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Abstract 

There are two methods currently used as a lattice regularization of quantum gravity, 

namely dynamical triangulation and Regge calculus. Although dynamical triangu­

lation can be naturally expected to be a proper regularization of quantum gravity, 

R.egge calculus does not have any grounds of restoring the general covariance in the 

continuum limit . We study fractal structure in two-dimensional quantum Regge 

calculus and show that the expected loop~length distribution is reproduced for the 

type of loops that is attached to baby universes, when the scale~invariant measure is 

adopted. This suggests the possibility that Regge calcu lus might restore the general 

covariance in the continuum limit if the measure of the link~lcngth integration is 

properly chosen. 

We next present our results of numerical simulation of four~dimensional quantum 

gravity based on dynamical triangu lation. Although it has been known for some time 

that there is a second~order phase transition , it is still unclear whether we can take a 

sensible continuum limit at the critical point. We measure vertex~ord er distribution 

and show that, in the strong~coupling phase, there is a vertex with very large order. 

We then put in the action an additional term which suppresses the vertex with 

very large order , and observe that the system is always in the branched~polymer 

phase. We also present a clue that the branched~polymer structure is related to the 

conformal~mode instability. 
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Chapter 1 

Introduction 

1.1 Motivations of quantum gravity 

Although gravity has been known to people since Newton 's theory, it is the only force 

that is not understood within quantum theory. Actually, grav itationa l interaction 

between elementary part icles is negligibly sma ll compared with the other forces 

unless we look at phenomena with energy higher than the Planck scale (1019GeV ). 

It is because this energy scale is too far above the energy scale within the reach of 

the present experiments that the Sta ndard Model works ve ry well without gravity. 

In fact the Planck scale is even much higher than t he energy scale that human beings 

can achieve in fu t ure through collider experim ents. One might , therefore, ask why 

we should study quantum grav ity, for we will never see it . 

On t he other ha nd , we a ll kn ow that the Standa rd Model contai ns a lot of free 

parameters such as particle masses and coupling constants that have to be put in 

by hand. We cannot a lso answer why the gauge group is SU(3) x SU(2) x U( l ) or 

why the space- time dimension is four. It is natura l for us to hope that the key to all 

these mysteries li es in higher energy scale. Recent data of precise measurement of 

the gauge coupling constants st rongly suggest t hat the t hree forces a re unifi ed into 
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a Grand Unified Theory at about 1016GeV. We should say that this energy scale is 

quite near the Planck scale, which gives us a hope that all the four forces including 

gravity are unified around this energy scale. From this point of view, all the details 

of the Standard Model are the experimental facts which should be explained as the 

low-energy effective theory of the fundamental theory, which inevitably includes the 

quantum effects of gravity. 

The special aspect of gravity which makes it different from the other forces is that 

it is described by the dynamics of the space- time as is discovered by Einstein. It is 

nothing but this fact that makes the quantum theory of gravitation not only exciting 

but also difficult. Planck scale physics is not a dream of high energy physicists , but 

a reality which must certainly have played a crucial role at the very beginning of the 

universe. At the same time, there are a lot of conceptual problems concerning the 

physical interpretation. First of all , one may worry about probabilistic interpretation 

of quantum gravity, when time itself is included in the dynamical variables. It is also 

problematic whether we can interpret the wave function of the universe by separating 

the whole thing into the observer and the system to be observed. Furthermore, we 

may have to give up the description of the theory in terms of time evolution and 

be contented with reproducing our conventional picture in the classical limit . We 

think, therefore, that we should try to solve the dynamics of quantum gravity first 

instead of being too specu lative about these conceptual problems. 

There are two formulations with which we can treat quantum grav ity. One is 

the string theory and the other is an ordinary field theory. Although st ring theory 

is attractive, since it is the only cand idate for "Theory of Everything" at present , 

it turned out that the non- perturbative formulation is necessary in order to make 

any physical prediction. On the other hand , exploring the ordinary field- theoretical 

approach to quantum gravity is important for its own sake, since it describes the 

fluctuation of the space- time geometry, which is necessary in studying black- hole 

physics or quantum cosmology at early universe, even if st ring theory is successfu ll y 

solved. The field- theoretical approach will also give us information on string theory. 

If it turns out t hat higher- dimensional quantum gravity can be formulated , then it 
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provides us with a constraint on string theory, since it has to be reproduced as an 

effective theory of string theory in the point- particle limit . If the answer turns out 

to be negative, then we should be keener on string theory, not only because it is the 

only consistent theory that can describe quantum gravity but also because it is the 

only consistent theory of extended objects. 

Apart from these motivations of quantum gravity, we would like to emphasize 

that quantum gravity is related to various branches of physics such as theories of 

membrane, non- perturbative effects of gauge theories, and so on. When we look 

back on the histo ry of particle physics , we find that crucial steps in understanding 

the Nature have always been brought about through a new insight into the dynamics 

of field theories. For example, th e discovery of spontaneous symmetry breakdown 

a nd the Higgs mechanism were essential to the establishment of Weinberg- Salam 

theory. A natural understanding of quark confinement based on lattice gauge theory 

has convinced people that QCD certainly describes the strong interaction. Now, as 

the Standard Model is being confirmed with higher and higher accuracy by the 

precise experiments at LEP, we may say that our understanding of field theory at 

the perturbative level is quite sufficient. On the other hand , we should say that there 

remains much to be clarified concerning the non- perturbative effects. Studying the 

dynamics of quantum gravity is important also from this point of view, and we hope 

that its progress will greatly help us understand the non- perturbative features of 

field theory. 

There has been considerable progress in two dimensional quantum gravity [1) 

based on a continuum formu lation - Liouville theory [2) - and a kind of lattice 

formulation - dynamical triangulation [3). Both have been exact ly solved and their 

equivalence has been established [4). However , the theories which have been solved 

so far are still kinds of toy model. In the context of string theory, we have to break 

the so- called c = 1 barrier in order to study the cri tical string. In the context of 

ordinary fi eld- theoretical approach to quantum gravity, we have to study the system 

in higher dimensions. Although it goes without saying that it is desirable to develop 

a n a nalytic approach to these difficult problems, numerical approach seems to be 
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indispensable. We can quote the numerical work done by Creutz [5] in the early 

80 's. It was shown numerically that the confinement, which was proved by Wilson 

[6] in the strong-coupling limi t, survives in the continuum limit for non-Abelian 

gauge theories in four dimensions. Unfortunately, in the case of quantum gravity, 

we do not know a good observable such as Wilson loop in gauge theory. We may 

expect, however, that we can obtain qualitative information on the system through 

numerical simulations, which we hope will eventually enable us to study interesting 

features of quantum gravity in the continuum limit. 

1.2 Dynamical triangulation v.s . R egge calculus 

Let us explain what kind of system we work on th roughout this thesis. We consider 

aD- dimensional manifold with fixed topology, on which we introduce the metric g,." 

with Euclidean signature and the matter field cp. The partition function is written 

as 

z = j DgDcp e-(Sc[g[+SM[9.'1'll , 
vol(Diff) 

where t he actions are given by 

Sc j d0 xvg(A - bR) 
j dDxJ9(g""fJ,. cp fJ" cp + m2 cp2) , 

and the measure is defined through the norm 

J d0 xvgg""l•P!jg1,>.09vp 

j d0 xJ9(6cp )2 

(11) 

(1.2) 

(13) 

(1.4) 

(1.5) 

Since this theory possesses the difl"eomorphism invariance, we have to divide the 

measure by vol(Diff) which represents the gauge volum e corresponding to the dif­

feomorp hism invariance. 

Let us consider the two- dimensional case. Note that in two dimensions, t he 

Einstein term gives the Euler number x, 

(16) 
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so that the action for t he gravity sector includes on ly the cosmological term. Let us 

take the conformal gauge [2], 

(1.7) 

where g~" is some given background met ric parametrized with the moduli parameter 

T. One can then consider the dynamics of ¢> on the curved space specified with 

the background metric g~" · This is the Liouville theory which has been studied 

analytically with great success in the late 80's [2]. The strategy is to requi re that 

the theory of¢> on the curved space should be independent of the background met ric 

g~"' which ensures the general covariance of the original theory. 

Let us next consider a kind of lattice regularizat ion in quantum gravity. It is 

important for us to see if we can reproduce t he results of t he continuum theory 

by first regularizing the theory in a rigorous way and then taking the continuum 

limit. Such a const ructive formalism is indispensable not only in und erstanding the 

universality of the theories , but also in investigating the dynamics of the theo ri es 

through numerical simu lation. In t he case of ordinary field theory, we use a regular 

latt ice and put the matter fi eld on each site. The gauge fi eld can be put on each 

link so t hat the gauge in variance is man ifestly realized on t he lattice. By doing t his, 

t he flu ctuations of the fi elds are cutoff by the lattice spacing. Although the rota­

tional and tra nslational invariances are broken to the disc rete ones, it is numerically 

confirmed that they are restored in the continuum limit . 

Let us consider this kind of regularization in quantum grav ity. Since here the 

space- time itself is the dynamical object, we have to introdu ce a scale within which 

t he fluctuations of the manifold are forbidden. Except for this restriction , the path 

integral should be performed over a ll the man ifolds. A formu lat ion t hat realizes t hi s 

id ea most naturally is the dynamical t riangu lation , in which the path integral over 

t he met ric is replaced with summation over a ll the piecewise- fl at ma nifolds made 

up with equi lateral D- simplices. It is ce rtainly not tri via l if t his philosophy really 

gives the general covariance in the continuum limit. ln two dimensions, however, 

dynamical triangulation has been treated analytically [3] and it has been shown 
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that one can take a sensible continuum limit, which gives the same results as the 

continuum approach [4]. This encourages us to use dynamical triangulation as a 

regularization of quantum gravity also in higher dimensions. We may naturally 

expect that if one can obtain a sensible continuum limit , the theory possesses the 

general covariance. Although analytical treatment in the case of higher dimensions 

may be difficult, there is no potential obstacle in numerical approach through Monte 

Carlo simulations. However, in contrast to ordinary statistical systems, we have to 

change the lattice structure dynamically, which makes it difficult for us to write an 

efficient code with vectorization etc .. 

There is another type of lattice regularization of quantum gravity which is called 

Regge calculus [9, 10]. In this formalism, the triangulation is fixed and the path 

integral over the metric is replaced with path integral over the link lengths with the 

constraint of triangle inequality. It has a practical advantage to dynamical triangu­

lation , since we can vectorize the code as in ordinary statistical systems. However, 

there are many problems in this formalism. First of all, it is not clear what kind 

of measure should be chosen for the link- length integral. Secondly we do not know 

how to introduce the cutoff in a natural way as in dynamical triangulation. Finally, 

this formalism does not have any grounds for the appearance of general covariance 

in the continuum limit . There is an argument that in Regge calculus the general 

covariance is trivial as well as in dynamical triangulation, since the description does 

not depend on any specific coordinate, and it is a completely geometrical object that 

is being dealt with. This is not correct, however. The general covariance in t his 

sense is nothing but the classical one, which even ordinary field theories on a curved 

space also possess. Therefore, it does not specify how the metric shou ld fluctuate in 

any sense. 

