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Chapter 1 
 

1. Introduction and Literature Review 
 

 

This chapter narrates the research story and the need and importance of the research topic 

before delving into specific technicalities at later chapters. It is intended to shed light on the research 

problem within the most relevant up-to-date knowledge areas. This chapter is divided into two main 

sections. The first section is the broad introduction to the research; whereas each chapter will have 

its introduction as well. The second section is concerned with the literature review that was used to 

build the research questions and arguments. The literature review (relevant work) is used to 

identifying the research field and scope of interests, hence It is introduced in a wider perspective 

rather than reviewing detailed procedures, as these are elaborated among their specific chapters.  
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1.1 Introduction 

In the beginning, the research is introduced by elaborating the research title keywords, 

whereas each of theses keywords is addressed individually in a dedicated subsection. That is, the reach 

title has four keywords which are; Framework, Better Specification, Envelope and Cooling. For a better 

understanding and better arguments coherence, the subsections are structured in a reversed order; 

i.e. the first subsection is concerned with the cooling and the increasing need for cooling. The second 

is to acknowledge the importance of the building’s envelope from within the energy efficient and 

passive designs point of view. The third subsection embraces the phrase “toward better specification”. 

Here, the key research problem; which is, how the envelope is being specified in the building’s energy 

oriented codes (standards, and legislations) is tackled with quoting some known examples. The last 

part shows that this thesis research is aimed at providing a  “framework” to solve the introduced 

problem.  

Figure 1-1. is used to visualise the structure mentioned above. However, the introduction 

section encompasses the framework in the subsections 3 and 4 . in this venue, It is thought that it is 

equally important for the reader to understand the interrelation between the different chapters and 

components and how to allocate these components within the wider research scope. Showing the 

thesis structure is meant to avoid redundancy and repetition, and to keep the text at a reasonable 

size.  

 

1.1.1 The increasing need for cooling  

It can be seen that the research is solely oriented towards tackling the cooling demands in 

buildings. The reason behind this started by a personal observation and discussion with concerned 

scholars and practitioners. It was noticed that the cooling needs are subsided, and energy savings 

during summer is not having enough research when compared to the winter heating needs. Attention 

to heating seemed to be a global trend. To support this argument, an interesting view was found, that 

might justify why the cooling demands are somehow aside when compared to the global attention in 

resolving the heating needs. (Masoso & Grobler 2008) has advocated that the adverse effects of the 

insulation “anti-insulation” is not having fair attention because most of the research/ers are based on 

North America and Europe where the winter heating needs is the major concern and is overshadowing 

 
Figure 1-1. The Title keywords are elaborated in individual sections. These what compose the main parts of 
the introduction section. 
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the need for cooling. The need for cooling can further dimish when a tradeoff between the cooling 

and heating needs arises. Such motives and attention to local needs are well understood, however, it 

is to understand that, even in the very cold climates,  the summer cooling should have a better 

consideration in the near future,  due to the following five facts that are forwarded by the same 

researchers early mentioned, in addition  to other reports and researchers;  

i. The first issue that contributes to rising the cooling demands is the global warming caused by the 

climate change. Throughout the last century, it is observed that the land temperature is rising by 

0.2°C per decade (Contribution of Working Groups I & IPCC 2014). Figure 1-2 shows some of the 

observations during this period as reported by the Intergovernmental Panel for Climate Change. 

Although such increase might not sound critical for many people. However, many researchers 

have been concerned with the cumulative and diverse risks that affect the ecological system, and 

many other where have also carried systematic analysis to predict such changes on the energy 

consumption penalties. For example, the simulations carried by (Jentsch et al. 2008) and (McLeod 

et al. 2013) have reported potential overheating risks inside buildings mainly because of the 

climate change. On the other hand, the need for heating is predicted to decrees based on detailed 

observations over 22 Chinese cities (Zhang et al. 2006). The climate change is also producing 

extreme and adverse climatic conditions that will contribute to increasing the peak loads. When 

the peak load increases, larger HAVC equipment capacities will be required, and in turn, the HVAC 

systems will have less COP (Coefficient of Performance) as well. Let alone, that the occurrence of 

simultaneous peak load will affect the electricity grid stability in addition to other negative 

implications. 

 

 
Figure 1-2. Some climate change observations provided by the Synthesis Report. Contribution of Working 
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC 
(Contribution of Working Groups I & IPCC 2014) 
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ii. The second issue that will increase the need for cooling goes back to the fact the most people are 

now living cities, whereas the cities themselves have hotter microclimates compared to their 

surrounding suburbs. This increment in the cities temperature profile is known as the Urban Heat 

Island (UHI) effect. The interaction between both factors, i.e., People are migrating to cities, and 

the more people the city hosts, the hotter it become, and the more cooling energy will be 

consumed per capita. Such risks have driven many researchers to investigate the potential 

passive cooling techniques that can be applied a city scale. However, what it is to quote here is 

the very high-temperature increases due to these two factors. Figure 1-3 shows the current 

population on 2016 who living in the six contents, and the projected number at 2030. From this 

figure and as what have been reported by (United Nations, Department of Economic and Social 

Affairs 2016) that people are residing in cities will increase on account of the rural areas in all the 

world regions. On the other hand, and taking  Singapore as an example, and as can be seen in 

Figure 1-4, the city CBD temperature is higher than the surrounding suburbs almost by 3°K. 

Moreover, this zone of the city have shown to stay at high temperatures i.e. 28°C even at midnight 

hours. Such increment will simply reflect on the Cooling Degree Days and subsequently on the 

cooling requirements. Some other extreme examples were also found in Indian cities as the heat 

island intensity has recorded a 10°C difference from the surrounding areas (Wong et al. 2011).  

 

 

 
Figure 1-3  Population distribution by size class of settlement and region, 2016 and 2030 (United 
Nations, Department of Economic and Social Affairs 2016) 
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iii. The third factor that entails higher cooling loads is found at the dwellings level this time. It is a 

by-product of having a very well sealed, airtight and very insulative buildings. Also, the use of the 

advance fenestrations that minimises the thermal bridges and reduce the heat transmission 

through them are all woking towards keeping the internally generated heat inside the buildings. 

Such practices are driven by governmental bodies and some well known energy-saving 

institutions. A good example that has been quoted earlier is the study of (McLeod et al. 2013) 

that have reported and overheating risks in UK dwellings when applying the German passive 

house defensive strategies that are based on highly sealed and controlled envelope.  

iv. By the same token, the fourth factor that increases the need for cooling returns to the modern 

lifestyle that is based on using more equipment, especially in the office buildings. In such 

buildings, the cooling equipment is found to operate even in the very cold climates (Masoso & 

Grobler 2008). Particlallury if such offices have deep zones that are far from the cold façade. In 

general, it can be said that in most of the commercial buildings, especially the crowded ones, like 

schools, markets, and so on,  the need for cooling is mostly required. In such cases, the internal 

heat generation by the building occupants has a big contribution to the internal heat sources. 

Most designers might underestimate the magnitude of the human heat generation. However, it 

is to remind that a single male adult may generate 130W while setting and go up to 295W at light 

machine factory works (ASHRAE HOF 2013). It can be argued the effect of the internal heat 

generated by people be coupled with the fact that most of the people are moving to cities where 

the land prices are much higher. Hence the properties size allocated for a given activity is a bit 

confined. Therefore, gathering more people in smaller areas inflates the effect of the need for 

cooling is such dense modern spaces.  

 
Figure 1-4.  Sketch of urban heat island profile in Singapore. (Priyadarsini et al. 2008) 
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1.1.2 The role of the building envelope in reducing cooling loads 

Having shown that cooling demand is growing, it is to elaborate that this growth is translated 

into significant amounts of energy being consumed for that mission i.e. cooling the buildings. The 

energy saving issues are a global concern and are one of this century critical issues. The international 

conventions in maintaining rational level of the energy consumptions are one way to reflect the 

importance of the energy saving topics. One known example in this regard is the Kyoto accord 1997 

that is aimed at reducing energy consumptions and their correlated greenhouse gas emissions (e.g. 

carbon dioxide). One way for nations to meet such goals is through reducing the energy consumption 

in buildings. Figure 1-5 gives a good insight to the residential buildings share - let alone other building 

types- in the total energy consumption for many developing and developed countries. It can be seen 

that energy used in residential buildings is about 31% of the world’s total energy consumption 

whereas it may reach 50% as in the case of Suadi Arabia.  

 

 
 

Figure 1-5. Worldwide 
residential energy 
consumption.  

Collected and generated 
by (Saidur et al. 2007).  
(Data Sources: Meyers et 
al., 2003; Morelli, 2001; 
Boardman, 2004; Ueno 
et al., 2006; Almeida et 
al., 2001; Kamal, 1997, 
Lenzena et al., 2006). 

 

Taken Saudi Arabia as an extreme example, more details about the energy consumption in 

buildings were provided by (Ministry of Industry and Electricity 2002). It was reported that two-thirds 

of the electricity is consumed in buildings whereas two-thirds of this amount is being consumed by air 

conditioners. Considering that Saudi Arabia has an extremely Hot and Dry Climate (International Code 

Council 2015), Alsanea shows that heat transmission through the building envelope contributes to a 

major portion of this AC loads. (Al-Sanea 2012) Breakdown the 30% AC load and presented that 

another two-thirds of the AC load are due the heat transmission through the building outer walls. 

Therefore, in this example, it can be calculated that 20% of the electric energy in Saudi Arabia is 

directly influenced and can be manipulated through the building envelope components.  
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Similar results have also been reported for the United States, where a recent report by (US 

Department of Energy 2014b) showed that the space cooling and heating in buildings contributes to 

about 15% of the primary energy end usages. Figure 1-6 gives more detailed records about the 

breakdown of the current status, and, similar to KSA, the energy that is being consumed in buildings 

is more than 40% of the primary energy consumption. This percentage is almost shared between the 

commercial and residential buildings, with a higher weight to the latter. However, it is to notice that 

in both building types, the cooling load is almost 15% for each. Therofre, in order reducing these 

demands (Al-Sanea & Zedan 2011) emphasize the role of the building envelope in cutting such huge 

amount of AC energy, as they stated the following “Because building envelope is one of the most 

important design variables for effective energy conservation, building components (especially walls 

and roofs) must be designed to operate as passive systems over the lifetime of the building.”  

 

 

 
Figure 1-6.  U.S. primary energy consumption (quads) 

Source: Energy Information Agency 2013d; Office of Energy Efficiency and Renewable Energy 2011b; Office 
of Energy Efficiency and Renewable Energy 2011e 

 

In order utilising the building to save energy, it is seen that the envelope needs to act in a 

passive way, meaning that, it should work in a way to aid the AC systems when the are shutoff as well 

as during their operation. To provide a better explanation to the above definition, the passive cooling 

methods strategies, as borrowed from  (N. B. Geetha 2012) are presented inFigure 1-7. From this 

figure, it can be seen that there are three levels to achieve a passive cooling means for energy efficient 

buildings. Moreover, It can also be seen, that the building envelope have a profound involvement in 

each of these levels. i.e. in the level of protecting from the ambient environment, which can be 
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conceived as reducing the transmission loads. Followed by regulating the heat that has penetrated to 

the inside. Moreover, finally to exhaust the internal heat back again to the potential heat sinks.  

 

 

Figure 1-7 Classification of Passive cooling approaches in the energy-efficient building by (N. B. Geetha 2012). 
The shaded parts are highlighting the passive approaches that the envelope can interplay with. 

In continuation to the previous points, i.e. the envelope contribution to the passive cooling 

means, It is important to emphasise that the envelope properties are directly linked and are 

representing the transmission loads through its various components, especially the roof and walls. 

Hence, for the Solar and heat protection, the envelope surface properties as well as the internal core 

construction are responsible for governing the amount of heat that is being received at the envelope 

external surface, in addition to controlling the amount that is being transferred to the internal 

surfaces. Moving forward, it is equally important to stress that the heat modulation can, in fact, only 
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be met through appropriate envelope design and having an adequate amount of heat storage 

mediums within the envelope. For example, the incorporation of thermal mass and Phase Change 

Materials (PCM) have shown remarkable results in regulating the internal temperature i.e. shifting the 

heat wave and damping its peaks as shown by many studies, summarised in the work of (Samuel et al. 

2013). The heat modulation (regulation) issues are explained in detail in later sections.Moreover, 

lastly, the building envelope properties can also be utilised in a way to dissipate the heat. This is mainly 

met by either storing the heat within the envelope when there is no potential heat sinks i.e. at summer 

noon, and then dissipating the heat either by night ventilation or by radiation to the night sky using 

radiative cooling. The combination of both strategies, i.e. thermal mass combined with the radiative 

systems has been reported to have profound cooling effects (Etzion & Erell 1991). 

all things considered, it is found that the building’s envelope determines, to a large extent, 

the cooling energy consumptions profiles, and this effect inflates at extreme climates. In another point 

of view, and despite that solar paints application is fairly cheap, it is to illustrate that investments and 

initial costs in the building envelope are huge and the payback periods for well-designed envelopes is 

quite long, as can be seen from Figure 1-8. However, it is also to notice that the energy savings out of 

the envelope materials are significant as well.  

 

For this reason, many recent studies, as summarised by (Stevanović 2013) are concerned with 

the optimisation process of the passive solar design in general, where a big portion of this goes to 

optimise the opaque components of the building envelope. The other two major concerns are not so 

far from this topic, as the author has classified the reviewed particular strategies articles into three 

 

 
Figure 1-8.  Staged maximum adoption potential and staged payback in 2030 for priority windows and 
building envelope technologies in the residential (R) and commercial (C) building sectors. Provided by (US 
Department of Energy 2014b). 



25 
 

categories; the building form, the opaque components of the envelope and the transparent part of 

the envelope (Glazing) and their shading elements optimisation. In the same optimzation manner, 

(Attia et al. 2013) have interviewd 28 experts in the field of the Zero Energy Buildings (ZEB) and 

building performance optimization (BPO) tools together with many recent article. At the end, it was 

founded that the Building envelope optimzation is the third most optimized design variables where 

50% of the interviewd experts are concerned with it. The ranking order of the particiapts interest is 

seen in Figure 1-9. 

 

Figure 1-9  Participants’ (ZEB 
Optimization experts) choices 
of optimization objective 
functions. Source: (Attia et al. 
2013). 

 

 

1.1.3 The problem statement.  

Despite the decisive importance of the building envelope characteristics on the passive design 

and its related energy saving issues, it is noticed that the building envelope prescription is lacking some 

crucial points, especially when it comes to the characteristics that are related to its performance under 

summer/ cooling based conditions. In this subsection, the aim is to highlight the key points that are 

thought important and require better attention by both, scientists and practitioners, and legislation 

bodies/institutes. These lacking points are introduced with providing some supporting examples that 

show that building envelope prescription needs to be an update to comply with the increasing needs 

for cooling showed earlier.  

To start with, an important and very recent document provided by the U.S. Department of 

Energy (US Department of Energy 2014b), is solely concerned with the envelope issues. The document 

is titled “Windows and Building Envelope Research and Development; Roadmap for Emerging 

Technologies”. From this title, it can deduce that what is inside this documents is what the US 

government is targeting shortly about the envelope and windows matters. Under the section of 

“Barriers for Next-Generation Building Envelope Technologies - Residential Building Envelope P. 40” 

the first point stated that there is a lack of clear and holistic guidelines about the envelope 

specification. It was also stated that the way the building envelope materials are tested and evaluated 
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is not established. Moreover, it was emphasised that the commercial building envelope requires more 

building design and diagnostics tools. 

However, In the same document i.e. (US Department of Energy 2014b), although it has raised 

many important topics regarding the building envelope, it is noticed that it carries the same message 

to the building stakeholders; that a proper building envelope only equals a better (usually means 

higher) insulated envelope. This message is clearly reflected by showing that the first topic that has 

the highest priority for Research and Development (R&D) in the building envelope is the envelope 

insulation materials. However, this thesis primary aim is to advocate that such envelope perceptions 

is inaccurate and would lead to significant energy losses if not corrected soon and incorporate 

concepts like the risks of anti-insulation, for example.  

In fact, it seems that it is a common perception, which if a designer wants to achieve the 

maximum energy saving out of the building envelope, then one of the guaranteed ways is to invest as 

much as possible on insulation. This image is further enhanced when a designer refers to any green 

building (energy-saving) standard, guideline, code, or regulation, where the envelope is referenced by 

the minimal resistance value (R-value) or its equivalent weighted-area averaged U-value. The 

recommended high R-value is usually met by increasing the insulation material, and this is the reason 

behind overlooking the thermal mass materials in the building codes. Among much other 

consideration, it is to highlight that main motive behind such limited understandings can be fairly 

ascribed to the fact that most of these codes and standards are paying less attention to the cooling 

demands.  

 

 
Figure 1-10 The Thesis framework outlines, and the envelope specification issues to address and advance 

 

To cap it all, and clearly, state the initial points that this thesis is aiming to address and improve 

via providing a framework of advancements are summarised in Figure 1-10 above and listed in the 

following bullet points; 
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 The first issue that all the codes are not remarking is the risk of anti-insulation and 

overheating. The anti-insulation concept has firstly introduced by (Masoso & Grobler 2008), 

and since that time, even the researchers that cited that innovative article did not give any 

tangible advances to the topic and the issue was not reflected or hinted at any building code 

or regulation. However, some research like the one -  introduced earlier in many times of its 

importance– by (McLeod et al. 2013) that showed the possible overheating penalties when 

incorporating the German Passive House standards in a UK dwellings. 

 The second issue that is considered to be unrealistic in the available codes is that the 

recommended R-value is a nominal value and based on static behaviour. In such static 

conditions, the performance of a 1 cm insulation of a polystyrene slab equals te performance 

of 4 cm dense concrete slab, whereas both has a U-value of 2.17 W/m²K (Roaf et al. 2007). 

However, on the other hand, these two slabs have entirely different dynamic behaviours as 

can be seen in Figure 1-11; where the concrete slab yielded less internal heat fluctuations and 

also delayed the peak heat wave arrival time. Scholars agree that better analogy to the real 

behaviour of the envelope components is by evaluating the structure in a dynamic manner 

(Bojić & Loveday 1997).  

 Moreover, still, with the dynamic behaviour, it is important to understand that when the 

envelope is undergoing a dynamic behaviour it needs to be evaluated using other distinct 

criteria. The Decrement Factor and the Time Lag are the two well known and established 

measures for this evaluation and are explained in detail in section 1.2.2. However, in general, 

the Decrement Factor describes the heat flux range arrived at the internal surface of the 

envelope as a ratio of the external heat wave fluctuation range. On the other hand, The Time 

Lag is a measure of the heatwave delay represented by a time value, and in essence, it 

indicates how long does the external change need to inflate the internal conditions, both 

principles are illustrated in Figure 1-11.  

 The static perception about the envelope explains why the codes do not pay attention to the 

thermal mass materials which have profound effects on the dynamic thermal behaviour and 

less on the static calculations. Notwithstanding that comprising the thermal mass material is 

very common in traditional and vernacular architecture, and over the years, the heavily mass 

walls have provided a comfortable indoor temperature at many climates, e.g. the Desert 

Climates, Hot Arid Climates and on the Mediterranean Climates as well (Stazi et al. 2015). 

Hence, it is expected, at least in these climates, and it is logical that local building codes should 

advocate the use of this creditworthy passive strategy. 

 To say nothing about that the Time lag is mainly met by providing adequate thermal capacity, 

which in turn is primarily enhanced via incorporating thermal mass materials. The time lag is 

not only necessary for cooling considerations but also for controlling the heating demands.  

(Al-Sanea & Zedan 2011) List the benefits when increasing the Time lag hours in three key 

points. Firstly, by shifting the peak load from its usual time, the grid stability will be improved 

because the load is going to be evened throughout the day. Secondly, by the shifting the peak 

demand from the peak (most severe) hours will increase the COP of the AC systems because 

they will operate in less severe conditions. Lastly, by reducing the peak loads, a smaller HAVC 
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equipment capacities will then be required. Hence, fewer ducts and installations are sizing. 

Moreover, by reducing, the equipment capacities,  less capital and maintenance costs will be 

needed. 

 

 In this regards, it is equally important to highlight the integration of the thermal mass into the 

building envelope should be coupled with the understanding that insulation layers are also 

crucial parts of the envelope. Moreover, they are mostly required to cut the transmission loads 

through the envelope. Subsequently, the envelope arrangement i.e. the layer configurations 

needs to be also taken into account when ascribing the envelope structure. As well be seen in 

detail in section 1.2.2. The envelope layer configurations have a direct effect on the dynamic 

thermal behaviours, and understanding this point is imperative if a standard wants to provide 

a practical envelope guidance to its audiences. Given these points, It is important to consider 

the dynamic thermal performance when designing the building envelope, and not only 

providing the nominal (static) R-value in the building codes.  

 Another critical point in the standards is that they provide a minimum (lowest) R-value but do 

not provide any upper thresholds for that. Most probably, the green building legislations is 

leaving the upper insulation limits open as to be ceased by the installation costs. That is, the 

insulation (R-value) is provided and conceived as the minimum threshold, after that, the 

designer is to go through an optimisation process, where the cost of the insulation is weighted 

against the energy savings profits when comprising that insulation. Figure 1-12 is a typical 

illustration for the insulation point optimisation against the cost factors that introduced by 

many researchers e.g. (Kaynakli 2012) (Samuel et al. 2013) and (Ozel 2012). 

 

 
Figure 1-11  The periodic heat flow through a light and heavy wall of the same U-value. Produced by (Roaf et 
al. 2007) and referenced to (Szokolay 2007). 
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 Moreover, also from this graph, it can be foreseen that when the insulation costs drops for 

any reason, i.e. governmental subsidies, industrial revolutions, and so on, the optimisation 

process will only result in heavily insulated envelopes. The same result of thick insulation can 

be obtained when the energy cost increases. Where both issues are happening, i.e. the 

insulation material costs are decreasing while the energy costs are increasing everywhere. In 

fact, the governments e.g. US are driving the industry to provide a double insulation resistance 

i.e. form (R-6) to (R-12) with only half price in the next decade, as shown in Figure 1-13 and as 

conveyed by (US Department of Energy 2014b). Moreover, US government encourages 

revolutionary insulation materials to pervade. For example, the DOE is encouraging the 

manufacturers to work on the drawbacks of the very powerful Vacuum Insulated Panels (VIP). 

Such systems have shown extraordinary resistive abilities, as only a 0.5cm of this panel have 

a conductivity of only 0.004 W/mK (Schiavoni et al. 2016). Therefore, under those 

circumstances, it is expected that the world will accommodate heavily insulated buildings that 

are projected to incur Anti-insulation and overheating problems. 

 

 

Figure 1-13  Envelope insulation 
material cost and performance 
targets (US Department of Energy 
2014b). 

 

 

Figure 1-12 The optimum insulation 
thickness have no upper limits and can 
be increased once the insulation cost is 
decreased or when the energy cost 
increases (Kaynakli 2012) 
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 Therefore, it should be emphasised that the unseen Anti-insulation phenomenon needs to be 

understood and involved in the optimisation process to set the maximum threshold of the 

optimisation process. The anti-insulation issue is introduced to the literature and has been 

accredited as an actual behaviour, but scholars are still grappling about its existence. For this 

reason, and since anti-insulation is noted to be controversial, the thesis chapter that tackles 

this issue and proposes a mitigation technique for it has been compiled into a single article 

and submitted to the Energy and Buildings Journal, and at this moment (October 2017) it is 

under the second and final review. The article is titled “Anti-insulation Mitigation by Altering 

the Envelope Layers’ Configuration”. 

After all, the examples of the upper provided practices are countless. Some of them are 

selected and briefly introduced to support the arguments and show the current trends in prescribing 

the envelope are dealing with an envelope with the same limited perspective,  even at very developed 

and scientifically advanced countries, e.g., Japan, Germany nad the United States.  

In Japan, Figure 1-14 is a sample of on a climate-based recommended envelope properties 

found on the 16th page of the document translated into “energy conservation standards of housing” 

provided by (Japan Sustainable Building Consortium 2011). It is understood that the only measure to 

prescribe the building envelope is the (R-Value) with details about this value for the different envelope 

components i.e. (roof, walls, floors) and this value is varying based on the insulation material type and 

the allocated region of interests. In Germany, the very well known passive house standards are one of 

the most rigorous standards that consider having a fully insulated building is the sole way to reach the 

passive house energy saving targets. The standard is based on five principles that can be found at 

(Passive House 2016) whereas all of these principles are aiming to have a fully sealed envelope. To 

give an idea of the Passive House concept, it is to quote the following sentence from the same resource 

above: “The most important principle for energy efficient construction is a continuous insulating 

envelope all around the building”.The last example is globally inspiring standard, i.e. the ASHRAE  

(American Society of Heating, Refrigerating, and Air-Conditioning Engineers ) standards, namely the 

ASHRAE 90.1 that is concerned with Energy Standard for Buildings Except Low-Rise Residential 

Buildings. The way this specification introduces the envelope is not falling away from the previous 

examples. Moreover, it echoes the same voice of encouraging the designers to come as much as 

possible of the insulation layers and proving minimum R-values that vary according to the climate 

zones were the building hall be erected. This can be seen in the envelope section (№ 5) and more 

specifically in section (5.5 Prescriptive Building Envelope Option) Tables 5.5-1 through 5.5-8 in the 

document (ASHRAE 2013). In the end, it is to state that such standards are rapidly pervading around 

the world, and they are all hinting to stakeholders that better envelope only equals higher insulation. 

Moreover, this is what is the research is aiming to amend and improve.  
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Figure 1-14  the envelope is only described by the type and thickness of the heat insulating material. Reference 
(Japan Sustainable Building Consortium 2011)  

 

1.1.4 The thesis structure 

Having identified the key points that require attention in current building standards and 

codes; which need further improvements (as listed in Figure 1-10), this part is to clarify how these 

issues are approached across the thesis body text. In general, each of the advocated points 

(issues/concepts) is tackled in one or two chapters. However, it is to state that these points have gone 

to a last refinement and have been assembled into three key points and questions, which are; 

1- The first concern is about the anti-insulation beahviour; and to which extent it can be 

mitigated by the hypothised technique of altering the layer configurations, and what is the 

correlation between the anti-insulation and the number of the layers’ segments. 

