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Chapter 1 

Introduction 

2 

3 

The study of intensity interference began with the work of Hanbury Brown and Twiss 

in 1956 [1] [2] [3] [4]. They were the first to observe interference effects in quantities 

that are fourth-order in terms of the amplitude of the optical field, as opposed to second­

order interference effects such as was observed by Young [5] [6]. In their experiment, 

a beam of light from a mercury lamp was divided by a half-silvered mirror into two 

beams, whose intensity was measured by two photomultiplier tubes. It was shown that 

the fluctuations in the output currents of the two photodetectors are correlated when their 

cathode apertures as viewed from the source are superimposed, i. e. when the optical 

fields incident on the two cathodes are coherent with each other. 

This correlation can be interpreted as a reflection of the correlation between the inten­

sities of the two beams, or the corTelation between the arrival times of photons at the two 

detectors. Before this it had been doubted that such a correlation could exist between two 

"coherent" beams of light . Indeed, no such correlation exists for the case of the classical 

stable wave [6], which has a fixed amplitude and phase, and is an example of "coherent" 

light . The above experiment showed that thermal radiation, while behaving as a classical 

stable wave ( i. e. as "coherent" light) in second-order interference effects between two 

points in spac&-time that are close to each other, can exhibit, in terms of fourth-order 

interference, correlations that are non-existent in a classical stable wave. 

This opened up a whole new interest in higher-order correlations, which \\·as later 

formalized and given a quantum mechanical treatment by Glauber [7] [8]. In his \YOrk, 

Glauber defined a series of n-th order correlation functions, which express the correlation 

of values of the field at 2n different points in spac&-time, and describe interference effects 

of the 2n-th order. The concept of coherence, which had formerly been understood as an 

ability of the field to exhibit second-order interference, was redefined in terms of a series of 

conditions to be fulfilled by these correlation functions. By this new definition , thermal 

radiation is only first-order coherent, because only the first-order correlation function 

fulfills the condition for coherence. In contrast the classical stable wave is fully coherent, 

i. e. coherent in all orders. A search for a quantum mechanical expression for a state of 

the electromagnetic field which fulfills the condition of full coherence led to the conception 

of the coherent state of radiation [9]. 

Intensity interference can be measured as correlations between pholocurrents as by 

Hanbury Brown and Twiss, or, at lower power levels, as the rate of coincidence counts 

between two photon-counting detectors [10] [11]. It has been shown that information 

such as spectral width and the state of polarization of light can be obtained from these 



4 CliAPTER 1. I i\'TRODUCTJON 

correlations [12]. In the case of thermal or "quasithermal" radiaLion [13] [14] obey­

ing Gaussian statistics, detailed information of the spectral distribution can be obtained 

by resolving the d istribut ion of t he time-difference of photon arri vals at t he two detec­

tors ' . By increasing the number of detectors, measurement of third- and higher-order 

correlations are also possible. 

It is of note that generally, studies in the field of intensity or fourth-order interference 

have traditionally been concerned with either fluctuations in light intensities and photon 

numbers, or with interference effects between photons from two independent sources [17] 

[18]. Systematic variations of intensity such as the envelope function of pulsed light have 

not been dealt with. 

In many cases, semiclassical theory where a quantum mechanical model for the pho­

todetection system and a classical model for the electromagnetic field are used can pro­

vide a sufficient explanation of t he experimental results, even when the photon-counting 

method is used [19]. Of course, when the observed correlation cannot be explained by 

classical electromagnetic theory, a quantum mechanical t reatment of the optical field is 

in order [20] [21] [22] [23] [24] [25] [26] [27]. 

It has been pointed out that t he finite response time of the detectors and the electronic 

circuitry (typically of the order of nanoseconds) can pose a limi t on the time-scale of 

AucLuations that can be measured by coincidence counting experiments [28] [29] [30]. 

Observation of fast decaying correlations is restricted in t \\·o ways: 

1. The temporal profile of correlations that decay faster than the detector response 

t ime cannot be resolved. 

2. Because of this, the coincidence count is measured as a t ime-integral during the re­

sponse time of the detectors. This integrated quant ity contains a large contribut ion 

from the non-interference term. The statistical noise (due to the stochastic nature 

of the photoemission process) of this non-interference component can eas ily obscure 

the contribu t ion from the interference term. 

The success of Hanbury Brown and Twiss lies in that : 

• The focus was on spatial coherence rather than temporal coherence, with t he pho­

todetector translated perpendicular to the beam rather t ha n parallel. 

·Alternatively, an equivalent measurement is possible with a single photodctector by measuring the 
rate o[ coincidence between the original detector signal and its delayed replica jl3j j1 5J j16J. However, 
wit.h this method a certain dead region in the delay t ime is inevi table, in order to eliminate coincidences 
between signals originating from the same photoelectron. 

5 

• The experiment was performed with photocurrents, with the opt ical field intensity 

much higher t han the photon-counting level. This enabled them to reduce the 

relative contribution from the statistical noise within a short time. 

Because of t he above restrictions from lhe detector response time, second- and third­

order correlations of fast pulses have been studied through nonlinear processes such as 

two photon fluorescence [31], second harmonic generation [32], and third harmonic 

generation [33]. These methods have played an important role in determining the nature 

of pulses generated by mode- locked lasers [34] [35] [36] [37] [38] [39] [40] [41], whose pulse 

widths were of the order of picoseconds and were too short to be measured directly. 

In 1987, Hong, Ou , and Mandel showed that rest riction 1 can be overcome by combin­

ing a Mach-Zehnder-interferometer-like configuration with the coincidence-count ing tech­

nique [42] . Beams of signal and idler photons created by a parametric down-conversion 

process (constituting the two "arms" of the interferometer) are mixed by a beam splitter. 

Two photomultipliers are placed on either side of the beam splitter to detect the two 

output beams. It was found that t he coincidence count rate between the two detectors 

falls to zero when the beam paths from t he parametric crystal to the beam splitter for the 

signal and idler photons are of equal length , i. e. when a pair of signal and idler photons 

arrive simultaneously at the beam splitter. By measuring the coincidence count rate as 

a function of the beam splitter position, the temporal correlation between the signal and 

idler photons was reso lved to orders of femtoseconds. 

Another important aspect of this experiment is the appearance of a 100 o/o decrease 

or '·dip" in the coincidence count ra te. For classical experiments \\·here the two "arms" 

of t he interferometer a re provided by dividing a beam of light \\i th a beam splitter, the 

cont ribu t ion from two photons passing th rough the same arm cannot be excluded. This 

limits the decrease in the coincidence coun t rate to 50 o/o . The 100 o/o decrease in the 

above experiment reflecLs the fact that there is only one photon in each "arm" of the 

interferometer , and thus is an intrinsically quantum mechanical effecL [43] [44] [45] [46]. 

The success of Mandel's group led to a new series of coincidence counting experiments, 

where variations of the Mach-Zehnder-interferometer configuration were utilized in various 

ways to explore the quantum mechanical effects of rad iation [47] [48] [49] [50] [51] [52] 

[53]. 

Experiments within the scope of class ical theory were also performed, such as t he 

observation of beat between two different frequencies of the continuous-wave (cw) argon 

laser [54] and the measurement of the coherence time of off-axis flu orescence from laser 
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dye [55] . However, these experiments were performed with cw sources, and no attempt 

has yet been made to apply this new technique to the measurement of pulses. Further­

more, a close analysis of the latter experiment shows that it is in fact equivalent to the 

measurement of the visibility curve of the second-order interference fringes created by 

the Mach-zehnder-interferometer configurat ion . In this experiment, t\\'O different types 

of fluctuations are present in the field intensities at the two detectors: the second-order 

interference fringes modulated by a "phase modulator" inserted in the interferometer, and 

the fluctuations of the original input field . Since the time resolution of "coincidence" is 

much faster than the modulation of the phase modulator but slow compared with the 

original intensity fluctuations, only the former contribution is observed. Thus, \\'hile suc­

cessfully measuring the band width, this experiment is not a measurement of the intensity 

fluctuations in the input field. 

The present work proposes a new scheme that measures both the coherence time and 

the pulse width of ultrafast laser pulses by coincidence counting. It is the first attempt 

to measure a systematic temporal variation of the intensity of light through intensity 

interference. While using effectively the same setup as that for the measurement of the 

coherence time of fluorescence above, it is capable of measuring the intensity fluctuation 

of the input field. It is from this new contribution to the coincidence count rate that the 

pulse envelope can be determined. 

Chapter 2 gives a general theoretical treatment of the coincidence count rate of pulse 

trains, and presents the basic scheme for the interferometer. Theoretical results for the 

coincidence count rate dip are given for various types of laser pulses. Chapter 3 gives a 

summary of the experimental apparatus and the method for data analysis. Experimental 

results for pulses generated by t he synchronously pumped Rhodamine 6G dye laser and 

the self-mode--locked titanium:sapphire laser are presented in chapter 4. The results are 

in good agreement with values obtained by the conventional second harmonic (SH) auto­

correlation technique. Discussion of the theoretical and experimental results are given in 

chapter 5. 

Chapter 2 

Theory 

7 
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In this chapter, a general treatment of intensity interference and coincidence count rates 

will be given. A scheme which employs a Michelson interferometer configuration a nd 

simultaneously measures the pulse width and coherence time of ultrafast laser pulses will 

be presented, and theoretical results for various types of laser pulses will be calculated . 

2.1 General treatment 

2.1.1 Intensity interference and coincide nce count rate 

Let us consider the case where we perform photon counting with two photodetectors D1 

and D2 . The electric fi eld operators at time t at the two detectors a re represented by 

£\±)(t) and E~±)(t) , respectively, where(±) is(+) for the positive frequency component 

of the operator and (- ) for the negative frequency component. If we Jet 1)1 and 1)2 represent 

the quantum efficiencies of the two detectors, the photon count rates or the probabilities 

that a photon is detected by each detector fo r a state of the electromagnetic field [1,!1) is 

given by 

Rate 1 = 1)1 (,P[Ej-l(t)£j+l(t)['\b) 

Rate2 = 1J2(,P[E~-l(t)E~+l(t)[if;). 

(2.1) 

(2.2) 

·ote that at the classical limit , the count rates are proport ional to the intensity of the 

electric field at the respective detectors. 

I\ ow we calculate the coincidence count rate , or the probability that the two detectors 

each detect a photon simultaneously. This is given by 

(2.3) 

Again at the classical limit, this rate is proportional to the averaged product of the 

intensities at the two detectors. 

If no correlation exists between the two intensities, Rate12 simply becomes the product 

of Rate1 and Rate2 . But if there is a correlation, it gives rise to a phenomenon known as 

intensity in terference, so that 

Rate12 = Rate1Rate2 + interference term. (2.4) 

lt has been shown that the photoemission process, including its stochastic nature, can 

be sufficiently described within the scope of semiclassical theory, i. e. with a quantum 

mechanical model for the photodctect ion system and a classical model for the elect romag­

netic field [19[. Therefore, unless the observed correlation is of an intrinsically quantum 
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mechanical nature, both the single-detector count rates and the coincidence count rate 

can be calculated using classical electromagnetic theory. For such a case, the probabili ty 

that a "photon counting" detector issues a signal is proportional to the instan taneous 

classical intensity. We will assume the laser pulses treated in this work to fall within this 

criterion , and from now on limit our discussion to classical theory. We will also assume a 

linearly polarized optical fi eld , which applies to most types of lasers. 

