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1 Introduction 

One of the most important problems in particle physics is to make a consistent 

quantum field theory of gravity. We have two ways for attacking it at present. 

One is a non-perturbative formulation of quantum gravity such as a lattice grav­

ity theory. Since the quantum gravity based on the Einstein action is perturbatively 

non-renormalizable in more than two space-time dimensions, it is impossible to de­

fine it based on the conventional perturbation theory. 

The other is string theory. There is a spin-two massless particle in the closed 

string spectrum. Thus we can interprete it as a graviton [1]. However, at the first 

quantized level of the string theory, we have infinitely many classical solutions. If 

the total central charge (including the contribution of ghosts), i .e. an anomaly of 

the world sheet conformal symmetry is zero, any two-dimensional conformal field 

theory on a complex plane can be the classical solution (the perturbative vacuum 

of the string). If the string theory truly describes our world, it must have a mech­

anism selecting a true vacuum from the infinitely many perturbative vacua by its 

own non-perturbative effects. Or when considering a problem of space-time com­

pactification, since it is a kind of phase transitions, we can not give a definite answer 

without examining the non-perturbative effects. Thus in the string theory the non­

perturbative effects should be considered seriously. However, in the first quantized 

framework we can hardly know about them. In order to do so, it is natural to con­

struct the second-quantized string theory (the string field theory) and to investigate 
its non-perturbative structure. 

In these several years, much progress has been made about two-dimensional 

quantum gravity coupled with a matter which is a conformal field of the central 

charge c::; 1. Now, the partition function and various correlation functions can be 

estimated, and we have some knowledge about an integrable structure of the system. 

Also, the two-dimensional quantum gravity is equivalent to a string theory such that 

the target space dimensionality is c ::; 1 (the c ::; 1 non-critical string). Thus the 

result is very stimulating to string theorists . 

In particular, the development in the lattice approach based on the dynamical 

triangulation of the string world sheet by matrix models is very fascinating. The 

matrix models can be regarded as a constructive definition of a lattice regularization 

of the string field theory, and that by taking the continuum limit (the so-called 

double scaling limit) we can obtain some knowledge about the non-perturbative 
effects in the case of c ::; 1. 

However, the matrix models are not in the conventional field theoretical form, 

and aspects of the string field theory do not appear manifestly. Thus it will be useful 
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to reformulate the c ~ 1 matrix models in a field theoretical form for investigating 

the non-perturbative effects, based on analogy with conventional local field theories. 

Moreover it might be possibl~ to get the unified understanding of lower-dimensional 

string field theories and by studying the symmetry of the resultant formalisms to 

find some guiding principle of constructing the generic (not restricted c ~ 1) string 

field theory. 

Recently, Ishibashi and Kawai (2] proposed a simple string field theory which 

reproduces the results of the one-matrix model (c = D). Its Hamiltonian has only 

three terms: a loop splitting vertex, a loop merging vertex and a tadpole term which 

represents the annihilation of a string. A string creation term and a kinetic term 

are absent. In this theory one can derive the correlation functions by solving the 

equation of motion obtained from the string field Hamiltonian. This is in contrast 

to the situation that in the one-matrix model the correlation functions can only be 

determined by considering an infinite number of components of the Schwinger-Dyson 

equations (the S-D eqs.). Thus the Hamiltonian has the same information as the 

infinitely many S-D eqs. in spite of its simple form. Further, Jevicki and Rodrigues 

(3] pointed out the relation of the theory to stochastic quantization of the one-matrix 

model. Although some ambiguous points are remaining in their argument about the 

continuum limit , it gives an interesting interpretation of the fictitious time in the 

stochastic quantization. 

In respect to higher dimensional case (c ~ 1), Ishibashi and Kawai (4] proposed 

a string field theory of a similar type as before. T hey took the time differently 

from the c = 0 case, and considered a theory containing only string fields with 

the simplest spin configuration on the equal time loop. (All spins are aligned .) 

However, validity of their proposal has not been proven. Further, in the case that 

c takes the values c = 1 - =(~+l) of the unitary minimal series ( corresponcling to 

the (m- 1)-matrix model) Ikehara et al. (5] cliscussed a possibility of considering 

all spin configurations on the loop created by the string field . Most of their analysis 

is , however, devoted to the integrable structure of the usual S-D eqs. (the W= 

constraint) , and the Hamiltonian they gave is not in a definite form. The tadpole 

terms are not determined at all, and the inner product of the string states contains 

a eli vergence, which comes from that of the boundary states of boundary conformal 

field theory. 

In view of this situation, we will present a more systematic derivation of string 

field Hamiltonians in the case of c = 0 and 1/2 by directly constructing them from 

the matrix models and consider the nature of the resultant Hamiltonians. 

This thesis is composed of four sections and four appendices. Section 2 is de­

voted to a brief review of the one- and two-matrix models for later convenience. 
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In Section 3 we construct the c = 0 st.ring field theory from the one-matrix model 

for purposes of a warming up for the two-matrix case and f · · · d . . . . o gtvmg an Improve 
denvatwn which does not contain the ambiguous points in the argument of Jevicki-

Rodrigues. In Section 4 we construct . the c = 1/2 string field theory clirectly from 

the two-matrix model without restricting the spin configurations of the string states. 

We show that the Hamiltonian has indeed no tadpole terms and no dependence of a 

cosmological constant. Because of these properties , the Hamiltonian alone can not 

given a ~ufficient set of equations to determine the correlation functions uniquely, 

w1thout mtroducmg further constraints. Then we cliscuss candidates for such con-

straints. Section 5 is devoted to a summary of our results a d eli · b n a SCUSS!On a out 
the problems which are remained as subjects in future. Many of the calculations in 

Section 4 is straightforward but quite long. In appendices we show several examples 

of such calculations in detail. Appenclix A is devoted to the estimations of clisk 

amplitudes (genus zero one-point functons) of various spin configurations. Here we 

have extensively used the Mathematica package. The continuum limits of the am­

plitudes w<•l((t, a1, (2, a2) and Wt((t; (2, a2) have not appeared in the literatures. 

Also, we derive the whole expressions of the disk amplitudes including the non­

universal pieces. In Appendix B we obtain the spin-flip operator in the continuum 

limit using the results of Appenclix A. It is necessary to represent the Hamiltonian 

in the definite form. Appendices C and D are devoted to the calculations which are 

necessary to taking the continuum limit of the Hamiltonian. 
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2 Brief Review of Matrix Models 

2.1 One-Matrix Model 

The partition function of the one-matrix model is a matrix integral of a N x N 

hermitian matrix M: 
(2.1) 

where 
1 2 g 3 

V(M) = '2M - 3M . (2.2) 

After a perturbative expansion with respect to the coupling g, we obtain the follow­

ing Feynman rules: 

propagator 

and N is assigned to each index loop. 

j 

R 

===~=== 

Feynman graphs are constructed by connecting the above pieces with the direc­

tion of the arrows preserved. Thus the following weight is assigned to each Feynman 

graph 
N-l(propagator)H(ioop)(N g)' ( vertex). 
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a triangle and each propagator by a edge of the triangle (see Fig.2-I). 

Fig.2-l 

Then the above weight is rewritten in terms of the dual gragh G as 

N-l(edge)+l(vertex)(Ng)'(triangle) = N x(G)gA(G>, 

where x( G) and A( G) represent the Euler number and the bare area of the graph 

G respectively. 

Thus the logarithm of the partition function Z is shown to be 

In Z = L Nx(G)gA(G) 

Goconnected graphs 
00 

L N2-2hFh(g) 
h=O 

N2 +".' 

0 
where Fh(g) is the partition function of a dynamically triangulated genus h surface 

or the h-loop string amplitude repr:esented by the triangle lattice. Therefore z can 

be interpreted as a lattice version of the strin g 1·acuurn amplitude summed over the 

all string loop corrections. 

In order to obtain a continuum theory we ha1·e t.o ,; earch the critical point of g 

where the graphs with sufficiently large area cl ollliuat e. According to ref. [6) this 

point is known to be 
:J'i' 

g. = 6 
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and the behavior of Fh(g) in the case of g ~g. is given by 

a- (g. - g) t(l-h)-2 
-Fh(g)~ --
dg2 g. 

Here we introduce a lattice spacing a, a renormalized cosmological constant t and a 

string coupling constant gst as 

By taking a continuum limit as a -> 0 keeping t and gst fixed (the double scaling 

limit) the partition function of the continuum theory is obtained 

d2 00 

-In Z = I: const lh-2 t t<I-h)-2 
dt2 h=O . st . 

(2.3) 

In the above it is remarkable that in the result after taking the continuum limit the 

contributions of the all topologies survive . Moreover according to refs. [7], [8], [9) 
some information about the non-perturbative sum (2 .3) can be obtained. Namely, 

the double derivative of In Z about t 

obeys the Painleve equation of the first kind: 

2 a-
! 2 + gst _ f = t. 

3 dt 2 

If the above equation is solved, we are to determine the non-perturbative be­

havior of the string amplitude. But since it is a differential equation of the second 

degree, two initial conditions are needed. One of them is decided as the asymptotic 

expansion off about gst ~ 0 which is coincident with eq.(2.3) . However the other 

is unknown. 
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2.2 Two-Matrix Model 

As seen in the previous subsection, in the one-matrix model there is no height 

degree on the random surface interpreted as a string world sheet. Here we consider 

the Ising spin (the c = 1/2 conformal matter) as a height on the random surface. 

This is represented by the following two-matrix model: 

z 

V(A,B) 

j dN' AdN' B e-Ntrv(A,B), 

l2l?g 3g3 
-A + -B-- -A - -B -cAB. 
2 2 3 3 

(2 .4) 

Here A and Bare N x N hermitian matrices. Considering a perturbative expansion 

with respect tog, the Feynman rules are as follows: 

propagators 

===~====) 
J 

( i 
---->-----____ .., ___ _ 

J k. 

i 

n. 