2- How far the number of the layers’ influence on the dynamic thermal behaviour of the 

envelope and how the big number of layers be assempled in real wall (practicality).  

3- The role of using solar paint in reducing the solar heat gain.  

The compilation of the various concepts inot these three issues was actually made after the 

literature review where the relevant works in improving the building standards have been considered 

as will be seen in next section. In the light of this notion, it is to give an idea of how these refined three 

issues concerens are handled and how they are correlated structured across the thesis, as can be 

generally obsereved inFigure 1-15 , and as per the following agenda. 

The thesis is structured to avoid repetition, and follow a logical sequence in the investigation 

process.  Therefore, all the literature review that perform the base of this field of study, together with 
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the key researchers is compiled in section 0 of this chapter. Subsequently. The main chapter, which 

contains the bulk work i.e. Chapter3, is immediately introduced after the literature reiview.. This 

chapter is under final revision, and therefore, it is used as the base for the subsequent investigations. 

Being a full article, it contained a fair amount of literature review, and thus, the literature arguments 

about the anti-insulation is not elaborated in section 0.  

Therfore, Chapter 2 is fully allocated to deal with the first issue, that is, how to mitigate the 

anti-insulation by reconfiguring the envelope layers’ order. The next chapter i.e. Chapter 4  Is also 

tackling the anti-insulation issue, but this time, the number of layers’, instead of their order, is the 

subject of the investigation. Again, similar to the accredited simulation methodology and the findings 

being submitted for pair review in Chapter 2, Chapter 3 reused the simulation models to investigate 

the influence of the layers’ number on anti-insulation. 

Moving forward, to better understand the role of the number of layers’ segment on the 

dynamic thermal behaviour, and to provide practical solutions for the multi layering technicalities, 

especailly if a construcion is to comprise more than three layers,  Chapter 5 is formlized to study this 

issue by conducting an experiment. it used an experimental method not only to explore different 

research techniques, but also to demonstrate that same findings can be achieved by different means. 

On other aspect, the next chapter, Chapter 6 also uses an experimental investigation, but this time, 

the investigated issue is moved from the building envelope core to the building external skin, where 

the impact of the different solar paints is studied. Lastly, Chapter 07, the conclusion chapter contains 

the summary of all the key findings, put them as framework guidelines, and discuss the whole research 

limitations, and what can be done in the future research.   

 
Figure 1-15 The key issue that are addressed by this research.   
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1.2 Literature review 

The lIterature review is not allocated at a separate chapter because the aim of this survey is 

meant to give a broader outline about the envelope research, where further details are found in the 

relevant sections and among the text whenever arguments need literature support.  In general. This 

section is subdivided into four subsections and furtherly into small topics (headings) as to keep the 

literature reviews sorted and tracible.  

1.2.1 The scope of the literature survey 

This introductory part is introduced to give an insight bout the literature fields that is being 

surveyed herewith. Since the framework of this research is based on a three issues,  shown earlier in 

Figure 1-15, it was important to identify which sort of literature articles that tangent these three 

topics. Starting from this objective, the first literature surveys showed that the envelope is being 

typified into some thought of bundles. That is, in literature, it was found that envelope is categorised 

into basic three bundles. One is the envelope components boundary conditions, i.e. roof wall and 

floors, where the floors, for example, are not exposed to solar radiation while the roof has the big 

portion of it. The second typology is the layer exposures within this component and can be sorted as 

the construction core, and surface (skin). Lastly, the components are also sorted based on their (solar 

admittance) optical properties as either they are considered opaque or transparent/translucent. 

From within these categories, the thesis has paid attention and focused on some of these 

typologies, as based on the research objectives. Figure 1-16 shows the scope of the study, and by turn, 

it demonstrates the literature field of survey. For instance, only the opaque parts are studied, as the 

transparent have to deal with other factors related to the glass, and accompany the studies about the 

da light and solar gains which have another set of factors that is out of the objectives of this reach. 

Moreover, it is to highlight this research is not concerned with Issues and studies are concerned with 

the geometries setups. e.g. the studies that are concerned with the volume to the area ratios and its 

impact on the various energy saving/loss measures, and so forth for all the other optimisation studies 

that comprise the spatial dimensions, and proportions. 

 
Figure 1-16  Envelope component's Typologies as being studied in the literature. The highlighted parts are 

within study scope. 
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 Lastly, it is to state that the literature being surveyed herewith are not including the 

methodology issues, i.e. the simulation software, the selected model's setup and so on. These are 

reviewed at relevant parts of the thesis. For example, the simulation algorithms identification and 

selecting the weather files are all introduced in later sections.  

1.2.2 Research on the envelope core  

Research concerned with the construction core are seemed to be interested in evaluating the 

various layer configurations and arrangements. Many types of research were dedicated to 

understanding and examine the various configurations performance under several operational 

conditions. The research about the envelope core is noticed to focus on the various permutation of 

the thermal mass and insulation materials, i.e. the ratio and the position of each on the structural 

composition (Ozel 2014),(Bojic et al. 2001) and (Al-Regib & M.Zubair 1995). In essence, the 

incorporation of these two materials is intended to increase the envelope resistance and to increase 

the heat capacity various components as well. In turn, such dynamic behaviour enhancements are met 

by using the insulation and thermal mass materials due to their resistive and capacitive 

thermophysical properties, respectively (Asan & Sancaktar 1998). 

For the Thermal mass and insulation materials, altering the location and the share of one 

material will influence the other’s performance, as well as the overall envelope dynamic performance, 

since they are strongly interrelated. (Al-Sanea & Zedan 2011) stated that: “Thermal characteristics 

under dynamic conditions are affected by relative locations (Distribution) of thermal mass and 

insulation layers. Accordingly, it is important to study effects of thermal mass and insulation separately 

as well as interactively (as a complete system) where either material influences effects of the other.” 

For this reason, there is a huge number of research that have been carried out to canvas the -almost 

endless- permutation possibilities when composing the wall out of these two materials.  

Here, it is equally important to report that the findings among the different studies were 

sometimes contradicting, and recommendations are somehow conflicting. Many authors have also 

reported such complications. For example (Bond et al. 2013) have highlighted that there are no clear 

guidelines for the way the walls are being assembled as the evaluation criteria are ambiguous and 

might disagree even within the same research. By the same token, (Stazi et al. 2015), have reviewed 

many articles concerned with the dynamic performance of the various wall arrangement where he 

noticed that these studies do not have multidisciplinary evaluation criteria that cover all the energy 

saving aspects. For example, the studies being concerned with the insulation and mass optimisation 

and focus on cooling does not usually consider the heating aspects, and so forth. However, the 

scholars have ascribed such mismatch between the literature findings to the variations in the 

operational factors. The operational factors, and in general, are governed by the AC operation 

conditions, and to the cyclic patterns of the external conditions (Al-Sanea & Zedan 2011) and (Stazi et 

al. 2015). Based on these issues, the literature review about the core is being sectioned into five 

headings to explain such key operational concepts, as in the following.  
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a) Dynamic and steady-state conditions. 

At the very fist beginning, it was shown that the principal problem with the current standards, 

is their narrow perception of the envelope properties as being considered and dealt with in a steady-

state perspective. Moreover, on the steady-state conditions, the heat flow calculation based on the 

nominal conductivity of the material, where the other properties like the specific heat and the density 

are not considered. On the other hand, the dynamic behaviour does incorporate such properties. 

Furthermore, the dynamic behaviour can be sorted into tow categories (Corrado & Paduos 2016); 

either a dynamic thermal characterization under the steady-periodic condition or a dynamic thermal 

characterization under sinusoidal conditions. The former is studied by (Kontoleon & Bikas 2007), 

(Kontoleon & Eumorfopoulou 2008)(Al-Sanea & Zedan 2001) where the boundary conditions can be 

periodic but not necessary sinusoidal (Corrado & Paduos 2016). However, the sinusoidal cyclic 

conditions are better resembling the natural heat fluctuation as driven by the external temperature 

fluctuation over the day, which is an ordinary product if the sun travels across the Skydome, and it is 

commonly used by researchers (Ozel 2014). The external temperature in such cases usually 

incorporates the solar radiation effect in addition to the air temperature. Thus it is very common using 

the Sol-air temperature for such purposes. The sol-air equation can be found elsewhere in (Kuin et al. 

1998). 

b) AC operations patterns (intial transient and continious). 

Having specified the external conditions, this part is concerned with the internal conditions. 

The AC operational pattern is coupled with the energy that the equipment consumes,  on its capacity, 

and on its COP as well. In principle, the AC can operation can be perceived in two ways; either initial 

transient or continuous operation. For the purpose of differentiating between the two operations, it 

is to consider two issues; the first is the AC working and shutoff period, and the second is the length 

of the normal thermostat pauses. (Al-Sanea et al. 2012) Distinguish the initial transient condition by 

its intermittent AC operation, and it arises when the equipment is shut off for extended periods of 

time. On another hand, the steady periodic condition is distinguished by its smooth operation as when 

the weather dominates the operation schedule, and the AC is operated for a prolonged time without 

major interruption of the short thermostat pauses. Eventually, as per the same authors above, it was 

reported that the best-performing layer configurations are subjected to the AC  operation – together 

with the external environmental conditions. 

However, it can be seen that there is no clear operation period (length) after which the initial 

transient is considered to switch into a continuous operation and vice-versa. This grey area between 

the two operations is still untackled and needs further systematic research. In fact, the 

misunderstanding between the two operations led to erroneous judgments as will be seen in the next 

points; when introducing the research that specifically looked at the AC operation under the initial 

transient equipment operation. 
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c) Dynamic thermal performance evaluation. (Time Lag & Decrement Factor). 

In order evaluating the dynamic thermal behaviour of the constructions, the scholars have 

developed many evaluation criteria. The founded evaluation criteria are the Decrement Factor, the 

Time Lag, the damping effect, The Standard Deviation, and the basic total energy consumption and 

peak loads. However, throughout the literature, almost all the researches have considered the Time 

Lag and Decrement Factors as a base evaluation measure. The reliance on these tow factors can be 

ascribed to the fact that the decrement factor and the time lag does not change and are fixed values 

for any given wall composition made of specific materials. Therefore, they can be considered as a 

fingerprint for that specific composition i.e. if construction has decrement factor of 0.5 this means it 

will always be 0.5 regardless of the external environment (Threlkeld 1970) and (Burns et al. 1991).  

Figure 1-17 is to depict this general concept of both measures as provided and defined by 

(Asan 2006). As in this figure, the Time Lag [ϕ] is defined as the “the time it takes for the heat wave to 

propagate from the outer surface to the inner surface“ whereas the decrement factor [ƒ]  is “the 

decreasing ratio of its amplitude during this propagation”. Furtherly the author has also provided 

equations for both factors as; as for the decrement factor, it will equal. Besides, the Time lag equations 

are shown below, and it depends on the variation between the external and internal temperatures – 

accounting for the delay hours if exceeded 24hr.  

 
 

 
Figure 1-17 The schematic representation of time lag ϕ and decrement factor ƒ. Whereas tTo

max and tTe
max (h) 

represent the time in hours when inside and outside surface temperatures are at their maximums, 
respectively.(Asan 2006). 
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Based on these definitions, the various studies targeted reducing the Decrement Factor and 

increasing the Time Lag of the developed configurations. As by reducing the Decrement Factor, the 

internal temperature would be more stable, hence, the AC operation will become more steady. Also, 

by reducing the Decrement Factor, the peak load (maximum amplitude) will be dampened as well. 

Thus, the equipment size will be reduced and will require less maintenance and ducting costs.On the 

other hand, the Time Lag is sought to be increased, as by increasing the time lag many benefits can be 

obtained, as listed earlier in section 1.1.3 earlier.  

However, in reality, it can be argued that increasing the Time Lag might not always be 

favoured. Moreover, it is also to emphasise that there is a grey area, especially when thinking about 

Time Lags that exceed the 12 hours and moves toward 24 hours, where it can be questioned if the 

heat flux peak will arrive at the same time of the day. Despite that the wall provided a 24hrs delayed. 

Such questions lead to another complicated question that can be simplified in the following example. 

Assuming two walls with same decrement factor, but have a different time lag. Moreover, if the Time 

Lag of configuration A is only 5 hours, and for B  is 10 hours, apparently B will be judged to be way 

better than A. However since the peak load at A will arrive at 5 pm (assuming that ambient peak is at 

12 pm). For B the peak will arrive internal space at 10 pm. In this perspective, if we assumed that 

occupancy (and AC equipment) starts around 10 pm (typical bedroom), this means, that configuration 

B, will contribute to higher initial transient load as when compared to wall an (in which) the heat wave 

flux may have started descending already. Proving this example, and coupling it with the remained 

gray that keeps the goal of increasing time lag infinite, it may explain why when it comes to tradeoff 

between the Decrement Factor and the Time Lag, the researchers give priority to reducing the 

Decrement Factor, as can be hinted from (Bond et al. 2013). 

To better understand how the various construction materials contribute to reducing the 

Decrement Factor and increase the Time Lag, and how these building materials practically meet this, 

It is to borrow the interesting investigation results carried by  (Asan & Sancaktar 1998). The influence 

of the thermophysical properties of the Time Lag and the decrement factor have been investigated. 

Whereas the Heat Capacity values (kJ/Km2) are obtained by multiplying the Density (kg/m3) by the 

Specific Heat (J/kgK) of material while account for the material thickness (m) as well. Figure 1-18 shows 

the general findings of that research. Moreover, in conclusion, it is shown that to have a good thermal 

capacity, the construction material need to have a high specific heat, high density and low conductivity 

at the same time. Therefore, the Time Lag can only be increased by considering all these 

thermophysical properties, as can be seen in Figure 1-18-a. On the other hand, the less decrement 

factor can be achieved by only reducing the thermal conductivity without the need for increasing the 

heat capacity characteristic of the wall, which can be clearly seen in Figure 1-18-b. This physical 

attitude of materials can be a reasonable justification to recognise why the building envelope is being 

conceived as to be solely insulative; i.e. because Time Lag effect is not being considered important, 

and decrement factor can be achieved by just adding more insulation. 
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Figure 1-18  Combined effects of Heat Capacity p (kJ/Km2) and Thermal Conductivity k (W/mK) on;    

[a] Time Lag  [b] Decrement Factor 

 

 

d) Performcne of configurations under various conditons. 

The majority of literature concerned with the opaque building envelope enhancements have 

covered the issue of the layers configuration by one mean or another. However, as stated before, 

most of these researches come up with adverse conclusions and contradicting recommendations. 

Moreover, this part is intended to bring some of the adverse recommendations examples. However, 

also in this part, the literature have been sorted into two groups based on the AC operational 

conditions. i.e. the first paragraph goes through the fundamental research (as per cross refreshing in 

the subject area) that deals with the continuous AC operations. While the last paragraph -of this point- 

is covering the research that investigated the layer configurations performance under the initial 

transient conditions. Moreover, as being concerned with cooling, the review focuses on the cooling 

issues with preference to the studies carried out in hot climates.  

Under the continuous operations, (Seth et al. 1981) compared the performance of two 

constructions that have the fixed amounts of thermal mass and insulation, while incorporating air 

cavity layers in between. The study was carried for Kuwait climate under hot summer days. The 

comparison showed that the configuration [IACAI]1 yielded the best load levelling (decrement factor) 

as when compared to the counterpart configuration [CAIAC]. In another study by (Kossecka & Kosny 

                                                           
 

1 IACAI = insulation/air/concrete/air/insulation slab.  
In general, the naming code in this thesis starts from the outermost layer wheras [i] refres to insaultion layer 
and [M] refres to a Thermal Mass layer. E.g. the configuration [MI] means that the Thermal Mass is located at 
the external surface of the envelope. 
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2002), similar arrangements were investigated under a continuously used residential building. The 

results were obtained from six US climates. However, the findings did agree with previous research of 

(Seth et al. 1981), as the configurations that have an insulation materials at its both external and 

internal faces was recommended, i.e. [IMI] have shown to yield the best thermal performance (the 

best temperature dampen), when compared to the [MIM] configuration.  

By the same token, (Sodha et al. 1981) have studied the optimum air gap and insulation 

position within an air-conditioned single room in Delhi. The optimisation derived at by having the least 

concrete at the external layer i.e. [IM] the best load levelling could be obtained (decrement factor). 

Conversely, the different recommendation was concluded by (Bojic et al. 2001), whereas the authors 

have conducted a whole building simulation for residential flats in HongKong. Moreover, for the 

cooling purposes, they found that the highest decrease in the cooling demands can be attained by 

placing the insulation layers at the internal parts of the construction slabs i.e.[MI].  

The same contradiction between findings was found under the initial transient AC operations 

too. For example,  based on the study of (Bojić & Loveday 1997), the recommended arrangements for 

the intermittent cooling load operations can be ranked in the following order, starting from best, (i.e. 

lowest energy consumption) [IM] then [MIM] then [IMI] then [MI]. On the other hand, (Al-Sanea & 

ZEDAN 2001) results and recommendation for Riyadh scalding climate, showed that best-performing 

configurations would be ordered as [MI] then [IM]. However, in the end, it seemed like the latter 

researchers have tangent the reasoning behind these contradicting findings. As they have highlighted, 

that further studies are needed to examine the effects of the various AC starting times. 

e) Attempts to incorporate the Thermal mass and account for dynamic behaviours. 

Through the recent studies, it was found that some attempts have been carried out to account 

for the thermal mass, and the dynamic behaviour in general when specifying the envelope properties. 

Although these works are fully incorporated in current codes/compliance code, they seemed 

comprehensive and covered many of the inaugural issues that have been highlighted in Figure 1-10. 

After finding these researchers, the thesis objectives was then compiled and oriented to investigate 

the three key issues shown in Figure 1-15. In this part, these significant advancements in the 

specification of the building envelope are briefly overviewed as following.  

The first and the major development belongs to the International Organization for 

Standardization, namely the document EN ISO 13786 titled “Thermal performance of building 

components-Dynamic thermal characteristics - Calculation methods”  (UNI EN ISO 13786 2007). 

However, the paper is still limited to the sinusoidal boundary conditions, where it is based on 

evaluating the periodic thermal transmittance and the time delay (shift) to specify the dynamic 

performance of the building components. In the introduction, the document defined another two key 

concepts regarding the sinusoidal conditions. Firstly, it defines the Thermal admittance as ratio 

between the heat now rate to the temperature variations at the same boundary side. Secondly, it 

introduces the Thermal dynamic transfer; which is concerned with the ratio between the same 

quantifying measures (i.e. temperature or heat flux) of one side of the envelope over the same 
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measure on the other side. However, This standard seemed to draw the attention of other concerned 

researchers, and it is undergoing further extensions (Mazzeo et al. 2015).  

Starting from the same Standard i.e. ISO 13786, and with reviewing additional resources, 

(Corrado & Paduos 2016) have developed a new scheme that accounts of the thermal inertia (Time 

Lag) and bears the dynamic thermal conditions instead of the old envelope parameters. The proposed 

approach have been developed using dynamic simulations whereas the realistic applications as well 

as the various contextual setups of the buildings e.g. the walls orientation and surfaces optical 

properties have all been incorporated. In the end, the simplified approach “new equivalent thermal 

parameter” was validated against the results of dynamic simulation models. Similar to the objectives 

of this thesis, the developed parameter, was targeting the enhancement of the technical standards 

and building indices.  

While developing that new parameter (Corrado & Paduos 2016) have come across some 

recent innovative concepts that was carried by (Al-Sanea et al. 2012) i.e. ‘‘thermal mass energy-savings 

potential’’, ‘‘dynamic thermal resistance”  and ‘‘critical thermal-mass thickness’’ concepts. The 

following concept involves estimating the minimum amount of mass that a wall configuration may 

require in ordered obtaining a predetermined energy saving rates. Another important note to 

highlight, is that the critical thickness have been studied under and insulated envelope, where the 

location of the insulation have also been considered i.e. internal and external insulations, where the 

latter, i.e. [IM] yielded better results. Moreover, it is to note that the thickness of the thermal mass 

did not affect the energy saving rates in the summer, rather, increasing the mass amount have shown 

to have a profound effect on the cooling and heating loads occurred in the mild season. However, as 

expected, increasing the thermal mass have always reduced the peak load, reduced decrement factor, 

and delayed the heat transmission arriving at the inner envelope faces. 

 

 
Figure 1-19  ORNL Thermal Mass Calculator - Dynamic Benefits of the Massive Systems (DBMS). 

Resource: (ORNL ((Oak Ridge National Laboratory)) n.d.) 
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On the same regards, the (ORNL ((Oak Ridge National Laboratory)) n.d.) had an early interest, 

that goes back to 1995, in encouraging the use of thermal mass materials either concrete or masonry 

instead of wooden frame homes. In a comparison of both structural systems and assuming that same 

that both have the same Steady-sate R-value, they have shown that 5% to 20% of the total building 

energy can be saved in the US homes when using the thermal mass instead.  Moreover, based on early 

research, the laboratory have a developed a handy calculation tool that can provide the Dynamic 

Benefits of the Massive Systems (DBMS). The DBMS calculator interface is shown in figure xx, where 

the DBMS concept is an expression of the dynamic resistance (representing the real envelope 

performance under the dynamic conditions) divided by the nominal R-value (which based on the static 

conditions and provided by standards) of the same wall.  

All things considered, the above-reviewed concepts seems interesting and fall within the close 

scope of the thesis research. Therefore, the thesis has well-thought-out that development and have 

been oriented to cover the tangent issues that have been introduced at the beginning of this section. 

Moreover, by the end of this section, the teaming issues are that the thesis aiming to cover have been 

reformed as to be;  

1- Anti-insulation mitigation via the layer configuration reordering and by the number of the 

layers.  

2- The practical application of incorporating the thermal mass in multi-layered walls.   

3- The investigation of the solar protection paints effects on the overall envelope thermal 

performance.  

1.2.3 Research on the envelope external skin 

In this part of the thesis, the use of cool roof, protection paints, spectrally selective coatings, 

and similar other techniques, are covered in this section, which is limited to the optical properties of 

the external surfaces of the building envelope. In literature, the utilisation of Solar paints for cooling 

purposes is found to have broad applications. The applications range from the military uses to deceive 

the radars by changing the infrared frequencies (Sathish Kumar et al. 2016), and the use of the metal 

flakes paints applications in the automobiles to keep them comfortable. Moreover, the utilisation of 

these facial strategies extends to the application at the urban scale to mitigate the Urban Heat Island 

(UHI) effects by using at pavements (Akbari & Matthews 2012)(Synnefa et al. 2006)(Rosenfeld et al. 

1995) and ending up with typical solar collector applications. Also, one of the known applications is 

the use of the low-emissivity layers wither in the opaque or transparent parts of the building to lessen 

the heat loss (exchange) via longwave (thermal) radiation. However, up to recent years, the effects 

magnitude of the low-e layers when applied the opaque envelope components on the building 

thermal performance is reported to be limited (Jelle et al. 2015).  

These facial systems are also known as selective solar parts, where (Wijewardane & Goswami 

2012) defined them as the paint that has high emittance at a certain frequency or within a particular 

frequency range. That is, for any opaque material the incident radiation equals the absorbed plus the 

reflected radiation, and according to Kirchhoff’s law, the absorptivity (α) equals the emissivity (ε) at a 
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given frequency range. However, for different frequencies these values might not be equal. As the 

Solar absorptivity (short wave) of a material (α solar)may either be (greater, equal, less) than what it 

emits at the long wave frequencies, known as at earth temperatures emissivity (ε temp). The wavelength 

of both spectral ranges is shown in Figure 1-20. Therefore, based on this phenomenon, the spectral 

selectivity for energy efficient paint can be used for both purposes i.e. cooling and heating. As for the 

cooling (heat dissipation), the solar paints have an emissivity value(ε temp)  that is greater than solar 

absorptivity value (α solar). 

 

 

Figure 1-20 Comparison 
of solar and earth 
radiations wavelengths 

╔Source: (Ritter 2012) 

 

 

Therefore the basic principle behind both usages (either for cooling or heating) relies on the 

optical properties of the paint (or surface). As per (Dias et al. 2014)most of the paints show very high 

emissivity values, for example, conventional exterior paints have emissivity values around 0.90. 

However, the same article has demonstrated that there are two ways where cool paints may 

contribute to control the heat load of a building;  

1- BY reflecting the incident solar radiation and, which can be thought of as (mitigation). 

2- By radiating the heat absorbed by emitting infrared (IR) radiation (can be considered as a 

heat dissipation strategy).  

As for the first controlling measure (mitigation), authors have explained that it is possible to reflect a 

big portion of the solar heat without changing the surface colours. That is by manipulating the surface 

(paint) properties on the Near InfraRed band (NIR). Figure 1-21 shows that the NIR accounts for almost 

52% of the solar spectrum. Therefore, most of the reflective paints are effective in this range and have 

very low Solar absorptance in the range of 700 to 2500nm (Haavi et al. 2012). In similar research (Smith 

et al. 2003) have demonstrated that such techniques can be used together with coloured paints, and 

is confined to using white colours as most people might think. 
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Figure 1-21  Solar energy distribution. Source: (Haavi et al. 2012) 

 

On the other hand, the radiative paints (cooling by dissipation) works on the earth 

temperature heat wave bands, typically > 3000 nm (Meinel & Meinel 1976) and most of these paints 

are aiming to emit the radiation to the sky in the range of (8-13 µm) which is known as the atmospheric 

window (Catalanotti et al. 1975). The spectral window is where the atmosphere content of water 

vapour, Co2 and ozone can allow for the long wave radiation to pass to the cold sky in the outer space. 