2.1.2 Coincidence count rate for class ica l pulses 

Let us first rewrite equation (2.3) for a classical scalar fi eld: 

(2.5) 

In actual experiments, the count rate is measured as a time average during a finite 

measurement time TM. The responses of the photodetectors , too, are not instantaneous, 

but are defined by a fin ite response time. The concept of "coincidence" must also be 

redefined to account for the finite time resolution; any two signals that arrive ,,·ithin a 

certain resolution time Ten are considered "coincident". \Nith the above considerat ions 

the coincidence count rate becomes , 

Ratel2 = ~ ra+TM dt 1Tcn/2 
dr 1"" dtlj"" dt2 

TM J'I"Q --rcn/2 -oo -oo 

1) ! (t- t,)1)2(t + T- t2)(E; (ti)£2 (t2)£2(t2)E, (ti)). (2.6) 

Angular brackets denote an average over a statistical ensemble. 171 (t) and 172 (t) are the 

response funct ions of the two detectors, each with a finite wid t h Tr, and satisfying 

(j = 1, 2) . (2.7) 

When the light is a pulse train , and the relation 

(2.8) 

exists between the pulse cycle To, detector response time r, as defined a bove, the pulse 

width Tp, and the coherence time (or the inverse of the spectral width) r., equation (2.6) 

can be made more simple. In such cases we can assume that (Ei(t 1)E2(t2)E2 (t2)E1(t 1)) 

has finite values only within short (width ~ rp) intervals near t 1 = n 1T0 and t2 = n 2T
0

, 

where n , and n2 are integers. The functions 1)1 (t -t1) and 172(t+r - t2) slay approximately 

constant within these interva ls. Then 

(2.9) 
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where 

I1z(n1,n2 ) = j dt1j dLz(E;(nlTo+tl)E~(nzTo+tz)Ez(nzTo+iz)Et(nlTo+tl)). 
(1 pulse) (1 pulse) 

(2.10) 

In the case of stationary pulse trains, I 12 (nt, n 2 ) relies only on n 2 - n1 and can be 

written as J12 (n2 - n 1). If measurements are performed under the condition 

(2.11) 

then only those terms satisfying n 2 -n1 = 0 contribute to the result. Assuming Tu = NTo , 

(2.12) 

(2.13) 

(2.14) 

that is, 

(2 .15) 

Thus in order to obtain the coincidence count rate for stationary pulse trains, it is 

sufficient to calculate the quantity: 

(2.16) 

2.2 Measurement scheme for laser pulse width 

2.2.1 Interferometer 

I now present a scheme for the simultaneous measurement of the pulse width and the 

coherence time of laser pulses. An interferometer plays a crucial role in this scheme. 

Just what kind of information we can obtain from a coincidence count rate reading de­

pends on what relationship we establ ish between the input optical field E(t) and the field 

E 1(t) and E2 (t) at the lwo photodetectors. The interferometer introduces precisely this re­

lationship. Previous works [42j [55j have shown that a Mach-Zehnder-interferometer-like 

configuration can be very effective. In this work, a variation of the Michelson interferom­

eter has been chosen inslead, mainly because il provides good beam overlap for a wide 

range of palh differences. 

Figure 2.1 shows the schematics of lhe interferometer employed in this work. 

2.2. ,\/EASUREJ\ IEJ\'T SCI-IE.\IE FOR LASER PULSE \\ 'lOTH 11 

E 

D2 

Figure 2.1: Measurement scheme: 
E, input optical field; BS, beam splitter; D1, D2 , photon-counting detectors; C~, C2 , corner 
cubes; PM, phase modulator; AT, attenuator. 
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The input light is divided by the beam splitter BS into two beams. After propagat ing 

through the two arms of the interferometer, the two beams arc remixed by BS before 

reaching the photodetectors D 1 and D2. Of the two corner cubes C1 and C2, C2 is placed 

on a translating stage, so that we can vary the path difference cor between the two arms 

of the interferometer. The coi ncidence count rate is measured as a function of this path 

difference, or the propagation t ime difference or . A phase modulator PM is inserted in 

one arm of the interferometer, in order to introduce a slowly varyi ng random phase <f;(t) to 

the beam passing through this arm. The attenuator AT in the other arm counterbalances 

the intensity loss at PM. 

Let us denote the propagation time along the path with the fixed corner cube C1 by 

rc 1, the transmittance and the reflectivity of BS by T and R, and the transmittance of 

PM and AT by TPM and TAT· Then, assuming a lossless symmetric beam splitter [5] [43] 

[44], E1 (t) and E2(t) can be written, using the input optical fi eld E(t), as 

Et (t) = TjTPM E(t- TcJ) exp[i<f;(t- Tct)]- R..;r;; E(t- Tct +or) (2.17) 

E2(t) = iJ RTTAT E(t- Tct +or) + iJ RTTpt,,[ E(t- TcJ) exp[i¢(t- Tc J) ]. (2.18) 

For simplicity let us redefine E(t- rc1) ---> E(t) , and assume that E(t) is a pulse train 

with peaks at t = nT0 (n: integer) . Then the centers of the pulses arrive at the detectors 

at t imes t = nT0 and t = nT0 +or. Real istically the maximum range of interest for or is 

several times the order of Tp and r,. Therefore, under the condition specified by (2.8) we 

may assume that 

To » Tr » OT , (2.19) 

and the approximation made in (2.9) still holds for the above E1 (t) and E2(t). 

2.2.2 The role of the phase modulator 

We now calculate the coincidence count rate for this interferometer, by subs t it ut ing the 

formulas for E 1 (t) and E2(t) given in subsection 2.2.1 into equations (2 .15) and (2.16): 

7)! T/2 J To/2 JTo/2 
= -,- dt 1 dt2RT 

To - To / 2 - To / 2 

(~ TPM TAr] E(t,WJE(t2 + or)j2 

+~ nMJE(t,)]2]E(t2)]2 

+R2 T~rlE(tt + or)j2]E(t2 + orW 
+R2 TPM TAr]E(tl + or)i2]E(t2)]2 ) (2.20a) 

- RT1? M TAr{E' (tl)E' (t2 + or) E(tt +or) E(t2) exp[i{¢(t2) - r,D( tl)}] 

2.2. MEASUREMENT SCHEAIE FOR LASER PULSE \VJDTJ[ 13 

+c. c. } 

+ JTPM TAr(T2 TPM]E(tlW + R2 TAr]E(tl -f orW) 

·{E'(t2 + or)E(t2) exp [i<f;(t2)] + c.c.} 

-RTjTPM TAr(TAr]E(t2 + orW + TPM]E(t2W) 

·{E'(tl)E(tl +or) exp[-ir,b(tl) ] + c.c.} 

(2.20b) 

(2.20c) 

(2.20d) 

- RTTPM TAr{E' (tJ)E' (t2)E(tt +or) E(t2 +or) exp[-i{¢(t t) + <f;(t2)}] 

+c. c.}). (2.20e) 

Here angular brackets denote not only averages over stat istical ensembles for the input 

light, but also over the random phase <f;(t). 

Assuming <f;(t) varies slowly so that it stays nearly constant during the pulse cycle To, 

we can make the approximation 

(2.21) 

in the above integral. Taking the average over ¢>(t) with this approximation in mind, we 

see that the averages of the terms (2.20c), (2.20d), and (2.20e) go to zero, so that only 

the contributions from (2 .20a) and (2.20b) remain. 

The terms that disappear in the above average are those that osc ill ate at frequencies 

wo or 2wo with respect to or, where w0 is the carrier-wave frequency of E(t). Thus the 

phase modulator has the effect of erasing these rapid oscillations in the coincidence count 

rate curve, and making the terms in (2.20a) and (2.20b) eas ier to observe. At the same 

time, ¢> (t) acts as a limit to the resolution of or, because it averages out all fluctuations 

with respect to or that occur on a shorter time scale than the maximum range for ¢>(t) jw0. 

This also means that the path difference of the two arms of the interferometer need not 

be stable to an order shorter than the wavelength. 

Under conditions (2.8) and (2 .19), the intervals of integration for the four terms (2.20a) 

can be slightly altered to give a simplified expression for the coincidence count rate: 

7)1 T/2 JTo/2 JTo/2 Rate12(or) = --;:;:;- ·KIF dt 1 dt2 
"0 - To /2 - To /2 

[(]E(tJ)]2]E(t2Wl 

- D~F {(E'(t1)E'(t2 + or)E(t2)E(t1 +or))+ c.c.}j, 

where 

(2.22) 

(2 .23) 

(2.24) 
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Since we have assumed that E(t) is nonzero only at t ~ nTo, the cont ribu t ion from 

the second term in the integrand exists only near Err = 0. Thus it can be seen that 

the coincidence count rate curve consists of a constant contribution from the first term 

and a decrease, or a 'd ip ' at Dr ~ 0 from the second term. The relative depth of the 

dip at Dr = 0 is determined by DIF · D 1F depends solely on the parameters of the 

interferometer, and takes the maximum value 0.5 when the interferometer is perfectly 

balanced, i. e. R = T = 1/ 2 and Tn1 = TAT· The shape of the dip is determined by the 

characteristics of the ensemble average (E'(t 1)E'(t2 + Dr)E(t2)E(t1 +Dr)) . 

We note in passing that behavior of a similar quantity has been studied for the case 

of integrated-intensity gratings [56] [57]. 

2.3 Coincidence count rate for varwus models 

In order to obtain a more specific result , we need to make further assumptions about the 

input optical field E(t). In the following will be discussed various models for laser pulse 

trains: models for perfect mode-locking, imperfect mode-locking, and two cases of chirped 

pulses. Results will be compared with those for the conventional second harmonic (SH) 

autocorrelation technique and the power spectra. 

2.3.1 P erfectly mode-locked pulses 

First let us consider pulse trains emitted by an ideally mode-locked laser, where the mode 

spacing and the relative phases of the modes are perfectly locked . For such a case we may 

wri te: 

E(t) = 2.::: Ak exp[-i(w0 + kt..w,,)t] , (2.25) 

where Ak is the fixed amplit ude of the k-th mode and 6.wms is the mode separation. 

Then E(t) is a semiperiodic function where 

E(t + 2rr/ 6.wms) = E(t) exp[-2rriwo/ 6.w,15] (2.26) 

so that 

T0 = 2rr/ 6.w,,. (2.27) 

Let us also note that this model has no statistical variable, so that no ensemble average 

is necessary wi th respect to E(t). 

For simplicity " ·e choose A., so that they are real and positive. ll is not difficult to see 

that for such Ak, I E(l)l has peaks with maximum value Lk Ak at t = nTo , in accordance 
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with our previous assumption. The width of the peaks are determined by 111 t..:.u"'" where 

M is the number of modes that contribu te to E(t). After a t ime sufficiently longer 

than 2rr/ il16.w," , contribut ions from different modes will have different phases so that 
E(t) ~ 0. 

For our case of pulse trains that satisfy the condition (2.8) , }\If can be considered 

very large. Then for a sufficiently smooth spectrum the sum in equat ion (2.25) can be 

approximated by an integral . For example, for a Gaussian spect rum 

E(t) is given by 

E(t) ~ 6.~ms j dwVK exp[-(w - wa) 2 / 4D2
] exp[-i(w- w0)t] exp( -i..uat) 

2DVrrK -D2t2 -iw0 t 
= --e e 

6.wms . 

(2.28) 

(2.29) 

E(t) given by equat ion (2.29) is no longer a periodic function, because by approximating 

t he sum with an integral we have effectively taken To to infini ty. Here the pulse width 

1/ Dis directly related to the inverse of the spectral wid th D, so that there is no distinction 

between rp and r, in this model. 