This thesis is organized as follows. In Chapter 2, we address the problem of 

general covariance in Regge calculus. Since we have analytic results from Liouville 

theory and/or dynamical triangulation in two d imensions, whether we can reproduce 

them also from Regge calculus serves as a test of the formalism. There has been 

two works done in this direction recently [12, 13], both of them reporting negative 
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results. We claim that the quantities they measured are not unambiguously defined 

in Regge calculus. We point out that the fractal structure studied in Ref. [15] in the 

continuum limit of dynamical triangulation is completely well-defined also in Regge 

calculus and that we can measure it through numerical simulation [14]. We perform 

a large size simulation of quantum Regge calculus and show that it reproduces 

the expected loop-length distribution for the type of loops that is attached to baby 

universes, when the scale-invariant measure is adopted. This suggests the possibility 

that Regge calculus might restore the general covariance in the continuum limit if 

the measure of the link- length integration is properly chosen. In Chapter 3, we 

consider t he problem of constructing quantum gravity in dimensions greater than 

two. We first review briefly the recent progress [28, 29] in the E-expansion approach 

to this problem, which suggests that quantum gravity can be constructed at least by 

E-expansion around two dimensions. We then review the basic observations in the 

numerical simulation based on dynamical triangu lation [33, 34, 35, 36, 37]. Although 

it is promising that we observe a second order phase transition in four d imensions, 

it is st ill unclear whether we can take a sensible continuum limit at the critical 

point. We then present our recent results in four dimensions [39] . We measure 

vertex- order distribution and show that, in the strong-coupling phase, there is a 

vertex with very large order. We then put in the action a n additional term which 

suppresses the vertex with very large order, and observe that the system is always 

in the branched- polymer phase. We also present a clue that the branched- polymer 

structure is related to the conformal- mode instability. Chapter 4 is devoted to the 

sum mary and d iscussion. 
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Chapter 2 

T wo-dimen sional quantum Regge 

calculus 

2. 1 Introduct ion 

The success in two-dimensiona l quantum gravity is based on a continuum formu­

lation - Liouville theory [2] - and a kind of lat ti ce formulation - dynamical 

t riangulation [3]. Both have been exactly solved a nd their eq ui valence has been 

established [4]. In the case of ordina ry quantum field theo ri es, continuum formu­

lations and lattice formulations have played complementary roles in understanding 

the universali ty in fi eld theory. The details of lattice formulations at t he lattice level 

are irrelevant to the long-range behavior of the theory, wh ich can be a lso described 

in terms of a continuum form ulation. A natural explanation of the universality has 

been given by the concepts of the renormalization group [7]. The eq ui valence of 

Liouville theory and dynamical triangulation in two-dimensional quantum gravity 

suggests that the universality exists also in quantum gravity. In fact, some kinds 

of universality a re known in dynamical triangulation; t he conti nuum limit is not af-
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fected by using squares instead of triangles as the building blocks or by prohibiting 

tadpoles or self-energies in the dual diagram , etc .. Although we still lack understand­

ing of the universality in quantum gravity in terms of the renormalization group, 

invention of such a framework (for some attempts, see [8]) might be especially useful 

in studying quantum gravity in three or four dimensions , where there is no analytic 

solution. 

To this end, it seems quite important for us to invest igate the universality phe­

nomena further in two-dimensional quantum gravity. For example, Regge calculus 

provides another type of lattice regularization of quantum gravity, although the ap­

pearance of the general covariance is quite nontrivial in such a formalism with fixed 

lattice st ructure. An interes ting question to ask here is whether two-dimensional 

Regge calculus fall s into the same universality class as dynamical triangulation and 

Liouvill e theory. The answer is also desired from a practical point of view, since 

Regge calculus might be useful for numerical si mulations of quantum gravity in 

higher dimensions. 

Since a nalytic treatment of Regge calculus seems difficult beyond a perturbative 

expansion around flat space-time [10], we investigate the above issue by numeri­

cal simulation. There have been several works in this direction. A few years ago, 

Gross and Hamber [11] reported that Regge calculus reproduced the st ring suscep­

tibility known in dynamical triangulation and in the continuum theory. Recently, 

Bock and Vink [12] have performed a more careful a nalysis and have claimed that 

Regge calculus fail s to reproduce the desired st ring susceptibility. It has been also 

reported [11 , 13] that the critical exponents of the Ising model on the dynamical 

Regge lattice agree quite well with the ones of the Ising model on the static lattice 

(Onsager 's values) a nd not with the ones of the Ising model on the dynamically 

triangulated la ttice. We think, however, that all t hese works are subject to some 

subtleties in Regge calculus concerning either the definition of st ring susceptibility 

or the introduct ion of matte r fields , as we explain later. 

In order to compare Regge calculus with the other approaches unambiguously, 

it is desirable to have a universal quantity which can be calculated directly from 
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the geometry of the surface. Indeed, such a quantity exists; it is the so-called 

loop-length distribution, which has been studied by Kawai, Kawamoto, Mogami 

and Watabiki [15]. They constructed a transfer-matrix formalism in dynamical 

triangulation. Using the formalism, they succeeded in obtaining the loop-length 

distribution in the continuum limit, which characterizes the fractal st ructure of 

the surface. The loop-length distribution can be defined unambiguously also in 

Regge calculus and it can be measured through numerical simulation. We, therefore , 

examine the loop-length distribution in a numerical simulation of Regge calculus 

and compare the result with that obtained in the continuum limit of dynamical 

triangulation. 

2.2 Definition of the system 

Let us first explain the system we consider in this chapter. In Regge calculus the 

dynamical variables are the link lengths on a fixed triangulation. Since it is essential 

for our purpose to have a spherical topology, we construct the fixed triangulation by 

dividing each of the twenty surfaces of an icosahedron into a triangular lattice. A 

tetrahedron or octahedron could be used as well , but we have chosen an icosahedron 

so that the artifact of the non-uniformity of coordination number may be the mini­

mum. The integration over the link lengths is performed taking either the uniform 

measure J I], dl; or the scale-invariant measure J I1; dl;/l;. The triangle inequality 

is imposed on every triangle. 

The total area is fixed to be equal to the number of triangles, so that the average 

area of a triangle in each configuration becomes unity. This can be realized in the 

simulation as follows. We first consider a system with the measure J I1; dl; l(- 1 and 

the action S = .\A, where A is the total area of the surface and .\ is a constant 

parameter. p = 1 corresponds to the uniform measure and p = 0 corresponds to the 

scale-invariant measure. The partition function is given by 

Z(.\) = J r;r dl; v-1 e-!.A 0( triangle inequalities), (2.1) 
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where 0( triangle inequalities) is the step function which gives one if all the triangle 

inequalities are satisfied and zero otherwise. Changing the variables of integration 

as l; ---> l;j .J>., one can extract the explicit .\-dependence of Z ( .\) as 

Z(.\) = ( V>.)"N"·· J r;r di; l(-
1 e-A 0( triangle inequalities), (2.2) 

where Nlink is the number of links. Inverse Laplace transform of eq. (2 .1 ) gives the 

distribution of the total area as 

(2.3) 

For the uniform measure (p = 1) , we control the total area by introducing a positive 

.\, while for the scale-invariant measure (p = 0), we set .\ = 0 and rescale the 

configuration whenever necessary during the simulation so that the total area may 

be kept within a range of moderate value. The configurations thus generated for 

either measure are each rescaled before measurements to have the fixed total area 

equal to the number of triangles. 

We have performed Monte Carlo simulations using the heat-bath algorithm with 

50,000 triangles for the uniform measure and with 12,500, 50,000 and 200,000 tri­

angles for the scale-invariant measure. The updating process in the program is 

vectorized since we can update one third of the links independently at the same 

time. 

2.3 Subtleties in Regge calculus 

Before proceeding, we would like to explain the subtleties in Regge calculus. The 

first point is the definition of string susceptibility. In dynamical triangulation , the 

string susceptibility ' "' can be defined through 

Z(N) = L c - S(T) ~ N'"' - 3e•N 
T ETN 
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where TN denotes the set of t ria ngulations with N triangles [16]. In Regge calculus , 

the partition function for a fixed triangulation with N triangles can be written as 

Z(A,N) = j dJ.L({l;}) e - S({I;}) o(A({l;} )- A) 0(triangle inequalities), (2.5) 

where dJ.L( {I;}) denotes the measure for the link-length integration, and A( {I;}) 

denotes t he total a rea of the surface, which is fi xed to a given value A. In refs . 

[11, 12], they defined the string susceptibility in Regge calcu lus through 

(A--> oo), (2.6) 

for a fixed N, which is taken to be sufficiently la rge. This definition of s tring 

susceptibility, however , might be too naive. When we consider a scaling relation in 

field theory, we have to keep the cutoff of the theory constant . In Regge calculus, 

we have no definite quantity that corresponds to the cutoff in ordinary field theory, 

and therefore the scaling argument is rather sub t le. One na tura l thing to do is to 

consider the average a rea of a triangle in each configuration as the cutoff in ordi nary 

field theory. In order to keep the cutoff constant, say at unity, we should fi x the 

total area A to be equal to the number of triangles N. The stri ng susceptibili ty, 

t hen, can be defined through 

(2 .7) 

Unfortunately, the stri ng suscept ibility thus defin ed seems to be difficult to ext ract 

from numerical sim ulat ion, sin ce we have to probe the difference in free energy for 

different numbers of triangles. 

The second point is the introduction of matter fields. lf we assign a single spin 

to each triangle , each spi n shou ld be regarded as a representative ("block spi n") 

of the dynamical degrees of freedom within the t ri a ngle. T herefore, we may have 

to, for example, make the Ising coupling constant dependent on t he size of the 

t riangle, which takes a different value from point to poi nt in Regge calcu lus. Thus 

the negative results obtained in ref. [11 , 13] might be due to t he problem of the 

action for the matter fields. 
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In contrast to the above points, the loop-length di stribution can be defi ned un­

ambiguously in Regge calculus and we hope this provides us with a defin ite criterion 

whether Regge calculus se rves as a proper reg ula ri zation of quantum gravity. 

2.4 Loop- length distribution 

Let us explain the loop-length distribu t ion, which plays a central role in our study. 