Figure 1-22 plots this atmospheric window together with the typical spectral range of the black body 

(earth temperature), and other spectral ranges.  In this aspect, and in ordered to emit the heat to the 

outer space, it is to remind that any object that contains heat (above absolute zero > -273 K emits 

some radiation. The radiation amount is therefore increased by the increasing of the body 

temperature. The relation between the body temperature and the amount of the radiated heat is 

governed by the Stefan-Boltzmann Law provided in equation blow, whereas (E) is the radiation power, 

(ε) is the surface emissivity, (σ) is the Stefan–Boltzmann constant (5.67 Exp−8) [W/m2 K4] and (T) is 

the surface temperature in Kelvin Degrees [°K] (Albatici & Tonelli 2010); 

𝐸 = ε 𝜎𝑇4                                                                      Eq. 2 

However, the net gain/loss is determined by balancing the outgoing and the incoming 

amounts of heat. Therefore, although building materials, emit more heat during the day (hotter during 

the day), they also receive a greater amount of heat from the sun. Hence, the net heat balance ends 

up with heating the surfaces. Some innovative systems could achieve extraordinary results and could 

have a net cooling effect even during the day. The photonic radiative cooler developed by (Raman et 

al. 2014) was able to cool during the day due to the very high emissivity on the atmospheric window 

while having almost no emissivity (absorptivity ) at the solar band. Figure 1-23 shows the behaviour 

of the novel photonic radiative cooler from the ultraviolet to the mid-infrared range. 
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Figure 1-22 Spectra for (a) blackbody exitance at four temperatures, (b) extra-terrestrial solar irradiance, (c) 
typical Absorptance across the atmospheric envelope, (d) relative sensitivity of the human eye and relative 
photon efficiency of photosynthesis in green plants. Source: (Granqvist 1981). 

 

 
Figure 1-23  Emissivity/absorptivity of the photonic radiative cooler from the ultraviolet to the mid-infrared.  

[a] Measured emissivity/absorptivity over optical and near- infrared wavelengths. 

[b] Measured emissivity/absorptivity over mid-infrared wavelengths. 
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In contrast to such complex radiative systems, the conventional solar paint consists of four 

key components. The first is called the Pigment, whereas define it as a “tiny insoluble particles included 

into the paint mainly to contribute colour by absorption and reflection of light”(Gunde et al. 2003). The 

second component is the Resin or the binder, and from its name, it can be hinted that it is the paint’s 

film forming agent, that is either dissolved or dispersed in the solvent (Bullett & Prosser 1983).  In 

turn, the Solvent is the major part of the dispersion chemical (Orel et al. 1990). The last paint 

component is the additives that are supplementary for enhancing the dispersion and the application 

properties of the paint i.e. the floating and the flooding (Orel et al. 1990). Figure 1-24 depicts this 

component and give an idea of how the paint is applied and its thickness is reduced after the solvent 

evaporates.  

 

 
Figure 1-24 Generalised compositions of pigmented liquid coatings and manner of film formation. Source 
(H. E. Ashton 1966):  

 

Based on this composition, the solvent-based paints are sorted into two types: 

1- Thickness Sensitive Spectrally Selective (TSSS) 

2- Thickness Insensitive Spectrally Selective (TISS) 

Moreover, for the first category, The TSSS paint forms the upper layer, and it should be as thin 

as (~ 1-2 µm) so it can be seen by the lower layer that is made of the infrared reflective metal surface 

(Wijewardane & Goswami 2012) (Orel et al. 1990). On the other hand, the TISS type does not have 

stratification since the pigment itself have an adequate emissivity at the  IR band, while metal flakes 

of aluminium and bronze play the role of the reflective base layer(Wijewardane & Goswami 2012) 

(Orel et al. 1990). Figure 1-25 is prepared to illustrate the structure of both paint types as per the 

description provided by the above references.  

Still, with the cooling oriented paints, it is important to state that for such systems that focus 

on the cooling load reduction either by increasing the emissivity or reducing the solar absorptivity 

would likely entail a heating penalties during the winter season. Therefore, the climates that have a 

reasonable amount of the heating demands needs to carry out a sensitivity analysis for such 
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drawbacks. For example, a climate based study made by (Synnefa et al. 2007) compares the cooling 

saving against the heating increase in different climates when the roof solar reflectance is increased 

to 0.65 instead of 0.2. Moreover, for the simulations flat roof house, it can be seen in Figure 1-26 that 

 some climates like Tokyo and Newyork, the increase in the heating needs almost abolished 

the benefits of the reduction in the cooling loads., besides, the heating needs in Mexico City have 

overwhelmed the cooling benefits.  However, some scholars like (Akbari & Levinson 2008) are 

advocating that “The winter heating energy penalty is usually smaller than the summer cooling energy 

savings because in winter the sun is low, the days are short, the skies are often cloudy, and heating 

occurs mainly in early morning and early evening”. Mreover, as has been demonstrated by (Ozel 2012), 

that even in a relatively cold climate of Elazıg- Turkey, the influence of the solar absorptivity of the 

external face has little influence on the heating transmission loads at different insulation thicknesses 

as can be seen in Figure 1-27-a. Conversely, decreasing the solar absorptivity have a significant effect 

on the cooling transmission loads, especially at lower insulation thickness as seen in Figure 1-27-b. 

 
Figure 1-25 Types of spectrally selective paints. 
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Figure 1-26  Climate effect on cooling and heating load changes when altering roof solar reflectance from 
0.2 to 0.65. (Synnefa et al. 2007) 

 

 

 
Figure 1-27 Variation of yearly cooling and heating transmission loads versus insulation thickness with 
respect to solar absorptivity varying from 0 to 1. (Ozel 2012). 

 

All things provided, it is to declare that the aim of incorporating the spectral selective systems 

in this study has been directed as to protect the underneath core in the first place, then to cool it 

down as a second priority.  The goal is set in this direction as to provide adequate protection to the 
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insulation materials if the envelope optimisation arrives at having outer layers of insulation. In their 

study, (Berdahl & Bretz 1997) have argued that the exterior skin should maintain the quality of the 

internal insulation at higher levels, and to protect the internal air contained within the insulation 

materials from rising to higher levels. This issue is of particular importance because of the contained 

air forms part of the insulation internal convective resistance, and if the air gets hot, it will degrade 

the insulation overall resistance (Griggs & Shipp 1988). Furthermore, due to such increase in the 

internal core layers temperature, especially the insulation layers, (Levinson et al. 1996) have 

supported the previous arguments and found that the insulation resistivity can be reduced by 10% to 

20% during the summer when the roof temperature gets way higher the room temperature. Therefore 

when the envelope components are susceptible to such high temperatures, it is more practical to 

direct the aims to limit this heating rather than thinking about cooling it (Muselli 2010). 

Lastly, it is quite important to review some of the scientific works that have coupled the 

external skin performance with the internal core dynamic performance. Moreover, it is to emphasise 

that such studies are very useful in understanding the holistic image. Since it was noticed that, due to 

the complexity,  most of the research are either dealing with the outer skin or the inner envelope, but 

very few have looked at both properties as one system where each component affects the other. A 

good example of these research is the interesting work provided by (Etzion & Erell 1991), where the 

authors have explored the role of the thermal mass location on the cooling power of a radiative 

cooling system. In the results, it appeared that when the radiative system is coupled (attached) to the 

thermal Mass, the net and the effectiveness of the radiative cooling had much higher values that 

reached 35%  when compared to the detached configurations. Also, the coupled configuration had 

the lowest average internal temperature. However, this did not deny the fact that coupling (directly 

attaching) the radiator to the mass have produced the greatest temperature standard deviation 

(fluctuation range, Decrement Factor). 

By the same token, early studies have been concerned with evaluating the optical properties 

together with the envelopes dynamic thermal performance characteristics. For example, the Influence 

of the solar absorptivity on the Time Lag and Decrement Factor over the various insulation thicknesses 

was studied by (Ozel 2012). The findings of this research are borrowed and demonstrated in Figure 

1-28,  where it can be seen that solar absorptivity have a little effect on the Time Lag (Figure 1-28-a), 

and have no effects on the decrement factor (Figure 1-28-b).  Moreover, the same study has 

demonstrated that the Solar absorptivity values have signifcant implications for the yearly 

transmission loads, and hence, on the energy savings, but these effects are not influencing the 

optimum insulation thickness and payback period. Therefore, It can be concluded that the study of 

the external skin properties can be isolated from the insulation optimisation process in the proposed 

framework.  
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Figure 1-28 Variation of yearly averaged Time Lag and Decrement Factor versus insulation thickness with 
respect to solar absorptivity varying from 0 to 1.(Ozel 2012). 

 

Conversely, the investigation of (Kontoleon & Bikas 2007) has derived at very different 

conclusions. The authors have also looked at the influence of the solar absorption ratio on Time Lag, 

Decrement Factor and temperature differences between the surfaces of a southern wall in a 

Mediterranean region when the coatings are applied at both (internal and external) surfaces. 

Moreover, the study have used six wall configurations in the investigated model wich are [IM], [MI], 

[MIM], [IMI], [IMIM] , and [MIMI]. The investigation argued that the maximum Time Lag can be 

greatly affected by the solar absorptivity across all the wall configurations, as has been provided in 

Figure 1-29. For the Decrement Factor, although the study emphasised that the solar absorptivity have 

a considerable effect on the temperature amplitudes (Decrement Factor), but the figures, however, 

does not tell that. As by referring to figure 7 in that study, the decrement factor only decreases by 

0.002 for any given construction configuration. Rather, from that figure, it can be seen that the wall 

configuration has the greatest effect on the temperature fluctuation on the internal surfaces. 

Moreover, when comparing the Time Lag results of both studies i.e. (Ozel 2012) and (Kontoleon & 

Bikas 2007), it can be seen that the Time Lag results are quite similar, as the gap between the solar 

absorptivity (α solar) of 1.0 and 0.0 is almost one hour in both studies. Despite that wall thickness in the 

latter study was 26cm while in the the former study it was limited to 10cm. Not to forget, that both 

studies have agreed that the optimum Solar absorptivity that yields the longest Time Lag is 0.2.  
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Figure 1-29 Time lag (ϕmax) VS. Solar absorptivity (α solar) for the wall formations with insulation as (a) one 
layer and (b) two layers.(Kontoleon & Bikas 2007) 

 

The influence of the solar activity on the time lag can be attributed to the gap between the 

peak Sol-air temperature time, and the peak external ambient temperature time, as the former’s peak 

usually takes place at noon i.e. 12:00, while the maximum ambient temperature is a little bit delayed 

to afternoon periods. The peaks gaps between these two temperatures have also been reported in 

the result’s discussion by (Kontoleon & Eumorfopoulou 2008).Therefore, when the solar absorptivity 

is low, this means that the wall is less affected by Sol-air temperature, hence, the wall’s external 

surface is mainly governed by the ambient temperature. Moreover, because that peak ambient 

temperature occurs at afternoon, then the walls with less solar absorptivity of, i.e., 0.2 shows the 

maximum time lag. In Figure 1-30, although it might be hardly observed, it can be seen that the Sol-

air temperature peak for the surface with no solar absorptance seems to shift to the afternoon slightly. 

On the opposite, it can be anticipated and seen in the same figure that for surfaces with high solar 

absorptivity values, the surface peak temperature become more dependent on the Sol-air 

temperature, resulting in this nominal reduction in Time Lag. 

 

Figure 1-30  Values of sol-air 
temperature over time with 
respect to Solar Absorbtivity 
values. (Kontoleon & Bikas 2007). 
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On the study by (Kontoleon & Eumorfopoulou 2008), the single and the combined 

contributions of the wall orientation and surface solar absorptivity on manipulating the Time Lag and 

Decrement Factor was investigated in the Greek region summer climate conditions. This time, 

changing the wall orientation have produced an interesting results, where the Time Lag and 

Decrement Factor performance profiles have changed as a function of changing the Solar absorptivity 

from 0.0 to 0.1. As can be seen from the results of a three wall orientations presented in Figure 1-31, 

it is to point out that Northern Wall has shown the opposite effects on Time Lag and Decrement factors 

results when the Solar Absorptivity is increased, and it is entirely different from the South and East 

oriented walls. This differentiation may return to the fact that the northern wall is not influenced by 

the direct solar radiation, meanwhile, increasing the solar absorptivity will enhance the wall’s 

emittance as well. As a result, when the solar radiation is blocked its emittance power will overwhelm 

the gain (absorptance) power. In turn, the Time Lag would increase by increasing the solar absorptivity 

while the Dicernment Factor slightly increases by that absorptivity increment. Besides, it is also to 

consider that the peak incident solar radiation varies in accordance with the wall orientation, e.g. for 

the eastern wall, the peak incident radiation occurs at 8:00 instead of 12:00 as in the southern wall 

(Kontoleon & Eumorfopoulou 2008). Consequently, and as discussed earlier, this time variation 

between the peak incident radiation (Sol-air) and the ambient temperature would lead to different 

optimum wall configuration setups and different optimum solar absorptivity values as well.  

Lastly, and regarding the paints application positions, it is to review the outcomes of (Azemati 

et al. 2013) research. The results showed that the coating with mineral particles has an important role 

in the thermal insulation. Also, it leads to a 17% decrease in energy consumption in moderate climates. 

More importantly, the previous study was based on investigating the coating application at different 

orientation as well as considering the internal and external surfaces.The results suggested that the 

best location for these surface coatings – i.e. in their study was ceramic coating and acrylic paint 

coating – is to apply them on both sides of the walls. That is to apply coatings on the internal and 

external surfaces, however, when taking the paints cost into consideration the priority goes to 

applying such coatings on the outer surfaces only.  
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Figure 1-31 Time Lag and Decrement Factor values VS solar absorptivity for a two insulation layer's wall 
configurations at different wall orientations; 

 [a] North-Oriented Walls       [b] East Oriented Walls        [c] South Oriented Walls 

Source: (Kontoleon & Eumorfopoulou 2008). 

 

1.2.4 The Framework outlines 

From the previous reviews, it was concluded that some of the proposed areas had been 

covered by new researchers and some standards, e.g. ISO 13786 have adopted, to some extent, the 

dynamic behaviour of the envelope and have accredited the importance of the thermal mass presence 

in the building envelopes. Such standards are not activated, and even little researchers and designers 

know about its existence. This situation might be a consequence of its sophisticated calculations and 

less rigorous objectives. However, it seems to be, there is a promising good start towards better 

specification of the building envelope.  
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Subsequently, since some objectives have been covered by other research, The aim of the 

thesis is limited to and revolved around investigating the untackled two issues which are; 1- the 

mitigation of anti-insulation and the effect of the layer configurations and the layer numbers on this 

behaviour. 2- providing a practical solution to the application of a multilayering envelope that is 

composed of more than two or three layers of insulation and thermal mass. At a later stage, the 

research has presented studies about another important issue related to the envelope surface 

properties which deemed to influence the envelope resilience against the first heat waves. That is, the 

surface properties of the envelope which have been addressed separately, but a link between this 

strategy and the envelope dynamic thermal performance was also introduced in the previous 

subsection. In summary, it is to confirm that Figure 1-15 represents the three key issues that the thesis 

is covering and aiming to provide a framework for, and improving its prescription in the building 

standards.  

 

 

 

 

 

  



54 
 

 

 

Chapter 2 
 

2. Before the Simulation 
 

This Chapter has embedded some of the early tests that were carried before starting the simulations, 

but not being published within Chapter 3 article. These early tests addresses the questions regarding 

the selection of the simulation software and its related issues including the weather files and 

reliability, weher all these issues are covered thoroughly  in the follwing sections. 
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2.1 Reasons behind employing EnergyPlus  

The discussions herein are meant to demonstrate why the Energyplus software was selected 

among all the other heat load calculation software, and also to show that it is the best matching -

available- a tool for the purposes and objects of this research.  

Historically, EnergyPLus is considered as one of the pioneer whole-building-dynamic-modeling  

simulation software. It’s development started in 1996 by combining BLAST (Building Loads Analysis 

and System Thermodynamics) and DOE-2 building energy simulation programs. Hence it inherited 

both software best capabilities (US Department of Energy 2015b)(Crawley et al. 2001). The first 

version was realised 2001, and in this thesis, Version V8.4 is employed as being the latest edition. 

Since the first version, there was a lot of enhancement and tremendous contribution from the 

research society as motivated by being and open source software. Moreover, being open, there was 

any interface for the core engine. Hence, it has become very popular. Also, the modular structure of 

the energy plus enabled it to form having auxiliary programs that serve many-sided-purposes (Crawley 

et al. 2001). For example, to calculate the view factor, preparing the water data for compatibility with 

the software, or handling a huge number of inputs (permutations) via the parametric tool (US 

Department of Energy 2015a), which was a paramount feature that enabled simulating the 6500 cases 

for Chapter 3. As a result, the errors were always reported, shared and fixed, and software was kept 

up to date with latest researches findings and aligned with industrial revolutions. For example, 

EnergypPLus can simulate the Phase Changing Material PCM and variable thermal conductivity, unlike 

much other closed software that does not provide such simulation capabilities (US Department of 

Energy 2015b).  

 

 
Figure 2-1 Summary of research on optimisation of opaque envelope components.(Stevanović 2013). 
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Even more, for the specific research purpose of simulating the dynamic performance at short 

time steps - as short as one-minute intervals. Moreover, also of accurately simulating the thermal 

mass of the thick walls and systems with very long Time Lags, the EnergyPlus have superior abilities 

for carrying such simulations, thanks to the Conduction Finite Difference (CondFD) heat balance 

solution algorithm (Zhu et al. 2012). Also, also for serving the specific purpose of this research, i.e., 

simulation and optimising the envelope configurations, the EnergyPlus is seen to be the most frequent 

tool used by researchers concerned with the envelope optimisation. Having a look at the recent 

holistic review by (Stevanović 2013), it can be noticed that EnergyPlus has been employed by the most 

research, for their various purposes. Figure 2-1 above is the list of the researchers that have specifically 

looked at the opaque building envelope optimisation, where the EnergyPlus utilisation is highlighted 

as from the 11 studies, four were made using EnergyPlus, with a usage percentage above 35% of 

simulations tools.  

 

In addition, based on the articles that were surveyed  by (Stevanović 2013), Figure 2-2 is 

prepared to cover all the previous article research, for all the envelope related aspects e.g. 

(transparent parts optimization, the building form optimization and so forth) and from the figure, it is 

evident that EnergyPlus is most frequently used software in this field of science. Not to forget, within 

the scope of the Building Performance Optimisation (BPO), the EnergyPLus, as being open source and 

has text-based input and output interfaces, it was integrated and considered in most of the 

optimisation programs and Evolutionary/genetic algorithms. This important point can be seen in 

Figure 2-3 which was forwarded by (Attia et al. 2013) where the author reviewed 165 publication.  

 
Figure 2-2 Summary of a full review of optimisation of passive solar design strategies by (Stevanović 2013) 
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Figure 2-3  Optimisation tools order by use (right) and simulation tools ordered by use (left). The line 
thickness is proportional to the frequency of the pairings. (Attia et al. 2013) 

 

2.2 Weather files reliability investigation 

Having decided to employ the EnergyPlus software for all the simulations in this thesis, the 

second legitimate question was to examine the reliability of the climatic data that are built to comply 

with the software. The well Known EPW files (Energy Plus Weather Files) are specifically made to 

comply with the EnergyPlus.   

The EPW files are basically made of another format of the weather data known as TMY2 

(Typical Metrological Years)(US Department of Energy 2015a). The TMY, in turns, and as can be hinted 

from its name, is generated by composing a typical representative 12 months at a given location over 

a period – that is usually 30 years. Meaning that, to generate ethe TMY, the characteristic weather 

data of the solar radiation, dry-bulb temperature, dew point, and wind velocity are averaged over for 

each month over the 30 years (Wilcox & Marion 2008). The average values are then matched with the 

best resembling actual measured data of the specific month. Later, the whole year is composed from 

the representative month which is usually taken different form years (Crawley 1998).  

In addition to the hourly climatic data, the TMY/EPW files embed other climatic and 

geographical information, like the Heating/Cooling Degree Days/Hours and the location coordinate 

respectively. However, some of this information are not necessarily used by the program, as can be 

seen in Figure 2-4. Such kind of data are incorporated as to be helpful when the weather files are 

converted into other weather data forms required by other simulation software. Moreover, these 

redundant data It can also be used in case some essential weather data are missing. That is, these 
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unused data are now utilised by the “Weather Converter”- auxiliary program in EnergyPLus – to 

supplement and calculate the core weather information data. Equally important to understanding is 

that the Weather Converter might also assign some default values for the missing data if it can not be 

generated due to lack of other formation data, as well be explained in detail in the following 

paragraphs. 

 
Figure 2-4 Internal Data Element Names (directly applicable to EPW). Source:(US Department of Energy 
2015a) Page 14 of 144. 

 

Realising such facts, and understanding that EPW file may contain fabricated weather 

information for the missing data, it was important to investigate the effects of this process in the 

weather file reliability. From this point of view, the investigation started by checking one of the most 

important factors that especially affects the cooling load's calculation, which is the sky temperature. 

The sky temperature, and all its relevant components i.e. the Total sky cover (cloudiness) and the 
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Horizontal infrared radiation intensity are all affecting the radiative cooling to the night sky, whereas 

this cooling mechanism is very critical in climates with a clear sky and hot temperature, i.e. Hot and 

Dry climates. For these specific parameters, it was declared in the EnergyPlus Auxiliary Programs 

manual that values like the Horizontal Infrared Radiation Intensity are scarce (US Department of 

Energy 2015a); especially outside the US borders. Hence, even if the DOE provides a weather file, it 

might have contained some interpolated/processed/customised values, which need careful 

investigation.  

Moreover, it also is important to understand that the weather files are not covering significant 

portions of the globe. Figure 2-5 draws attention to the voided zones that have no weather files ready 

made to incorporate into the EnergryPlus. Hence, other tools are required to generate the weather 

files for the targeted locations and then converting these weather files into the EPW format via the 

Weather Converter program. The METEONORM software is one of the profound tools that are 

commonly used to generate the weather files based on the irradiation interpolated data for the 

abandoned locations with no weather station/information (METEOTEST: et al. 2014). When using such 

assistant tools, the resultant weather files become even more susceptible to the weather 

customization inside the Weather Converter. Leading to more erroneous and misleading simulation 

results. 

 
Figure 2-5 EPW Availability map. (Ladybug + Honeybee & Github n.d.) 

 

For these reasons, the weather files examination is made to demonstrate the risks of using 

the weather files without systematic evaluation to their reliability in resembling the real weather 

conditions. As a start, the weather file of Tokyo [named: Tokyo Hyakuri 477150 (IWEC)] is obtained 

from the DOE-EnergyPLus weather data website (US Department of Energy n.d.). When opening the 

file in Microsoft-Excel, it was found that Opaque Sky Cover Value [Opaqskycvr] is assigned as (5) for 

all the 8760 hours of the year. Moreover, by referring to the Energy plus documentation –Input Output 
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Reference P.1521, it was found that (5) is the supplied value when the [Opaqskycvr] data are missing, 

as seen in Figure 2-6.  

 
Figure 2-6 Replacement values for the missing weather data. (US Department of Energy 2015c) 

 

Such data are imperative for the nocturnal sky radiation cooling since the Opaque Sky Cover 

value [N] is used to calculate the Sky emissivity, wich, in turn, is used to calculate the Horizontal  

Infrared Radiation intensity in Wh/m2 and the Sky temperature as well. These relations are shown in 

the following equations wich are obtained for the Energy Plus documentation –Input Output 

Reference P.93 (Energy 2015).  

𝑆𝑘𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  (
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙_𝐼𝑅 

𝑆𝑖𝑔𝑚𝑎
)

.25

−  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐾𝑒𝑙𝑣𝑖𝑛 

Horizontal_IR = Skyemissivity ⋅ Sigma ⋅ Temperature 4drybulb 

Where ; 

Horizontal_IR = horizontal IR intensity [W/m], 

Sky = sky emissivity,  

Sigma = Stefan-Boltzmann constant = 5.6697e-8 [W/m -K] ,  

Temperature = drybulb temperature {K} , 

Wheras the sky emissivity is given by; 

𝑆𝑘𝑦𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 = (. 787 + .764. ln (
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑑𝑒𝑤𝑝𝑜𝑖𝑛𝑡

273
)) . (1. + .0224 𝑁 −  .0035 𝑁2 +  .00028𝑁3)  
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Consequently, for the sake of testing the Tokyo weather file mismatches, the manually 

calculated Horizontal_IR [horzirsky] Value (using the equations above) is compared with the provided 

Horizontal_IR   values in the weather file. Logically these values should be fairly identical, but because 

the Opaque sky values were not relative (missing) it is expected to see some mismatches. Indeed, as 

can be seen, from Figure 2-7, it is apparent that there is some discrepancy between the provided and 

calculated values of the Horizontal_IR.  

 
Figure 2-7  Tokyo- Mismatch between the calculated and the Given Horizontal IR radiation Intensity Wh/m²  

 

Meanwhile, when the same exercise is done for some US cities, i.e. Las Vegas and Houston 

the deviation between the calculated and the provided data was either negligible of less than what is 

found in Tokyo data. Figure 2-8demonstarte the same investigation results for Las Vegas, and it can 

be clearly seen that there is a great harmony between it is embedded and provided EPW file data.  

 
Figure 2-8  Las Vegas - Mismatch between the calculated and the Given Horizontal IR radiation Intensity  
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Moreover, an additional similar investigation is made for a third weather file, but this time the 

weather file was initially generated from the METEONORM software, then converted to the EPW file. 

Khartoum, Sudan was selected since the DOE does not provide EPW data for that location. The result 

is shown in Figure 2-9and they demonstrate that the mismatch is prevalent throughout the year, 

unlike Tokyo which was dominant during the summer period, namely from June through October. 

Therefore, it can be concluded that for the sake of accurately simulating the night radiative cooling 

effects, and to account for the external surface radiative exchanges in general accurately, it is better 

to stick to the DOE Provided data within the United States, otherwise, it is to convey an inaugural 

sensitivity analysis for such cooling effects. 