L h1. 

trA3 ..... r ~ 

i 1.t. 
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and N is assigned to each index loop. Considering the dual graph similarly as in 

the case of the one-matrix model , it can be seen that (2.4) represents a statistical 

model on the dynamically triangulated surface where the Ising spin is on the center 

of each triangle. (A and Bare associated with up- and down-spins respectively.) In 

this case, the Boltzmann weights of the nearest neighbor spin-interaction is given 

by 

Thus the free energy In Z is shown to be 

lnZ = 
o,triangulated surface 
00 

L N2-2h Fh( c, g) 
h=O 

1- c2 

c 
1- c2 · 

NX(G ) gA(G) F( c, G) 

(2 .5) 

where F(c , G) is the partition function of the Ising model on randomly trianglated 

lattice G. 
In order to obtain a continuum theory we have to find the critical points of the 

both of g and c. The former is needed for dominance of the sufficiently large area 

surfaces, and the latter for survive of the degree of freedom of the Ising spin after 

the continuum limit. Those are given by the authors in reL[lO] as follows 

-1 + 2,;7 
g = !JOc3 ,. V Ju t.: ; , c .. = 27 
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and when g approaches g., Fh(c.,g) behaves as 

( 
g.- g d2 ( ) f(l-h)-2 

J2Fh c., g)~ --
g . g. 

Here we note that only when cis just tuned to c., there appears the degree of the 
freedom of the Ising spin. 

Thus we can take the double scaling limit of In z by introducing the variables of 
the continuum theory t and gst as 

c =c. , g = g.(1- a2t) , Na7f3 = g;tl 

and tuning a --+ 0. The result is 

d2 00 

-In Z = ~ const. g2h-2 tf(l-h)-2 &2 ~ d . 
h=O 

. Moreover the authors of ref.[11] derived the non-linear differential equation sat­
Isfied by the above non-perturbative sum: 

(2.6) 

where 
d2 

f(t) = -lnZ 
dt 2 

and for notational simplicity we set gst = 1 and rescaled J and t properly. 

. As m the one-matrix case there is a problem of the unknown initial conditions 
m eq.(2.6) also. 
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3 c = 0 Non-Critical String Theory from the One­
Matrix Model 

As seen in the previous section, the one-matrix model presents the constructive 

definition of the c = 0 non-critical string field theory. However, we can hardly see 

string field theoretic aspects directly from the one-matrix model. 

In this section, introducing a string field operator we reformulate the one-matrix 

model to the string theoretic form. In Section 3.1 we mention a stochastic quantiza­

tion method in case of a simple model. In Section 3.2 we apply it for the one-matrix 

model and derive a stochastic Hamiltonian, which has a remarkable property that it 

can uniquely determine the all correlation functions of the c = 0 non-critical string 

field at least perturbatively. And in Section 3.3 it is shown that the fictitious time 

of the stochastic quantization can be interpreted as the proper time on the string 

world sheet, and the Hamiltonian describes the evolution of strings along the proper 

time. 
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3.1 Stochastic Quantization 

We will briefly explain a stochastic quantization method taking the system of the 

integrals of N -variables q;'s for example: 

N 
z j II dq; e-V(q,, .... N) 

1;::1 

(O(q)) = i j fJ dq; O(q)e-V(q, , ·,qN) (3.1) 

We consider to reformulate this system 'classically' as follows. Firstly, introducing 

the fictitious time D and the random force (the white noise) ry;(D), we define the 

'time' evolution of q;'s by the Langevin equation: 

(3.2) 

And since the force is random, the mean value under ry;'s is defined by the 
Gaussian form: 

(J(ry)}, = const. j II dry;(D) f(1'JV f dDI>;(D)', 

i ,D 

where const. is determined so that (1}, = 1. 

Then 

(ry;(D}}, 

(ry;(D)1'J1 (D')}, 

0, 

Secondly, the probability distribution function <I>(q , D) is introduced by 

N 

(O(q(D))}, = J II dq, O(q)<I>(q , D). 
i ::;I 

(3.3) 

(3.4) 

Here we will derive the evolution of <I>(q , D). In order to make the process well­

defined we use the discretized time {D.} . Then eq. (3.2) changes to 

After expanding the difference O(q(Dk+ 1)) - O(q(Dk)) using the above and taking 

the mean value by the discretized version of (3 .3). we obtain 

(O(q(Dk+J))},- (O(q(Dk))}, = 
-(2: a.p(q(Dk))o.Y(q(Dk))),6D + (L a:. O(q(Dk))),,6 D + 0((6Dj2}. 

' 
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Now we take the t:..D -> 0 limit, and after a partial integral the result is 

a j N a (a av) 
aD

(O(q(D))). = II dq; O(q(D)) La. a.+ a. <I>(q,D). 
t:=l I q, q, q, 

Comparing with the r.h.s. of (3.4), we obtain the so-called Fokker-Planck equation 

a N a ( a av) 
aD <I>(q, D)= I: a. a.+ a. <I>(q, D). 

·~1 q, q, q, 
(3.5) 

We note that the time-independence of the normalization 

N J II dq;<I>(q, D) = 1 
i=l 

(3.6) 

is consistent with (3.5). 
Here the existence of the thermal equibrium state (D--> oo limit): 

(3.7) lim aaD<I>(q, D)= 0 
D-oo 

leads to 
(3.8) 

where we used the fact that the kernel of the r.h.s . of (3.5) can be rewritten to the 

positive definite Laplacian 

a (a av) 2.::- -+- <I>(q ,D)= 
i 8q; 8q; aq; 

'v{ "'(a 18V)(a 18V)} 'v - e-;- - ~ ---- - + -- (e' <I>(q,D)), 
, aq, 2 aq, oq, 2 aq, 

(3.9) 

and the normalization constant is determined by 

N j II dq,<I>,q(q) = I. 
t==l 

(3.10) 

Thus we obtain 
(O(q)) = lim (O(q(D)))". 

D-oo 

Here it is noted that limn-oo(O(q(D)))" can be determi ned by the 'classical' 

equation of motion (3.2) under the random force. independently of the initial condi­

tion. (The randomness of the force reflects the Ga uss ian co ntraction (3.3).) In this 

sense the correlator (O(q)) can be calculated in the ·classical' framework. 
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Stochastic Hamiltonian and Schwinger-Dyson equation Next, we will men­

tion about a stochastic Hamiltonian. Using the formal solution of eq. (3.5) 

DI; -L(.L R) <I>(q,D) = e '""a,.+.,. <I>in(q), 

we rewrite (3.1) 

(3.11) 

Here we represent it by an operator form. Applying the following realization 

a 
l-a· q1] = a,1 ..... 

q; [¢;, c~>;J = o;i 

0(¢1)[0) O(q) ...., 
a 

aq; O(q) <--> ¢;0(¢1)[0) (¢;[0) = o) 

q;O(q) ...., 

0(0) 

¢)0(¢1)[0) 

(0[0(¢1)[0) ((Of¢)= 0) 

and putting <I>in(q) = n. o(q;) since <I>in(q) can be chosen freely if normalized, we 
have 

(O(q)) = lim (Ofe-DH0(¢1)[0) 
D - oo 

(3.12) 

where 

H = £ [-¢? + (av) (¢1)¢•]· 
•~1 oq, 

(3.13) 

we will call this a stochastic Hamiltonian. 

Further, we show that the stochastic Hamiltonian is derived from a (symmetrized) 

Schwmger-Dyson equation (S-D eq.) for the generating function 

1 J N Z(J) = z II dq; e-V(q )elq (J. q = L J;q;). 
t=l 

That S-D eq. is written as 

o=-HZ(J) , 1i=-~J.(J·-(!~)( aa1 )). (3 .14) 

which is derived from the identity 

0 = 2_ j IT dq; L ~ (e-V(qJ~eJ·q). 
z ·~1 ' fJq, fJq , 

(3.15) 

From eq.(3.13) and the operator representation of Z(J): 
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it can be seen that 1f. is nothing but the ]-representation of (3.13). 

Moreover we remark that the solution of (3.14) is uniquely determined as follows . 

For pure imaginary J's, the Fourier transformed version of (3 .14) is 

a ( a (av) ) -0=2:- -+ - (Q) Z(Q) 
i aQ; aQ; aq; 

(3. 16) 

where 
Z(J)= /fJdQ; e1 QZ(Q). 

Repeating the same discussion as in (3.9) and (3.10), we find out the unique solution 

Z(Q) = const .e-V(QJ, 

where the multiplicative constant is determined as Z(J = 0) = L 

16 

3.2 Stochastic Hamiltonian of the One-Matrix Model 

Here we derive the stochastic Hamiltonian from the one-matrix model using a 

method in the previous subsection. We follow a suggestion made by Jevicki and 

Rodrigues [3], however in their collective field formalism the non-trivial Jacobian 

factor is induced and the evaluation of that factor is very difficult in the scaling 

limit. Besides, there is an ambiguous point in their argument when determining the 

tadpole term in the Hamiltonian. From this reason we will present a derivation in 

such a way that the Jacobian does not appear. 

We define a generating functional of the one-matrix model as 

Z[J] .!_ j dN' M e-NtrV(M)eJ·<l> z , 
z j dN' M e-Ntrv(MJ, V(M) = ~M2 _ ~M3, 

J-iP f 2d;/(()iP((), 

where 
1 1 1 00 

iP(() = -tr-- = - L cn-ltrMn 
N (- M N n=O 

(3.17) 

is a loop operator and a contour of (-integral is taken as the convergence circle of a 

series in r.h.s. of (3.17) as depicted in Fig.3-12. We take as the source J(() a regular 
function inside the contour . 

Fig.3-l 

2 In this theory with finite N, the<!>(() in the correlation functions will have no convergence 
circle since the region of M-integral is non-compact. However we are interested inN~ oo lirnit of 
the theory, where it is known that the master field configrations with the finite eigenvalues of M 
are dominant in the M-integral[6]. Thus we can regard that<!>(() has the finite convergence circle. 
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We will start the analogue of (3.15): 

o = 2_ j dN' M £_a_ (e-Ntrv(M) _a_e J·<~~) 
Z o=l 8M0 8Mo 

where M is expanded by the basis of N x N hermitian matrices {to}: 

Using the identities 

.L: tr(At0 Bt 0
) 

.L: tr(At 0 )tr(Bt 0
) 

eq.(3.18) is rewritten as follows 

trAtrB, 

trAB , 

(3.18) 

0 -1iZ[J] (3.19) 

-f :;i [a,J(() { ( oJ~() - ~((- g(2)) 2- ~((- g(2)2- g(} 

+ ~2(a,J(()? oJ~()]. (3.20) 

Here the functional derivative 61~0 is defined for ( outside the contour as 

(3.21) 

Then eq.(3.21) shows the a-function like nature 

f d(' oJ((')<Ti((') = f d('.-1-<l/((') = <T1(() , 
27Ti oJ(() 2m (- (' 

where for the above calculation we used a transformation('= 1/z' (see Fig.3-2) and 

the fact that the 
<l/(1/z') = 2_ f z'n+ltrMn 

N n=O 

18 

is regular inside the contour in Fig.3-2. 