The set of points which are at a distanceD from a given point is composed of a num­

ber of disconnected closed loops. The distribution p( L, D) of the loop length L at 

the distanceD has been obtained in t he continuum limit of dyna mical triangulation 

as [15] 

p(L,D) 

f(x) 

(2 .8) 

(2.9) 

where x = L / D 2 The fact t hat such a quantity does possess a sensible continuum 

li mit is not only quite non-trivia l itself but also of great signifi cance since it provides 

us with a geometrical picture of the continuum limi t of quantu m gravity. It implies 

that in the continuum limit of qua ntum gravity, the space-t ime becomes fractal in 

the sense that sections of t he surface at different distances from a given point look 

exactly the same after a proper rescaling of loop lengths. Let us here consider the 

dist ribution of loops with length L at tached to a uni verse with area A'. This can 

be written in terms of the functions given in ref. [15] as, 

, . ..Lj dT'N(Lo , L; D;T')e'(A- A')..LjdT"l.F(L T")er"A' 
p(L A·D·A)= lim 2" 2K> L ' 

, , 

1 

Lo - o 2:iJdr"-/;;F(Lo,r")eT"A , 

(2.10) 

where A is the total a rea of the surface. When we take t he t hermodynamic limit 

A --> oo, we can fi x either A' or (A- A') to a finit e value B. The former corresponds 

to the type of loop attached to a baby universe, while the latter co rresponds to the 

type of loop attached to the mother universe. We refer to the two types of loops 

si mply as "baby" loops a nd "mother" loops, respectively (fig. l ). 
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baby loop 

L 

mother loop 

Figure 1: The loops appearing at the distance D from a given point. There 

are two types of loops : the "mother" loop which is attached to the mother 

universe, and "baby" loops which are attached to baby universes. 

Note that baby loops are not necessarily smaller than mother loops. The distribution 

for baby loops can be calculated as follows, 

where x = L/ D 2 and y = .,fii / D 2 Integrating over B, one gets , 

where 

looo Pb(L , B;D)dB 

1 
D2h(x) , 

h(x) = 7~ (x- ~ + ~x- f ) e '. 

The distribution for mother loops can be calculated similarly. 

Pm(L,B;D) 
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(2.13) 

(2.14) 

(2.15) 

Integrating over B, one gets, 

Pm(L, D) = f" Pm(L, B; D)dB (2.17) 

-
1
-.!!_ limexp{ -.fi£ (3tanh_2 .,j6:jiD -2)} (2.18) ..j;L BD r~o 2 2 

1 
D2 fm(x), (2.19) 

where 
2 I 

fm (x) = .,fix'ie- z (2.20) 

The total distribution reproduces the result of ref. [15] 1 , i.e. p(L, D)= Pb(L, D)+ 

Pm(L, D). Note that the integration of the mother-loop distribution over L gives 

roo 2 roo I 

Jo Pm(L,D)dL =fir Jo x'ie- 'dx = 1, (2.21) 

which means that one finds exactly one mother loop at a fixed D in each configura­

tion. 

In Regge calculus we define the loop-length distribution in the following way. 

Representing each triangle by the center of its inscribed circle, we define the length 

of a dual-link by the geodesic distance of the two representative points at the ends 

of the dual-link. Then we define the distance between two given triangles by the 

length of the shortest dual-link path connecting the two triangles (fig. 2). 

1 The fact that the lo op-length distribution is composed of two such contributions can also be 

seen from eq.{24) of ref. [15]. One can get the singulari ty 1 3 / 2 in the numerator either from the 

proper-time evolution kernel N(Lo , L; D) or from the disk amplitude F(L). The former contribu­

tion corresponds to baby loops, while the latter to mother loops /17]. 
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Figure 2: An example of a dual-link path connecting the two shaded triangles. 

The distance between the two triangles is defined by the length of the shortest 

dual-link path. 

The boundary between triangles at a distance less than or equal to D from a given 

triangle and those at a distance greater than D from the same triangle is composed 

of disconnected closed loops, whose lengths are defined by summing up the lengths of 

the links forming each loop. This gives the definition of the loop-length distribution 

in Regge calculus. Si nce we are dealing with a finite number of triangles, we have 

a maximum D at which all the triangles are included. We measure the loop-length 

distribution at D's which are less than half of the maximum D. Also the finiteness 

of the system makes the classification of loops into baby loops and mother loops 

somewhat ambiguous. We identify the mother loop with the loop attached to the 

largest universe at a fixed D. The measurement has been made every 200 sweeps, 

and at each measurement we choose ten triangles randomly as the start ing point of 

the distanceD in order to increase the stat istics. The number of sweeps requ ired for 

the thermalization of the data is large for the scale-invariant measure; e.g. 500,000 

sweeps in the case of 12,500 triangles. 

2.5 Results of the simulation 

Let us show the results of our simulation. The data for the uniform measure (J TI; dl;) 

with 50,000 triangles is shown in Fig. 3. 
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0.01 

Figure 3: The loop-length distribution for the uniform measure (j IT, dl1) with 

50,000 triangles. The horizontal axis is the scaling variable x = L/ D'. 

The loop-length distribution is plotted against the scaling variable x = L/ D2 for 

D = 20, 40, 60, 80, 100, 120, where L is the length of the loop and D is the distance 

from a point on the su rface. The result does not show a ny scaling behavior in terms 

of x for different values of D. The distribution for each D is sp lit into two parts: 

the left one which corresponds to baby loops and the right one which corresponds 

to mother loops. One should note that it is a log-log plot, a nd so we see that the 

baby loops are extremely s uppressed. Indeed, for most cases we find only one loop, 

which is the mother loop, for each D in a configuration. (A baby loop appears on 

average only once in five configurations even for D = 120.) This means that the 

surface is rather simi lar to a smooth sphere, where always only one loop (which is 

the mother loop) appears. Hence the surface is quite different from being fractal as 

in dynamical triangulation, where many loops appear for each D. 

The data for the scale- invariant measure (J TI; dl;jl;) with 12,500 triangles is 

shown in Fig. 4. 
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Figure 4: The loop-length distribution for the scale-invariant measure 

(J TI, dl,/1;) with 12,500 triangles. The horizontal ax.is is the scaling variable 

x = Lf D 2
. The dotted curve is the rescaled universal function af(ax) with the 

same a = 3.2 that gives the best fit in the case of the baby-loop distribution 

(Fig. 5). 

The loop-length distribution is plotted against the scaling variable x = L/ D 2 for 

D = 10, 15, 20. Something of a scaling behavior is seen in t he intermed iate region 

of x. To clarify the situation, we separate the two contributions, the one from baby 

loops and t he one from mother loops. The distribution for baby loops is shown in 

Fig. 5. 
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Figure 5: The baby-loop length distribution for the scale-invariant 

measure(! TI , dl,fl;) at D = 10, 15,20 with 12,500 triangles. The horizon­

tal axis is the scaling variable x = L/ D2 . The dotted curve is the rescaled 

universal function ofb(a:x) with a= 3.2 which gives the best fit. 

A clear scaling behavior can be seen with x = L/ D2 as a scaling parameter. Fur­

thermore, we compare our result with the universal fun ct ion (2.15) obtained in the 

continuum limit of dynamical triangulation. Since there is an ambiguity by a con­

stant factor between the scaling parameter x in our system and that in eq. (2.15), we 

fit our result with afb(ax), where a is the fitting parameter. The best fit (a= 3.2) 

is shown by the dotted line in Fig. 5. Our data is in good agreement with the 

universal function. Let us see how the slight discrepancy seen in the small-x region 

behaves as we increase the number of triangles N. Fig. 6 shows the resu lts for 

D = 20 with 12 ,500 , 50,000 and 200,000 triangles. 
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Figure 6: The baby-loop length distribution for th e scale-invariant 

measure(J TI , dl ,fl,) at D = 20 with 12,500, 50,000, 200,000 triangles. The 

horizontal axis is the scaling variable x = Lf D 2. 

We find that the data cu rve in the small-x region approaches to the curve of the 

universal function (2.15). Thus we expect that t he distribution of baby loops will 

converge to the universal function in theN __, oo limit. The distribution for mother 

loops, on t he other hand, is show n in F ig. 7 and Fig. 8, which correspond to t he 

cases with 12,500 t riangles and 200,000 triangles respectively. 
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Figure 7: The mother-loop length distribution for the scale-invariant measure 

(J TI , dl,fli) at D = 10, 15,20 with 12,500 triangles. The horizontal axis is 

the scaling variable x = L/ D 2
. The dotted curve is the rescaled universal 

function afm(ax) with the same a= 3.2 that gives the best fit in the case of 
the baby-loop distribution. 
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Figure 8: The mother-loop length distribution for the scale-invariant measure 

{j rJ ,dl;/1;) at D = 20,40,60 with 200,000 triangles. The horizontal axis is 

the scaling variable x = L/D 2 . 

We cannot see any scaling behavior here. The dotted li ne represents t he rescaled 

universal function afm(ax) with the same a = 3.2 that gives the best fit in t he 

case of the baby-loop distribution. Although we might expect that the data will 

approach the universal fun ction for larger D with sufficiently many triangles , the 

finite-size effect in the present data is too severe for us to draw any conclu sion. 

2.6 Summary of this chapter 

To summarize, we have performed a Monte Carlo simulat ion of two-dimensional 

Regge calculus up to 200,000 triangles and measured the loop-length distribution , 

which is the distribution funct ion of the length L of the loops whose geodesic distance 

from a point is a constant D. T he results a re compared with that obtained in t he 
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continuum limit of dynamical triangulation, which has the scaling behavior in terms 

of x = L j D 2 

For the uniform measure (J IT, dl;), we find no scaling in terms of x at the present 

size. Moreover, we find for most cases only one loop for each D. This means t hat the 

surface is smooth, in contrast to the fractal st ructure in dynamical triangulation. 

For the scale-invariant measure (J IT, dl;jl,), we find that the baby-loop distri­

bution shows a clear scaling behavior in terms of x, which is in good agreement 

with the universal funct ion obtained in the continuum limit of dynamical triangula­

tion. It is rather surprising that Regge calculus and dynamical triangulation, which 

seem to be quite different systems, show t he same universal behavior at least for 

the baby-loop dist ribution. It is not clear at present whether the scale- invariant 

measure is essential in obtaining this universal behavior. One might expect that if 

there is a universality at all, the choice of the measure of t he link-length integra­

tion would be irrelevant to the universal behav ior. We should note, however, that 

the scale-invariant measure is ve ry special, as is seen in eq. (2.3). It implies that 

the fluctu ation of t he area of each triangle becomes overw helmingly large when the 

scale- inva riant measure is adopted. Si nce the lattice st ructure is regula r in Regge 

calculus, such a la rge fluctuation might be necessary to obtain a fractal st ructure as 

in dynamical triangulation. 

As for the mother-loop distribution, the sit uation is not clear even for the scale­

invariant measure. We feel it is possible that the mother-loop distribution, as well 

as the baby- loop distribution, converges to the universal function in the N -> oo 

limit. Even if this turns out to be the case, we may at least say that Regge calcu lus 

requires many more triangles in order to obtain the universal behavior than dynam­

ical triangulation, which is known to show a fairly good uni versal fractal st ructure 

with no more tha n 20,000 triangles [18]. 
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Chapter 3 

Higher-dimensional quantum 

gravity 

3.1 Problems in higher- dimensional quantum grav-

ity 

In this chapter, we consider the possibility of constructing a consistent theory of 

quantum gravity in dimensions greater than two. Let us first discuss the problems 

in such an attempt within pert urbation theory. In this and the next sect ion , we use 

the 't Hooft- Veltman convention [19) i.e. 