We now calculate the coincidence count rate for this E(t). Substituting equation (2 .29) 

in equation (2.22) we obtain: 

T/IT/2 2 -D2(Dr)2 
Rate12(Dr) =To· K 1Fl o (1 - D1Fe ), 

where l o is the fi eld intensity integrated over one pulse cycle and is given by 

r - j "" d 12DVrrK -D
2
t

2 
-iw0t 1

2 

Jo - t ---e e 
-oo .6.w,~ 

(2rr) 312DK 

(6.w,, )2 

(2.30) 

(2.31) 

From equation (2 .30) we see that the coincidence count rate is proportional to ]0 
2 The 

shape of the dip is determined by the pulse shape, and the pulse width 1/ D can be obtained 

by measuring the width of the dip. 

For comparison let us calculate the autocorrelation curve obtained by the conven­

tional SI-! autocorrelation technique. The average intensity of SH for the background-free 

configuration is given by: 

Ks11 j 1
" f sH(Dr) = ---ry:;- • dt(E'(t)E' (t + Dr)E(t + 6r)E(t)). 

1 0 - To 
(2.32) 
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Here it has been assumed that the response of the SH crystal is instantaneous, i. e. thal 

the response function x(r) in the formula for the SH field: 

E5u(i;6r)= j6rx(r)E(t-r)E(t+6r-r) (2.33) 

is a delta-function ofT. Substituting equation (2.29) we get: 

(2.34) 

Comparison \lith equation (2.30) shows that the dip closely resembles the SH autocorre­

lation curve. 

2.3 .2 Chaotic field 

In subsection 2.3.1, the complex amplitudes Ak had been fixed, to reflect the nature of 

mode-locked pulses. Let us now consider the case where there is no mode locking, and 

the phases of Ak fluctuate independently. To reflect this fact we will assume a statistical 

ensemble for { Ak} where the phases of Ak are independent random variables, and calculate 

various time-averaged quantities as an average ( ) A over this ensemble. 

Let us divide E(t) in equation (2.25) into the carrier wave exp( -iw0t) and the random 

fluctuation A(t) given by 

A(t) = L Akexp(-ik 6.w,JSt) 
k 

We now calculate the first-order correlation funct ion of A(t): 

f(r) = (A' (t) A(t + r))A. 

Substituting the definition for A(t), 

f(r) (L A;, exp[+i k 6.wms t] L At exp[ -i l6.wms(t + r)]) A 

L (A;, At)A exp[-i(l- k) 6.w,JS t] exp[-i l6.w,. r]. 
k,l 

Since the phases of different modes vary independently, 

(k =f l). 

Assuming a Gaussian spectrum: 

(2.35) 

(2.36) 

(2.37) 

(2 .38) 

(2.39) 
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and again for large 111 approximating lhe sum with an integral as in equation (2.29), we 

obtain 

f(r) = L(A~Ak)Aexp[-ik6.wmsT] 
k 

~ j dwK exp[-(w- w0)
2 /262

] exp[-i(w- w0 )r] 
.L.l.Wm.s 

-.,/2ir 6!( -62 r 2 /2 
---e ( 6.wms · 2.40) 

Thus the coherence time, which can be defined as the width of J(r), is given by 1/6 and 

is equal to the inverse of the spectral width 6. 

As we are interested in intensity interference, we also need to calculate the second-order 

correlation function: 

(A'(tt)A'(t2)A(t3)A(t.))A = (L A;,, exp [+ik1 6.wmstd L A~2 exp[+ik2 6.w,!St2] 
k t k2 

L Ak3 exp[-i k3 6.wms t3] L A;., exp[-i k4 6.wms t 4 ])A 
k3 k., 

L (A;,, A;,2 Ak3 Ak.)A 
k 1 ,k2 ,kJ ,k4 

exp[-i6.w,ns (k3t3 + k4t4 - k1t 1 - ~t2 )] (2.41) 

The only non-zero contributions exist for 

and (2.42) 

so that 

(A ' (t1) A'(t2) A(t3) A(t.))A 

= L (A;,, Ak,)A(Ak2 Ak2)Aexp[-i6.wms {k1(t4- t 1) + k2 (t3 - t2)}] 
ki,k2 

+ L (A;,, Ak,)A(Ai,2 Ak2)A exp[-i6.Wms {kt (t3- t1) + k2(t4 - t2)}] 
kt,k2 

(2.43) 

The first two terms in equation (2.43) are of order M 2 while the third is of order !\f. 

Thus, fo r large M we obtain: 

(A ' (t1) A'(t2) A(t3) A(t4 ))A 

~ L (A;,, Ak , )A(A~2 Ak,)Aexp[-i6.w,. {kt(t4 - it)+ k2 (t3 - t2)}] 
k J,k2 

+ L (A~., Ak, )A (Ai,2 A2)A exp[-i6.w,. {l.:t (t3- it)+ k2(t4 - t2)}] 
kl,k2 

= (A. (tt) A(t.)) A (A' (t2) A(t3)) A + (A . (it) A(t3)) A (A. (t2) A(t.)) A ' (2.4-l) 
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or, in terms of f(r), 

(2.45) 

Similarly, higher-order correlation functions of A(t) can be expressed as sums over 

various combinations of the first-order correlation function f(r). This is a property known 

as Gaussian statistics, because the generating function of statistical variables that have 

this property has the form of a Gaussian function. 

2.3.3 Imperfectly mode-locked pulses 

E(t) as defined in section 2.3.2 has no well-defined peak, and exhibits a random fluctuation 

whose time scale is specified by the coherence time 1/ D. To represent the imperfectly 

mode-locked laser where there is sufficient mode locking to create a well-defined pulse 

envelope but not enough to suppress all fluctuations, we introduce an envelope function 

C(t) so that now we have [39] 

E(t) = C(t) A(t) exp( -iwot). (2.46) 

For simplicity we will assume a Gaussian spectrum for A(t) as in subsection 2.3.2, and 

define K so that f(O) = 1, i. e., 

(2.47) 

\Ve will also assume a Gaussian shape for C(t): 

-t2 /r 2 
C(t)=Ce P (2.48) 

The spectral width of E(t) is no longer given by D because of the existence of C(t). 

The po\\·er spectrum G(w) can be calculated using the formula: 

G(w) = j_: drR(r) exp(-iwr) + c.c. (2.49) 

where 
1 jTo /2 

R(r) = - dt(E'(t+ r)E(t))A. 
To - To/2 

(2.50) 

Using equations (2.36), (2.46), (2 .47), and (2.48), 

R(r) = 
1 jTo /2 - dtC(t + r)C(t)f( -r) exp(iwor) 

To - To /2 
1 j"" -[(t + rj2 + t2]/r 2 -D2 r 2 / 2 iwor 

- dtC2e P e e 
To - oo 

Io -r2 / 2r, 2 iw0 r 
](;e e , (2.51) 
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where 

(2.52) 

and 
1 1 2 

2 = 2+D. 
it Tp 

(2.53) 

Substituting into equation (2.49), we obtain: 

G'( ) = 2rrC2rpr• -r, 2(w- w0 )
2 / 2 

w ~ e . (2.54) 

Thus the spectrum width is given by 1/ r. and the coherence time by r,. When rp is much 

longer than 1/ D, r, ~ 1/ D. As rp approaches 1/ D, the power spectrum is strongly modified 

by the existence of C(t). The origin of C(t) in this model is not clear in terms of the 

mode structure, so we should be careful in applying it to this regime. 

Let us now calculate the coincidence count rate for this field. Substituting equation 

(2.46) into equation (2.22), 

Using equation (2.44) we get: 

r11 ry2 jTo/2 1To /2 
---rr- ·/{IF dt1 dt2 

"O -To/2 -To/2 
[ C2(tl)C2 (t2) 

·{(IA(t!W)A(IA(t2W)A + (A'(t 1) A(t2))A(A'(t2J A(tl))A} 
DIF 

--
2
-C(tl)C(t2 + Dr)C(t2)C(t1 +Dr) 

·{( (A" (t1) A(t1 + Dr))A(A'(t2 +Dr) A(t2))A 

(2.55) 

+(A'(t1)A(t2))A(A'(t2 +Dr) A(t 1 + Dr))A) + c.c.}]. (2.56) 

Substituting equations (2.36), (2.47), and (2.48), we obtain: 
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where 

joe 2 -212/ 7,2 ~ 2 
] 1 = dtC e = - C 7 , . 

-00 2 
(2.58) 

Since It/ 10 = 7 * / 7p, equation (2.57) can be rewri tten as 

We show a plot of this function in figure (2.2). The dip consists of two components: 

a narrow component with width 7, and a wider, shallow component with width 7p. Thus 

we can evaluate these two parameters from the shape of the coincidence count rate curve, 

much in the same manner as from the SH autocorrelation curve: 

l sH(fJT) = KsH . _!l_ ( e -(67)2 / 7,2 + e -(67)2 / 7/ ), 
To 7p.JIT 

(2.60) 

calculated using equations (2.32), (2.45) (2.46) , (2.47), and (2.48). 

The main difference between the t\\·o curves is that the amount of contribution from 

the 7p- component relative to Lhe 7,- component is 7, / 7p in the coincidence count rate 

curve, while they have equal contributions in the SII autocorrelation curve. This is best 

explained by looking into the origins of the two components, as depicted in figure 2.3. 

Going back to equation (2.56) we see that the narrow component is caused by a second­

order interference effect expressed by (A' (t 1) A(t1 + 07))A and (A' (12 + 67) A(t2)) A, which 

occurs only when 1671 is smaller than the coherence time 7, (diagrams a-1 and a-2) . The 

duration of this interference with respect to (t2 - t 1) is limited only by the pulse width 

7p· The \\"ider component, corresponding to the product of the correlation functions 

(A'(It) A(t2))A and (A ' (12 + 67) A(t1 + 07))A, arises from the fact that the fields at the 

two detectors are correlated when lt2 -ttl ~ 7,, even when 1671 > 7, (diagrams b-1 and 

b-2). Therefore its width with respect to 07 is limited only by the pulse width 7p, while 

the limitation with respect to (12 - tt) results in the coefficient 7, j 7p· Observation of this 

second type of interference requires the use of two photoclctectors, and is intrinsically a 

fourth-order interference effect. 
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Figure 2.2: Theoretical coincidence count rate curve (2.59) for an imperfectly mode-locked 
laser, drawn for 7, / 7p = 0.2 and D1F = 50%. The curve shows a t\\·o-component dip at 
center. 
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a-2) 

) 

b- 1) b-2) 

........ ~ .. : ...... ~:;;u:::::::J > 

Figure 2.3: Origins of the b,·o components in the coincidence count rate curve (2.59). 
The ,·arious diagrams depict combinations of beam paths that correspond to the fist-order 
correlation funct ions of A(t) that appear in equation (2.56): a-1) (A'(t1) A(t1 + 67))A; 
a-2) (A'(t2 + 67) A(t2))A; b-1) (A'(tJ) A(t2))A; b-2) (A '(I2 + 67) A(t1 + 67))A · 
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Lastly let us note that at the limi t 7, ( 7p -> 0, equation (2.59) coincides \\ith the 

coincidence count rate curve for the ideally mod&-locked case given by equat ion (2.30) . 