Fig.3-2 

Continuum limit of 1i Introducing a lattice spacing a, the continuum limit (the 
so-called double scaling limit) is taken by a-+ 0 with 

( = (.(1 + ay) , g = g.(1- a 2t) , 1 5/2 
-=a 9st 
N 

where from ref.[6] 
31/4 

g.= -6-. 

Here in order to obtain the correct continuum limit, we must subtract a non­

universal cut-off dependent part from the correlation functions. It appears only in 

the planar one-point function (the disk amplitude). Namely, the connected K-point 
function 

is written as 

W(() 

W((J,· ·· , (g) 

where HC- g(2
) is the non-universal part of the disk amplitude and w is a universal 

piece giving the correct continuum limit. This subtraction means the following shift 
of the ]-derivative in 7-l: 

s 0 1 2 

oJ(() -- oJ(() + 2((- g( ). 
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After the shift, 1i is in the form: 

In the continuum limit , the source ](y) is defined by 

so that 
6J(y') 
6](y) = y- y'. 

Here we note that the inside (outside) of the contour in (-plane is mapped to the 

left (right) half plane in y-space, thus J(y) is regular in the left half plane. 

The above 1i becomes 

1i = 

where 
16 

T- t 
- 3(1 + VJ)2 ' 

At a glance there seems to exist undesirable terms: J~foo 1;r(o.J(y))2 and 

tfoo 1;r(o.J(y))2y, however in fact it turns out that they vanish. We note that since 

Jioo ~(8 ](y))2yn is a quadratic functional of J it vanishes if 
-100 211'"1 y 

6 0 j_ioo dy - 2 n In=------ -.(o.J(y)) y = 0. 
6J(yl) 6J(y2) -ioo 27rt 

(3.22) 

It is easy to see that In vanishes for n = 0, 1, 2 when Rey1 , Rey2 > 0. 

Thus after the rescaling as 

we have the stochastic Hamiltonian in the continuum theory 

J
ioo dy [ - 62 

2 - 2 6 
1i = - -ioo 27ri a.J(y) 6](y)2 + gst(B.J(y)) 6](y) 

-a.J(y)(y3
- ~ry)], (3.23) 

20 

where the overall factor a112(;.1C112 was absorbed by a redefinition of the fictitious 
time. 

From this factor, we can see that the dimension of the fictitious time is half of 

that of the loop length, which is related to a fractal structure of the random surface 
[13). 

1\uning to the operator formalism, we obtain the following string field theory 

Z[J] lim (Oie-DH eJ.>I' 1 IO) , 
D-oo 

- /_;"" 2dy[~l(y)28.~(y) + g~t ~t(y)(B.~(y))2 
-100 7it 

H 

3 3 -
-(y - 4ry)o.w(y)], (3.24) 

-1 
y _ y'' ~(y)iO) = (OI~ 1 (y) = o 

/_
ioo dy - - j 

-ioo 21riJ(y)1lt (y). 
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3.3 Physical Meaning of the String Field Theory 

In order to see a physical meaning of the theory it is convenient to change the argu­

ment y of the string field into a loop length l by making the Laplace tranformation: 

Then 

ilf(l) 

J(l) 

rioo dye'•{jtl(y), 
1-.:oo 27n 

rioo dye-'•{jt(y), 
1-ioo 27ft 

t"" dye-'" ](y). 
1-ioo 27rt 

[il!(l), ilfl(l')] 

J. wt 
o(l -I') , ill(I)IO) = (Oiill(i) = 0, 

fo"" dlJ(l)w 1(1) , 

H 

p(l) = 

-f" dl1 f" dl2ill 1(1J)ill 1(12)(l1 + l2)ill(l1 + l2) 

-g~t f" dl1 f" dl2w1(l1 + t2)11w(ll)L2w(L2) 

-f ' dlp(l)il!(l) , 

36"(1)- ~ro(l). 
4 

(3.25) 

This is coincident with the form of the c = 0 non-critical string field theory firstly 

proposed by Ishibashi and Kawai [2]3 and constructed using the dynamical triangu­

lation method by Watabiki [12]. It is known that the theory (3.25) reproduces the 

correlation functions and the relations sat isfied by them (the Virasoro constraint) 

calculated from the one-matrix model. 

Indeed, from the existence of the D --> oo limit in the partition function the 

following equation of motion is obtained: 

0 = HZ[J] (3.26) 

By expanding each order of J in (3.26). we ha,·e infinitely many relations to give 

the correlation functions. For example, the fir st component is in the form: 

? ? 3 0 
-o.(w(y, y) + w(y)-) + 3y-- :t' = , 

'Strictly speaking, the Hamiltonian (3.25) has the reciproc;d sign to that of Ishibashi-K awai. 
Their sign is misleading. Our Hamiltonian has the right si~n, du<! to th e d1rect construction from 
the represen tation of the positive definite Laplacian as {3.16)- {:l.20). 
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in which expanding w's perturbatively with respect to 9sto the disk amplitude can be 

determined from the tadpole term by imposing an appropriate boundary condition 

(the analyticity in the right half plane of the y-space.) Also, we can show that 

the other generic correlation functions can be uniquely determined by imposing a 
suitable boundary condition. 

Thus it is remarkable that the only one equation of motion (3.26) uniquely 

determines the system in the c = 0 non-critical string. So to speak, the Hamiltonian 

by itself plays the same role as the infinitely many S-D eqs. required for giving the 
all correlation functions unambiguously. 

In the Hamiltonian (3.25) it can be interpreted that the string field ill(l) is 

an annihilation operator of a length I string with no marked point, and ilfl(l) is 

a creation operator of that with a marked point. The Hamiltonian H describes 

' time'-evolution of a string, i.e. the first (second) term of (3.25) shows a splitting 

(merging) process and the third term an annihilation of a string. It is noted that the 

kinetic term representing a string propagation like fa"' dl1 ]0
"" d/21<(11, 12)ilfl(l1)il1(12) 

and a string creation term like ]0"" dlC(l)ilfl(l) do not appear. 

The absence of the creation term is due to a definition of the 'time'. Here the 

'time' is the proper time (geodesic distance) on the world sheet , which is defined 

unambiguously in the lattice theory [13]. The 'time' of a point P on a surface with 

boundary loops is determined as follows. Let us denote the geodesic distance from 

P to each loop (C;) by d;. Then the 'time ' of Pis defined by the minimum of d;'s 
(see Fig.3-3) 

('time' of P) = rryn({d;}). 

Fig.3-3 
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In this definition, the 'time' of the point not on the boundary loops can not take 

the local minimum value. Thus the string creation can not occur. 

Further we note that the proper time appears in the stochastic quantization of 

the matrix model as the fictitious time. In the lattice definition, the stochastic 

Hamiltonian is equivalent to a superposition of the symmetrized versions of usual S­

D eqs. , which describes the one-step (one-lattice unit) deformation of incident loops 

on a dynamically triangulated surface. It is nothing but the one-unit evolution of 

the proper time [13] . Thus it could be naturally understood that the fictitious time 

is identified with the proper time. 
Also the absence of the kinetic term will be understood from the dimensions of 

the 'time' D and the loop length /. Because l ~ D 2 ~ D for the large D, loops 

would be densely packed in the surface. Then even the infinitesimal ' time' evolution 

would cause the loops to touch each other or themselves, and the string could not 

propagate freely. Thus the propagation by the kinetic term will not be needed in 

order to represent the dynamics of the c = 0 non-critical strings. 
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4 c = 1/2 Non-Critical String Field Theory from 
the Two-Matrix Model 

In this section we construct the c = 1/2 non-critical string field theory from the 

two-matrix mod~) w~thout restricting the spin configuration of a string field , as the 

first step of cons1denng the string field theory in realistic dimensions. It is d b 
h · .

1 
one y 

t e snru ar procedure to the one-matrix case. However we must introduce an infinite 

number of components as a string field because the configuration space of the Ising 
spms on the loop is infinitely large. 

We will derive the string field Hamiltonian in the continuum theory under a few 

reasonable assumptions whose validity is confirmed in several simple cases. We will 

however, point out that without imposing further constraints, it can not determin~ 
the partition function uniquely by itself contrary to the one-matrix case. 
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401 Stochastic Hamiltonian of the Two-Matrix Model 

Here we start with the following generating functional of the two-matrix model: 

Z[J] i j dN'AdN'B e-5 e 1·~ , 

Z j dN' AdN' B e-s , 

s Ntr(V(A) + V(B)- cAB) , 

where <I> is a loop operator of the infinitely multi-components: 

<I>s(c:r) 

1 1 ) 
(n- Ac:rn- B 

(n = 1,2, · · ·) , 

and integration contours and source functions are taken similarly as in the one­

matrix case (see Section 3.2). 

<I>A(() (<I>8 (c:r)) represents a configuration on the loop consisting of only one 

domain of A-spin (B-spin) and <I>n((1, c:r1, · .. , (n , c:rn) represents 2n domains of A­

and B-spins (see Fig.4-1). 

~ a-

0 
---/ " I \ 

I I 
\ I 
'- I .....__/ 

9?., ( ~1 ' (Tl ' 0 0 0 ' ~ .... a-,., ) 

Fig.4-1 
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In order to derive the stochastic Hamiltonian, we shall consider the following 
identity 

(4.2) 

As a result of the similar calculation as in the one-matrix case, the Hamiltonian 

constraint can be arranged in the following form: 

0 -HZ[J] 

0 (0 0) 1 0 -J · K <J - J · - V - - -(J 1\J) · - - J . T 
u oJ oJ N 2 oJ . (4.3) 

Here we note that due to the cyclic symmetry of pairs ((; , c:r;) , a functional 
derivative of Jn is defined as 

OJn((L a~,···,(~, a~) 
OJn((J, <1J, · · ·, (n, <1n) 

1 

n . I: ( -(1 _ I ( (I I . ccyc!Jc permutation I c(l) (1! c:rc(l) n- c(n) <1n- c:rc(n ) 

Of course the derivative of Jn by the other components is zero. 