 
Figure 2-9  Khartoum, Sudan - Mismatch between the calculated and the Given Horizontal IR radiation 
Intensity  

 

By the same token, another investigation has looked at the reliability of the other sensitive 

data provided by the EnergyPLus weather files set and compare it with the other resources provided 

by the DOE. Namely, the Cooling Degree Days data of two sources are compared, i.e. from the 

Weather File Statistical Data and the from ASHRAE Standard saleable spreadsheets. The first resource 

of the Cooling degree days is the *.STAT file that comes with the EPW file package, along with the DDY 

[ASHRAE Design Conditions Design Day Data file]. However, the STAT format contains the weather file 

statistical summary of a bin file (Hirsch n.d.). The second source of the CDD/CDH data is the 

Commercially prepared spreadsheets provided by ASHRAE; some relevant documents can also be 

found in these references.(ASHRAE 2007)(ASHRAE 2012b). 

The exploration was firstly made by opening the STAT file of a sample weather station of 

HOUSTON BUSH INTERCONTINENTAL AP. Moreover, from the state file, the CCD with a base 

temperature of [10°C] – values are presented in SI units. Moreover, as inFigure 2-10, the Annual CCD 

10°C is 4089.   
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Figure 2-10 The [10 °C]  CDD values obtained from the *.STAT file contents for HOUSTON BUSH 
INTERCONTINENTAL.  

 

On the other hand, the ASHRAE supplied spreadsheet data, have shown that the CDD for the 

same base temperature equals 4043 as can be seen in Figure 2-11. It is apparent that when comparing 

the two data sources, there is a difference of 46 CDD. Despite that the two resources are using the 

same weather station data which is numbered WMO# 722430 [World Meteorological Organization 

reference number for the weather sattions].  

 
Figure 2-11 The CDD [10 °C] values as obtained from the AHSRAE commercial spreadsheet data for 
HOUSTON BUSH INTERCONTINENTAL.  

 

The same exercise was done for another 13 climates, which are intended to be incorporated 

in the simulations, and there was always some variation between the tow weather sources although 

they are originated from the same body i.e. ASHRAE. As to show the variation extent,Figure 2-12  is 

prepared to reflect the percentage of CDD variation between the STAT file and the AHRRAE 

commercial spreadsheets. The minimum variation was found in San Francisco climatic data as it was 

only 3 CDD wich yield a negligible error percentage of 0.2.Meanwhile, the maximum variation was 98 

and have occurred in Riyadh city climatic data with a 1.6 % of the variation. Moreover, here, it is to 

note again, the Riyadh and Vancouver are the only two cities out of the US. Moreover, this might also 

support the previous argument that when using the climatic data of location beyond the US borders, 

it is to give an early investigation of the provided information before commencing the simulation. 



65 
 

Besides, and since Riyadh has a huge cooling needs i.e. huge CDD, it was not the highest variation 

percentage. Rather, the highest error as a percentage was found at Boise city with a 3.7%  variation in 

tehCDD data, but with only 64 CDD.  

 
Figure 2-12 the CDD [10 °C] variation between the *.STAT data and the AHSRAE commercial spreadsheet data 
for 13 climates. 

 

 

Besides, this variation have also been found for the Cooling Degree Days with the base temperature 

of [18.3°C] and Cooling Degree Hours CDH with base [23.3°C]. Similarly, the variation was also 

observed for Heating Degree Days HDD with all its provided base temperatures. 

2.3 Testing the layer segmentation process influence on the layer config.  

Similar to what will be shown later on in section 2.3 of chapter 3, a pre-simulation is carried 

out to determine the error margin of the further subdivision process on the energy simulation results. 

That is, to test the subdivision process and the algorithm refinement influence in te EnergyPLus 

software results. The methodology is borrowed from Chapter 3. However, it can be briefly described 

as following. This inspection is evaluated by reporting the cooling and heating load difference between 

four setups as shown Figure 2-13.  
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Figure 2-13   Accuracy Sensitivity 
investigation various setups for the 
Layers Subdivision and heat balance 
calculation algorithm. 

 

 

The base case (Setup) for this survey is the simple configuration [IM]. Where the depth of the 

construction is kept at 20 cm too, this base setup is named (A). The first modification i.e. setup (B) is 

to subdivide the Brick and Insulation layers. It was proposed to have eight segmentations to comply 

with the maximum segmentation as in chapter 5, but due to the limitation in the fields of the number 

of layers in EnergyPlus to 10 fields, each single uniformed layer is replaced with five individual pieces 

instead. That is, each layer segment will be 4 cm thick, the input to the EnergyPlus then becomes as 

shown in Figure 2-14.  

 
Figure 2-14  Layers subdivision inputs to the EnergyPlus  
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The second modification, shown as setup (C), is to refine the heat Balance Algorithm. This 

refinement is made by the fine-tuning is made by incorporating the “HeatBalanceSettings: 

ConductionFiniteDifference” object. Later on, more calculation nodes can then be added to the 

materials by changing the values of the “Space Discretization Constant”, the “Relaxation Factor”, and 

the “Inside Face Surface Temperature Convergence Criteria” from defaults to (1,0.01, 1 Exp-7) 

respectively as can be seen in Figure 2-15. Herre, it is worth mentioning that the number of nodes can 

be seen after the simulation is run for the first time, as by opening the *.eio file  [EnergyPlus Invariant 

Output EIO2. An example of this is shown in Figure 2-16 where the number of calculation nodes for 

the initial setup (A) is highlighted.  

 
Figure 2-15  Heat Balance Algorithm refinement fine-tuning is made by incorporating the 
“HeatBalanceSettings: ConductionFiniteDifference” object. 

 

                                                           
 

2 “The EnergyPlus Invariant Output (EIO) is a text file containing output that does not vary with time. 

For instance, location information (latitude, longitude, time zone, altitude) appears on this file.” (US 
Department of Energy 2015b) 
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Figure 2-16  The [Conduction Finite Difference] calculation nodes are displayed in the *.EOI file 

 

The third modification, i.e. Setup (D) is made by incorporating both above mentioned 

modifications. Setup (D) will then have a much greater number of calculation nodes that are expected 

to increase the simulation stability, but, will also significantly increase the simulation time. Besides, It 

is thought to be useful comparing the chapter 3 pre-simulation results herewith. Therefore, the similar 

simulation conditions are applied, i.e. Riyadh was also selected as a sample city, where the constant 

cooling set-point was also kept at 22 °C. However, in this chapter, the occupancy schedule is set to 

residential occupancy with continuous load profile. 

The Simulation results for the heating and cooling for the four setups (A, B, C and D) are all 

obtained and stored in a Comma Separated Values (CSV) File formats. Afterward, for the investigation 

and comparison, four different /techniques are used to invistigate the inflcuenf of the three refined 

setups on the software calcaution accuracy.  

The first method is based on simple subtraction of the hourly data between the various setups. 

For example, when comparing two setups, for instance, configuration (A) and (B) cooling loads - 

written as (A)  (B)- the cooling load of each hour of setup (A) is subtracted from its counterpart in 

setup (B). Hence, the maximum [Max] variation will resemble the maximum found value where (A) is 

greater than (B), and vice versa for the minimum [Min] value, such variations are shown in Figure 2-17. 
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Subsequently, The second is a way to evaluate the setups variations can be obtained by 

calculating the [Total Diffrence]. This difference is achieved by subtracting the [Max] and [Min] values, 

and if the results are positive this means that setup (A) cooling loads are overwhelming the setup (B) 

results. The total Difference is plotted on other side in the same Figure 2-17 provided above. 

Moreover, From these Figures, it can be seen that variation in the calculated heating load between 

the various setups is almost zero. This insignificant variation is attributed to the fact that Riyadh has 

very few heating demand hours throughout the year.  

The third way to visualise the difference between the various setups was by directly plotting 

the variation between their corresponding hourly data in a year-based timeline. An example of such 

graphical variation between models (C)(D) is seen in Figure 2-18; where the algorithm fine-tuned 

setups simualtion results are compared. Moreover, from this comparison, it can be observed that the 

cooling loads being calculated via the most refined model (D) are greater than set up what is calculated 

in setup (C), especially in the summer season ( an hour of years 2760 ~ 2670).  

 
Figure 2-17  The Total, Maximum and Minimum variation between the different setups simulation results 

http://www.thesaurus.com/browse/insignificant
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Figure 2-18 The Hourly variation values between the fine-tuned models (C) and (D) 

 

Such technique enabled visualising the two modifications being applied to the model. For 

instance, to visualise the influence of the layer subdivision on the either the simple algorithm models 

(A and B) or among the refined algorithm models (C and D), the variations between them are plotted 

alongside as can be seen in Figure 2-19.Here, it can be seen the layer segmentation does not have 

profound affect the cooling load calculations, either among the simple algorithm models, i.e., (A and 

B) Or if the base model had undergone an initial algorithm refinement. Besides, it can also be noticed 

that the when subdividing the base model layers i.e. (A)(B) it can be noticed that the setup (B) which 

has more layer segments had higher cooling loads calculations.  

 
Figure 2-19 Layer segmentation influence on the calculation results.  

Hourly variation between (A)  (B)  VS (C) (D). 
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Likewise, to for visualising the algorithm refinement influences on the EnergyPlus calculations, 

the modifications (A)(C) and (B)(D) are plotted on the same chart as in Figure 2-20.Moreover, 

from this figure, it can be seen that the algorithm modification on either a subdivided model (C and 

D) or in the block models (A and B) are not making a difference in the simulation errors. Meaning that, 

no matter how the layers are inserted (subdivided) if the model is refined there will be a significant 

variation between the simple algorithm models and the refined model where the latter yields the least 

cooling load calculations all over the year round. 

 
Figure 2-20  Heat Balance Algorithm refinement influences on the calculation results.  

Hourly variation between (A)  (C)  VS (B) (D)  

 

However, the two significant variations are plotted in Figure 2-21, which are the difference 

between either the simple layer subdivision modification, which will be applied through this research,  

i.e.  (A)(B) is compared to the most refined model i.e. (A)(D). The results of this comparison would 

hint to which extent the model should be refined. Moreover, from Figure 2-21 It can be noticed that 

there is no significant difference between either modification, despite the invert effect. Therefore, 

initially, it can be said that the fine tuning process for the simulation models will not reduce the error 

margin when the layer subdivision is applied through this research. 
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Figure 2-21  Simple layer subdivision and maximum model refinements influences on the calculation results. 

Hourly variation between (A) (B)  VS (A) (D) 

 

To confirm the derived conclusion, another error evaluation technique is applied. This last 

technique is based on calculating and plotting the total absolute variation values. The process for such 

technique starts by subtract (A) from (B) - as example- for each of the 8760 individual hours, where 

the difference is expressed in an absolute difference. Consequently,  the sum of the absolute 

differences for all the year is plotted as can be seen in Figure 2-22. At the end, the previos conclusion  

can bee seen, validated there is no signifcat error reduction when comparingthe (AB) and (AD) 

setups. 

 

Figure 2-22  Absolute Differences 
of cooling loads among the various 
setups 
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 Since the total Absolute, variation reflects the possible decisive error that might occur. Then 

the maximum error can be fairly obtained from this technique, i.e. the situation maximum error 

margin can be said as 0.02 kWh/m2.Yr. Whereas the error that might arise from the subdivision 

process for the unrefined models i.e. (A)(B), is just 0.009 kWh/m2.Yr. It may sound logical to use a 

refined cmodels, as it can be observed that the deviation that caused by segmentation process is much 

less between refined algorithm models (C)(D) when compared to the deviation between the models 

with the default algorithm (A)(B). The load was 0.002 between the first setups and 0.009 ≈ 0.01 

kWh/m2.yr for the later. However, the time required for the refined models is almost 40 folds of the 

default ones. However, at the end, and apart from the shorter simulation time required by setup (A) 

and (B), but also, since the variation from (AB) is still minuscule and therefore, the default 

Conduction Finite Diffrence algortihm is used for the simulation, while considering the 0.01 kWh/m2.Yr 

as an sigmentaion/subdevision error margin.  

Lastly, it is to state that the results of this section did not change a lot from chapter 3 variation 

study and error margins. Initially, as what will be seen later, the order of the variation magnitude 

between different setups was the same. Though It can be noticed that the deviation between (A) the 

default model and (B) has increased from 0.002 to 0.009 kWh/m2.yr in t this chapter study. This 

incramnt in the errors magine was caused by the more layer segments that was adopted herwtih, i.e. 

10 layers compared to 4 layers in chapter 5. Eventually having additional layers means ghaving more 

calculation nodes. Meanwhile, when comparing the two extreme setups (A) and (D), it was noticed 

that the variation has decreased by 0.001. In general, it can be seen that the change between the 

different setups is becoming more uninformed when compared to the variations in chapter 2 because, 

as explained earlier, the additional segmentations are producing more stable simualtions that is 

similar to those obtained when increasing the calcualtion nodes (i.e refining the simulation model).   
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Chapter 3 
 

3. The layer configuration influence on the anti-

insulation (JOURNAL ARTICLE) 
 

 

The contents fo this Chapter have been complied and submitted to the profound Energy and 

Buildings Journal under the title:  

[Anti-insulation Mitigation by Altering the Envelope Layers’ Configuration] 

While writing these letters, on November the 2nd,  the article has gone through the first 

revision where positive reviews have been forwarded by the Journal editor and the reviewers. The 

comments have been fully addressed and it this moment the article is going under the second revision.  

 

 
 

 

  



75 
 

  



76 
 

 

 

Chapter 4:  
 

4. The number of layers’ influence on the anti-

insulation (Simulation). 
 

 

The contents of this chapter are a continuation of the previous chapter that dealt with the 

anti-insulation mitigation. However, the main difference is that Chapter 3 have investigated the layer 

configurations as a mitigation measure, while this chapter is examining the influence of the number 

of the layer segments on the anti-insulation. The subjected configurations and the environmental 

setups were also based on the findings of Chapter 3, as will be explained in detail in section 4.2.  
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4.1 Preface and Objectives  

Before delving into the chapter contents, it is to point out that the basic idea behind the 

investigations herewith is inspired by the heuristic research provided by (Bond et al. 2013). The 

research outcomes have highlighted two interesting facts regarding the dynamic thermal behaviour 

of the multi-layered walls. Firstly, It was reported that the optimal dynamic results are obtained when 

the thermal mass and insulation layers are subdivided into thinner layers and are dispersed evenly 

through the wall configuration. Secondly, and most importantly, the study has revealed that there is 

an optimal point of that dispersion (subdivision), i.e. the infinite subdivision of layers will not 

guarantee the best performance, rather, there is a certain number of layer’s subdivision where the 

best performance takes place.  

Starting from these two pieces of evidence, and after demonstrating that the layer 

configurations could significantly contribute to mitigating the anti-insulation behaviour, it was 

intriguing to understand and examine how the layer dissipation (furtherly segmenting and 

subdividing) the Insulation and Thermal Mass layers of a given configuration. That is, the best 

performing configurations were borrowed from the (under publication) article. Subsequently, these 

configurations were subjected to multi subdivision process while maintaining their initial setup. For 

example, the configuration of [IMI] then becomes [IMIMI], where it can be noticed that the core mass 

layer has been furtherly subdivided into two layers while the peripheral boundaries (internal and 

external surfaces) are maintained the same. 

The configurations selection process, the modifications, and simulation results have been 

covered, and conclusions are presented in the last part of this Chapter. Meanwhile, the important 

points that serve the formulation of the thesis framework are conveyed to the Chapter 7 [Conclusion] 

and discussed from a wider objectives point of view. Not to forget, that this Chapter and the following 

Chapter [5] are both concerned with layer dispersion. However, this chapter is based on simulation 

results and uses the anti-insulation and PTI “point of Thermal Inflexion” as evaluation criteria. 

Meanwhile, Chapter 4 builds on experimental investigations and utilises the standard dynamic 

thermal performance criteria i.e. the Time lag and Decrement factor as evaluation criteria.  

4.2 Methodology and Simulation setup  

In the beginning, it is to remind that the purpose of this Chapter is to investigate the influence 

of increasing the number of mass and insulation layers on the Anti-insulation behaviour. And as stated 

before, the literature have suggested that increasing the layer segments improve the dynamic thermal 

performance of the envelope components. Therefore, based on these two points, the best performing 

configurations that yielded the highest PTI is selected for each occupancy profile. This selection is also 

based on the advocated argument that increasing the number of layers means to increase the dynamic 

insulation and therefore having a negative effect on the anti-insulation and having lower PTI’s. 

Therefore, the configurations [IMI, IM, MI] are used for this investigation as the base references, and 

they were subjected to the residential with continuous load, office profile and office with continuous 
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load occupancy profiles, respectively as per the findings provided in Error! Reference source not 

found., Chapter 2. 

Also, the configuration [IMI] was tested under the residential profile, although it is not the 

best performing configuration under this occupancy pattern. This random selection was made also to 

check the segmentation influence on the worst performing configurations as well. Apart from that, 

and as per what is provided in Error! Reference source not found., Chapter 3, two cities were selected 

as representative climates fro the Hot and Cold climates, which are Houston and Albuquerque. The 

base configurations selection against their corresponding occupancy profiles loads is shown in Figure 

4-1. 

 
Figure 4-1  The base configurations and the occupancy profiles that will be used as references for layer 

segmentation/ dispersion evaluation. 

 

In the second stage, the layer segmentation process is made for all the base configurations. 

Moreover, in this regards, and for the sake of coherence between this Chapter and Chapter 5, it was 

intended that this simulation should incorporate the same number of the investigated layers of 

Chapter 5. In Chapter 5, the maximum number of layer segments is 15.  However, due to the limitation 

in EnergyPlus that allows only for ten layers to be inserted, the number of the investigated cases was 

confined to four processes for each instance, as can be shown in the sample case in Figure 4-2. 

Therefore, unlike the geometric progression of segments that have been used in chapter 5, the 

arithmetic progression of layers is used by adding two segments of insulation and mass at each case 

step.  
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Figure 4-2 The layer’s segmentation 
technique for the specific 
multiplication number. 

 

By applying this segmentation process, if the PTI value of the selected cases is reduced, i.e. 

the performance is weakened, this will not only mean that the layer number have an effect on anti-

insulation, but also it also proves that anti-insulation should be incorporated as an essential measure 

when optimising the number of the envelope layers. In this respect, it is important to emphasise that 

the overall length (material volume) of the mass and the insulation layers are equal among the similar 

cases. That is, The mass value is always fixed at 20 cm, but to plot the anti-insulation, the insulation 

varies from 5,10,15, and 20cm, as simulated before. Therefore, For the additional segmentation 

configurations, the insulation total thickness is constant for the same family branch, i.e. the 5 cm as a 

total insulation thickness is investigated in the [IMI],[IMIMI], [IMIMIMI], and [IMIMIMIMI] 

configurations, wherein the latter, for example, each insulation segment is 1 cm thick.  Hence, any 

effects in the anti-insulation and on the PTI are solely made by this segmentation process. Moreover, 

to emphasise that point in a graphical overview,  Figure 4-3 is produced for the same sample case of 

the baseline scenario of [IMI] layer configuration that might sound a bit conflicting to subdivide. 

 

Figure 4-3  The layers segmentation 
process for an example case of [IMI] 
with an insulation layer of 20 cm. 

 

Before illustrating the results, it is also to remind that Houston (2A) and Albuquerque (4B) are 

selected as sample cities, as in Error! Reference source not found., Chapter 3. The results of the [IMI] 

under residential with continuous load schedule are at normal PTIs of the pattern (III) in Houston (26.5 

~ 28.4 °C) and having a pattern (I) always saving at 5 cm in the Albuquerque, and Normal PTI (III) in 

other conditions. The same behaviour of patterns applies for the normal residential occupancy profile 
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except that the best performing configuration is the [IM]. However, as stated before, the best 

performing configuration is the [IM], while the investigated configuration, i.e., [IMI] is not among the 

best three performing configurations, where it comes in the fourth. As can also be seen from the same 

figure, the situation is almost the same for both cities under the office schedule and the [IM] 

configuration, as in figure xx-b, except that the 10 cm for Albuquerque is a category (I) always savings. 

Lastly, for the [MI] configuration, and under the Office with continuous load profile, both cities had a 

PTI in the normal range (III) and for all insulation thicknesses. 

4.3 Results and discussion  

The results that were obtained from all the three occupancy profile cases are compared with 

the corresponding results as in Chapter 3. Whereas, the PTI of the base model is compared with the 

new ones that have additional segments. It is expected that the PTI values should decrease (anti-

insulation performance decline), but in case otherwise observed, a further investigation might become 

a necessity and a detail justification will be needed. However, in this part, the results are presented as 

per the segmented layer performance and as per the occupancy profiles, they are subjected to. 

Moreover, it is to highlight that the illustration order will keep the least performing cases i.e. case [01] 

and [05] that belong to the typical residential profile to the end since the investigated configurations 

have shown adverse results.  

f) Results under Residential with continuous load occupancy profile. 

Firstly The segmentation results of the [IMI] configuration is presented under the residential 

with continuous loads occupancy profiles, i.e. cases [2] and [6] for Houston and Albuquerque 

respectively. In general, it is noted that the anti-insulation behaviour patterns of the various 

configurations did not change in relation with the climate type. Meaning that all the derived 

segmentations, i.e. [IMIx2], [IMI-3] and [IMIx4],  had inherited their “mother” base configuration anti-

insulation pattern.  In Figure 4-4 it can be noticed that all the configurations have an Anti-insulation 

pattern [III], except for the Albuquerque case [6] at 5 cm where the derived and the mother 

configurations had pattern [I] which is always saving. 
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Figure 4-4   The Layer Configurations preference order for the Residential with continuous load occupancy 
profiles in two sample climates. 

* The un-shown points in the graphs: e.g. the permutation of Albuquerque, Residential, [IMI], [IMI-2], [IMI-
3] and [IMI-4] configurations at 5cm, were for Always energy saving and (I) pattern. i.e. there were no PTI.  

 

From the same figure above, it can be noticed that the general trend is that adding more 

insulation yield the worst PTI performance for all configurations, i.e. the base case and its derived 

segmentation family produce lower PTI when their total insulation thickness increases from 5cm to 

20cm. Also, it can also be seen that there is a clear performance order for all the configurations in 

both climates. Meaning that, at any given insulation thickness, the base configuration that has the 

least number of segments  (i.e. 3) have better performance than the configuration with five layers. 

Meanwhile, the five layers have higher PTI when compared to the configuration with seven layers and 

so forth.  Also, in both climates, it can also be seen that the variation of the resultant PTI between the 

segmented configurations was subtle. As to further pronounce this effect, Figure 4-5 has been 

developed with the base case [IMI] as to be the reference line. That is, the PTI value of the of the 

segmented configuration is subtracted from its corresponding mother case. By doing that, it can be 

seen that the maximum difference between the base case and the lowest PTI at configuration [IMI-4] 

was not more than 0.4°K, and this variation approached to zero at higher thicknesses.  
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Figure 4-5 Taking the Base case [IMI] as a reference to evaluate the layer segmentation performance across 
the various insulation thicknesses. 

* The missing points in the graphs: e.g. the permutation of Albuquerque, Residential, IMI, IM, and IMIM 
configurations at 5cm, were for Always energy saving and (I) pattern. i.e. there were no PTI.  

 

For this occupancy profile, it is to confirm that when a configuration yielded a pattern [I] i.e. 

always saving, as in case [6] at 5 cm insulation, this pattern did not change and was consistent with 

the other segmented configuration at their 5cm setups. This means that the segmentation can be 

firmly incorporated into the “safe” climates and conditions undergoing the Residential profile with 

continuous loads since it will not change the anti-insulations behaviour pattern.  

g) Segmentation results under the typical office profiles 

The layer segmentation results of the Office occupancy profile are represented by cases [3] 

and [7] for Houston and Albuquerque respectively. For this occupancy profile, and as per the findings 

in Chapter 3 the best performing configuration was [IM]. Here, it is to note that the segmentation of 

the base configuration [IM] will arrive at the [IMIM]. Therefore the segmentation referred to as [IM-

2] have been simulated earlier as configuration [IMIM]. Figure 4-6 is to highlight which layer 

segmentation has been borrowed from Chapter 3,  and which segmented configurations have been 

conducted in this chapter.  

 
Figure 4-6 Some of the derived segmentations have been simulated in Chapter 3. Shaded cells are for the 
borrowed results. 

   

The first observation which can be seen in Figure 4-7, is that the segmentation process under 

this profile has changed some of the profile patterns particularly in the lower insulation levels, namely 

Cases №
Occuopancy 

Profile 

Base 

Configuration
2-x 3-x 4-x

1,5 Residential I-M-I I-M-I-M-I I-M-I-M-I-M-I I-M-I-M-I-M-I-M-I

2,6 Residential+Loa I-M-I I-M-I-M-I I-M-I-M-I-M-I I-M-I-M-I-M-I-M-I

3,7 Office I-M I-M-I-M I-M-I-M-I-M I-M-I-M-I-M-I-M

4,8 Office+Load M-I M-I-M-I M-I-M-I-M-I M-I-M-I-M-I-M-I
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at Albuquerque climate. Looking at the highlighted (in red) profiles lines, at all the derived 

configuration [2-x],[3-x] and [4-x] for the insulation thicknesses 5cm and 10cm, it can be noticed that 

they have turned the anti-insulation pattern from always savings pattern (I) to pattern (III). Moreover, 

this degradation in the configuration performance was not noticed in the residential with continuous 

load profile. However, such under-grading was limited to Albuquerque climate while the derived 

configurations in Houston have maintained the anti-insulation pattern of their base case. 

 
Figure 4-7  Layer Configurations preference order for the Office occupancy profiles in two sample climates.  

* The missing points in the graphs are for the configurations that have an Always energy saving (I) pattern. 
i.e. there were no PTI.  

 

Also, and different from residential with continuous load -case [2] - where the variation of the 

resultant PTI between the segmented configurations was subtle, the office occupancy profile for the 

Houston city the maximum variation jumped to 1.2°K as can be seen in Figure 4-8.  The variation is 

increased by 300% as when compared to the residential with continuous load profile. This huge 

variation was apparent in Houston, and it can be ascribed to the fact that the base case [IM] have had 

an almost constant behaviour over all its insulation thickness.  
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Figure 4-8 Taking the Baseline scenario [IM] as a reference to evaluate the layer segmentation performance 
under the Office occupancy profile, and across the various insulation thicknesses. 

