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Komaba. MeguTO-ku. Tokyo 153, Japan 

Doctor Thesis 

Abstract 
We study quantum gravity ncar two dimensions ((2+<)- dimensional quantum gravity) 
frOin the viewpoint of rcnorma.lization group. We formulate the theory in such a 
way to separate the conformal mode of the metric expli citly. Special care is taken of 
an oversubtraction problem in the conformal mode dynatnics. As an application to 
two-d imensional quantum gravity. we calculate the scaling ditnensious of manifestly 
generally covaria.Ilt operators. To obtain a deeper insight into the fonnalistn, we study 
R2 gravity in (2 + t) - dimcnsional quantum gravity, which also serves as a success in 
treating R2 gravity other than Liouv ille <tpproach. We next perform the two- loop 
renormalization of the theory, which is construc ted cons ist.ent.ly at one loop level. As 
the fi rst step toward full calculati ons 1 we concentrate on the part proportional to the 
number of matter fields. The results suggest that we can construct a co nsistent. theory 
of quantum gravity by e expansion around t.wo dimensions.· 
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1 Introduction 

Constructing a quantum theory of gravitation is one of the most important and challenging 

problems which remain in theoretical physics. A.mong ,·arious approaches to the problem, 

quantum gra,·it~· near two dimensions ( (2 +<)- dimensional quantum gravity) has been stud­

ied for se,·eral years mainly in order to understand qualitati,·e features of four- dimensional 

quantum gravity from the viewpoint of renormalization group. [1, 2, 3, ~. 5, 6, 7]. It cor­

responds to E expansion for quantum gra,·ity. E expansion has been used together with 

renormalization group in quantum field theory and statistical mechanics and was found to 

be a powerful tool to analyze nonperturbative properties, as was seen in the study of 0( N) 

linear sigma model (64 theory with nontrivial interaction) in 4- E dimensions [8], which 

belongs to the same universality class as three-dimensional O(N) nonlinear sigma model 

Though quantum gra,·ity is not renormalizable perturbatively in four dimensions, it may 

be possible that there is a nontrivial ultra,·iolet fixed point of renormalization group and 

that one can construct a quantum field theory of gravitation by taking the continuum limit 

near the fixed point. In the case of O(N) nonlinear sigma model, it is renormalizable \vith 

asymptotic freedom in two dimensions and has a well-clefinecl (2 +E)- dimensional expansion 

with a nontrivial fixed point [9]. Such an expansion gives us information about phase tran­

sitions and scaling properties of higher dimensional O(N) nonlinear sigma models, to which 

perturbation theory is not accessible. \Ve expect clue to the existence of two- dimensional 

theory of gravitation that we can construct consistent quantum gravity in 2 + E dimensions 

and derive from it information of phase struct ure and scaling properties in four- dimensional 

quantum gravity. 

As in the nonperturbati,·e analysis of ordinary quantum field theories, numerical sim­

ulation is another powerful tool for in,·estigating a field theoretical approach to quantum 

gravity. vVe hope that we can compare the results obtained in the both methods in near 

future . 

In fact, one may require more than local field theory such as st ring theory [10] to con­

struct consistent quantum theory of gravitation. vVe should not, however, forget this simpler 

possibility. Also, it is not inconcei,·able that apparently different approaches cn·nt.ually come 

to the same final goal At least we can learn lessons of quantum gravity and acquire insights 

into the common problems of it in a simpler setting in 2 + E dimensions . 

. ..\s another moti,·ation to investigating (2 +E)- dimensional quantum grm·ity, we ha,·e its 



application to two- dimensional quantum gravity [11 , 12]. Two- dimensional quantum gra,·ity 

[13] has been studied intensively through Liou,·ille theory [14] and the matrix model [15] in 

these several years , and its progress has pro,·ided us with much insight into quantum graYity 

and string theory. Taking the f-.. 0 limit, we expect that we can adopt (2 +f)- dimensional 

quantum gravity as another regularization scheme of two- dimensional gra,· ity and that \\"l' 

· can resoh·e problems which are difficult to treat in the matrix model or in Limn·i!le theory. 

In this paper , we analyze renormalization group in terms of the renormalization point. 

Although we may introduce, for an example, a cut- off in the momentum space, such a 

procedure makes our analysis difficult since the cut-off break the general covariance explicit ly. 

Another technically essential point in our strategy is that in the calculations of effect i,·e 

actions we adopt a background field method. It has an advantage that the gauge invariance 

with respect to the background field is preserved manifestly, which enables us to determine 

counter terms easily. 

Recently Kawai, Kitazawa and i\inomiya formulated quantum gravity near two-dimensions 

in such a way that the conformal mode is explicitly separated [2 , 3]. Such a formulation 

seems natural since the conformal mode plays an important role as the dynamical degree of 

freedom in two- dimensional quantum gravity and the conformal mode sets the length scale, 

which is crucial for renormalization group. They pointed out the oversubtraction problem 

in the conformal mode dynamics at one loop level and presented a prescription to answer 

the problem. They took f -.. 0 limit carefully in the strong coupling regime and succeeded 

in computing the scaling dimensions of the gravitationally dressed primary fields in t\\·o di­

mensions, which agree with the ones calculated in the matrix model or in Liou,·ille theory. 

However this prescription docs not hold true for the regime near the ultra,·iolet fixed point, 

in which we are interested for higher dimensional quantum gra,·ity. Subsequently the au­

thors of ref.[6] gave a formalism applicable to the regime near the fixed point , a\·oiding the 

oversubtraction for the conformal mode. They started with the act ion haYing generalized 

dependence on the conformal mode and im·ariant only under the explicit volume preserYing 

diffeomorphism, where they simplified the problem by considering the conformal matters. 

They showed, at one- loop level, (1) the ex istence of an ul traviolet fixed point , (2) the exis­

tence of an renormalization group flow from it to the infrared fixed point in which the theory 

coincided with the Einstein gnwity and ( 3) the restoration of the general covariance along 
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the renonnalization group flow. In particular, the fixed point possessed the z
2 

symmetry 

with respect to the conformal mode in the ir parametrization, which is interesting since it 

may be possible to interpret this as Yanishing of the expectation value of the metric there. 

It must be noted that the oversubtraction problem is independent of the parametrization 

of metric. In fact, it has been shown in ref. [16] that Einstein gra,·ity near two dimensions 

which is formulated in the generally covariant way without the separation of conformal mode 

is not renormalizable beyond one- loop le,·el. This phenomenon reflects the o\·ersu btract ion 

at one-loop level. One can clarify the problem by separating the conformal mode. 

In this paper, we investigate (2 +E)- dimensional quantum gravity further based on three 

works [11, 4, 7]. The paper consists of two parts. In the first part, we treat two concrete prob­

lems. One is, as an application of quantum gravity near two dimensions to two- dimensional 

quantum gravity, to calculate the scaling dimensions of manifestly general!~· covariant oper­

ators such as f ,f9R"d2
x , where n = 0, 1, 2, · · ·, utilizing the prescription mentioned aboYe 

which is valid and powerful for two- dimensions limit [11]. These operators have clear phys­

ical meanings, but are difficult to study in the conventional approaches . \\"e compare the 

properties of these operators with those of the scaling operators appearing in the matrix 

model or in Liouville theory. The other is to treat R2 gravity in (2 +f)- dimensional quan­

tum gravity. Quantum R2 gravity in two- dimensions [17] is worth im·estigating as a new 

type of universality class of two-dimensional quantum gravity and as an example of models 

overcoming the so-called c = 1 barrier though not having unitarity. It has been studied 

recent ly in LiouYil!e approach, yet in contrast to ordinary gra,·ity it is difficult to treat it 

in the matrix model and we do not have so far any other results which can be compared 

with the ones in Liouville approach [18]. It seems, therefore, desirable to in,·estigate it in 

other approaches. And , in view of a subtlety of the conformal mode dynamics in (2 +f)­

dimensional quantum gra,·ity, we fee l that it is worthwhile acquiring a deeper insight into 

the formalism by applying it to other theories, such as R2 graYity, than the ordinary Einsteirl 

graYity. 

In the second part. of the present paper, we study the two- loop renormalization of the 

theory mentioned previously which possesses the generalized dependance on the conformal 

mode and has been constructed consistently at one- loop level [7]. It is important to perform 

the two- loop renormalization of the theory since there is no proof that the procedure gi,·es 

3 



consistent results to higher orders. \Ve can establish the validity of E expansion around 

two dimensions of quantum gravity by showing that the higher order correct ions can be 

computed systemat ically and that the theory renormalizecl up to higher orders lew! satisfies 

the requirement from general covariance. Thus two-loop calculation setTes a check of E 

expansion approach to quantum gravity. However the two- loop calculations in quantum 

gravity is a formidable task clue to the proliferation of diagrams and tensor indices. Therefore 

we have decided to calculate the two-loop counter terms which is proportional to the number 

of matter fields (the central charge) first. Since the number of scalar fields we couple to 

gravity is a free parameter, the counter terms must be of the renormalizable form. \Ve also 

simplify the task by imposing z2 symmetry to pay attention to the ultraviolet fixed point. 

Eventually the number of diagrams we ha,·e to calculate reduces to one hundred twenty 

three. 

The organization of the paper is as follows. The next section is devoted to re\·iewing the 

recent works on (2 +E)- dimensional quantum gravity. In section 3, we calculate the scaling 

dimensions of manifestly generally cm·ariant operators using the formalism cle,·elopecl in the 

previous section and interpret the results. In section 4, we treat R2 gravity in the framework 

of (2+E)-climensional quantum gra,·ity and obtain the result consistent with the one derived 

in Liouville approach. In section 5, we perform the calculations of the two- loop counter terms 

and see consistency of the theory. The last section is devoted to summary and outlook. In 

appendix A, we explain the background field method which we use in th is paper and present 

an interpretation of renormalization point. In appendixes B ~ D, some of cumbersome 

calculations are collected. 

2 Formalism of Quantum Gravity near Two Dimen­
SIOns 

In this section, we review quantum gravity in 2 + E dimensions formulated in such a way rhat 

the conformal mode of the metric is explicitly separated, following ref. [2, 3, 6]. Section 2.1 is 

devoted to an explanation for an OYersubtraction problem in the conformal mode dynamics 

appearing when the theory is renormalizecl in a manifestly generally co,·ariant way [2]. In 

section 2.2, a prescription to resoh·e the problem is presented, which is, however , not reliable 

near the ultraviolet fixed point. E --> 0 limit is taken in the strong coupling regime and the 

exact results in two dimensions is reproduced [2]. In section 2.3, we explain generalization of 

the conformal mode dependence of the action in order to overcome the oversubtraction and 

treat the regime near the ultraviolet fixed point [6] . We see that how the general covariance 

is restored by considering the one- loop effects. 

2.1 Dynamics of Conformal Mode m (2 +E)-Dimensional Quan­
tum Gravity 

As is seen in Liouville theory, the conformal mode of the metric plays an important role 

as the dynamical degree of freedom in two- dimensional quantum gravity. Therefore it is 

natural to adopt a parametrization and a gauge which single out the conformal mode. Let 

us write the metric as 

(2.1) 

where h''v is a traceless hermitian tensor, 9 is a conformal mode, and g
1
,v is a background 

metric. A more detailed explanation about this parametrization is presented in appendix 

A. We start from the Einstein action and the action for c species of massless scalar field in 

D = 2 + E dimensions, 

(2.2) 

where G is a dimensionless gravitational constant and {tis a renormalizat.ion point (renormal­

ization scale). 'vVe also present an interpretation of the renormalization point in appendix . .\. 

Using the background field method, \YC calculate the one-loop divergence. The gauge fixing 
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term is chosen as 

!t' J lD r;_1 (r-, h" E"' ")(r-, hPI' E "'''"-) G c xy 97_ v v P + 2u,,'f' v P + 2u y , (:2.3) 

which makes the kinetic term of h''v canonical and removes the mixing of h''v and o in the 

quadratic terms. By adding this term to the action (2.2), we obtain the total quadratic 

action , 

., 
E E • C 2 ·} ( 7 ) 8Dfl"81,¢8v¢ + 2¢hPvR~ + B¢ R +(matters). ~.4 

Note that there is an ~ pole in the propagator of¢ clue to the E factor in the kinetic term. 