2.3 .4 Imperfect ly mode-locked pulses with chirp 

We will now consider the case of imperfectly mod&- locked pulses with linear chirp. E(t) 
is now given by 

E(t) = C(t) A(t) exp[-i(w0 t + ,6t2)) ( - T0/ 2 < t < T0/ 2) (2.61) 

Let us first calculate the power spectrum for this new model. Using equations (2.36), 

(2.47), (2 .48), and (2.50), 

R(7) = 1 j "' 2 -[(t + 7)
2 + t 2]/ 7P 2 -Dl-72 / 2 i[wo7 + {3(t + 7)2

- (3 t2) 
To -oo dtC e e e 

(2 .62) 

where 
7, 

7, chirp = -~-;=1=+=(,6=T.=p1=6=)2 (2.63) 

Then, substituting in to equation (2.49), we obtain the power spectrum: 

(2.64) 

Thus the spectral width is now 1/ 7><hirp· When the parameter ,67p/ 6 is small , 1/ 7, chirp 

is close to the original spectral width 1/ 7,. As this parameter becomes larger , the spec­

trum becomes broader than the original. The parameter can be interpreted as the ratio 

between the amount of frequency shift during a single pulse and the spectral \\idth 6 of 

the fluctuation A(t). In different terms, it is the ratio between the pulse width 7p and 

the amount of time 6/ ,6 that it takes for the frequency to shift over the original spectral 

width. 

1 ow we calculate the coincidence count rate for this model. Substituting equation 

(2.61) into equation (2.22) and using equations (2.45), (2 .47), and (2.48), we obtain 

Rate 12(67) 

=- · J,fFc dt r dt2 7)17)2 / 4 j "' . j "' 
To -oo -oo 

2[t 2 + t 2
) / 7 

2 -62 (1 - ( j2 [ e 1 2 P { 1 + e 2 1 } 
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-[t/ + (t2 + <57) 2 + t/ + (t1 + o7)2]/ 7p2 { -o2(o7)2 -o
2(t2- t1)

2
} 

- D1Fe e + e 
i,B[tl2 + (t2 + 07)2 - t/- (t t + 07)2] 

e I 
-(07)2/7 2 - (07)2 /7 2 

= T/~:2 ·KJF[I
0

2 +ltlo-DIF{I0
2 e • chirp + ltloe pef/}],(2.65) 

where ]0 and ! 1 are as given by equations (2.52) and (2.58), and 7p eff is given by 

T -
7

P (2.66) 
p eff - J1 + (,67p/ 0)2 . 

From equations (2.52), (2.58), (2.63), and (2.66), we see that 

Therefore, equation (2 .65) can be rewritten as: 

T)!T/2 2 -(07)2 / 7,~irp . -(07)2 / 7/eff }] 
Rate!2(07) = --·I</ Flo [ 1-DIF e +7,.chirp/ 7p eff{l - D JF e . 

To 
(2.68) 

The coincidence count rate curve given by equation (2.68) has the same shape as that 

given by equation (2.59). The only difference is that 7, and 7p a re replaced by 7,chirp and 

7p eff• so that for the same values of 7, and 7p, equation (2.68) gives a somewhat narrower 

dip than equation (2.59). 

For comparison let us calculate the SH autocorrelation curve. Using equat ion (2.32) 

and the same equations as for the coincidence count rate, we find that the SH autocorre­

lation curve is the same as that for unchirped pulses: 

(2 .69) 

In a chirped pulse, the field corresponding to the front edge of the pulse ceases to 

interfere with that of the tail part, resulting in a narrowing of the coincidence count 

rate dip. The SH autocorrelation curve is not altered, however, due to the instantaneous 

response assumed in equation (2.32). The arguments of E"s in equation (2.32) exactly 

match those of E's, so that the effects of the frequency shift cancel out . 

Comparing equations (2.68) and (2.69), we see that the correct value for the pulse 

wid th 7p is given by the SH autocorrelat ion curve rather than by the coincidence count 

rate dip. However, the spectral width 1/ 7, chirp is reflected in the latter rather than the 

former. The narrow component of the SH autocorrelat ion measures the "instantaneous" 

spectral width, "instantaneous" meaning that it is defined for a section of the pu lse shorter 
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than the time oj ,B (but longer than 7,). We also note that the ratio of the widths of the 

two components remains the same for the Sl-1 autocorrelation and the coincidence count 

rate curves (7, / 7p = 7ochirp f 7peJJ), even for large values of ,B7pj o. 

2.3.5 Perfectly mode- locked pulses with chirp 

Let us now consider another type of chirped pulse, where we start with the model for the 

perfectly mode-locked case and add dispersion : 

E(t) = L Ak exp[io(k.6.w,18)
2

] exp[-i(w0 + kll.wms)t]. 
k 

(2.70) 

We take Ak to be real and positive as in subsection 2.3.1, and assume a Gaussian spect rum 

as in equation (2.28). 

Then, for large J\1! we obtain: 

E(t) ~ ..)..-jr.U.vVKexp[-(w-w0 ) 2/4o2 ] 
Ll..Ums 

exp[io(w- wof] exp[-i(w - w0)t] exp( -iw0t) 

--:-_2o_-.J;K'-;7T=I<=,.e -o
2t2/ (1 + ·/) e -i[w0t + 1 o2t2/ (1 + 1

2)] 
ll.w,.v"f+Y . (2 .71) 

I is a measure of the amount of dispersion over the ent ire spectrum: 

(2 .72) 

If we define 7p and C as 

v'I+Y 
7p = --0-- > 

c = 2o-.f;K 
ll.w,,>s .Jf+'Y, (2.73) 

we get: 

(2.74) 

which is an expression similar to equation (2.61), except that there is no fluctuation 

represented by A(t). Let us also note that in the present model, the spectral width stays 

constant and the pulse width becomes larger as the amount of chirp increases . This is 

in clear contrast with the model given by equat ion (2.61), where the pulse width stays 

constant and the spectral width increases. This is because in the present model, the pulse 

shape is determined as a result of the relationship bet11·een the modes, while in equation 

(2.61) the pulse envelope is given from the outside. 
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The coincidence count rate for this model can be calculated using equat ion (2.22): 

(2.75) 

10 is as given by equation (2.52), and Tp eff is given by 

T - __ Tp_ - y'l + 12 . __ 1_ - 1 {; 
p eff - JT+Y - {; JT+Y - / ' (2.76) 

and is equal to the pulse width for zero dispersion. Thus we see that the width of the 

coincidence count rate dip stays the same no matter how much dispersion we introduce. 

Calculating the SH autocorrelation curve using equation (2.32) for the background-free 

configuration, we obtain: 

lsH(6r) = KsH . _!L 8 -(6r)2 !r/ . 
To rv.fiT 

(2.77) 

Here again as for the case of imperfectly mode-locked pulses with chirp, we find that the 

pulse width Tp is reflected in the SH autocorrelation curve while the coincidence count 

rate dip given by equation (2.75) and (2.76) gives a correct measure of the spectral \\·idth, 

or, in this case, the pulse width for zero dispersion. 

In order to observe the effect of chirp through SH generation (SHG), it is useful to 

employ a collinear configuration (interferometric SHG) [35] [58]. The SH intensity for 

this configuration is given by 

lsH col(6r) 
f( T ,;,H j 0 

dt([E(t) + E(t + 6r)[4) 
"O -To 

KsH !To dt([E(t)[ 4 + [E(t + 6r)['1 + 4[E(tWIE(t + 6r)[ 2 

To -To 
+ 2([E(tW E'(t)E(t + 6r) +c. c.) 

+2([E(t + 6rW E'(t)E(t + 6r) + c.c.) 

+(E' 2 (t)E2 (t + 6r) + c.c.)). (2.78) 

Substituting equations (2.73) and (2.74), we obtain : 

lsH col(6r) = KsH 10
2 ( -(6r)2/rv2 

--·--2 1 +28 
To rv.fiT 

-(~W(6rf/4 
+4 8 1+7 cos[w0 (6r)] cos[(J/2rP 2 )(6r) 2

] 

-62 (6r) 2 

+8 cos[2w0 (6r)J). (2.79) 

This function has been plotted for two values of 1 in figures 2.4 and 2.5. Figure 2.4 
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Figure 2.4: SH intensity curve (2. 79) for a collinear configuration, for the case of perfectly 
mode-locked pulses. The curve has been drawn for 6fw0 = l/5rr and 1 = 0 (no chirp). 
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Figure 2.5: SH intensity cun·e (2.79) for a collii1ear configurat ion, for the case of perfectly 
mode-locked pulses \lith chirp. The cu rve has been drmm for 8/wo = l / 5rr and 1 = 5. 
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corresponds to the case where there is no chirp (7 = 0), and figure 2.5 corresponds to lhe 

chirped case (7 = 5). We see that the SH intensity is composed by a constant background, 

a smooth peak whose width is given by Tp, and an oscillating component whose envelope 

more or less gives a measure of the inverse of the spectral width. At 1 = 0 the widths of 

the peak and the oscillating component coincide, but as the dispers ion becomes stronger, 

the tails of the peaked component begin to be visible. We note that pulse measurement by 

this method requires that the oscillations be fully resolved , so that 8T must be controlled 

to an order much shorter than l /w0 . 

2.4 Coincidence between different pulses 

In previous sections, we have assumed condition (2.11) for Ten , and limited our discussion 

to coincidence counts that occur within the same pulse. For longer Ten, Rate12 can 

include coincidence counts that occur between different pulses. For example, for the case 

Ten = (2Nen + l)T0 (Nen: integer) , we have 

Rate 12 (-Ncn to NcR) rv 

"' 

(2.80) 
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where /!2(n) is given by 

J12 (n) =;; dt 1 ;; di2(Ei(tJ)E2(12 + nT0)E2(12 + nTolE1(t1)). (2.81) 
(1 pulse) (1 pulse) 

By changing the interval of in tegration with respect to r, we can also measure such 

quantities as 

(2.82) 

and 

Rate12 (n) = 1)~: /12(n). (2.83) 

This last quantity is the rate of coincidence count with the n-th delayed pulse. We will 

now focus on this quantity, as the others can be calculated as sums over appropriate values 

of n. 

For the interferometer proposed in section 2.2, the rate of coincidence with the n-th 

delayed pulse is given by: 

Rate12 (n)(6r) 

= -
1
-- . KIF dt1 dt2 

1) 1)2 

1

To /2 1To/2 

To - To/2 - To/2 
[(]E(t1)]2]E(t2 + nToW)E 

_ DIF {(E'(tJ)E'(t2 + nT0 + 6r)E(t2 + nTo)E(11 + 6r))E 
2 

·(exp[i{r;)(t2 + nTo)- </>(t1)}]),p 

+c.c.}], (2.84) 

where we have distinguished between the average ()¢ with respect to r/!(t) and the average 

( ) E \\~th respect to fluctuations of the optical fi eld. 

From equation (2 .84) we immediately see that for very large ]n] there will be no dip , 

since 

(exp[i{r;)(t2 + nTo)- r;)(tl)}])¢ = 0. (2.85) 

For values of n for which the approximation 

(2.86) 

still holds, the behavior of Rale12 (n)(6r) is determined by lhe characterist ics of the optical 

field. 

In lhe case of perfec tly mode- locked pulses, it is easily shown from equations (2 .26) 

and (2. 27) that 

E(l + nTo) = E(t) exp[-iwonToJ, (2.87) 
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and therefore, 

T hus we see that for these pulses, 

Rate12 (n)(6r) = Rate12 (0)(6r) (2.89) 

for as long as r/J( t) stays constant. 