Explanations of the notations in H are in order. 

i) The first term (a kinetic term): The first few components of K .§._ are 
oJ 

(Ko~)A(() 
(Ko~t(a) 

(KL)I ((J.c:r!) 
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+c f _d(. ( ( o + -,----__..:...6 ---,------,-) 
2?rz 6J3((1,cr1,(,cr1,(2,cr2) 6J3((1,cr,,(2,cr2,(,cr2) 

-gD,.(cr~ocr2) (oJ,(~, ,cr) + 6J,(~2,crJ 
-gD,((~o(2 ) (oJ1 (~,cr,) + 6J1 (~,cr2))' 

(4.4) 

where an arrow over 8 stands for that the derivative acts the whole functions fol­

lowing it and the 'combinatorial derivative' Dp(P~o P2 ) is defined as 

D (P p )J(P) = f(P,)- j(P2) 
P ,, 2 P,- p2 . 

The structure of the generic component can be guessed from these expressions as 

explained below. 

Each component represents two kinds of the processes. One is a string propaga­

tion preserving a spin configuration on a loop with the loop length changed by one­

or two-lattice units . And the other is the process with the only one spin flipped 

but keeping the loop length. For example, let us see (K-!J), ((~ocr 1 ) . The first and 

last columns show the former process. It is noted that as a special case if the A-( or 

B-)spin domain consists of only one- or two-lattice units , the process annihilates the 

domain. The last column represents this . And the middle shows the latter process. 

The operator f ;;;cr 6J,((t.!.c
1
,,.,) corresponds to 

f dcr 1 ( 1 1 1 ) 
27ricr\l>2((~o cr, (~ocr,)= Ntr (,-A B (,-A cr,- B 

which is obtained by flipping a A-spin in the (1-domain of \1>1((1, cr1). Also we note 

that -D,.(cr, ,cr2) 611 (~t.u) in (K-!J) 2((1,cr1,(2,cr2) corresponds to 

which is a result that the (2-domain has disappeared in \1> 2 ((1 , cr 1 , ( 2, cr2). 

ii) The second term represents a process where a string splits into two: 

UJ v L) A(() 

(o~v/JL(cr) 
UJ V /J), ((1 ,cr1 ) 
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iii) The third term corresponds to a merging process of two strings: 

(8(JA(())2
, 

(8,.Js(cr)) 2, 

(4.5) 

(J 1\ J)A(() 

(J 1\ J)s(cr) 

(J 1\ J)l((, ,cr,) 2((8cJA((,))8c1 + (8,. 1 Js(cr,))8,.
1 
)J,((1 , cr1 ), 

(J 1\ J)2((, , cr~o (2, cr2) = 
2 

2 L{(8c;lA((j))8,i + (8,.Js(cri))8,.i}J2((1 , cr1 ( 2, cr2) 
J=l 

+J,((, , cr,)J, ((2, cr2)(Dc1 (z, , z2)D,, (z~o z2) + D,.
1 
(s1 , s2)D,., (s1 , s2))1 

Zi = (i, ' 
Sj = Uj 

(4.6) 

where I . _,.. means that this substitution is performed after the combinatorial 
z,- "''' 
Si = (Ji 

derivatives have acted. 

iv) The last term (a tadpole term) shows an annihilation of a string: 

f d( f dcr J · T = -.JA(()g + --:Js(cr)g. 
2TLZ 27r'l 

Here it is noted that these processes in general occur in local with respect to the 

domains. Namely, more than two domains nner create and annihilate at the same 

time and in the splitting and merging processes the recombinations between the only 

one pair of the domains occur . This property will be important in considering the 
continuum limit of 7-l afterwards. 
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4.2 The Hamiltonian in the Continuum Theory 

In this subsection we will take the continuum limit of the Hamiltonian (4.3). In 

order to do so, we have to subtrad the non-universal pieces of disk amplitudes as in 

the one-matrix case. As we can see in Appendix A, a new feature of the two-matrix 

model that does not appear in the one-matrix is that the non-universal part _of a 

disk amplitude contains the universal pieces of disk amplitudes with simpler spin 

configurations as well as the non-universal c-number function. 

When we write a connected k-point correlator of the J = 0 background as 

ci}~~--,1, = (<I> It··· <I>I,) c, 

Il ,··· ,h = A,B,1,2,···, 

the generating functional Z[ J] is 

Z[J] = exp [1 · G(ll + ~J · (J · a<2l) + ~J . (J. (J. cC3l)) + .. ·] 

where the multiple inner product 

J. (J ... (J .aCkl) .. ·) 
~ 

k 

is successively performed w.r.t . the each index of G}~~- ·.I• as (4.1). 

(4.7) 

(4 .8) 

From the investigation of disk amplitudes we can see that for the universal part 

ci>1 of the operator <I>1 is obtained by the linear transformation: 

<l>I=LMu<i>J+rPI, 
J 

(4.9) 

where A1u is a mixing matrix of the uni versal part and ¢1 is the non-universal 

c-number function. A few components of (4.9) is giYen by 

0 • c 2 2 
<I> A(()+ rPA((), <f>A(() =-

3
g + J((- g( ), (4.10) 

<I>B(a) 
c ? 

<i>B(a) + ¢B(a), oa(a) =-
3

g + i(a- ga2), (4.11 ) 

{ffr(<i>A(() + <i• a(o)) + <i• 1((. o) + ¢>1((,a ), 

;
7

(1- ; _((+o-:!Po)). (4.12) 

10 . 0 

-
27

r(Dd(J ,(,) <I•,( () + Da(o,a2 )<I>B(a)) 

-fffr[Dd(J,(2)(' i' J(( oJ) + <i> 1((,a2 )) 
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+ Du(a~, a2)(<i>J((J , a)+ <i>1((2, a))] 

+<i>2((J, a1, (2, a2) + 1>2((1, a1, (2, a2), 

1>2((1, a1, (2, a2) = 10 (;
7

) 
2

, 

where rands are two irrational numbers: r = -1 + 2-/7, s = 2 + -/7. 

Then the connected correlators are transformed as 

o(k) 
where G 1,, ·,!, stands for the universal piece of d1k, ),·· 

Thus introducing a transformed source 

JI = L jf((M-l)KI 
/{ 

the universal partition function z[i] is written as 

e'¢ z[i], 

,lit.. 

Z[J] 

z[iJ exp [i. 6<1l + ~j. (i. G<2l) + ~j. (i. (i . G<3l)) + .. ·]. 

Further the Hamiltonian constraint (4.3) is in the form of 

0 -riZ[i], 

-(iM-1
) · K (M 0~ +<P) 

-{iM-1
) · ( (M 0~ + ¢>) v (M 0~ + ¢)) 

- ~2 ((iM-1 ) 1\ (iM- 1
)) · (M 0~ + ¢>) - (iM-1

). T. 

Here a few components of (4.14) are given by 
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(4.13) 

(4.14) 

(4.15) 

( 4.16) 

(417) 



where .. . represents the terms which consists of jl (I= 3, 4, · · ·). 
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4.2.1 Comtinuum Limit of Kinetic, Splitting and Tadpole Terms 

In order to show the existence of the continuum limit there are several points to be 

checked. Here we consider about the kinetic , splitting and tadpole terms in (4.16). 

Firstly, it is needed to rewrite the operators creating the locally spin-flipped loops 

-a, f ::/' [ (M 0~) 1 
((,a)+ ¢1((, a)] m (K ( M 0~ +¢))A((), (4.21) 

-auj 2d;/ [(M 6~) 1 ((,a) +¢1((,a)] in (K(M 0~+¢)t(a), (4.22) 

j ::ia [ (M 0~ ) 
2 

((ba,(l>al) + ¢2] and (4.23) 

f :;i( [ (M 0~) 2 
((1, a1 , (, a1) + ¢2] m ( K (M 0~ + ¢)) 

1 
((1, a1(Jj.24) 

to forms appropriate for taking the continuum limit. As we can see in Appendix 

A and B, for the disk amplitude (the genus zero one-point function) of (4.21), the 
uni versa! part is 

- a,wl(() = -s-1 f da_aa,w< 2J(( , a) 
211"1 

and the non-universal one is nothing but W1non(() in (A.24). 

(4.25) 

Also for the disk amplitude of ( 4.23) the universal and non-universal pieces are 

W1((1; (J, a1) = s-1 f 
2
da aw<•J((J, a, (1 , a1) (4.26) 

11"1 

and wron((1 ; (~> a1 ) in (A.31) respectively. The integral symbol f ;;;a in (4.25), 
( 4.26) is used in the sense of 

f :!!_a= P 2a f ~ 
2.,-i • Jc 2rri 

in the continuum limit , where the contour Cis around the negative real axis and the 

singularities in the left half plane. This symbol can be regarded as the continuum 
spin-flip operator. 

Since the spin-flip operation occurs in local with respect to domains, it could be 

considered that the result of (4.25) , (4.26) holds eYen in the surface with non-zero 

genus and the loop with generic spin configuration. T hus the eqs.(4 .21)-(4.24) can 
be rewritten as 

-a, j ::i a [ ( M /j) 
1 

( (, a) + 6, ( (, a)] = 

1 f da 0 ( ( 2 I ? ) S ) -S- 21rta( Ojl((, a)-[)( Jq- J;_:((- g(-) JjA(() 

1 c ( ?) 2 ' '] -~a,(g( + 9g (- g(- + 9(C- gc-J- · 
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-a"f d(([(M~) ((,cr)+¢1((,cr)] =(( .... cr, A .... B in the above), 
271"1 6J I 
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where · · · stands for the terms containing jn (n 2:: 2). It is noted that the tadpole 

term is cancelled with contribution of the kinetic term. 

Secondly, we have to rewrite the splitting term (the first term in the above). 

After some algebras presented in Appendix C, it can be shown that 

(4.28) 

in the case of I = A, B, 1, 2. When acting to the loop operator ~16 , M generates 
6 I 

loops with simpler spin configurations by collapsing some domains of ~- Thus 
6JJ 

eq.( 4.28) represents that the two operations: loop splitting and domain collapse 

are commutative. Since the splitting process preserves a spin configuration , the 

commutativity is obvious when the domains which are related to splitting do not 

overlap the domains which are collapsed. Also even when there is such an overlap, 

since the derivatives or the combinatorial derivatives always act to the variables of 

the domains where the recombination occurs as seen in (4.5), there is no contribution 

to eq. (4.28) . (We note that the loop operators have no dependence on the variables 

of the collapsed domains.) Thus we have good reasons for expecting that it holds 

for the general components . At present , however, we have no rigorous proof because 
of technical complexity. 

