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Abstract

Quantum key distribution (QKD) allows two distant parties to share a secret key and re-
alizes a communication with information-theoretic security by combining it with one-time-pad
encryption. Since the Bennett-Brassard 1984 (BB84) protocol was proposed, a large number
of researches on QKD have been conducted from both aspects of theory and implementations.
For implementations of QKD, weak coherent pulses (WCP) are heavily used as optical signals
because they are easily generated by typical lasers and attenuators. The security for QKD with
WCP has been also studied along the development of the implementations.

In this thesis, the security analysis of the QKD with WCP is considered and further developed
from two aspects. First, the security of théfdiential-quadrature-phase-shift (DQPS) protocol
is proved. The DQPS protocol has essentially the same set up as the phase-encoding BB84
(PE-BB84) protocol, which is one of the most frequently demonstrated protocols. Since the
known proof techniques for the BB84 protocol is not directly applicable, a modified approach
is developed which is suitable for the DQPS protocol. As a result, the advantage of the DQPS
protocol in the key generation rate over the PE-BB84 protocol is shown in the asymptotic limit
where the size of communication data is assumed to be infinite.

Second, a new method for security analysis with finite-key size is proposed as a suitable
method for QKD protocols using WCP. fierently from the current method based on simple ran-
dom sampling, the proposed method relies on Bernoulli sampling, which is associated with bino-
mial distribution. The security of the BB84 protocol is proved by using the Bernoulli-sampling
method, enabling a simpler analysis with a smaller number of parameters to be estimated com-
pared to the method with simple random sampling. The required number of detected signals to
generate a secret key is shown to be smaller th&nwbich is drastic improvement from the
number~ 10’ obtained in the previous result. The proposed method is also applied to the DQPS
protocol, and its advantage over the PE-BB84 protocol is certified even in the finite-key regime.
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Chapter 1

Introduction

1.1 Background of quantum key distribution

Quantum information theory not only allows us to understand quantum physics deeply through
classical information theory but also gives us a brand-new applications to the present information
technology. One of the applications with high possibility of realization is quantum cryptography,
which is expected to be a part of the future-cryptographic system. While quantum cryptography
has information-theoretic security, the security of most cryptography used in these days rely on
the computational hardness assumption, in which some mathematical problems are supposed to
be dfficult to solve in practical time with the present computational resources and algorithms.
This indicates that even if important information is strictly protected by the present cryptography,
it might be decrypted by strong computational power or a new algorithm in the future. A famous
example is Shor’s algorithm [1] implemented with quantum computer. It is known to solve the
prime-factorization problem in polynomial time to threaten the security of the RSA cryptography,
which is widely used in the present communication system. Such an anxiety for the future devel-
opment of computer science is needless as far as the quantum cryptography is concerned thanks to
its security assured by information theory. Quantum cryptography is composed of two elements:
secret-key cryptography and quantum key distribution (QKD). For secret-key cryptography, the
information-theoretic security is proved if a secret key is used only one time and its length is not
shorter than that of the plain text, which is called one-time pad [2]. The problem is to share a
secret key between distant parties, and this is the purpose of the quantum key distribution.

The first QKD protocol was proposed by Bennett and Brassard in 1984 and is called the
BB84 protocol [3]. Diferently from the present cryptography where eavesdropping is generally
undetectable, the intervention of an eavesdropper can be detected in the protocol by monitoring
bit errors between two parties. In 1988, Benrettal. also proposed the concept of the privacy

1



2 CHAPTER 1. INTRODUCTION

amplification [4]. They show that if the amount of eavesdropper’s information is bounded, a
secure key can be extracted by compressing the shared key by the corresponding amount. This
opens the field of security proof of QKD, in which the amount of eavesdropped information is
theoretically bounded based on the rules of quantum physics. In 1996, the first security proof of
the BB84 protocol is given by Mayers [5], followed by Shor and Preskill [6] based on the ideas
of Lo and Chau [7]. On the other hand, these proofs assume ideal situations where Alice sends a
single photon and Bob also receives it. Furthermore, the proofs were asymptotic analysis where
the key size is assumed to be infinite to eliminate the statistical fluctuation.

For implementations of quantum key distribution, the behaviors of practical devices such as
lasers and detectors deviate from the ideal mathematical model. In particulaftettteoé light
sources emitting multiple photons is serious because there is a photon-number-splitting (PNS) at-
tack [8], in which Eve can obtain the full information of a secret key without disturbing the signal
by using a part of multiple photons. The first security proof considering tfesteis conducted
by Inamoriet al. in 2001 [9]. Later Gottesmangt al. proposed a quite simple concept of “tag-
ging” to treat the multiple-photon emissions [10]. They pointed out that a round where the sender
emits multiple photons and a round where she emits a single photon can be in principle classified
if the optical phase of each signal is randomized. A round with multiple photons is regarded as
tagged and considered to be insecure, while a round with a single photon is regarded as secure by
applying the security proofs for the single-photon protocol. By combining the tagging idea with
the later security proof which does not require the specific model of the receivers [11, 12, 13],
the security of various practical QKD protocols including the BB84 protocols can be proved with
simple theory [14, 15, 16, 17].

Another theoretical problem in practical situations is the security proof considering¢oe e
of finite key size. Since the security analysis contains estimations of parameters related to leaked
information, statistical fluctuations due to the finiteness must be taken into account, which is
called finite-key analysis. Although there appeared security proofs with finite-key analysis based
on Mayer’s proof [9] and Shor and Preskill's proof [18, 19], these earlier results did not follow
the security definition with composability [20, 21], which most of the current security proofs rely
on. On the other hand, several proofs [22, 23] with composable security definition used law of
large numbers for parameter estimations, which resulted in low key generation rate if the size of
exchanged data is limited. It is expected that a simple security analysis with a smaller number
of estimated parameters achieves higher key rate due to the small overhead for finitéesize e
Many of the current security proofs [24, 15, 16, 17] with composable finite-key analysis use
random sampling theory or Azuma'’s inequality [25] as the estimation methods.

As theoretical aspects of QKD develop, many implementations of QKD were conducted in
laboratories, on fields [26, 27, 28] and even in the space [29, 30, 31]. For the implementations in
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laboratories and on fields, a signal light is usually guided by optical fibers, in which the informa-
tion tends to be encoded on the optical phase of weak coherent pulses (WCP). One of the benefits
to use the phase-encoding method is that it can be conducted with simple set up using the current
technology. The simplicity is desired not only because of a lower cost and a higher clock rate,
but also because complicated systems and procedures tend to impose severe restrictions on the
model of the practical apparatus, and téfsufrom a large overhead involved in the finite-key
analysis. The BB84 protocol with phase encoding (Phase-encoding BB84, PE-BB84 henceforth)
[3, 32], which uses four relative phas€sz, r, 37”} between two neighboring pulses, is one of the
simplest QKD implementations among phase-encoding protocols. In the PE-BB84 protocol, the
sender and the receiver only need phase modulators and a passive Mach-Zehnder interferometer
with two detectors. With its established security [5, 6, 10, 12], a number of demonstrations have
so far been reported [33, 34, 35].

For long-distance communication, the laser-based BB84 proto@@rsdrom PNS attacks.
It is often used with decoy-state method [36, 37, 38] to add protection against such attacks, but
the decoy-state method sacrifices the simplicity of the PE-BB84 protocol, requiring additional
devices as well as severer physical assumptions on the light source. It is common to assume
Poissonian statistics of the photon number, and an attempt to relax it into conditions on the general
photon number distribution still involves infinite number of inequalities [39]. In contrast, several
protocols have been proposed to achieve protection from PNS attacks without decoy states. The
differential-phase-shift (DPS) protocol has robustness against PNS attacks while retaining (or
even improving) the simplicity of the PE-BB84 protocol, and the demonstration with a high clock
rate was conducted [40]. In 2014, the round-robin DPS (RR-DPS) protocol was proposed [41]
as a variant of DPS protocol, which is numerically shown to achieve higher key generation rate
compared to the decoy-state BB84 protocol, but its implementations [42, 43, 44, 45] are not
simple because of an additional element which is required in the receiver’s apparatus to measure
relative phases of two pulses with various intervals.

1.2 Contributions of this thesis

For the purpose of achieving a higher key generation rate with a simpler protocol, in this thesis
two contributions are shown in terms of the security of QKD using practical WCP. The first one
is the security proof of the fferential-quadrature-phase-shift protocol (DQPS) protocol [46] in
asymptotic-key regime. This work was published in [47]. The DQPS protocol was proposed
by Iwai and Inoue in 2009 and is regarded as a variant of the DPS protocol as well as the PE-
BB84 protocol. It is implemented with essentially the same set up as the PE-BB84 protocol
without sacrificing its simplicity. The security of the DQPS protocol is proved by modifying the



4 CHAPTER 1. INTRODUCTION

tagging idea in this thesis. The result shows that its secure key rate is eight-third as high as that
of the PE-BB84 protocol in the asymptotic limit. Practical aspects of the DQPS protocol is also
investigated, in which the calibration method for light source is shown to be as simple as that of
the PE-BB84 protocol.

The second contribution is the proposition of a new method for finite-key analysis. While
most of the finite-key analysis is based on simple random sampling, the proposed method relies on
Bernoulli sampling, which is associated to binomial distribution. This work was motivated by the
finite-key analysis for the DQPS protocol, but it can be applied to various kinds of protocols, such
as the BB84 protocol, the six-state protocol [48], and high-dimensional QKD protocols [49, 50].
In particular, the method enables simpler analysis with less estimation process for the WCP-
BB84 protocol compared to the analysis with simple random sampling. The required number
of detected signals to generate a secure key reduces fooh® 10/, which was obtained in the
previous work [23]. Furthermore, by applying the analysis to the DQPS protocaol, its advantage
of the key rate over the PE-BB84 protocol is confirmed also in the finite-key regime.

