m>{ 0if xgd®

The characteristict function of U”, denoted by 1” (x), is defined as

1if ze T’
B (2)=
V@) {Oifaze,zqfﬁ ‘

According to PDS, an a vector field, f , and its gradient,V f, are approximated as

fz(«’l?,t)%fld(w> = Zfza(t)gﬁa(w), (51)
afé)gt)%g%(w) = > e (@). (5.2)
! 5

The unknown coefficients f’s are determined by minimizing the error EY = [(f;— f{)?ds. Setting

ES

— a
o =0, we can evaluate f’s as

1
@a Pa

where ®% is the area of the tessellation elements,®<.

fir= fi(z,t)ds (5.3)

The use of characteristic functions {¢“} introduces discontinuities to the approximation, f. How-
ever, PDS defines bounded approximation for the derivatives of f¢ using the characteristic func-
tions of conjugate tessellation U to approximate the derivatives (Figure 5.1(a)). Minimizing the

error £9= [ (gflj(m)—% Iz )) 8E9 =0, PDS defines the unknown coefficients uﬁ ’
of fi(x) as
3
=S AF (5.4)
where o/ € {a|UPNP#£]} denotes thee ’s occupying the domain of , U#. Further,
1
AP = ng'ds.

Wﬁ OVBNOPe

¥F is the area of the element ¥¥ . Analytical expression for A”* are given in the Appendix D.
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5.2 PDS-FEM based equations of motion of brick structures

We use the following Lagrangian as the starting point of PDS-FEM implementation of the contin-
num form of section 4.2.2.

1 Y 1
J = 2—‘/}3 <mujuj—|—9i]ij9j) ds—§/uj,icijklul,k—29jqlkjuLk+0id,-j9j+0j7icijkl917kds(5.5)
It is straight forward to show that ¢ [ .Jd¢=0 produces the continuum form obtained with the second
order Taylor expansion, Eq. 4.19.
According to PDS, the unknown displacement fields w and 6 are approximated using the tes-
sellation, {®“}, as

NO(

u; ~ud= Zu?¢°‘ (5.6)
Na

0 ~09= > 076" (5.7)

67

Recall that, we treated bricks as rigid blocks in deriving Eq. 4.6, which was the starting point in
deriving the continuum forms. The use of characteristic functions of ®“ to approximate u and @
makes it possible to treat bricks as rigid blocks, making PDS-FEM an ideal tool to analyse brick
structures. As it would be clear in the later formulation, no special treatments are necessary to
include the intertia tensor of each brick, I, in PDS-FEM.

The derivative of u;,; and 6; ; approximated using {U”} as u;,;~ Y jul;0)” and 0; ;%3 ;0707
Based on the Eq. 5.4, the unknown coefficients can be expressed as

wy o= > A (5.8)
0 = > AXe. (5.9)

a/

Substituting Eq. 5.1 to 5.9 into Eq. 5.5, the discretized weak form, J d (=.J), can be obtained
as
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1 . .
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where

KB = /pﬁAfacfjklAfalds
gt = [ oAl as
v
et = [ odioas
v

cPaa’ Ba, B yBa
K = /pﬁAi v AL ds

The explicit expression for these, in matrix form, are given in Appendix D. Setting § f Jédt=0

t2 . 2 t2 .
d o e o o [} T¥e U e [eBale]
5/t Jidt = [muj oug +0; ]ijéuj]tl—/t (muj ous+1;;0; 56’j>dt
’ faal 5, 0! _ go Bac’ 5 of
_ / (g B s — 05 K5 g
t1
=007 K i o0y (R K Yo' ) e

t
0 = - / 2 (i + g = K07 ) oy dsat
t1t2
-/ /Q (Jﬁéf—f%ﬁw’ufbr(Kﬁ“""ﬂ‘(ﬁ“a’) 9{’") 50, dsdt
Since the above should hold for arbitrary du{* and 665, we can obtain the following set of
equations. With a suitable time integrator, we can use this linear set of equations to study the
transient wave propagation in brick structures.
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meiy = 3 (<K R0 (5.10)
1y = SR - (R ke Yo'} (5.11)

«

5.3 Verification of PDS-FEM with analytical solution

To verify the developed PDS-FEM code, a brick wall PDS-FEM model is constructed. Numerical
result of the propagation of waves will be compared with the analytical result in chapter 4. The
problem setting and verification method are the same as that of chapter 4. A brick wall of width
20.3m and height 13.0m shown in Figure5.2 was used for the simulations. The domain consists
of bricks with 60mm width, 30mm high,40mm thickness, and 5mm mortar thickness[11] simu-
lation. The density of each block is assumed to be 1850kg/m3. Averaging brick-mortar material
properties[11], k and h, are determined as 512N /mm? and 222N /mm?, respectively.

The domain is subjected to in-plane one wave input at center of the domain. In this numerical
experiment, 3 input cases. First and second cases are with vertical and horizontal transnational
wave inputs. The third case is with a rotational wave input. In all the cases, following wave form
is used.

1 cowt 1
f<t):3_\/§A (Sll’l?—gSlnwt) s (512)

where A is the amplitude of the input, w is the input circular frequency. The amplitude is set to be
2mm for vertical and horizontal input. For rotational input, the amplitude is 0.035rad. To obtain a
narrow waves, so that peaks and valleys of waves are clearly visible, input circular frequency w is
set to be 1.57x 10%rad /s for vertical and horizontal input, and 2.11 x 10°rad /s for rotational input.

Cefsat> ] 13.0m

20.3m

Figure 5.2: Domain for the numerical experiment
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t=2ms

(b)

Figure 5.3: Hydrostatic strain and analytical p-wave front (white line) at 2ms travel time: (a)
vertical input, (b) horizontal input.

5.3.1 Primary or pressure-wave

Like the RBSM model, the numeical result of RBSM can be verified with analytical prediction
on continuum forms. Figure5.3 shows the distribution of hydrostatic strain, which indicates the
amplitude of p-wave, at time 2 ms. The thin white line is the theoretically predicted p-wave front.

As is seen, the analytical prediction is in good agreement with numerical results in the regions
indicated with letter A. In Figure 5.3(a), since the input wave is oriented in vertical direction, the
p-wave amplitude is strong in up and down directions, while it is weak in other directions. This is
why no wavefront is present in the directions except up and down, in the numerical results. The
nearly straight wavefronts in the region C are the shear shock waves generated by the p-wavefront
in region A; being an anisotropic medium, deformation due to p-, s- or rotational waves generates
each other.

5.3.2 Shear-wave

Figure 5.3 shows the distribution of maximum shear strain, which indicates the amplitude of S-
wave, at time 2 ms. The thin white line is the theoretically predicted s-wave fronts.

High amplitude s-wave can be observe in the area A. As seen there is a good agreement with the
analytical prediction in these regions. High amplitude shear waves propagate in normal directions
to the direction of excitation, and amplitudes in other directions are weak. Especially, shear waves
in the directions of excitation have extremely small amplitudes. This is why there seems to be a
mismatch between numerical and analytical wave fronts in regions except A. Further, the p-wave
generated shear deformation is clearly visible in regions C and D. The near straight stripes in region
D are the shear shock waves corresponding to those of region C in Figure 5.3.
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D

t=2ms t=2ms

(b)

Figure 5.4: Maximum shear strain and analytical s-wave front (white line) at 2ms travel time: (a)
vertical input, (b) horizontal input.

5.3.3 Rotational-wave

Figure 5.5 shows the distribution of the amplitudes of rotational waves generated by the rotational
wave input. Unlike the single wave input, the dispersion of the rotational wave occurs. Due to the
difficultly of analytically estimate the rotational wave velocity, the double Fast Fourier Transform
(FFT) with respect to spatial and time domain is applied. FFT is conducted for two sets of narrow
domains oriented horizontally and vertically; shown with yellow lines in Figure5.5.