* The missing points in the graphs are for the configurations that have an Always energy saving (I) pattern. 
i.e. there were no PTI.  

 

Moreover, in Houston climate, another important difference between the performance of the 

segmented configurations in the residential with continuous loads and the office profiles was noticed. 

As for the office profile, the higher insulation levels have produced higher PTI for the derived 

configurations. That is, when increasing the insulation from 5cm to 20 cm, the PTI of the segmented 

configurations [IM-2],[IM-3]and[IM-4] have increased accordingly.  Moreover, gain, since that the PTI 

of the base case of the office is almost constant (around 27.5°C), then the multi-segmented layers 

dropped sharply at the lower insulation thickness, and thus producing better PTI (higher) at the thicker 

insulation levels. However, it is not to forget that the comparison is between two different wall 

configurations, I.e.  [IMI] for residential with continuous load and [IM] for the office profiles. Hence 

the observations above, changes in respond to the insulation thickness, and may have been 

manipulated and have a link with the base configuration setup. Such judgement needs further 

extensive simulations to investigate all the base configurations among all the occupancy profiles and 

compare them with their derived multi-segment layer setups.  

h) Segmentation results under Office occupancy profile with continuous loads 

For the office with continuous load occupancy profile cases [4] and [8], it can be initially noted 

that the configurations performances under the both climates i.e. Houston and Albuquerque are 

almost identical. Also, it can be noted that the office with continuous load has yielded a different 

behaviour when compared to the office profiles that does not have a continuous load. Unlike the 

regular office profile, cases [3] and [7], the office profile with continuous load have shown more stable 

performance for the multi-segmented configurations when insulations increases where this behaviour 

can be attributed to the sharp deterioration in the base case itself [MI] when it insulation increases 

from 5cm to 20cm. In other words, and as can be seen in Figure 4-9, the [MI – 4] PTI was almost steady 

and around 23.5°C, while the base case i.e. [MI] have changed by 2°K between the 5cm and the 20 

cm. 
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Figure 4-9  Layer Configurations preference order for the Office with continuous load occupancy profiles in 
two sample climates. For the base configuration of [MI] 

*  The missing points in the graphs are for the configurations that have an Always energy saving (I) pattern. 
i.e. there were no PTI.  

 

Similar to the previous occupancy profiles, Figure 4-10 is prepared to further clarify the 

influence of the layer segmentation on the anti-insulation,  with the base case  [MI] various insulation 

levels are taken as reference values and present the y-axis = zero. Here, it can be seen that the 

variation in the base case [MI] and the configuration  with maximum number of segments [MI-4] have 

increased to reach 2.4°K, and it is to highlight this increment is almost the double of what was found 

on the typical office profile that has no continuous load. 

 
Figure 4-10 Taking the Base case [MI] as a reference to evaluate the layer segmentation performance across 
the various insulation thicknesses. 

 

Moreover, another observation was found and may seem interesting is that the PTI of the 

configuration [MI-3] at a 5cm is slightly better than the PTI of the configuration [MI-2] but at 20cm of 

insulation. To show this observation better, the PTI values of all the configurations are plotted in a 

clustered column, where the two instances values are called out and can be seen in Figure 4-11. 

However, it is to note that this behaviour was solely observed at Houston Climate.   
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Figure 4-11 The PTI values for the Layer Configurations investigated under an Office with continuous load 
occupancy profiles in two sample climates. For the base configuration of [MI]. 

 

i) Results under Residential occuoancy profile. 

The results shown herewith are for the cases [1] and [4] for the Houston and Albuquerque 

climates respectively. The results are kept to the end since the selected base configuration under this 

occupancy profile, i.e. [IMI] was not the best performing configuration as can be seen Chapter 3. In 

fact, it was not even among the best three best performing settings. The reason behind exploring such 

configuration with negligible anti-insulation mitigation potentials is to study the influence of the layer 

segmentation on it. Meaning that, is the layer segmentation is going to degrade its mitigation 

potentials, as similar to the earlier cases, or it would be improved.  Moreover, as a start, and analogous 

to the investigation techniques that carried for cases [2 to 4] and [6 to 8], the first investigation is 

made by plotting the PTI values for all the setups under both sample climates.   

In Figure 4-12, it can be immediately noticed that the segmentation have, in fact, slightly 

enhanced the anti-insulation mitigation prefrence across all the insulation levels, and in both climates. 

Also, it can be seen that the variation in the PTI level between the various configurations – at a given 

insulation thickness- is not obvious at Houston, and better revealed in Albuquerque climate. Also, it 

can be seen that the anti-insulation pattern was not influenced by the layer segmentation process, i.e. 

the always saving, pattern (I) for the 5cm of Albuquerque was maintained across all the investigated 

configurations. Meanwhile, increasing the insulation of a given configuration is degrading the anti-

insulation performance, i.e. increasing the insulation from 5cm to 20cm, for any configuration, have 

deteriorated its anti-insulation performance.  
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Figure 4-12  Layer Configurations preference order for the Residential occupancy profiles for the two 
sample climates. For the base configuration of [IMI] 

*  The un-shown points in the graphs are for the configurations that have an Always energy saving (I) pattern. 
i.e. there were no PTI.  

 

Similar to what is conveyed in previous cases, Figure 4-13 is developed for this occupancy profile as to 

evaluate the improvement magnitude of the layer segmentation on the anti-insulation mitigation. 

From the provided results, another two unusual behaviours can be reported. Firstly, it can be observed 

that for Houston climate, increasing the insulation level from 5cm to 20cm has increased the PTI value. 

Secondly, when increasing the insulation, it was also found that the higher the insulation, the greater 

the performance gap between the various configurations, Which is firstly seen in this occupancy 

profile. Meanwhile, for the Albuquerque climate, although the variation between the configurations 

is a bit larger and more steady as when compared to the Houston case, it can also be seen that 

increasing the insulation level yields adverse effect on the configurations performance against anti-

insulation behaviour. 

 
Figure 4-13  Taking the Base case [IMI] as a reference to evaluate the layer segmentation performance 
across the various insulation thicknesses. 

* The missing points in the graphs are for the Always energy saving pattern (I). i.e. there were no PTI.  
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4.4 Conclusion 

By the end, the general performance trends when increasing the layers segments can be 

sorted into tow groups. The first is that if the best performing configuration is subjected to 

segmentation, then it is expected that its performance will degrade. On the other hand, if 

segmentation is applied to a least performing base configuration, then it is likely to yield better PTI 

results.  However, It is important to remind that in some cases the layer segmentation has shown 

better results and could enhance the anti-insulation mitigation of a construction. An example of this 

can be seen in Figure 4-14 that represents the PTI values for the case [3]. As it can be seen that the 

[IM x 4] at 20 cm have higher PTI (better mitigation performance) when compared to to the [IMIM] at 

5cm. This case can well be said that it represents the best scenario to mitigate anti-insulation via 

increasing the number of layer segments. As it enables higher PTI values while having very thick 

insulation levels at the same time.  

 
Figure 4-14  The PTI values for the various Layer Configurations the Residential occupancy profile with the 
continuous load. Note, that [IM-4] with 20cm have very close PTI compared to much less insulation i.e. [IM] 
at only 5cm. 

 

Besides, as indicated above, and as what can be seen in Figure 4-11 of cases  [4] and [8] for 

office profile with continuous loads as an example, the segmentation may result in significant 

degradation of the anti-insulation mitigation performance for a given thickness -with minor 

exceptions. Moreover, as in many sample cases, and as in Figure 4-15 below for case number [7], it 

can see that when the layers are segmented the anti-insulation pattern may degrade from always safe 

[I] to a lower anti-insulation pattern with a PTI at normal setpoint ranges (22~30). Therefore, it is 

difficult to say that the layer segmentations is always positive and will always enhance the anti-

insulation mitigation, even if the initial base configuration showed a safe pattern (I) (always saving). 

Therefore, in conclusion, it can be said that adding more segment, needs a detailed investigation 

beforehand with considering the specific climates and occupancy profiles. 
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Figure 4-15 The PTI values for the various Layer Configurations the Residential occupancy profile with the 
continuous load. Note, that the base case [IM] at 5cm and 10 have an always saving Anti-insulation pattern 
(I) and have degraded to pattern (III) after some segmentation. 

 
In opposite to previous cases, and as can be seen in Figure 4-16 for example [5] of 

Albuquerque climate at a residential occupancy profile, it was very clear that the segmented 

configuration [IMI-4] had always produced higher PTI compared to all other cases. Which can also be 

an example where increasing the wall segments may lead to better anti-insulation mitigation. 

However, in the end, it can be concluded that the approach of how anti-insulation could be 

manipulated and dampened have to be identified through a systematic consideration of the climate 

and the occupancy profile. As in some cases, the anti-insulation can be mitigated by increasing the 

number of segments while maintaining the higher insulation levels. In the other cases, the layer 

segmentation at lower insulation thickness may result in better PTI values.  

 
Figure 4-16 The PTI values for the various Layer Configurations the Residential occupancy profile with the 
continuous load. Note, that more layers segments yield higher PTIs where the effect is pronounced at lower 
insulation thicknesses. 
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Chapter 5:  
 

5. The number of layers’ influence on the 

dynamic thermal behaviour. 

(Experimenting) 
 

As a continuation to the findings of previous Chapters 2 and 3, this chapter is aimed at studying 

the effect of the layer segmentation influence on the dynamic behaviour of the envelope opaque 

components. This time, the investigation was made via an experimental rig that is based on controlling 

and measuring the heat flow through the envelope specimen. Moreover, the chapter has introduced 

a novel method that provided a practical application of a thin thermal mass materials. The use of 

rubber as a very powerful thermal mass component that can also be produced at very thin layers have 

been tested using a thermocouple “Peltier” device that enables controlling the heat flux at both sides 

of the experimented specimen. The results, discussion and conclusions of a three layer configuration 

setups have been thoroughly covered and presented in the sections herewith. 
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5.1 Introduction  

This Chapter deals with the thermal mass components of the building envelopes. It mainly 

focuses on these heat storage materials since its effective incorporation seems to be still limited to 

thick walls, and when it confined with such limitations, the privileges of having the thermal mass, in 

the building envelope will then vanish.  As per what have been reviewed earlier, The importance of 

incorporating the thermal mass layers in the building envelope have been addressed in detail in 

Chapter 1. However, it is to remind that the thermal mass materials are majorly employed to increase 

the heat capacity of the building envelope. Whereas by increasing the heat capacity, lots of dynamics 

benefits can be obtained, like increasing the Time Lag and as well as reducing the Decrement Factor. 

In this respect, it is also to remind that increasing the Time Lag can solely be met by having adequate 

thermal storage ”Mass” materials.  

Also, as per what is Highlighted in literature, (Al-Sanea & Zedan 2011) has enumerated the 

benefits of increasing the Time Lag capabilities of the building envelope in three key points which are; 

firstly, is to increase the electrical grid stability by shifting the peak demands time and dampening the 

peak load. Secondly, shifting the peak load also helps in increasing the AC equipment Coefficient of 

performance, since the equipment are required to supply for peak operation at a less severe external 

conditions. Lastly, and based on the previous point, and as a result of reducing the peak demands, less 

HVAC equipment sizes will be needed. Hence, less ducting sizes will be required, less capital, as well 

as less maintenance operational costs, can be achieved. 

Having said that thermal mass are the major envelope components that can shift the peak 

load “heat wave” arrival time. Hence, it is very welcomed in Miditteranian climates where the major 

concern is the high diurnal temperature ranges. In such climates, the incorporation of the very thick 

mass walls eliminates the need for insulation materials since the mass materials can provide heat 

resistance by “capacitive heat resistance” means, unlike the insulation materials that offer a “resistive 

heat capacities” (Roaf et al. 2007). In short, it is to say that the numerous benefit of utilising the 

thermal mass materials as the core envelope materials are well addressed in literature (Stazi et al. 

2015) and they are also a genuine part of the vernacular architecture in the Hot Arid Climates and on 

the Mediterranean Climates as well. 

On the whole, The use of thermal mass materials to supply for high time lags is very popular 

in climates with large diurnal ranges and where the basic aim is to supply for high Time Lags. A good 

example of such effect can be seen in Figure 5-1. This example shows a massive conventional walls 

and how they provide substantial Time lags between the indoor and outdoor temperature in a Haveli 

in Jaisalmer India, as surveyed by (MATTHEWS 2000).  In this figure, the Time lag can reach up to two 

and half days on a ground floor level and can escalate to a seasonal variation in the basement where 

the heat that occurs at the moment in the ambient, its influence arrives inside the house after 23 days 

in average. Surprisingly, for the basement floor, (MATTHEWS 2000) have found that the Time lag in 

summer season may even jump to 91 days; i.e. a three months of heat daily. 
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Figure 5-1 Time lags between the indoor and outdoor temperature in a Haveli in Jaisalmer India. 

Source: (MATTHEWS 2000) 

 

Also, from Figure 5-1, and as similar to the typical vernacular architecture, it can be noticed 

the thermal mass walls have always been very thick and cumbersome. Since these massive walls are 

constructed either from brick or adobe. Meanwhile, in the contemporary example, it is commonly 

found that concrete blocks are being used to supply for the heat capacity and thermal mass 

requirements. However, even in climates that require such kind of huge heat capacities, the extremely 

thick walls are no longer seems to be applicable in modern architecture, especially in cities where the 

land price is so high and when the plots are very small and/or narrow.  Moreover, another concern of 

employing such massive construction may be hindered by the recent safety measures that overlook 

at the risks of these constructions during earthquakes. Therefore, a legitimate question would be of 

how to incorporate such very thick constructions in a modern settlement where such massive walls 

occupy vast areas of the typically small and expensive estates. 

Even more, as shown in previous chapters, that a better thermal performance and greater 

Time Lags can be achieved if the building envelope thermal mass and insulation layers are furtherly 

subdivided into many small segments. This notion of layer segmentation was introduced by (Bond et 

al. 2013), and have been covered by simulation results in chapter 3. However, as has been depicted in 

Figure 5-2, a remained question is how to practically subdivide and disperse the thermal mass 

components into a small layer that may not exceed few centimetres/or maybe millimetres. The 

practicality issue was also reported by (Bond et al. 2013), whereas in their conclusion, the authors 

have shown that the fabrication issue of such multi-segmented walls needs to be furtherly studied.  
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Figure 5-2  The practicality constraint against maximum utilisation of conventional thermal mass 

materials in multi-layered envelope components.  

 

The practicality of producing finite thermal mass materials, especially when thinking about 

concrete /brick at that thickness, might not be a valid option in the construction industry.  The reasons 

behind this practicality issue can be argued in two points; 

i. The conventional concrete/brick/rocks (e.g., granite, marble) are very stiff, and such rigid 

materials become very fragile at small thicknesses, that will be difficult to produce on site 

(delicate cutting) and will also be difficult to mobilise and handle. Moreover, even if these 

materials are produced at such thin segments, they cannot be used to cover large areas 

without supporting structural systems. In the end, this structural support will form the 

thermal bridges that will weaken the envelope overall thermal performance.  

ii. For the purpose of the experiment, the commercial earth-based tiles are not usually 

produced in a smooth back and front faces and without any textures or bevelled edges 

because these materials are typically are being applied at wet-based- application (e.g. on 

cement screeds). Such grooves are unwanted in the experiment, as they create an extra 

air gap that will influence the conductivity of the adjacent layer. Hence, the measured 

results will then be less reliable and would lead to erroneous judgements.    

 

In conclusion, It is apparent that conventional materials can not be used in the thin and segmented 

wall. Therefore the initial target is to find and identify another way to enhance the thermal envelope 

capacity with an alternative thermal mass materials.  
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As a result, the original purpose was then to find a suitable material that has the proper thermal 

capacity (heat storage) but At the same time, can be produced at subtle thicknesses. Consequently, 

the first questions turned to be; how to identify the thermal storage characteristics of the material? 

Moreover, which materials can replicate the use of the brick and concrete blocks but have, if not 

better, the same heat storage capabilities? The upcoming section is dedicated to narrate how the 

rubber was finally selected as to be the thermal storage components in the developed envelope 

construction. 

5.2 Thermal Mass material selection. 

To find and proposes a god alternative to the brick and the concrete materials, it was 

important to firstly understand why they have been employed as thermal mass materials in the first 

place. In this regards, it is to highlight that the identification of a suitable heat capacity material and 

its associated thermophysical characteristics have been partially covered previously in th eliterature 

rview. Here, it is to elaborate that the definition of the heat capacity has been addressed in various 

ways. For example, the thermal diffusivity concept, as an opposite (reciprocal value) of the heat 

capacity, is identified by (Kalogirou et al. 2002) in the cooling equation; 

𝒶 =  𝑘/𝜌𝐶𝑝  

Where;  

𝒶 = the diffusivity  

𝑘 = thermal conductivity (W/m K) 

𝜌 = density (kg/m3) 

𝐶𝑝 = specific heat (J/kg K) 

Hence, by the inversion of this equation, ti can be deduced that the thermal mass is improved 

by having dense and high specific heat materials, but it also should be at low thermal conductivity so 

it can store the heat rather than pass it directly to another side. Also, it can be deduced that the heat 

capacity unit is (s/m2).  

Moreover, as per SAP, the Standard Assessment Procedure, and (SBEM) Simplified Building 

Energy Model (Designing Buildings Ltd. 2016),  the thermal capacity is addressed as a measure called 

Kappa value.The Kappa (k-value)3 refers to the heat capacity of each meter square of a material and 

is measured in (J/m2K). Whereas the thickness of the material is considered while its heat conductivity 

is not incorporated, as can be seen in the equation below provided by (BuildDesk 2016); 

                                                           
 

3 The Kappa vlaue (k-value) should not be confused with the thermal conductivity (K-value). 
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𝑘 =  10−6 Σ (𝑑𝑗 𝑟𝑗 𝑐𝑗)  

Where;  

𝑑𝑗 = the thickness of layer (mm) 

𝑟𝑗  = density of layer (kg/m³) 

𝑐𝑗 = specific heat capacity of layer (J/kg·K) 

Therefore, in conclusion, it is agreed that the core the thermophysical properties that affect 

the heat capacity of material are the Density (kg/m3) by the Specific Heat (J/kgK) and the conductivity 

(W/mK). Moreover, based on such definitions, (Asan & Sancaktar 1998) have studied the heat 

capacity, the Time Lag nad Decrement Factor capabilities of some materials that can be seen in Figure 

5-3. From this list, the best five materials that have the highest heat capacity capabilities are 

highlighted. Whereas from this list, the granite is excluded, since it has the same applicability problems 

that are found in brick and concrete i.e. can not be produced at fragile layers. Moreover, the asbestos 

is also excluded of its health hazardous implication issues.  

 

Figure 5-3  Compound Decrement Factors and Time Lags for different building materials. The 

highlighted materials have high heat capacity capabilities, great time lag and low decrement factor 

values.  

Source: (Asan & Sancaktar 1998) 

 

Moreover, from the same reference and form Figure 5-3 above, the potential materials i.e. 

the rubber and the asphalt sheets are noted for further investigation. A list of materials with similar 

characteristics was obtained from various resources (Asan & Sancaktar 1998),(Thermtest Inc. 2016) 
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and (MakeItFrom.com 2009), and their thermal capacities were calculated and evaluated concerning 

the traditional brick, concrete and some fire rocks as well. The list is shown in Figure 5-4 and is sorted 

based on the heat capacity properties where the highest is at the top of the list. Subsequently, it can 

be confirmed that the asphalt and rubber (with its various types) does have a very high heat storage 

capabilities. It also to note that the concrete, brick and the marble are at the very bottom of the 

performance ranking order. Meaning that, the rubber and the asphalt materials are way much better 

regarding heat storing capabilities when compared to the conventional thermal mass materials. 

 

Figure 5-4 The heat capacity capabilities of a selected list of materials including various types of 

rubber and asphalt, together with the conventional thermal mass materials i.e. brick concrete and 

some rock types. Data are obtained from (Asan & Sancaktar 1998),(Thermtest Inc. 2016) and 

(MakeItFrom.com 2009). 

* Shaded materials are the conventional thermal mass materials 

 

At a later stage, the asphalt was excluded from the list because of testing technicalities issue. 

That is, the asphalt has a rough texture that would prevent perfect layers attachments and will create 

lots of air pockets. Besides, it the asphalt sheets can not be in direct contact with the heat flux 

generators and meters as well. As a result, and as can be seen in Figure 5-5, the final list is confined to 

rubber products whereas the best four rubber products that have the highest heat capacities are; 

Butyl rubber, Isoprene rubber(IR,NR), Chloroprene Rubber (CR, Neoprene )and Silicone rubber sheets, 

respectively. 

Material Name
Denisty 

(kg/m3) 

Cpecific Heat

(J/kgK)

Conductivity 

(W/mK)
Claculated Heat Capcity (s/m2)

butyl rubber 900 1966 0.088 20.1                                                   

rubber, butyl 900 1966 0.088 20.1                                                   

neoprene rubber 1250 2176 0.192 14.2                                                   

rubber, neoprene 1250 2176 0.192 14.2                                                   

rubber, natural 930 2092 0.138 14.1                                                   

silicone rubber, low k 1300 1255 0.138 11.8                                                   

rubber, dielectric mix 1100 2092 0.209 11.0                                                   

nitrile rubber 1000 1966 0.243 8.1                                                      

rubber, nitrile 1000 1966 0.243 8.1                                                      

rubber, high k 1100 2092 0.293 7.9                                                      

rubber, buna, with carbon black 1000 1757 0.243 7.2                                                      

styrene-butadiene rubber + carbon blk 1000 1757 0.243 7.2                                                      

polyurethane rubber l-100 1250 1674 0.293 7.1                                                      

rubber, polyurethane elastomer l-100 1250 1674 0.293 7.1                                                      

silicone rubber, rtv 521 and 093-009 1400 1255 0.272 6.5                                                      

Silicone rubber sheet [MIn] 1100 1050 0.2 5.8                                                      

rubber, natural, foam 100 2092 0.042 5.0                                                      

silicone rubber, medium k 1300 1255 0.335 4.9                                                      

butadiene-acrylonitrile rubber + c 1340 1443 0.418 4.6                                                      

Asphalt sheet 2300 1700 1.2 3.3                                                      

Concrete block 1400 1000 0.51 2.7                                                      

Brick block 1800 840 0.62 2.4                                                      

silicone rubber, high k 1300 1255 0.753 2.2                                                      

Marble (White) 2500 880 2 1.1                                                      

Rubber board 1600 200 0.3 1.1                                                      

Granite (red) block 2650 900 2.9 0.8                                                      

Marble (Red) 2650 900 2.9 0.8                                                      
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Figure 5-5 The heat capacity capabilities of four best-performing types of rubber.  Materials 

thermophysical property data are obtained from (Thermtest Inc. 2016) and (MakeItFrom.com 2009). 

Another important property that is unique about rubber as a possible thermal mass material 

is its flexible nature. As stated before, the mass materials are usually rigid in nature, since they require 

high density “material” to store the heat within, in turn, this high density is associated with high rigidity 

and stiffness. To further check this property, i.e. the elasticity, Young’s modulus chart is brought to 

the discussion. As can be seen in Figure 5-6 the rubber is found to be among the materials that have 

high elasticity while having a high density at the same time. Here, it is to emphasise that the rubber 

elasticity is imperative for the serving the purpose of having very thin construction layers. Moreover, 

as being flexible, the elastic materials can be incorporated into large panels,  similar to the SIPS 

(Structural Insulated Panel Systems). In turn, the large panels are very efficient in reducing the heat 

flux through thermal bridges. Not to forget that such smooth surface materials will have leaves no air 

gaps and be in better contact to with each other in the experimental rig. 

 

Figure 5-6  Young’s modulus, E, against density, ρ. The design guidelines assist in the selection of 

materials for minimum weight, stiffness-limited design. (Data courtesy of Granta Design Ltd) 

Reference: (Cambridge University Engineering Department 2003) 
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Furthermore, the elasticity character makes the rubber not only produce at thin layers, up to 

few millimetres but also it offers many other privileges. The first thing is that it offers a much better 

acoustics when compared to other stiff materials like concrete. This specific property adds much value 

to use the rubber materials as facings without the fear of echoes and sound waves reflections. In 

another word, some conditions dictate that the thermal mass material needs to be exposed directly 

to space as to act as a heat reservoir. In such cases, the concrete and brick materials incur acoustical 

problems that will no longer exist with the use of rubber as a thermal mass components. 

In another respect, it is worth to mention that some rubber materials are commercially 

produced as a fire retardant and fire resistance materials. In fact, some rubbers are used in very 

extreme pressure and heat conditions, e.g. the Butyl rubber is used at the internal part of the 

automobile tyres. Also not to forget that rubber materials are foldable, easy to cut and customise, 

therefore, they would be easy to transport, and easy to be installed and joined with other parts of the 

building construction materials. Moreover, they can be attached using adhesive materials, hence, can 

be easily combined with the insulation materials as to compose the multi-layered construction panels 

and components. 

The last thing to address about the rubber material is about its cost. As in general, the rubber 

materials are expensive and therefore, might not be feasible in an initial cost point of view. However, 

a good analogy to the payback and the long-term financial benefits could be the high price of the 

Vacum Insulated Panels (VIP). These superinsulation panels are also very expensive. However, as per 

a comparison made by (Schiavoni et al. 2016); if the land price is high, as in their case is above 3000 

€/m2, then the area saving benefits when replacing a 35 cm mineral wool with a 6 cm of the VIP, will 

compensate for the VIP’s very high installation costs. Likewise, the use fo the very thin rubber 

materials as a heat storage medium instead of the thick brick and concrete blocks may also sound 

economically feasible. In conclusion, it is assert that the short list, shown in Figure 5-5 seems promising 

in replacing the conventional thermal mass materials. However, due to time and budget limitations, 

the experiment could only be conducted with only one rubber material. In the end, the rubber with 

the highest heats storage potentials i.e. Butyl rubber was supplied and was used in the experiment. 