The beha~or of imperfectly mode-locked pulses is a little more complex. Substi tut ing 

equation (2.46) into equation (2.84) and assuming that 

we obtain: 

C(t + nT0 ) = C(t), 

Rate12 (n) ( 6r) 

1)11)2 1To(2 1 To /2 
=- . KIF dt1 dt2 

To -To/2 - To/2 
[ C

2
(t 1)C2(t2)( ]A(tl)]2]A(t2 + nToW)A 

DIF 
--

2
-C(t1)C(t2 + 6r)C(t2)C(t1 + 6r) 

(2.90) 

·{(A'(tJ) A'(t2 + nTo + 6r) A(t2 + nT0 ) A(t 1 + 6r))A + c.c.}]. (2.91) 

In section 2.3 we have implicitly assumed that Ak do not change significantly during a 

single pulse. Now that we are dealing with coincidence between different pulses, we need 

to take into account the time dependence of Ak, so that 

(A'(t1) A'(t2 + nTo + 6r) A(t2 + nT0 ) A(t 1 + 6r))A 

= ( L Ak,(t J) exp[+ik16Wm5 t!] 
k, 

L AZ, (t2 + nTo + 6r) exp[+i k2 6w,.., (t2 + nTo + 6r)] 

L (Ai,, (tl) AZ, (t2 + nTo + 6r) Ak3 (t2 + nTo) Ak, (l1 + 6r))A 
ki ,k2);3 ik4 

exp[-i L'>wms {k3(t2 + nTo) + k4(t1 + 6r)- k1t1- k2(t2 + nTo + 6r)}] 

= L (A;., (t1) Ak, (l1 + 6r))A(A;.,(t2 + n1o + 6r) Ak,(l2 + nTo))A 
ki ,k2 

exp[-i6w,., {k1(6r)- k2(6r)}] 
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+ I: (Ai.
1 
(It) Ak 1 (l2 + nTo))A (Ai,,(t2 + nTo + 8r) Ak,(lt + 8r))A 

kl,k2 

exp[-iilw,. { kt (l2 + n1o - It) + k2 (It - t2 - nTo)}] 

- I;(Ai,l (It) Ai,l (t2 + nTo + 8r) A.l (t2 + nTo) AI (It+ or)) A . (2.92) 
kl 

Neglecting the third term for large number of modes M, we obtain: 

(A'(I t) A' (l2 + nTo + 8r) A(t2 + nTo) A(tt + 8r))A 

~ 2:;(Ai,
1 
(It) Ak1 (tt + 8r))A exp[-iilw,. kt (or)] 

kl 

2:;(Ai,,(i2 + nTo + 8r) Ak,(t2 + nTo))A exp[+iilWms k2(8r)] 
k, 

+ 2:;(Ai,
1 
(It) Adt2 + nTo))A exp[-iilwms kt(l2 + nTo- it)] 

kl 
2:;(Ai.,(i2 + nTo + 6r) Ak,(it + 6r))A exp[+iilw,. k2(t2 + nTo- it)] 
k, 

= (A'(tt) A( It+ 6r))A (A'(t2 + nT0 + 6r) A(t2 + nT0))A 

+(A'(it) A(t2 + nTo))A (A'(t2 + nTo + 6r) A(tt + 6r))A, (2.93) 

or, in terms of J(r), 

For T0 » 6r as was assumed in (2.19), 

(2.95) 

so that 

f(6r) I;(Ai.(t) Ak(t + 6r))A exp[-i ilw,. k(8r)] 
k 

2:;(Aj.(t) Ak(i))A exp[-iilw,5 k(6r)], (2.96) 
k 

as given in equation (2.40). On the other hand, for large ]n] the phase of Ak(t + nT0 ) will 

ha\·e changed randomly from that of A.(t) , so that 

The decay rate rk is given roughly by the spectral width of the k-th mode, which is much 

smaller than 1/ To for well-defined modes. For ]n] « 1/ (l\To): 

I; (Aj.(tt) Ak(t2 + nTo))A exp[-iilwms k(l2 + nTo- it)] 
k 

2:;(Ai,(tt) Ak(t2))A exp[-iilw,5 k(l2- It)] 
k 

f(t2- It) , (2.98) 
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where equation (2.27) has been used. Then for such n we obtain: 

(A'(It) A'(t2 + nTo + 6r) A(t2 + nT0) A(tt + 6r))A 

~ Jf(6rW + IJ(t2- ltW 
= (A'(It) A'(l2 + 6r) A(l2) A(lt + 6r))A, 

so that equation (2.89) holds as for perfectly mode-locked pulses. 

For the opposite case of ]n] » l / (fkTo), we have 

and therefore, 

(A'(tt) A'(t2 + nTo + 6r) A(t2 + nT0 ) A(tt + 6r))A ~ Jf(6rW 

Substituting into equation (2.91), we obtain: 
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(2.99) 

(2.100) 

(2 101) 

Thus we see that for such n, only the T,-component of the dip remains. For other types 

of pulses, such as fluorescence excited by laser pulse trains f(l + n""' t ) d . , 2 "O - 1 ecays more 
raptdly so that the Tp-component may disappear even for n = ±1. 
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In this chapter a description of the light sources and the measurement apparatus will be 

given, together with an account of the data analysis. 

3.1 Lasers 

Experiments were performed with two different types of mode-locked lasers, the syn­

chronously pumped Rhodamine 6G dye laser and the self-mode-locked titanium:sapphire 
laser. 

3.1.1 Synchronously pumped Rhodamine 6G dye laser 

A synchronously pumped Rhodamine 6G dye laser with group velocity dispersion (GVD) 

compensation [59] [60] was used to generate imperfectly mode-locked pulses. 

Figure 3.1 shows the schematics of the dye laser. A jet of Rhodamine 6G from a 

200 J.tm-thick stainless steel nozzle was synchronously pumped by the second harmonic 

(SH) of a cw mode-locked Nd+:YAG (Yttrium Aluminum Garnet) laser (Quantronix 

Model 416) . GVD compensation was provided by a sequence of four BK7 prisms. By 

adjusting the birefringent filters and the cavity length, the laser can be tuned to various 

wavelengths and values of r,jrp. Experiments were performed at wavelength .A~ 580 nm 

and at r,jrp ~ 1/3 to 1/5, where the laser was most stable. The output pulse width was 

typically of the order of a few picoseconds. The pulse repetition rate was set by the YAG 

laser to 82 MHz (To = 12 ns). 

The YAG laser (.A = 1.064 J.Lm) was operated typically at an output power of around 

7 Wand pulse width 100 ps. The SH (.A= 532 nm) was generated by a KTP (KTiOP
4

) 

crystal with Type-II phase matching, producing pulses with pulse width 70 ps. 

In order to suppress low-frequency fluctuations in the dye laser output power, the YAG 

laser output power was stabilized by a feedback scheme presented in figure 3.2 [61]. An 

acousto-optic (AO) modulator for Q-switching is inserted in the laser cavity, in addition to 

the AO modulator for mode locking. The loss of the Q value created by this additional AO 

modulator is controlled by feedback of the laser output power in the following way. A very 

small fraction of the optical field in the YAG laser cavity passes through the end mirror 

and is detected by a PIN-silicon photodiode. The output voltage of the photodiode is 

then compared with a stable reference voltage, and the fluctuating component is amplified 

in the frequency range from 0 to 100kHZ. This amplified signal is used to modulate the 

amplitude of the 41 MHz oscillation that drives the AO modulator. The oscillation is 

modulated in such a way as to increase the cavity loss when the laser output power is 
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Figure 3.1: Synchronously pumped Rhodamine 6G dye laser with group velocity disper­
sion compensation: 
j , dye jet (Rh6G); M1 , output mirror (R = 90%); Pl>P 2 ,P3 ,P4 , prism sequence for GVD 
cont rol; ~'h , ~13 , concave mirrors (f=50) BF, birefringent filters. 
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Figure 3.2: Feedback stabilization scheme for the YAG laser: 
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AO:. l QSW, AO modulator (Q-switcher); A0:--1 ML, AO modulator (mode-locker); PO, 
photod iode; SSS, solid state S\\"itch (mixer) ; RF OSC, rf oscillator; RF A!-. 'IP, rf amplifier. 
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larger than the target value set by the reference voltage, and vice versa, creating a negative 

feedback loop. 

Figure 3.3 shows the result of this stabi lization for the YAG laser and the dye laser. 

Since the stabilization is realized by the creation of an additional loss in the YAG laser 

cavity, a slight decrease in output power is inevitable . Thus the output power of the dye 

laser decreases from 200 mW (without feedback) to 180 mW (with feedback), while the 

low-frequency fluctuation is suppressed from the original 15% to 5%. 

The SH autocorrelation curve for the dye laser output was measured by a background­

free configuration shown in figure 3.4. A fraction of the dye laser output is divided 

by a beam splitter into two beams, which are focused onto the SHG crystal (/3-barium 

meta borate (BBO) crystal, dimensions 5 x 5 x 1 mm, type I phase matching) after passing 

through delay lines. The time-averaged SH intensity IsH is measured by a photomultiplier 

tube (Hamamatsu 1P28) and recorded by a pen recorder. A stepping motor translates 

one of the corner cubes so that IsH can be measured as a function of the relative delay 

fi r. Alternatively, for constant monitoring of the SH autocorrelation curve, the relative 

delay can be modulated by a shaker attached to the other corner cube and IsH monitored 

by an oscilloscope. 

The dye laser power spectrum was measured by a spectroscope (Nalumi grating spec­

trograph RM-121-l). 

3.1.2 Self-mode-locked titanium:sapphire laser 

A self-mode-locked titanium:sapphire (Ti:Ab03) laser with GVD compensation [62] was 

used to generate perfectly mode-locked pulses. 

Figure 3.5 shows the schematics of the Ti: Ab03 laser. The setup is a modified Specra­

Physics Model 3900 system. The pump laser is a Spectra-Physics Model 2030 argon laser. 

A sequence of SF6 prisms provided GVD compensation. The laser can be t uned to various 

wavelengths by adjusting the birefringent fil ter. Experiments were performed at ).. ~ 780 

nm, with typ ical pulse width of 150 fs. The pulse repet ition rate was 82 MHz (To = 12 

ns). 

The SH autocorrelation curve was measured by a coll inear configurat ion shown in 

figu re 3.6. A fraction of the laser output is divided by a beam splitter into two beams, 

which are focused collinearly onto t he SHG crystal (potassium dihydrogen phosphate 

(KDP) crystal, type I phase matching, 1 mm thickness) after passing through delay lines. 

The time-averaged SH intensity IsH is measured by a photomul tiplier t ube and monitored 
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Figure 3.3: lmprm·ement of YAG and dye laser output po\\·er stability by the feedback 
scheme presented in figure 3.2: 
a) Outpu t pm1·er of the SH of YAG laser with and without feedback stabilizat ion; b) 
Dye laser output po\\·er with and wi thout feed back stabilization to the YAC laser (from 
ll !atsumoto et al., 1989 [61] ). 
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Figure 3.4: SH autocorrelator for the dye laser: 
BS, beam splitter; C, corner cube; PMT, photomultiplier tube; 
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Fig. l. Schematic of the cavity configuration for self-mode­
Jacked Ti:AI,O.; laser. The inset shows the int raca,·ity 
prism sequence for dispersion compensation . 
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Figure 3.5: Self-mode-locked Ti:Ah03 laser with group velocity dispersion compensation 
(from Spence et al., 1991 [62]). 
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BS, beam splitter; Plv!T, photomultiplier tube; M, mirror. 
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by an oscilloscope. The relative delay is modulated by a rotating glass plate (BK7, 5 mm 

thickness) inserted near the intersect ion of the two beams. Delay modulated in this 

manner is not stable enough to fully resolve the oscillations shmm in figures 2.4 and 2.5, 

but fine enough to resolve the peaked component , thus providing a measure of the pulse 
width. 