The double FFT result is shown in Figure5.6. The vertical axis is circular frequency and the
horizontal axis is the normalized wave number, where a; and a are the half of the length and height
of a brick (Figure4.3). The numerical result is represented by the orange area. Note that the white
indicates that the amplitude is beyond the color scale. Red, green, and yellow lines represented the
analytical solutions from the Eq. 4.19 for p-, s- and r-waves, respectively. It is observed that there
is not only r-wave, but also small amplitude p- and s-wave. It is seen that the numerical solution is
in good agreement when |£a;|<0.5 and |£ay|<0.5. In other words, the PDS-FEM is valid for the
wavelength is grater than 7 times of the size of bricks.

Vertical domain for double FFT

Horizontal domain for double FFT

t=2ms

Figure 5.5: Numerical rotational magnitude and domain setting form double FFT.
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Figure 5.6: Contour plot of the numerical rotational magnitude and the analytical relation be-
tween wave circular frequency and and normalized wave number based on second order Taylor’s
expansion.

Though verification of PDS-FEM is restricted by the applicable range of the continuum form
based on second order Taylor’s expansion (section 4.2.2), PDS-FEM can be verified with the con-
tinuum form based on infinite series expansion. As shown in Figure 5.7, it is seen that PDS-FEM
can provide better range of applicability.

5.4 Verification of PDS-FEM with RBSM

Though the numerical simulation of PDS-FEM can be verified with analytical solutions, it is not
convenient to verify amplitude of movement in the numerical simulation. Alternatively, PDS-
FEM is verified RBSM simulation with the same problem setting. Contour colors in Figure 5.8
represents the error of the PDS determined by the following equation

wPDS _ g RBSM ‘

x100%

Error=
Inputamplitude

where uPS and uRBSM

are the translation of the wave propagation based on the PDS-FEM
and RBSM, respectively. It is found that the maximum error occurs in the high amplitude area of

s-wave indecated by the red area in for vertical input case (see Figure 5.8(a)) which is about 4%.

5.5 Summary

In this chapter, the continuumnization based discretization scheme finite element model (PDS-
FEM) for 2d brick wall is formulated. The PDS-FEM can represent the movement of the brick as
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Figure 5.7: Contour plot of the numerical rotational magnitude and the analytical relation between
wave circular frequency and and normalized wave number based on infinite series expansion.
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Figure 5.8: Error of translation in PDS compared to RBSM: (a) vertical input, (b) horizontal input.



CHAPTER 5. PDS-FEM OF BRICK MASS-SPRING SYSTEMS 50

brick wall systems is the set of particles. The verification of the PDS-FEM shows that the numer-
ical results are in good agreement with analytical solution for both time and frequency domain.
According to the verification, the range of applicability is wavelength 7 times longer than the size
of bricks which is sufficient for civil engineering applications. Further, this PDS-FEM of brick
structures can be further developed for non-linear systems or cracking simulation.



Chapter 6

Role of rotation on the damping of brick
structures

According to both the analytic solutions and numerical simulations presented in previous chapters,
the frequency of rotational DOF is significantly high to be physically feasible. As an example,
according to Eq. 4.23 the rotational frequency for the brick wall considered in section 6 is about
2x10° rad/s. Such high frequency rotational motion is physically unfeasible and should rapidly
decay due to interface friction, non-linear properties of mortar, etc. Further, some energy from
transnational modes to rotational mode since these two modes are coupled via the third order
tensor q. Consequently, this rapid decay and coupling make the system to continuously loose
energy producing a damping effect. This could be one possible damping mechanism in systems
made up of stiff interacting particles like sand, brick -mortar, etc.

In this section, we investigate this hypothesized damping mechanism of stiff interacting parti-
cle systems. We focus on brick mortar systems due to the potential applications in the vibration
resistance design of brick structures.

6.1 Rotation induced damping of brick structures: formula-
tion
For the sake of simplicity, let’s consider a regularly arranged 2D brick mortar system, and the

method of continuumnization (see section 4.2.1). Based on Eq. 4.10, the governing equation of
the equivalent continuum form for this 2D system can be expressed as

m 0*u;(x) d03(x)

Vbuz Cijkl 61}8[@ —{qi3k aIL‘k (61)
I3 - Ouy,(x

%93 = Qp3k (91;3(16 )—03393(53)- (6.2)

51
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As discussed at the introduction of this chapter, the rotational motion should damp rapidly. To
model the loss of energy transferred into the rotational mode, we eliminate the rotational DOF 03
from the above system of equations expressing 3=63(u;). First, we express 3 in terms of u;’s
based on Eq. 6.2; i.e. #3=05(u;). Then, based on this relation, we eliminate 03 from Eq. 6.1.
The resulting equations will be devoid of 65, but contains the effects of transferring energy from
translation mode to rotational mode via the coupling term ¢;3x, eventually producing a damping
effect.

Taking Fourier or Laplace transform of Eq. 6.2 and solving the resulting equations, we can
express 63 in terms of u;. However, the resulting equation involves convolution of u;’s making
it too complicated to be used (see Appendix ###). Instead, we use Fourier transform of Eq. 6.2,
make a first order approximation in Fourier domain, and obtain an approximate expression for 3
in terms of u;’s. In the rest of this subsection, the details of this formulation are given.

6.1.1 Approximation of 05 in term of v,

Taking Fourier transform of Eq. 6.2 with respect to time domain and re-arranging, we can obtain

O3 (w)=qu3G (W) Uy (w), (6.3)
where U (w)=F (u;(t)) and ©3=F (6(t)) are the Fourier transform of u; and 65, and

1
Glw)= d33—WQI:a:’,/Vb7
Fourier transform of a function f(t) is defined as F(f(t))=_" f(t)e"!dt. Taking the inverse
Fourier transform of Eq. 6.3, we can express 3 in terms of u;’s. However, the resulting expression
becomes a convolution, due to the nature of the transfer function GG(w), making it difficult to use
with Eq. 6.1. In order to simplify it, we consider a first order approximation of the transfer function
G (w) taking the Taylor series expansion around wy as

(6.4)

G (w)~G (wo)+G' (wo) (w—wp) (6.5)
where G'=9G/a.. Substituting Eq. (6.5) into Eq. (6.3), ©3(w) is approximated as

O3(w) = qus{G(wo)—woG (wo)} Uik (w)+waqirsG’ (wo) Upk(w) (6.6)

Finally, taking inverse Fourier transform of Eq.6.6, an approximation for #3 can be obtained in
term of v; 5, and 1, as

O3 =qi3{ G (wo) —wo G’ (wo) } sk —1q1k3 G’ (wo) Tk (6.7)

The in-plane rotation, s, is expressed in term of gradient of translation, v; ;, and gradient of
velocity, 1; ;. The imaginary term indicates that u;; and 1, are in opposite phases. This is a
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sign that the term with 4, produces a damping effect by working against the real part. The real
and imaginary parts of the Fourier transform corresponds to the Fourier transform of odd and even
parts of a function (see Appendix G). Hence, we can express 63 as

03=qur3{ G (wo)—wo G’ (wo) Yk —qura G’ (wo) Uk (6.8)

6.1.2 Equation of motion with the rotation induced damping

Substituting above obtained approximation of 03 to Eq. 6.1, we get

pit;—Cijra (wo) win—Cija (wo) e = 0 (6.9)
where
Cijii(wo) = Cij—jisqusG (wWo)+woqjizqunsG' (wo)
Cz‘jkl = jSBQIk?;G/(WO)

The of partial differential equations given by Eq. 6.9 is the equivalent continuum form for the
system with hypothesized rotation induced damping. The elimination of f3 has made the Eq. 6.9 a
function of wy. Specifically, C;;x;, which is similar to the elasticity tensor in continuum mechanics
is a function of wy; Cjjr=Clj. Note that the term C’ijkml,ik introduces damping to the system
since it carries the effect of the imaginary term in Eq. 6.7.