1.3 Organization of this thesis

This thesis is organized as follows.

In Chapter 2, basic ideas of QKD are introduced. First, we summarize the concepts and
notations used in this thesis. Next, various elements of QKD protocol (devices, procedures) are
shown along with their assumptions. As an example of a QKD protocol, the BB84 protocol is
described. The security definition of QKD is also given in this chapter.

In Chapter 3, the security of the BB84 protocol is proved based on the proof with comple-
mentarity [12]. The useful tools for security proof, source replacement, phase error, and a virtual
protocol are introduced. By using those tools, we prove the security of the BB84 protocol under
the assumption that the number of phase errors are bounded.

In Chapter 4, QKD using WCP are discussed from both theoretical and practical aspects.
First, PNS attacks are described. After GLLP’s tagging idea is introduced, the dependence of
secret-key length on phase errors is derived for WCP-BB84 protocol by using the tagging idea.
Based on the resulting key length in the asymptotic limit, we analyzeffaet®f PNS attacks on
the WCP-BB84 protocol. For practical aspects, the PE-BB84 protocol is introduced as a specific
form of the WCP-BB84 protocol. Decoy-state method is also discussed with its current practical
problems. Finally, the DPS protocol is introduced with its variant, the RR-DPS protocol.

In Chapter 5, the security of the DQPS protocol is proved in the asymptotic limit. After
describing the protocol and assumptions, the security proof is conducted with construction of a
virtual protocol and an alternative rule of tagging. The result of numerical calculation is shown
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to make comparison to the PE-BB84 protocol in terms of key-generation rate. We discuss the
generality of the proof and simplicity of the DQPS protocol, and a possible improvement for the
proof is suggested.

In Chapter 6, the method for finite-key analysis based on Bernoulli sampling is proposed.
First the sampling problems in security analysis are introduced along with their related statistics.
The proposed method is applied to the ideal BB84 protocol and WCP-BB84 protocol to make
comparison with the conventional method with simple random sampling. The proposed method
is also applied to the DQPS protocol to confirm its advantage over the PE-BB84 protocol in the
finite-key regime. Finally, the obtained results are summarized and outlooks related to this work
are discussed.

In Chapter 7, the summary of my researches and prospects for the future works are presented.






Chapter 2
Basic ideas of qguantum key distribution

Quantum cryptography enables communication with information-theoretic security. Although its
security depends on the whole system [28] including one-time-pad communication and secret-key
management, this thesis focuses on “quantum layer” of quantum cryptography, namely, quantum
key distribution (QKD). In this thesis, we treat QKD with two-level system (qubit-based QKD)
rather than qudit-based QKD [49, 50] and continuous-variable QKD [51]. This chapter is for in-
troduction of basic ideas used in QKD. Sec. 2.1 represents the tools and notations used throughout
this thesis. The typical structure and assumptions of QKD protocols are shown in Sec 2.2. The
security definition of QKD protocol is given in Sec 2.3.

2.1 Preliminaries

For later convenience, we introduce several basic concepts and properties in quantum information
theory, and summarize notations frequently used in this thesis.

2.1.1 Tools of quantum information theory

Here we introduce several useful tools of quantum information theory: POVM, CPTP map, trace
distance, and fidelity.

POVM

POVM (positive operator valued measure) is one of the forms representing quantum measure-
ment. POVM represents a set of positive operatéi$ satisfyingy, E; = 1 wherel is the
identity operator. Each element of the &gtis called POVM element. Any physical measure-
ment can be represented with POVM. For a density operatihre"probability that the outcome

7
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corresponding td; is obtained is given by ToE).

CPTP map
CPTP map is short for completely-positive and trace-preserving map. Amap— &(p) acting
on a density operatqris called a completely-positive map if

(1e8)p)=0 (2.1)

holds wherel is the identity map on the auxiliary system asids"a density operator on the joint
system. The mag is called a trace-preserving map if

TrEP)) =1 (2.2)

for any normalized density operatpr Note that any input-output relation which is physically
realizable is a CPTP map. A CPTP map can be expressed with operator-sum representation as

&) = ) KipK], (2.3)

whereK; is an operator acting on the same Hilbert spage, andy; K'K; = 1 with the identity
operatorl.

Trace distance

Trace distance represents distance between two quantum states. Wedldfmee distance
between two states and & as%ll o — 0 || with trace norm||A]| = Tr( \/m). The triangle
inequality holds in terms of trace distance:

1. . a 1. .
=llp- “No-7ll==llp-7I :
2|Ip 0||+2||0 Tz 2||p 7|l (2.4)
Trace distance has a propertyrobnotonicity that is, for any CPTP ma®,
1 ... R 1 . .
SI180) ~E@) I < Sllp-all (2.5)
is satisfied.
Fidelity

Fidelity is another distance measure for quantum information. We défifidelity of two states
pando as

F(.6) = ||VBVE -
"DThe definition is not unique, and sometimigs— & || is called trace distance.
"2The definition is not unique, and sometinjedp V& || is called fidelity.

(2.6)
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Uhlimann’s theorem [52] holds in terms of fidelity:

F(6.6) = max| ;i) %, (2.7)

wherely,) and|y,) are purifications op ‘and o, respectively. Fidelity also has a property of
monotonicity: For any CPTP maf

F(&(p), E(0)) = F(p, ) (2.8)

holds. Trace distance is upper-bounded by fidelity as
1 . . —
Slo-all< y1-F{.0). (2.9)

2.1.2 Notations in this thesis

Here, we summarize notations used in this thesis. We adopt an abuse of notation to use the same
symbol for a random variableand its valuen, whenever the distinction is obvious. For example,
we denote Pr( > 3) instead of Pr{"> 3). We denote by Pnj the probability mass function
Pr(A = n). Similarly, we use Pr(| m) instead of Pn{"= n | M= m).

A bold character, for exampl¥, represents a vector of bit strings where addition of two
vectors is defined by addition modulo 2 for each element. We use the ndiétesithe length of
V, and use w¥) as weight oV, namely, the number of 1s containedMnWe define the product
of two vectorsV - W (where|V| = W|) asV - W = V;W; + VoW, + .....Vy\Ww where the plus
sign represents addition modulo 2 (heseW e {0, 1}). For example, fo = (0,1,0,0, 1) and
W =(1,0,0,0,1), we havdV| =5, wt(V) = 2 andV - W = 1.

We define the following increasing function etefined forx > 0:

h(x) = {—xlogzx— (1-X)logy(1-%) (0<x<1/2) (2.10)

1 (x> 1/2).

For 0< x < 1/2, h(x) is identical to the binary-entropy function.

This thesis mainly deals with the BB84 protocol and the DQPS protocol, both of which use
two bases, one for generating a secret key (data basis) and the other for monitoring leaked infor-
mation (check basis). Throughout this thesis except Chapter 5, we assigm#sés to the data
basis, and th& basis to the check basis.

We defind0;) and|1;) as basis vectors & basis on a qubit systen) := (|02) +|12))/ V2
and|1x) := (|0,) — |12))/ V2 as those oK basis. When the same notations are used for an optical
signal (usually denoted by syste®), it should be understood that they refer to the states in the
subspace of a single photon contained in two modes, such as polarizations. For simplicity, we



10 CHAPTER 2. BASIC IDEAS OF QUANTUM KEY DISTRIBUTION

VI

denotg0) ® |0y as|00). The ket notation characterized by vector represghits= (X),_, IVi). The
four Bell states are represented|thy) and|¥*) where
) = —=(100y) + 112)) (2.12)
. \/z x 7)), .
1
[P*) ;= —(|01) + |10,)). 2.12
VE( z ) (2.12)

2.2 QKD protocol

Although there are various types of QKD protocols, they generally have similar components and
procedures. In this section we introduce basic components of QKD with their assumptions and
the procedures in QKD protocol. We also introduce the BB84 protocol as an example of QKD

protocol.

2.2.1 Components and assumptions

We divide QKD components into the sender’s devices, the receiver’s devices, quantum channel
and classical channel to clarify the assumptions usually adopted in QKD protocols. In most
QKD protocols, there appear legitimate parties Alice and Bob who want to share secret keys and
eavesdropper Eve. Throughout this thesis, we assume that Alice is a signal sender and Bob is a
receiver.

Alice’s (sender’s) devices

Alice’s devices are mainly used for preparing quantum states. One of essential devices at Alice’s
site is a light source. From the viewpoint of simplicity and high repetition rate, an attenuated
laser is usually used as a signal source, while QKD with single-photon source has been demon-
strated [53] and sophisticated ideas for sources using spontaneous parametric down conversion
were proposed [54, 55]. Random number generator is also necessary for basis choice, generating
a raw key bit, randomization of optical phase and generating hash functions and so on. Although
we assume that perfect (uniform and independent) random numbers can be prepared, practical
random number generators have imperfections causing non-uniformity of random numbers and
correlations to outside systems. To fill the gap from the practical side, researches on quantum ran-
dom number generator (QRNG) have been conducted. In these days, QRNG using the random-
ness of which-path information of photon is commercially available with the rate 4 M&p5S],

and faster one with 6 Gbjs was demonstrated based on quantum-phase fluctuations [57]. As

is referred to as “side channel attack” in the current cryptography system, in practice there are
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attacks using unintended information leak (such as feeble electromagnetic wave from devices),
and hence the appropriate countermeasures are required. On the other hand, in this thesis we
assume that internal information of the devices is not leaked outside.