Under the assumption that eq.(4.28) holds in general, the splitting term can be 
written as 

- (JM-
1

) • ( ( M 6~) v (M 6~)) = -J. c~ v 
6
6j). (4.29) 

Now we are ready to take the continuum limit except the merging term. From 

the scaling behaviors of the disk amplitudes seen in Appendix A we should take the 
scaling of the various variables as follows: 

s2 
g g.(1- a

2 

20T), ( = P.(1 + ay) , cr = P.(1 +ax), 

N 

6 

6JA(() 
6 

6JB(cr) 
6 

6J1 ((, a) 
6 

a-7f3g;tl' 

a4/3 P.-1 oJ:(y) ' jA(() = a-1/3 JA( y), 

4/3 p-1 6 JB(cr) = a-7/3 JB( x), 
a • oJB(x) ' 

a5f3p-2 ___ 
0__ ] 1((, cr ) = a-rr /3 ]

1
(y, x) , 

• oJ,(y, x) , 

Ip-4 O 
a * - ' 6J2(y,, x,, Y2, x2) 

J2((,,cr, , (2 , cr2) = a-SJ2(Yr , Xr ,Y2,x2 ), 

(4.30) 
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In fact , it turns out that in the continuum limit all the universal contributions 

in (4.27) starts with O(a113 ), and thus we are convinced that the correct continuum 

limit can be taken by ( 4.30). 
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4.2.2 Continuum Limit of Merging Term 

Next we consider about the merging process 

By expanding the second term w.r.t. the components, we can see that the terms of 
the following types vanish: 

UAji¢>A) 

(jeji¢>e) 

(jljl¢1), 

(I= A , 1, 2) , 

(I= B, 1, 2) , 

since it can be shown that in the case of n = 0, 1, 2 

by using the same logic as in the one-matrix model (3.22). 

Also for the first term similarly, by using 

(n = 0, 1, 2), 

0, 

0, 

0, 

after a rather long calculation which is given in Appendix D, it can be shown that 

for the first few or several components (I= A, B , 1, 2) 

(4.31) 

Although we can not give general proofs for 

(4.32) 

and ( 4.31), it is natural to expect that the results confirmed in the first few or several 

components hold in general, because of the local property of the interaction with 
respect to the domains. 
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In the following we shall assume that (4.31) and (4.32) hold in general. Then 

the merging term can be rewritten as 

1 . . 6 
-N2(JAJ)·oJ ' 

which is the appropriate form for taking the continuum limit ( 4.30). 
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4.2.3 Continuum Limit of 7t 

At this stage we can obtain the Hamiltonian in the continuum theory immediately. 
After rescaling as 

JI-+ P.-2 JI, 6~1 -+ P? 6~1, g;t -+ P!g;t, 

and absorbing the overall factor a113 into the fictitious time, the Hamiltonian 1{ in 
the continuum theory can be written as 

-- 0 - (0 0) - - 6 7t= -J ·K· ~- J · ~v ~ - g\( J AJ) · ~ 
6J 6J 6J s 6J, (4.33) 

where the forms of the splitting 1J V 1J and the merging J A J are the same as 

in the lattice theory ( 4.5) and ( 4.6) respectively, while in the kinetic term only the 
flipping-spin process survives: 

( [{. ~) (y) 
oJ A 

(k · ~) (x) 
oJ B 

( j{ · ~) (yl , Xt) 
6J 1 

(4.34) 

Contrary to the one-matrix case, this Hamiltonian can not uniquely determine 

the partition function (the generating functi onal ). It leads to the set of S-D eqs. 

which only relate the amplitude with a certain sp in configu rat ion to the one with a 

flipped-spin added, and thus we can get no cl o>cd equation of the amplitude from 

the Hamiltonian alone. Also it is noted that th e llarniltonian has no dependence on 
the cosmological constant T. 
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4.2.4 Detailed Observation of the Hamiltonian 

In order to make the detailed physical observation of the Hamiltonian, it is conve­

nient to rewrite it in the operator formalism and in the Laplace transformed variables 

(loop length) of y and x. In the operator formalism, j and -h are replaced by the 

loop operators Wand WI , and the Harnitonian becomes 

where 

[~n(Yt, X1 1 • • ·, Yn 1 Xn), ~~(y~ , x; , · · · 1 y~, x~)] 
1 -1 -1 

=;;- L ~x -x' cocycJic perm. I c(l) I c( l ) 

the other commutators vanish. 

As a result of the Laplace tranformation 

w~(t) 

Ws(k) 

wl(t,k) 

the non-vanising commutators become 

-1 -1 
, , , 

Yn - Yc(n) Xn- xc(n) 

[w A(l), w'.,(I')J = ~ (1-1') 

[llls(k) , wh(k')] = .5(k- k'). 

(n = 1, 2, · · ·) 

(ll!n(/1 , kl, ... , ln , kn), w~(l; , k;' .... (. k:, )] 
1 
n L 8(1, -l~(l )).5(k,- k: ( ll) .. S(l .. - ((n) ).5 (kn- k~(n)l 

cocyclic perm 

(n = 1, 2, ·· ·). 
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And the Hamiltonian H is 

H = -(Kw1) . w- (wt v wt). w- g~t wt . (w 11 w) , 

where the inner product is given by 

f · g = { ' dl !A(l)gA(l) + {' dk fs(k)gs(k) 

+ f f " IT dl;dk;Jn(ll, k1, · · · , ln, kn)gn(ll, k~, · · · , ln, kn)-
n=l t=l 

Each term of H is written in the loop length representation as follows. 
The first term (the kinetic term) is 

(KI!f 1)A(l) 

(J<w 1)s(k) 

(J<wi)J(l, k) 

where the operator F collapses the one domain at the position of ";" into the in­

finitesimal one which consists of the only one flipped spin. The precise definition 

ofF is hardly given in the terms of the loop length , but in the Laplace conjugate 

variables it is given as the contour integral in (4.34). From the above we can see 

that the kinetic term represents the process of flipping one spin without changing 

the loop length. The factor l(k) or the integral f dl (J dk) shows the sum up of the 
position of the spin to be flipped. 

The second term (the splitting term) is 

(wt v wt)A(l) 

(wt v wt)s(k) 

(w 1 v w1)1(l1, kl) 

, r' d/' ljJ ' (I'JijJ' (1-I'J. j
0 

A A 

k f dJ.:' IjJh(k'JijJ h(k- k') , 

r'· 2 Jo dN 1
4 (1 1 -/)lj!l(l, k1 )1 

+2 f' dk lj! h(k , - k) lj!l (l,,k )k, 
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The A-(B-) component has the same structure as in the c = 0 case. In the 

component 1 or the first brace of the component 2, the factor two can be regarded 

as a symmetric factor of the vertex. The second (third) brace of the component 2 

is interpreted as follows. Precisely speaking, it is interpreted that the st ring has a 

marked point. When it approaches to some other point , the string splitts• Let us 

consider the string with the spin configuration (1 1 , k1 , 12 , kz) and the marked point 

in the domain 11. In the case of 11 < 12 , by considering the three cases about the 

length I of the string which splitts off, the splitting process is written as 

{
1
' t t 8(12 -11){;

0 
dl\11 1(1,kJ)Ilt 1(1J + l2 -l,k2)l 

+ !'' dlwl(l , kJ)wl(ll + 12 -I. k2)1, 
},, 

+ dlwl(l, k,)w:(l, + 1, -1. k,)(l, + 12 -I)} 1
1,+12 

, 
1 The origin of the splitting is, say, 

02 ( 1 1 I I ) 
;;: oA~ tr ( 1 -A a 1 - f:! (2- A a2- f:! 

in the S-D eq. (4.2). It can be interpreted the first ope,.lion of the derivat ive makes the marked 
point and the second makes the some other point. 
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B(/2 -/1){inside the second brace of (wt v wt)z} . 

Since the inside of the brace in the r.h .s . is symmetric w.r.t. /1 <-+12, adding the 
result of the case 11 > 12 we have 

{inside the second brace of ( \[! t V \[! t )2}. 

Further, a factor two is brought by considering the case that the marked point is in 

the domain l2. Also the third brace can be explained by the same observation when 
the point in the domain k1 or k2 is marked. 

The last term (the merging term) is given by 

(\II II \ll)e(k) 

l dl'\11 A(l')\IIA(I-/')1'(1-l'), 

t dk'\lle(k')\lle(k- k')k'(k- k'), 

21'' d/\11 A(/)\111(/1 -/, k1)/(/1 -/) 

+2 [' dk\lle(k)\111(l1,k1 - k)k(k1 - k), 

(\II II \ll)z(IJ, k1, lz, k2) 

2{1'' dl\11 A(l)\112(11 -I, kl, 12, k2)1(11 -I) 

+ l' dl\IIA(l)\112(/,k1,12-l,k2 )1(12-l) 

+ [' dk\lle(k)\112(/J,k1- k,l2,k2)k(k1 - k) 

+ [' dl\lle(k)\112(/J, k1, /2, k2- k)k(k2- k)} 

f''+ l, 
+{;

0 
di\IIJ(/, kl)\IIJ(/1 + /2 -I, k2 )(/1 + 12 -I) 

-l' dl\ll)(l,ki)\11)(1) +12 -l,k2)(11 -I) 

-l' dl\111(1, kl)\111(11 + 12 -I, k2 )(12 -I)} 

fk' +k, 

+{;
0 

dk\lll(IJ, k)\11 1(12, k1 + k2 - k)(k 1 + k2 - k) 

-[' dk\lll(ll ,k)\lll(l2,k1 + k2- k)(kl- k) 

-l' dk\11)(1), k)\11) (12, k) + k2- k)(k2- k) } , 

As before the component A( B) has the same structure as in the c = 0 case, and 

the factor two can be regarded as a symmetric factor. The second or third brace 
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of the component 2 can be understood by considering the merging as the inverse 

process of the splitting. Then we note that two loops (/ , k) and (I', k') are able to 

merge only when they are marked in the domains I and I' or k and k', which explains 

that the factor two does not appear differently from the case of the splitting. 