6.2 PDS-FEM implementation of the damped system

As we did earlier in Chapter 5, we use PDS-FEM to solve the above partial differential equations
of initial-boundary value problem. Compared to the target partial differential equations chapter
5, Eq. 6.9 has two major differences; it contains damping terms (i.e. models a non-conservative
system) and includes a term with second order spatial derivatives and first order time derivative
(4%). Apart from the additional treatments to deal with these two differences, this PDS-FEM
formulation involves the same steps as in chapter 5.

6.2.1 A weak form for the non-conservative system

Consider a system which is described by the following Lagrangian

/ 1 8uz Quk
— MU — —ds

ikl
” an 8.13[
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and subjected to the non-conservative forces C’Zz]ku],kl( t). Let oW = C’Zz]kuj,kl( ,t)du; be
the virtual work done by these non-conservative forces due to compatible virtual displacement ;.
Applying the Hamilton’s principle, we can obtain the governing equations for this system as

/Edt+/5Wdt =0

//muﬁuzdsdt / Cy; ia—njdsdt
8[El
ﬁuk
(5ul : ”klﬁ dsdt+ C’lljkuj,kléuzdsdt = 0
// md—— Cii % —Cypintt; ou;dsdt = 0
o i al‘j ijkl aIl ilgk Wy kl i -

Note that we use the property C;;i;=Cp;; in the above derivation. The above should hold for
compatible arbitrary du;, hence producing the Eq. 6.9.

6.2.2 PDS-FEM implementation for the damped system

As shown above, we can use the above Lagrangian with the non-conservative force
—Clijktj,p (x,t) as the starting point of PDS-FEM formulation. First, we approximate all
the field variables involved using PDS. Just as we did in chapter 5, the unknown displacement field
u is approximated using Voronoi tessellation, ®, as

rud= ) ufe (@), (6.10)

and the derivative of w;,; is approximated using Delaunay tessellation, {UA}, as Uj iR

> Bufj@bﬁ (x), where the coefficients ﬂg can be expressed as

uy = ) AT 6.11)

[0}

As described in chapter 5, PDS uses conjugate tessellations to approximate function and it’s
derivatives. We make use of fundamental feature of PDS to approximate higher order derivatives.
Specifically, in order to approximate the second order spatial derivative u;, ;;, we use the tessellation
{®“}, which is the conjugate of the tessellation used for approximating u;,;.

Ui ik A2 ZU%M&@)
«
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2
where the coefficients g, can be found by minimizing the error | (u;’; L0 () — (ufjwﬂ (zc)) , k) ds
as

1
e = T [ tmta)

oD

B
= D uisy. {B|enTT£0} (6.12)
B

Analytic expression for S;" 5 are given in the Appendix D.
Substituting the above approximations to ¢ [ Ldt+ [ dt=0, we can derive the governing
linear set of equation of PDS-FEM as follows
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.. 1 Ou; Ou '
/<5/Q§Puzuz Cljktla aQEI; d3+/0iljkuj7kl(5uid8) dt = 0
1 (6% CY 6%
/ (Zf | orinizon Z il (@)as
_Z/ C Sy 0us o™ (z)d )dt - 0
1
§5< )CZH\I’ +Z kW P ous )dt - 0

1 a O/ a/
55((2/15 u> (ZAf ug ))cfjklw

+> G (Zsa%fk> c1>a5u§> dt = 0

W/Zm“éufufdt

e

B
+ / > G (Zsaﬁufk> d5utdt = 0
/ > (mau? Y (A Al ) v ~Cs, (Zsaﬁufk> <I>"‘> sutdt = 0
a B
/ > (maﬁ?‘+z (A7clp Al ) whu ~Ci (Zsaﬁ (ZA ' )) <1>a> sutdt = 0
a E

The above should hold for compatible arbitrary variation of u$, dus'. Therefore, the following
should hold.

/(Z; (i

A
>

eap X (a0 (s age )i < o

B B

This is the governing linear set of equation of PDS-FEM. Note that the last term includes the
damping effect.
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6.3 Numerical experiment for the rotational damping

To see the effect of the damping term, the a PDS-FEM based stone brick wall is constructed as
shown in Figure 6.1. Brick wall is constructed following the experiments reported by ElImenshawi
et al.[30]. However, the brick wall model in this research is regularly arranged unlike the stone
brick wall tested by Elmenshawi et al.[30] which is irregular. The width, high and thickness of
the bricks are 0.4m, 0.135m and 0.27m, respectively. Accoding to the experimental investigation,
stiffness k and h are set to be 2.03x 10'°N/m? and 4.69x 108N /m3, respectively. The block density
is assumed to be 2650kg/m>.

To see the effect of change in wy, the wy is varied to be 0 to 0.8wspin, Where the wyi, 1s the
rotational wave frequency for relatively long wavelength. wgpin can be determined for given spring
constants, brick size and brick density by Eq. 4.23. In this experiments wgpi, are determined as
12617 rad/s.

The wall is subjected to 9N static input to produce initial deformation. Once the static input is
released, the wall will vibrate freely.

9 kN
——
| I I [ oAl ]
| I I I |
I I I |
| I I I |
| I I I
I | | | I
| | | |
I | | | I
| I I I I I I I |
270 m
| | | |
I I I I I
| I I |
I I I I |
I I I |
I I I I I
| | | I
| | | | |
| | | I
I I I I I =
| 2.00 m

Figure 6.1: Brick wall model for rotational damped system.

6.3.1 Energy of the free vibrating wall

Figure 6.2 shows the energy of the free vibrating wall where for different wy. For wy=0, the energy
of the system conserved because the value of damping term of this case is zero. This conservation
of the energy of the undamped system indirectly indicate the correctness of the numerical code.
For the wy=0.2wgpi, 10 wy=0.8w, it is seen that the energies slowly dissipate due to the damping
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term. Also, it is observed that the energy in the initial state are different for different wy. This is
because the wy also affects the stiffness of the system.

It is seen that the dissipation of the energy of the system is low. This might because rotational
damping term may not fully damp the system. Note that the high frequency rotation is one of the
many causes of the damping.

There are another possible reason for low dissipation. The approximation is based on the
continuumnization which provide poor range of applicability since r-wave is applicable for {a;=0
Or W=Wspin (see 4.4.3.1). However, w, form 0 to 0.8w which are not in the applicable range is used
since wy=wspin Or nearly equal cannot be used since it makes G and G’ undefined.

[ ——

e e

Z s —

>

- ——c-02

5os ToT e

'(S

G 06 TTTTTeT0s
s b =08

Figure 6.2: Total energy of the stone brick wall with different wy where ¢=wp/wWspin-

6.3.2 Vibration of the damped system

Figure 6.3 shows the acceleration of the brick and point A with different wy. Like the energy
dissipation of the corresponding wy, it is seen that the decay of the amplitude is small although the
wop 18 up to 0.8wgpin. Unlike the experimental observation reported by Elmenshawi et al.[30], the
numerical result shows high frequency acceleration while the frequency of about 11 Hz recorded
in the experimental observation. This may because the resolution of the accelerometer used in the
experiment is low. However, according to the translation in the numerical experiment in Figure
6.4, frequency of translation is about 14 Hz which is a little bit higher than that of experimental
observation reported by Elmenshawi et al.[30].