Bob’s (receiver’s) devices

The role of Bob’s devices is to carry out measurement on quantum states to obtain a key bit. A
main device at Bob’s site is a detector. In practice, threshold detectors, which can tell a single
photon or more from vacuum, are often used without sacrificing the security. In several QKD
demonstrations with high clock rate [40, 53], superconducting single photon detectors (SSPDs)
were used. Recently, SSPDs with high detectifiiciency (93 %), low dark count rate (1 c.p.s)

and low timing jitter (150 ps) were developed [58]. A random number generator is also necessary
if Bob needs basis choice in the protocol. A larger number of side-channel attacks (security loop-
holes) are known for the receiver’s devices [59, 60, 61, 62] than the sender’s devices, which leads
to the idea of measurement-device-independent (MDI) QKD [63]. In MDI QKD, both Alice and
Bob are senders and the receiver’s devices are possessed by an untrusted party “Charlie”. The
protocols dealt in this thesis are based on conventional Alice’s state preparation and Bob’s mea-
surement. We assume that Bob’s devices are also side-channel free similarly to Alice’s devices.

Quantum channel

Quantum channel is used for communication with quantum states between Alice and Bob. For
practical aspects, optical fibers or free space are suitable as quantum channel for light. Optical
fibers are used for most QKD implementations on the ground [26, 27, 28], while the use of free
space is expected for implementations involving satellites [29, 30, 31, 64]. We impose no as-
sumption on quantum channel and hence Eve can conduct any physical operation on transmitting
signal without constraints on technology. For example, she can use noiseless and lossless channel
in principle.

Classical channel

Classical channel is used for all communication between Alice and Bob except the one with
guantum channel. While the information on classical channel is publicly open, we assume
that the information can not be tampered. This assumption is realized by Wegman-Carter au-
thentication [65], for example, consuming a small number of secret kepdarithm of the
communication-data size). Thus, Alice and Bob need to share secret keys in advance, which
implies that the role of QKD is not secret-key generation, but secret-key amplification. If we
compromise the information-theoretic security, the authentication is conducted by public-key
cryptography relying on computational-hardness assumptions, which partially makes sense since
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it is sufficient that the authentication succeeds at the present time to make the secret key shared
through QKD be secure even in the future.

2.2.2 Procedures

QKD protocols are composed of manipulation of quantum states and classical post processing.
In post processing, the procedures are classified as sifting, parameter estimation, error correction
and privacy amplification. Here we explain each procedure and introduce several related works.

Quantum manipulations

Quantum manipulations include Alice’s preparation of a quantum state, transmission of the state
and Bob’s measurement. Alice prepares a quantum state based on a random bit and basis choice
(if the protocol uses multiple bases) and sends it to Bob through quantum channel. Bob makes
measurement on the state to obtain one of outcd®ek, no-detectionand additional informa-

tion depending on protocols. We name the series of the above procedures for a single state as a
“round”. Alice and Bob repeat the round many times.

Sifting

In sifting process, Alice and Bob communicate with classical channel to determine whether each
round of the protocol is valid or invalid. For example, a round with no detection at Bob’s site is
invalid, and a round with basis mismatch between Alice and Bob is also regarded as invalid. Some
rounds may be chosen as samples for the following parameter estimation process. Alice and Bob
obtain bit strings called “sifted key” by concatenating the bits on valid and no-sample rounds.
In several works [13, 15, 16], sifting process is conducted at each round of the protocol. On the
other hand, Pfistest al. have recently pointed out [66] that the conventional security proof based
on simple random sampling can not be applied if we disclose the basis choice at each round of
the protocol. Thus, if one prefers tight security analysis currently used, sifting process is desired
to be conducted after all rounds are over in practical QKD protocols.

Parameter estimation

To certify the security of the protocol, we require parameters which characterizes Eve’s interven-
tion on quantum channel. For this, Alice and Bob disclose sample bits through classical channel
to obtain the statistics of bit errors. Based on the resulting statistics, Alice and Bob determine
whether they proceed to the following steps or abort the protocol. For example, if the number of
errors is too large compared to the data size, they abort the protocol.
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Error correction

Even if Eve is absent, Bob’s sifted key is generallfelient from Alice’s one because of the noise
inherent in quantum channel. In error correction process, Alice and Bob correct the obtained
keys to make it coincide with each other’s one through the communication with classical channel.
Based on the estimated bit-error rate on the sifted key, Alice and Bob apply an appropriate error-
correcting code. If multiple bases are used in the protocol and bit errors on sifted key do not
contribute to the security analysis (e.g. in BB84), the estimation of error rate on the sifted key can
be omitted. Instead, they apply an error-correcting code with predetermined communication cost
followed by verification process. In verification process, Alice and Bob compare a small number
of hash values computed from the sifted keys, and if those values féeeedt between Alice

and Bob, they abort the protocol. In practice, the low-density parity-check (LDPC) code [67] is
often used for error correction. For fast implementation of LDPC code, the size of a sifted key is
desired to be fixed.

Privacy amplification

Privacy amplification is the process to obtain a secret key decoupling from Eve’s system. The
concept of privacy amplification was proposed and developed by Begineltt[4, 68] in early

days. The idea is that if the amount of information leaked to Eve is upper-bounded, the secret
key can be generated by applying an appropriate compressing function on the sifted key, which
shortens the key length by the amount corresponding to the leaked information. The bound on
leaked information is not directly observed and has to be theoretically determined based on esti-
mated parameters. One of compressing functions established for the privacy amplification is the
universa hash function [69], and Toeplitz matrix is frequently used in practice due to its small
computational complexity. Recently, Hayashi and Tsurumaru constructed another hash func-
tions [70] which belong to a broader class than univegrsash function. These functions require

less random seeds as well as enables us to treat their non-uniformity, which is useful considering
the imperfection of random number generators. Although the concept of privacy amplification
was proposed mainly for quantum key distribution, recently it has been applied to other fields
such as randomness extraction [71] for quantum random number generators.

2.2.3 BB84 protocol

As an example of QKD protocol, we introduce the Bennett-Brassard 1984 (BB84) protocol [3]. In
the protocol, Alice and Bob independently chooses two basbsagis and basis) with a biased
probability. The final key is generated only frafrbasis data, whil&-basis data is used for leak
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monitoring to determine the amount for privacy amplification. We say a round{})-labeled”
if both Alice and Bob chos&(X) basis and photon detections are reported at that round. The
number of total rounds is fixed to Img,,, and hence the size of the final key is variable.

The protocol proceeds as follows with predetermined parameterx™= 1 — fz andnep.
Following the classification in the previous section, Steps (1)-(4) correspond to quantum manip-
ulations, Steps (5) and (6) represent sifting process and Step (7) is parameter estimation.

(1) Alice choose<Z basis orX basis with probabilitypz and px, respectively. She chooses a
uniformly random bit0, 1}.

(2) Alice prepares one of stat@% o, pz.1, Px.0, Ox.1} based on the selected basis and bit. She sends
the prepared state to Bob over the quantum channel.

(3) Bob chooseg& basis orX basis with probabilitypz and px, respectively. He measures a re-
ceived state in chosen basis and obtains the out¢0rie no-detection

(4) They repeat the sequence (1) to (3) (which we call a rouna)dyimes.

(5) Bob publicly announces whether each round has resulted in a detection or nj; betthe
number of rounds with detection.

(6) Alice and Bob disclose all of their basis choices. They define sifted&kgyandxgz by con-
catenating the bits for th#-labeled rounds, and similarly defirg x andkgx for the X-labeled
rounds. Let their sizes b® := |kaz| = [ksz| andny := |kax| = [kgx|-

(7) They disclose and compatgx andxgx to determine the number of bit errdtg included in
them. Letw represents the following three observed numbers:

w .= (kx, Ny, nz). (213)

Through public discussion, Alice and Bob determine whether they abort the protocol or not. If
the protocol does not abort, they determine the final keyl&ize(> 0).

(8) Through public discussion, Bob corrects his keys to make it coincide with Alice’s key

kaz and obtainkgy (Ikg| = nz).

(9) Alice and Bob conduct privacy amplification by shortening and«g; to obtain final keys

Ky, andky, of sizel.

Intuitively, security of the BB84 protocol is ensured by the uncertainty principle: If Eve at-
tempts to access information f@rbasis, then information foX basis is disturbed. Although the
BB84 protocol is the first QKD protocol, it is as well the most frequently demonstrated protocol
even in the current QKD implementations. A possible reason for the popularity is the simplicity
of the protocol, but another remarkable property is that the BB84 protocol also has established se-
curity with simple proof, which originates from the symmetry of thandX bases. In Chapter 3,
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we show the simple security analysis of the BB84 protocol by using the proof of complementar-
ity [12].

2.3 Security definition

Here we introduce the security criteria with “composability” which are currently accepted in
the field of QKD. The concept of composable security originates in modern cryptography (not
guantum) [72] and was first discussed in the context of QKD by Best@f [21, 73], followed
by Renneset al. [20] and Unruh [74]. Roughly speaking, composable security implies that if two
protocols are respectively shown to be almost secure, the protocol combining the two protocols
Is also almost secure. This property is important because secret keys generated from a QKD
protocol are used in other protocols, such as one-time pad and authentication of classical channel
(see Sec. 2.2.1).