R"v.\p EJ,~f"vp- · (3.1) 

Rv,\ R I-I-IIAJ.L' (3.2) 

R gv,\ Rv,\, (3.3) 

which is commonly used in pertu rbative calculations. Note that the sign of the 

curvature is opposite to the one used in th e other sections. Let us consider Ein stein 
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gravity, which is described by the action 

1 J D S = G d xygR. (3.4) 

We parametrize the metric as 

(3.5) 

where !J,.v is the background met ric and h"v is the traceless symmetric tensor field. 

We call <P the con form al mode and h"v the transversal mode. Then the Einstein 

action can be written in terms of <P and h as 

S = ~ j dDxf§e-<lf- I)¢[R - (D - l)g"vf;,J)v</> 

+~(D - 2)(D - l )g"vEJ,.¢EJv¢). 

~ j dDxf§e- <lf - I)¢[R- ~(D- 2)(D- l )g"v8,.¢8v¢) 

+total derivative. 

(3.6) 

(3.7) 

R is the scalar curvature made out of g,.v and it can be written in terms of has 

A - A h''"R h"v + 1
h''" l ,~+ - - JUJ - ;jJV 4 ;A l,IW; .. • l (3 .8) 

T he overall signature of the action has been chosen so that the transversal mode is 

bounded from below. Then we find that the kinetic term for the conformal mode 

has the wrong sign. If ¢ fluctuates around 0 very violently, the action can take 

arbitrarily large negative value. This means that t he action is unbounded , which 

might cause a problem in Euclidean path integral formalism [20). 

As is well known , the theory is unrenormalizable forD > 2, since the dimension of 

the coupling constant G is 2-D. It means that the coupling becomes uncontrollably 

large at short di stance and the renormalization program in perturbation theory 

breaks down. 

The situation resembles that of non- linear sigma model, whose act ion is written 

as 

(3.9) 
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where if is aN-dimensional unit vector. The above action possesses O(N) symme­

try. Let us assume that this symmetry is spontaneously broken in the weak coupling 

region and consider a perturbation around if = (1, 0, · · · , 0). We parametrize the 

u field as if= (Jl- if2,ii'), where ii' is a (N - I )-dimensional vector. The action, 

then, becomes 

S = J j dDx8,.ii'8,.ii' + 
1 
~ ii'2 (ii'8,.ii')(ii'8,.ii'). (3. 10) 

In order to make the kinetic term canonical, let us rescale the 1r field as ii' ---> J]ii'. 

(3. 11 ) 

Since the dimension off is 2 - D, this theory is unrenormalizable for D > 2. 

However, as is well known, three-dimensional non-linear sigma model can be 

defined const ructively as follows. We put the theory on a lattice with the action 

(3. 12) 

This is nothing but t he ferromagnetic system and it undergoes a second order phase 

transition at a critical point / 1., = Jt:;'. Below the critical poin t, t he O(N) sym­

metry is spontaneously broken and (if) # 0, whereas above the critical point , the 

system is in the symmetri c phase and (if) = 0. We can take a continuum limit at 

t he critical point . Actually this theory belongs to th e same universality class as 

three-d imensional O(N) symmetric ¢;4 theory, which is perturbatively renormali z­

able. This fact can be unde rstood as follows. The actio n of O(N) symmetric ¢;4 

theory can be given as 

(3. 13) 

Let us consider t he act ion 

li D -- ~ 2 S = f d x81,¢;8,.¢; +a(¢; - I) , (314) 
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which reduces to the non- linear sigma model by taking the a ---> oo limit. Rescaling 

the ¢; field as ¢; ---> J7 ¢;, we get 

S = J dDxo,.;JfJ,.;j +a(/¢· ;j- 1)2
, (3. 15) 

from which we can obtain the parameters of ¢;4 theory that reproduce the non- linear 

sigma model as, 

(3. 16) 

Thus we can interpret the non- linear sigma model as a renorma lizable theory in a 

special limit of the coupling constants. Expecting that the universality of ¢;4 theory 

holds also for such a limiting case, it is natural that we should obtain the same 

critical phenomenon . 

In the case of quantum Einstein gravity, the non- lineari ty of the system is not 

such a fictitious one and it seems difficult to find some renormalizable t heory which 

reproduce Einstein gravity in a specia l limit. However, the example of the non­

linear sigma model shows at least that perturbative arguments may sometimes fail 

concerning the existence of a non-trivial theory when the fixed- point coupling con­

stant is not sufficiently small . Thus we need a non- perturbative study to make a 

definite conclusion as to whether we ca n construct a consistent quantum theory of 

Einstein gravity in dimensions greater than two. 

3.2 <:-expans ion around two dime n s ions 

When we consider D = 2 +£ dimensions , the fixed- point cou pling is 0(£) if it ex­

ists at all. Then the perturbative expansion with respect to the coupling constant 

is turned into the £- expansion . If the convergence rad ius is suffi ciently large, this 

provides a systematic a pproximation to higher- dimensional quantum gravity. This 

method is successful in the case of non- linear sigma model a nd it is known to give 

crit ical exponents consistent with numerical simulations of t he three- dimensional 
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model. Although the a t tempts to apply this method to quantum gravity was initi­

a ted more than ten years ago [21], it is quite recently that the essential problems 

in the formalism have been clarified [22, 23, 24]. The a pplication also extends to 

interesting problems in two- dimensional qua ntum gravity [25, 26, 27]. Let us here 

have a brief look a t recent progress in (2 +E)-dimensiona l quant um gravity [28, 29], 

for it provides us wi t h a qua li tative understanding of higher- dimensional quantum 

gravity. 

3.2.1 The model 

We consider Einstein grav ity with c copies of scala r fi elds co upled in th e con form ally 

invariant way, which is described by the following action. 

s 
Sa 

Sa +SM, 

fl' J D G d xJgR, 

~ J d DxJg Hg~·a~cp;a.cp; - R s(DE_ ,)cp;}. 

The index i runs from 1 to c. Let us pa ra met ri ze t he met ric as 

(3. 17) 

(3 .18) 

where h~. is the traceless symmetric tensor. We have introd uced the background 

metric fl~ v for later convenience. Using the above decomposition , we ge t , 

Sa ~ j d Dxjie- ~¢ { R- E(D4- 1 ) g~"8~¢8.¢} + tota l deri vati ve 

SM = ~ j dDx{§ 0g''"8~(cp;e - f¢)8. (cp;e- f¢) - J1
8

( DE- l )(cp;e- f¢j2 }. 

Redefining t he matter fi eld as 

(3.19) 

we obta in t he following action 

S = ~ JdDx/i[e- ~¢ {fl - E(D4- 1 )g""8~¢8v ¢ } 

+ Ug"" 8,.cp;8.cp; - R 8( D (- 1) cp; } l· (3.20) 
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One can see that the conformal mode decouples from the matter, which is a result of 

the conformally invariant coupling we have chosen. Due to this fact , we can further 

simplify the theory by redefining th e conformal mode as 

e- f¢ = j 8(D E- 1) '1/;, 

which makes the action 

s = J.L' J dD ~ {R E ./,2 1-~v 8 ·'·8 . !, G xyg 8(D - 1)'1' -Zg ~'I' v'l' 

- il 8(D E- 1) 'P7 + ~_g~·a,,cp;B.cp; }. 

(3.21 ) 

(3.22) 

Here the '1/; fi eld appears in the same way as the matter fi elds except for the 

overall minus sign. The dyna mics of the conformal mode, therefore, becomes quite 

transparent , as compared with the original formali sm (3.20) , where one encounters 

t he so- called oversubt raction pro blem [23, 24]. Note a lso tha t the region of ¢ E 

( -oo, oo) corresponds to the region of 'lj; E [0, oo) . ln the weak coupling regime, 

¢ fluctuates around ¢ ~ 0, which corresponds to 'lj; ~ JB<D,- J) Let us ex tend 

the region of '1/; to ( -oo, oo), T he theory (3.22), t hen, possesses t he Z2 symmetry 

'1/; -+ -'1/; , which is spontaneously b ro ken in t he weak coupling regime. So long 

as the couplin g constant is small , the theory (3.22) wi t h 'lj; E ( - oo, oo) is almost 

equivalent to (3.20 ), since the flu ctuation of 'lj; around the nonze ro expectation value 

is small. However, in t he strong coupling regime, there is a substantial difference. 

In the theory (3.22), we may na tura lly expect that the Z2 symmetry is restored and 

'1/; flu ctua tes around 'lj; ~ 0. T his is hard to consider in t he origina l theory (3.20 ) 

since such a point co rresponds to ¢~ oo. From this point of view, the th eory (3.22) 

seems to be more na tura l th an t he o riginal one (3 .20). 

3.2.2 General covariance and the anomaly 

Let us consid er the genera l covari a nce of the theory. Th e action (3.17) is invaria nt 

under th e diffeomorphism 

(3.23) 
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Let us translate this into the transformations of 9," and 'lj;. For simplicity, we set 

9," = 8," here. Then 9," and 7j; can be given in terms of g1w as, 

1 
---1 gJ-LV 
(det g)o 

(3.24) 

7j; = (8(D=l) < 

y ~(detg)<D, (3.25) 

which give the corresponding transformation for each. The transformation of the 

matter fields can be chosen so that the action is kept invariant. The symmetry of 

the tree-level action is, thus, given by 

EP8p7f;+ 2~7f;8pEP, 
E 

EP8pcp; + 2D cp;8pEP (3.26) 

Let us next consider the one- loop renormalization of the theory. As is explained 

earlier, we consider a perturbation around the nonzero vacuum expectation value of 

the 'lj;- field J8<D,- 1)_ We, therefore, shift the 'lj;- field as 

(3.27) 

in (3.22), and then expand around 7j; ~ 0. Thus we arrive at the following action 

(3.28) 

One can see from this action that the one- loop matter contribution gives rise 

to the divergence of the form ~ ~ J d D x..jgk Therefore the one- loop counterterm 

cannot be taken to be invariant under the transformation (3.26). This can be viewed 

as a manifestation of the conformal anomaly with respect to the conformal trans­

formation of the background metric. T his problem is , therefore, inevitable as long 

as we respect the general covariance of the tree- level act ion. Note that this kind 
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of thing does not occur in ordinary gauge theories, since it is deeply rooted in the 

nature of quantum gravity where the gauge invariance is related to changing the 

scale of the system locally. 

Let us, then, consider generalizing the tree- level action. Here, one should note 

that the one-loop divergence is invariant under the transformation (3.26) for such 

EP that satisfies 8pEP = 0, which can be called "volume-preserving diffeomorphism". 