The ghost action is derived from the gauge fixing term (2.3) in the standard way, 

(2.5) 

Exploiting the 't Hooft-Veltman formalism [19], we can evaluate the one- loop cliYergenccs 

from (2.4) and (2.5) as 

(:2.6) 

which forces us to choose the following one- loop counter term 

25- Cit' J D 
Sc.t. = -~-; d x,f9R. (2.7) 

It follows from (2.2) and (2.7) that the bare coupling constant Go is related to the renor-

malized coupling constant G through 

1 ' ( 1 25- c 1) 
Go =it G-~; . (2.8) 

Using this relation, one can calculate the ,6'-function as 

,6'(G) = 

(:2.9) 

which means there is an ultraviolet fixed point 

247r 
G' = 25- C E, (2 .10 ) 

as long as c < 25. As is expected, this fixed point separates weak and st rong phases. The 

weak phase should contain massless gravitons and resemble our universe. The continuum 

limit must be taken by approaching the ultraviolet fixed point from the "·eak coupling regime. 

6 

{J(G) 

c· 
G 

We find, however, a subtle problem in this situation before taking the next step. The 

counter term (2. 7), which preserves general covariance, causes an oversubtraction problem 

for the conformal mode. A detailed explanation of this problem is as follows. Noting that 

j dDx,;gR = j clD-z;j§e-'f R 

- j dDxy/ge-'f~<(D -1)[/'"81'98v¢. (2.1 1) 

where [/pv = [Jpp(eh)Pv' one can see that the kinetic term of the conformal mode in the tree 

action is an O(c) quantity while that in the one-loop counter term is an 0(1) quantity. Here 

we decompose the background metric further as fJ,v = Ypve-;f,. In Fig. 1 the diagrams which 

give the two-point function s of~ are listed up. The diagrams (1) ~ (5) giYe 0(<) quantities 

clue to the E factors in the vertices. One can also easily Yerify that the 0( 1) contributions 

from the diagrams (6) and (7) cancel out. As a result, there remains the O(f) 'diYergence· 

for 81,~81,~. This puzzle is resolved by considering the full effect ive action. In fact, we must 

obtain the finite non-local Liouville term 

25 - C J D /,_ • 1 · 
--- cl :ry[JR~R 

967r 6 
(2.12) 

together with the divergent term (2.6). Its(/; dependence is e,·aluatecl as follo\\·s, 

25 - C J D /,_- 1 - 25 - C J JJ - - - -
-

96
7r cl .TyfJR-z;R+ gc;;- . d .1·vg(g""81,¢J8v9+ 2R¢) + O(f), (2.13) 

which cancels out the 0(1) dependence on~ in (2.6). It follows that we subtract 0(1) quan­

tity from O(c) quantity for the conformal mode when we add the general covariant one-loop 
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counter term (2.7). That is the oversubtraction problem for the conformal mode dynamics. 

It is impossible to renormalize the theory above one-loop level clue to this o\·ersubtraction . 

The ordinary renormalization procedure breaks clown unless the general co,·ariance of the 

procedure is discarded, which leads to treating a model in section 2.3 "·hich has generalized 

dependence on the conformal mode. 

2.2 An Answer to the Oversubtraction Problem and Two- DimensionS: 
Limit 

Before the conformal mode dependence of the action is generalized for the purpose of re­

solving the oversubtraction, an answer to the problem is presented here. On the grounds 

that the oversubtraction problem is nothing but the counter term dominance for the kinetic 

term of the conformal mode, it is natural to redefine the conformal mode propagator by 

summing up conformal mode propagators with arbitrary times of insertion of the counter 

term 2i
4
-;,c tDpi/>Dp¢· The conformal mode propagator after this resummation becomes 

(2.1-l) 

This leads us to use G0p' as an expansion parameter instead of G. The effectiYe coupling 

becomes then large near the ultraYiolet fixed point G ~ G' . Therefore the dynamics ncar 

the fixed point is quite nontriYial and cannot be treated well in this way. Here the authors 

of ref.[2] propose that the E ---> 0 limit should be taken in the strong coupling regime ( G » 
G" = O(E)). In this regime, the effectiYe coupling becomes an O(E) quantity, 

247r 
GoJ.Lc ---+ --.--€, 

20- c 
(2.15) 

and the loop expansion works well. \'ote that this negative coupling make the kinetic term 

of the conformal mode positive and hence the problem of the conformal mode instability 

is resolved as in Liouville theory. In the weak coupling regime (G « G' ), the expansion 

parameter is G itself and the conformal mode instability remains. One can verify correspon­

dence with the ordinary formalisms of two- dimensional quantum gra,·ity by renormalizing 

8 

J yg1
-

6
'4>c.,cl

2
x type operators, where 4> 6 , is a spinless primary field with conformal di­

mension 6o, and calculating their scaling dimensions. In doing so, a technically important 

point in the formalism is that the dynamics is completely determined by the conformal mode 

in the sense that the other fields, the hP"' ghost and matter fields, can be dropped from the 

beginning, as is checked explicitly up to the two-loop level. It is natural since the confor­

mal mode governs dynamics of two-dimensional quantum gravity .. -\fter this simplification 

the theory can be reduced to a free field theory, which makes it possible to perform a full 

order calculation of the scaling dimensions. The calculation reproduces the exact result of 

refs. [14]. In section 3.2 we extend this calculation to the case of the manifestly generally 

covariant operators. \Ve refer the reader to section 3.2 in which essences of this calculation 

are included. 

2.3 Conformal Gravity near Two Dimensions 

As is mentioned in section 2.1, treating quantum gravity near two-dimensions in such a 

way that manifestly general covariance is maintained leads to the oYersubtraction for the 

conformal mode. In this subsection, we review the study of a model which possesses gener­

alized dependence on the conformal mode and is invariant only under the volume preserYing 

diffeomorphism [6], and in particular see how the general covariance is guaranteed in the 

last stage. The system considered here is a (2 +E)-dimensional quantum gravity coupled to 

c copies of scalar fields in the con formally invariant way with the following action. 

(2.16) 

where i runs from 1 to c. The fact that the conformal matter clecouples the conformal mode 

makes the analysis easier. It is hard to treat the matter fields not conformally im·ariant in 

the following formulation though it must be possible in principle [3]. This action can be 

rewritten as 

where the conformal mode is parameterized as c'f = l+~J2, 0'_ 11 1/>. In this way the kinetic 

term of if; becomes canonical. Note that the conformal mode 7jJ can be viewed as another 

conformally coupled scalar field in this parametrization. Therefore one can quantize the 
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theory treating the conformal mode as a matter field coupled in the conformally in,·ariant 

way. In such a quantization procedure it is important to keep the conformal in,·ariance. 

Since it is well known that the conformal anomaly arises in quantum field theory, we need 

to modify the tree action to cancel the quantum conformal anomaly. In other words. the 

general covariance is broken when the theory is renormalized without the o\·ersubtraction. 

Therefore we have to break it in the beginning in order to restore it at last. 

Thus the action is generalized in the following form which possesses the manifest ,·olume 

preserving diffeomorphism invariance. 

(2.18) 

where L = 1 + a'ljJ + b1j;2 
- d<pf. Note that in the case of the conformally coupled Einstein 

gravity (2.17) a = J 2(0'_ 1 l and b = d = srv'-ll. As the natural extension of this case. we 

assume in the general cases that a is an 0( ,/f.) quantity and band dare O(E) quantities. 

Here we consider the following local gauge transformation of the fields, 

(2.19) 

In the Einstein gravity, this transformation is nothing but the general coordinate transfor­

mation and indeed the action (2.17) is invariant under it. The change of the generalized 

Einstein action (2.18) under the transformation (2 .19) is evaluated as 

1 8L ., 8L ., . 
2{EL- 2(D- 1)(( 81/y- (

8
'P,l')}R 

~{'- .J(D- 1)
82

£}8 w8~u 
.j 87];2 ~ 

+ ~{E+..J(D -1)~
2

L2 }81,<pi81'<,:>i}bp, 
4 u<pi 

(2.20) 

where bp is t8PEP This ,·anishes when 8p is equal to zero, which is expected because the 

action (2.18) always possesses the volume preserving diffeomorphism im·ariance. One can 

say that the action has general co,·ariance if it is invariant under the following conformal 

transformation 

10 

8L 
(D-1)

8
1/Jbp, 

8L 
-(D- 1)-. -8p. 

8<pi 
(2.21) 

In other words, the general covariance can be recovered by demanding the conformal in­

variance further. The strategy is that we demand the action only possessing the ,·olume 

preserving diffeomorphism at tree level to gain the conformal invariance at quantum le,·el. 

The general covariance should be established at the bare action level. To calculate the one­

loop counter term, we decompose the fields into the backgrounds and the quantum fields 

as 'Pi _, tPi +'Pi, 7/J _, J; +if; and Y~v = g~p(ehtv. Here h''v is a traceless tensor as before. 

The effective action can be computed by summing the one particle irreducible diagrams 

with respect to the quantum fields 'Pi, 7]; and h~v · In addition to expand the action around 

the background fields, we need to fix the gauge invariance (2.19) in order to perform the 

functional integration. We adopt the following background gauge, 

~L(V"h - 8"L)(VhP"_ 8"L) (222) 2 J'V L p L , 

from which the ghost terms is derived as 

- - - 8vL -
\11,i)v \1"'( + R~i)1,r;" y(\1~ i)~)1( + · (2.23) 

The one loop counter term of this theory is evaluated to be 

(2.2-1) 

where A= 2i4-;;c . By adding (2.24) to (2.18), we obtain the one- loop bare action, from which 

the relations between the bare quantities and the renormalized ones are read off as follows, 

2_ = p'(!_- ~) 
Go G E 

AG 
ao = a(1 + 2£) 

bo = b 

do= d. 

(2.25) 

fJ functions are obtained by demanding that the bare quantities do not depend on the 

renormalization scale I' as 

iJc = EG- AG2
, 

!3 = _ GA a 
a 2 ' (2.26) 

i]b = fJd = 0. 
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The Einstein action is the infrared fixed point with G = O,a = J2(0'_ 11 and b = d = s1d-11· 

The theory possesses the ultraviolet fixed point with G = f.-,a = 0 and b = d = 810'-11" 

There is a renormalization group flow from ultraviolet fixed point to the infrared fixed point. 

:\ote that at the ultraviolet fixed point the action possesses the Z2 invariance (u _, -L' and 

<p; _, -<;>;). The enhancement of this symmetry may be clue to the fact that the theory 

is expanded around the symmetric vacuum in which the expectation value of the metric 

vanishes. In fact, Z
2 

symmetry appears in the Einstein action (2 .16) when the metric is 

expanded around zero. The variation of the conformal trasformation is calculated as before 

in the following. 

(2.2/) 

By substituting the values of b and d on the renormalization group flow into the abow. we 

obtain 

(2.28) 

This quantity vanishes both on the ultraviolet fixed point and on the infrared fixed point. 

One can also show that it vanishes along the renormal izat ion group trajectory, using the 

relation a ,,_, ( ) 2 } ,,.,{- E-GA.- 2(D- 1 a ) = 0, 
vf.l G 

(2.29) 

which is derived from the (3 functions (2.27). 1ote that the conformal invariance is crucial 

to restore the general covariance in the action which possesses only the ,-olume presen·­

ing diffeomorphism invariance. Therefore the general covariance is maintained along the 

renormalization group trajectory also. 
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3 Scaling Dimensions of Manifestly G e ne rally Covari­
ant Operators in Two- Dime nsional Quantum Grav­
ity 

In this section we consider scaling operators in two- dimensional quantum gra,·ity. Section 

3.1 is devoted to summarizing the properties of the scaling operators appearing in Liou,·ille 

theory or in the matrix model. In section 3.2 we calculate the scaling dimensions of manifestly 

generally covariant operators using the formalism developed in section 2.2. This is the first 

success in treating such operators in a consistent way. In sect ion 3.3 we interpret the results. 

\Ve compare the scaling dimensions with those of the operators in the matrix model and in 

Liouville theory. Our spectrum includes all the scaling dimensions of the scaling operators 

in the matrix model except the boundary operators. However there are also many others 

which do not appear in the matrix model. Though there is a possibility that the scaling 

operators in the matrix model corresponds to the operators considered here , we conjecture 

that the partial agreement of the scaling dimensions should be considered as accidental and 

that the operators considered give a new series of operators in two-dimensional quantum 

gravity. This section is based on the work [11]. 