As is adopted in the current security proofs [13, 75, 15, 16, 24, 76, 17], in this thesis we follow
the composable security definition represented in Ref. [21]. For a bit skiad8, 0, 1, 00, 01, 10,
11,000 ...}, let us defind|x)} as a set of orthogonal bases on the spdg® H1 © Ho & ... & Hy,,
with each dimension of; being 2. Let .. be a state after finishing the protocol defined on
the systenA (Alice), B (Bob) andE (Eve), which is written as

Page = Z Pr(KfAmz’ Kf||3nz) |Kgnz, Kfllanz Kg\nz’ Kgnz AB ®ﬁfén(KfA"jz’ Kfllanz (2.14)
Kpz K.
where Pk, «[,) represents the probability that Alice and Bob obtain the final &8y and

kg, respectively, andk),, kg, o i= ki), IKEY) . Let 5ie be an ideal state where Alice’s and
Bob’s final keys are uniform and mdependent of Eve’s system (except final-kel):size

phed = Z 2, P05 L 1k 109 (i, Klns ® A(), (2.15)
k. |k|=I

where Prl) represents the probability to obtain the final key of diznd *'”(I) is Eve’s state
conditioned on, which are related to the parameters in the protocol as

Pil)= ). Predl <), (2.16)
K;'? K%nz' IKE'{‘ZI IKf'“\ |
"fln() Z Pr(Kfln K y5fingdin - fin (2 17)
Pr (I) Az>KBz)PE \Kpz,Kp7)- .
Kfln fan. |Kf£,12| |Kf|nZ| |

Since it is practically impossible to obtain the final state as in the ideal form Eq. (2.15), we allow
the small probabilityesec that the protocol is insecure. Such a concept is callggsecurity, and
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its exact definition is described as follows.

Definition of e cSecurity
The protocol isssec-Secure if and only if the trace distance betwgéh. and 5% is no larger

than egeq
” ~fin ~ideal

Pnee ~ Page |l < €seo (2.18)

Typically the value ok is set toegec ~ 10719,
For the convenience of security proefs-security is usually divided inte.-correctness and
es-Secrecy [77]. The protocol is callegtcorrect if and only if

Priiy # kgy) < €. (2.19)
Definedi andgiie? as
ﬁf&nE = TrB(pfln Z Pr(Kfln )leln ><Kf|n Afln(Kfm ) (2.20)
f|n
Aldeal : TrB(pldea _ Z Z PI‘(|) |K> <K|A® "fln(l) (221)

I & k=l

The protocol is calleds-secret if and only if

—||;31'\”E PRl < & (2.22)

By using the triangle inequality Eq. (2.4) in terms of trace distance, one can show that if the
protocol ise.-correct ands-secret, the protocol is algg.-secure withee. = €.+ €5 (See Ref. [12],
for example). It is useful to quantilg-correctness ang-secrecy separately. Sineecorrectness
is ensured in the protocol through the verification process or estimation of bit errors, the target of
security proof is to ensurg-secrecy of the protocol.

Until the concept of composable security was generally accepted, the security of QKD was
typically evaluated by Shannon mutual informatidmﬁ'{‘z, Ke) [78] between Alice’s final key
K“A'”Z and Eve’s classical strindgé: obtained by measurement on her system [9, 18, 19]. However,
small |(K2:]Z, Kg) does not necessarily meaassecrecy with smalks. Ref. [21] shows thats-
secrecy is satisfied if

|(ky; Ke) < 27492, (2.23)

where we fixed the value df = |:<“'n | for simplicity. Later, the exponential dependence of the
mutual information on the final key size as in Eq. (2.23) was shown [79] to be necessary as well
as stficient for es-secrecy, which implies that the mutual information is not suitable as security
definition.



Chapter 3

Security proof of the BB84 protocol

So far a large number of security proofs are given for various protocols, but the number of the
security proofs for the BB84 protocol is outstanding compared to those for others. The reason
is supposed to be that it has a beautiful symmetry of two conjugate observables, which enables
a simple proof. Many security proofs for other protocols also use the property of two conju-
gate observables and they are regarded as a variant of the proof for the BB84 protocol. Thus,
understanding the security proof for the BB84 protocol might be essential to address the secu-
rity of general QKD protocols. The first security proof for the BB84 protocol was given by
Mayers [5] although it was complicated. The simple proof using quantum error correction was
proposed by Shor and Preskill in 2000 [6]. Later, the other simple proofs are suggested by Koashi
in 2005 [11] and by Tomamichedt al in 2012 [13]. In this chapter, the security of the BB84
protocol is shown with a method based on complementarity proposed by Koashi [11, 12]. The
proofs includes finite-key analysis and satisfies the composable security definition [20, 21]. As a
preliminary, three methods (mentioned above except Mayers’) of security proofs currently used
are introduced and compared in Sec 3.1. In Sec. 3.2, tools for security proof are introduced to
use the proof with complementarity, containing replacement of state preparation, phase error and
virtual protocol. By using those tools, the security of the BB84 protocol is shown based on the
proof with complementarity in Sec. 3.3. The result of this chapter is applied to Chapter 5 and 6.

3.1 Three types of security proof

As far as the qubit-based protocotsf (continuous variable QKD [51]) including the BB84 pro-
tocol are concerned, the security proofs which are valid for Eve’s general attack are mainly clas-
sified into three types: the proof with entanglement distillation protocol (EDP) [7, 6], the proof
with complementarity [11, 12] and the proof with entropic uncertainty principle [13]. We briefly

17
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introduce those three proofs focusing on what concepts are used and what physical assumptions
on devices are required.

Security proof with EDP

The security proof with EDP was originally proposed by Lo and Chau in 1999 [7]. They prove the
security of the BBM92 protocol [80], in which an entangled photon pair is separately distributed
to Alice and Bob, by using the ideas of entanglement distillation protocol [81, 82, 83]. Later in
2000, Shor and Preskill show that the security of the BB84 protocol is reduced to the proof of the
BBM92 protocol [6]. The proof is based on simple CSS quantum error correction code [84, 85]
and the security is evaluated how good both bit errors and phase errors (mentioned in Sec. 3.2.2)
are corrected. On the other hand, it requires an assumption that Alice and Bob make ideal qubit
measurements. The proof with EDP is used not only for the above two protocols but also for B92
protocol [86, 87], six-state protocol [48, 88], DPS protocol [89, 90] and so on.

Security proof with complementarity

The security proof with complementarity was proposed by Koashi in 2005 [11]. It follows the
spirit of the first proof for the BB84 protocol given by Mayers [5], in which the security is an-
alyzed with uncertainty principle at Alice’s system. While it adopts the similar proof with EDP
by using the idea of phase error correction, the bit error correction is separated from the security
analysis and the security is evaluated how good phase errors are corrected. Compared to the proof
with EDP, the physical assumption at receiver’s devices is relaxed as follows:

Condition of the receivef): The probability that a signal is detected at the receiver is indepen-
dent of the basis choice.

The proof with complementarity is applied to the BB84 protocol [14], round-robin DPS proto-
col [41] and so on.

Security proof with entropic uncertainty relation

The security proof with entropic uncertainty relation was proposed by Tomaméthal in

2012 [13]. Dtterently from the previous two proofs considering phase error correction, the secu-
rity proof is denoted in terms of smooth min-entropy. Smooth min-entropy quantifies the amount
of uniform randomness that can be extracted from the quantum system of finite size and it directly
bounds the eavesdropped information in finite-key regime. The security proof is composed of the
uncertainty relation of smooth entropies [91] and quantum leftover hashing lemma [92], which
were also shown by Tomamichet al.. The assumption for source and receiver is identical to
that of the proof with complementarity. The proof is applied to the BB84 protocol [13, 15], MDI
protocol [63, 16] and continuous-variable QKD [75].
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3.2 Tools of security proof

Here three theoretical tools are introduced to use the security proof with complementarity in
Sec. 3.3. The replacement of state preparation is the idea to assume an auxiliary qubit at Alice’s
site, which is commonly used for the three proofs in the previous section. Phase error and virtual
protocol are used in the proof with EDP and that with complementarity although their meanings
are slightly diferent between the two proofs.

3.2.1 Replacement of state preparation

Most protocols of QKD including the BB84 protocol belong to “prepare-and-measure (PM)”
type, in which Alice prepares a quantum state based on a selecting bit and sends to Bob, and
he makes measurement on the state to obtain a key bit. Another type of QKD protocol is called
entanglement-based protocol, in which an entanglement state is distributed to Alice and Bob and
they make measurement to share key bits. While the PM-type protocol is easier to implement in
general, it is convenient for the security proof to convert the PM-type protocol to entanglement-
based protocol where Alice generates an entanglement state and sends a part of it while keeping
the other part. Suppose that in the PM-type protocol, Alice selects a bit 0,1 with probajlity 1
and that she preparps,andpz 1 on the systen® based on her selecting bit 0 and 1, respectively.
The state preparation pf o andpz is replaced by the procedure that Alice prepargson the
systemAS satisfying

1
Tr (|az) (azlaxas) = Ef)z,a (ae{0,1}), (3.1)

followed by making measurement on the syst&mwith Z basis{|0z),,|12)4}. The state on the
systemAS Eafter Eve’s interruption does not depend on the timing of Alice’s measurement on the
systemA because the systefis protected from Eve. Witlksg representing Eve’s interaction
between the accessible syst&nand her systerk, this property is roughly sketched by

[az) (azla Ese(vas ® PE) 8z) (azla (3.2)

= Ese(Tra(laz) (azla (Yas ® PE))) (3.3)
1. n

= SSE(E,DZ,a ®pE) . (34)