The spectral profile was monitored by a simple setup shown in figure 3.7. A fraction 

of the laser beam is diffracted by a grating, and is focused onto a sl it immediately before 

the photodiode. A rotat ing glass plate (38 mm thickness) is inserted between the lens 

and the slit so that different portions of the laser spectrum passes through the slit as the 

glass plate rotates. Thus the spectral profile of the laser can be obtained by monitoring 

the output current of the photodiode as a function of time with an oscill oscope. 

3.2 Pulse stretcher 

In order to study the effect of chirp to the coincidence count rate curve, output pulses 

from the Ti :Ah03 laser was passed through a pulse stretcher [63] to introduce 1·arious 

degrees of group velocity dispersion. 

The schematics of the pulse stretcher is shown in figure 3.8. The stretcher is a simple 

combination of gratings and lenses. Different frequency components of the input beam 

are diffracted into different angles by the input grating, and after passing through a 

telescop~configuration, collected into one beam by the output grating. A simple calcula­

tion by geometrical optics shows that the different transit time for the different frequency 

components result in a group velocity d ispersion given by: 

(3.1) 

where >. is the central frequency, s is the groove spacing of the grat ing, 00 is the emerging 

angle from the input grating for the central frequency, z1 and z2 are as shown in figure 

3.8, and the focal lengths of the two lenses 11·ere taken to be equal. For z1 = z
2 

= z, 

the setup can be realized using only one grating and lens , by folding back the beam by a 

mirror as in figure 3.9. 

A more detailed analysis shows that there is a spect ral lateral walkoff in the stretcher. 

This effect is compensated by passing the beam through the stretcher a second time, this 

time in the opposite direc tion to the first pass. 

The pulse stretcher for the present work was constructed according to the folded 

scheme, and the two pass scheme was used to eliminate sp ct ral lateral walkoff. The 
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Figure 3.7: Spect rum monitor for the T i:AI20 3 laser. 

3.2. PULSE STRETCHER 

Fig . I: Scheme of a grating compressor with positive dispe.rsion. The light 
enters the s)'stem through the left hand side grating and exits through the 
right hand side. ~, and z, are the position of the gratings relative to the 
focal planes F, and F;, respectively. Such dist:~nccs arc defined ncgotivc 
if the gratings are . rlaccd as shown. 

Figure 3.8: Schematics of the pulse stretcher (from ~ lartinez, 1987 [63]). 
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Figure 3.9: Folded scheme for the pulse stretcher (from ldartinez, 1987 [63]). 
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delay (ns) Ten (ns) coincidence count rate I 
a) 2 10- 12 Rate 12 (O) 

b) 14 -15 10- 12 Rate12 (- 1) 

c) 2 50 Rate 12 (O to - 3) 

Table 3.1: Examples for values of the delay and the coincidence resolution time Ten, with 
corresponding coincidence count rates. 

grating was a blazed holographic grating (s = 1/1200 mm) with 66% diffraction efficiency 

at A = 800 nm. The focal length of the lens was 400 mm, 80 was set around 40°, and 

z was varied between 0 and -15 mm. For A ~ 780 nm, this corresponds to values of 

0: = (1 / 2)(cf.2¢;j dJ.,;2
) from Q to -6.1 X 1Q-26sec2 

3.3 Interferometer and photodetection system 

Figure 3.10 shows the interferometer and the configuration of the photodetection system. 

The laser pulses were reduced to the photon counting level by appropriate combinations 

of neutral density filters before entering the interferometer. 

The phase modulator (PM) consists of a pair of 3mm-thick glass (BK7) plates, which 

are designed to rotate in opposite directions by the same amount and are driven by random 

electric signals from a chaos generator [64]. In later experiments the glass plates were 

replaced with 2mm-thick quartz plates. In order to compensate for the optical loss at 

PM, glass plates are inserted as attenuators in the opposite path (AT). A stepping motor 

controlled by a computer translates the corner cube C2 . 

Photon counting was performed with photomultiplier tubes D 1 and D2 , with typical 

counting rates of about 105 counts per second . The output signals from the two detectors 

were fed to the start and stop input signal ports of a time-to-amplitude converter (TAC) 

with delay in the signal line from D2 . Here the time difference between signal arrivals 

from D1 and D2 was measured, and cases where this time difference was shorter than a 

certain coincidence resolution time Ten was counted as "coincident". 

Figures 3.11 and 3.12 show the distribution of the TAC output for different ranges of 

signal time difference. In figure 3.12 peaks corresponding to coincidences within the same 

pulse and those with the first, second, and third delayed pulses can be distinguished. By 

choosing the combination of the delay and the coincidence resolution lime, coincidence 

count rates corresponding to one or more of these peaks can be measured (table 3.1). 
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Figure 3.10: Experimental selup for the interferometer and photodetection system: 
E, input optical field; BS , beam splitter; D1, D2, photon-counting detectors; C1, C2, corner 
cubes; PM, phase modulator; AT, attenuator. 
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Figure 3.11: TAC output distribution for signal time difference of 0 to 10 ns, 11·ith 2 ns 
delay in the "stop" signal. The peak corresponds to Rate 12 (O) defined in subsect ion 2.4. 
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Figure 3.12: TAC output distribution for signal time difference of 0 to 50 ns. with 2 
ns delay in the "stop" signal. The peaks correspond from left to right to Rate12 (Ol, 

Rate 12 (-!), Rate12 ( - 2), and Rate 12 (-3) defined in subsection 2.4, respectively. 
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For delay 2 ns and "CR = 10 to 12 ns, typical coincidence count was 104 counts for 

measurement time 200 sec. From the constant background in the TAC output signal 

distribution, "accidental coincidence" (mainly due to coincidence between laser pulse and 

stray light) was estimated to be around 103 counts per 200 sec. This value was subtracted 

from the raw coincidence count, and the result was further divided by the product of the 

single-detector counting results obtained at D1 and D2 , in order to eliminate fluctuations 

caused by minor instabilities in laser power. In earlier experiments where a two-channel 

counter was used, the coincidence count was divided by the square of the single-detector 

count at D2 , because the count rate at D1 could not be monitored simultaneously. The 

resulting normalized coincidence count was plotted against the position of C2 to yield the 

coincidence count rate curve. 

3.4 Fitting of the coincidence count rate curve 

In order to obtain values for Tp and T,, a x2-fit was performed with the normalized 

coincidence count . 

In the case of the two-component dip (2.59) and (2.68) for imperfectly mode-locked 

pulses, the fitting funct ion is given by 

y 

(3.2) 

where Co, d, r, x0 , and t, are fitting parameters. The values for Tp and,-, can be obtained 

from these parameters by: 

(3 .3) 

In t he case of the single-component dip (2.30) and (2.75) for perfectly mode-locked 

pulses, the fitting function is given by 

y = eo(l- 0.5 x d x exp[-(x- x0 )
2 / t,2]), (3.4) 

and 

(3.5) 

for the unchirped case. 

Fitting errors were estimated for parameter values corresponding to [65] 

(3.6) 
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This chapter presents results for the experiments described in chapter 3. 

4.1 Experimental Results for the dye laser 

4.1.1 Basic behavior of Rate12 (O) and RateL2 (n) 

The coincidence count rate for the dye laser pulses were measured with different setups 

of delay and coincidence resolution time Ten in order to determine the basic behavior of 

Rate12 (O) (delay 2 ns, Ten 10 ns), Rate12 (-1) (delay 15 ns, Ten 10 ns), and Rate12 (O to - 3) 

(delay 2 ns, Ten 50 ns). 

The results are plotted in figure 4.1. The three different types of normalized coinci­

dence counts were fitted with the two-component fitting function (3.2) and were divided 

by the best-fit value of the fitting parameter Co (1.15 X w-!0 for Rate12 (0) and Rate12 (-1), 

and 1.14 x 10- 9 for Rate12 (O to _ 3, ) so that they can be compared \vith one another. 

It can be seen t hat coincidence count rates Rate12 (0)> Rate12 (-!),and Rate 12 (O to _ 3) 

all behave similarly, and exhibit the same two-component dip predicted by equation (2.59). 

This is further confirmed by a comparison of the values for T, and Tp obtained by the x2-

fit (table 4.1). It is shown that coincidence measurement by Rate12 (o), Rate12 (-1), and 

Rate12 (O to -3) aU give the same values for T, and Tp. This is in accordance with the 

conclusion in section 2.4 for small values of lnl . 
These results justify the use of Rate 12 (O to -3) in place of Rate12 (O) for measurement 

of T, and Tp, for the case of the dye laser in this experiment. Such a substitution is 

especially useful in measurements of very weak or unstable light, because the same number 

of coincidence counts (and thus t he same signal-to-noise ratio) can be obtained in one­

fourth t he measurement time for R ate 12 (O)· 
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l,'igure 4.1: Plot of the normalized coincidence counts corresponding to a) Rate12 (0)> b) 
Rate12 ( t)> and c) Rate12 (O to 3) for the dye laser. 

I delay T. CR measured quantity . T. p 

2 ns 10 ns Rate12 (O) 663 ± 7 fs 2.9 ± 0.2 ps 
15 ns 10 ns Rate12 < J) 649 ± 7 fs 2.9 ± 0.2 ps 
2 ns 50 ns Rate12 (O to 3) 666 ± 5 fs 3.0 ± 0.1 ps 

Table 4.1: Comparison of r, and Tp obtained from normalized coincidence curves corre­
sponding to Rate12 (O), Rate12 (-t), and Rate12 (O to 3) for Lhe dye laser. 
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normalized coincidence data r, j rp ~ 0.15 ~ 0.2 ~ 0.44 
reduced x~ (2-component fit) 1.324 1.168 0.8176 

reduced X~ (single-component fit) 10.01 5.485 2.007 

Table 4.2: Comparison of reduced x2 for the 2-component and single-component fits for 
the dye laser. 

4 .1.2 Coincidence count rate curves for different values of T, j Tp. 

Figures 4.2, 4.6, and 4.10 give results for the normalized coincidence counts for differ­

ent values of r, j rp. The data in figure 4.2 were measured under delay-and-coincidence­

resolution setup a) in table 3.1, while those in figures 4.6 and 4.10 were measured under 

setup c). Corresponding spectral profiles and SH autocorrelation curves are given in 

figures 4.4 and 4.5, 4.8 and 4.9, and 4.12 and 4.13, respectively. 

Figures 4.3, 4. 7, and 4.11 compare fitting results with the 2-component fitting func­

tion (3.2) and the single-component fitting function (3.4) for the normalized coincidence 

counts. The 2-component fit t ing function provides much better fits for all three cases. 

Respective values of reduced x2 (x2 normalized by the degrees of freedom) are shown in 

table 4.2. 

It can be seen from the three sets of experimental data how the different values of r, j rp 

are reflected in the shapes of the normalized coincidence curves and the SH au tocorrelation 

curves. The deepest dip depth is seen in figure 4.2, where it is 45.3 %. The dips in figures 

4.6 and 4.10 are shallower because they were measured without the attenuator AT in 

figure 3.10. 

Tables 4.3, 4.4, aJ1d 4.5 compare the values of r, aJ1d TP obtained from the normalized 

coincidence curve, SH autocorrelation curve , and the spectral profile. In estimating r, 

from the spectral profile, Gaussian spectrum (2.54) was assumed so that 1/ r. (spectrum 

width for imperfectly mode-locked pulses) is related to the full-wid th at half-maximum 

(FWWIJ) of the spectral profile !'::.v by: 

7r 
1/ r, = ~!'::.v. 

v2ln2 

The coefficient in front of 1'::.11 vary for other spectrum shapes. 