6.4 Summary

This chapter expresses role of rotation on damping mechanism of brick wall systems since there
is the hypothesis that the high frequency rotation could be one of sources of damping in brick
structures[1]. To obtain a rational damping term due rotation, the rotation in the continuumnized
equation of translation is replaced by the approximated rotation in term of translation in the equa-
tion of rotation. With this approach, the equation of translation which include damping term is
obtained.
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Figure 6.3: Horizontal acceleration at point A with different wy.
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Figure 6.4: Horizontal displacement at point A with different wy.
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According to the numerical experiment free vibration brick wall with damping term described
above, the dissipation of energy is observed. This can conclude that the high frequency rotation can
be one of the sources of damping. However, large energy dissipation cannot be obtained although
wp 18 up to 0.8wgpin are tested. This might because r-wave in continuumnization is applicable for
Wy =Wspin- HOWever, using wp=wspin cause some variables undefined.



Chapter 7

Concluding remarks

7.1 Summary and conclusion

In this research, continuumnization of brick wall is developed for and applied for several appli-
cations. Based on the continuumnization, the governing equations of regularly brick mass-spring
systems are approximated to be an equivalent continuum form assuming that wavelength is rela-
tively long compared to brick size. The obtained continuum form based on the continuumnization
is called continuuumnzied governing equations.

One of the benefits of the continuumnization the governing equations of rigid particle mass-
spring systems can be analytically solved. In this research, analytical frequency-wavenumber re-
lation of primary wave (p-wave), shear wave (s-wave), and rotational wave (r-wave) of in-plane
single layer brick wall are obtained. Furthermore, we obtain analytical predicted p- and s- wave
speeds. Note that regularity packed brick wall are predicts as anisotropic since the p- and s-wave
speed depend on the direction of the wave propagation.

An advantaged of the predicted dynamic characteristics described above is that we can use them
to verify simulations of discrete models. In this research, the predicted dynamic characteristics are
verified with rigid body spring model (RBSM) to see their range of applicability. For time domain
comparison, the numerical p-and s-wavefronts are in good agreement with their corresponding
analytically predicted wavefronts. For frequency domain, the continuumnization provided good
prediction for s-wave frequency. However, it is not suitable to compare rotational wave frequency
as the numerical and analytical result are rapidly diverse for |{a;|>0 where ¢ is the wave number
and q; is the half of brick sizes in i** direction.

Apart from the continuumnization, the equivalent continuous governing equations and the dy-
namic characteristics can be analytically obtained by the second order Taylor’s expansion (CF-
STE). Unlike continuumnization, this approaches provides second order approximation of rota-
tion. Thus, CFSTE provides better prediction of r-wave frequency. The predicted frequency-
wavenumber relation based on CFSTE is applicable for wave length 7 times longer that brick sizes
which is sufficient for civil engineering application.
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Further, the range of applicability can be extended using continuum form based on infinite se-
ries (CFIS). Though it is inconvenient for finite element model (FEM) implementation, CFIS pro-
vides wider applicable range for verification propose than that of continuumnzation and CFSTE.
CFIS is applicable for wave length 2 times longer that brick sizes which is the shortest meaningful
of the wavelength in discrete particle systems.

One another application of the continuumnization is that we can formulated FEM for brick
structures which is simple to use in commercial software. In this research, PDS-FEM is imple-
mented as a brick-wall itself is a set of block particles. According to the verification of PDS-FEM
with the analytical prediction, PDS-FEM is applicable for wavelength 7 times longer than the size
of bricks which is sufficient for civil engineering applications.

According to the numerical results of PDS-FEM, high frequency is observed. As that such
high frequency does not appear in practices, it is possible to be one of the source of damping. To
see the invert force due to rotation, this research approximates rotation in term of translation in
the equation of rotation and substituted into the equation of translation. With this approximation,
equation of translation with damping term is obtained.

To see the effect of damping term, a PDS-FEM based brick wall is constructed and simulated.
According to the simulation of free vibration brick wall, though the decay of vibration is not clearly
seen, small dissipation of energy of the system is observed. This conclude that the high frequency
vibration can cause damping in brick structure.

7.2 Future work

For the Continuumnization based, PDS-FEM, one can be expand into 3d for more general appli-
cation, especially for historical structures. Also, with the continuumnization PDS-FEM, we can
further study cracking and nonlinear behavior of brick structures.

Damping mechanism of brick structures should be further investigated since the energy dissi-
pation is small and the decay of vibration amplitude is not clearly seen. There are some possible
reason about this behavior. The damped governing equation is based on the continuumnzation
which provides very narrow range of applicability for r-wave (Only for |£a;| very closes to 0)
while the system might content wavelengths which are not in that range. Another possible reason
is that the damping due to high frequency rotation may not be able to fully damp the system. It is
important to note that there are other source of damping, such as friction in mortar or micro crack
in brick or mortar.



Appendix A

Geometry of each vectors

Table A.1 and A.2 express the unit vectors n”",t7" 87", and r7* of spheral systems and brick
systems expressed in chapter 3 and 4, respectively. n”* are shown in Figure A.1 and A.2.
Vector in y— can be determined as n' " =—n"t 7" =—t7" 87" =57 and ¥’ =—17".

A.1 Sphere

L~ [t 2 | 3 |
1 V3 1 V3
’I’I,’er €q —§€1+7€2 —561—762
V3 1 V3 1
7 e | —Fer—se | Fei—je
7T | e; es es

Table A.1: unit vecters of 2d sphrical system

A.2 Brick

’ \ neighbor 1 | neighbor 2 | neighbor 3 ‘

n't e e es
tﬂﬁ_ €9 —e1 —eq
st es es e
T’V—i— aieéq (12—1614—@262 —a2—1€1+&2€2

Table A.2: unit vecters of 2d brick system
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Figure A.1: n* vectors on the contact points of sphere c.

Figure A.2: n"* vectors on the contact areas of brick a.
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Appendix B

Non-zero components

This appendix consists of the non-zero components of tensors in continuous governing equations
for hexagonally packed spherical mass spring systems Eq. 3.14

B.1 Sphere

The following contents are the component in Eq. 3.14 and 3.22.

9k 3h
c = c =—+—
1111 2222 3u ' 8a
3k 9h
c = c =—+—
1212 2121 3a ' 8a
3k 3h
C g C =C =C e e —
1122 1221 =C2112=C2121 3u_ 8a
_ 3h
qi23 = 50
_ 3h
q213 = 50
3h
oy = —
33 %
3h
V1313 = U2323=—35—
2a

B.2 Brick

The following contents are the component in Eq. 4.10 and 4.19
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ciiir = ﬂ(#ﬁ-@)

2 (05}
a ka
Cl212 = —1(4h+—1)
2 (05}
c121 = 2hay
Co222 = 2kay
G123 = —2hay
a ka
G213 = —1(4/1—1——1)
2 a9

]{7 2
dss = 2ha;+— 4 9oha,
20,2

a? ka? ka,
Vig1y = gl (16ha1+a—;+4ha2) " 2ay (aj+16a3)

a
U323 = éka%ag +2hay



Appendix C

Characteristic equations based on infinite
series

This appendix presents the formation of the characteristic equations based on infinite series Tay-
lor’s expansion (ISC) for spherical mass spring systems and brick mass spring systems.

C.1 Spherical mass-spring systems

Taylor expansion of a function f(x) about a point z°; let z=x"+an".

n.
20 ¢ axz(()l‘]

Based on the above results, the following two expressions can be obtained.

of(x)

Pf(@) , (2 & f(x) (2a0)°
N = 92 n) injny
f(x+2an”) flx)+ . n; (2a)+axia%nln3 o —1—8%8%8%”1 Y +...
of (x) Pflx) o (=207 & f(x) (=20)°
f(x—2an") f(x)+ o n( 2a)+axiaxjnln] o +6xi8xj8$knln]nk 3] +...