The form of Eq. (3.2) represents the state (not normalized) on the sysdrwhere the measure-

ment on the systerA is conducted after Eve’s intervention and the form of Eq. (3.4) represents
the state where the measurement is conducted before her intervention. Although the above argu-
ment is limited to a single round of the protocol, it can be extended to total rounds &here
includes Eve’s coherent interaction amonfietient rounds.
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3.2.2 Phase error

Phase error is a convenient concept to express the amount of eavesdropped information, which
is adopted in the security proof with EDP and complementarity. In contrast to the fact that an
observed error in the protocol is called as “bit error”, a phase error is defined through the virtual
process which is not conducted in the protocol. 8t be a state which is changed fropas”

in Eq. (3.1) after Eve’s intervention on the syst&nA phase error is defined as a virtual error
occurring when Alice and Bob maké-basis measurement aff on aZ-labeled round. Here,

in the proof with complementarity, Alice’s measurement is an ideaBsis{|Ox)a , |1x)a} Mmea-
surement on the systemwhile Bob’s X-basis measurement on the syst8ns not limited if

the detection probability is identical to that Afbasis measurement (In BB84, we use the actual
X-basis measurement which is conducted in the protocol). In the proof with EDP, both Alice
and Bob’s measurements are id&abasis measurements, which implies that a phase error is ob-
tained by the projective measurement to obtain the resiigf,s or |[10x)as. This corresponds

to another definition of phase error in the proof with EDP, in which a phase error occurs by Bell-
basis measurement to obtain the reghit),s or |[¥ )5 (Notations of Bell states are shown in
Sec. 2.1.2). This is because we have the relation

[ D7) (D7 [ap + [¥7) (F7lag = 101x) (O1x|ap + [10x) (10xlas - (3.5)

Intuitively, Eve’s strong interaction to reattbasis information leads to a large number of phase
errors because of the uncertainty principle. In the proof with EDP and complementarity, the
security is evaluated how good phase errors (also bit errors for EDP) are corrected through the
virtual protocol which is shown in the following.

3.2.3 Virtual protocol

The definition of the virtual protocol is not uniquely determined, but roughly speaking, it is re-
garded as a tool for security proof satisfying the following property: If the virtual protocol is
secure, then the actual protocol is also secure. Although the concept of the virtual protocol ap-
pears in both proofs with EDP and with complementarity, the requirement for the virtual protocol
is different from each other. For the proof with complementarity, Alice and Bob do not need to
share final keys in the virtual protocol but the goal is to generate a secure key at Alice’s site. The
only condition for the virtual protocol is given as follows.

Condition for virtual protocol:
For any Eve’s attack in the actual protocol, the final state of Alice and Eve in the virtual protocol
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Is identical to that of the actual protocol which is written as Eq. (2.20).

This condition means that if the virtual protocoldssecret for any attack in the actual protocol,
the actual protocol is als@-secret. In the virtual protocol, we only need to consider the attack
conducted in the actual protocol. Thus, the use of additional public information is allowed in the
virtual protocol while the public information announced in the actual protocol has to be disclosed
in the virtual protocol. For the proof with complementarity, the virtual protocol includes phase
error correction to obtain a numberX#fbasis eigenstatéy), at Alice’s site, followed by making
Z-basis{|0z), |1z)} measurement on the Alice’s system. Sifi¢, is a separable state as well as
causes the outcome 0,1 with even probability by maldrgasis measurement, the final state is
expected to be close to the ideal state Eq. (2.21) if the success probability of phase error correction
is high.

For comparison, let us mention the proof with EDP. In the proof with EDP, the virtual protocol
is the EDP followed by ide&-basis{|0;) , |17)} measurement by Alice and Bob. The goal of the
EDP is to generate maximally entangled stdi&), 5z between Alice and Bob by correcting bit
errors and phase errors simultaneously (with CSS code, for example). This requires the ideal qubit
measurements at Bob’s siteffecting the definition of phase error) and prevents us to decouple
the analysis of phase error correction from the bit error correction. In practical case where Bob
receives multiple photons, the EDP is incorporated to the squash operation [93, 94], in which the
measurement of the multiple photons is replaced by the equivalent single-photon measurement.
Differently from the proof with complementarity, the final state of the virtual protocol has to be
that of the actual protocol in terms of the whole system of Alice, Bob and Eve.

3.3 Security proof of the BB84 protocol with complementarity

Here, the security of the BB84 protocol is proved based on the proof with complementarity [12].
We assume that Alice’s and Bob’s apparatuses are ideal, namely, Alice sends a single photon
in the statedpwa = law) (@wls} (W € {Z,X},a € {0,1}) in Step (2) of the protocol shown

in Sec. 2.2.3 and Bob conducts ideal measurement with tintiesncy described by POVM

{10w) (Owls » 11w) (dwls » Is — 10w) (Owls — [1w) (lwls} in Step (3) corresponding to the outcome
{0,1,no-detection In this case, Bob’s measurement satisfies the conditipim Sec. 3.1.

In Sec. 3.3.1, the actual protocol is described with the replacement of state preparation. After
the main theorem denoting tlgsecrecy of the actual protocol is given in Sec. 3.3.2, the virtual
protocol satisfying the condition in 3.2.3 is constructed in Sec. 3.3.3. Finally the main theorem
is proved in Sec. 3.3.4. Since the statement about the fidelity extension in the original paper
(Eqg. (18) in Ref. [12]) is not correct from the perspective of composable security definition, it is
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replaced by the lemma 1 in Sec. 3.3.4.

3.3.1 Description of the actual protocol

Here we describe the ideal BB84 protocol in Sec. 2.2.3 in the alternative form based on the
replacement idea introduced in Sec. 3.2.1. In the ideal BB84 protpgok [@*) (O |5 satisfies
Eqg. (3.1) as well as

N 1.
Tr (Jax) (axlaxas) = SPxa (ae{0,1)). (3.6)

This means that the state preparation for hotbasis andX basis are replaced by preparation
of yas followed by the measurement on the systarwith the corresponding basis. Bob’s mea-
surement on the syste®iis also replaced by a filtering operation to make sure a single pho-
ton is received and transfer its state to a quhitfollowed by the orthogonal measurement of
B on {|Ow) (Owlg, 11w) (1wlg} depending on the chosen basis to determine the outcome 0 or 1.
Let us call it a “valid-detection” when the filtering succeeds, namely, when the outcome is not
“no-detection”. The above replacement implies that the basis choices by Alice and Bob can be
postponed after valid-detectigmm-detection is declared by Bob.

For simplicity, we assume that there is an error-correction scheme which egsooesectness
of the protocol, and denote the total cost for the error correctiotebyWe also assume that the
communication for error correction is encrypted by consuming secret key shared in advance,
which allows us to assume that no public information is announced for error correction. Further-
more, Bob corrects his key to agree on Alice’s one while Alice’s key is unchanged. Then we
see that the error correction scheme is no longer necessary for the virtual protocol to fulfill the
condition in Sec. 3.2.3. The actual protocol to prove the security is described as follows.

Actual Protocol.

(1) Alice prepareg®™),s.

(2") Alice sends the part of the state (syst&to Bob over quantum channel.

(3") Bob receives the signal and confirms whether it causes a valid-detection or not. If there is a
valid-detection, he keeps the quBitvithout measurement.

(4’) They repeat (1) to (3’) byn,ep times.

(5") Bob publicly announces whether each round has resulted in a valid-detection or niage;Let

be the number of rounds with valid-detections.

(6") For the nge rounds, Alice and Bob choos£ basis orX basis with probabilitypz and py,
respectively. They disclose all of their basis choices and discard the rounds where their choice
IS not identical. Let the number &-labeled andX-labeled rounds be; andny, respectively.

Alice and Bob makeX-basis measurement on the systa@mndB, respectively, on th&-labeled
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rounds to obtain bit stringé, x andkg x.
(7’) They disclose and compakg x andkg x to determine the number of bit errdkg contained
in the X-labeled rounds. Leab represents the following three observed numbers:

w .= (kx, Nx, nz). (37)

Alice and Bob determine the amount of privacy amplificatimfaw) based onw and the cost of
error correctiongc through public discussidH. If n; — m(w) < Agc, the protocol aborts. |If
it is not, they determine the final key length lé®) := n; — m(w). For privacy amplification,
they randomly seled{w) binary vectors/y, V, ...V, of sizenz such that each vector is linearly
independent.

(8’) Alice and Bob make&Z-basis measurement on the syst@mndB, respectively, oiZ-labeled
rounds to obtain bit strings, z andxgz as sifted keys.

(9’) Through public discussion, Bob corrects his key, to make it coincide with Alice’s key
kaz and obtainkgy (kg7 = nz).

(10) With kaz and{Vy}, final key of sizd(w) is calculated byefiAf‘z = (kaz-V1, kpaz- Vo, .o, Kpz -
Viw))-

We defineQ as all public information after step (7°), including Agc and{Vy}. Here,w andQ
are not fixed and treated as random variables. Défjgas the set of2 such that the protocol
does not abort. Let

Pabort := 1- Z PI’(Q) (3-8)

Q€T pass

be the probability that the protocol aborts, and
PABE = 10) (0lap ® AE(0) (3.9)

be the state under the condition that the protocol aborts. Since Eve can use the infofnation
freely, we assume that Eve has a st&lp(Q2| depending o2 where(Q|Q’) = 5q o With §; |
being Kronecker delta. The state on the sysfeE after step (7°) is described as

Pasei= ), PrO)Pige + PaornPAee: (3.10)
QeTpass
wherept)_ has a form of
P = @ 1) (Q). (3.11)

" One of methods to determine the cost for error correction is sampling a small portion of Bidsbeled rounds
at random. In this case, Step (7’) contains measurement and announcement of the sampled bits, and the sifted keys
kaz andkgz are defined as bit strings @hrounds in which the sampled bits are removed.
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For later convenience, define the following partial states:
P& = Trag(plde (3.12)
;3553 = Tre(e$20). (3.13)

We defineo?, 552 and a2 in the same manner. The statgse is changed tp._ after Step
(10), which has a form of Eq. (2.14).