Thus, we are lead to consider the most general action that is invariant under the 

volume- preserving diffeomorphism, 

(3.29) 

where L('lj;, cp;) is a function of 7j; and cp; with the constraint L(O, 0) = 1. Note that 

the original action (3.28) corresponds to 

(3 .30) 

Let us consider a transformation which is the counterpart of diffeomorphism in 

the generalized theory. We consider a transformation , 

EP8p7f; + A8p, 

EP8pcp; + B8p, 

where 8p = iJ8pEP A and B will be fixed later. The action transforms as 

85 = j dDx/§ [{ -~ R8p- (D - 1)9""\7,8v8p} L 

+R~~A8p + ~8,7f;8"7f;9""6p- 9''"8,7f;8"(A6p) 

+R
8
8

L B6p - ~8,cp;8"cp;9''" 8p + 9''" 8,cp;8"(B6p)] 
cp; 4 

Through partial integration, one gets, 
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(3.31) 

(3.32) 



-aLA E -~va ·'·a ·'· -~v{', a ·'·A 
+Ra,p +4g ~"' ""'+g v,, ""' 

- aLB E -~va a ~""" a B} " + R a'Pi - 4g ~'Pi v'Pi - g V ~ v'Pi up. 

The g~"fl ~a"L in the first line of the above expression is given by 

(3.33) 

(3.34) 

In order to get rid of g~"fl,,av,p and g1'"f7 ~av 'Pi in bS, we have to choose A a nd B 

as 

A 
aL 

(D-1)-
a,p 

(3 .35) 

B 
aL 

-(D - 1)-. 
a'P, 

(3.36) 

Let us , therefore, consider the following transformation as the counterpa rt of diffeo­

morphism in the generalized theory. 

b<p; (3.37) 

If L is given by (3.30), this reduces to the ordinary difreomorphism (3 .26). 

The change of the action under the a bove transformation can be obtai ned as 

(3.38) 
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One can check that t his vanishes if we substit ute L wit h (3 .30). 

Wit h proper gauge fixing and using t he background fie ld method, the one-loop 

divergence of this t heory is evaluated to be [28] 

J d D X r;_
9
• { 26 - ( 1 + C) } k 

V !I 247TE (3.39) 

Hence the one loop bare action is 

where A= 2
;

4
-;;c . 

3.2.3 Renormalization group trajectory and the general 

covariance 

Let us next examine the renormalization of the coupling constants. We define t he 

bare quantities t hro ugh 

Go 

~ O a,, 7/Jo al' 7/Jo 

1 a , a'' , 
Go ~'Po 'Po 

Lo( 7/Jo, 'P~) 

By solving these equations, we obtain 

7/; (1+ ~~)' 
. ( AG) <p' 1 + 2;;- , 

. AG AG . 
L( 7/Jo, 'Po)--+ - £(7/Jo, 'Pol 

E E 

AG aL AG , aL 
--2 7/Jo-a 1 - -2 'Po-a '' c 'Po E 'Po 
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(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 



from which we can calculate the f3 functions as 

EG- AG2
, 

AG BL AG ; BL 
- AG(L- 1) + -1/1- + -<p - .. 

2 81/! 2 8<p' 

The expression (3.49) shows that we can restrict the form of L to 

The {3 functions for a, b a nd d can be obtained as 

{3. 
AG 

- Ta, 
/3b 0, 

/3d 0 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

Let us, then, exam ine the renormalization group trajecto ry of the t heory in the two 

dimensional coupling space of G and a . Since A = 2i
4
:c, we have the ul tra- violet 

fixed point c· = ~. a· = 0, so long as c < 25. T he G = 0 line is t he infrared 

fixed line on which resides t he particular point that corresponds to the conformally 

coupled Einstein grav ity. We are interested in t he renormalization trajectory which 

flows out of the ultra- violet fixed point into the conformally coupled Einstein gravity. 

The importa nt question is whether the general covaria nce is maintained along the 

renormalization group trajectory. 

Under the t ransfo rm ation (3.37) , the bare action (3.40) changes as, 

fiSo = 

where fip = JiB,<". The only difference from the tree- level expression (3 .38 ) comes 

from the one- loop counterte rm. Since the second and t hird terms in (3 .54) vanish 
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identically, we need to consider on ly the first term. If we substitute L with its 

explicit parametrization (3.50), the coefficient of R becomes, 

JJ-' G [{t-AG- 2( D - 1)a2
} + {< - 8(D - 1)6}a1/J 

+{< - 8(D- 1)6}61/12
- {t- 8(D- l)d}d<p~l 

JJ-' 
G {t- AG - 2( D - 1)a2

}. (3 .55) 

In order to ensure the general covari a nce of the theory, we have to make sure that 

this quantity vanishes . Differentiating this quantity with respect to JJ- , we get 

8 {JJ-' } JJ-- -(t - AG - 2(D- 1)a2 ) 
BJJ- G 

tJJ-'~ { t - AG - 2(D - 1)a2
} + JJ-' ( -~) {3c{t- 2(D- l)a2

} 

- JJ-' ~2(D - 1)2af3. 

~[c{(t - AG)- 2(D - l)a2
}- (t- AG){t - 2(D - l )a2 } 

G 
+2(D - l)AGa2J 

0, (3.56) 

where we used the expressions for f3 functions (3.48) a nd (3.51). Therefore t he above 

quantity remains constant a long each renormalizat ion group trajectory. Note here 

that since G(JJ-) ex JJ-' when JJ- goes to 0, 7j -> const. > 0 in the infrared limi t. 

Therefore, if we choose the particula r renormalizat ion group trajectory that flows 

into the infrared fixed point that corresponds to the conformally coupled Einstein 

gravity (G = 0, a = ~), the above quantity vanishes a ll along the trajectory, 
y2(D- l) 

which ensures the general covaria nce of the theory. 

3.2.4 The ultra- violet fixed point 

We have found in the prev ious section t hat t he short distance st ructu re of spacet ime 

is described by the followin g action in con formally coupled Einstei n gravi ty near two 

dimensions. 
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(3 .58) 

One sees t hat it is invari ant under t he t ra nsforma tion 1/1 -+ -1/J. Consideri ng t hat 

t he 1/J in the above expression originally represents a flu ctuation around a nonzero 

vacuum expectation value, the a bove fact can be understood as a result of the Z2 

symmetry in the original action (3 .22) being restored in the ultraviolet limit due 

to the large fluctuat ion of 7/J. We also comment t hat we can rotate 1/1 fi eld into the 

pure- imaginary direction 1/J -+ i1j; in t he fixed- point action without violating its 

reality. T he con formal mode, then, becomes ind ist inguishable from the conformally 

coupled matter fie lds. We might expect t ha t such a theory describes t he strong 

coupl ing phase of quantum gravity beyond the ultra- violet fi xed point. 

In order to es ta blish the validi ty of t heE- expa nsion approach in quant um gravity, 

we have to show t hat t he higher order corrections can be computed systema tically. 

In Ref. [29], we examined t he t heory at t he two- loop level. Since the two- loop 

calculations in quantum grav ity is a formidable task due to t he proli fe ration of 

diagrams a nd tensor indices , we have decided to calculate the two- loop coun te rte rms 

which are proportional to the number of matter fields (the cent ral cha rge) as a first 

step . Si nce the cent ral charge is a free parameter, t he cou nterterms must be of 

t he reno rmalizable form. T hey fu rt her must satisfy the requ irement from general 

covaria nce. T herefore t his calculation serves as a check of t he E- expansion approach. 

We concent rate on the shor t dista nce fi xed poin t of the renormalization group. 

At t he fixed point the tree action is 

(3.59) 

where L = I - bX;X;. X; denotes 1/J a nd <p; fie lds (X0 = 1/1 ) a nd X;X; = - 1/12 + 
I:j=1 'P/· T his action possesses the Z2 invaria nce X ; -+ - X ;. We com pute t he 

counterterms at the fixed point where fur t her simplification ta kes place due to t he 

Z 2 invariance. Note that the conform al mode 1/J is just a nother matter field at t he 

fi xed poin t. T herefore the conformal mode contribution can be incl uded by the 

replacement c -+ c + l . 
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We have calcula ted the divergences proportional to the central charge and ex­

amined how the non- local terms as well as infra red divergences in the ~ pole cancel 

among the diagrams. It has been shown that the ultra- violet fi xed point exists 

which possesses the general covaria nce up t o two- loop level in t he leading order 

of the central cha rge. We have to work out similar calculations wit hout imposing 

the Z2 symmetry on t he system in order to examine t he general covari a nce on t he 

renormalizat ion tra jectory t hat flows in to t he classical Einste in grav ity. It seems 

also importa nt for us to perform the full calculation of two- loop renormalization 

without restricting ourselves to the leading matter contribution. We hope t hat we 

can eventually calculate physical qua ntit ies such as critical exponents, which may 

also be calculable in numerical simulations of t hree or four dimensional qua nt um 

gravity in future. 

3 .3 Numerical s imulation based on dynamical tri-

angulation 

3.3.1 Lattice act ion 

In the previous section we have seen t hat the recent progress in the E- expansion 

a pproach to higher- dimensiona l quant um gravity is quite promising. At least it 

seems t ha t t he €- expa nsion can be formulated as well as in ordin ary fi eld t heories, 

in spite of the subt leties concerning t he conformal a nomaly. Need less to say, t his 

does not prove the existence of a consistent t heory of qua nt um gravity in physical 

dimensions such as t hree or four . In orde r to make a definite concl usion as to 

t his problem, a non- perturba tive study is necessary. In th is sect ion, we consider 

numerical simulations of higher- dimensional quant um grav ity based on dynamical 

t riangulation . 

In dynam ical tria ngula tion we replace the pa th integral over t he metric wi t h 

summa tion over a ll the tri a ngulation made of equila tera l D- sim plices. We first 
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summarize the basic knowledge on simplicial manifolds. 

We denote the number of p-simplices in a configuration by NP (p = 0, 1, ···,D). 

Let us also define the order of a p-simplex <Tp as the number of D- simplices sharing 

the simplex <Tp and denote it by o( <Tp)· Note that 

a( <Tv) 

o(<Tv-d 

1, 

2. 

(3.60) 

(3.61) 

Since we require the configuration to be a simplicial complex in the strictly mathe­

matical sense, each D -simplex should face to different (D + 1) D- simplices. There-

fore we have, 

for p:::; D- 2. (3.62) 

Also, we have the following relation 

( 
D + 1) Nv , 
p+l 

(3.63) 

which comes from the fact that aD-simplex contains D+ICp+l p- simplices. 

There are relations among NP's. Since each (D - l )- s implex is shared by two 

D- simplices (eq. (3.61)) and each D - simplex contains (D + l ) (D- I )-simplices 

(eq. (3.63) for p = D - 1), we have 

2Nv _1 = (D + l)Nv. (3.64) 

The Euler number is defined as 

D 

X= L(- 1)"N., (3.65) 
p=O 

which is a topologically invariant number. 