5.3 Experimental setup 

Before is commencing the experiment of testing the rubber materials exploitation as a heat 

storage mediums in the building envelope, core issues had to be considered and well addressed. This 

issue is about the availability of the experimenting device, which was not readily available and can be 

used for a limited time. This consideration was important since the experiment was intended to 

investigate a different number of the layer arrangments. Therefore, the layer arrangments 

permutations are almost confined to three to four setups. This point is elaborated in the following 

three sections.  

Also, it is important to mention the complete description about the thermophysical properties 

of the butyl rubber materials was not available for commercial products. Therefore the material was 

purchased and then sent to the Japan Testing Center for Construction Materials (JTCCM) to test the 
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conductivity and the specific heat. The test results are plotted against the expected performance early 

introduced inFigure 5-5. Subsequently, and as can be seen in Figure 5-7, the procured Butyl rubber 

seems to have a much less heat storage capabilities. 

 

Figure 5-7 The heat capacity of the procured Butyl rubber compared to the base information.  

 

5.3.1 The base configurations  

In the beginning, the rubber material investigation was aimed to include multiple numbers of 

the settings. The reason behind this in not only to explore its efficiency ranges but also to compare 

the experimental results with the simulation and literature findings. The holistic investigation plan is 

represented in Figure 5-8. In the full inaugural scenario, the configurations of [MI] and [IM] are 

proposed to be the reference cases and then to develop the number of permutations that disperse 

the layers but maintain their “mother” boundary conditions. In this regards, deciding the number of 

rubber and insulation layers was an important issue, and it was proposed to be 12 layers. By having 

12 layers, it is possible to have four descendant scenarios that have an equal (homogeneous) 

distribution of the insulation and rubber across the wall. For example, if the base configuration is [MI], 

then, this base configuration wraps all the eight insulation layer segments at the inner side while the 

eight rubber segments will perform the external face. The next setup will be having four insulation 

layers on the inner face, followed by four rubber segments, then followed by another four insulation 

segments and ending up with the last set of 4 rubber segments. The same pattern is repeated for the 

groups of 2 and one segment, resulting in four setups as shown in Figure 5-8.  

However, as stated earlier, due to experimenting device availability issue, only three of these 

configurations was to be selected. That is, the device was only available for less than one month, and 

since each setup requires 4~5 days to investigate – as will be seen later- this means that in total four 

configurations can be tested in total. Therfore, in the end, and as to leave a margin of one experiment 

failure, three layer configuration has to be selected out of the initially-proposed eight scenarios. To 

choose these three configurations, a step back decision was needed. That is, what are the most 

important and significant configuration that can be tested. Moreover, in this regard, the settings [MI] 

and [IM] was initially chosen. The reason behind this is the findings of Chapter 3 and the literature 

survey – introduced in Chapter 1. 
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 In Chapter three it was confirmed that the least number of layers usually produces the least 

dynamic resistance (reflected as high-anti insulation mitigation capabilities). Besides, in the literature, 

and although there is no rigorous outline of which configuration is best for decrement factor or time 

lag, some articles have derived at the configuration [MI] entail the least time lag (Asan 1998),  (Al-

Sanea & Zedan 2001) and (Asan 2000). Lastly, For the remaining (third) configuration, it was decided 

to go for the maximum number of layer segmentations (layers grouping) i.e. each sheet of rubber is 

sandwiched between two single sheets of insulation. This decision was made as to explore the 

variation between the minimum number of segments i.e. two groups of layers as in [IM] and the 

maximum number of layer’s groups e.g. [IM x 8]. The last decision to report is that having seven layers 

of insulation instead of eight while maintaining the rubber layers at eight layers in all the three 

configurations. That is to investigate the dispersed configuration as if it was derived from the [MIM] 

configuration instead [IM] and [MI], and by this mean, it is to test the dispersed settings in a neutral 

position (half way) between the [IM] nad [MI] configurations. Figure 5-9 shows the three 

configurations that have been selected for the investigation. Noting that one layer of insulation was 

taken out as to have the disperse configuration with external rubber layers i.e. [MIM x 8]. 

 

 

Figure 5-8  Two first sets were proposed for the experiment, where configuration either have an 

internal mass (rubber) or external mass.  
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Figure 5-9  the experimented configurations.  

Note: one insulation layer is excluded as to provide a neutrally dispersed-configuration i.e. [MIM x8] 

that is halfway between [IM] and [MI] arrangements. 

 

5.3.2 The Peltier device, and the Rig setup  

The experimental device used in this study is based on simple principles of controlling the heat 

flux subjected to the specimen internal and external sides, as to maintain a specified temperature, 

whereas the heat flux is measured and recorded during the process. The heat flux is generated by 

thermoelectric Peltier plates which use electricity to act as a heat pump and conveys the heat from 

one side of the plate to the other. Hence based on this Peltier effect, the device is commonly known 

as a “Peltier Device” and is shown in  Figure 5-10. Similar devices that work n the same principle are 

commonly found in the material measurements indutstye.g. the same Peltier Device is used by Japan 

Testing Center for Construction Materials (JTCCM). However, the Peltier device employed in this study 

is developed in Mae Laboratory – the department of architecture, Universty of Tokyo, and it was 

calibrated and validated by the JTCCM. In Mae Laboratory it is used for testing the Phase Change 

Materials (PCM) materials. Whereas the heat flux and temperature changes are used to calculate the 

enthalpy and specific heat changes over time and in accordance to the external heat flux 

manipulations. 
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Figure 5-10  The Peltier device controlling dashboard and experimental units.  

Courtesy: Tatebayashi, Keisuke, Mae Laboratory – Dept. of Architecture, UoT. 

 

In this experiment, the targeted parameters are the time lag and decrement factor. In this 

regard, it is essential to state that the herein device can not be used to evaluate the natural 

temperature change at the inner side, which would be a perfect condition to test the natural 

temperature fluctuation regarding the external heat flux. Then, the time lag could be obtained by 

monitoring the change of the internal face temperature in regards to the external changes. Rather, 

using this device, the time lag could be achieved by monitoring the internal heat flux wave and 

reference it with the external heat flux sinusoidal curve. That is, it is to monitor the time of the peak 

internal heat flux that is generated by the device to maintain the inner surface temperaure, which in 

turn is replicating that internal temperature peaks. Likewise, the decrement factor can be obtained by 

calculating the ratio of the internal heat flux range over the external heat flux ranges, rather than 

temperature fluctuation ranges. The thermal heat flux metre is shown in Figure 5-11. However, the 

Temperature of the inner layers is also monitored over the time, where it is recorded to show the heat 

wave amplitude pattern over the different layer setups. Such monitoring is aimed to visualise the 

influence of the insulation and the thermal mass (rubber) materials on the heat wave behaviour.  
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Figure 5-11  The heat flux meters are 

attached to the internal and external 

faces of the wall specimen. 

 

Lastly, it is to elaborate the descriptive information about the experimental setup. Here, it is 

to mention that the Butyl rubber and the insulation sheets are initially prepared in a 30cm by 30cm 

tiles. These tiles are then arranged according to the investigated configuration and positioned 

between the Peltier plates; where they are surrounded by an Extruded Polystyrene and a mineral wool 

insulations as can be seen inFigure 5-12. For the experiment, the employed insulation is an XPS 

(Extruded Polystyrene) of a one centimetre thick and have a K-value of about 0.028 (W/mK). The XPS 

heat capacity value was not provided by the seller. However, it is not expected to contribute to the 

heat storage of the examined specimen since it has a very low density and it is just 25 kg per meter 

cube. The data logger is a HIOKI LR 8401 that can register a time interval up to one second. The 

experimental setup of the configuration [IM], the controlling dashboard, the data logger and the 

measurement probes are all can be seen in Figure 5-13. 

 

Figure 5-12  The Butyl rubber and the Extruded Polystyrene (XPS) preparation and positioning of 

the Peltier device.  
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Figure 5-13  Various experimental device components  

Top Right: the device dashboard. Top Left: the data logger.Bottom right: the temperature 

thermocouple meter attached to an intermediate rubber material. Bottom left: The group of the 

insulation materials in the configuration [IM]. 

 

5.3.3 Thermal conditions setup 

Based on the device controlling parameters and based on the purpose of the experiment, it 

was concluded that the temperature profile should be maintained constant at the internal 

temperature while fluctuating on the other side (outer side). It should be set like this because the core 

purposes of the experiment are to test the Time Lag competence of the three configurations, in the 

first place, and then,  to estimate the Decrement Factor and other dynamic performance evaluation 

measures. The constant inside temperature then resembles an air-conditioned space with a fixed 

thermostat value. On the other hand, the external temperature is set to follow a sinusoidal pattern of 

a 24 hours cycle. This sinusoidal can be thought of as the ambient temperature fluctuation rather than 

the sol-air temperature since the Sol-air usually has sharp peaks at the midday -depending on the wall 

orientation and shadings- and a smooth sinusoidal curve can not resemble it (refer to chapter 1 for 

the Sol-air temperature profiles).  

The sinusoidal equation, given below, is a basic Sin curve equation and is typically found in 

many types of research e.g. (Al-Sanea & ZEDAN 2001). Another example is equation № four provided 



107 
 

by (Asan & Sancaktar 1998) P. 161 is a mathmatical equation that is used for the same purposes, 

despite that authors used it to mimic the Sol-air temperature. 

 𝑇𝑜𝑢𝑡(𝑡) = 𝐴 . sin(𝜔𝑡 −  ϕ) + 𝑇𝑂𝑚𝑒𝑎𝑛  

Where;  

𝑇𝑂𝑚𝑎𝑥 = The Maximum outodoor temerature 

𝑇𝑂𝑚𝑖𝑛 = The Maximum outodoor temerature 

𝑇𝑂𝑚𝑖𝑛 = is the mean outdoor temeprature which equlas  𝑇𝑂𝑚𝑎𝑥 − 𝑇𝑂𝑚𝑖𝑛 

𝐴 = is  the temperature amplitude; which equlas  (𝑇𝑂𝑚𝑎𝑥 − 𝑇𝑂𝑚𝑖𝑛)/2 

ϕ = the phase; where midnight is assumed to be the lowest Temperature  

𝜔 = is the Frequency which equals a one day cycle 

The induced temperature (Tout) is assumed to range from (10 ~ 40°C), while the internal 

temperature is fixed at 10°C . and it can be noticed that the minimum external equals the internal 

temperature. The temperature variation between both wall sides is set in this way as to be a 

challenging condition that could pronounce variation of the dynamic capabilities of the different 

configurations.That is to examine the heat storage capacity of the walls and how they would maintain 

the minimum temperature that occurs on the external temperature.  

 Consequently, for the outer temperature equation, the amplitude (average outdoor) 

temperature well then equals 25°C, and the amplitude will, in turn, equals 15°C. Here it is to mention 

that, due to device input limitation, which is up to 80 cells, the temperature signal is sent every 20 

minute. As a result, for every day there will be 72 temperature updating signals. Besides, it is also 

assumed that the peak temperature occurs at the midday (π/2). The resultant curve and the last 

sinusoidal equation parameters are shown inFigure 5-14 below. 

 

Figure 5-14 The Experimental conditions, where the internal temperature is fixed, and the Sinusoidal 

Curve resembles the external temperature. 
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After the whole setup is done, the experiment starts by running the device to meet a specified 

one temperature that resembles both, the internal and external temperature. This first temperature 

is either the average value of the outer temperature fluctuation range, or it can also be set to equal 

the internal (resembling the thermostat) temperature. In this experiment, the initial temperature 

equalled the internal temperature i.e. 10°C. The device is kept operating at this setup until this initial 

temperature is found in all the inner faces of the wall, here, the importance of the thermocouple 

sensors appears well. Subsequently, after all, the layer reaches the 10°C, the external Peltier plate is 

operated in the sinusoidal mode and is kept to run in a continuous cycle for about four days as to 

assure that the heat fluctuation is steadily repeating every 24 hours. 

5.4 Results and discussion 

Before delving into the results and discussion, it is to mention that the heat direction inside the Peltier 

device can be changed. That is, for a given setup of a right-hand insulation and left-hand rubber 

materials, the heat can be set to flow from the right plate to left one. Hence the configuration can be 

perceived as [IM],  on the other hand, if the heat is set to flow from the plate left to right plate, then 

the configuration can be viewed as [MI]. As a result, the investigated configurations with the same 

group of the layer but with different boundary conditions can experiment without rearranging the 

layers on the device. Subsequently, the investigated configurations can be well depicted as in  Figure 

5-15 based on the fixed and fluctuated temperature settings, rather than the wall specific orientation. 

 

Figure 5-15 In the Peltier device 

the configuration can be altered by 

changing the heat flux direction 

instead of rearranging the layers. 

 

After running each configuration for about three and half days, where the sinusoidal curve is 

at least repeated for the three time, the results of a 10 seconds interval are collected and ran through 

a series of processes. The important process is to convert the flow meters recorded Volt values into a 

(W/M2) values. However, the temperature values are directly obtained and plotted to give an initial 

idea about the temperature distribution profile “print” of each configuration. In addition, the 

temperature profile is also used to monitor the and assure that the device is maintaining the desired 

internal and external temperatures. Not to forget, it is also important to ensure that sinusoidal curve 

is smooth enough since the temperature is updated every 20 minutes. Altogether, the temperature 

profiles of the three configurations I spotted in Figure 5-16. From this figure, the effect of the mass 

can be recognised in the first and third configuration, i.e. [MI] and [MIM x 8] where it can be seen that 

there is a slight shift of the temperature wave -a horizontal change in the time axis. While the effect 
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of the insulation is found on the high temperatures difference between the insulation layers and can 

be well seen in all the configurations as a vertical gap – temperature differences. This temperature 

gap well resembles the Decrement Factor properties across the settings. In addition, it can be noticed 

that The third configuration i.e. [MIM x 8] have a combined effect of both the insulation in reducing 

providing the vertical gap and the rubber in providing the vertical shift, and this synergic effect occurs 

for each set of insulation and mass layers.  

 

Figure 5-16  The temperature distribution profiles for the various configurations. The effect of the 

rubber appears a Time Lag which is the slight shift between the peaks.  While the insulation prevails 

in reducing the temperature -vertical gap (Decrement Factor). 

 

Additionally, The heat flux waves variation between the internal and outer faces are 

developed. The analysis results of the heat flux are the base evaluation measure that used to identify 

the dynamic thermal performance of the walls. As to plot the heat flux in an understandable and 

smooth traceable curves, the heat flux 10 seconds interval data are averaged over 20 minutes. After 

plotting the refined heat flux curve, it is important to realise that for the interior face flux, the less 

amplitude means much more stable interior and less cooling load will then be required. On the other 

hand, for the external heat flux curve, the higher amplitude means greater thermal capacity since the 

device is applying much heat to meet the required temperature. In other words, the higher the 

external heat flux amplitude, the more resistance the configuration is opposing to the obvious 

weather changes. Figure 5-17 is sample case of the [MI] that is used to demonstrate this issue, where 

the green colour represents the heat flux at the internal face, while the orange represents the external 

heat flux.   
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Figure 5-17  The heat flux curves of a sample configuration of [MI].  

It is to note that the higher flux at inner face means that configuration has higher heat capacity and 

is resistive to severe weather conditions. While lower heat flux at inner face means that less heat is 

getting inside.  

 

Based on this definition, the three configurations are individually potted as can be seen 

inFigure 5-18. It is apparent that the highest heat storage abilities are found at configuration [MI], 

since it have the highest external heat flux patterns, followed by the [MIM x 8] configuration, and the 

worst among this group is the [IM] configuration. On the other hand, the internal heat flux seems to 

be equal among all the configurations. However, if the internal heat flux is similar to all the 

configurations does not mean that their performance is the same. Figure 5-19 is made to compare the 

three configurations inner and outer heat fluxes better on shared graphs. For example the [MI] 

configuration have stored much heat while [IM] did not, hence if they demand the same internal heat 

flux (cooling) then, in fact, the configuration [MI] have dissipated back (to the outside) a lot of the 

stored heat, hence its dynamic thermal performance is much better than the [IM].  
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Figure 5-18  The individual internal and external heat flux patterns of the investigated 

configurations. 
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Figure 5-19  The outer and internal heat flux of the various configurations are plotted n the same 

graph for better referencing and comparison. 

 

To express the relation between the external and internal heat flux magnitudes, the 

Decrement Factor value is obtained.  For each configuration, the decrement factor calculation starts 

by finding the minimum and maximum heat flux values for the internal and the external surfaces, over 

a three complete days cycle. Afterwards, the decrement factor ratio is obtained by subdividing the 

internal heat flux range (i.e. maximum minus minimum) over the external heat flux range. The 

decrement factor values for the three configurations is displayed in Figure 5-20. 
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Figure 5-20  The Decrement Factor values and ranking for the various configurations. 

 

Likewise, the Time Lag is also identified for all the three configurations. Inaugural, for illustrate the 

Time Lag in a graphical presentation, the heat flux profiles of the three configurations are recalled, but 

with a small modification to the internal heat flux curve. That is, as to visually identify the heat flux 

peaks (either minimum or maximum) the internal heat flux curve is multiplied by minus one, as to 

“flip” mirror the curves around the y-axis. The resultant curves are shown in Figure 5-21, and it can be 

seen that the multi-layered configuration i.e.[MIM x8] yields a clear gap between the peak fluxes. 

Moreover, it is apparent these fluxes are repeated on the same sequence over the three-day cycle. 
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Figure 5-21 The internal heat flux curves are inverted as to better visualise the Time Lag (heat wave 

peak delay) about the external heat flux curve 

 

 In addition to the graphical presentation, the Time lag was also calculated based on its simple 

definition, i.e. what is the time gap between the peak (Min/Max) external temperature and its next 

immediate peak (Min/Max) at the internal heat flux curve. The Time Lag ranking of the various 

configurations is shown in Figure 5-22. Similar to what was observed earlier, it is evident that the 

maximum Time Lag was obtained by the dispersed (multi-layered configuration), where it is estimated 

by eight and a half hours. The second longest Time Lag was found for the [MI] configuration while the 

[IM] configuration has provided a Time Lag of about three hours only. 
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Figure 5-22 The Time Lag values and ranking for the various configurations. 

 

Another factor that can reflect the dynamic thermal performance of the different layer configurations 

is the effective R-Value. Hence, an attempt was aimed at calculating the dynamic R–Value, using the 

same basic heat flux equation which is used in the static conditions, where the wall resistance (R-

Value) equals the heat flow (Q) over the Temperature difference between the two faces of the wall 

(ΔT). In the same respect, the effective R-value can also be calculated by converting the direct relation 

into a second order equation relation and implementing a definite integration of the heat flux and the 

temperature difference. Such equation is found in literature, where (Al-Sanea & ZEDAN 2001) define 

the Dynamic R-value in the following formula; 

𝑅𝑒 =  ∫ (𝑇𝑓,𝑜 −  𝑇𝑓,𝑖)
24ℎ𝑟

0

𝑑𝑡/ ∫ 𝑞𝑖𝑑𝑡
24ℎ𝑟

0

  

Based on this equation, the Temperature difference and the heat flux can be calculated instantly over 

the 24 hours without the need for integration. Hence, the total temperature variation (external 

surface temperature minus the internal surface temperature) and the total heat flux at the inner 

surface are used to calculate the Dynamic R-Value. On another hand, the nominal (steady state) R-

value is obtained from the conductivity and thickness values of the insulation and rubber materials in 

the very basic way. In the end, the results of the Dynamic R-value are plotted in Figure 5-23 against 

the nominal R-value. Moreover, it can be seen that all the configurations have shown a better dynamic 

R-value compared to the nominal one (that is usually prescribed in the building codes and references). 

However, it is paramount to state this dynamic R-value is plotted for the sake illustrating that the 

dynamic R-values is varied between the various configuration although they have the sam amount of 

insulation and rubber materials. Also, the Dynamic R-values are different from the nominal R-value. 

However, the Dynamic R-value calculation is not a reliable measure when using such experimental 

setup since the experimental device operates to maintains the temperature within a certain range. 

Hence, the temperature difference is same in all the configurations while they only vary in their 

internal heat flux values.  
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Figure 5-23  The Dynamic R-

values of the various 

configurations compared to their 

(shared)  nominal R-Value. 

 

Besides all, it is important to state that this experiment was conveyed on a sinusoidal (steady 

periodic) conditions. However, as shown in Chapter 1 the HVAC system operation and load can either 

be steady periodic or instantaneous. Each of which has its implications on the dynamic behaviour of 

the investigated configuration. Moreover, for the sake of elaboration, one case the last case was 

prepared to study the effect of initial transient operation on the resultant curves, where the whole 

experimental conditions were changed. That is the internal temperature is now raised and fixed at a 

25°C. Meanwhile, the outside temperature sinusoidal curve parameters are modified to fit a Maximum 

temperature of  45.7 °C, and a minimum outdoor temperature of  28 °C. Moreover, it can be noticed 

that the starting point occurs at midnight while the peak temperature arrives at 6 pm, i.e. after six 

hours rather than twelve hours compared to the first sinusoidal curve. As can be seen in Figure 5-24. 

Moreover, it is to state that the configuration used for this first transient sample investigation is kept 

at the dispersed arrangement but with adding another insulation layer at the internal face, as can be 

seen in Figure 5-25. Hence the subject configuration would appear as if it is derived from an [MI] rather 

than the [MIM] configuration. 
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Figure 5-24  The Experimental conditions of a proposed initial transient experiment, where the 

internal temperature is fixed, and Sinusoidal curve resembles the external temperature. 

 

 

Figure 5-25  The sample case 

(configuration) that is used for 

testing the effect of the initial 

transient operation.  

 

The resultant heat flux curve is shown in Figure 5-26.  Moreover, from this number, the initial 

transient conditions can be distinguished from the steady-periodic conditions. Where the latter 

appears after the experiment is run for a while and is very typical of what was seen in the earlier 

results. Meanwhile, the initial transient conditions are the configuration dynamic behaviour that 

occurs immediately after the initial fixed conditions, i.e. immediately occurred after the experiment 

starts running. Given these points, it can be seen that dynamic thermal behaviour of the wall 

configurations under the initial transient conditions is quite different from the steady periodic 

operation and requires further analysis.  
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Figure 5-26  The experimental situation of a proposed initial transient experiment, where the 

internal temperature is fixed, and the Sinusoidal Curve resembles the external temperature. 

 

5.5 Conclusion  

In this Chapter, it was hypothesised that the rubber materials could be utilised to compensate 

for the use of the conventional thermal mass materials in the building envelope. The various wall 

specimens “configurations” is subjected to a predetermined temperature – either constant or 

changeable - on its both faces (sides). This temperature is met by a device that imposes the 

appropriate heat flux via plates attached to the wall external and internal faces. In turn, the employed 

device relies on what is so called a “Peltier” effect, where change the electrical current works as a heat 

pump to transfer the heat from either side of the plates to the other. Hence the device is known as a 

Peltier device. In the end, it is to state that the instrument has efficiently met the desired 

temperatures, which is fixed at one side and fluctuated following a sinusoidal pattern that closes its 

cycle every 24 hours with an interval of 20 minutes between each temperature variation.  

All things considered, it is said that all the rubber walls have yielded the anticipated dynamic 

performances, regarding providing a high lag compared to its thickness when compared to results 

found in literature, namely when compared to the results of work provided by (Ozel 2014). In Ozels’s 

work the same insulation material (XPS) was integrated into three wall configurations that are 20cm 

thickness and have a brick as a heat storage medium. In  (Ozel 2014) article Table 3., it can be seen 

that the Time Lag for walls 1 and 2, herein named [IM] and [MI] had time lags of 9.21 and 8.84 hours 

respectively. In comparison to similar walls in this study, the experimented Time Lag for the same 

corresponding wall configurations was 3 and  6.4 hours, respectively. Here, it is to remind that the 

walls overall thickness were just 11 cm which is almost half of Ozel’s experimented walls. Also not to 
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forget, that the dispersed configuration, have approached 9 hours of Time Lag, which is a very close 

value for the results shown by  (Ozel 2014). In other words, it can be well said that incorporating the 

rubber sheets as a heat storage mediums in the wall structure can provide the same effect of using 

the brick but with a privilege of saving the space and cutting the wall thickness to the half. Moreover, 

as per what was hypothesised and provided by (Bond et al. 2013), the rubber layers dispersion over 

the wall would even lead to a much better Time Lag performances. 

On another aspect, and concerning the Decrement Factor, it is to say that the layer 

configurations had a very profound effect on the Decrement Factor performances. As when the 

external insulation arrangement [IM] lead to relatively small decrement ratio i.e. 0.07, the different 

settings i.e. [MI] that have an internal insulation instead had a decrement factor of 0.88. In this 

regards, and when comparing this result with the same research reviewed above i.e. Ozel’s results, 

the Decrement ratios are very high, especially when recognizing the at the same insulation material 

(with very similar properties) and almost the same thickness i.e. 8cm and 7cmhave been utilized in 

Ozel work and the study herewith, respectively. However, this bug variation in the decrement factor 

values might be ascribed to the change in decrement factor calculation method. As in Ozel’s study, 

the decrement factor is obtained from the natural temperature fluctuation, while in this study, the 

same value is achieved by calculating the ratio between the internal and external heat fluxes instead. 

It can also be argued that this variation might be caused by the nonlinear relation between the wall 

thickness and the decrement factor reduction. Meaning that, if the experimented walls are increased 

from 11cm to 20cm they might have shown much smaller decrement factors. To settle this issue, 

another set of wall configurations at a wall that is 20 thick and with an 8cm insulation needs to be 

investigated for the sake of better calibration with the study carried by (Ozel 2014). 