Now we also note that the dimension of the fictitious time (identified with the 

proper time on the world sheet) is one-third of that of the loop length. Namely, the 

loop length is a cube of the typical size in the time direction: L ~ D 3 ~ D , which 

indicates that the fractal nature of the loop is stronger than the c = 0 case. 
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4.3 Candidates for ·the Constraints 

Here we expand some speculative discussions about candidates for the constraints 

and its relationship to the definiteness of the partition function. 

Remembering the discussion of the stochastic quantization (Section 3.1), the 

uniqueness of the solution of the Hamiltonian constraint (3.14) is a natural result 

from the fact that the Fourier transformation of the operator 7t is nothing but 

the positive definite Laplacian. Thus we might naively guess that if we start with 

the positive definite Laplacian in the matrix models and construct the string field 

Hamiltonian, it could determine uniquely the generating functional (the normalized 
partition function with source terms) . 

In fact, in the one-matrix model we consider the following generating function 

Z(j) = ~ j dN' M e-5e'L.i.M. 

as a substitute for 

Z[J] = ~ j dN' M e-s e 1 · '~~. 
The correlation function of <I>(() can be written as 

(<I>((J) ... <I>((n)) 

'P(() 

(4.35) 

Then from the argument of Section 3.1 we can see that the equation of motion 
which is derived from 

0 = !._ j dN' M L _a_ (e-s_a_e'£.i.M.) 
z " oM" oM" 

(4.36) 

has an unique solution. Further, when we set j = 0 after acting 'P((1 ) ... 'P((n) to 

(4.36) , we have the S-D eqs. equivalent to those obtained from the expansion of 

(3.20) w.r.t . J. Thus it can be concluded that the equation of motion from 

has an unique solution. 

However, the result we have obtained in the continuum limit indicates that it 

works for the one-matrix model but not for the two-matrix model. At present, we 

do not have appropriate understanding why this must so. However we could think 
the following two possibilities as the reason. 
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For one thing, we must remark that when we expand the Hamiltonian constraint 

(the equation of motion) of ~he matrix models with respect to the lattice spacing 

a, infinitely many constraint equations are obtained: the leading order of a, the 

subleading order, the subsubleading order and so on. Our discussion until now has 

been restricted to the leading order. There is no guarantee that all the necessary 

information is contained only in the leading order results. 

In principle, in the two-matrix model we could estimate the contributions of 

the non-leading orders in the Hamiltonian constraint, and might find out some new 

constraint equations which determine the generating functional uniquely together 

with (the leading order of) the Hamiltonian. It may, however , be a formidable task 

to go beyond the calculation done in this work. 

For the other thing, since the potentials in the matrix models are unbounded 

below, we must remark that the arguments of the stochastic quantization are for­

mal. The theory might change corresponding to taking a different initial probability 

density \Pin. Then we have to impose some constraints for the proper choice of the 

\Pin· 
As seen in Appendix A, we indeed can determine the various disk amplitudes 

starting with the usual S-D eqs. in the two-matrix model. Thus it will be useful to 

consider the solvable structure for a search of the constraints. We notice that there 

are two kinds of the S-D eqs. in the two-matrix model. One is derived from the 

deformation accompanied with flipping only one spin (e.g. (A .l), (A.2)) , and the 

other is from the deformation with flipping two neighboring spins at the same time 

(e.g. (A.3)). Indeed, our Hamiltonian contains only the former deformation. The 

both are needed in order to determine the disk amplitude W(() uniquely. Then, 

firstly we can consider the constraint containing the latter deformation which comes 

from the formula: 

J N' N' "'\' ( a -S a a - S a ) J.il! 
0 = d Ad B 0 BA e fiB+ Me BA e . 

a a a a a 
(4.37) 

And it becomes the following form 
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(4.38) 

where··· stands for the terms containing Jf and Jn (n 2 2). 

Though we have not accomplished taking the continuum limit of ( 4.38), com­

paring the first or second column of ( 4.38) with the continuum limit of the disk 
amplitude W2 ((): 

we could expect that in the continuum limit the constraint C1 has a tadpole term 

which gives a dependence on the cosmological constant. 

Further, since from the Hamiltonian we can not make the amplitude where two­

neighboring spins are flipped , in order to obtain a closed equation of the amplitude 

another relation C2 analogous to (A.2) would be needed. 

Here if we write naively the generating functional as 

( 4.39) 

with the vacuum such that \lifO} = (0[\lll = 0, it might look as if the generating 

functional is determined uniquely. However, eq.(4.39) gives a trivial result Z[J] = 1 

since (O[H = 0 from the absence of tadpole terms in H. In order to make ( 4.39) 

meaningful , we would have to consider the constraints with the tadpole terms. We 

guess that the proper definition of Z[ J] would be 

Z(J] = lim He-DH e1 '~''[o) , 
D-oo (4.40) 

where the state ( *f is taken as 

0 = lim (•[e- 011 C, 
D-oo 

satisfies for the operator form of the constrai nls C,. If there are the tadpole terms 

in the constraints, (4.40) is expected to give a nontri,·ia l result. 5 

5
lshibashi and Kawai have proposed a Hamil tonian which het.s no tad pole term and no depen-
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5 Discussions 

We have derived the string field Hamiltonians which describe the evolution of the 

loops along the proper time on the world sheet in the c = 0 and 1/2 case from the 

one- and two-matrix models directly. The common features in the c = 0 and 1/2 

theory are the following two points. 

1) The loop splitting or merging process occurs without any changes of the loop 

length (and the spin configuration). 

2) The Hamilonian has no kinetic terms corresponding to free propagation of 

strings. 

For the c = 0 case it coincides with the results obtained by the authors in 

[2],[3],[12], and by the Hamiltonian itself all the correlation functions can be deter­

mined uniquely in the form of the perturbative expansion. 

For the c = 1/2 case the Hamiltonian is written in a rather simple form, though 

the string field has infinitely many components. However , the Hamiltonian has 

no dependence on the cosmological constant, and the equation of motion can not 

determine the amplitudes. Thus we need to introduce some constraints in order to 

fix the partition function uniquely. 

Also the other interesting results of this work are in order. 

1) The fractal structure of the boundary loops. 

Comparing the dimensions of the loop length L and the proper timeD , we have 

the following result: 

L ~ D 3 (c = 1/2). 

From the result, we will tend to guess for the unitary minimal matter 

6 
(c= 1 -m(m+1)). 

It indicates that the fractal structure of the loops becomes stronger as m increases, 

and the limit of c __. 1 is very singular. This would suggest the existence of the 

c = 1 barrier which is considered as a phase tran sition point of the two-dimensional 

quantum gravity. 

2) The simple form of the Hamiltonian . 

dence of the cosmological constant in the c ~ I string field theory !4]. From the above argument, 
their generating functional seems to be trivial. Also they obtain the d isk amplitude W (() from 
a S-D eq., but we rcight think that this S-0 eq. could not h1:1.ve an unique solution since in the 
definition of the partition function (the generating functional) tht: cosmological constant does not 
appear. Thus we doubt that their definition is proper or not. It would be necessary that some 
constraints are considered other than the H(!.miltonian in their theory too. 
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We have derived the Hamiltonian in the definite form. In the c = 1/2 case in 

spite of an infinite number of components of string fields , it takes quite a. simple 

form. As seen in Section 4.2.4 all terms in the Hamiltonian can be explained by 

the combinatorial arguments. It will be easy to generalize the result in the case of 
higher dimensional string theories. 

Finally we point out the remaining subjects, which are the following two points. 
1) Finding out the constraints in the continuum theory. 

It is important for the correct representation of the partition function in the 

present framework of string field theory. It will be interesting that we consider the 

algebra formed by the Hamiltonian and the constraints, relating to the symmetry 

and the integrable structure in the theory. It may be useful for constructing the 

string field theories in the c > 1/2 case and for understanding the string field 
theories in unified manner. 

2) Studying the non-perturba.tive effects in the string field theory. 

For example, it will be interesting and important to understand how to derive 

the Pa.inleve equation and the tunnelling effects in the one-matrix model, starting 

from the string field theory obtained here. If it is possible, we might find the way 
to derive the correlation functions non-perturbatively. 
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Appendix 

A Disk Amplitudes in the Two-Matrix Model 

Here we obtain various disk amplitudes (genus zero one-point functions) in the two­

matrix model by taking the continuum limit of the Schwinger-Dyson equations (S-D 

eqs.) which give the relations among them. The S-D eqs. have been discussed 

partially by Staudacher [14] . Here we will give detailed forms of various disk ampli­

tudes in the continuum limit. The results (including the non-universal parts) have 
not appeared in the literatures. 

We introduce the following notations for the disk amplitudes (some of which are 
borrowed from [14]) : 

w<2l 
n,m 

W(() 

W(a) 

(~trAn\, 
(~trAnBm\ , 

( 2_tr-
1 

) 
N (-A 

0
' 

-tr--( 
1 1 ) 

N a-Bo ' 

-tr--B1 
( 

1 1 •) 
N (-A 

0
' 

-tr----( 
1 1 1 ) 
N (-Aa-B 

0
' 

(
2_tr-1-Bi_I __ I_) 
N (1 - A (2 - A a 2 - B 

0 
' 

(
1 1 1 1 1 ) 
Ntr (J -A a1 - B ... (n -A an - B 

0 
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A.l W(() 

Firstly we derive the disk amplitude with the most simple spin configuration on the 

loop. (The spins on the loop are all A-.) It is obtained by combining the following 

three S-D eqs.: 

((- g(2)W(() 

((- g(2)WI(() 

WI(()- gW2(() 

cWI(() + W(() 2 + 1- g(( +WI) , 

cW2(() + W(()WI(() +WI- g((WI + wgl), 

c(W(()- c, 

which come respectively from the identities at Iarge-N limit 

0 J dN' AdN' B f _!____ (tr (~t") e-s) , 
o=I 8A,. ( A 

0 J dN' AdN' B f _!____ (tr (~Bt") e-s) , 
<>=I 8A,. ( A 

0 = J dN' AdN' B f _!____ (tr (~t") e-s) . 
o=I 8B,. ( A 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

From (A.1)-(A.3) we can delete WI(() and W2 ((), and have a cubic equation of 

W((): 
W(() 3 + ai W(() 2 + a 2W(() + a3 = 0, 

:_- 2((- g(2), 
g 

2 2 C 2 C
3 

((-g() --((-g( )+(--g)(+1-gW1, 
g g 

( -1 + gW1 + g()((- g(2
) + (1- 3c + cg()W1 

-g2W3 - g + :_(1- c2
)- c(, 

g 

where in order to delete W2 , wgl we used the S-D eqs. 