We have another relation from the restriction that the configuration should sat­

isfy the manifold condition , i.e. if we draw an infinitesi mal hypersphere around a 

vertex, the intersect ion of this sphere with the manifold should be homeomorphic to 

sD - l In on e and two dimensions this is trivially satisfied. Let us consider three­

dimensional case. Let us draw an infinitesimal hypers phcrc around a vertex, and 
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consider the intersection of this sphere with the manifold. We denote the number 

of i-simplices in this intersection by NI. Then the manifold condition requires, 

(3.66) 

If we sum up this equation over all the vertices in the manifold, we obtain 

(3.67) 

Combining this with eq. (3.64) namely 2N2 = 4N3, we get x = 0, which means 

that the Euler number of three- dimensional closed manifold is 0 irrespective of its 

topology. 

Let us next consider four- dimensional case. Let us define NI similarly. In this 

case, the intersection is a three- dimensional manifold and it is difficu lt to impose 

that it is homeomorphic to S3. However, as a necessary condition, we have 

(3 .68) 

Summing this equation over all the vertices, we obtain 

2NI - 3N2 + 4N3- 5N4 = 0, (3.69) 

which gives a relation independent of the Euler's relation (3.65) for D = 4. 

Let us summarize the relations among Np's in each dimension. In two dimensions, 

there are two relations among three quantities N 0 ,N 1,N2. 

(3.70) 

(371) 

where X is the Euler number , which is related to the number of handles (genus) 

g through x = 2(1- g). Therefore only one of the Np's is independent . In three 

dimensions, there are two relations among four quantities N0 ,N 1 ,N2,N3. 

0, 

4N3. 
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(3.72) 

(3.73) 



Therefore only two of the Np's are independent. In four dimensions , there are three 

relations among five quantities N0 ,N1,N2,N3,N4 . 

No - N1 + N2 - N3 + N4 

2N1 - 3N2 + 4N3 - 5N4 

5N4 

x, 
0, 

(3.74) 

(3.75) 

(3.76) 

where x is t he E uler number, which is two for S 4 topology. Therefore only two of 

t he Np's are independent . 

Let us t hen consider the lattice counterpart of the Einstein- Hilbert action 

J D 1 
S = d xyg(A - 0 R). (3.77) 

The cosmological term can be naturally identified with t he number of D - simplices. 

T he latt ice counte rpart of the Einstein term can be derived as follows. First of all , 

note t hat t he curvature is localized on (D- 2)- simplices. Since the angle between 

two (D - I)- dimensional faces of aD- simplex is a = arccos -iJ , t he deficit angle 

around a (D - 2)- si mplex 0"0 _ 2 is 21r- ao(0"0 _ 2 ). Therefore, the latt ice coun terpart 

of the Einstein term can be obtain ed as follows. 

In two dimensions, we get 

I: {2?r- a o(O"o- 2) } 
UD - 2 

(D+ l)D 
=2?rNo- 2-a 

2 
No. 

1 
2?r(No - zN2) 

2?rx, 

(3.78) 

(3.79) 

as expected. Thus it t urns out that the number of the relevant coupling constants 

in the Einstein- Hilbert action is equal to the number of the independent variables 

in the Np's up to four dimensions. In this sense, the Ei nstei n- Hilbert action gives 

the most general latt ice action t hat can be written as a linear combination of Np's. 
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The parametrization of the la t t ice action is dependent on references. We quote 

in the following the one used by Ambj0rn et al. [33, 35). In three dimensions, one 

can parametrize the action as 

(3.80) 

K3 and l"i:J corresponds to the parameters in the Einstein- Hilbert action through 

2?r 
"3 A --

G ' 
6a 

"2 G' 

where a =arccos~. 

In four dimensions , one can parametrize the action as 

(3 .81) 

(3.82) 

(3 .83) 

K4 and K2 corresponds to the parameters in t he Einstein- Hilbert act ion through 

27r 
"• A -- (3.84) G ' 

lO a 
"2 G ' (3.85) 

where a= arccost. 

Although in continuum theory, the number of operators are restricted due to 

the general covariance, there are a lot of degrees of freedom in the operator on a 

lattice. In this section we have considered the la ttice counterpart of the Einstein­

Hilbert action. Wha t if we add some general local terms written in terms of o(O") 

in the act ion ? Since general covariance is not manifest at the lattice level , and it 

is something that we expect to a ppea r in the continuum limit , it is natural for us 

to ex pect that when we add general local terms to t he action , general covariance 

wi ll appear so long as we can obtain a sensible continuum limit. In other words, 

studying only the type of action derived in t his section is not sufficient when we 

search for a non- trivial fixed point where a sensible continuum limit can be taken. 

Although we consider the simplest action as a first trial, we should bear in mind 

that we have to try various local actions, even if we fail with the simplest one. 
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3.3.2 Ergodic moves 

In order to perform a Monte Carlo simulation to generate an ensemble , we have 

to define a transition probability from one configuration to a nother. In dynamical 

triangulation, we make use of a set of local changes of the triangulation called 

"move", which can be obtained as follows. Consider a (D + 1)-simplex, which is 

made of (D + 2) D-simplices . Pick up ani- simplex ai (i = 0, 1, · · · , D) t hat belongs 

to the (D + 1)- simplex and consider all the D- simplices sharing it. One finds that 

there are (D + 1 - i) of them. Then we can define a move which replace the above 

(D + 1- i) D- simplices with t he remaining (1 + i) D- simplices. We call it (p, q) 

move, where 7J = D + 1 - i and q = 1 + i. p and q sat isfy 7J + q = D + 2 by definition. 

Note that when 7J # q, ( q, 7J )- move is nothing but the inverse of (p, q )- move. In 

even dimensions (D=even) , we have a move such that p = q. As is obvious from 

the above construction , these moves do not cha nge the topology of the manifold . 

Also , the updated configuration is guaranteed to satisfy the manifold condition, so 

long as the old one satisfies it. This can be seen as follows . Draw a n infinitesimal 

hypersphere around each vertex and consider the intersect ion of the hyperspherc 

and the manifold. When a move is operated to the manifold , the intersection also 

changes according to a move in D - 1- dimensions. Therefore, the topology of the 

intersection remains unchanged, which means that the manifold condition remain s 

true , if the initial configuration satisfies it. 

We illust rate the (p, q)- moves in each dimension in Figure 1. 
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2D 

6 ~ 
( 1,3) 

(3.1) 

~ 
(2,2) <1> (2,2) 

3D 

~ ~ 
( 1,4) 

(4,1) 

fj1 (2,3) i? (3,2) 

4D@ (1.5) 

* (5,1) 

II (2,4) ~ (4,2) 

A (3,3) A (3.3) 

Figure 1: (p,q)-moves for two, three and four dimensions. 

In order to use these moves in generating ensembles, we have to check the ergod­

icity. Ergodicity means that we can change an arbitrary triangulation into another 

arbitrary triangulation with use of finite times of moves. Ergodicity of this set of 

moves has been proved up to four dimensions in Ref. [30]. Actually in two dimen­

sions, ergodicity can be shown using only (2,2)- move, as was proved quite a long 

time ago [31]. This enables us to simulate the two- dimensional system with fixed 

N2. 

When we perform a (p,q) - move , we may obtain a simplicial manifold which does 

not satisfy the conditions of simplicial complex. We have to reject the move and 

try another one in such a case. One can show that we have only to check that the 

new (p- 1)- simplex which is shared by the new q D- simplices does not share all its 
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vertices with a nother (p- I)- simplex which already exists in the configuration. 

As for the initial configuration , it is conventional to take the surface of a (D + 
I )-simplex, which conta ins (D + 2) D-simplices. In [39], we also tried an initial 

configuration which has almost uniform structure. Such a configuration can be 

constructed as follows. We use the surface of £D+I hypercubic lattice. Take one of 

its diagonals and project it to each of the 2D+1 surfaces. Using the projected line, 

we can subdivide each D - dimensional cube on the surfaces into D! D - simplices. 

Thus we can construct a configuration with 2(D + I)LD D! D-simplices with a lmost 

uniform st ructure. We checked that after a sufficient number of updates, the result 

does not depend on which ini t ial con fi gu ration we use. 

3 .3.3 Control of t h e volume 

Using the lattice cou nterpart of the Einstein- Hil be rt act ion cons idered in Section 

3.3.I, the partition fun ction for the four- dim ensional system can be defined as 

Z(K2 ,K:4 ) = Le- Sia\(KU~·4) 1 
T 

(3.86) 

where summation is performed over all the closed simplicial manifold with 54 topol-

ogy. This system gives a grand canonical ensemble in t he sense that the size of t he 

system is allowed to flu ct uate. However, this system is not stable with respect to 

K4, namely if we ta ke K4 la rge, N4 keeps on decreasing, a nd if we take K4 small , N4 

keeps on increasing. This is not necessarily a problem , though , as we expla in in the 

following. Let us consider an ensemble with a fi xed total vo lume described by the 

following partition function 

Z(K2,N4) = L c''N' , 
T ETN4 

(3.87) 

where TN, denotes t he set of closed simplicial manifolds with N4 4- simplices. Th is 

can be referred to as a canonical ensemble, since we fix t he system size. Z(K2, K4 ) 

can be written by Laplace transformation of Z(K2 , N4 ) as 

Z(K2,K4) = :L Z(K2,N4)e_,,N, (3.88) 
N, 
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The saddle point will be given by 

I:e-K4N4 + lnZ(K2,N4)_ 

N, 

(3.89) 

(3.90) 

Let us denote the left ha nd side by K/(K2 , N4). If 8'•~;:.·N•) < 0, this saddle point 

is stable, and otherwise unstable . 

In the case of two dimensions , the partition function can be given as 

(3 .9I ) 

for sufficient ly large N , where'"' is the st ring susceptibility given by 

25- c + j(l- c)(25- c) 
'''' = - 24 X + 2. (3.92) 

X is the Euler number which is related to the genus g t hrough 

X= 2(I- g). (3.93) 

For pure gravity (c = 0) , we have 

(3.94) 

Since 
c 8 ln Z(N) {5 } 1 

K (N) = = K - -(I- g)+ I -
8N 2 N' 

(3.95) 

t he saddle point is unstable for g = 0 (sphere) and g = I (torus). This is not a 

problem , though , since we can define a n ensemble average in the t hermodynam ic 

limit by differentiating with respect to t he cosmological constant " (wh ich corre­

sponds to in se rting t he cosmological term) suffi ciently many times , and then take 

t he limi t K -+ Kc = lim N~oo ,_c(N). Similarly, in the case of four dimensions , t he 

instability with respec t to K 4 is not itself a problem. If lim N,-oo K/(K2, N4 ) diverges, 

however, we cannot define any sensible ensemble average from the partition func­

tion Z(K2, K4 ) , wh ich is obviously a disaster. As we expla in later, the system defined 
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through (3.87) has a phase transition at K.2 = K.2c. When K.2 > K./ the convergence of 

K./(K.2, N 4 ) is very fast and there is no problem. For K.2 < K2c, on the other hand , the 

convergence is very slow, and the data show a large size dependence. T his problem 

has been addressed by many groups recently [37], and it seems that the largest- size 

simulation favors the existence of lim N,~oo K.4c(K.2, N4 ). For the special case K.2 = 0, 

the pa rtition function Z(K.2 = 0, N 4 ) is nothing but the number of triangulations 

with N4 4-simplices. The existence of limN, ~oo K./(K.2 = 0, N4 ) is , therefore, equiv­

alent to the existence of the exponential bound to the number of the triangulations 

with N4 4-simplices. We also comment that in three- dimensional case, the existence 

of lim N,~oo K./(K.1 , N3) is numerically established [32]. 