3.3.2 Main theorem

Sincee-correctness of the protocol is assumed, it iffisient to prove that the protocol k-

secret to certify these (= € + &) -security (see Sec. 2.3). Lpf" and g% be the final state

and the ideal state of the protocol written as in Eq. (2.20) and Eqg. (2.21), respectively. The main
theorem is given as follows.

Theorem:
Suppose that the following inequality holds regardless of Eve’s strategy:

Prlkon > f(w)) < €r. (3.14)

where k, is the number of phase errors. If the amount of privacy amplification is se{dd e
[nzh(12) + log, L |, then we have

1
2| Afm _ A|deal|| < \/_\/M, (3'15)

wheref[ ] represents ceiling function.

The theorem ensures/@ vére + era)-secrecy of the protocol. Although a functidfw) satisfy-
ing Eq. (3.14) is not obvious here, it is obtained by classical sampling theory, which is treated in
Chapter 6.

3.3.3 Construction of virtual protocol

Here we show an example of the virtual protocol satisfying the condition in Sec. 3.2.3. A virtual
protocol is not uniquely determined and convenient one can be chosen. Define the following
operators on the system

&(C) = ®&§', () = @ 5. (3.16)
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whereo; and oy are Pauli operators (bit flip operators éhbasis andZ basis, respectively)

andC; € {0,1} is thei-th element of a vecto€ of sizen;. We see that calculatingz - Vi

after theZ-basis measurement is equivalent to obtain the measurement outcome of the observable
Z7(Vi). Let 8(;3 be an operation defined on Alice’s system, which is equivalent to Ali¢diasis
measurement followed by calculatifwn 7 - Vi} in step (8’), (97) and (10’) of the actual protocol.

Operation EW: Alice measures$(w) observablesfz(vk)}lskg(w) on the systemA and register

act"

obtained results ag)", .

The operatior€) ® 1ge on the systenABE satisfies?

act

D7 Pr@) Tra (64 © Tee(yge)) + Pabort Par™ = i (3.17)
QeTpass

D" Pr@) Tre (E4 ® 1ee(10x) (Oxla ® A52)) + PavornPar™ = PRe?, (3.18)
QeTpass

where|0x)a = (X)i”j1 |0x); is an eigenstate of the basis.

Next we consider the following virtual operation on Alice’s and Bob’s system which is not
included in the actual protocol.

Operation &): Bob makes measurement on his system Witbasis and obtain the outcome
Xg € {0,1}"2. He sendsXg to Alice through the public channel. Alice randomly choos&s)
binary vectorswy, W, ... Wy, such thatV, - W; = 0 holds for all (,k). She measuresyw)
observablesf.ZX(\N,-)} on the systemA. Based on the measurement outcomes and the classical
information , Xg), she determines “error vectoEs of sizen; and appliesX-flip operation

2Z(Eest)-

The goal of operatioﬂ)f;’r) is to obtain the eigenstate ofibasis|Ox), in order to use the relation
Eqg. (3.18). In practice, there is a failure probability to obtéip », which is analyzed in the next
section. By simple calculation, we see that the conditigaW; = 0 leads tdZz(Vi). x(W;)| =
0, which means that the measurement£WV,) and{x(W;) commutes. In addition, th¥-flip
operation/z(Ees) does not change the measurement outcomes basis and commutes with

the measurement @k (V). Thus, the final state on the systeki is not changed even if the

"2) Assuming the identity map on Eve’s system in Eq. (3.17) and Eq. (3.18) does not lose generality of the security
proof since all public information is disclosed by Step (7’) and any Eve’s operation after Step (7°) only reduces the
trace distance in Eq. (3.28).
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operations!’ is conducted before the actual operation:

Trg (S(ac% ® lge (8\(;::) ® HE(png)E )) =Trg (8(&3 ® HBE(ﬁfSB)E ) . (319)

For later convenience, let us defi6g. ® as Alice’s operation i conditioned orXg. With
this notation, the state on the systé after the operatioﬂ:f,‘i“r) is described as

&4 (P = Zaw (5¢(Xe)xI ASH I(Xa))8) ® I(Xe)x) ((Xe)xla (3.20)
—ZPr(x ) ELn® (557°9) @ 1(Xe)x) ((Xe)xle (3.21)

where

B <(XB)X|PAB I(XB)x)s
Pr(Xg)

Pr(Xg) = Tra (B ((Xe)xI pp |(XB)X>B) GXe = (3.22)

Since&{,® is only composed of the measurement&{(W;)} and the flip operation o basis,

A {Ox| ELXD (G0 D) [0x)a = A (Oxl ELN(Dx(GT7®)) [0x)a (3.23)

holds whereDy is an operation which preserves diagonal elemenXdrasis but changes non-
diagonal element to 0. We see that applygiigy;® on Dx(6-5"*®) is identical to a classical parity
check and bit flip on &z bit sequence, i.e. classical error correction. This implies that the fidelity
in EqQ. (3.23) is given by the success probability of classical error correction which corresponds
to the operatio&“¥®).

Ayvir
By using&®) and&“

act wir » We define the virtual protocol as follows.

Virtual protocol . Alice and Bob conduct steps’j1~ (7’) of the actual protocol to obtaij Q’
They operat&) on the systenAB followed by operatings!).
From Eq. (3.17) and the Eqg. (3.19), the final state on the sy#tEmof the virtual protocol is
given by

D PrQ) Tre (84 ® 1ee(€) © 1e(B5R0)) + Pavort Har™ (3.24)
Q€Tpass
= Z PI’(.Q) Trg (8&3 ® ILBE(pABE ) + pabortp,a&onrt (3-25)
QeTpass
= PAEs (3.26)

which satisfies the condition for the virtual protocol in Sec. 3.2.3.
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3.3.4 Proof of the main theorem

Here we prove the main theorem in Sec. 3.3.2. Since the state on the $ysdesrthogonal for
differentQ (see Eq. (3.11)), Eq. (3.18) and Eqg. (3.26) lead to

|| "fln Aldeal || (327)
1
) Z Pr@) ” Tre (Sg‘g ® Ige (8\(/‘:;) ® EE(/BS?B)E) — |0x) (Oxla ®}5(§E))) ” (3.28)
QeTpass
1
<3 2, Pr@ || Tre(&) @ 1e(3e) ~ 100 Oxla ® ¢ | (3.29)
QeTpass
< 3 PrQ) \1-F(Trs (62 @ 1:(20) . 106 (Oxla@AE), (3.30)
Q€Tpass

where Eq. (3.29) is obtained by monotonicity of trace distance Eq. (2.5), and Eq. (3.30) is obtained
by the relation between trace distance and fidelity Eqg. (2.9). The reason that the trace distance
Is replaced by the fidelity is because we want to use the following lemma which connects the
fidelity of the systemAE with systemA.

lemmal:
For any statefae on the system AE and any pure st@e(0], on the system A ,

. ~ o~ . " om m \2
F(#ag 10)(0la ® ) 2 (F(Za, 10)¢0la)) (3.31)
holds Wheré'E = TrA("l\'AE) and%A = TrE(%AE).
The proof is shown in Appendix A. Since
Tra (Trs (8 ® 1e(0%p))) = Tras(Plne) = AL (3.32)
holds, lemmal lead to

F (Tre (6% © 1e(320). 106 (Oxla®52) = (F (Tra (EL(LD) . 100 (Oxla)) - (3.:33)

Eqg. (3.30) is replaced by

1 "In "I eal
S|l Ahe - oae™ | (3.34)
< > Pr@) \/1 (F (Tra (E2G)). 10x) (Oxla)) - (3.35)
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Thus, we only need to evaluate the fidelity of the two states in the sy&téirom Eq. (3.21), we
have

F (Tre (E2(5%9)) - 10x) (Oxla) = ZPr(xB)A<ox|amB’( ) 100a.  (3.36)

Next we evaluate each term of the right-hand side of Eq. (3.36). For convenience, define
I5f(w),xB as a projector on the subspace which can be correctig x|, (except small proba-
bility) throughSX"vﬁB) based on a given phase-error bouti@d) and Bob’s measurement outcomes
Xg. In mathematical expression,

Piwwxs = . 1AO(AXla (337)
AESf(w),XB
Sf(w)’xB = {A S {O, 1}nz | Wt(A + XB) < f(w)}, (338)

where wt(X) is weight of a vectoiX. Recalling that a phase error is defined as a bit error where
Alice and Bob make virtuaK-basis measurement ailabeled incidents, the stat@l) (AL,
satisfying wt@A’ + Xg) = k causek phase errors if it is measured &rbasis. Thus, the projector
I5f(w),><B Is interpreted as a projector onto a subspace which causes no mofédhghase errors.
Thus, the probability that the number of phase erkgsgs more thanf (w) is written with the
random variableg,,, w, Q andXg as follows:

Prion > f(w) = > > Pr@Pr(Xe) Tr((La - Pre) xa)5%), (3.39)
Q Xg

where the summation is over &l regardless of abort or pass of the protocol. V\f?tfr(}u),xB, we

evaluate how closely i is corrected tq0x) (Ox|a through&{;:®:
A (Ox| EL P (F7®) 10x)a (3.40)
= A (01 ELP (Dx(637) ) 10x)a (3.41)