3.1 Scaling Operators in Two- Dimensional Quantum Gravity 

Although the equivalence of the two approaches, Liouville theory and the matrix model, 

is almost confirmed based on the agreement of the correlation functions of the operators 

[20, 21, 22], the notion of operators comes out in each approach in quite a different "·ay. In 

the matrix model, the scaling operators appear when a macroscopic loop on the surface is 

shrunk. They form a complete set in the sense that their correlators satisfy closed recursive 

relations [23]. vVe must say, however, that they come out in such a geometrical way that 

it is not clear how they can be written in terms of the metric and the matter fields. In 

Liouville theory, on the other hand, one can carry out the BRST cohomological analysis 

[24] to obtain the physical operators, whose scaling dimensions have the same spectrum as 

that appearing in the matrix model except for those operators in the matrix mode l known 

as the boundary operators [25] or the redundant operators [25, 26]. Here the operators 

with zero ghost number can be understood as primary fields with gra,·itational dressing, 
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while the operators with nonzero ghost number do not allow such a clear interpretation. 

Alternatively, without taking Felder's resolution [27], one can construct the gra,·itat ionally 

dressed primary fields inside and outside the minimal Kac table , \\·hich ha,·e a one-to-one 

correspondence to the scaling operators in the matrix model up to the correlation function 

level [21, 22]. The inside ones are nothing but the operators with zero ghost number in the 

BRST analysis, while the outside ones include the operators with nonzero ghost number in 

the BRST analysis and the boundary operators. Here the physical meaning of the dressed 

primary fields outside the minimal Kac table is qu ite obscure. 

In these circumstances, we think it is worthwhile studying manifestly generally covariant 

operators, whose physical meaning is clear. Specifically, we consider in this paper manifestly 

generally covariant operators written as a volume integral of a local scalar density composed 

of the metric and the matter fields. For example, in the case of pure gravity, the operators 

we consider are J .,f9R"d2 -r, where n = 0, 1, 2, · · · . In spite of the clarity of their physical 

meaning, such operators are difficult to study in the conventional approaches. In LiouYille 

theory, there is no unambiguous way to define such composite operators, while in the mat rix 

model , or in dynamical triangulation in general , one may consider their formal counterparts 

by identifying the scalar curvature with the deficit angle per Yolume , but it is not clear 

whether they really correspond to the desired operators in the continuum limit. The formal­

ism of (2 +E)- dimensional quantum gra,·ity, however , seems most suitable for our purpose. 

Here we would like to generalize the calculation in section 2.2 to the scaling dimensions of 

the manifestly generally covariant operators explained above. 

3.2 Calculations of Scaling Dimensions of Manifestly G en erally 
C ovariant Operators 

Using the formalism described in section 2.2, we first calculate the scaling dimensions 

of J .,f9R"d2 x type operators in pure gra,·ity. Dropping the h-field, the Einstein action can 

be written in terms of the conformal mode as 

J .,j9Rd0 x = J d0 x [ {gfte+'- E(D 
4
-

1
) {ge-~¢_9''"81,¢8,,¢]. (3 .1) 

By introducing a new variable 1/J through 

(3.2) 
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the action can be written in terms of w as 

(3.3) 

where \\·e drop the linear term, following the usual prescription of the background field 

method. As is seen in section 2.2, the expansion parameter is GML', which is equal to- ~-lrr E 
2-:>-C 

in this case. We make use of the general covariance of the theory to proceed further· nameh· 

instead of keeping the full background field dependence, we expand the backgro:md fie;c; 

around the flat metric as 

(3.±) 

and, after calculating the one-point function of an operator up to sufficient order in i1pv• \\·e 

read off the corresponding generally covariant form to reproduce the full result. Defining H 

and G pv through 

1 +H 

the action reads 

(3.5) 

(3.6) 

(3.7) 

The terms with R and G,w will be treated perturbatively. After we integrate 1f; field in 

the calculation of the one-point function of J .,f9R"d2x, we obtain, in general , tenns such as 

f .,f9R"d2x, f .,f9R"-26Rd2x·, f .,f9R"i;.Rd2x and so on, which are O(i1"), O(h"- 1 ), O(i1n+l) 

quantities and so on respectively. \Ve can verify that we may ignore the term such as the 

third one at last because the power of its divergence is decreased due to its nonlocality. \\"e, 

therefore, keep terms up to O(h") here. Special care should be taken for the n = 1 case, 

which will be treated later. f .,f9R"d 0 x can be expressed in terms of\'' as 

In the following, we setH= 0 and G,'" =·a in the action (3.7) and replace g''"V,,8v in the 

expression (3.8) with 8 2 That this docs not affect the result is shown in appendix B. The 
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expectation Yalue of the expression (3.8) can be written down for n = 2, for example. as 

J ' D jdD.x· r;g'(e-~l-q-+2)log(l+~¢))R2 ( J9Rcd .1:) = VY 

+2(D- 1) J dDx{g(e-~(-q-+2+~)log(1+~vlf/¢,)R 

+(D _ 1)2 j dDx{g(e-~(-q-+2+~)log(1+r~l(iJ2tb)z). (3.9) 

Since we are dealing with free field theory, the expectation ,·alue within each term can be 

calculated to full order. For the details of the calculation, we refer the reader to appendix 
1 . -i( -!/-+2) log(1+f>,l) · 1 C where we show that the releYant - dn•ergence comes from the e • - 1n eac 1 ' ( 

term. The same argument holds for arbitrary n, and the waYe function renormalization of 

the operator J .j§R"d2 x is given by 

where p, is 

4 87r 2} Z, = exp{ --(1- n) log(1 + p,) + -
0 

,P, , 
E Mt 

1 
-{-1+ 
2 

GoJ-t' 
1 + --(1- n)}. 

7rE 

From this, the graYitational anomalous dimension is eYaluated such as 

a 81r 2 
In= ?t-,:;-logZ, = -E-G ,Pn· 

UJ-! OJ-! 

(3.10) 

(3.11) 

(3.12) 

We relate the gravitational scaling dimensions 6, of the operator J .j§R"cfx with the graY­

itational anomalous dimension through 

2(1-n)+/n 
1-6..11 = ' 

2 + /O 
(3.13) 

where "lo is the gra,·itational anomalous dimension of the cosmological term. This relation 

is derived through the following scaling argument together with the renormalization group 

analysis. Let us consider the one- point function 

(3.1-t) 

Here we scale the background metric f;,w _, J\fJ"v· The one- point function change as 

(3.15) 

where the renormalization scale grows ,,;.,r By the renormalization group this is equal to 

(3.16) 
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where the running of the coupling constant can be ignored as long as G » E. If we choose 

the cosmological term as the standard scale, we obtain the relation (3.13). From (3.12) and 