For the sake of brevity, let’s use the notation &*=x4+2an”. Addition and subtraction of the
above two provide

- ’f(x) (2a) 'f(x) (2a)*

+ — VY Vo Yoy V)Y

farrier) = Q[f S T PR L BT Vo vt T L L L AL TR R
_ of(x) > f(x) (2a)°

f(w'7+)—f(.’£7 ) = 92 {a—xlnpa—i—mnl”n;nz 3] —+.... (C.2)
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Fourier transforms of f(z+2an")+f(x—2an")

Let F(f(x,t)) denote the Fourier transform of a function f(a,t) with respect to space and time

dimensions; i.e. F(f )= [ f f(z,t)e"¢ @t dxdt. Fourier transform of the Eq. C.1 gives
v+ " f(x) . -(2a) a4f( ) O
2a0i€&-nN)?%  (2ai&-n)E (2 76 (9 2 -
_ 2<1+( a1§2!n) _l_(ari!n) +( a1§6!n) _l_(arﬁgln) )f(gw)
20612 (2a€-n): (20€-1)8 (2a€-n7)8 -
_ 2<1_( a€2!n ) ( a€4;n )t a€6;n ) aﬁg!n ) _) flew)
= 2cos(2a£-n7)f(£,w) (C.3)
F(f@ ) +f(@ ) = (2—4sin’(aén?)) f(&w). (C.4)
Similarly, Fourier transform of the Eq. C.2 gives
_ 0 3 4 (2a)?
]—"(f(azw,t)—f(w'y ,t)) = ( gi_l)n 2a+#ﬁéa)kn.njnz<;> +)
201 -1 2 N3 (2a2&-17)°  (2a:€6-1Y)7 -
_ 2(( azf!n ) ( azgln )P az£5!n ) +( azﬁﬂn ) +...)f(§,w)
2a€-n" 2017 (2a€-n7)°  (2a&-17)7 -
o () @ug) Oug)_ @), ) e
F(f@Tt)—f(x",t) = 2™ ?sin(2a€-n")f(¢w) (C.5)

For translational components

Governing equations of translational component u; for the spherical-mass spring systems
miil = K] (]t —2uf+u]") ZKW (077 —677)
Y

Taking the Fourier transform of the above equation, and using Eq. C.4 and Eq. C.5, we can
obtain

—mw?i; (€,w) ZK7 (4sin*(a&-n")) u;(€,w) ZK7 26”/281n(2a£-n7))5j(£,w):

For rotational components

Governing equations of rotational component ¢; for the spherical-mass spring system
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10r = = K(u]f— ZW (07 +67+20")

Just as the above, taking the Fourier transform and using Eq. C.4 and Eq. C.5, we get
—Tw20;(&,w 4—2[(7 (2¢™%sin(2a€n")) i;(€,w)+ha ZKV (4cos (aé-n”))éj(é,w) =0

Characteristic equation

The above set of equations in Fourier domain can be written in the follwoing matrix form

42K%sin2(a£-n7)—mw2 26”/22[@»sin(2a£-n“’) . 0
Y lfj —
26’”/22Kj7¢sin(2a£-n7) 4ZK7COS (a€-n?)—Iw? { 0, } { 0 }
Y

The above have non-trivial solutions when following charateristic equation is satisfied.

102 2 /2 2 :
4y Kjsin*(a€n?)—mw®  2e /ZK]-sm(2a€'n7)

det ~y X =0 C.6
¢ 2e"™/2Y" K sin(2a€-n") 42[(7 cos*(ag-n)—Iw? (0
v

For 2D systems, Eq.(C.6) can be expanded as.

42Kflsin2(a€-n7)—mw2 4ZKi’zsin2(a£-n'y) 23 e™/2 K, sin(2a€-n)
B
det 4ZK (sin®(ag&-n") 42}( ,sin®(a&-nY)—mw? 226’”/2K273sin(2a£-n7) 0
2261”/2K;18in(2a£-n7) 226”/2[(;2sin(2a€-n’7) 42 23c08%(a€-n")—I33w?
vy o
(C.7)

C.2 Brick mass-spring systems

The formulation for brick-sprig system is the same as that for the spherical particle system pre-
sented above. Taylor expansion of a function f () about a point z°; let z=x"+777.

0 f(=)
v
20 ri + aZL’Za(E] 20

v,
TiTj—i-...
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Based on the above results, the following two expressions can be obtained.

L9f(@) , Pflx) 52?2 Pfl) ., ,02)° )

ox; “ow, (2)+0xi8.icjri " 2! +8xi8xj8$kr y T 3'

af( ) . 82f(:c) (0% 7(_2>2 83f(:c) Yo 7(_2)3
I A v e L T R o o e A T

fle+2r™™) = f(x)+

fl—2r) = fl@)+ e

For the sake of brevity, let’s use the notation 2’* =x4-2r7Addition and subtraction of the above
two provide

82 2 2 (:)4 2 4
f@)+f(z) = 2 {f(w)—i— axf(‘():;) rir] (2? +8xi3xf(((9z;)ﬁxl TZTZTZT?%—F. : ] (C.8)
[ —f(x"7) = [agiz )7”1' 7(2) %r?r}@%—f—l—. : } : (C.9)

Fourier transforms of f(x+2r7)+ f(x—2ar”)

Fourier transform of the Eq. C.8 gives

F(f@ o)+ f(@ 1) = 2]—"(f(w) g é >7’ r]<2), axigxféiiaxlr T ”Q%-)

2 2 NE-rY L9706 NE-17)8 B
_ 2(1+< Z&Q'!r )? +( 264!7' )L ZEGT )’ ( Z€8'!r ‘o f(ew)
2€.rM2  (2€.rMNE (2&€.77)0  (2€.947)8 -
_ 2(1_( 627!' )", 64"!" )t ( 661!" ) 587!‘ ) _“_>f( )
= 2005(2@5-7‘7)];(5,@ (C.10)
F(f@ o) +f(@ 1) = (2—4sin®(&r7)) f(€,w). (C.11)
Similarly, Fourier transform of the Eq. C.9 gives
0 3 2)3
F(f@tt)—f(xt) = ( gil)r (2)—1—%7"37’ Tz(:,)? +>
NE-rY 2 N3 (9 NS (Nn€-r7)T -
_ 2(( Zii!"‘ ), 253!7' ), 255';‘ ), 167'( ) +...>f( )
2617 26.77M3  (2£.47)5 (2€.97)7 -
o () e e Gen, Vg,

F(f@tt)—f@ 1) = 2 sin(2617)f(€w) (C.12)
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For translational components

Governing equations of translational component u; for the spherical-mass spring systems
mill =Y K (ul* —2uf+u] ") ZK” 07" —077)

Taking the Fourier transform of the above equation, and using Eq. C.11 and Eq. C.12, we can
obtain

—mw?i; (&, w —i—ZKV (4sin®(&r7)) @;(€,w) —|—ZK7 26”/28111(267”))éj(g,w):

For rotational components

Governing equations of rotational component 6; for the spherical-mass spring system

;0% = ZK” (ulf —u; ZK” 07 +20+0; ) ZK” 07 —26//+07)

Just as the above, taking the Fourier transform and using Eq. C.11 and Eq. C.12, we get

— Z-ijéj(ﬁ,w)—Zf(]i (26”/2sin(2£-r7))ﬂj(£,w +Zf(7» 40052(5-7”))6}(5,@

o

+ZK7 (4sin®(&77)) (6 w) = 0

Characteristic equation

The above set of equations in Fourier domain can be written in the follwoing matrix form

: i ARty
/2 2% . — 9 = . 9 ) " _
—2¢ /;Kjisln(%'-rv) 4;K%COS (E-T7)+4;K]jsm (&r)—Iw { 0; 0

The above have non-trivial solutions when following charateristic equation is satisfied.

in2 ur Y o
43 Kjsin*(§r7)—mw? 2e /Q;Kg’jsm(ZE-r”V)

det =0 (C.13)

v _
—2e™/2Y K sin(28-r7)  4Y K]icos?(Er7)+4Y K] sin?(€-17)—
o v o
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For 2D systems, Eq. C.13 can be expanded as.