(4.1) 
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Figure 4.2: Plot of the normalized coincidence count for the dye laser ( r, f rp ~ 0.15). The 
dots represent experimental results, and solid line is the theoretical curve with parameters 
determined to best fit the data. Photon-counting errors are estimated to be of the order 
of the dot size. 

I \1ethod of measurement T 

Coincidence count 617 ±5fs 4.1 ±0.2 ps 0.150 ± 0.006 
SH autocorrelation 686 ± 3 fs 4. 75 ± 0.04 ps 0.1445 ± 0.0006 

Spectral profile 660 fs 

Table 4.3: Comparison of r, and rp obtained by different measurement methods for the 
dye laser (r. / rp ~ 0.15). 

4.1. EXPERIMENTAL RESULTS FOR THE DYE LASER 

c: 
::l 
0 u 
0 
u 
c: 
u 

-o 
u 
c: 

8 

6xl0- 11 

5 

4 

3 

2 

0~----,-----,----,-----,----,----, 
-3 -2 -1 0 I 

Corner-Cube Displacement co-r/2 
2 

[mm] 
3 

57 

Figure 4.3: Comparison of fitting results with the 2-component fitting function (3.2) (solid 
line) and the single-component fitting function (3.4) (dashed line) for the normalized 
coincidence count for the dye laser (r./rp ~ 0.15). The dots represent experimental 
results. Photon-counting errors are estimated to be of the order of the dot size. 
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Figure 4.6 : Plot of the normalized coincidence count for the dye laser (r, frp ~ 0.2). The 
dots represent experimental results, and solid line is the theoretical curve with parameters 
determined to best fit the data. Photon-counting errors are estima ted to be of the order 
of the dot size. 

I \1ethod of measurement T , 

Coincidence count 630 ± 10 fs 3.2 ± 0.2 ps 0.19±0.01 
SH autocorrelation 800 ± 3 fs 3.43 ± 0.04 ps 0.233 ± 0.002 

Spectral profile 670 fs 

Table 4..:1 : Comparison of r, and Tp obtained by different measurement methods for the 
dye laser (r, f rp ~ 0.2). 
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Figure 4. 7: Comparison of fitting results with the 2-component fitting function (3.2) 
(solid line) and the single-component fitting function (3.4) (dashed line) for the normalized 
coincidence count for the dye laser (r, f rP ~ 0.2). The dots represent experimenta l results . 
Photon-counting errors are est imated to be of the order of the dot size. 
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Figure 4.8: Spect ral profile for the dye laser (r. /Tp ~ 0.2) . 
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Figure 4.10: Plot of the normalized coincidence count for the dye laser (r, j rp ~ 0.44). The 
dots represent experimental results, and solid line is the theoretical curve with parameters 
determined to best fit the data. Photon-counting errors are estimated to be of the order 
of the dot size. 

[ \1ethod of measurement T . 
Coincidence count 770 ± 10 fs 1.75±0.1 ps 0.44 ± 0.02 
SH autocorrelation 1230 ± 10 fs 2.85 ± 0.07 ps 0.432 ± 0.006 

Spectral profile 1020 fs 

Table 4.5: Comparison of r, and Tp obtained by different measurement methods for the 
dye laser (r, / rp ~ 0.44). 
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results . 
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4.2 Experimental Results for the titanium:sapphire 
laser 

Figure 4.14 shows lhe normalized coincidence counts for Ti:AI20 3 laser pulses in which 

varying degrees of chirp have been introduced by the pulse stretcher. All of these coinci­

dence counts were measured under delay-and-coincidence-resolution setup a) in table 3.1. 

Corresponding SH autocorrelation cu rves are shown in figure 4.15. 

Table 4.6 compares the theoretical values for Tp, TpSH given by the SH autocorrelation 

curves, and Tpcoinc obtained from the normalized coincidence data by x2-fits with the 

single-component fitting function (3.4) . TpSH was calculated from the FWHM C::,.t of the 

peaked component of the SH autocorrelation curve by: 

C::,.t 
TpSH = 

2
j[l12. (4.2) 

The dip depths are only about 30 %, because the beam splitter used in the interfer­

ometer was not 50%:50% (R/ T ~ 1/ 3). 
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Figure 4.14: Plot of the normalized coincidence counts for Ti:Al2 0 3 laser pulses stretched 
by the pulse stretcher. The three lines correspond to: a) z = 0, b) z = -5 mm, c) z = -10 
mm. 

z Q Tp TpSH Tpcoinc 

(for Bo = 40°) (calculated from a:) (from SH) (from coincidence count) 
0 mm 0 - 133 ± 20 fs 132 ±3 fs 
-5 mm 2.0 x 10 ·•"sec.• 630 fs 645 ± 60 fs 124±3fs 
-10 mm 4.0 x 10 -•osec! 1.2 ps 1.29 ± 0.1 ps 131 ±3 fs 

Table 4.6: Comparison of theoret ical values for Tp, TpSH given by the SH autocorrelation 
curves, and Tpcoinc obtained from the normalized coincidence counts. Theoretical values 
for Tp \\·ere calculated using equalions (2.72) and (2.73), and estimating the value for 8 
from the im·erse of TpSH at z = 0 mm as 7.5 x 1012 Hz. 



70 CIIAPTER 4. EXPERJ.\IENTAL RESULTS 
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Figure 4.15: SH autocorrelation curves for Ti:AI 2 0 3 laser pulses stretched by the pulse 
stretcher. The three lines correspond to: a) z = 0, b) z = -5 mm, c) z = -10 mm . 
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This chapter gives a discussion of the experimental results presented in chapter 4, followed 

by a physical interpretation of the dip and a comparison with the Hanbury-Brown-Twiss 

experiment. 

5.1 Discussion of experimental results 

Comparison of the three measurement methods in tables 4.3, 4.4, and 4.5 for the dye laser 

show that the values for T, and Tp given by the normalized coincidence curves and the 

SH autocorrelation curves are roughly of the same order. However, closer analys is shows 

that the values given by the normal ized coincidence curves are consistently smaller, while 

the values for the ratio r,/Tp are about the same for both methods. The values for T, 

given by lhe spectral profiles fal l somewhere in between the other two methods. The best 

agreement between the three methods has been obtained for the case r, /Tp ~ 0.15, where 

the difference between the coincidence counting and the SH autocorrelation methods are 

11~thin 10 to 15 %. 

To some degree, deviations from the Gaussian shape assumed for the spectrum and 

the pulse envelope in the theoretical model may be responsible for the discrepancies in 

Tp and the differences between T, given by the normalized coincidence curves and the 

spectral profiles. However, this still does not explain the differences between r, given by 

the normalized coincidence curves and the SH autocorrelation curves, nor the agreement 

in the ratio r,/Tp . These features can be explained by the model for imperfectly mode­

locked pulses with chirp (equations (2 .67), (2.68), and (2.69)). T he fact that differences 

in T, between the normalized coi ncidence curves and the spectral profiles a re smaller than 

those between the normalized coincidence curves and the SH autocorrelation curves may 

also be considered to support this model (equation (2.64)). 

In the case of tab le 4.6 for the Ti:Ah03 laser interpretation is much more clear. As the 

amount of chirp increases, t he SH autocorrelation curve widens to reflect the longer pulse 

width, while the width of the coincidence count rate dip constantly gives the pulse width 

for zero dispersion determined by the inverse of the spectral width. This is exact ly as the 

model for perfectly mode-locked pulses with chirp predicts ( equations (2. 75), (2. 76), and 

the peaked component of equation (2.79) ). 
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5.2 Origin of the two-component dip 

A simple description of the origin of the two-component dip has already been given in 

chapter 2. This desc ription was given in terms of the first-order correlation functions of 

A(t), and was thus dependent on the assumption that A(t) obeys Gaussiru1 statistics, i. e. 

that the second-order correlation fun ctions of A(t) can be expressed in terms of the first­

order correlation functions. This section attempts to give a more general interpretation 

in terms of intensity fluctuations. 

Generally, in the measurement scheme proposed by this work, two different types 

of fluctuations are present in the field intensities at the two detectors : the second-order 

interference fringes modulated by the phase modulator, ru1d the fluctuations of the original 

input field. It is from these two types of fluctuations that the two-component dip is 

derived. 

Since the two types of fluctuations have completely different origins, they are inde­

pendent of each other and can be treated separately. The correlation of the latter type 

of fluctuations can be understood as analogous to that observed in the Hanbury-Brown­

Twiss experiment , and is treated in detai l in section 5.3. I will now attempt to give a 

description of the former type of fluctuations . 

Let us first write down the expressions for the intensit ies IE1 I2 and IE212 at the two 

detectors for OT = 0: 

IE,(t,W = ~IE(t,W- ~ IE(t,W cos[¢>(ti) ], 

IE2(t2)l
2 = ~IE(t2W + ~IE(t2W cos[¢>(t2)]. 

(5.1) 

(5.2) 

Here, for simplicity, we have assumed that R = T = 1/2 and TPM = TAr = 1. We 

see that the modulations in the two intensities due to the phase modulator are perfectly 

correlated for small values of lt2 -ttl; 1Etl2 is maximum when l£212 is minimum, and vice 

versa. This negative correlation ca n be understood as the conservat ion of the total output 

energy of the interferometer. Because the phase modulator modulates only the phase of 

the optical field, t he total energy that passes through the interferometer is unchanged. 

This correlation ceases to exist when 1t2 - t 11 is larger than the t ime-constant of the 

modulation . Because this t ime-constant is much longer than the coincidence resolution 

time TcR , contribution from this correlation to the coincidence count rate CaJl be fully 

resolved aJld observed. Because the correlation is negative, it leads to a. decrease in the 

coincidence count rate a.t OT = 0. l\ Iultiplying equations 5.1 and 5.2, and averaging over 
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<P(t) we gel: 
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~IE(tt)l2 fE(t2W(1- (cos[</J(tt)] cos[</J(t2)])¢) 
4 
1 1 
:tiE(tt)[2[E(t2)[2(1- 2), (5.3) 

where the last approximation has been made for values of [t2- ttl where </J(t t) ~ <P(t2) . 

Taking the average over intensity fluctuations of the input field we get: 

~([E(ttWIE(t2W)E(1- ~) 
1 1 
:t(IE(ttW)E([E(t2)[2)E[1 +.A( or= 0; t2- tt)](1- 2) 

~(IE(tt) [2) E([E(t2) [2) E 

1 1 
[(1- -)+>-(or= O;t2 -tt)(1- ?)]. (5.4) 

2 -

Here .A(or = 0; t2 - tt) is the correlation of the intensity fluctuations of the original input 

field . 

For or f. 0, the depth of the modulation by <P(t) is determined by the visibility 

II; (i = 1, 2) of the second-order interference fringes given by [5] [6] : 

v;(or) = 
[E;f~nax -[Ed~nin 
[E;f~nax + [E;f~nin 

I(E'(t;)E(t; + or))EI 

so that now equation (5.4) becomes: 

yielding the two-component dip. 

In the absence of the intensity fluctuations of the original input field we have: 

(5 .5) 

(5.6) 

(5.7) 

The actual coincidence count rate is obtained by integrating this quantity over t1 and 

t2 , but all of the important characteristics a re already present. i(IE(ttJI2)E([E(t2JI2)E is 

the product of the intensities when there are no interference fringes, and there is a 50 % 
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decrease from this value at or = 0. The width of this decrease is determined by the 

visibili ty of the fringes. This applies well lo cases of perfeclly mode-locked pulses with 

and without chirp , because these pulses have no intensity flu ctuations in excess of the 

pulse profile. It can be easi ly understood why in the chirped case the coincidence count 

rate measures the spectral width rather than the pulse width; it is because the visibility 

curve is a reflection of the former and not the latter. 