(3.13), we can evaluate the scaling dimension of J J9R"d 21: as 

~~~= 
v'1 - c + 24n- V1- c + 246b01 

v25- c- /1 - c + 246b0
' 

(3 .17) 

where 6b
01 

is the half of the canonical dimension of the cosmological term. Since c = 0 and 

6(0) = 0 for pure gravity, we obtain 

v'1 + 24n- 1 
6, = -'---4--- (3.18) 

By the way, the scaling dimension of the operator J .j91- 6 '4i6 ,c!2x is obtained obYiously 

by replacing n in (3.17) with 6o. The result agrees with that of ref. [15], as is mentioned in 

section 2.2. 

For 11 = 1, since the O(il) contribution to J .j§Rd2x is a total deriYative, " ·e ha,·e to 

look at the O(h
2
) contributions instead of the O(h) contributions. In this case. howe\u, the 

exponent of e-H-q-+n)log(l+fv) in (3.8) gets an extra O(E) factor and therefore we do not 

haw any~ divergence, which means the scaling dimension is unity and the expression (3.18) 

holds for n = 1 as welL 

Let us extend the abo,·e result to two-dimensional quantum gra,·ity coupled to (p, q) 

minimal conformal matter. Recall that p and q are coprime integers and satisfy p < q. The 

central charge of the (p, q) minimal model is 

c = 1 - 6(p- q)Z 
pq ' 

and the conformal weight of the (r,s) primary field \li,.,, is gi,·en by the 1\:ac table as 

(3.19) 

( qr - ps f - (p - q f 
h,.,, = ' (3.20) 4pq 

where T and s are positi,·e integers which satisfy 

ps < qr, r < p, and s < q. (3.21) 

<I> 1,1 corresponds to the identity operator, whose conformal weight is 0. 

Since .j9
1
-"'·'<I>,, .• is a scalar density, we can define a set of manifestly generally coYariant 

operators by 

(n = 0,1 ,2, ···). (3.22) 
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The cosmological term, which we take as a standard scale to define the scaling dimensions. 

is identified, as in Liouville theory, with the operator 

J ;;;1-hm;o if- d2 V9 '±'min ~L, 

where <I>m;n is the primary field with the least conformal weight hm;n given by 

1- (p- qf 
hmin = · 4pq 

(3.23) 

(3.2~) 

For unitary models (q = p + 1), hm;n = 0 and <I>m;n = <l>u (the identity operator). and 

therefore (3.23) reduces to the naive cosmological term f .,Jgd2 x. The scaling dimension 

.0,.Mcc of the operator J rngi-h,,,<I> R"d2x can be obtained by setting n _, n + h,_, and 
r,.!l;fl v~ r,.!l 

6b0
) = hm;n in the expression (3.17), which gives 

J1- c + 24(h,,, + n) - )1 - c + 24hm;n 

.0,.~:;,~ = J2'5=C- )1 - C + 24hm;n 

j(qr- ps) 2 + 4pqn- 1 

p+q-1 
(3.25) 

where (3.19), (3.20) and (3.24) are used in the last equality. One can see that the scaling 

dimension of J .,JgRd2x is 1, which is to be expected since f .,JgRd2
T is topological in the 

sense that it is a constant for a fixed topology. 

We comment here that there are also such generally covariant operators as f .,JgRMd
1 
x, 

which we do not consider in this paper. The only difficulty in dealing with such operators 

is that the argument made in appendix B does not work in this case. Consequently e,·en 

the renormalizability of such operators is not obvious. vVe can say, however, that if they are 

renormalizable at all, they form eigenvectors with a J .,JgR"d2 x type operator haYing the 

same canonical dimension and haYe the same scaling dimension as it. 

3.3 Interpre t ation of the R esults 

vVe compare the spectrum of the scaling dimensions obtained in the above with that 

appearing in the matrix model. Let us begin with the case of pure gra,·ity. In the matrix 

model, we have a set of scaling operators Ok (k = 1, 3, 5 · · ·) whose scaling dimension is k~l 

[15]. 

n 

24 
(3.26) 
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Since k is a positive odd integer, the righthand side of the above expression becomes integer 

except when k = 0 mod 3. Thus we have confirmed that in the case of pure gra,·ity our 

spectrum includes all the scaling dimensions of the scaling operators in the matrix model 

except Ok (k = 0 mod 3), which are called the boundary operators due to the fact that Q
3 

can be interpreted as a 'cosmological term' for the boundary of the surface [25]. 

Let us next examine the case in which (p,q) minimal conformal matter is coupled. In 

the mat rix model, we have a set of scaling operators Ok (k > 0, 1,; ¥ 0 mod p) whose scaling 

dimension is gi~en by [28] 

We can check explicitly that when 

n={ 

.0.""- k -1 
k - . 

p+q-1 

pqt2 + (qr + ps)t + 7'8 

pqt2 + (qr- ps)t 

with t E Z, our result (3.25) reduces to 

f2pqt + qr ±psf-1 
p+q-1 

(3.27) 

(3.28) 

(3.29) 

which agrees with the spectrum obtained in the BRST analysis of the Liouville theory [2~]. 

Note that the righthand side of (3.28) is a non-negative integer for any t E Z. This means 

that, just as in pure graYity, our spectrum includes all the scaling dimensions of the scaling 

operators in the matrix model except the boundary operators Ok (k = 0 mod q). 

To illustrate our result, we show, in Tables 1,2 and 3, our spectrum as well as that 

appearing in the matrix model for three typical cases : pure gravity (p = 2, q = 3). the 

k = 3 case of Kazako,·'s k-series (p = 2, q = 5), and quantum gravity coupled to the critical 

Ising model (p = 3, q = 4). 

As is mentioned in section 3.1, although the scaling operators in the matrix model form 

a complete set, in the sense that their correlators satisfy closed recursive relations, their 

physical picture is not clear except for the ones which can be understood as primary fields 

with gravitational dressing. Our result might suggest the interesting possibility that the rest 

of the scaling operators correspond to f .,;gt-E> •.• <I>,,,R"d 2?: (n = 1, 2, 3, ... ) except for the 

boundary operators. iV!oreover, one might expect that the indices rand s in the spectrum 

(3.29) obtained in the BRST analysis are llC!thing but those of the (T,s) primary field <I>,._, and 

that the ghost number -(2t + 1) or 21 respecti,·ely for the plus/minus sign in the expression 

(3.29) is related to the " of R" through the expression (3.28), though the correspondence 
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at the correlation function level between the physical operators in the ERST analysis and 

the scaling operators in the matrix model has not been proved yet for the operators with 

nonzero ghost number. 

One should note, howe,·er, that in our spectrum there are also many generically irrational 

scaling dimensions which do not appear in the matrix model. This may be a clue that the 

operators considered in this paper, except for the ones with n = 0, are completely difreren t 

from those appearing in the matrix model. Indeed one can argue as follows[29]. Take. for 

example, the operators in pure gravity, Ch and J ..j9R2d2x, which have been shown to have 

the same scaling dimension 3/2. Recently the theory with J ..j9R2d2x in the action has been 

investigated and the partition function is shown to behave as a. function of the area. as [18] 

(3.30) 

for m 2A « 1, where 1jm 2 is the coefficient of the R2 term in the action. This formula is 

derived also in section 4 using the formalism of (2 +<)- dimensional quantum gra.,·ity [-1]. On 

the other hand, the theory with the action S = t01 + 0 5 + x 7 0 7 in the matrix model gi,·es 

the string equation 

(3.31) 

which means that the area. dependence of the partition function for this ca>e gi,·es a. power 

behavior, which is ob,·iously different from that in the R2 gravity. We also see in section -1 

that all of manifestly generally covariant operators including the cosmological term in R2 

gravity has no gravitationally anomalous dimension in m 2 -+ 0 limit. Therefore their scaling 

dimensions are the same as the canonical ones and do not agree with those of the scaling 

operators in k = 3 theory, which is defined in (3.31) in the limit of :r 7 dominance. We 

conjecture, therefore , that 0 7 and J ..J9R2d21: cannot be identified, in spite of the agreement 

of the scaling dimensions and that the operators J ..;gJ-c., .• <I>,,,R"d2r (n = 1, 2, 3, ···)give 

a new series of operators in two- dimensional quantum gravity. To obtain the definite con­

clusion, we need information for multi-point functions of the manifestly generally co,·ariant 

operators, which seem hard to treat in our formalism 
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scaling scaling generally covariant scaling 
operator dimension operator dimension 

OJ 0 J ..j9d'.1: 0 
03 1/2 
Os 1 J ..j9Rd2x 1 
07 3/2 f ..j9R2d2x 3/2 

J ..j9R3d2x ( 173- 1)/-1 

Og 
f ..j9R4d2x ( 197- 1)/-1 

2 
011 5/2 f ..j9R5d2x 5/2 

013 
J ..j9R6d2x ( 1145- 1)/-1 

3 f ..j9R7d2x 3 
f ..j9R8d2x ( Ji]3- 1)/-1 
J ..j9R9d2x ( v'2f7- 1)/4 
J ..j9R10d2x ( J24l- 1)/4 

015 
J ..j9R1Wx ( J260- 1)/4 

7/2 
017 4 J ..j9RJ2d21: -1 

f ..j9R13d2x ( J3l3- 1)/-1 

019 
f ..j9Rl4d2x (J337-1)/4 

9/2 f ..j9Rl5d2x 9/2 

Table 1: Comparison of the scaling dimensions in pure gra,·ity. 
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scaling scaling generally covariant scaling 
operator dimension operator dimension 

01 0 f .j9 -o,,, <ll1 ,2cfTx 0 
03 1/3 J .j9d2x 1/3 
Os 2/3 

f .;gt-h.., <ll 1,2Rd2x ( J4f- 1)/G 
o, 1 J .j9Rd2x 1 
Og 4/3 f .;gt-h~,,1>1,2R2d2x -i/3 

J {?_R2d
2
x ( J89- 1)/G 

o11 5/3 J .;gt- uq,I,2R3d2x 5/3 
J .j9R3d2x ( Jf29- 1)/6 

J .j91-h'·'<ll1,2R4 d2x (Jill- 1)/G 
013 2 f .j9R4 d2x 2 

J .;gt-huq,1,2R5d2x ( J2QT- 1)/G 
f .j9R5d2x (v'269 -1)/G 

015 7/3 
J .;gt-h~,'<l.lt,2Rsd2:t. (J2ill- 1)/G 

f .j9R6d2x (V'249-1)/6 
f .;gt-h~,,<llt,zR7 d2x ( V28I- 1)/6 

017 8/3 J .j9R7d2't 8/3 
J .;gt-h,,'<llt,2Rsd2x ( v'32f- 1)/G 

J .j9R8d2x (v'329 -1)/6 
019 3 J .;gt-huq,l,2Rgd2't 3 

Table 2: Comparison of the scaling dimensions in the k = 3 case of Eazako\' 's k-serics 
(p = 2, q = 5). Note that the (2,5) minimal model has tll'o primary fields, namely the 
identity operator and 1> 1,2 which has a negative conformal weight (h1.2 = -tl· 
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'scaling scaling generally covariant scaling 
operator dimension operator dimension 

01 0 f .j§d"x 0 
02 1/6 f ../91-h"' <ll2,2d2x l/6 o, 1/2 
Os 2/3 f ../91-h'·' 1>2,1 d2x 2/3 o, 1 j .j9Rd2

1: 1 
f ../91-h'·' <ll2 ,2Rd2x (2JI3- 1)/G 

Os 7/6 
J .;gt-h,,, <ll2,tRd 2 1: ( V73- 1)/6 

f .j9R2d2x ( /97- 1)/G 
010 3/2 f .j91-h'·'<ll2,2R2d2x 3/2 
Ott 5/3 J .;gl-hu 1>2,1 R2d2x 5/3 

J .j9R3d2't ( 1145- 1)/6 
f .j91-h'·'<ll2,zR3d2x (2v'37- 1)/6 

013 2 f ../91-h'·' 1>2,1 R3d2x 2 
j .j9R1 d2

.1: ( /193- 1)/G 
014 13/6 J .;gt-h,,,1>2,zR'td2:t. 13/G 

Table 3: Comparison of the scaling dimensions in two-dimensional quantum gravity coupled 
to the critical Ising model (p = 3, q = 4). Note that the (3, 4) minimal model has three 
primary fields, namely the identity operator, the energy density operator <Ji 2,1 (h2

•
1 

= ~) and 
the local spin operator <Ji2,2 ( h2,2 = ft). -
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4 R2 Gravity in (2+c:)-Dimensional Quantum Gravity 

In this section, we treat R2 gravity in (2 + E)-dimensional quantum gravity. In section 

4.1, we calculate one- loop counter terms and see that the oversubtraction for the conformal 

mode occurs as in the ordinary cases. \Ve present a prescription similar to the one in sc'ction 

2.2. In the next subsection, taking f _, 0 limit in the strong coupling regime, ll"e calculate 

the string susceptibility of the system and compare the resu lt with that obtained through 

Liouville approach. This section is based on the ref. [4]. 

4.1 Calculation of One- loop Counter Terms 

We define a (2 + E)-dimensional system corresponding to R 2 graYity by the follo\\·ing 

action, 

(-11) 

where G is the gravitational constant, i\ is the cosmological constant, and cp; is the matter 

field. m is a parameter with mass dimension, which corresponds to the inverse of t he range 

controlled by the R 2 term. Since the aboYe action contains higher deriYatives, which IS 

difficult to deal with, we introduce an auxiliary field x and replace the R2 term with 

(-1.2) 

In appendix D, we calculate the one-loop counter terms for the generalized act ion 

S = p' j d 0 x·J9 GK(x)g''"8~x8vx + L(x)R + l'vi(x) ) +(matters), (-1.3) 

which reduces to the action considered by setting K (>..) = 0, L(\) = b -i\ and i\I(\) = 
i\+m2x2 As can be seen in (D .21 ) and (D.22) , the counter term for they- kinetic term can 