43 K] sin? (€-77) —mw? 43" K], sin?(€-r7) 23 e /2 K, sin(2€-17)
v v ~
det 45" K7 sin®(&-77) A K,sin?(€r7)—mw?  2) e 2K,sin(2€-17) |
B! v v
—25 e 2 K] sin(2&-r7)  —2> e"/2KJ,sin(2&-r7) A
v v

(C.14)
where A=4Y"KJ;co82(&-77)+4>  KJysin? (€-77) — I330°2.
v Y



Appendix D

Analytic expressions for PDS-FEM in 2D

This appendix presents the explicit expressions for implementing PDS-FEM for brick structures,
in 2D settings. In 2D problems, the active DOFs are {uy,us,63}. In deriving the stiffness matrices,
we consider the triangle ¥ formed by connecting the centroids of the bricks ®!, ®2, 3 shown in
Figure D.1. & is the point at which ®!, 2 and ®* meets each other.

D.1 First derivative

CI)3

y3

ol 1 Loy e >

Yy Y 1

Figure D.1: Tessellation of 2D domain

D.1.1 A’

From the Figure D.1 we can evaluate Af “ for ®*=! as

1 1 1 2 1 3 9
— nd = —((x‘—x )+ (x’—x°)) xk
VP Jausnas wh ( JH )
1
Bl 3.1
AP = _y'/ﬁ( x ) xk.

B is the area of U#, while ®*’s is that of ®“. In vector form, we can write A?! as
1
g
=B
A3 v (v}—1)
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AP? and A®3 can be obtained by cyclic replacement of x'’s. as
APl 1 { ~(ah—a2) }
A wh ri—a?
AP |1 —(a3—ad)
Ag?’ /G -3

Finally, for the sake of convenience, lets form the following matrix with Aiﬁ *g
Al o
Al 0

0 A

0 A

A= (D.1)

Now, we can express the coefficients involving the derivatives (i.e. ufj’s and Qg’s) as

( u% )
Ufl Uy
u?, _ 1 |:Z,81 e 263} u?
ul, wh u3
U uy

\ u'% 7

6)1
(o) Ll Ly
039 wh | ATY AP AY p

D.1.2 Stiffness matrices

D.1.2.1 K’s

J

K jﬁlao‘/ =[5 Af acfj klA’,fa,ds can be expressed in matrix form as

[ Ko gl

8 —B\T _—~Ba
noote | —w (A ) CA
K21 K22

where
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Cflll C’fml Cfl 12 0?122
C— G G Gz G
Ci211 Ci221 Ci212 Ci222
Co211 C2221 Co212 Coo22

D.1.2.2 f(flw' ’s

AP ds with i, k={1,2} and j=3.

J
Ay
Aba

fv(:?laa/ — o q§13 qg23
ngaa 4213 4223

In matrix form K jﬁlaa/ :fw ¢af}26;;

D123 K
K =[,,0%d¢* ds with j,1=3.
Kg??a = d§3
and K&' = 0ifad.

D.1.2.4 f(flm' ’s

K = [, AP0 AR ds with i, k={12} and j,1=3.

- Baa’ B B Uf313 Uf323
aa a a
K33 :gﬁ{ A1 Az } B B

Vo313 Vazos

Al
A

In solving the resulting governing equations, if we use explicit time integration, we can either
assemble both the linear set of equations Eq. 5.10 and 5.11 into one global matrix, or independently

D.1.3 How to assemble the global matrices

advance those in time. The global matrix with both the set of equations for one triangular element
would look like.
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/

\

fi
f2
t3

2
1

2
2
2

tS

3
1

3
3

t3

J

where [_(%Z :[~(§§Z—|—K§3”

D.2 Second derivative

Figure D.2: 2D setting. To calculate second order derivatives, we use tessellation ¢

77

Let the triangles in the Figure D.2 named as follows; W#! is the triangle y%y'y?, U” is the triangle
..., U7 is the triangle y

y'y*y?

b

OyGyl.
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Lets evaluate [, ¢ (x)ny dl for ®° and the triangle U#' formed by y’y'y?;i, j and k are the
unit base vectors. \n

1 1 0 2 1 0
— o (x)nfdl = —— ((yo—y Y )xk:+(y Yy —y0> xk)
T2 [ e 2

2
1 (y'—y?
- k
Ja ( %
1

2

= oga (—(2—w)i+(n—u)J)
sl i{ —(13—43) }
S5 o | (y1—vi)
Similarly, next, lets evaluate [, ¢*(x)nL dl for ®° and the triangle U?* formed by y y%y®.
1 5 1 yO+y3 y*+y°
= a d = —— 0_ k —y? ) xk
L[ ot - () (P,
1 (y*—y’
- k
<1>a< > )~
= ( (v2—v5) i+ (1 —v7) 5)
Sl U — (13—
S

According to the above equations, we can express u{; in the following matrix form.

{U?n} _ 5(1121 5?52
(GED) Sg '

Szoéﬁz S;ﬁﬁ

s ] i}

In general, u$;,, can be expressed in the following matrix form

ijk>
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( u?; N
ufj 2
{ it } _ s s s )
U%z - Sgéﬁl S;'BQ e ngﬁa
u’ZB >
\ uij@ Y,
In the case of inner ®°, the above calculation involves 6 U” as,
( Uiy )
(P (@™ )
U9 u'”
Uan \_gen|gosn| gom]] @
U3 @'
U3y w'f
ung 1_1’/66 J
| U9z |
where
[ s 9 0 0 |
Sef0 000
0 S 0 0
gasi_ | 0 S0 0
0 0 S 0
0 0 8% 0
0 0 0 5%
o 0 0 S
and
uy
Uy
)

Derivative, @', can be written in matrix form and in term of translation as,
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cany | AT A A o0 0 o0 o |, .
' A% o A" A o o0 o “
' A% o0 o A A" o0 o “,
Ya (7|2 o o o A% A o ;
a5 2553 0 0 0 0 Zﬂsl 2552 ;
L /P ) Zﬁ(ﬂ Zﬁﬁl 0 0 0 0 2563 LU
Where A" can be obtained from Eq. D.1.
Thus, the damping force can be written as,
(
uiy
Ui
. . . . X X R X Uiy
{F1 }:cpa[qml q1121 (;2111 C;2121 (;1112 (5'1122 @112 (5'2122 U9y
Fy Ciair Crazr Caoir Cogzr Chrziz Chiaaz Cogia Cagao (CE
U3y
Uy
Uy




Appendix E

Artificial damping

According to the analytical solution and numerical simulation for both RBSM and PDS-FEM, it
is seen that the frequency is high. However, the rotation of bricks cannot produce this such high
frequency in practices. It is mentioned by Hori et al.[1] that the high frequency spin can be a
possible source of damping in granule materials.

This chapter presents the physical explanation of energy dissipation due to high frequency
rotation.

E.1 Artificial damping

In order to show hypothesized damping mechanism, the stone block wall shown in Figure E.1 is
considered. According to the stone block properties, Eq. (4.23) predicts that spin frequency of the
blocks is about 12600 rad/s. Physically, this high frequency vibrations should rapidly decay due
to interface friction, non-linear properties of mortar, etc. However, due to the coupling between
translation and rotation, some energy is transfer from translational modes to generate rotational
waves. As a result, the energy of system should continuously loose as the effect of damping, due
to the high frequency rotations . Note that there could be other mechanisms that cause damping;
e.g. nonlinear effects due to spins, translation induced damping, etc.