Form the Decrement Factor and the Time Lag rankings, shown in Figure 5-20 and Figure 5-22, 

respectively; it is to highlight that the configuration [IM] does not provide any advantages over the 

[MI]  or over the [MIM x8]. This inferior performance of the [IM] configuration might not differ if it is 

investigated under an initial transient operation. As per literature, namely the article of (Al-Sanea & 

ZEDAN 2001), one can support that having an internal mass would not help in reducing the 

instantaneous load unless the initial conditions are similar to the internal thermostat settings. That is, 

if the mass material (rubber) is placed inside and is cooled to 25°C, per say, and the internal conditions 

are to be maintained at the same 25°C- but not much less- then the mass will not require much 

instantaneous cooling load. 
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Chapter 6:  
 

6. Reflective paints study 
 

 

The contents of this chapter are concerned with the external surface properties of the building 

envelope, whereas all the previous chapters were oriented to investigate the envelope core 

configurations. Therefore, the main parameters studied herewith are not dealing with the dynamic 

thermal behaviour measures e.g. the Decrement Factor and the Time Lag. Rather, the temperature 

variation behaviour over the ambient conditions is the main evaluation criteria of this chapter. In brief, 

two solar paint experiments were conducted to test four key parameters. That is, in the first 

experiment, evaluating the performance of the solar paint compared to the conventional paint was 

the base target. In addition, the influence of the base sealer on the performance of the solar paint 

itself was studied as a second parameter. The solar paint colour was investigated as a third parameter. 

On the other hand, the Second experiment added a fourth parameter to the evaluation i.e. is the 

influence of the glossiness of the paint on its temperature reduction performance over the various 

weather conditions. The results of both studies are presented and discussed wehars a collective 

conclusion was finally presented regarding the use of the solar paint as a heat protection measure. 
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6.1 Introduction  

After exploring and testing the un-exploited potentials of the core components of the building 

envelope, the experiments conveyed in this chapter are concerned with the external properties of the 

envelope, i.e. the skin “facial” properties. Initially, the objective of studying the skin was aimed at 

utilizing the building skin to serve as a cooling device, which is mainly achieved through nocturnal 

radiative properties of the walls. However, since the measurements for such kind experiments are 

very expensive and falls beyond the financial status, the skin properties have been conceived in a 

different way. That is, the building skin study is oriented to examine the protection capabilities of 

typical – commercial- solar paint products. 

Both qualities, i.e. utilising the skin as a protection measure or as a cooling medium are a 

major part of the passive cooling overall strategies. In Figure 6-1, both strategies, i.e. skin as a 

protection measure and as a cooling measure are highlighted and traced back to their upper-class 

definitions. It is to highlight that the experimental investigation was carried in tow stages, where the 

first stage can be conceived as an exploration of the solar paint general protection capabilities. The 

second experiment has reduced the forces on two basic paint properties to investigate,i.e. the colour 

and the glossiness of paint, which are introduced in the second part of the chapter herein. Not to 

forget, that in the literature survey, which thoroughly covered  in section 3-, it was highlighted that 

the study of the external skin properties could be decoupled from the envelope-core studies, although 

they have an interactive influence across each other in the overall determination of thee buiding 

envelope characteristics. 

6.2 First experiment (inspection)  

The First Solar paint experiment was carried out in August 2014; The experiment was intended 

to test the application of the so-called reflective paint or a Solar Paint,  on flat roof tiles. It aimed to 

identify mitigation capabilities of solar paint to prevent the sunlight penetrating through the roof, and 

thereby, to recommend its application feasibility to the OM Solar project – at Okinawa. The key thing 

is, the findings of the first experiment was a base to develop the second experiment that avoided 

many of the error sources, as well as investigating other parameters under certain climatic conditions.  

However, the first experiment setup, data analysis and results are presented as the following. 

6.2.1 Experimental setup and methodology  

There were three main targets behind the first solar paint experiment. The first objective is to 

gauge the solar radiation reduction by using different Solar Paint types and comparing it with normal 

(commercial) paint, and bare roof tiles. Secondly, it is to identify the influence of using the supplied 

white paint base “sealer” on the performance of the solar paints. Finally, is to explore the influence of 

the colour tone on the solar paint performance, especially when thinking about dark solar paints.  This 

experimental research is described as in the following points. 
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Figure 6-1 The importance of the external Skin – and its effect on the envelope performance.  

Base Sorce: (N. B. Geetha 2012) 

 

For the data collection and measurement, a tool named HIOKI 8422-50 is used to collect and 

store the measured data, whereas thermocouple wire of Type-K are used to measure the surface 

temperature of the specimens.Ten ventilated roof blocks of a 37cm by 37cm and about 5cm thick was 

used as the testing medium. These tiles are placed on the building roof in two rows as can be seen in 

Figure 6-2. The roof tiles are relocated in the roof in way to minimize the shading effect of the adjacent 

buildings as can ve seen in Figure 6-3. Inaugural, there was a sided tested that aimed to calibrate and 

check if all the selected device sensors are reliable and have the same readings. Moreover, this 

inaugural test have also checked if the adhesive tapes (tapes that are used to place the probs on its 

place on the top of the tiles) have an influence on the device readings. 
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Figure 6-2  The bare concrete tiles are used to investigate the measurement tool (Hioki  8422-50) 

reliability and error margin. 

 

 

Figure 6-3  The roof tiles are located in a way to minimise the shading effect of the surrounding 

context. 

 

In order to estimate the shading effect throughout the day, the four tiles located at the far 

corners are kept plain (unpainted) as can be seen in Figure 6-4. As by comparing the temperature 

variation of these tiles, one can deduce if some parts are getting shaded at specified time of the day. 

For example, when the two or one tile located at the eastern side of the experimental rig are having 

a lower temperature when compared to their counterparts tiles on the western side, these means 

that the early morning sun has stricken part of the tiles while the others are still shaded by the eastern 

buildings. 
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Figure 6-4  The cornered tiles (1, 2, 9,10) are kept plain to monitor the shading effect. Meanwhile, 

the sealer base is applied over four tiles of the six tiles that will be painted. 

 

Subsequently, as can also be seen in Figure 6-4, the second stage was to apply the sealer (paint 

base) on four tiles numbered (5,6,7 and 8). The influence of the sealer itself is studied by implementing 

it to some tiles while applying paint directly to others. This investigation is decided during the sealer 

application to the first tile. And the reason behind this decision, i.e. to investigate the sealer effect on 

the solar paint performance, is that after taken Infrared photos, as in Figure 6-5, it was realised that 

the application of the sealer (as being opaque and white) have an immediate effect on the tiles surface 

temperature as can be seen in Figure. Hence, it was of interest to investigate if the solar paint sealer 

is contributing to the paint’s performance.  

 

 

Figure 6-5  The application of the paint base “Sealer” have an immediate influence on the surface 

temperature, where the difference between the plain tile and the tile with a sealer is about 15°K. 
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After applying the sealer bases, four oil based paints are applied on top of these tiles  i.e. (5,6,7 

and 8), whereas three of these were Solar Paints while the other is conventional paint. The solar paints 

used are the black, grey, and white colour of the same paint manufacturer. The conventional paint is 

chosen to be a grey colour. For the remaining two tiles, i.e. (3, and 4) solar black and solar white paints 

are applied directly to these two tiles with and without sealer. As shown in Figure 6-6, a matrix of six 

cases is then obtained. Where it can be noticed, that the regular grey paint is used as a reference base 

to compare the paints thermal performance. Meanwhile, the four plain tiles can also be used as 

reference cases as well as assessing the performance of the paint application in general on reducing 

the temperature of the tiles. Besides, it is to mention that the tiles temperature are measured on both 

sides, top and bottom, and as can be noticed in Figure 6-6, each tile has two numbers, where the first 

number indicates the top surface temperature probe number and the second indicates the soffit 

(bottom) probe number. This step is taken to calculate the temperature difference between the tile 

surface and soffit, and thus having an idea about the convention effects on the heat removal from the 

tiles surface. 

`

 

Figure 6-6  The six cases (permutations) are a named basis on the three parameters being 

investigated. The first parameter is the paint type either Normal paint or Solar paint. The second 

parameter is the paint colour (White, Grey and Black). The third parameter is either the paint is 

directly applied to the tile or applied on top of a sealer base.  

 

6.2.2 Results and Discussion  

As a start, and before collecting the data from the data logger, Infrared thermal Photos are 

taken to have an inaugural idea about the paints thermal performance. Figure 6-7 shows that all the 

painted tiles, including the regular grey tile and the black/grey solar tiles, are cooler than the base 

reference, i.e. the bare (plain) concrete tile. Also, the following points were also noted;  



127 
 

 The best Temperature reduction is achieved when using White Solar on Sealer  Δ T = 11.4°K. 

 The worst result among the painted tiles is when using Black Solar without a sealer base. 

 Paints on sealer showed better temperature reduction. That is, when comparing the White 

solar paint with the ad without the base sealer, the one with the sealer is cooler by 0.9°K than 

the solar paint that is directly applied to the tile without the sealer base. Similarly, for the 

Balck solar tiles, the one that has a sealer base is colder by 1.6°K. 

 The Black Solar paint on sealer performed better than normal grey paint that is also applied 

on top of a sealer base. 

 

Figure 6-7 The first Infrared thermal photos showing the surface temperature variation than the 

reference tile i.e. the bare tile.  Note that all the painted tiles are cooler than the bare concrete tile.  

 

Another important issue to point out is that some unseen errors have led to the exclusion of 

some results. The employed data logger does not have the capability to view the collected data from 

a remote location. Hence, some probes seem to have damaged after a few days of readings. The cause 

of these errors reading appears to be due to the excessive temperatures, since the experiment was 

conducted in August for 21 days starting from the fifth, and bearing in mind that the errors occurred 

in probes of the soffit temperature of Solar  Black tile that has no seal base, labelled as (S-B-F) and the 

soffit temperature of the Solar White on sealer (S-W-S). However, the cool temperatures data, that 

has an interval of 10-second records have bee averaged on an hourly basis. Afterwards, the results are 

produced whereas the central objective was to conclude the influence of using the solar paint, the 

paint colour, and the sealer base application are highlighted. Not to forget that the general behaviours 

and global observations are all addressed as per the following.   

 For the surfaces’ temperature recorded data (not the average data),  it is noticed that the 

conventional grey paint resulted in a significant temperature fluctuation. The conventional grey paint 
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on a sealer (N-G-S) have a recorded a minimum temperature of 21.4°C and a maximum of 63.8°C. 

Hence it has a fluctuation range of 42.4°K, over the specified time course. Meanwhile,  the white paint 

without a sealer base/ facial (S-W-F) had the most stable temperature fluctuation that was only 21.8°K. 

What the temperature ranges for the other cases is shown in Figure 6-8.  Moreover, it is also to 

highlight that all paints surface temperatures did not drop below the minimum temperature of the 

plain tiles. Meaning that, there are a winter heating penalties when using the solar paint is not likely 

to occur, despite that the measurements are taken during the summer.  

 

Figure 6-8  The fluctuation range of surface temperatures. The average temperature is for the bare 

concrete tiles i.e. (C1, C2, C3 and C4)  

 

For the soffit temperatures profiles, it can be noted, and as normally expected, tat the overall 

soffit temperatures are lower than the surface temperature. It can also be noticed that the there is an 

error in the probes of the Solar Black paint without sealer (S-B-F) was excluded from the results and 

from Figure 6-9 results due to continuous errors. Similarly, the Solar White paint with a sealer base (S-

W-S) have shown an errored reading most of the time, but it is kept in the graph to illustrate the errors. 

Beside these errors, it can also be seen that there is a minor change in the temperature fluctuation 

range orders. That is, similar to the surface temperature profiles, the minimum temperature 

fluctuation range was gain recorded in the case of (S-W-S). However, on the other hand, the maximum 

fluctuation for the soffit temperature is found in the reference cases average temperature which is 

ranged from 22.1°C to 55.6°C. Here, it is worth noting that the base cases (C1, C2,C3 and C4) where 

expected to show very close temperature profiles which is not the case. Moreover, this temperature 

variation on similar cases may be ascribed to the shading effects, since the shading period of each tile 

is likely to be different from the others due to their placement. However, From the previous points 

and Figure 6-8 and Figure 6-9, it is was seen that the soffit temperature have cooler temperature 

records and lower temperature fluctuation ranges. Figure 6-10 is prepared to invistigate the relation 
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be tween the surfcae tempretures furtherly and the soffit temperatures profiles. In this manner, and 

from the beginning, it is noted that there is no temperature time delay between those two 

temperatures, i.e. the soffit temperatures are typically in offset from the surface temperature. Overall, 

the difference between the surface averaged temperatures and the soffits average temperatures can 

reach  16.8°K at maximum, add the minimum is found to be 3.6°K, whereas the mean of the variation 

is calculated as 6.6°K. 

 

Figure 6-9 The fluctuation range of soffit temperatures. The average temperature is for the bare 

concrete tiles i.e. (C1, C2, C3 and C4). The results of the case of the Black Solar paint without sealer 

(S-B-F) are excluded due to reading errors., similar to what is seen in the solar white paint on a 

sealer, i.e. case (S-W-S). 
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Figure 6-10 The tiles surface and soffit temperature averages are showing that the soffit 

temperature instantaneously follows the surface temperatures. 

 

After covering the general temeperature trends, the following paragraphs are oriented to 

discuss the specific parameters that are set to investigate (listed earlier at the introduction). As a start, 

the impact of using the solar plant on reducing the surface temperatures is investigated. This 

investigation is made by comparing the surface temperatures of solar grey paint from one side, with 

the conventional grey paint and the bare tile averages from the other. The temperature profile of the 

period 8~26 August is presented in Figure 6-11. In this regard, it is important to state that the 

compared grey colours tone/value are not typically the same. Besides, results showed that the normal 

grey paint temperatures are almost conforming with the plain (bare) concrete tiles, even it got hotter 

than it in many peak hours and exceeded 55 ⁰C. On the other hand, the solar paint has shown a much 

lower peak temperature that remained below 47⁰C. 

 

 

Figure 6-11  the impact of using solar paint is studied by comparing the normal grey and solar grey 

paints in reference with the bare concrete tiles; where both are applied over a sealer base.  
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Subsequently, and as the impcat, if the solar paint is being realised, the color of the solar paint 

is studied when these paints are applied on a sealer base. The cases of white, grey and black solar 

paints on sealer are collectively compared, whereas the bare tiles average is also being plotted as can 

be seen in Figure 6-12. The results showed unexpected behaviours, whereas the (S-B-S) Solar Black on 

sealer shows the minimum peak temperature in many days when compared to the other solar paints, 

meanwhile, inverted cases where the grey solar paint yields a lower peak are also recorded. 

Furthermore, it is to highlight there was also an unexpected disorder of temperature peaks order and 

the colour tones. In other words, it is expected that the colour should have perform as white, grey, 

nad black or vice versa, but the temperature peaks ranking, for most of the days was grey, white then 

black as the lowest peak temperatures. There is no clear justification for this behaviour, but it may be 

assumed that the solar paints may have been influenced by the Infrared portions that they block from 

the sky where the paint colours do not interact with this solar spectrum component. 

 

Figure 6-12 the impact of using solar paint colour is studied by comparing the three colours of solar 

paints when applied over a sealer base.  

 

Likewaise, the influence of the colour paint is studied but for the cases that have no sealer on 

the base and the solar paints are being applied directly to the concrete tiles. For this investigation, and 

since there is no such case of solar grey on facial (S-G-F), only the black and white cases of (S-W-F) and 

(S-B-F) are compared and plotted along with the bare concrete tiles average temperatures. Unlike the 

previous case, the Black Solar paint applied directly to surface resulted in temperatures as high as or 
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higher than the bare tiles, as can be clearly seen in Figure 6-13. In another respect, it was monitored 

that the at days with low temperatures, the white paint have a tendency to fatherly decrease the 

surface temperature. This issue may raise back the winter heating penalty issues. Hence, it might be 

deduced that the heating penalties require another study that focuses on such tradeoff between the 

cooling load/temperature reduction on summer and heating load increase in the winter for the various 

solar paint cases. 

 

Figure 6-13 the impact of using solar paint colour without a sealer base is studied by comparing the 

white and black colours of solar paints. 

 

Having shown that solar paint is highly influenced by the presence of the sealer on its base, 

the specific solar paint colours are studied apart. That is, for the black solar paint, the cases of the 

application with the sealer base i.e. (S-B-S) and without the sealer base (S-B-F) are compared. From 

what is seen in Figure 6-14, it is very clear that the application of the black solar paint without a sealer 

base is meaningless. In another word, when the black solar paint is secretly applied to the tile, it yields 

temperature peaks that is equal the bare tile itself. On the other hand, despite the anomaly found on 

the 24th, the application of the black solar paint over a sealer base has maintained a peak temperature 

below the 40°C.   
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Figure 6-14  the impact of having a sealer base on the black solar paint is studied by comparing the 

cases (S-B-S) solar black on sealer and (S-B-F) solar black on facial surface. 

 

In the same manner, the influcne of the sealer application on the white solar paint was also 

studied. The cases of solar white on sealer (S-W-S) is weighed against the (S-W-F) solar white on facial 

base while accompanying the overall average concrete tiles average temperature. The result of these 

case are plotted in Figure 6-15, and from the first sight, it can be concluded that the white solar paint 

performing is not affected by the presence of the sealer on the tile base. The temperature profile of 

the cases (S-W-S) and (S-W-F) is almost conforming, with very few days (usually on cold days) e.g. 10th 

of August) where the solar white with no sealer (S-W-F) records a slight extra drop in the minimum 

temperature.  

 

Figure 6-15  the impact of having a sealer base on the white solar paint is studied by comparing 

the cases (S-W-S) solar white on sealer and (S-W-F) solar white on the facial surface. 
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6.3 Second experiment  

As per the results and finding from the first experiment, The objective of the second solar 

paint experiment herewith is to examine the role of the glossiness of the colour paint on its 

temperature profiles. Also, the experiment has also conveyed the colour, the application of the sealer, 

as well as the paint type (i.e. Normal and Solar) as investigated factors. With a little bit of attention to 

the seal effect on the temperature profiles. Moreover, it is worth t mention that the first experiment 

has raised many unseen issues that may have affected the results, and as well be explained in the 

following section, this error causes issues have been fully considered in the new (second) experimental 

setup.  

6.3.1 Methodology  

The second solar paint experiment inherited the same objective of the first one, as to utilise 

the solar paint as a heat mitigation measure rather than a heat dissipation measure (cooling). 

Therefore, the second experiment has commenced forming the first of September 2016 up to the end 

of that month. The experiment starting time was delayed due technicalities, however, the ambient 

temperature over the experiment period had some summer-featured days as well be seen later. Alos 

as stated earlier, the second experiment is done with a wider number of cases and permutations that 

would enable comparing the various factors in a detailed manner. In this regards, and as can be seen 

in Figure 6-16, the experiment consisted of 16 cases and where 18 tiles have been used – the 

plain/bare tiles are three tiles. In these 16 cases, the variables where The sealer application as a base, 

the Glossy and matt paint and the paint colour.  

 

Figure 6-16  The second experiment investigated factors and the resultant permutation (cases) 

matrix 
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Since the number of the cases was huge, a coding name was developed as to ease tracking 

and understating of the case properties and base formation factors. The name coding methodology is 

shown in Figure 6-17. 

 

Figure 6-17  The cases/permutations name coding methodology 

 

Additionally, as stated earlier, there were some issues that may have lead to errors or may 

have affected the overall results of the first experiment. These issues are expected to be listed as the 

following. Firstly, it is anticipated that the contextual shading has a limited the time when all the tiles 

are equally exposed to the sun radiation. Since on the early morning hours and during the late 

afternoon hours, the tall surrounding buildings cast shadows on the sided tiles while leaving the others 

under the solar radiation. For this reason, the experimental rig has been moved to the further northern 

part of the available roof area. Also, a previous solar exposure test was made using the Solmetric 

SunEye 210 tool. Moreover, despite the sunrise and sunset moments, the results have revealed that 

the experiment area (based on its four corner points) is not subjected to any contextual shading during 

the experiment period, i.e. September.  
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Figure 6-18  The second experiment is located at the less shaded area, where the sun exposure 

analysis confirmed that the location has full access to the solar radiation during the experimental 

period. 

  

Another important factor that is thought to have a significant impact on the soffit temperatures of the 

first experiment is the direct contact between the concrete tiles and the roof slab finishes. This direct 

contact may have contributed to raising the tiles temperature by two means. The first is by the direct 

conduction at the relatively mild/cold periods of the day, where the roof slab retains and stores much 

more heat compared to the small tiles that have a higher tendency to dissipate the heat. Moreover, 

through the radiation between the tiles soffit (that host the soffit probs) and the roof slab, and since 

the latter is mostly hotter than the tiles, then it does not allow collect accurate results of the tiles soffit 

as well as surface temperatures. For this reason, a base of a 5cm XPS insulation sheet is located 

beneath the tiles as can be seen in Figure 6-19. Also, this XPS is suspended from the roof slab by a 

small Styrofoam legs as to allow for ventilation and reduce the contact are between the XPS base and 

the roof to the minimum possible degree. Such technique was found in literature, namely, in the roof 

experiment carried by (Synnefa et al. 2006). 
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Figure 6-19  The tiles are placed over a cm XPS sheet that is suspended for the roof slab by a 

Styrofoam legs as to reduce the heat transfer for the roof to the tiles to the minimum degree.  

 

From the first experiment and based on the experiment concerns forwarded by (Synnefa et 

al. 2006), it was realised that the probes / sensor needs to be protected from direct solar radiation. 

The thermal couple naked heads are prone to report higher temperatures due to their metallic nature, 

despite their finite size. Therefore, an in-home made plastic hoods/caps with an aluminium foil being 

attached to their outer face. These caps are placed in a way to protect the probes from the low angle 

solar radiation as well as the noon solar radiation. The caps can be seen in Figure 6-20, where it can 

also be seen that they allow for air flow to pass over the probes.  

 

Figure 6-20 A custom made plastic caps with an aluminium foil finishing are placed to protect the 

thermocouple probes from the direct sunlight throughout the day. 
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Reagrding the protection caps and the measurement probes, it is a norm that the probes are 

placed at the centre of the tile. However, this norm is not solely derived from a geometrical point of 

view, but also from a thermal distribution perspective. That is the probes are placed at the tiles centre 

as to avoid the heat that is accumulated at the tile edges. As can be seen in Figure 6-21, the thermal 

camera images shows that there is a very tangible temperature variation between the center and the 

edges of the tile. This variation, or so called the standard deviation of the temperature difference 

between the centre, and the edge is over one-degree celsius among all the cases. This variation is 

quite high when considering that the distance between the tile centre and edge is less than 20 cm. 

 

Figure 6-21 Temperature distribution Standard Deviation for sample tiles.  

  

In the same regards, and concerning the significant temperature variation across the tiles 

surface, it is also important to consider that the tile sides is also very prone to a dramatic temperature 

rises when the sun leans toward the before and afternoons. Figure 6-22 shows that such a diffrence 

in a sample case of a plain concrete tile may reach a 5.4°K. On the same figure, it can be seen that the 

whole row of the tiles. Here, it is to state this variation issue can only be solved by having a fairly large 

experimental surface rather than small tiles, whereas this was not feasible on this experiment. Lastly, 

it is shown that a better data recorder was used to collect the data on an interval of 10 seconds. The 

Hioki data logger type LR 8401  can send and store the data in an FTP site wich have eased data 

monitoring which enabled instantaneous errors debugging.  
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Figure 6-22 Temperature variation between the tiles surface and edges may exceed 5°K 

 

6.3.2 Results and Discussion  

In addition to the collected temperature data, another meteorological data set was obtained 

from AMEDAS (Automated Meteorological Data Acquisition System) (Japan Meteorological Agency 

n.d.). These data first analysed to select the most appropriate sample days that serve the purpose of 

the research. The objective of this exercise was to have two days conditions. The first is to be a sunny 

day with minimum clouds, whereas the second is to be the most cloudy day (overcast condition) but 

without any precipitation. Based on this definition, The first ten days of September was selected as a 

sample range, and as can be seen in Figure 6-23, these days have had many sunny days and had least 

rain as well. 
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Figure 6-23 Selecting the sample days through September 2016. 

 

After selecting the sample days, the nest step was to check the variation between the surface 

and soffit temperatures for each tile (case). The temperature variation is displayed for each day of the 

selected sample 10 days, and the outcomes are shown inFigure 6-24. The results indicate that there is 

no clear general definition or preference for which side of the tiles gets hotter i.e. in some cases the 

soffit is hotter that the surface temperature across the whole days. It is noticed that the soffit of the 

black paints, conventional paint and tiles without paint is even hotter than their surfaces, with just an 

exception of the Glossy Black paint. This grouping can be seen in Figure 6-25. However, Herer it is 

noted an important key thing, which is this phenomenon did not show up in the first experiment 

whereas all the soffit’s temperatures were cooler than the surface temperatures. This behaviour can 

then well be linked with the usefulness of the XPS platform since it has allowed for the tiles to be 

independent of the roof temperature profile and behaviour. However, the group of the cases that 

have a hotter soffit can be ascribed to the fact that their surfaces temperature have an excessive heat 

which can then be dissipated through convection, as illustrated in Figure 6-25. Meanwhile, the soffit 

is left at it is at a higher temperature.On the other hand, the relatively colder white tiles may have 

heat gain by convection instead while their soffits are protected from that heats gain source. In 

conclusion, it can be seen that the soffit temperatures are more stable and seem to be more realistic. 

Hence it can be used for the future analysis.  
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Figure 6-24  The Top and bottom temperatures variation 

 

 

Figure 6-25  The group of cases that have a soffit temperature that is hotter than their surface 

temperatures. The group consists of black paint, conventional paint and tiles without paint. 

 

The next analysis was concerned with the influence of the sealer application in the tiles temperature 

reduction. However, it is to state that the sealer used for this experiment was transparent, unlike the 

first experiment which incorporated a white sealer. However, to confirm the influence of the sealer, 



142 
 

and if it can reduce the temperature by itself,  the tile that only has a sealer was compared with the 

plain tile on the eastern side, the location of both tiles can be seen in Figure 6-26 below.   The results 

of this investigation are plotted in Figure 6-27, and it is clearly seen that the tile that has a sealer only 

on its surface have yielded a higher temperature over the ten days when compared to the bare/ base 

concrete tiles. Not to forget that this temperature profile is on both sides of the tiles i.e. the surface 

and the soffit as well. When comparing these results with the first experiment, whereas the sealer 

application has led to reducing the surface temperature, it is to remind that the seal used in the first 

experiment had a white colour while the sealer in the second experiment was transparent, as can be 

seen, onFigure 6-28. 