be set to 0 by choosing appropriately the function f, which comes from the freedom of gauge 

fixing (D.15). Note also that the renormalization of M(x) is self-contained, which enables 

us to treat it separately as an inserted operator . Thus the action including the one- loop 

counter term reads 

S+ Sc.t. = p']d0xJ9(~- i>..- -
1
-

24
- c) R+ (matters). 

G 211"£ 12 
( -1.4) 
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Special care should be taken for the counter term 

24- c J - -_--p' d0 x 'gR. 
247rf v !i (-1.5) 

As in the case of section 2.2, this counter term ( -1.5) is an oversubtraction for the conformal 

mode, which forces us to incorporate this counter term in the tree-le,·el action and redo the 

perturbati,·e expansion with the effective action 

s ' j 1o ~ ( 1 . 1 24- c) 
eff =I' C .Tyg - -ty---- R+ (matters). 

G 2u 12 (-16) 

This amounts to redefining the L(x) as L(x) =.!.. _ iv _ 24-c. 
G "'- 241fc 

We show in the following that one can obtain results consistent with ref. [18] in theE_, 0 

limit in the strong coupling regime, i.e. G » E. This is to be expected, since in the infrared 

limit R
2 

gravity reduces to ordinary gravity without R2 term, which was reproduced in ref. 

[2, 3] also in the strong coupling regime. 

4.2 Derivation of String Susceptibility 

Let us consider the renormalization of the operators J d 0 x J9 and J dD x J9>.. z. We first 

show, up to two-loop level, that the di,·ergent parts coming from the diagrams with h,'" line 

cancel as a whole and therefore do not contribute to the renormalization of the operators 

considered. 

In order to diagonalize the kinetic terms in the act ion after gauge fixing, we introduce 

the new quantum fields <!>,X and l/''v through 

where i and F are giYen through 

¢ 

\ 

- 2L'-
F<l>+ -;];IX 

f.\." 

~2 (1+ ~) 
4 

EDL 

After this field redefinition, the kinetic teri11 reduces to the following standard form 

! dDT ig {~l/ 1 ' l/" P + ~g-1'"8 <1>8 <J> +~?I'"" }"" \"} VY .j v.p ~. 2 ~ v 
2

y u1,Auv~ . 
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The interaction vertices including 11~, are 

j d0 .rJ'§U(D -1)L 1 12 f2 rl''"o~iJ?o,iJ?- ~(D -l)L-3i2L'2Pr>.""o,,Xo,X 

- :_F2WPO "o iJ?o iJ? + 2_(D -1)L-2 L'2 Pfl~'Pfl "o Xo \." + · · ·} (-±9) 8 p JJ v 2€ p Jl- v-

The operators can be written in terms of the new quantum fields as 

J d02·y/g 

j doxjgx2 

The Fig. 3 shows the list of the diagrams with 11,., line we have to consider when we e,·aluatc 

the one-point functions of the abO\·e operators up to two-loop level. (a) and (b) correspond 

to (1?2), while (c) and (d) correspond to C\2
). Although each diagram has 0(~) divergence 

( l\ote that L ~ 0(~). ), an explicit calculation shows that the divergent parts of (a) and 

(b), as well as (c) and (cl), cancel each other. One can also check that the contribution of 

the ghosts and the matters is finite, clue to the suppression factors of E and L -I ~ 0( E) in 

the action. Thus we have shown that the diagrams containing h,,, ghosts or matters do 

not affect the renormalization of the operators at least up to two-loop le,·el. \Ye expect that 

this holds true to all orders of the loop expansion and that two-dimensional R2 gra,·ity is 

completely governed by the dynamics of the conformal mode ¢ and the auxiliary field \. 

Dropping the h,., field, the ghosts and the matters, the effective action reads 

Jcl 0 xylg (2.- i;._-
2
-l- c) R 

G 24u 

j cl 0 x}§ { -ie-t" ( k- (D- 1}f;P"'Il ,a,¢+ ~E(D- 1).fl''"o,,Qo,9) (\ + \) 

+ (~- 2
;4:Ec) e-t.P ( R- ~E(D- l).fl''" a,,oo,o)}. ( -!.10) 

Introducing new variables if; and ~ through 

(-!.11) 

the terms relevant to the renormalization of the operators considered are 

( -!.12) 
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which means that the problem is reduced to a free field theory with the propagators 

(1/;(p)?/J(-p)) 0 

(1/;(p)~(-p)) 

(~(p)~( -p)) 

-i 

D -1pl 
2-l- c 1 

487r D- 1 pz· 
Let us e\·aluate the diYergence of the one-point functions of the operators. 

cosmological term, one gets 

·• j cl 0 x}§(e¥l-Iog(l+f>bl) 

j cl 0x}§, 

( -!.13) 

As for the 

clue to (1/J(p)if;( -p)) = 0. Thus one finds that the cosmological term is not renormalized .. -\s 

for the mass term, one gets 

u dD'Eyfg,\2) 

j d
0 x}§ ( (-'.2 + 2_\x + x 2) e-~o) 

JdDxJ'§{\2+ 2i_1 ~~-18-c_1 _ (-1 )2} 
27TE 487T 27TE 27TE 

JclDxJ'§{(.\ + _i )
2 

_ ~-1 } . 
27TE -l81r 27TE 

Strictly speaking, one should have taken care of the 0(1) contributions to the term propor­

tional to X in the last step of the equality. One can check, however, that starting from the 

action with x-linear term and adopting the minimal subtraction scheme is equi,·alent to the 

above manipulation. 

The bare operators, therefore, can be written as 

mo2 j clD'EVg,\o2 + Ao j cl 0xylg 

2cj 1D 0;{( .1) 2 
18-c1} 1 mp. c xvg .\-t-.- +--- +/\it' dD" 0;9 (-!.1') 

27TE 487T 27TE V y, 7 

from which one can read of!" the relations between the bare parameters and the renormalizecl 

ones as 

\o 

( -!.15) 
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Using the above relations, one can evaluate the area dependence of the partition function in 

the E --+ 0 limit as follows [3]. 

Z(A) = j Dg1wD\o exp [ -p' j d0 1:/9 (b- i\ -
2
;-l:Ec) R- mo

2 j cl
0
rl§\/- .\o j d 0

r/9] 

· 6 (11' J cl
0 xj91

1
,- A). 

Rescaling the metric as g~" --+ >.g~"' 

Z(A) = j Dg~vDxoexp [-A'12p' j d0xl§ (b- ixo-
1
;
4
:Ec) R- >. 012 m

2 p' j d 0
r/9\/ 

- >,D/2 (/\.It'+ 18- c_1_m2p') jdox;g]. 6 (>,D/2 J.t'jdor/91 - .-\) 
48rr 2rrE >.'''~' 

! Dg~vexp [:_log>. 12- c p'jdD7:1§R- :_log,\ 18- c_1_m2,\J.t' j dox;g] 
2 24rrE 2 48rr 2rrE 

· exp [-J.t' j d0xl§ (..!:_R- 12
- c R + __;._R2

) - i\0 )., jd0xl§j 
G 24n 4m-)., 

. 6 (>,D/2 It' J dDXVg~~- A). 
Setting )., = A, 

Z(A) = 

where '"' is the string susceptibility given by 

c- 12 c- 18 2 
lw = 2 + -6-(1 -h)+ 1927r2 m A. ( -!.16) 

Here his the number of handle on the surface. For m 2 A ~ 1, the classical solution dominates 

in the path integral. One gets, after taking account of the fluctuation around the classical 

solution, the area dependence of the partition function as, 

(U I) 

One should note here that our m2 corresponds to 8rr times the m 2 of ref. [18]. Comparing 

our result with that of ref. [18], the only discrepancy is the c- indepenclent coefficiem of 

m 2 A in eq.( 4.16), which is subtraction scheme dependent. We can, therefore, conclude that 

the two results are consistent. In our calculation, the peculiar (c- 12) factor comes from 

the shift of the x-field and the A- dependent term comes from the fact that the \ 2 operator 

generates a cosmological term after renonnalization. 
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Finally, we comment on the scaling dimensions of manifestly generally cm·ariant operators 

in R2 gravity. From the first equation of {4.1..J), one can easily see that these operators are 

not renormalized in all order. Therefore, their gravitational scaling dimensions are the same 

as the canonical dimensions 6 0 in the m 2 
--+ 0 limit ; they have no gra,·itational dressings. 

It is natural because the space-time is expected to be locally flat in this limit. 
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5 Two- loop R enormalization in Quantum Gravity near 
Two Dimensions 

In this section we perform the two- loop renormalization of the theory deve loped in sect ion 

2.3. We concentrate on the part proportional to the number of matter fields and the ultra­

violet fixed point. Section 5.1 is devoted to the explanation of the strategy for our two- loop 

calculations. In section 5.2 we present the resu lts for two- loop divergences and Yerify that 

nonlocal divergences cancel out among the diagrams a<; well as infra red divergences mixed 

with ultraviolet divergences and only the local divergences remain at last. In section 5.3, we 

see that the theory is renormalized multiplicatively. Conformal invariance is established at 

the ultraviolet fixed point. Hence the general covariance is also guaranteed . Our result is 

that the theory is constructed consistently at least in this part up to two-loop level. This 

section is based on the work [7). 

5 .1 Calculation of Two- loop Counter Terms 

As is seen in section 2.3, the one- loop bare action of the theory we consider is written as 

(5 .1) 

where X;= (1/J, <,>;) and1/i = diag( -1, 1, · · · , 1) . Paying our attention to the ultraviolet fixed 

point, we set 

(5 .2) 

where we have replaced b of section 2.3 with Eb/2 to keep E factor explicitly. T he Z2 symmetry 

of the fixed point action is preserved also in two- loop calculations. As the firs t step to the 

complete two-loop renormalization, we evaluate only the counter terms proport ional to the 

number of matter fields in this paper. 

As in the one- loop calculation, we expand t he fields around the backgrounds as [J,w 

g~p(e"tv' X;-> _k; +X; and employ a background gauge . vVe adopt the same gauge fix ing 

term (2.22) as the one-loop ca<;e, which is not renormalized at one- loop level. T he ghost 

action (2.23) is also used in this case. In two- loop calculations, we must in general expand 

the action up to the fourth order of the quantum fields (h~"' X; and ghosts). HoweYcr we 

30 

need only the three and four point vertices which are quadratic with respect to the X; fields, 

since we compute the counter terms proportional to the number of matter fields. 

We expand the one- loop bare action (5.1) , the gauge fixing term (2.22) and the ghost 

act ion (2.23) around the background fields in a sufficient order as is explained in the abO\·e. 

Here we exploit the formula 

R. = R- h~ k - 9 9 h1'" + ~9 h'' 9Ph" 
1.1 J1 J1 v 4 p v }J 

(5.3) 
1 - 1 - - - -

+2R~vphpah~" - 2 V vh"~ V phPI' + V~(h''v VPh"p) + O(h3
). 

T he background metric is expanded around the flat one as 

{5.4) 

where h1,~ = 0 can be assumed, for simplicity, without any loss of generality, and the propaga­

tors of quantum fields is defined on the flat metric . In th is way, the term L(_-Y)9 Ph~" 9Ph"
1
Ji 

is obtained as the kinetic term for the h~" field . To make this kinetic term a canonical one 

and define a propagator on the flat metric, we introduce a symmetric traceless matrix H
1
w 

which satisfies H~~ = 0. Namely we express h1w as 

h~" = __ 1_y~v>.p H fi(X) ),p , (5.5) 

where T~v>.p is defined as 

{5.6) 

After this prescription , we obtain the propagators and the vertices for the H
1
'", X; and ghost 

fields which are required in our calculation . They are as follows. 

propagators 

{5.1) 

{5.8) 

(5 .9) 

Here P~v>.p is defined as 

(5 .10) 
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two-point vertices 

K('"'P"13 8aHpv8!3H>.p 

Kjv>.po/3 

]{~v>.po HpvOoH>.p 

Kf"AP Hp;,H>,p 

J(fv>.p 

K613o0 X813X 

K613 

K7X 2 

1<.'7 

ki"'pof3 80 H ""813H >.p 

kjv>.po{3 

j{~v>.po Hpv0
0

H>,p 

j{jv>.p HJ-wH>.p 

f{~l v>.p 

(5.11) 

(5.12) 

(5.13) 

(5.1-l) 

(5.15) 

1 ( r; •o(J <<>f3) 2 v gg - u ( 5.16) 

( 5.17) 

{Ei18) 

(5.19) 
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ki""13 00 TJpO,J1/v 

J\i"",J 

R~"" Oo TJp 1/v 

i?~IIO 

kfi/O 

kr"fJ"1J" 

three-point vertices 

four-point vertices 

11(""f3 H,w8a X8i!X 

F(""!3 

11j'" H1wX2 

Vf" 

l¥{'">.poiJ OoH
1
,vO(JH:..pX2 

JV('"Apo iJ 

wr>.pof3 H
1
w8oH>.pX8i! X 

JV~w>.po(3 

vJ1fv>.po!3 H
1
wH>. pOo X813 X 

IVf">. pof! 

~V!,' v>.po H
1
w00 H>,pX 2 

w:,v>. pc. 

vVt'">.po H
1
wH:..pX EJ"X 

~VfvApo 

(5 .20 ) 

(5 .21 ) 

(.5.22) 

(5.23) 

(5 .2-l ) 

(5. 25 ) 

(5.26) 

(5 .27) 

(5.28) 

(5.29 ) 

(5.30) 

(5.31) 
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WtvAp H~vHApX2 

Wt"AP 

vV{'voti i3o ij1, '7vX 813X 

wrvo.B 
llif"0 ij~1)vXi3oX 

w~vo 

(5.32) 

(5.33) 

b r::.-!31 -vor·~ 
-E V gg g !31 {5.3-±) 

In these expressions, Lis equal to l - ~Eb.i:? and the suffices for the~\:; are omitted. 

To determine the counter terms, we exploit the manifest general covariance with respect 

to the background metric fl"v· We keep the appropriate order of h1w in the calculation of 

the diagrams and read off the general covariant forms from the results. 