Practically, we have only to work with the canonical ensemble with fixed N4 . In 

two dimensions, this can be done straightforwardly, since we know a set of ergodic 

moves which does not change the total volume. In four dimensions, we do not know 

such a set of ergodic moves. T herefore the best thing we can do is to add some 

potential with respect to N 4 so that we can stabi li ze the total volume during the 

simu lation a nd pick up only those configurations with a fixed N4 . The potential can 

be chosen as one likes, but a convenient choice is 

(3. 96 ) 

With th is additional term, eq. (3.89) becomes 

(3 .97) 

The ensemble average of N 4 can be given by the saddle point 

(3.98) 

Using this formula , one can measure ~</(K., N 4 ) through num erical simulation. 

3 .3.4 Second order phase transition in four dimensions 

Let us next t urn to the results of numerical simulation in four dimensions. A funda­

mental observable, which has been measured by many groups [35, 36], is the total 
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curvature, which we denote by R101 , 

(3.99) 

Figure 2 shows our results for the expectation value of the average curvat ure per 

unit volume (R101 ) / aN4 at various K.2 's. a = arccos~ in the denominator is just for 

conventional reason. 

2.0 

1.5 

1.0 

" 2 

t 
0 0.5 

~ 
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.0.5 

-1.0 
0.0 0.5 1.0 

<2 

0---..(.) N4 - 32,000 
G------.J N4 "' 8,000 

1.5 2.0 

Figure 2: The average curvatu re per volume is plotted against K:2 for N4 = 

8000(squares) and N4 = 32000(circles). 

One can see that the behav ior of the curve changes abruptly at K.2 = 1.2 ~ 1.3. The 

susceptibility can be defined as 

( R~01 ) - (Rtot) 2 0 (Rtot) 
X = aN

4 
<X 8~<2 aN, . 

(3.100 ) 

We can see in Figure 3 that there is a peak in susceptibility at ~<2 = 1.2 ~ 1.3 and 

t he height of the peak grows as the system size is increased. 
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Figure 3: The susceptibility is plotted against "' for N4 = 8000(squares) and 
N 4 = 32000{circles) . 

This implies that the cor relation length of local curvature is very large at t he critical 

point , where we may hope to take a sensible continuum limit. On the other hand, 

in three dimensions, the ave rage curvature shows a hysteresis as a function of the 

coupling constant [33]. It has been reported t hat this property does not change by 

coupling the matter fie lds to the system [34]. However, we remind the reader that we 

are allowed to put a ny terms in the action written in terms of local latt ice variables 

such as o(o-P) , on the gro unds of general covaria nce as we mentioned in the end of 

Section 3.3.1. 

Let us next exam in e the structures of configurations in detail. We first have a 

look at t he vertex order distribution. Wh en we decrease K 2 , the number of t ri a ngles 

N2 decreases , a nd so does the number of vertices N0 , si nce both a re related through 

N2 = 2(No + N4 - 2). (3 .101 ) 
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On the other hand, from (3 .63), we have 

L o(v) = 5N4 , (3.102) 

which means that the average vertex order o(v) ='£.o(v)jN0 = 5N4 /No increases 

as K;2 decreases. If we vary N 4 according to K;2 so that N0 is kept the same, we see 

that decreasing K;2 amounts to adding a linear potential with a negative slope for 

the vertex order. In Figure 4,5 and 6, we show t he vertex order distribution for 

K 2 = 2.0 , 1.25, 0.0 respectively with N4 = 32000. 

10' ·- -----
10' 

~ 101 

10' 

\ 10' 

10
1 

10
1 \ 10 ' 

10 100 1000 10000 
\"Crlc~ orde r 

Figure 4: The vertex order distribution for "' = 2.0 with N4 = 32000. 
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Figure 5: T he vertex order distribu tion for n.2 = 1. 25 with .V4 = 32000. 
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F igure 6: T he vertex ordn distribu t ion for "'= 0.0 with 1\'.1 = 32000. 

One finds in Fig. 6 that t here is a vertex with very large order; as large as one third of 

the total 4-simplices. Let us call t his phenomenon as "vertex order concent ra tion" . 

Vertex order is, in a sense, local connectivity of the man ifold. Let us turn to the 

global connectivity. We consider t he number of vert ices V(T) which a re reached at 

,. steps from a point . When V(r) behaves as ~ ,.d, we may call d the Haussdorff 

di mension of the manifold . Such a quantity has been measured in the second paper 

of Ref. [35]. As it turned out in Ref. [15], however, such a quantity is not universal 

at least in two- dimensiona l case, which warns us to be carefu l in considering what is 

the universal fractal structure in quant um gravity. Here we measure a~\~~r) in order 

to have a glimpse at the global connect ivity of the manifold. In Figure I , 8, a nd 9, 

we show the plot of ii~·~~~.··l as a fun ct ion of ,., for "'2 =2 .0 , 1.25 a.nd 0.0 respecti vely 

with N 4 = 8000 and 32000 . 

6.0 .--------~------~-----, 
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1.0 
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N4 = 32,000 
N4 = 8,000 

o.o L-----~-----_;,._._,_-">---.J 
1 10 100 

Figure 7: 8 ~\ ~~T·) is plott~d aga.inst T fo r fl 2 = 2.0 with A 4 = 8000 (d:.L<;hrd 

lin e) and N, = 32000 (solid li ne). 
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Figure 8: 8 ~\~~.'·) is plotted against r for t>z = 1. 25 wi th N.1 = 8000 (dashed 
line) an d !1'4 = 32000 (solid lin e) . 
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Figure 9: O~l ~~~-'·) is plotted against 1· for f\.2 = 0.0 with N.1 ::::::: 8000 (d<-L') IH'd 
line ) a nd !1'4 = 32000 (solid line) . 
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One finds that at ~~:2 = 2.0 , the data fluctuates around two, which is substantially 

smaller than four. This means that the manifold cannot stretch out to make a sound 

four- dimensional manifold when ,.;;2 is large. 

Another way to look a t the connectivity of t he configurat ion is to examine the 

pinched structure. In dynamical triangulation , we can defin e a minimum neck, which 

played a central role in the precise measurement of the string suscept ibili ty [38] . Let 

us consider a lump which does not have minimum necks inside that is connected 

with others only through a minimum neck. Let us call the lum p "baby uni verse" for 

simplicity. vVe measure the volume dist ribution of the baby un iverse. Figure 10, ll 

a nd 12 show the resul ts for h·2 =2 .0 , 1.25 and 0.0 reSJ)('Ct ivc ly with .V4 = 8000 and 

32000. 
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Figure 10: The volnmr distribution of baby uni\·ersr for l-i z ::::::: 2.0 with N4 ::::::: 

8000 (squares) and 11'4 = 32000 (circi<-s) . 
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Figure 11: Thr volume dist ribution of baby universr for ,.;1 :;::::. 1.25 with A4 = 

8000 (sq uares) and !1'4 = 32000 (circles). 
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Figurl? 12: Thr volum e distribution of baby unin•rsr for ,.2 = 0.0 with .f\1.1 = 
8000 (sq nan•o) and /1'4 = 32000 (circles ). 
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One finds that at K2 = 0.0 , there is one extremely large baby universe and all 

the others are very small. On the other hand at K2 = 2.0 , there is no such an 

extremely large baby uni verse. Another interesting point is that when we normalize 

the volume distribution of baby universe with the system s ize N4 , the data for 

K2 = 2.0 becomes almost identical for different N4 • This means that increasing the 

total volume only results in creating more baby uni verses with the same volume 

distribution. The size dependence of the average curvature per unit volume and 

that of Haussdorff dimension plot a lso support this picture. We may refer to this 

situation as "branched polymer" . 

3.3.5 Suppression o f a v ertex with very large order 

Let us summari 7.e the situations for la rge and small r;2 regions . In la rge o:2 region, 

the configura tions arc dominat<'d by pinched structure a nd the Haussdorff dim<'nsion 

is around two. In small h·2 n·gion , on the other hand, th cr<' is il IMge bilby univ<'rse 

which is highly co n11ect<'d due to the existe11 ce of a vert ex with very large order. 

In any case these s ituations a r<' filr from cont inuum physics. Ca11 we have a large 

baby universe without vertex order concentration? ln order to clarify th is point , we 

study a theory with the followi11g add itional term in the action 1 

5 = A l:)o(v)- 5}2 (3 .103) 

\\'c take A = 0.005 , 11·hich is <'Xp<'cted to be large enough to "'·oid V<'rtex order 

concentration. With this add itional term, changing h·2 amounts to changing the 

posit ion of the minimum of th<' parabolic potential for the V<' rtex order, in contrast 

to the A= 0 cas<', whcrr th<' s lop<' of the linear potential is changed. Therefore we 

can control o( v) without the ra las t rophic growth of the order of a ve rtex as is seen 

in the A = 0 case. 

1 In Ref. [36] t hC'y s tudied a sys tem with the additional tl"rlll S = -11 L u In o(5u) with 

n =-5 1- 1.0,+1 ,+5 in asoJnrwha.tdifrerell! co ntext. It has bee n reported that ~ neil a !('rm strongly 

affects the criticality of tit(' pha.<H' tran sition. 
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In Figure 13 and 14, we show the result for the average curvature per unit volume 

and the susceptibi lity respectively. V\Te have replotted the d>tta for,\ = 0. 

2.0 

15 

1.0 

0.5 

0.0 

-0.5 

., 0.0 lambda 8k 
" 0.0 lambda 32k 

<)-----() 0.005 lambda 8k 
/1. --60.0051ambda 16k 
<3- -<J O.OOSiambda 32k 

_,_~3-~.o:--:.2';.5--72.-=-o--~1.5;:---:_1-:.o:--:.o-:.5-o::-.o:----:o:':.5:--1':".o-~1 s-=---,J2.o 

" 
Figure 13: The average curvature per unit voluJIIC for ). = 0.005 with 1\'4 

8000, 1 GOOO, 32000. The data for ,\ = 0 arc also plot t ('(]. 
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er----A Lam 0. 005 16k 
~lam0.00532k 

Figure 14: The susceptibility for ,\ =0.005 with 1\'.1 = 8000, IGOOO. 32000. The 
data for,\= 0 arc ~tlso plotted. 