= a{0x 85:)\,?:8) (DX((ISf(w) Xg + lAl ~ Prapxe)0 5 P (Pruyxe + 1 - lsf(w),xs))) 0x)a  (3.42)
= A (Ol ESP (Dx(Prtw) xe 05 P Pi(yxe)) 10x0a

+ A (0x| EL? (Dx ((IL Piiyxa)T 2 (1 = P, xB))) 0x)a (3.43)
> Tr(Prwxed s ®@)a(Ox X (Dx (RX ")) 10x)4 (3.44)

where we used Eq. (3.23) in Eg. (3.41) and used complete positiv‘&ﬁﬁf) (see Eq. (2.1)) in
Eqg. (3.44). We defineg(Ag’xB’f(‘“)) in EQ. (3.44) as a normalized state

(X, f(@)) . Pf(w) X0 PP ) xe

(3.45)
A Tr(Pf(w),xBO'A Xe)y
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From what was mentioned after Eq. (3.23) about the operéﬁqﬁ),

A{OxI EX® (Dx (£57® ")) 10x)a (3.46)

in Eq. (3.44) is regarded as the success probability of classical error correction. Furthermore, this
time the error correction is conducted for the confinedssgj x,. There the syndrome of a vector

A € St x; IS obtained by calculatingX- W, A-W,, ...., A-Wyy,,) followed by applying bit flip

to makeA coincide (Q0,0....,0). From the classical code theory, we introduce the following two
lemmas.

lemma 2 (classical):
With k n € N satisfying Kn < 1/2, j{E € (0, 1)" | Wi(E) < k}] < 2K/ holds.

The lemma means that the number of the vector patterns is bounded if its weight has an upper
bound. The proof is equivalent to she@, < 2""%/" which can be seen iBExamplel21.3 in
Ref. [78], for instance.

lemma 3 (classical):

Suppose m random binary vectq§l,, Mo, ..., M) of size n. For allE € S c {0,1}", the
probability that there i€’ € S such thaM; - E = M; - E’ (for any i) andE # E’ is no more than
2°-MS].

The similar argument to lemma 3 can be seen in the hashing method of EDP [83{5;Pete
the probability to fail the error correction for a given &and vectorE € S, which equals to the
failure probability to uniquely identify the original vect& in the confined sef based on the
obtained syndromgM; - E}. The lemma 3 indicateeﬁ%;s) <2 MS|.

From lemma 2, we have

[{A+Xs € 10,21 | Wi(A + Xg) < f(w)]| < 2T, (3.47)
SinceXg is known in the virtual protocol,
HA € {0, 1) | Wt(A + Xg) < f(w)}l < 2ne(f(@)na), (3.48)

which leads to
S tw).xg] < 27NT@)/n2) (3.49)

from Eq. (3.38). From lemma 3, we have

(A.St(w).xg) —m(w
€cor e <2 m )lsf(w),XB|- (3-50)
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for arbitrary A € St x;- Combining Eq. (3.49) with Eq. (3.50),

egﬁ;sfwa) < 2Nzh(f(w)/nz)-m(w) (3.51)
holds. Therefore, if we set
f(w)
mM(w) = |nzh ogz— , (3.52)
Nz €PA
the failure probability of error correction s, x, iS not larger thares, which leads to
A{Ox| S(A“)\,T:B) (Dx ()?Si)’xs’f(w)))) 10x)a = 1 — €pa. (3.53)
Now we obtained all elements to bound Eqg. (3.35). From Eq. (3.44) and Eq. (3.53), we have
A (O ERP (6 577) 1004 2 (1 - ) TT(Priy xeTa ™) (3.54)
for all Xg. Combining this with Eq. (3.36),
F(Trs (85)(5%8)) - 10x) (Oxla) > (1 - €pa) (Z Pr(Xg) Tr(Pu)xe 05" XB>)] (3.55)
which leads to
2
1 (F (Tra (857(352) - 10x) (Oxla)) (3.56)
<2(1-F (Trs (EX(58)) . 10x) (Oxla)) (3.57)
< 2(1- (1~ €mn) Z PI(Xe) Tr (P xe XE”)]) (3.58)
= 2(1~ (1~ epa) | ) PriXe) (1~ Tr((1a - %,XB)&EE”XB)))]) (3.59)
XB
=2(1- (1 - &) |1- > Pr(Xe)Tr((fa - F‘>f<w>,x3)&£f”“)))) (3.60)
X
< 2epp + 22 Pr(Xe)Tr ((1a = Pryxo)55®). (3.61)
XB

By combining this with Eq. (3.35), we have

_|| Afm Aldeal || (362)
< Z PrQ) |2epn+2 Z Pr(Xs) Tr((La = Pr()xs)5%""®) (3.63)
QETpass XB
< \/2€PA +2 > Y Pr@) Pr(Xe) Tr((1a - Py xe) 65 (3.64)
QeTpass XB

< V2 [ eon+ Prln > £(@)). (3.65)
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where we used the concavity of square root function in Eq. (3.64) and used Eq. (3.39) in Eq. (3.65).
From the assumption of the main theoremkRy& f(w)) < epg, We have

1
5l

AL — PREY || < V2 Vepn + ere. (3.66)

3.3.5 Discussion

Although the proof shown in the previous section basically followed the one in Ref. [12], lemma 1
did not appear there. In Ref. [12], the similar argument is used to connect two fidelities where
Eve’s state of the ideal stateg(in Eq. (4) in Ref. [12]) is not related to the actual protocol and
chosen freely to satisfy Eq. (18) in Ref. [12]. However, this might not satisfy the security criteria
with composability. Suppose that a protogvis conducted before the QKD protoal(to prove
the security) wher& uses secret keys generatedfyIn general, Eve’s state: defined onQ
depends on the information obtainedm which includes Alice and Bob’s set up f@. Thus,
pe should not be chosen freely for ideal states and in this case we are not sure that composable
security is satisfied.

In the proof discussed in the previous section, we assumed the protocol where the final-key
lengthl(w) is not fixed and the condition for aborting the protocol is givempy m(w) < Agc.
On the other hand, the proof is also applicable to the protocols with fixed final-key length, which
Is seen in Ref. [13], for example. The fixed-key-length protocol, in which the datansiaad
nx have thresholdi; andny, is finished wheneveam; > n; andny > ny are satisfied. (To realize
it, a basis choice is assumed to be disclosed at each rounak)>Ifnz or ny > Ny, the surplus
nz — Nz bits orny — nx bits are randomly discarded. For the number of bit erkrsontained in
the ny rounds, the protocol also has a threshiold namely, the protocol aborts whéfy > K.
With these thresholdd,(w) is fixed to be the predetermined valtigo) where@ = (kx, iz, fix),
and the amount of privacy amplification is also fixedhi@w) = [nzh(f(@)/Nz) + 109,(1/€pn)] if
the protocol does not abort. The theorem in the previous section is still valid in this case as long
as Eq. (3.14) is satisfied fdi(w).






Chapter 4
QKD with weak coherent pulses

After the security of the ideal BB84 protocol was proved by Mayers [5] and Shor and Preskill [6],
the focus on the security proof was shifted to the practical case using conventional lasers and
threshold detectors which can only tell single photon or more from vacuum. In particular, the
security proof for QKD using weak coherent pulses (WCP) was a crucial issue not only because a
single-photon source with high repetition rate is technically hard to realize, but also because there
is a strong attack using multiple photons called photon number splitting (PNS) attack. Although
the proof for the BB84 protocol with WCP (WCP-BB84) was given by Inareoél. in 2001 [9],

it uses the modified proof of Mayers [5] and inherits its complexity. On the other hand, Gottes-
man, Lo, Liitkenhaus and Preskill (GLLP) proposed a simple idea which can be incorporated to
various proof techniques for ideal QKD assuming single-photon emission. They proposed the
concept of “tagging”, in which a round with multiple-photon emission is classified as “tagged”
(insecure) while a round with single-photon emission is classified as “untagged” (secure). If the
tagging idea is combined with the security proof based on complementarity [12] or entropic un-
certainty relation [13], uncharacterized receiver can be assumed as long as the corgition (
Sec. 3.1 is satisfied. The security of QKD protocols with general source flaws (e.g. modulation of
polarization, optical phase and intensity) were also proved in sophisticated ways [95, 17, 96, 97],
but in this thesis we focus on the practic&keet of multiple-photon emission.

This chapter is organized as follows. In Sec. 4.1, PNS attack is introduced. Sec 4.2 briefly
shows the GLLP’s tagging idea and derive the key length of WCP-BB84 protocol in terms of
phase errors on untagged rounds. In Sec. 4.3, we focus on practical aspects of the WCP-BB84
protocol by introducing the phase-encoding BB84 (PE-BB84) protocol which is suitable for im-
plementation with optical fibers, and also by introducing the decoy-state method, a countermea-
sure against PNS attacks. In Sec. 4.4, the DPS protocol is shown as a simple protocol with
robustness against PNS attacks.