Our strategy of calculation is as follows. First, we set h~v = 0 and eYaluate divergences 

proportional to EJ~j( 131,.\:/2 to determine the counter term proportional to g1w i3
1
,X i3v)\)2. 

The coefficient can, in general, depend on .Y;(or X;). l\ext , we calculate the diagrams 

which are the first order of h~v and subtract from the results the O(il) contributions coming 

from the term proportional to g~" i31,.Y i3v;V: /2 derived in the first step. Exploiting /T;R = 

-i3~i3"h"v + O(h2
), we obtain the counter term for the X - dependent part of RL(X). Finally, 

we compute the diagrams which are the second order of ;,"" setting .Y = 0. By making use 

of the relation 

(5.35) 

we fix the counter term for fl.. 
In order to renormalize the theory up to the two- loop level, we have to make the two­

loop divergences local. It is possible to do so only if we subtract the sub-divergences of the 

one- loop sub-diagrams from the two- loop diagrams properly. The one- loop renormalization 

of quantum fields shows that the only one- loop counter term proportional to cis 2,~"'R 

This means that the sub-divergences should arise only from the matter sub- loops connected 

to the quantum H~v or the background il"" ·tines. Keeping this point in mind, we can classify 

all the diagrams into groups within which local divergences are obtained. 

There is a subtlety in computing the short distance divergences of the two-loop diagrams; 
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The subdiagrams containing the H"" propagators, in general, cause infrared divergences. In 

order to regularize them, we introduce a mass term in the H~" propagator; ;fr --> P'1"''. 
We take m --> 0 limit after extracting ~log( 7f) type divergences. It is seen later that such 

divergences are canceled out among the diagrams and do not appear in the final results. 

Therefore the short distance divergences are separated from the infrared divergences and 

there are no mixed divergences. 

5 .2 R esults for Two-loop Counter Terms 

In this subsection, we calculate (the minus signs of) two- loop divergences in the effecti,·e 

action following the strategy described in the previous section and show the results in detail. 1 

The two-loop counter terms are readily obtained by performing the replacements, _;I:; --> X; 

and g"" --> gP" in the two- loop divergences. 

To evaluate the divergences for the kinetic terms of ~Y; , we must consider the six diagrams 

(Fig. 3), where h1w is set to be equal to zero. The divergence of each diagram is obtained as 

cG j 0 l · · 
( 47r )2 a d .-r 2 EJ~X;i3~X', (5 3G) 

where a is independent of i:; and contains the pole. Vve summarize the results in Table-±, 

from which we can see that each of the diagrams gives a local and single- pole divergence, 

and has no infrared divergence. The final result is written in the covariant form as 

cG ( cG) ;dD r::.-~vl/3 v i3 .;;,.; 
{47r)2 -& xy gg 2 ~~'; v~' . (5.37) 

5.2.2 Diver gen ces for fl. .i:? 

We write clown all of the diagrams which are the first order of i'"" and subtract from them 

the contributions of g1wi3,,5:;i3vi~; . Thus we obtain thirty three diagrams, which indeed gi,·e 

the divergences for R ."kf. As all of them include the vertices proportional to E b. there is in 

principle neither nonlocal nor infrared divergence. After a lengthy calculation, we find that 

1Tremendous amount of tensor calculations involved in this subsection has been performed with the aid 
of ?viathTensor. It is our pleasure to acknowledge S. Christensen of MathSolution Inc. for kind adYicc 
concerning the usage of this powerful tool. 
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only the five diagrams pro,·ide nontrivial contribu tions, which are canceled out among them. 

As a result, we find no divergences for R .'\}. 

5.2.3 Divergences for R 

'vVe set cY; = 0 and evaluate two- point functions of h1w. The diagrams we ha,·e to calcula te 

are classified into two categories . The one category consists of forty one diagrams, which 

contain the vertices proportional to Eb and give no nonlocal or infrared di\·ergences. Among 

them, there are. four diagrams which include ghost loops and each of them is found to give 

no contribution. As for the remaining thirty seven diagrams which have in general single 

pole divergences, our calculation shows that such divergences cancel among the diagrams. 

The other category is a set of forty three diagrams which possess no overall Eb factor and 

are able to give nonlocal and infrared divergences. 'vVe classify them into thirteen groups 

(Fig. 4- Fig.16), such that the contribution from each of them become local. 

The Group 1, 2, 3 resemble the others in topology of the diagrams, while they differ in the 

vertices connected to the external h~v line. The diagrams of the Group 4 share the diagram 

4-5 with the one-loop counter term insertion. Each of the Groups 5-12 is the combination 

of two diagrams, where the one- loop counter term insertion cancels the sub-divergence from 

a matter sub-loop. The two diagrams of the Group 13 have the sub-diagrams, which are 

two- point functions of matters at one- loop level. As is seen in the one-loop calculation, the 

divergent contributions from these sub-diagrams cancel each other, which implies that the 

Group 13 does not need one- loop counter term insertions and gives a local di,·ergence. 

The calculations of diagrams such as 3 - 1 and so on are performed by the method 

presented in [30]. We summarize the results for each of the Groups in Tables 5- 17. \\"e 

obtain generally the divergences in the momentum space such as 

Al.:~k)l(k)~)~(-k)v>. + Beh(k)1,)l( -1.:) 1w 

1 - -+ CJlik1,kvh(k)~vk>.l,;ph(-k)>.p) · (5.38) 

The coeffi.cien ts .4, B and C are shown in Tables. Here p and a are defined as follows, 

k2 
p = l?g(47r), 

7n2 

a= log( 1.:2 ). 
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\Ve can see from Tables that in the total of each of the Groups p and a do not appear and C 

is equal to zero . This means that the nonlocal and infrared divergences in the ~ poles cancel 

among the diagrams in each of the Groups. 'vVe also collect the total results of the Groups 

in Table 18 and sum them up in the Total. Remarkably, the double- pole singularity does 

vanish in the final result although it remains in each Group. From the relation bet,,·een .-1. 

and Bin the final result and the formula (5.35), we can verify the presetTation of the general 

co\·ariance with respect to the background, which serves as a check of our calculation. The 

final result for the divergent contribution is found to be 

cG 5 j 0 r;_-
( ~7r)c 24E d xy gR. (5.39) 
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Diagram a b c d e f Total 

a 0 l ~ -~ l l l 
8( ' ' 

-127 -6( -g; 
Diagram A B c 
2- 1 -f.,+(fs-*-~)~ f.,+(-{2+~+~)~ 0 

Table 4: The divergences for EJ,.X;EJ,_:\;; 2-2 -t,- + (fz- ~- ~)~ &, + ( -f2 + ~ + ¥.il~ 0 

Diagram A B c 

1- 1 -t,- + (~- f- ~- aH t,-+(-~+~+~+~)~ 0 I· 
2-3 t,-+(-~+f+~+~)~ -t,-+(~-~-~-~)~ 0 

2.-4 -f.,+(~-*-~)~ t,-+(-*+~+~H 0 

2-5 0 0 0 

1-2 f.,+(-t+*+~)~ -f.,+(~-~-~)~ 0 2-6 ~+(-i+1+1H -b + (~- ~- ~H 0 

1-3 0~ + ~H (-~- ~H 0 2-7 3;, +(-t+1+})~ -f.,-+ (t,t- ~- ~)~ 0 

1-4 q q 0 2( -4; 2-8 q q 0 -2( ~ 

1-5 q q q 
-2£ ~ 'k Total :& + 4

11( -& + 3~£ 0 

1-6 2u q q 

3. -3( -3( 

Total 4;, + 4~< l l 0 -8""(1"- 96c 
Table 6: The results for Group 2 

Table 5: The results for Group 1 

Diagram A B c 

3- 1 19 ll 0 24( -24£ 

3-2 ll 5 0 36< -18£ 

3-3 f.,+(-~+~+~)~ -f.,+ (ti- *- ~)~ 0 

3-4 l l 0 -2( ~ 

3-5 2 l l 
'k -Jl 6< 

3-6 -f,- + (k- ~- })~ f.,+(-i+f+~)~ l 
-6( 

Total -~ + iic l i 0 4'('1"- 36c 

Table 7: The results for Group 3 
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Diagram A B c 
Diagram 4 B c 

7-1 II 29 0 192t: -384£ 

4- 1 -& + (~- f- ~- ~l~ to+(-~+~+~+~)~ 0 
7-2 5 I 0 - 48£ & 

4-2 &+l-f6+~+~+~)~ -&+(;b-~-~-~)~ 0 
Total 3 19 0 -64£ 384£ 

f.,+(tk+~+~+~)~ I + ( II ]_ l' _ .!e.)l I 4-3 - 6t:2 - 72 - 6 - 6 12 ( -6( 

-t,;-+(-H-~-~-~l~ ~ + (?14 + H + ~ + Jl~ I 4-4 6( Table 11: The results for Group 7 

4-5 p+(-*+~+~+~)~ -& + (~- ~- ~- ~)~ 0 

Total I 13 -to+ 3;, 0 ~- 48c 
Diagram A B c 
8-1 to+ ( -~ + ~ + ~)~ -~ + (;(s- ?6- fGl~ 0 

Table 8: The results for Group 4 
8-2 -~ + (f4- ~- ~)~ to+ (-f2 + ?6 + fBl~ 0 

Total 1 1 li,, + 4;, 0 -8(2- "'i"6( 

Diagram A B c Table 12: The resu lts for Group 8 

5-1 -8:,+ (H- ~- ~l~ ib + (-/& + ?6 + fg)~ 0 

5-2 ,:,+(-*+~+~)~ -s:, + C6
4
1
4- t5- fBJ~ 0 

Diagram A B c 

Total 1 19 -Ib + 5~~. 87f - 288E 0 
9- 1 &+(-~+~+~)~ -to+(~-~- v~ 0 

9-2 -~ + (~- ~- ~)~ &+(-~+~+~)~ 0 

Table 9: The results fo r Group 5 -~ + 4~£ 1 5 0 Total 8t: 2 - 96t: 

Table 13: . The results for Group 9 

Diagram A B c 
Diagram A B c 

6-1 (- ii2- ~)~ (3~1 + "fu)~ 0 

6-2 (-}s + ~)~ u 0 -16 

Total 3 7 0 - 64t: 384< 

10- 1 -8:' + (:H- ~- ~)~ ~ + (-* + ?6 + fg)~ 0 

10- 2 4:,+(-:t}+~+~)~ -8:' + (t- ?6- fGl~ 0 

1 5 1 1 0 Total Sc2 - 96c -16£2 - 192c 

Table 10: The results for Group 6 
Table 1-l: The results for Group 10 
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Diagram A B c 
11 - 1 ~+(-~+~+~)~ -t&- +(/&-iii- {G)~ 0 

11-2 -~ + (*- ~- ~)~ 8:2 + (-f2 +iii+ {G)~ 0 

Total 1 5 1 23 0 -8£2 + 96£ 16t:2 - 192c Group .4 B 

Table 15: The results for Group 11 
~+ 4~£ 1 1 

-8£2- 96£ 

2 4:' + ;;, -~ + 3~< 
3 -b + iic I 7 

47!- 36£ 

4 1 13 -~ + 3~< 4£2 - 48£ 

5 1 19 -t&- + 5~~. ~- 288t: 

Diagram .4 B c 
6 3 7 

- 64c 384t: 
12- 1 5 3 0 16( -32£ 

7 3 19 
-6-tt: 384£ 

12- 2 5 1 0 -12( & 8 1 1 t&- + 4~< -8c2 - 16£ 

Total 5 1 0 -48£ 32< 9 -~+ 4t 1 5 
8(1 - 96t: 

Table 16: The results for Group 12 
10 1 5 1 I 

&2- 96t: -16"('2- 192£ 

11 -& + 9~( 1 23 
~- l92t: 

12 5 I 
- 48! 32< 

13 I I -s; j"6; 

Diagram .4 n c 
Total 5 5 

-48£ 96< 

13- 1 :&+(-H+f+~+~l~ -6:, + u4~1 - ~- ~- f2 )~ I 
-6( Table 18: Di,·ergences for k 

13-2 -~+(iG-t-5-~)~ ~+(-fi+~+~+fil± I 
6( 

Total I 1 0 -a; 16( 

Table 17: The ' results for Group 13 
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5.3 Conformal lnvariance and Ultraviolet Fixed Point 

In the previous subsection , we have calculated the divergences in the effective action and 

determined the counterterms by the background field method. The bare action can be 

written as 

So 

(5.40) 

where G is equal to Gj47r. We have introduced a parameter w, which corresponds to a finite 

renormalization of the coupling X, X' k Although it can be taken arbitrary a<; far as the 

divergence of the theory is concerned , we ha,·e to keep it since the corresponding tree- level 

coupling constant is 0( E). From this expression , we see that the theory can be renormalized 

multiplicatively at least to this extent, which is nontrivial since the X; field is dimensionless 

in two dimensions. 

We parametrize the bare action as 

(5.-11) 

which gives the following relations between the bare quantities and the renormalized quan­

tities. 

~,, ( 25 - c G 5c c2) 
G 1 -~ + 24E' , (5.42) 

( 
c ) - ? Eb + 8- w G-b. (5.43) 

Using these relations, the {3 functions can be obtained as 

f3c G E- --G+ -G ( 
25 - c - 5c - 2) 

6 12 , (5.-l-l) 

( c) -., 2w- 4 G-b. (5.-15) 

As is seen in the expression for f3b, the free parameter w is relevant to the physics of the 

system. We will fix this ambiguity by impSJsing general covariance on the bare action. 

Since we have maintained only the volume- preserving diffeomorphism, we have to impose 

the conformal invariance on the bare action so that the theory is generally covariant. \Ve 
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consider the conformal transformation 

fJ~vOP, 
8Lo 

(D-1)-.op 
8X0' ' 

(5.-16) 

(5.-ll) 

where L0 = 1- ~EboX0;X0 '. Under this transformation, the bare action transforms as 

8So = 

When we consider symmetry at the quantum level within the counterterm formalism, we have 

to replace the operators in (5.48) with the corresponding renormalized operators [32, 33, 3-l]. 

In order to define the renonnalized operator for X;X'R, we differentiate the bare action 

with respect to the finite parameter b 

J D r; - ., - _ 2G 8So ( wG2
) j D r; _ .-;-d ·'V g(X,.\ R), = ---

0 
= 1-- d xy g"\;X R. 

E~l' b E 
(5.-19) 

\Ve need to translate this relation into the local one, where , in general, one may have some 