 

Figure 6-26 The influence of the sealer is made by comparing the tile that only has a sealer together 

with the plain tile located on the eastern side  
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Figure 6-27 The result of the comparison between the plain (bare) concrete tile and the tile with 

sealer only. 

 

 

Figure 6-28 The sealer that was used in the 

second experiment was transparent. Unlike the 

first experiment where the sealer was white 

 

On the same aspect, the sealer influence was tested using another technique which is based 

on incorporating all the solar paint tiles configurations. That is, comparing two sets of tiles, one with 

sealer bases and the other set of tiles are applied without sealer, where the maximum temperature 

difference between these two sets is calculated. Figure 6-29 is developed to give a visual idea of these 

two sets (Groups). The result is plotted in the following chart, shown in Figure 6-30, whereas for any 

paint case if the data column is above zero (positive) it means that when that specific paint is applied 

without a sealer, it will yield higher soffit temperatures.  
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Figure 6-29  Two sets (Group) of cases that either applies the sealer or without the sealer base 

(facial) are compared to study the influence of the sealer application on the solar paint temperature 

profiles  

 

Therefore, based on the above definition, together with monitoring the weather conditions, 

two things can be deduced from Figure 6-30. Firstly, the biggest variation between the sealer and 

facial application have been observed in rainy days, which are third, fourth and 11th. For this 

observation to be made clear, Figure 6-31 is meant to highlight the rainy days with warm colours. The 

second important note is that all of the glossy paints, i.e. labelled with [SG-xx], are negatively 

influenced by the presence of the sealer. That is, the glossy paints will not perform well unless they 

are applied on a sealer. On the other hand, the matt paints i.e. labelled [SM-xx] they performed better 

when they applied directly on the tile without the need for a sealer base. This finding may address the 

question of the need for buying the sealer if the matt paint is to be used.  
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Figure 6-30  Maximum temperatures difference [without sealer - sealer base]. 

 

 

Figure 6-31  Maximum temperatures difference [without sealer - sealer base] with weather conditions 

being considered. 
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From the previous point, it was highlighted that the performance variation between the 

various cases has shown to be influenced by the weather. Therefore, It was logical and interesting to 

check the performance of each paint type in clear and overcast day. In other words, a derived objective 

was to To investigate the role of the glossiness of the paint on its performance at various conditions. 

In this point, it is to highlight one important fact that would relate to the weather, which is the optical 

properties of the glossy and the matte paints. In Figure 6-32, the manufacturer's specification of both 

paints shows that the matte finish paints should yield the best mitigation performance since its 

reflection rate on the near infrared as well as the overall wavelength is higher than reflection values 

fro the glossy paints.  

 

Figure 6-32 The solar paints reflection rates as per provided by the manufacturer. Source:(SCI-

PAINT JAPAN INC. 2008).  

 

In order conducting the paints glossiness sensitivity to the weather conditions, two specific 

representative days needs to be selected among the initial ten days. As one to specifically represent 

the sunny day, and the second should be a cloudy day – preferably without any precipitation (rain). 

For this purpose, Figure 6-33 is prepared to visualise to conditions that helped in identifying those two 

representative days, i.e. the sunlight hours, cloud cover and the precipitation. Whereas the sunlight 

hours would hit the clouds of the sky as well, and the precipitation will give an idea about the general 

weather conditions around the specified days. In the end, September the 5th was selected as a sample 

of sunny day conditions, while the 9th is used as an overcast condition representative day. 
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Figure 6-33 Identification of the representative sunny (clear) and cloudy (overcast) days.  

 

The temperature profile of the three colours is plotted for the sampling sunny and cloudy 

days. As can be seen in Figure 6-34, and anticipated as per the manufacturer provided information, 

the matt paints for any given colour are better (colder) their counterparts of glossy paints, on both 

days. Moreover, as in Figure 6-35, the matte paint have yielded cooler temperatures over the course 

of the whole ten sampling days.  
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Figure 6-34 Comparing the temperature profile for the glossy and matte finishes in a sunny and 

cloudy days.  

 

 

Figure 6-35 Comparing the temperature profile for the glossy and matte finishes in all the sampling 

ten days  

 

A small interesting observation was noted during the early morning of the cloudy days. That 

is, there is a minor adverse change in the temperature profiles that exclusively occurred during the 

early morning hours of cloudy days. In these few hours, the glossy paint recorded cooler temperatures 

when compared to the matte paints, in particular for the bright colours, i.e. white and grey. To vivid 

this observation, Figure 6-36 is made by subtracting the glossy paints temperature from their 
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counterpart (same colours) of a matte nature. As a result, it can be seen that there some parts of the 

day where the glossy paint yields a better performance. Moreover, as noted earlier, this inverted 

effects further pronounced at the cloudy conditions. Subsequently, a closer look at the cloudy day 

conditions, which can be seen in Figure 6-37, may reveal this inverted beahviour as well. Moreover, it 

can be highlighted that it typically occurs for the white and grey colours.  

 

Figure 6-36 The temperature variation is calculated by subtracting the glossy minus the matte Temp 

for all the three paint colours.  

 

The interpretation of this observation could be started by pointing that the portion of the Infrared and 

visible components of the solar spectrum vary by the variation of the day time as well as it is changed 

by the modification of the cloudiness conditions of the sky. In literature, many studies have shown 

that the Infrared radiation share of the solar spectrum is reduced by the sky conditions e.g. the study 

of (Escobedo et al. 2009)have pointed out this fact in many parts of their article. Also, and as per what 

can be seen from the time laps of a video provided by the (National Institute of Standards and 

Technology 2015) and reproduced here within Figure 6-38. In this figure, it is apparent that the 

infrared also dominates during the early morning and starts decaying when the sun moves towards 

the noon. Figure 6-39 is produced to summarise these two factors that change the NIR percentage of 

the overall solar radiation spectrum. In conclusion, it can well be said that the reason behind the 

change in the glossy paint performance was it becomes better than the matte paint during the early 

morning  of the cloudy days, could be due to the significant drop in the Near-infrared NIR radiation 

percentage of the solar spectrum, and that is where the matte paint reflects the most of the heat. 

Hence, the matte paint efficiency drops since the major portion of the solar spectrum become the 

visible light where the glossy can better reflect the solar rays. 
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Figure 6-37 A closer look at the Glossy and matte paints temperature profile in the morning of the 

cloudy day. 

 

 

Figure 6-38 The infrared portion of the solar spectrum is high in the early morning and 

overwhelmed by the visible components at noon. Source:(National Institute of Standards and 

Technology 2015). 

 

 

Figure 6-39 The change in the 

solar spectrum portions in the 

various conditions, i.e. the NIR 

portion drops by the presence 

of the cloud. 
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On the last thing to confirm about the solar paint, performance is that there is usually a risk 

of heating penalty in winter when using such solar reflective paints. Despite that such investigation 

requires a winter time measurement, But however, the results herewith (for September) Initial results 

shows that the minimum temperature of all the paints does not drop beyond the plain tiles, or below 

the normal paint temperatures. This observation can be seen in the overall layered chart that is plotted 

in Figure 6-40 below. 

 

Figure 6-40  Average, Maximum, and Minimum Temperature for the period (2nd~11th Sept.) for all 

the experimental permutations compared to the base cases i.e. the bare (plain) concrete tiles and the 

normal paints  

 

6.4 Conclusion  

This conclusion covers the first and the second experuimntIn findings, where the investigated 

factors and the main aim of utilising the solar paint are addressed. As a reminder, the incorporation o 

the solar paint was intended to work as a heat mitigation measure only and is not extended to use 

solar radiative paints. Also, the first and second experiments have three common parameters that 

have experimented, which are the usefulness of suing the solar paints. The influence of the sealer base 

on the paint performance. Moreover, the effect of the paints colours on its temperature reduction 

performance. However, it was found that these factors are interactive and one factor may change the 

other performance, as will be seen in the following. On the other hand, the second experiment is 

meant to address a fourth factor, which is the effect of the paint glossiness on its heat reduction 

performance.  

To start with, it is to confirm that the solar paint has a profound effect on reducing the 

temperature of the surface which host them. However, however, this is affected by a combined 



152 
 

influence of the colour and the sealer type and application. Meaning that, if the sealer is a white type, 

then the application of the sealer is indispensable for the dark colours. Meanwhile, it does not affect 

the light colours performances. On the other hand, if the sealer is transparent, then it will negatively 

influence the performance of the matte paints, meanwhile, if a glossy solar is to be applied, then they 

must by painted over a sealer base.  

From another point of view, the role of the paint colour is generally within expectations, as 

the light colours have shown a good potential in reducing the tiles temperature. However, the use of 

the light colour may affect the performance of the matte paint during cloudy weather as well as early 

morning hours where the NIR radiation is subsided. In this regards, it is recommended that further 

research may have a look at the inclination of the surface where the paint should be applied. That is, 

and based on the initial finding from the second experiment, it is expected that the glossiness of the 

solar paint may have various contributions if the surface is made vertical. 

In conclusion, it is to state that solar paints have shown a high abilities as a heat mitigation 

measures, as they have contributed to mostly keep the painted tiles below the tiles with conventional 

paints.  When bearing in mind that such heat mitigation strategy is totally passive and is easy to apply, 

then it is recommended that it should be prescribed as part of the envelope description, especially in 

the cooling dominant cliamtes.For the mild climates, the winter heating penalties are to be 

considered, despite that in both experiments, there was no significant risk of heating penalties, since 

the paint have only contributed to dampining the maximum temperature, and did not extend to lower 

the minimum daily temperatures. 
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Chapter 7:  

7. Conclusion 
 

In this chapter, the main findings that directly address the research hypothesis and objectives 

are summarized, then incorporated in the proposed framework structure. Later on, the research 

limitations are highlighted while showing the potential research fields that may hand over from this 

research. In more detail, The first section, that is intended to briefly summarize the main conclusions 

across the various chapters. The second section, in turn, is represented by a single chart that explains 

the proposed roadmap toward having a better envelope specification, that account for the cooling 

load as a genuine part of the building needs. Lastely, the third part is also aimed to summarize the key 

obstacles and limitations that may have affected the research results, and starting from these 

limitations, the suggested future works areas are emerged. 
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7.1 Summary of the findings  

From the beginning of the literature review, it can be fairly said the building envelope and 

how is described in the various standards and codes has a clear lack of vital information, and seemed 

to b repeatedly viewed from the same direction that prioritized the  heating load over the need for 

the cooling loads, misunderstanding the local climatic needs and conditions. This global perception 

has resulted in disregarding the dynamic thermal behaviour that the building envelope is -in reality- 

subjeted to. In turn, perceiving and assist the building envelopes in the static bases have by all means 

excluded the massive potentials of exploiting the thermal mass materials in reducing the cooling loads, 

as well as the heating loads. However, among the literature survey, that there is also many promising 

concepts, like the “‘critical thermal mass thickness” concept, in addition to other concepts that may 

ameliorate the building energy and comfort conditions alike. Still, with the literature review, it was 

found that there is an imperative topic that had a minor attention, even from the scientific respecting 

side, which is the anti-insulation.  

Moving fro hypothesis to test and validation, and before commencing the simulations, it was 

of important to explore the simulation tools and its related means. That is, an integral investigation 

was concerned with the selection of the simulation software based on many factors that are linked 

and crucial to the research purpose. Here, it can be concluded that the EnergyPlus software serves all 

the critical research points and requests from the simulation tool. That is, the EnergyPlus have been 

found reliable in simulating advanced heat storage mediums, with is a genuine part of the research 

investigation. Also, it has many other privileges that made it perfectly suited for simulation the layer 

configurations, checking the results in various ways, well control over the inputs, as well as being able 

to run many sets of simulations using its parametric tools. On another aspect, the weather files are 

also investigated in this chapter, where it was found that most of the weather files out of the US are 

likely to have customised values, specifically for the cloud coverage and the horizontal infrared 

radiation values. Hence, it is advised that if a weather data of a site out of the US borders, it needs to 

be double checked. Lastly, in this chapter, and after identifying the simulation tool and the reliable 

weather data, an initial simulation test was carried out to check if the EnrgyPlus, with its default 

settings, will be able to simulate the layer segmentation only – without layer rearrangements- would 

be stable and produce reasonable errors. This innovative exploration was also repeated in the next 

chapter under different simulation conditions. and the results in both chapters showed that it could 

safely simulate the layer configuration rearrangements. 

All points considered, the third chapter has directly delved into providing a mitigation 

measure for the anti-isolation behaviour. In this regards, it was hypothesised that if the building layers 

configuration have significant effects on the various dynamic thermal behaviour measures, then it 

would also likely affect the anti-insulation behaviour. The hypothesis was developed, and the 

proposed six different layer configurations were tested under a vast number of permutations that hit 

1,000 permutations, where the various climates and occupancy schedules have performed the 

examination mediums. The results have been positive, and it was proven that the anti-insulation 

negative behaviour can be mitigated by reconfiguring (re-arranging) the envelope layers. This finding 
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is deemed to be critical for all the building stakeholders, because, simply, it will allow maintaining the 

same insulation thickness if the overheating (anti-inflation) risk may have appeared. In another word, 

designers are had another tool instead of going directly to a tradeoff between the cooling and heating 

loads when the insulation becomes the tweaking measure. Also, the founded mitigation measure also 

facilitates another genuine part of the anti-insulation equation. That is, since the anti-insulation is a 

product of high cooling setpoints and great insulations, designers can have access to another mean of 

increasing the cooling set-point with a clear threshold of the upper increment limits. Not to forget, 

that in the findings of chapter two, there was a clear relation between the best performing layer 

configurations and the occupancy profiles of the subject budling. Also, it was also shown that the mild 

climates are more prone to the anti-insulation behaviour, which is a point that is usually understood 

in a serious way. All in all, the findings and the data are prepared as an article and submitted to the 

Energy and Buildings Journal with a title of “Anti-insulation Mitigation by Altering the Envelope Layers’ 

Configuration”. 

Moving in the same anti-insulation track, another hypothesis to mitigate the anti-insulation 

was to change the number of the layer segments of the envelope. This assumption was based on 

recent research (as shown in literature review) which concluded that if the number of the layer 

segments is increased, then this increment (layer dispersion) would enhance the dynamic thermal 

performance of the derived multi-layered configuration. Taking this finding into consideration, the 

chapter was oriented to test the layer dispersion on the conclusions of the previous chapter i.e. 

chapter three. That is, the best performing configurations have been taken from chapter 3 and 

subjected to further layer dispersion, where a two-layer configuration is developed to be a four, six 

and eight layer configuration while maintaining the external boundary conditions of the base 

“mother” configuration. The findings of this chapter were to somehow unpredictable and 

inconsistent. As the segmentation may increase the Point of thermal inflexion at one schedule, but it 

may reduce it on the same schedule when applied in different climates. Therefore, two points were 

concluded from that chapter. Firstly, it is to confirm that the layer segmentation has a good ability to 

manipulate the Point of thermal Inflexion when anti-insulation is founded. Secondly, it is 

recommended if a layer segmentation is to be used as an anti-isolation measure, then the specific 

climatic and occupancy profiles have to be individually studied for the specific subject case. 

The third chapter has inherited the concept of the layer segmentation from its preceding 

chapter, but this time, with an experimental methodology to test the segmentation effect on the 

dynamic thermal behaviour of the walls. Moreover, and most importantly, the main objective of this 

chapter was to provide a practical solution for incorporating the thermal mass materials at a 

reasonably small thicknesses. In addition, it is also to provide a reasonable solution if the layers are to 

be dispersed along the wall at small thicknesses. In another word, investigating the use of the rubber 

materials a heat storage mediums would enable the designers to employ the thermal mass without 

thinking about his great thickness that may not comply with the aesthetic or space measures. Also, 

the use of the rubber has other two significant privileges. The fist is the ability to mobilise it at ease. 

Such value is paramount in supporting the emerging concepts of the portable and remote buildings. 

The mobility issue might also be conceived as a disaster architecture where the buildings have to be 
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flexible enough to travel. The second important issue that the rubber may help to supply for isolated 

to the acoustics. That is, it is very common that designers may want to expose the thermal mass to 

the internal environment as to serve as a coolth/heat reservoir, especially when this mass is associated 

wit night ventilation, and in such cases, the designers may hesitate from the echo and the poor 

acoustical environment that is incurred by employing and exposed thermal slabs and walls. Therefore, 

the utilisation of rubber, as an elastic material would enable using it as an internal heat storage 

medium while tolerating the acoustical issues. In conclusion, it has shown that the rubber material 

can provide reasonable decrement factors and substantial time lags when correctly incorporated 

within the layering structure. Also, it was confirmed that produced 11cm wall have similar capacities 

of a brick wall with a 20cm of thickness.  

The last chapter that has experimental contents is the dealing with solar paints experiments. 

In general, the contents of this chapter may have, to some extent, decoupled from the other chapters, 

since its contents are not borrowing concepts and findings from earlier chapters. In fact, the solar 

paint experiment can be studied in an individual research, because the nature of the solar paint is 

dealing with the facial properties of the building envelope. However, studying the facial properties of 

the skin are indisputably when describing the envelope properties since the skin optical properties 

dictate how much of heat does the envelope have to handle afterwards. Therefore, in this study, the 

solar paint have been invested at two discrete experiment, where the first one can be considered as 

an exploratory investigation where some of the paint properties are examined. Moreover, the second 

experiment was developed to assert the findings of the first experiment and exploring another paint 

properties. Collectively, it was confirmed that the solar paints have good potentials to reduce the 

surface temperature that will subsequently affect the envelope core be with it. However, as per the 

invested parameters, it was found the solar paint colour is governed by the type and the presence of 

the base sealer. For example, It was found that the Glossy paints do not perform well if no sealer is 

applied at its base, on the another hand it was found that for matte paints the sealer may hinder its 

solar protection performance. Moreover, and as expected nd specified by the paint manufacturer, the 

matte paint has shown better temperature reduction. However, interestingly, it was also found that 

at some specific times, namely, at the early mornings of the cloudy days, the glossy paints perform 

better than the matte paints. Moreover, to interpret this paints behaviour, it was deduced that the 

glossy paints work better if the NIR components of the solar spectrum are subsided. Lastly, it was 

found that, unlike the solar cooling paints, the solar protection paints may have little risk of winter 

heaitng penalties if applied in mild climates where both cooling and heating are of equal importance.  

7.2 The concluded framework  

This section is composed of one graph, that is shown below, where the roadmap to improve 

and incorporate the various factors in the envelope specification is listed in chronological order. That 

is, if a legislation body that is concerned with developing an envelope specification for a given location 

and parameters, it might use this figure, together with this research, to come up with adequate 

specifications that take into account the various measures being studied and developed in this 

research.  
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Figure 7-1 the framwrok formulation. 
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7.3 Limitation and further work 

In this part, it is to overview the issues that may have contributed to the limitation of the 

findings or may have lead to some errors in the experiments or simulation. In the beginning, it is to 

say that since the second chapter is meant to be an initial error tracing for itself, this section will move 

to list the work limitation starting from the third chapter that is concerned with the anti-insulation 

mitigation. In that chapter, the major applicability comes from the early simulation assumptions, 

where the experimental subject was a simple box that has no windows and so on. Therefore for the 

wider range of applying the findings of chapter three it is to consider that each building has its thermal 

behaviour, due to the unique occupancy and internal gains, material properties, windows to wall 

ratios, internal mass and heat storage, and so on. Therefore, the recommended configurations for 

each building might differ from what is found herewith in this study. 

 Indeed, as by taking the Japnaese residential building types, i.e the flats and the detached 

housing, we can anticipate -based on earlier conclusion-  that anti-insulation is likely to occure on flats 

but less likely to araise in the detached houses. As in one hand, the flates might be sucseptable to the 

anti-insualtion behaviour, as one of things that have been advocated in the article paper, is that even 

in a very typical residential building, like in flats, which can be presented by the Hong Kong example, 

it can faaciltitae rising the anti-insulation behaviour. this is because such spaces are majorly located 

in the mid-floors of the building and they are protected from direct external heat and thier cooling 

loads become dictated by internal gains instead, therfore, the previlage of having insualtion to cut the 

external heat transmission loads diminishes, and this is wehre they become more likely to give rise to 

anti-insulation. On the other hand, for regular houses it is much less likely to encounter anti-insualtion, 

because firstly, the occupancy in typical Jpanese houses is small (the number of the family members 

is not so big) which will result in having less internal gains, meanwhile the envelope  external surface 

area inflates in realtion wiht the internal air vloume, making the external transmission load greater, 

whcih will give benifit to the isnaultion where it becomes a more of pro-insulation rather than anti-

insualtion. 

Also, this research was solely concerned with the cooling energy consumption. Therefore, 

some configurations might not agree with the recommendations when other measures are used, the 

time lag, the decrement factor, the damping effect, as examples. It also might disagree with the 

configurations recommended by studies concerned internal thermal comfort models, where the heat 

radiation to occupants is considered, and internal thermal mass, for example, might not be welcomed, 

while the optical properties (e.g. emissivity) is fixed in this study. Importantly, it is to higghlight that 

similar comperhensive studies are required to account for the winter heating laods as to evaluate the 

dropp in the anti-isnaultion behaviour when the the annual energy consumption is concidered.  

On the other hand, The founded results of the third chapter can also be a good Incentive to 

study more about anti-insulation and exploring other mitigation concepts. For example, as an analogy 

to this research, an inspiring and promising concept could be investigating the influence of changing 

the surface optical properties (e.g. emissivity) to mitigating anti-insulations. (Huang et al. 2013) 

Showed that high reflectivity coating could significantly reduce cooling load. Therefore, the effect of 
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implementing the Reflective to manipulate anti-insulation can be studied. Moreover, this is the 

ongoing research topic.  

Concerning the fourth chapter that is dealing with anti-insulation, where the same points 

above are also applied, but the main concern about this chapter was the time limitation to conduct 

another set of 6500 simulations. Which is the required number of permutations for the layer 

segmentation to cover the same possibilities that were involved in the previous chapter? Here, it is 

stated that at the beginning of the research planning, and based on the previous chapter findings, it 

was expected to find a consistent behavioural pattern over a reasonably small number of cases. 

However, there was no clear and distinguished pattern to describe the layer segmentation behaviour. 

Therefore, it is suggested the layer segmentation exercise can take a step further, since it showed a 

good potential in mitigating the anti-insulation, bit it need requires much more simulation 

permutations to come up with clear guidelines for the layer segmentation rules of thumbs.  

Moving to the rubber experiment, there few points that were of concerns and may have 

caused a series of limitation during the experiment as well as for the use of the rubber as a heat 

storage medium afterwards. Firstly, It is to highlight that the developed rubber and insulation systems 

can not be used directly on flat roofs, due to their elastic nature. However, it can be argued that such 

a system can be part of the constrcution, i.e.,.e to be integrated into concrete slabs instead of the 

insulation material alone, but in such cases, it will require further assessments and investigations. The 

second issue that might arise with the use of the rubber is that it blocks the vapour transportation and 

wall breathing. Therefore, the humidity issue needs to be validated using experimental and specialised 

humidity simulation tools, like Wufi for example. Moreover, and despite that the rubber cost issues 

have been argued and addressed in the discussion, the cost implications needs to be studied under an 

economic model. Whereas this feasibility model is to be explored in a holistic payback point of view, 

i.e. the land price, the HVAC equipment size, their corresponding installation, maintenance and 

capacity are to be incorporated in the financial model. In another aspect, further studies may look at 

the real manufacturing and build a mock model of the rubber wall as to test factors like the 

homogeneity and the erection of the developed wall, whereas technical details like a variation of the 

expansion rates between the insulation and rubber may arise, and so on. The last issue to consider 

about the rubber is that the behaviour of the rubber configurations needs more experimental tests 

under the initial transient operation modes. Since the recommended wall “best beefing over a 

dynamic measure” is likely to differ from the ones, have been seen in the steady periodic tests. 

For the solar paints, the major experimental constraint was the size of the tiles where the 

paints are applied. As it was seen that these small tiles have very high-temperature variations on their 

surfaces. Also, their small size made them more susceptible to be influenced by the surrounding 

context, as they rapidly respond to a small contextual shadings, and so forth.  Besides, the major issue 

about the applicability if the solar paints, which was repeatedly raised in many points of this study, is 

the heating loads penalties that might arise when employing this paint technique. Moreover, for this 

issue, it is recommended that a further study is to be carried out to test the difference between the 

solar protection paints and the solar cooling paints as to clarify the heating penalties behind each. 

Other than that, it might be interesting to further investigate the note that the glossy paints are better 
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performed under the cloudy conditions and at early in the morning. To take this note further, another 

experiment can look at the application of the solar paints (matte and glossy) on the various wall 

orientations. That is based on the notion that if the glossy paint is good at mitigating low sun angles, 

it might be interesting to see how it performs when the sun is at low altitudes during the early 

morning. 

Finally, it is to show that that, the first aim of this research was to find a holistic and collective 

recommendation for the envelope based on the outcomes of each study (represented in the 

chapters), that is, to link all the experiments and simulations findings as to develop a perfect envelope, 

if to say. However, that collective recommendation concept seemed to be illogical because of the 

following aspects. Firstly, the factors that influence each measure is different from others, e.g. The 

layer configurations’ performance is affected by the occupancy profile which can not be experimented 

in the Peltier device. On the other hand, the solar paint performance is facial and is dependent on the 

solar radiation and clouds coverage, where simulating this effect would be inaccurate due to the lack 

of accurate cloud cover measurements, and so forth. Moreover, for these reasons, developing a 

framework, where the findings are formulated as guidelines that can be adjusted to match the specific 

and local needs is thought to be more universal and can be reasonably adopted by local authorities 

and sustainable bodies to develop the local codes with respecting to the cooling demands of their 

buildings. For the future researchs, and starting from this framweork, the other factors that have 

signifcant effects on the building’s energy consumption can be examined. For example, the buidling 

shape and vloume to wall area ratios is a rcih study area, that can be linked with the effects of the 

walls configurations and with the surface properties as well. Not to forget, another invistigation field 

is to explore the influcne of adding the window to the equations, either by studing their solar heat 

gain or the heat loss through this weak enevlope points.  
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