5.3 Comparison with the Hanbury-Brown-Twiss 
experiment 

Let us now take a close look at diagrams b-1) and b-2) in figure 2.3, which are related 

to the rp-component of the t\\·o-component dip. We see that if we neglect the first trans­

mission/reflection at the beam splitter, the diagrams closely resemble the setup for the 

Hanbury-Brown-Twiss experiment [1]. Indeed it can be shown that .A( or= 0; t
2

- t
1

) in 

section 5.2 is precisely the intensity correlation observed by Hanbury Brown and Twiss. It 

has been known for the case of stationary light that such a correlation cannot be observed 

\vith a slow detector [30] . This section explains why it has been possible to observe this 

correlation in our case of fast pulses, and how it has led to the measurement of the pulse 

width. 

Figure 5.1 shows the basic setup for the Hanbury- Brown-Twiss experiment. For this 

type of setup, the fields E 1(t) and E2 (t) at the two detectors D1 and D2 can be expressed 

as 

Et(t) = VTE(t) 

E2(t) = iVRE(t), 

(5.8) 

(5 .9) 

where E(t) is the input field and T and R are the t ransmittance and the reflectivity of 

the beam splitter BS. Then, for such E 1(t) and ~(t) we have 

(5.10) 

so that , as in equation (5.4), 

(5.11) 

The meaning of .>-(or= 0; t2 - tt) becomes clearer if we denote fluctuations in [E(t)i2 

by 6[E(t)i2 so that 

IE(t)[2 
= (IE(tW)E + Ll [E(tW (5.12) 
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Using (t.[E(tW)E = 0, we obtain: 

(5.13) 

Comparison with equation (5.11) shows that 

(5.14) 

Thus >.(6T = 0; t2 - t1) is the correlation of the intensity fluctuations normalized by the 

product of the average intensities. 

In the case of the chaotic field described in subsection 2.3.2, 

(5 .15) 

so that 

(5.16) 

The \\'idth of >.(6T = 0; t2 -t1) is directly related to the width of the first-order correlation 

function f(t2 - t1), so that measurement of >.(6T = 0; t2 - t1) can give the spectral width 

of the input field. This is a consequence of the Gaussian statistics expressed in equation 

(2.45). For other types of fluctuations >.(6T = 0; t2 - t1) is not directly related to the 

first-order correlation functions, but its width can still be considered to be of the order of 

the coherence time T,. 

\Vhen the detector response is much faster than T,, the coincidence count rate between 

the detectors D1 and D2 can be measured as a function of (t2 - t 1) to directly yield the 

quantity ([E1(t1)12[E2(t2)12)E· For slow detection systems equation (5.11) needs to be 

integrated over the coincidence resolution time TcR : 

(5.17) 

For stationary light where ([E(t1)12)E = ([E(t2)12)E = ! ,this gives: 

Typically TcR is of the order of nanoseconds, so that for T, ~ 1 ps, T, / TcR :::; 10-3, and 

forT, ~ 100 fs, T, / TcR :::; I0- 4
. This means that not only is the shape of the intensity 

interference term >.(6T = 0; t2 - t1) no longer visible, but the coincidence count rate must 

be determined to the order of 0.1 ~ 0.01% before we know if the term exists at all . This 
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is the reason why intensity correlation of stationary light is difficult to observe with a 
slow detector. 

However, the situation is a little different in the case of pulse trains, because the width 

of (([E(tJW)E([E(t2)12)E) is limited by the pulse width Tp· In situations where conditions 

(2.8) and (2.11) hold (i. e. where TcR is longer than Tp and T, but short enough to 

distinguish between consecutive pulses), we can utilize equations (2.15) and (2.16) so 

that: 

(5.19) 

where lp is the peak intensity. Thus the contribution from the intensity interference term 

relative to the non-interference term is given by T, j Tp. This means that the intensity 

interference term can be observed even with a slow detector, as long as TcR :::; To and 

the ratio T, j Tp is not too small. In section 2.4 it has been shown that for the case of 

mode-locked pulses, TcR can be even longer than T0. We can say that in the case of fast 

pulses, the pulse width TP plays the role of the effective coincidence resolution time. This 

is the essence of the ratio T,/Tp between the depths of the Tp- and T,-components of the 

two-component dip treated in the present work. 

In order to clarify the behavior of the intensity interference term for the Michelson­

interferometer configuration of the present work, we denote fluctuations in E' (t)E(t+ 67) 

by b.(E' (t)E(t + 6T)) and rewrite equation (5.3) for 6T fc 0: 

([E1 (t1) [2[E2(t2) [2).p 
1 

= 
16 

[[E(t1W + [E(t1 + 6TW)[IE(t2W + [E(t2 + 6TWI 

1 
-

16 
[E' (t1)E(t1 + 6T)E(t2)E' (t2 + 6T)(exp[i{¢(t2) - ¢(t1)}])¢ +c. c.) 

1 
~ 16 IIE(t1W + [E(t1 + 6T)[2J[IE(t2W + [E(t2 + 67)[2] 

1 
-

16 
[E'(tJ)E(tl + 6T)E(t2)E' (t2 + 6T) +c. c.) 

1 
= 16[([E(tJ)[

2
)E + b.[E(tJ)[ 2 + ([E(tt + 6TW)E + b. [E(t1 + 6T)[2) 

[([E(t2W)E + t.[E(t2W + ([E(t2 + 6TW)E + t.[E(t2 + 6TW) 

-
1

1

6
[{ (E' (t1)E(t1 + 6T))E + b.(E' (tJ)E(t1 + 6T))} 
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{ (E(t2)E' (t2 + 8r))s + f:l(E(t2)E' (t2 + 8r))} +c. c.]. (5 .20) 

Averaging over fluctuations in E(t) we obtain: 

(IE1 (tt) I2IE2(t2) 12)¢,£ 

~ ~ [{~((IE(tl)l 2 )s + (IE(tl + 6rW)s)((IE(t2)12)s + (IE(t2 + 8rW)s) 

-~I(E' (t1)E(t1 + 6r))sii(E(t2)E' (t2 + 8r)) sl} 

+G((L:liE(tl)I2L:liE(t2)12)s + (L:liE(tl + 6r)I2L:liE(t2 + 8rW)s 

+(L:liE(tt)l2 tliE(t2 + 8rW)s + (L:liE(tl + 8r) 12 L:liE(t2W ) s) 

-~I(L:l(E' (ti)E(t l + 6r)) tl(E(t2)E'(t2 + 6r)))sl }] 

~ ~ [{(IE(tl)l
2
)s(IE(t2W)s 

-~I(E'(tt)E(tl + 6r))EII(E(t2)E'(t2 + 6r))EI} 

+{ (L:liE(tlWL:liE(t2)12)E 

-~I(L:l(E'(ti)E(tl + 6r))f:l(E(t2)E'(t2 + 6r)))EI}], (5.21) 

where, in the last approximation, we have neglected minor details that do not show in the 

final integrated result . Comparison with equation (5.6) shows that the term >.(8r; t 2 -tt), 

which determines the behavior of the intensity-interference component at 8r -:f 0, is given 

by: 

I(L:l(E'(ti)E(tl + 6r))f:l(E(t2)E'(t2 + 6r)))EI 
>.(Dr; t2 -t1) = i({IE(ti)I2)E + (IE(tl + 6r)I2)E)( (IE(t2Ji2)E + (IE(t2 + 8r)I2)E) · (5.

22
) 

(f:l(E' (tt)E(t1 + 6r)) f:l(E(t2)E'(t2 + 8r)))E is not as sensitive to 8r as (E'(t)E(t+ 8r))E, 

because at lt2 - td < r, phase fluctuations in L:l(E' (tt)E(t1 + 8r)) are mostly canceled by 

L:l(E(t2)E' (t2 + 8r)). However, it is still required that the two pulses E(t) and E(t + 8r) 

overlap, so that the width of >.(8r; t 2 - t 1) with respect to 8r is limited by the pulse width 

Tp. It is by taking advantage of this behavior that the present work has succeeded in 

measuring Tp. 

An experiment similar to the present work has been performed with the off-axis flu­

orescence from laser dye by Ou et al. [55]. In their work, terms corresponding to 

>.(8r = 0; t 2 - t1) and >.(8r; t2 - t 1) have been neglected, because the light source was 

stationary and contributions from these terms were too small to be observed. Therefore 

their experiment purely measured the modulation of the second-order interference fringes 

by the phase modulator . In our experiment with fast pulses, the pulse width has acted as 
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the effective coincidence resolution, so that not only the modulation by the phase modu­

lator but also the intensity fluctuations of the original input field has been observed. The 

behavior of the former with respect to 8r has led to the measurement of the coherence 

time, while that of the latter has enabled the measurement of the pulse width. 
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Chapter 6 

Conclusion 

E BS D1 

D 

Figure 5.1 : Scheme for the Hanbury-Brown-Twiss experiment: 
E, input optical field; BS, beam splitter; D1 , D2 , photodetectors. 
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It has been demonstrated both theoretically and experimental ly that by combining a 

Michelson-interferometer configuration and the coincidence-counting method, simultane­

ous measurement of the pulse width and coherence time of fast laser pulses is possible. A 

Lime resolution much smaller than the detector response time has been obtained . 

This is the first observation of a systematic temporal variation of the intensity of 

light through intensity interference. Physically, this has been made possible through 

observation of the correlation of t he intensity fluctuations of the original input field, 

which similar experiments with stationary light have not been able to observe with a slow 

detector. 

Since the method does not require a nonlinear medium, it is applicable to a wide range 

of frequency regions , including regions where no approp riate SH crystal is available . The 

method is based on photon counting, so it can be applied to measurement of weak light 

sources such as fluorescence. 

Through comparison with t he conventional SH autocorrelation method, it has been 

revealed that this new method behaves differently towards incoherent pulse broadening 

caused by imperfect locking of the laser modes, and coherent pulse broadening of chirped 

pulses. It is an interesting feature of the new method that it distinguishes between the 

two types of pulse broadenings and reflects only the former. 

This characteristic implies that in situations where we do not wish to distinguish be­

tween the two types of broadenings , but are interested in pulse width as purely a temporal 

distribution of the intensity of light , t he SH autocorrelation method is a better choice. 

However, in situations where interest is in the physical phenomena that determine the 

pulse width before broadening by group velocity dispersion sets in, the intensity inter­

ference method can be a useful tool. Especially, it allows one to make measurements 

without influence from group velocity dispersion introduced by the optical elements in 

the interferometer, which can be a problem in the measurement of femtosecond pulses by 

the SH autocorrelation method. 

It is also possible to combine t he present method with t he SH autocorrelation method 

to determine the amount of ch irp in the measured pulse. Conventionally this has been 

realized through comparison of the spectral width with the width of the SH autocorre­

lation curve, or through SH autocorrelation measurement with a collinear configuration 

(interferometric SHG). The former involves a conversion of information in the frequency 

domain to the time domain, so a precise measurement of t he shape of the spectral profile 

is necessary in order to obtain a time-constant that can be compared with the width of 
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the SH autocorrelation curve. The latter method requires that the t ime-delay can be 

controlled to an order much shorter than the wavelength. The method proposed in the 

present work has the advantage that it directly produces information in the time-domain 

which can be compared with t he width of the SH autocorrelation curve, and that the 

requirement on time-delay control is not so strict. 
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