total derivative terms. \Ve note, however, that a complete set of operators can be written 

without total derivati,·e terms by making use of the equations of motion [34]. \Ne can , 

therefore , define the renonnalized operator (X; X' R), as 

. . ( wG2
) . _ (X;X'R), = 1- -E- X;X'R. (5.50) 

The same reasoning holds in the case of the other operators, which we omit to mention in 

the following. 

The renormalized operator for 8~X;81'X' can be obtained by introducing a parameter 

"!" in front of the tree-level kinetic term of X; and keep track of the parameter in the 

divergent diagrams. The propagator of X; is multiplied by a factor y and the vertices which 

originate from the kinetic term of X; are multiplied by a. factor f. On~ finds that all the 

diagrams corresponding to the renorma.liza.tion of the kinetic term are multiplied by a factor 

J and the other diagrams remain the same. This implies that the renormalized operator for 

8
1
,X;o''X' can be defined through 

(5.51) 
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Finally the renormalized operator for R can be obtained as follows. \\"e renormalize X, so 

that the only G dependence comes from the coefficient of R 2. A.lso we ha,·e to perform the 

wave function renormalization in order to avoid picking up unphysical contributions from 

the kinetic term of X;. Thus we define 

(5.52) 

and rewrite the action in terms of}~ as 

So(G, Y;) = J 0 r;_ , [ 1 ( 25 - c - 5c - 2) -d xy 91-L - 1 - --G + -G R 
G 6f 24E 

-- Eb-wGb+-Gb Y.Y'R 1( ·2 c- 2 ) ·• 
2 8 , 

+ ~& Y.&~Y'] 2 ~ ' . (5.53) 

By differentiating the above bare action with respect to 1/G, we can obtain the renormalizecl 

operator for R as 

(R), = 1 - -G R- wG b- -G b .\;); R - ( 5c • 2) - ( -2 c • 2 ) - -; -
24f 8 

(5.54) 

Using eqs. (5.50), (5.51) and (5.54), the conformal anomaly (5.48) can be written in terms 

of the renormalized operators as 

This result is reasonable since each term includes the expression for the ;3 function. At 

the ultraviolet fixed point, where the (3 functions vanish, the conformal anomaly vanishes if 

and only if the fixed- point value of b is given by 

b=b"= --
1
-. 

4(D -1) 
(5.56) 

This is the same as the one- loop result. In order that this nmwanishing fixed- point value 

of b may be realized, the coefficient (2w - _c/4) in the (3 function of b should vanish. Thus 

2 Here we assume that the G dependence in the gauge fixing term does not affect the physical conclusion. 
An explicit check of this assumption by performing the operator renormalization of R requires as much work 
as has been done in this study. 
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the free parameter w should be chosen to be g to the leading order of c. i\ote also that 

the fixed-point value of b coincides with the value of b that corresponds to the classical 

Einstein gravity. This is consistent with the one- loop result where it has been shown that 

the (3 function of b remains zero throughout the renormalization group trajectory from the 

ultraviolet fixed point to the infrared fixed point which corresponds to Einstein gravity. 
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6 Summary and Outlook 

In this paper, we have studied quantum gravity near two dimensions from the Yiewpoint of 

renormalization group. In our formulation the conformal mode of the metric is separated 

explicitly and treated carefully in view of subtleties of the oversubtraction problem. 

In the first part of this paper, we haYe treated two problems in the framework of (2 +E)­

dimensional quantum gravity. Firstly, using the prescription which holds for two- dimensions 

limit , we computed the scaling dimensions of manifestly generally cm·ariant operators, whose 

physical and geometrical interpretations are clear and which are not easily tractable in 

conventional approaches. vVe succeeded in treating them in a consistent way for the first 

time. Our conjecture is that we obtained a new series of scaling operators in two- dimensional 

quantum gravity. vVe calculated only one point functions of manifestly generally coYariant 

operators. It is desirable to calculate their multi- point functions and compare them 11·ith 

those of the scaling operators in the matrix model to verify our conjecture. However it is 

not an easy task. It might be possible that there appears a new type of closed algebras in 

their correlators similar to Virasoro or vV algebras as is well known in the matrix model and 

in Liouville theory. 

Secondly, we have studied R2 gravity in the formalism of (2 +E)- dimensional quantum 

gravity. vVe presented a prescription similar to the one given in the ordinary Einstein gra1·ity 

in order to take into account the oversubtraction which occurs at one loop level also in this 

case. Dropping the h- field, the ghosts and the matters, the theory reduces to a free field 

theory, which enables a full order calculation of the string susceptibility in the E _, 0 limit. 

The result is consistent with that of ref [18]. In addition, we have seen that the scaling 

dimensions of manifestly generally covariant operators in this theory are the canonical ones 

in the m2 
_, 0 limit, which supports our conjecture mentioned above. Through this study, 

we shed light on the oversubtraction problem of the conformal mode dynamics in (2 +E)­

dimensional quantum gra,·ity and showed its usefulness as a regularization scheme of tll·o­

dimensional quantum gravity. 

As for an original motivation to studying (2+E)-dimensional quantum gravity, we should 

investigate further the theory developed in ref. [6]. In the second part of this paper, we have 

studied two- loop renormalization of the theory to check the consistency of E expansion of 

quantum gravity. \\'e concentrated on the ·part proportional to the number of matter fields 

and imposed Z2 symmetry on the system. \Ve examined how the nonlocal term as well as 
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the infrared di1·ergence mixed with the ultraYiolet diwrgence cancels among the diagram. 

We succeeded in dealing with the infrared diYergence in a consistent way and showed that 

the theory is multiplicati1·ely renomalizable at least to this extent. It has bet'n shown that 

the conformal in1·ariance is restored at the ultra1·iolet fixed point when '"e choose the finite 

renormalization properly. This ensures the existence of the ultraYiolet fixed point 11·hich 

possesses general co,·ariance up to two- loop leYel. In this way, we haw shown that the them·~· 

can be constructed at t11·o- loop lew! to this extent. \\'e can say that 1\'l' haw established 

the systematic method of two-loop calculation through this work and giwn a prototype of 

two- loop calculation. 

In order to establish (2 +E)- dimensional quantum gra,·ity, we han' to perform full ralctr­

lation of two- loop renormalization. \Ve examine whether the theory can satisfy the require­

ment from the general co1·ariance and higer order corrections can be e\·aluated systemat ically. 

In particular, the renonnalization of operators such as the cosmological term is highly non­

tri,·ial. If it is possible, '"e hope that we can eventually calculate physical quantities such as 

critical exponents and compare the results with the ones which may be obtained in numer­

ical simulations of three or four dimensions. At last it might be possible that we idcntif~­

an order parameter in (2 +E)- dimensional quantum gravity, which prm·ides us with a ne11· 

and deeper understanding of quantum gra,·ity. \Ve will continue calculations of the two- loop 

renormalization further. 
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Appendix A 

In this appendix, we present explanations of some concepts essential in the formalism of 

(2+<)-dimensional quantum gravity. First, we explain in detail the background field method, 

which we utilize to compute the effective action [31]. The generating functional for the 

connected Green's functions in the field theory is 

e-W[J) = j Dcpexp(-S- J · cp) (--\ .. 1) 

where S is the action and J · 'P = J dDxJ(:r)cp(x). <p denotes a collection of fields in the 

theory. The effective action is obtained by the Legendre transform 

r[< 'P >] = W[J]- J < 'P >, 

where< cp(x) >= ~- Therefore the effective action is 

e-rf<'P>I = jmcpexp( -S[< <p > +brp] + br[< 9 >]. 6cp) 
6<cp> 

(.-\ .. 2) 

(.-U) 

where O<p = <p- < <p > since J = - .;~>. The effective action can be expanded in terms of 

n. 

(.-\ .. -!) 

Hence we can compute the effective action by expanding the action S around the background 

< 'P > and dropping the linear terms in bcp. Namely the effective action is the sum of the 

one particle irreducible diagrams with respect to O<p . 

In this paper, we parameterize the metric as follows. 

(.\.5) 

where ¢ is the conformal mode of the metr ic, g"" satisfies det(g,") = 1 and hence h
1
,
1
, = 0. 

Since h1'" is dimensionless, h1w and fJ1w are equally valid fields to functionally integrate. \\"c 

expand the fields around the backgrounds as ¢ = J, + 6¢ and h
1
'" = it""+ bh.pv · Howe\·cr 

it is more convenient to expand i'l,v = f;,,p( e"" )Pv where 6hPP = 0 and the tensor indices arc 

raised and lowered by the background metric flpv· 'Ne utilize this parametrization in this 

paper and compute the one particle irreducible diagrams with respect to bh,w. Although 

fJ,v = (ei')pv classically, the wave function renormalization is im·oh·ecl at quantum le,·el in 

general since 6hpv and bhpv arc related nonlinearly. However physical consequences are not 
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altered by this simplification. We call O<p;, 61/; and bh~" as quantum fields and b in front of 

them will be dropped throughout this paper. 

Next, we give an interpretation of the meanings of renormalization group and renor­

malization point (renormalization scale) in (2 +E)-dimensional quantum gravity intensiYe!y. 

Special care should be taken of it because the spacetime itself fluctuates in quantum gra,·ity. 

Let us consider the Einstein act ion in D = 2 + E dimensions: 

(.-\ .6 ) 

where Go is the gravitational coupling constant . vVe parameterize the metric g," as in (.-\.5). 

A dimensionless coupling constant G is further introduced together with the renonnalization 

group scale J.l through 1/Go = J.L'/G. In this parametrization the action (A.6) becomes 

(A. I ) 

where R is the scalar curvature made out of ?J~v· We note the similarity of this action to the 

nonlinear sigma model: 

J d0xfe-i08~ii · a~n (:\.8) 

Since R involves two deri,·atives , it is analogous to the kinetic term of the nonlinear sigma 

model. w is the coupling constant for ii field and G is that for h,v field. The physical length 

scale is set by the line element ds 2 = e-0 dx,dxP If we scale the length as ds 2 _, >. 2ds 2 , 

the coupling constant changes as 1/w _, >.'jw and 1/G _, >.'jG respectively. In this sense 

the coupling constant grows canonically at short distance in both theories. Howe,·er we can 

choose the renormalization scale J.t such that J.LA = 1 and consider the running cou piing 

constants. If the running coupling constants possess the short distance fixed points, 11·e can 

control the theory well. The crucial point in quantum gravity is that the zero mode of 9 

field sets the scale of the metric and hence the scale of the length. In fact the zero mode 

is determined by the classical solut ion of the theory. Since the definite combination l''e-1° 

appears in the action, it is most advantageous to choose the renormaliza.tion scale J.l to 

compensate the scale factor of the metric (or constant mode of¢). It is analogous to choose 

the renormalization scale to match the momentum scale of the relenlllt scattering in the 

conventional field theory problem. In this way the renorma.lization scale of the dimension less 

gravitational coupling constant G(p.) is rela:ted to the scale factor of t he metric. In particular, 

large renonnalization scale is re!eYant at short distances. \Ve need to consider all possible 

values of the constant mode of¢ for the whole theory since we are integrating o,·er it . It 