W1 - gW2 = cW1, W2 - gW3 = cwgl + 1 

which are obtained by considering the coefficients of (-1, C 2 in (A.4). 

In (A.6) we need to evaluate W1 and W3 in order to obtain W((). 

A.l.l W1 ,W3 

(A.6) 

W1 and W3 are evaluated by the orthogonal polynomial method [15](10]. They are 

given implicitly as follows : 

W1 = - 1
-[3/- 6c/- 2(1- 2c)p2

- 2c(1- 2c)2p-1 
64g3 
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+32y2- (1- 2c + 4c2)(1- 2c)], 

__ 1_[- ( 6_ 5 

16 . 
64

g5 16 p 1) + 90c(p - 1) 

( 
531 ) + 80(1- 2c)- 4 c2 

(/- 1) 

+( -64- 94c + 380c2 + 60c3)(/- 1) 

+( -48 + 336c- 333c2
- 150c3 - 54c4)(/- 1) 

+2(1- 2c)(32- 41c- 14c2 - 66c3)(p- 1) 

-6c(1- 2c)2(7- 14c- 2c2)(p-1 - 1) 

+c(1- 2c)2(16- 21c- 6c2 - 6c3)(p-2 - 1) 

-4c
3
(1- 2c)3(p-3 - 1)- ~c2(1- 2c)4 (p-4 - 1)], 

where p is implicitly determined by 

2 1 [ 3 2 g = - 32 4p - 9cp - 4(1 - 2c)p + 2c(1- 2c + zc2) 

-c(1 - 2c) 2 p-2]. 

(A.7) 

(A.8) 

(A .9) 

We can not solve (A.9) w.r.t. p analytically and thus can not write W1 and W
3 

as 

a function of g explicitly. However in the continuum limit expanding g and p about 
the critical points 

~ (c __ -1 + 2v'7) g. = v lOc., p. = 3c. • 27 

eq.(A.9) can be solved iteratively: 

p = p. + a2/3~p.(5t)1/3 + a•/3 356p.(5t)2/3 

-a2~p.t- aB/3 8557 p.(5t)'/3- a10/3 3523 (5t)5/3 
288 311040 746496p. 

4 21205 2 14/3 
+a 442368p.t + O(a ) (A.10) 

where g is expanded as g = g.(1- a2t). 

Substituting this into eqs.(A.7),(A.8) we have W1 and W3 in the expanded form : 

wnon 
1 

wton+ w1, 
-8p4 + 3(2g.)2 + a2 -136p4 + (2g.)2 

3(2g.)3 27(2g.)3 t , 
8p4 4 

aB/3 __ • -(5t)'/3 + a10/3~(5t) 5/3 27(2g.)3 81(2g.)3 
-8527 p4 + (2 )2 

+a' • g. e + 0( 14/3) 
972(2g.)3 a ' 
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wnon 
3 

w:fon+ w3, (A.12) 

32(420- 839p.)p~ 2160(252- 6llp.)p5 

729(2g.)5 +a 729(2g.)5 • I, 

aS/3 320p~ (51)4/3 + al0/3 160p~ (51)5/3 
81(2g.)5 243(2g.) 5 

a• 70(1152- 3593p.)p~ 12 O(a1413 ) 
+ 729(2g.)5 + ' 

where we denoted the non-universal pieces by wlnon, w3non a.nd the universal ones 

which give the continuum limit by WI, w3 . 

A.l.2 Evaluation of W(() 

Shifting W ( () a.s 

eq.(A.6) becomes 

where 

a! 
W(()=-3 +Y, 

Then the critical point of ( denoted by P. is determined by 

(A.l3) 

(A.l4) 

(A.15) 

where 1. means that g, W 1 a.nd W3 a.re set to the critical values. It turns out that 

eq.(A.l5) gives a. cubic equation of P. a.nd the solution is P. = 1;:_c. which is triple 

folded. 

Replacing (to the expansion ( = P.(l + ay) a.nd arranging (A.l4) w.r.t. the 

power of a, we ca.n see that the contribution of Y starts with O(a413) a.nd it is 

expanded a.s 

Y = a413Y4 + a513Y5 + a2Y6 + · · ·. 

The leading order of (A.l4) gives 

3 rsS/3 4/3 2 r3/2 s4 4 2 2 
Y4 - --

2
-13 T Y4 - r.;n(16y - 16Ty + 2T) = 0, 

360 · 2 12960v 30 
(A.l6) 

where r a.nd s a.re the irrational numbers: r = -1 + 2ft, s = 2 + .j7 a.nd the 

rescaled variable I= faT is introduced. 

The solution of (A.16) is 

(A .l7) 
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which gives the disk amplitude in the continuum theory. 

For a. later convenience, we divide W(() into the two pieces: the non-universal 
part wnon(() and the unive.rsa.l part W((), which a.re written a.s 

W(() wnon(() + W(() , (A.l8) 
wnon(() a1 c 2 

--=--+-((-g(2) (A.l9) 3 3g 3 ' 
W(() a4/3y4 + O(a5f3). (A.20) 
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The amplitude W1(() (W2(()) represents the configuration that the spins on the 

loop all align A- except a small B- domain which consists of only one spin (two 

spins). 

In order to obtain the universal part of W 1 { () in the continuum limit we have to 

identify the non-universal part in eq.{A.1). From {A.1) , 

~[{(- g(2)wnon(()- wnon(()2- 1 + g(( + wlnon)] 
c 

+~[( _ g(2 _ zwnon(()]W(() 
c 

+~(-W{()2 + gW1]. 
c {A.21) 

In the above we identify the non-universal part as follows. Firstly if there are polyno­

mials of y or T, they are the non-universal part {the first column of (A.21)). Secondly 

if there are amplitudes with the simpler spin configuration than W 1 ( () multiplicated 

by polynomials of y and T, they are also (the middle column of (A.21)) 6 . Using this 

rule the universal part is 

where 

wnon 
I 

Wf10n(() +WI((), (A.23) 

~((( _ g(2)wnon(() _ wnon(()2 _I+ g(( + w
1
non)] 

c 

+~[( _ g(2 _ 2wnon(()]W(() (A.24) 
c 

When we do similarly for eq.(A.2) , after using 

we have 

61¥1 corresponds to the simpler spin configuration lov. ll owevc r sin ce in this case it behaves 
the same scaling (O(a813

)) as the truly universal piece li '(() 2 "ccident"lly, it is ambiguous whether 
it should be subtracted or not and how much should I..·.! subtra.ct•.:-d C \'~n if it should be. Here we 
will take the definition where no subtraction is perfo rmed. 
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( 1 1 ( 2)) [ 1 g c 1 ( 2) - +- (- g( -- + -(--+- (- g( 
3g 3c c c 9g2 9g 

+2_{( _ g(2)2 + f?.wnon] 
9c c 1 

g ( 2 1 2 ) - 1 1 g2 g -- ---{(-g() W~--(2---g()W~--WJ--
c 3g 3c c c c2 c2 

[ 
1 1 ( 2 2 1 ( ) g non] -+ --- (- g() +- 1- g( - -W W(() 3g2 3c2 c2 c2 I 

1 -
+-WI((), 

g 

1 - -
--W(()WI(() 

c 
9r-112 s4 

a
4
---(16y4

- 16Ty2 + 2T2
) + O(a1313). 

160.J3i) 

At a glance W2non{() seems to have the terms of a fractional power ofT in the 

third and fourth columns. However after the detailed calculation we can see that 

O(a
8
13

), O(a 1013
) and O(a1113

) terms of them which more dominantly contribute 
than W2(() are cancelled out. 
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From the identity 

w<2l((, u) is written as 

w<2l(( u) _ (1- g()W(u)- cW(()- gW1 (u) 
' - (- g(2- cu- W(() (A.25) 

Putting ( = P.(1 + ay), O" = P.(1 +ax) and expanding with respect to a we obtain 

w<2l((,u) 

w<2) non((,u) 

where w(y) is the leading part of W(() divided by the overall constant 

and 
(2)( ) _ - w(y)2

- w(y)w(x)- w(x) 2 + 3T413 

W ~X - . 
y+x 

Here we calculate w<2l((, u) up to the next lead in g order since it will be necessary 

to have w<•l( (I. O"J, (2, 0"2) after . 

It is noted that eq.(A.25) does not seern to possess the symmetry of ( +-+ u, 

which manifestly appears after the expansion w.r.t. a. 
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Due to the S-D eq. obtained from 

we have 

1 
W1 ((t; (2, 0"2) = -~(D,((t, (2)((- g(2

- W((1)- W((2))W(2)((, u2) 

+ gW(u2)] . (A.29) 

After the similar calculation as before, we find 

(A.30) 
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By combining the two S-D eqs. which come from 

0 J N' N' ~ 8 ( ( 1 1 1 a 1 ) -s) d Ad B L,- tr ------t -- e , 
a=l 8Aa (J -ACT] - B (2 -A CT2 - B 

0 = J dN' AdN' B £ _!___ (tr (-
1

- --
1 
-t" -

1 
-) e -s) , 

a=l 8Ba (J -ACT]- B CT2- B 

the formula for W(4)((J, CTJ, (2 , CT2) is obtained as 

1 
w<•l((J, CT], (2, cr2) = (2- g(i- CCT2- W((2) 

x { ( c- W(2)((1> cr2))Dc((J, (2)W(2)( (, CTJ) 

+D.,.(crb cr2 )[~(cr - gcr 2
- W(cr1)- W(cr2))- 1 + g(2]W(2)((J, cr) 

c 

+~W((J)}. 
c 

(A.33) 

Putting(; = P.(1 + ay;) , cr; = P.(1 +ax;) we expand the r.h .s . of the above and 

arrange the terms using (A.28). After a straightforward but quite long calculation 

we arrive at the result: 

. (•) 5r
2 
s (<)( ) O( </3) W ((l>cr1,(2, cr2)=a 272 _
8

w YJ,Xl>Y2 ,Y2 + a 

5r
2 
s 1 [ 8 )( ) a --(yl- Y2)(x1- x2 YI + Y2 + XJ + x2 

272 · 8 (YJ - Y2)(x1 - x2) 3 

-~(w(y1 ) + w(x 1 ) + 2w(y2) + 2w(x2))w<2l(yJ, xi) 
2 

+~(w(y1 ) + w(x2 ) + 2w(y2) + 2w(xJ)) w(2l(yi,x2) 
2 

+~(w(y2 ) + w(x 1 ) + 2w(y1) + 2w(x2))w(2l(y2 , xi) 
2 

-~(w(y2 ) + w(x2) + 2w(y1 ) + 2w(xi))w<2l(y2, x2)] 

+O(a</3). (A.36) 
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Here we note that the above results have the symmetry under the cyclic permutation 
of variables 

which are expected by the definition of the amplitude but we can not see in eq.(A.33). 