.-\!though there is a broad peak in the susceptibility, on<' S<'<'S that the results seem 

to have no size dependence. This means that tlwre is no phase transition and the 

correlation length is very small at least over the ,;2 region in,·<'stigatcd. In Figme 

15, 16 and 17, we show the data of the vertex order distribution, 0 ~·,::~.'-l and the 

,·olume distribution of baby universe respectively for h·2 = 0.4 , -0.4 with ,\ = 0.005. 
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Figur(' 15a: The vertex order distribution for A = 0.005. "2 = 0.4 with N.1 
8000.16000,32000. 
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Figure 15b: The vertex order distribution for >. 
N4 = 8000, 16000,32000. 

GO 

0.005. "' - 0.4 with 

lambda;0.005 
k2:::0.4 

2.0 ,------------------------, 

1.5 

1.0 

0.5 

- 16k 
32k 
Bk 

o.o 1 L -----~10::-------;-1oo=-~---L.---''-;';;1000 

step 

Figure 16a: 8 ~\~~~-) is plo1trd a.gaiust r for>. = 0.005. ,.,.2 = 0.4 with J\'4 
8000, 16000, 32000. 
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Figure l6b: 8 ~\~l' ~_,·) is plott('(! against.,. for A= 0.005. ,.,. 2 = - 0.4 with N .1 

8000, 16000,32000. 
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Figure 17a: The volurnc distributiou of baby nnin·rsc for.-\= 0.005, ""2 = 0.4 

with ,\'.1 = 8000. 16000.32000. 
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Figure 17b: The volume distribution of baby unin•rsr for A= 0.005, l'i2 = - 0.4 

wi th N, = 8000, 16000.32000. 

All these results resembles the one for large h·1 when ,\ = 0. \Vc may tlrerefore 
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conclude that the system is a lways in the branched- polymer phase when ,\ = 0.005. 

T he fact that the phase transition disappears when we su ppress n vertex with 

large order implies that the phase transition observed when ,\ = 0 is induced by a 

severe competition among the baby universes t rying to be the dominant one. \ \/hen 

,\ = 0.005, none of the vertices are allowed to ha,·e an ext rem<' ly la rge order and 

they have to be contented in small fluctuations. 

\Vhy then does the configuration favor the branched polymer structure instead 

of a single large mother universe with large flu ct uations'? This is the topic of the 

last sect ion. 

3.3 .6 Branched poly1ner phase and conforma l mode insta-

bility 

The ,·ertex order concentrat ion is a phenomenon which ca n be understood as a resul t 

of the fact t hat the vNtex order can be arbitrarilv large .. -\It hough it is not trivial 

that such a ph<'nomenon occurs considering the loss of entropy. at least ,,.c knmv 

how to avoid it. nderstanding branched polymer. on the other hand, may not be 

so easy, s ince in clynamicnl t riangulation , the vertex order cannot be smaller than 

fi,·e . The results for ,\ = 0.005 suggests that the smallness of each vcrt('X order is 

not the cause oft he plH'nomenon. 

Let us ass ume tlutt the system at the critical point can [)(' desc ribed by the 

continuum theory with the action 

1 J 4 S = - G d .r.fijfl . (3.10-l ) 

...\ slight perturbation in the dir<'ct ion towards the ,,·ea k coupling phase ,,·ill e\·en­

tually makes t he theory unstabk du<' to tlw confonnnl mode, as we discussed in 

Sect ion 3.1. On e may imagine that t his instabilitY r('H'als itself as the branched 

polvmer st ructure. In the continuum. such an instabilit\· is ll<'<'<':,sarily rdatcd to an 

arbitraril.v larg<' curvature. Ho\\'CVer on a simplicial nwnifold, there arc more degrees 

of freedom. so that we may han• thr instabilitY ('Wn if the n rrntt im' is bounded 
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from above. Let us examine this possibility by measuring the conformal mode in 

dynamical triangulation. 

Roughly speaking, the conformal mode ¢ can be identified with log .,ftj, as can 

be seen from the dec om position 

with the flat background metric, 

From the relation Lv o(v) = 5N4 = J d4.-r..(?j we can postulate the relation 

o(v) .;g <-----> log 5 , 

as has been done in rd". [36]. 

\\'e, therefore, define the conformal mode o 0 11 each vertex through 

¢( •·) =Ina(!'). 

(3.105) 

(3 .106) 

(3.1 07) 

(3.108 ) 

\·\·e would like to know how much the conformal mode Hurt nates spatially. Fort his 

purpose, we measure the correlation oft he cou formal mode between the near<'st 

neighbor vcrtir<'s. We count til(' number of t he links which has conformal mode 

o =rand ¢= yon eit her end. Let us normalize it and defin<' the frequency p(.r. !J) 

so that it satisfies 

1 d.Tdyp(x,y)=l. 
x~y 

(3. 109) 

By definition, we haw 

p(~ 'y) = p(y, .1). (3.110) 

The frequency of the link haYing a vertex with confonnalmod<' ¢ = .r 0 11 cit lwr edge 

can be written as 

f{.r) = fu''' dy p(.r, y). {3.lll) 

\\'e can define the corn•lation of the con formall llOdc be tw<•en nearest 11cighbor \'er­

ticcs by 
p(.r, y) 

C(J, y) = /(.• )/(!1) . 

64 

(3.112) 

Figure 18 show the resu lt of the correlation for K2 = 2.0, 1.25, 0.0 with .\ = 0.0 a nd 

Figure 19 for Kz = 0.4, 0, -0.4 with .\ = 0.005. 

figure 18a: The correlation p(.r, y) of the conform a.] modr brtwef'n nNtrrst 

neighbor ve rtices for>. = 0, ~2 = 2.0 with .\' 1 = 32000. 
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Figure 18b: The correlation p(x,y) of the couformal mode bctwceu nearest 

neighbor vertices for A= 0, n.. 2 = 1.25 with N4 :::::: 32000. 

Figure 18c: Thr corrrlaJ ion p( :r. y) of tiu"' confonn;-t\ lllodr hrtwe<'ll llNtrest 

neighbor vrrticrs for .\ = 0, ""2 = 0.0 with N4 = 32000. 

6G 

Figure 19a: T he correlation p(:r. y) of t he conformal mode bC'twecn nearest 

ucighbor n·rtiC{'S for A :::::: 0.003. ,.,.2 = 0.4 with .Y.1 = 32000. 

' 0
-

5 £ .. ~1-:l.O('om ::.oc~ 

Figure 19b: T hr correlation p(.r.y} of the coufonllalu10de betw('<'ll H<'arrst 

neighbor verLicrs fo r .\ = 0.00;). o.2 = 0.0 with .Y, = 32000. 
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Figure 19c: The co rrelation p(x,y) of the confonllal mode between nearest 

neighbor Y<'rlices for A = 0 .005, ti2 = -0.4 with :\".1 = 32000. 

\~'e see a clear anti correlation whcn t lw systcm is in t hc branched polymcr phase. In 

the vertex order concentration phase. on the other hand. the anti corrclation is not 

clearly seen. These rcsult s support the idea that t lw branch<'<! polynl('r structure 

may be related to the conformal mode instability. 

G8 

Chapter 4 

Summary and discussion 

Let us summa rize the present stat us of numerical approach to the dynamics of 

qua nt um gravity. O n Regge calculus, we reported our resul ts in two dimensions t hat 

show a clear agreement of the loop- length dist ribution fo r t he baby loops wit h t he 

one obtained a nalyt ically in dynam ical triangulation, when scale- invariant measure 

is adopted in t he link-length integrat ion. T his is qu ite su rp rising considering t he 

fac t that Regge calculus does not have a ny grounds of resto ring general covariance. 

We have identi fied the "cutoff" with the average area of a tria ngle a nd this 

seems to work quite well , since we get the same universal loo p- length di stribution 

for the baby loop without a ny rescaling when we change t he system size. If we admi t 

t hat our defini t ion of th e cutoff in Regge calculus is the correct one, t he negative 

conclusion extracted from t he measurement of the st ring suscept ibility cannot be 

relied upon. 

We a lso have to consider whether t he scale- invariant measure is essentia l or 

no t. First of al l, we remind t he reader that a ny manifold can be arbitra rily well 

approx imated wit h Regge latt ice if we use sufficient ly many t ri a ngles. We can, 

t herefore, restore genera l covaria nce in Regge calculus in pri nciple, if we int rod uce 

infinitely many pa ra meters a nd fine- t une them. One may be tempted to think t hat 

our resul ts suggest that actua lly we have on ly to impose t he scale invaria nce to t he 
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system. Things are not so simple, however. 

When we adopt scale invariant measure, the fluctuation of the area of each 

triangle is very large. This large fluctuation is certainly necessary to reproduce the 

fractal structure which is observed in dynamical triangulation. At the same time, we 

may have to worry that infinitely large triangles as well as infinitely small triangles 

appear in the configuration when we increase the number of triangles. This problem 

may be cured dynamically, since the distribution of the area of triangles may not 

be scale- invariant. If this is the case, the necessity of the scale invariance of tiH' 

system at the tree level becomes quite obscure. In any case, these matters should 

be settled in order to establish the validity of Regge calculus in studying quantum 

gravity. 

As for the dynamical triangulation, we cau rely on it as a proper regularizatiou of 

quantum gravity. If we can obtain a sensible continuum limit, then we may expect 

to have the general covariance. \\'e pointed out that there is a considerable freedom 

in the choice of the lattice action and IV<" should not be re&tricted to the simplc~t 

action when we search for a non trivial fixed point. Thus \H' may still hm·c a hop<' 

also in three dimensions, where the phase transition is found to be first order for 

the simplest action. 

In four dimensions, there is a second order phase transition. However dc<'p in 

either phase. the configuration seems to have some trouble. ln the weak coupling 

region, the pinched structure dominates and the Haussdorff dimension is quite low. 

The situation might lw called "branch('d polynwr". ln the strong conpliug region, 

on the other hand, there is a vertex with wry large orckr. \\ 'c han• to clarifv whetlwr 

these unwanted properties oft lw manifold is cur<'d at t h<• nitical point. \\·hen· W<' 

hop<' to take the continuunt limit. 

\Ve add an action which suppresses a ,·ertex with V<'tT large order and havr 

found that the system is always in the branched polymer phase. Prom this study, 

we can obtain a picture of the phase transition that it is caus<'d bv the scYcrc 

competition among th<' baby un iverses trying to IJ<' tlw dominant one. \\'e also 

observed a clear anti correlation of the conformal mode between nearest neighbor 
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vertices. This suggests that the branched- polymer structure might be regarded as 

a manifestation of the conformal mode instability known in the continuum theory. 

We hope to confirm this suggestion by studying the system with an additional local 

action which controls the conformal mode instability. We also think that we have 

to study more on three dimensions and clarify the difference from four dimensions 

in more detail. \~le should try some local actions and sec if the order of the phase 

transition changes. 

Although we cannot make any definite conclusion at present as to the continuum 

limit of higher dimensional quantum gravity, we feel that the characters of the 

system have been revealed little by little. We hope such an eft'ort t.o get qualitative 

information will eventually lead to the observation of a scaling behavior and the 

continuum physics in ncar future. 
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