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follows that we consider the whole renormalization group trajectory as the whole quantum 

theory of gravitation. Such an idea. is consistent with the independence of the theory from 

the scale factor of a. particular metric . Furthermore, considering that the scale factor of the 

metric expand with time and can be identified with time itself, it may be possible to say that 

the renormaliza.tion scale is identified with time and the renormalization group e\·o!ution is 

hence naturally related to the time e\·o!ution in quantum gra.,·ity 
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Appendix B 

In this appendix, we check that the result is not affected by the simplification we have 

made concerning the background field dependence in section 3.2. vVe expand the background 

field around the flat metric as 

Then the action and the operator considered are written as 

J dDxy'ge-H-f+n)log(I+f>i>) 

·{R + o27/J- f"ppov 1/J + Ipv(o"o"'lj;- r",wo,~ l/J) }", 

respectively, where H , Gpv and Ipv are O(h) quant ities defined through 

y'g 1 +H 

y'ggpv D1w + Gpv 

gP" D1w + fpv· 

(B.9) 

(B.10) 

(B.ll) 

(B.12) 

(B.13) 

(B.1-l) 

We have set H = 0, Gpv = 0, Ipv = 0 and f'-1pv = 0 at the beginning of our calculation. 

In order to justify this simplification, we have to check that there is no extra ~ di,·ergence 

coming from the terms with the above O(h) coefficients. 

For each use of G1wOpV' Ov1/J in the action, we have to use o2 '1j; in the operator in order to 

keep O(h"). The diagrams we have to consider are listed in Fig.17, where the clot represents 

a derivative. The first one, for example, gives 

(B.l5) 

In order to have a logarithmic divergence, we have to factor out k2 from the integrand, which 

is not possible due to the fact that (p + !.: )2 in the numerator coming from the ()2 ¢ in the 

operator cancels the propagator (p),
1
,. This occurs for each of the diagrams in Fig. 17 and 

one can also check that the above situatio1: is not altered even if one takes into account the 

terms f'~pov 1/J, IpvOpov1/J and Ipvf'\wo,~'lj; in the operator and the fr,.RH·¢2 term in the action. 
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Appendix C 

In this appendix, we explain how to evaluate the expectation values appearing in eq. 

(3.9), namely, 

J l D r:;( -"-(-Q+2Jlog(I+'-I'>I)R.? c xy g e , ' ' -

+2(D - 1) J clDxy'g(e-~i-f+2+filog(I+tv i(J2 1}.,) R 

+(D -1)2 J ctDxy'g(e-71-.;'-+2+~)log(l+~vl(fJ27f;)2) . (C.1) 

The diagrams which appear in calculat ing the expectation value in each term can be drawn 

generally as ( a) ,(b) and (c) respectively in F ig. 18, where the clot represents a derivative 

and the cross represents a mass insertion. Note that the expectation value in the first term 

is just the one we encounter in the case off yi91- 6 '<I> 6 ,cl2x type operators. Since each plain 

loop contributes a factor 

2Go J cl
0

p 1 2Go ( p' ) GMt' 
- -E- (27r)D pi= --E- - 27rE = Jr€2 ' (C.2) 

we can calculate, for example, the diagram (a) by introducing a zero-dimensional field theory 

whose action is S(X) = ~ ;;~, X 2, and considering the expectation value of 

(C.3) 

Thus we have 

( -"-(-Q+2)log(I+'-~'>)) 1 100 lv -±(-Q+2)log(I+'-X) _l,:..C,.x' e { 2 <~ = _ c ./\ e ( 2 4 e 2 v 0 w z -00 , 
(C.-!) 

where 

1oo , _l .,, x' ../2Go~'' 
Z = cl).: e 'co;;< = ---. 

-oo E 
(C.5) 

Introducing a new variable Y = 1<X, t he integral becomes 

E 4100 
• -l [4(-'f+2) log( I +Y)+~l·'] ____ c)) ·e , . uow 

../2Go~t'E -oo ' 
(C.6) 

whose asymptotic behavior for E -> 0 can be readily evaluated by means of the saddle-point 

method. The saddle point Y = p is given through 

cl [ · ( D . ) / 87rE /2] elY -l - 2 +2 log(1+1)+Gw' 1 l'=p= O, (C./) 
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namely, 

( 
D ) 1 16u 4 --+2 --+--p=O, 
2 1 + p Gop' (C.S) 

from which we obtain 

1 { r:-c;;;} p=2 -1±y1--;;- . (C .9) 

Thus we obtain the asymptotic beha,·ior of the expectation value up to a factor of 0( 1) as 

[ 
4 s~ 2] ~ exp --log(1 + p)- --p . 
€ Gw' 

(C.10) 

We have to choose'+' for the double sign in the expression (C.9) so that we may reproduce 

the correct perturbative expansion. Let us now turn to the second term in eq. (C .1 ). The 

expectation value in this term can be evaluated with the diagram (b) as, 

Since the expression in the curly bracket gives 

4 ( D €) 1 E -'(-~+2+<)iog{l+~:<) -- --+2+- ----e' . • ·< 
E 2 4 1 +~X 4 

(C.ll) 

- (-E.+ 2 + .:.) e-H -q.+Hn Iog(I+fx) 
2 4 , (C.12) 

the result for the asymptotic behavior is the same as (C.10) up to a factor of 0(1). As for 

the third term, there are two diagrams we have to consider, as is shown in Fig. {18-c). The 

left one can be evaluated as 

whose asymptotic behavior is also the same as (C.lO) up to a factor of 0(1) , whi le the right 

one can be evaluated as 
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which has the asymptotic behavior of (C.10) multiplied by an 0(<) factor. Altogether, we 

get 

(C.13) 

which means that the relevant ~ divergence in calculating the scaling dimension comes from 

the e-H-q.+2)log(l+fw) in each term of (C. 1). 
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Appendix D 

In this appendix, we calculate the one-loop counter terms for the most general renor­

malizable action with a scalar field \ and c species of conformal matter, 

(0.1-1} 

Adopting the background field method, we replace X with \+.\ , where \is the background 

field , and parameterize g~v as in (2.1 ). We expand the action up to the second order of 

x, ¢and h, and drop the first order terms following the prescription of the background fie ld 

method. We can choose the gauge fixing term so that the mixing terms between h and the 

other fields may be cancelled, 

Sgr = p! j dDrj§~L(x) ( ~ vh"~ +~a~¢- ~g; a,,x- f(x)a,,L\) 
2

. (0.15) 

Note that the function f can be taken arbitrary. The ghost action can be determined from 

the gauge fixing term as 

S 'fdD /,.{i-; rJ<nv "'R- v i-; -~£'(5;.), - v 
ghost = ,, xy g v v'l v 7),. + ,, ~ TJv- v ~7) L( :~) Vv \1/ 

- (L"(~)L(x)- L'(d - J( --l) ~~·a -a -, "}. (0.16} 
L(;\')2 X t ,,.\ v\7 

The kinetic terms of.\. hand¢, including those from the gauge fixing term, thus read 

' j do r;{1 (I'(") L'(x)
2

) -~""' , 1L(")r, 1,. r,p1v J.l xyg 2 '\ + L(x) g v~xvvx+4 xvplvv l 1, 

DL'(")"~V<I "'"' ED_''""'"'"'} +2 X 9 v1,XVv.P- Sg v1,<Pvv'l' . (0.17) 

Note that the kinematical pole which appears in the case of ordinary gravity does not show 

up here clue to the<!>-\ coupling. \Ve introduce the new quantum fields X , <I> and rl1'v through 

FU:Jx- ~FUdL'(x)I(~)<I> 
J(y)<I> 

where F(x) and I(x) are defined through 

1 

F(\)2 
1 

I( \)2 

K( \') + L'U.:Y 
L(xl 

~ (EDL(\) + D2 F(;\')2L'(\f). 
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(0.18) 

(0.19) 

After this field redefinition, the kinetic term reduces to the standard form 

(0.20) 

Taking account of the other terms coming from S, Sg.f and Sghost• and calculating the one­

loop counter terms through the 't Hoeft-Veltman formalism [19] , one obtains the final result 

for the action with the counter terms as 

S+Sc.,. J.L' j d
0
xfo [~ { K(.\)-

2
:EP(x)} g~"a~xavx 

+ {L(x) __ 1_24- c} R 
27rE 12 

+ { M(x)- 2:E GNI(x)ICd + .\1'(.\) L'~x))}] 
+(matters), (0.21} 

where P(y) is given by 

P = -2L'-2 L" + 2£ -t L" + 2F2 L'- 1 L"(K' + 2L -t L' L" - L - 2 L'3 ) 

-~F4 (K' + 2L- 1 L'L"- L-2 L'3/ 
2 

+3L -t K - 2L -t p-2 + ~ L -2 L'2 - J 2 . 
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(0.22} 
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Fig. 1 

The wm·y line, the solid line and the clashed line represent the propagators of"''"' matter 

and ghost respectiwly. The thick line represents the 9 propagator or the external o line. 

The clot denotes a clerinltiw. E facton> in the wrticies and + poles in the o propagator a1-e 

written clown explicitly. 
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The diagrams with h1,., line IH' haw to cott.,idn at t\\·o-loop ,,.,-,.j_ Till' solid line. till' dash 

line and th~ wa1·y lim· r~prescnt the propitgil<ors or''"' <1> -- fit'lcl, the _y fil'ld and thl' fl-fil'id 

respectiwly. (a) ancl (b) corr~spond to (<!>1 ). while (c) and (d) corr~spond to ( .\"1). 

a b 

c d 

e f 

Fig. 3 Diagrams for a,,X;fJJij{i 

Th~ wavy line represents tl1c propagator of H''"' ancl the solicl line rl'prl'Sl'nts the propagator 

of X; or the external X; line. The dot cle!wts a cleri,·atiw and thl' symbol in the wrtex 

represents the counter term insertion. 
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Fig. 6 Diagrams of Group 3 

The wayy line represents the propagator of H,,. or till' <'XIcmal i,,," line. and the solid line 

represents the propagator of X;. The clot rl<·nors a derintt i1·c and the symbol in the 1·ertex 

represents the counter term insertion. 

4-1 4-2 

4-3 4-4 

4-5 

Fig. 7 Diagrams of Group 4 

The waYy line represents the propagator of H,v or the extemal h,,., line, and the solid line 

represents the propagator of X;. The clot clenots a clerinlti,·e and the symbol in the ,·ertex 

represents the counter term insertion . 



5-1 5-2 

Fig. 8 Diagrams of Group 5 

The wavy line represents t.he propagator of H~" or the external h~" line, and the solid line 

represents the propagator of X;. The dot denots a derivative and the symbol in the vertex 

represents the counter term insertion . 
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6-1 6-2 

Fig. 9 Diagrams of Group 6 

The wavy line represents the propagator of HI'" or the external it
1
w line. and the solid line 

represents the propagator of X;. The clot dcnots a cleri,·ati,·c and thC' symbol in the wrtex 

represents the counter term insertion. 

.~ 

7-1 7-2 

Fig. 10 Diagrams of Group 7 

The wavy line represents the propagator of H1," or the external h~" line, and the solid line 

represents the propagator of X;. The clot denots a derivative and the symbol in the vertex 

represents the counter term insertion. 

8-1 8-2 

Fig. 11 Diagrams of Group 8 

The wavy line represents the propagator of I-1, ,. or the c·xrernal it,,. line. and the solid line 

represents the propagator of X;. The clot d<'I!Ot' a rlt·riqu i1·1· and the s,,·tnbol in the vertex 

represents the counter term insertion. 



9-1 9-2 

Fig. 12 Diagrams of Group 9 

The wavy line represents the propagator of H"" or the external h"" line , and the solid line 

represents the propagator of X;. The clot clenots a derivative and the symbol in the ,·er tex 

represents the counter term insertion. 

10-1 10-2 

Fig. 13 Diagrams of Group 10 

The wavy line represents the propagator of H1w or the external /1"" line, and the solid line 

represents the propagator of X; . The clot clenots a ciPrivat i,·e and the symbol in the vertex 

represents the counter term insertion. 

. -

11-1 11-2 

Fig. 14 Diagrams of Group 11 

The wavy line represents the propagator of H"" or the external h"" line, and the solid line 

represents the propagator of X;. The dot clenots a derivative and the symbol in the vertex 

represents the counter term insertion. 

12-1 12-2 

Fig. 15 Diagrams of Group 12 

The wavy line represents the propagator of H,w or the external l1
1
'" line. and the solid line 

represents the propagator of X;. The clot clenots a cleri,·at i,·e and the symbol in the ,·ertex 

represents the counter term insertion. 



13-1 13-2 

Fig. 16 Diagrams of Group 13 

The wavy line represents the propagator of H~v or the external h"" line. and the solid line 

represents the propagator of X;. The clot. clenots a derivative and the symbol in the vertex 

represents the counter term insertion. 

Fig. 17 

The cliagnms \\·e haw to evaluate in order to justify the simplification G,'" = 0. The clot 

represents a derivatiw and the arc connecting two clots implies a contract ion. 

863 ~ 
R. l?. R. R. 

R. 
(a) (b) (c) 

Fig. 18 

The diagrams which appear in calculating the expectation nd11C of each terl!l in (C.l ). {a).{ b) 

and (c) correspond to the first. second and third terl!ls respecti,·eh·. The clot represents a 

cleri,·ative and the arc connecting t.wo clots in1plics a CO!! traction, as in Figure 1. The cross 

represent.s a mass insertion using the ~J?,.-2 tem1 in the action. 