E.1.1 Numerical simulation for the rotational damping

To support the claim of the hypothesis explained above, a RBSM model of stone brick wall is
constructed following the experiments reported by Elmenshawi et al.[30] as shown in Figure E.1.
Stiffness & and h are set to be 2.03x10'N/m? and 4.69x 103N /m?, respectively. The block
density is assumed to be 2650kg/m?. For the initial condition, The model is subjected by 9 kN
horizontal distributed static force over the top edge (see Figure E.1) induced initial deformation.
Then, the distributed static force was suddenly released, and the dynamic response of the wall, at
the point A, is recorded.

81
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270 m

g

Figure E.1: Brick wall model.

In this simulation, an artificial damping term —C-0" is added in to discrete equation of rota-
tion, Eq. 4.6, to produce rapid decay of high speed spins. In this 2D in-plane problem, in-plane
component the damping coefficient, C's3=2( I33wspin, is applied where ( is the rotational damping
ratio, wspin 18 the rotational frequency from Eq. 4.23 in chapter 4. [33 is the mass moment of the
inertia of a brick. The discrete equation of motion with the artificial damping is

mhut = Z {K‘”- (W —2uf+u’")
Y

_KM. (97+_9v—) }
10" = —C- 9u+2{(KW> u7+—u7)

~K"-(07"+20"+67")

+?m.(9v+_29u+97—)} (E.1)

E.1.2 Contributions to kinetic energy

In this section, comparison of the kinetic energy from translational and rotational modes of un-
damped system is represented. Figure E.2 represents the kinetic energy of the undamped free
vibrating brick wall, where E.2(a) and (b) show the energy due to translation (7, Z Lmar-ar)
and rotation (1=}, ;0“ I-6m).

According to Figure E.2, T} is several orders smaller than 7;,. This dramatically difference in
several orders raises the doubt whether the hypothesized high frequency damping mechanism have
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any significance to cause damping. However, the next section will show that the high frequency

rotations can cause significant damping.

25

N

T, (N-m)
5

- !

0.5

0.4 0.6
Time (s)

()

0 0.2

0.8

0.003

0.0025 |
~ 0002 |
g
Z. 0.0015
= 0.001

0.0005

0 ) . . .
0 0.2 0.4 0.6 0.8 1
Time (s)

Figure E.2: Kinetic energy of the undamped free vibration brick wall, (a) translation term, (b)

rotation term.

E.1.3 Energy dissipation due to high frequency vibrations

This section express the effect of the artificial damping term, —C-0", on the dissipation of energy.
Figure E.3 shows time history of the total energy of the artificially damped system (i.e. with
—C-0" term) with different damping ratios. For unhampered system, (=0, the near perfect energy
conservation is shown which is prove to be indirect evidence of the accuracy of the simulations.
Further, the higher the rate of decay of high speed spin due to higher ( indicate the faster the loss of
energy of the system. The continuous loss of energy is due to the coupling between the rotational

. T N\T
and translational modes, K*7-(6""—67") and (K’”) (u*—u"") in Eq. 4.6 (or g:V6 and

q*:VuinEq. 4.19)

)
th

Total energy (N-m)
—_ : (]

©
wn

S

<
[=]

0.4

0.6
Time (s)

Figure E.3: Time history of total energy with different (.
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E.1.4 The decay of the acceleration amplitude

For further investigation of the damping mechanisms, Figure E.4 shows the time history of the
horizontal acceleration of the brick at the point A in Figure E.1, for (=0.05. As the time history
of accelerations is nearly closed to the observations by Elmenshawi et al.[30], it is clearly shown
that decaying of the acceleration amplitude is due to damping effect. The high frequency vibration
at the beginning is caused by the instantaneous release of the external distributed force in the
numerical model. However, high frequency is not observed in the observations by Elmenshawi
et al.[30]. This is probably because the external load is not release instantaneously in the real
experiment. Also, sampling rate of accelerometers have limited. However, after 0.5s, the frequency
and the amplitude of the wave profile of the numerical results are comparable to observations by
Elmenshawi et al.[30].

Acceleration #i/g
(=]

0 0.2 0.4 0.6 0.8 1
Time (s)

Figure E.4: Horizontal acceleration at point A with (=0.05.



Appendix F

Equations of motion of damped block
spring system

Spring constants
normal: k
tangential: h | v+  gv+

TIRTS
rvt

A
20, ut gn z;bjyr |LEV+
TETSET /
u’-

or- /

2aq

(a) (b)
Figure F.1: (a): Idealized block-spring model, (b): Contact area..

urt or+
g l Damping constants
u normal:d
u o+ tangential: d

Figure F.2: damping on the contact area.

This appendix express the formulation of continuumnization of block spring while mortar is
the source of damping. In additional to the idealized block spring systems in chapter Figure F.1,
the damping is add in each contact area as well as springs assuming that the damping forces are
proportional to the velocity as d and d denote normal and tangential damping constants, respec-
tively.

Like the relative motion, L*™, the relative Velocity,i}“7+, at point P (x;,z4) on the interface
of block x4 and its v+ is
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Bt = (@t —a) = (674467) xr7t 4 (671 -0 ) x (at  ans™) . (BD

Then, the damping force per unit area at the interface of block p and its v+ neighbor can be
expressed as

ot — _d(Ler.anr)nwr_d(Lwr_Sv+)sv+_J(L'w+.tv+)tv+

As the damping force is obtained above, the virture work due to the nonconervative can be ex-
pressed as,

by by
SWHIt = //F’”*-(SL’”*dxtde

—bs—by

where § L*7* is the variation of relative motion in chapter 4 as
5[/;-F =— (0Uj €000y T +€juw00y (Tity+TsSy)) - (F.2)

For the sake of simplicity, superscripts 4 and 7y are omitted in the following formulation of §WW/*#7+.
Then,

bs bt
SWHt = - / / (d(L+-n+)n++J(L+-s+)s++J(L+-t+)t+>-5L+dxtda;s

_bs _bt
bs bt

= (dnfni+dstst+die?) / / LFSLt duyda,

—bs—by
bs b
1

= _4beng+ / / Li6L} dwyda, (F.3)

—bs —b¢

where

DI =4b]0 (dn] " n) " +ds] 5] 4-dt] "))

7

Using Eq. F1andE2, [ _b; i _bzt Ljél}jdxtda:s term can be expressed as.
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/bs /b LroLtdede, = — /b 7 (=) ~€ing (80, ) 1 iy (65 0, ) (wet +a57))

“be—by “be—by
(5uj+€jvw50 T +€j0w00, (xtt 448 ))dxtdxs

= — / / ((uf—m)—@pq (9;"‘%) 7’;“‘61'17(1 (9;_ép> (xtt;—l—xssg))

—bs —b¢

<5uj—|—ejvw50 r )dxtdxs

// ezpq 9++9 ) ;_+€ipq (9;—9p> (xttq++xss§)>

by —by
(eﬂ,wéﬁ (xtt++xs ))diBthZS

= —4p bt(( ul) €ipg (6 +6 )7’*) ou,
_4bsbt{(( — ;) —€ipq (6’ +0 ) ) (€0wryh)

1 .
+5 (@m (0;—9p) ejw) (Bstst 4027 ts) }fwv (F.4)

Substitute the above expression into Eq. F.3, the variation of the work done by damping force
is

IWTt = DV( —1;) O
—Abby (d (0] €ipqry ) nf +d (sf €ipgry) sT+d (8 eipgry ) ;) (05 46,) du;
+4b.b, (dn (n €jowTy )+ds (s €jowT )+dt( e]vwri))(ui —uz)é&u
—4bsby{d (n/ ezpqur) (n*eﬂ,wr )+d (sf ezpqur) (s;rejvwrzﬁ)
+d (tF eipgry) (1 €jourah) } (0 +6,) 60,