From the results until now, for the amplitude W(2k)((1, crl>- -- , (k, crk) the follow­
ing scaling is expected: 

(A.37) 
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Appendix 

B The Operation Making the Infinitesimal Do­
main 

In the lattice theory the reduction of a domain to one-lattice unit is given by the 

formul a 

2_tr (-1 B .. ·) = f dcr.cr2_tr (-1 _1 . . ·) . 
N ( - A 21rl N ( - A CT - B 

(B.1) 

Here we want to construct the continuum version of tlus in the disk amplitudes. 

However when naively considering the continuum limit of (B .1) it would be very 

difficult to evaluate the above integral. Rather we will find the relation between 

only the universal pieces by comparing their forms . 

Firstly let us consider w<2l ((, cr) and W1((). It is useful to observe the following 

formulae: 

0 ( a ~ Z) , (B.2) 

1, (B .3) 

where the contour C1 is depicted as Fig.B-1 and we used the Beta-function regular-

ization 

0 

100 ~ 1r 
dr-- = B(o: + 1, - o:) = --. -. 

o 1 + r S lll 1rC< 

Fig.B-1 Pig.B-2 

Then we consider the integral along the contour C in F"ig. B-2 

f !!:!.._ (2)( ) = f dx -w(y) 2
- w(y )w(x) - w(x f + 3T4f3 

l c 2wi w y , x lc2wi y+x · 
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We note that when expanded in the case of jxj > V'f, the numerator of the 

integrand contains only the terms with the fractional powers of x except -w(y )2 + 
T 413

• Thus using (B.2) and (B.3) we have 

fc ::iw(2)(y, x) = -w(y)2 + r•/3 = WJ (y)- 2T4/3. (B.4) 

Including the overall factors it is written as 

-If dcr • (2) • sB/3 s -2 .crW ((,cr)=Wt(()-aBf3 ___ 2T'f3+0(a3) 
1rl 40 . 22/3 (B.5) 

where the integral symbol f ;;;cr is used in the sense of 

f 2dcr_cr = P.a2 ( dx_. 
wz lc 2wz 

r dxl 1 x! 

Jc, 2wi x 1 - x 2 x 1 + y1 

X a ___ 2_ 
(o: ¢: Z) , (B.7) 

( dx1 1 X~ 
lc, 2wi x1 - x2 x 1 + y1 

(n = 0, 1, 2, · · ·), (B.8) 

r dxl x! 

Jc, 2wi x1 - x2 
-x~ (o: ¢: Z) , (B.9) 

where the contours C2 , C3 are depicted as Fig .B-3 ,B-4 . 

0 

Fig.B-3 Pig.B-4 
Using (B.7)-(B.9) as well as (B.2) we can calculate the integral 

r dxl ( <) 
Jc 2wiw (yt , Xt. y, .x , ) 
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as before. We ta.ke the variables y1 , y2 , x2 in the right ha.lf plane a.nd the contour C 

around the negative rea.! axis a.nd the poles in the left ha.lf plane. The result is a.s 
follows 

(B.lO) 

thus we ca.n see tha.t 

(B.ll) 

holds. 

Reminding us of the ambiguity of a. constant shift in the definition of W
1
(() in 

Appendix A.2, now we ca.n consider tha.t eqs.(B.6) , (B.ll) ha.ve a. universal meaning 
a.nd tha.t the constant shift of eq. (B.S) is non-universal. 
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Appendix 

C Continuum Limit of Splitting Term for the 
several components 

Here we will present the ca.lcula.tions of eq.(4.28) : 

for the first several components I= A, B , 1, 2. 

Firstly for I= A, B, it is trivia.! from 

( M 0~) A 

( M 0~) B 

(o~ V 0~) A 

(o~vs~t 
Secondly for I = 1, using 

we ha.ve 

( M o~ )
1 

(s~vo~) 1 

6.5 

(C.l) 

(C.2) 

(C.3) 

(C.4) 

(C.S) 



which is nothing but the r.h.s. of (C.6). We note that in (C.6) the terms where the 

splitting domain coincides to the collapsed domain: 
6
1:(()a( 6J:(u) ' 

6
]:(u)a" 

6
]:(() 

vanish owing to the derivatives a,' a.,.. 
Next for I= 2, if we notice the following identities 

then from 

(M.!_) 
oi 2 

and 

we can show that (C.6) holds for I= 2. 
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Appendix 

D Continuum Limit of Merging Term for the 
several components 

Here we will give the calculation needed to show that eq.( 4.31) 

(D.1) 

holds for the first several components. 

Using the definitions of the /\-operation and the transformed source J (4.6) and 

(4.17)-(4.20) , we can write the first several components of the r.h.s. of (D.1) as 

f 2d( 2du_((iM-1)A(iM-1))1 ((,u) (M~) ((,u) 
1CZ 1CZ OJ I 

f d( du • • 6 
= -2 .-2 .(J/\J)J((,u)----+RJ , 

1CZ 1CZ 6J1 ((, u) 

Here the sum of R/s should vanish for the validity of (D.l). The form of R/s is as 
follows: 
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+ 

(six terms by ~ rep}acement (I ..... (2 or CTJ ,.... CT2 + without changmg J2) · 

X CAt(!)+ jBtCTJ)) } 

{ 10 ( o o ) /IO;_._o -in the above brace} + 27r }A(() + }B(CT) ..._. v 2"/ OJJ((, CT) 

[lOf II2 d(; dCT; tra,)A((j)a,j + au)e(CTj)8d}2((~, CTJ , (2 , CT2) + 2V 27r i=l 21!"1 21!"1 i=l 

X [-D,((I ,(2) (oJ1 (~,CTJ) + o}1 (~,CT2J 
-Da(CTJ,CT2) (oJ1 (~J,CT) + o}1 (~2,CTJ] 
+ 10 r fIT d(;. dCT;.JI((I, CTJ)JI((2, CT2) 

27 i=I 2m 27rl ( o o ) 
x [-D,,(zJ,z2)D,,(zJ,z2)D,((J ,(2) oJI((CTI) + c5}I((C12) 

-Da,(sJ , s2)Da,(sl,s2)Da(CTJ,CT2) Cu!(~J,CT) + o JI(~2 , CTJ 1 
Zj == (i 
s; = ai 

(D.4) 

+ ... , 
(D .S) 

· j j j (1;::: 3)orJKJL (I<+L :2: d f the terms which contain JA 1, B I where ... stan s or 

3). 
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Firstly, we shall consider the terms in the form of 

JAJI -.-+-. ,JBJI - . +-. . •(0 6). •(0 6) 
OJA OJB OJA OJB 

(D.6) 

which appear in the first term of RA, Re and R 1 . Their contributions are partially 
cancelled each other. So the remaining terms are 

2 {i.Of d(_ dO'. (a,JA(()a,JI((,0')-.-
0

- + Ba}B(O')oa}I((,0')-.-0 -). {D.7) v 'ft 21l'l21l'l OJe(O') OJA(() 

We can see that eq.{D.7) indeed does not contribute from the following argument. 

Since it is a linear functional of JA, 11 or }8 , 11 , {D.7) vanishes if 

and 

f dO'aa O~e(O') aa o!I((,O') = 0 
2m 6Je(O'') oJJ((' , O'") 

hold. In the continuum limit , the integral of the l.h.s. of (D.8) is 

j_ ioo dy ( ] ) 
2 

-ioo 21l'i a. y - y' (Rey' > 0) , 

(D.8) 

(D.9) 

which obviously vanishes. The similar argument holds for (D.9) also. Thus we can 
see that (D.6) vanishes. 

Secondly we consider }1 } 14. After a trivial cancellation, the following terms 
l 6JA 

remain 

j_
ioo dy 2 dx; - - 0 

- . -2 . II -2 .ByJI(y,xi)ByJI(y,x2) <J- ( ) 
-too 1rt i=l 1rl u A y 

j_
i oo 

2 dy; dx; - - 0 
+ . II -2 .-2 .JJ(Y~>xi)JI(Y2 , x2)(-a.,a.,)D.(yi ,Y2) <J- ( ) 

-too i=l 1'1""2 1r'l v A y (D.JO) 

in the continuum limit . Here using the same logic as before, we can see that 

and 
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hold. Thus eq.(D.IO) vanishes . Also, the similar argument holds for }
1

}
1

-
1
6 because 

6 B of the symmetry w.r.t. A ..... B . 

Doing the same analysis , we find that 11 11-L cancels due to the following idetity 
6J, 

By repeating the same argument , we can also prove that 

and 

Finally we mention about JAJ2 6~,. The foll owing terms remain: 

j_ ioo IT dy; dx; 
-ioo i=l 21l'l 211'! 

X {-oyJA(YI)oyJ2(Yl ,XI,y2,X2) Dx(x,.x , ) _ a 
- aJ1(y2,x) 

- - a 
-8.,JA(Y2)8y, J2(Y1> x 1, Y2, x2)D"(x 1. x 1 )~---

aJ1(y1. x) 

+Dy(YJ ,Y2)8,]A(Y)8y,J2(y1 ,x 1y2 ,x2 ) ( _ a + _ a ) 
aJ,( y2, x,) aJI(Y2, z2) 

+Dy(YI>Y2)8y}A(y)8y,J2(y,.x 1y,xo) ( _ 0 + _ a )}· 
_, - aJ,( y, ,x ,) aJ,(yJ,x2) 
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It turns out that the first and third terms vanish by considering y1- integral after 

taking the functional derivative 6;A 6~, and that the second and fourth terms vanish 
also by considering y2-integral. 

From the symmetric property, we can see that i8 i26~, vanish also. 

We note that the contributions from more generic components (I= 3, 4, . . ·) in 
the l.h.s. of (D.l) give no influence to the results obtained here. 
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