—|—§bsbt (dn;rn*—l—ds;“s*—l—dt*t» )eipqejw (bi S, j;—i—btzt;t;) (9;—91)) 00,

= D":(ut—u)®iu— D (9++9)®5u+<D7+) (ut—u)®00
~D"*: (07 +0)260+D"*: (0+—0) 200

where
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D't = 4bb] (dn T onT+d (7 Tes T+ T etT))

Dt = Ab7bY (d’nﬂ*@ (r'” Xn’7+) +ds"t® (,,,wr % s“’*) +dt e (,,n+ th))

D't = 46263 {d (,r”/-i— ><n7+) ® (,,n-&- ><n7+) _H{(,,n-i— % S”H—) ® (,,n-&- % Sv-&-)

= (xR (T ) )
_ 4 _
D = §b;’b;’ (d (bR +b7 87 @87 ) +d (b *+b]%) n' T @n T
Symmetrically, D"*=—D"~, D"+ =D~ and D" =D"". Further, due to the homogeneous

assumption of the idealized system, these four tensors above are independent of position, for

example independent of p. Therefore, one can express the total virtual work done by the non-
conservative damping forces as

W= DN (SWHT W)
m

SWH = SWHT LW
- D (u7+—2u“+u7’)®5u“—ﬁ7+: (0'"”—0'7*) Rout

+ (f)”*)t: (@ =47 ) 260" —DF <97++29“+0'7‘> 266"

+D <év+—2é“+97—> ®66"

F.1 Equation of motion

According to the Hamilton’s principal, among the admissible motions the actual motion is such
that

to to
/5(T—V)dt+/ SWdt = 0

t1 t1

Substituting the above expression and fttf d(T—V')dt obtained form chapter 4 to the above equa-
tion, we can obtain
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t1 t1

to to to
/ 0(T—V)dt+ / oWwdt = Y / (6T—Z§VW+Z§W‘”>
p v v
t2 ..
0= -% / (miit-dul + 80 1,;60%) dt
p vt

to .
—l—ZZ/t [sz(uj—Quj—Fu;)éui—K;} (05 —0,) ou;
oy UM

+K;i (u;—u;) 59#&1 (UZ—U;) 0;
— K] (05+20,+07) 60,4+ K7, (05 20,46, ) 56;] dt

S [ (93 i)y (55 ) )
poy Uh

D}, (uh —u; ) 860, D}, (8 +20,+6 ) 00

+D}; (6 ~20,+0, ) o6, at (F.5)

As the variation above should be O for arbitrary du! and 06, which are admissible variations
of u!' and 0!, the following should hold

=

mill = Z (K;} (uj—Quj—l—uj_)—f(% (0 =0, )+D7; (i —20+u; ) —ZA?ZP (9;—«9;))

Lo = > (K; (uyf —u, ) =K} (0 +20,+6, )+ K7 (07 —260,+06,)
Y
Dy, (if iy ) =D}, (65 +26,+6, ) +-D3," (6 26,46, ) ) (F6)

F.2 Continuumnization for damped system

As the discrete equations of motion is obtained in the previous sections, tn this section, these
equations are continuumnized based on the Homogenization by differential expansions, as
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82ul<m) v+, v+

uf —2uitu; = 4WTJ 7
u;r—u; ~~ al(;éj) ]v+
s = %WW (E7)
O 120,407 ~ 4644 gii’ é(mzwrz+
A
0 —0; =~ &ij) ;

Substituting the discrete variables given in Eq. F.7 to Eq. F.6, one can obtain the corresponding
continuum forms. First, the equations of translations is continuumized as

0%u; (06, L., 0% [ 00
mi; Z (K <48xk8xl rET7) K3, (48 km) +D; (48xk3xl TR — v\ 450, Tk

>
0 Ou, o (. Ou, 00, . 00,
= W oy Ckilja_xl +— O Ckll]a —Qikp . —~(ikp .

Similarly, the continuum form of the equations of rotation is obtained as

O, 820, () 0%0,(x)
"o _ Y 7+ Y v+ v+ Y y+, 0+
I;0) = Z(szl o .y (49 4 ﬁxlr )+K ( (%ckaxlr r

o

auz 926, (x) 9%0,(x)
E : DY, 1Dy 5% | 4 DY P\T) v+ v+
( 4 (46 ! drdx; Tk ) <4 01,0z e T

" ou ou 0 ov o (. 00
ol = Vb{qﬁ’“a—xﬁ%'ﬂla it (gt )+ () |-

Thus the damped continuumnized equation of motions can be expressed as

%u = V-(e:Vu)+V-(é:Vi)—q:VO—g:Ve

b

1 . .. .

I = qT:Vu+ch:Vu—d-é)—d-9+V~(v:V0)+V-(f):VO), (E.8)
b

where
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>

S

16b; b3 + + T+ 7+ oV 7+
> o (drtenierTten Hdr et ar ot
b

+Jr7+®37+®r7+®37+)

216‘19/19 {dn @r*@(r xn?)+dt T @r T @ (rF xt7)
b

o

_HZS“/-F ®,,n+® (,,n-i— % 874—) }

16, b7 + + T (o 47+ + o+
ZT{CZ(M xn”)@(r“’ ><n7)—l—d('r7 xt7 )(}K)(r7 xt7 )

o

+Cj(,,w+ xs”"")@ (,r”/-i— XS’H—) }

b7b73 b73b7
Sy { ( )

3 3
1676

v {dr*e(rxn?)@r’ e (r" xn?)
b

+Jr7+® (,r.’Y+ ><t7+) ®’r7+® (,,nf+ % t7+) +J’r7+® (,,.7+ % S'y+) ®r7+® (1”+ % 57+) } '
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Imaginary part of Fourier transform

Let F(f(t))=F(w), where F() denotes Fourier Transform (FT) of function f(¢). Let’s write the
real and imaginary parts of FT as F(w) and F;(w). Then

FUFaw)) = 5F (F)+F ()

]

= 2 (W-F(-)

= _ZfO(t)

Here, f.(t) and f,(¢) stands for even and odd parts of f(¢). In short, Fr(w) corresponds to f.,

while F7(w) corresponsds f,(t)
So,

F Y (Frw)—1Fr(w)) = £ —£f£F)
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Appendix H

Verification of second derivative based on
PDS-FEM

Let f(z,y)=2%y* be the analytical function field in 2d domain shown in Figure H.1 where the
origin of the (x,y) coordinate is on the centroid of the brick at the bottom left corner. The following
expression are the 2nd derivative of the f(z,y)

f,xx = 2y2
fay = 4dxy
foy = 22
[ [ [ [
| | | | I
[ [ [ oA
[ [ [ [ |
[ [ [ [
[ [ [ [ [
[ [ [ [
[ [ [ [ I
[ [ [ [
[ [ R [
I | [ [
[ [ I [ [
[ oC] [ [
[ [ I [ [
| [ | [
[ | | [ |
J ] | | [
[ : [ : I | [ I [
H—X] l [ |

Figure H.1: 2d domain for the verification of second derivative based on PDS-FEM

Table H.1 shows the verification of the 2nd derivative based on PDS-FEM with the analytical
expression above.
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APPENDIX H. VERIFICATION OF SECOND DERIVATIVE BASED ON PDS-FEM

LTI Lo 080 | 89CC 89C°C 000 000 6L'1 6L'1 | (S¥6'0°9°'0)VO
8LC 88°C 96'C 879 879 000 000 §9'¢ S9¢ | (serTnvd
v0'C 6t 001 | S87I S8CI 00°0 00°0 Seol Se01 | (S6TTY DV
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