33
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4.1 Photon number splitting attack

Photon number splitting (PNS) attack is an Eve’s strong strategy where she exploits full informa-
tion of the signal with multiple-photon emission without causing any disturbance. It was pointed
out by Brassaret al. in 2000 [8]. The details of PNS attack are as follows. Suppose the protocol
where bit information is encoded on polarization of light. After receiving the signal emitted from
the source, Eve projects the signal state onto the subspaces characterized by the total photon hum-
berm. This projective measurement is regarded as quantum-non-demolition (QND) measurement
which does not disturb the signal’s polarization. Next she performs splitting operation preserving
polarization wher@ — 1 photons are kept at her system and only one photon is sent to Bob. After
Eve learns the basis choices of Alice and Bob which is disclosed on the classical channel, she
makes measurement on the preserved photons with the corresponding basis. Sined ire

tracted photons have the same polarization as the other single photon which is sent to Bob, signal
information with multiple-photon emissions is totally leaked without any disturbance.

For later convenience, let us denote PNS attack in a mathematical way. We define the fol-
lowing parameters. LeD represents the detection rate of the protoesb(inds with detections
/ total rounds) aney represents the bit-error rate on tkdabeled rounds. Lep™ be the prob-
ability that the state emitted from the source was projected-hoton subspace by Eve. Let
Ynm, represents the probability that the signal projectedHphoton subspace causes detection at
Bob’s site, anaey , represents the error rate on tidabeled rounds where the signal is projected
to mphoton subspace. If Eve conducts PNS attack in the above manner, we have the following
equations in the asymptotic limit:

Q=> p™Yy (4.1)
m>0

Qe =) P™Ym exm 4.2)
m>0

The parameter® andey are observed values in the protocol, and the paranpéteis determined

by the property of the source and known through its calibration. Here we consider Eve’s strategy
to changey,, andex, under the fixed values @, ex and p(™. Eve’s optimal attack is to make
multi-photon signals detected perfectly, and use allowed errors to eavesdrop single-photon signal
as much as possible. If we assume that Eve has no technical limit and she can use lossless and
noiseless channel, the optimal choice is

Ym=1 em=0 for m>2, (4.3)
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which leads to
pOYo + pPY; = Q- > p™ (4.4)
m>2
POV, exo + pPPY; exs = ex. (4.5)

Eq. (4.4) implies that iQ < 3., p™, no secure key can be extracted.

4.2 GLLP’s tagging idea

The tagging idea (called “tagged signal” in the original paper [10]) is a quite useful method to
prove the security of QKD using WCP, which was proposed by Gottesman,iltkehhaus and
Preskill (GLLP). In their idea, a round with multiple-photon emission is regarded as tagged and
that with single-photon emission is regarded as untagged. The tagged rounds are considered to
be totally insecure (considering PNS attack) and they show that the security of the WCP protocol
only depends on the security of the untagged rounds even if Alice and Bob do not know which
rounds are tagged in the actual protocol. This allows various security proofs for the ideal single-
photon protocols to be applied to the practical QKD protocols with WCP. By using this idea,
GLLP showed the asymptotic key rate of the WCP-BB84 protocol, which is slightly better than
that obtained in the previous work of Inamet al. [9]. In this section, first we introduce the
phase-randomizing operation, which allows us to use the tagging idea. Next the key length of
the WCP-BB84 protocol is derived in terms of phase errors on untagged rounds by applying the
proof in Sec. 3.3. Finally, we evaluate thigeet of PNS attacks on the WCP-BB84 protocol by
using the asymptotic key rate.

4.2.1 Phase-randomizing operation

In this subsection, we introduce afcient condition for the light source to use the tagging idea
and show that it is satisfied by the randomizing operation on the optical phase. Suppose that at
each round of the protocol, Alice prepares an i.i.d stgig on the systens depending on her

basis choicéV (e {Z, X} for BB84 protocol) and a selected laite 0, 1. The condition to use the
tagging idea is thaty, is expressed as

ﬁW,a = (1 - rtag)ﬁvv,a,unt ® rtagaV\/,a,tag’ (4-6)

which indicates that each round is in principle classified to tagged or untagged. In the following,
we show that this condition is satisfied if the optical phase of each signal is randomized, and if
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the probability that the state before phase randomizatignhas two or more photons is given
by
> T (Nnbwa) = Mg (4.7)

m>2
where we definetll,, as the projector onto the subspace witphotons. Suppose that the phase-
shift operatod(6) := exp(6 3.,, mNy) is acting onrwa- By defining phase-randomizing operation
as&pr, We have

ﬁW,a = 8PR(a'W,a) (4-8)
1 (. o
== f J(6) Gwa J(O)do (4.9)
2r Jo
1 o M A
- ZZ fo MM N 6waNm do (4.10)
m,my
m

Thus, any optical state is regarded as a classical mixture of photon-number state by randomizing
its optical phase. By reformulating Eq. (4 11),
O'Wa mO'Wa
= 1— rggim r 4.12
pWa W;:L( tag) 1_ Mag Z tag— ( )

holds. Eqg. (4.6) is satisfied by taking

~ NmO'WaNm
Pwaunt =
m=01 ~— Mag
~ I\ImO'WaK|
PWatag = - (4.13)
atag= ) -

m>2

It is instructive to learn the negativéfect on WCP protocols caused by imperfection of phase
randomization because most of QKD protocols these days adopt phase-randomizing operation to
use the tagging idea for their security proofs [98, 90]. At least for the WCP-BB84 protocol, the
achievable key rate of the protocol without phase randomization is shown to be lower than that
with phase randomization [99], which implies that there is an Eve’s attack to use the coherence
between dierent photon numbers. In practice, randomizing the optical phase in continuous range
[0,27) as in EqQ. (4.9) can be fiicult if the resource of random numbers is limited. Recently
Caoet al [100] have shown the security of QKD with discrete-phase randomization where the
optical phase is randomly chosen frg@xr/n | 1 < n < i} with finite n. Although many QKD
demonstrations realize the random phases by switching on férdlaser repeatedly under the
assumption that the optical phase is randomized once the laser is swittheéd@ontroversial
whether the phase is truly independent of that of the previous pulse or not [101].
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4.2.2 Security analysis of WCP-BB84 with tagging idea

Here we derive the secure key length of the WCP-BB84 protocol in terms of phase errors by
combining the tagging idea with the complementarity proof introduced in Sec. 3.3. If the bound
of phase errors on untagged rounds is known (derived in Sec. 6), this subsection gives a complete
security proof for the WCP-BB84 protocol. Similarly to the ideal qubit-based protocol, the WCP-
BB84 protocol also follows the procedures described in Sec. 2.2.3, but the latter assumes more
general light sources and measurement apparatuses.

For Alice’s state preparation, we assume that the state prepared by Alice has a form of
Eq. (4.6) and that there is a basis-independent gtaten the systenA\S satisfying

. 1.
tra ((laW> (awla ® ﬂs)Xunt) = EPW,a,unt, (4.14)
which corresponds to Eq. (3.1) and Eq. (3.6) in the ideal BB84 protocol. Those assumptions
allow Alice’s basis choice to be postponed after Eve’s intervention as far as untagged rounds are
concerned. Egs. (4.6) and (4.14) are realized, for example, if Alice uses a laser emitting an ideally
polarized coherent state

w2 a™
lawa)g 1= )€ 7 — IMya)s , (4.15)
m

Vm!

wherea is a complex number arthy,) is a photon-number state on the syst8with a basis
W and a bita, and if its optical phase is randomized. From Eq. (4.11), the state after phase-
randomizing operation is

m
Eprllawa) (@wals) = ) € IMya) (Mials (4.16)
¢ m

where we defined a parameter:= |a|> as mean photon number of the coherent light. From
Eq. (4.13) pwaunt aNdpwatag iN EQ. (4.6) are written as

(1 - reag)owaunt = €7 [Owa) (Owal + 1€ |[1wa) (Iwal (4.17)
& m
lagOwatag = € Z % [Miya) (Mal (4.18)
m=2
with
ltag = l1-e* —ue™. (4.19)

For Bob’s measurement apparatus, we impose either of the following two assumptions.
(i) The probability of detecting a signal at Bob’s receiver is independent of his basis choice.
(i) The measurement of an input signal on the systems replaced by an ideal single-photon
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measurement on the systépreceding by a squashing operation [93, 94].
The condition (ii), which is stronger than the condition (i), validates the use of the security proof
with entanglement distillation. The proof with complementarity works under the weaker condi-
tion (i), because it essentially validates the argument given in Sec. 3.3.1. Under the condition
(i), Bob’s measurement on the syst&rcan be replaced by a filtering operation to make sure
a valid-detection and to transfer its state to a sysB(not necessarily a qubit), followed by a
measurement oB depending on the chosen basis to determine the outcome 0 or 1. Hence, as in
Sec. 3.3.1, Bob’s choice of basis can be postponed until he declares valid-d¢tectetection.
For the WCP-BB84 protocol, both conditions are satisfied if we assume the following model for
Bob’s apparatus: Bob actively chooses the basis, and uses two threshold detectors corresponding
to the measurement result “0” and “1” after a polarization beam splitter. He assigns random bit if
both detectors report their detections. In addition, théiiciency and dark countings of the de-
tectors are allowed as long as they are equivalently represented by an absorber and a stray photon
source placed in front of Bob’s apparatus.

For the WCP-BB84 protocol, the preparation of the state Eq. (4.6) on Wasiseplaced by
that of basis-dependent state on the sysé&in

dw = (1 = lagXunt ® Magtwiag: (4.20)

followed by theW-basis measurement on the systénin which yw,g is a basis-dependent state
satisfying
trA ((laW> <aW|A ® fLS)/\’>V\/,tiag) = %ﬁW,a,tag (4-21)

This implies that Alice’s state preparation is described as follows. At each round, Alice deter-
mines whether it is tagged or not with probabilitigg, and 1- ri,g. If the round is tagged, she
selects a basis and prepajg&sag based on her basis choice, and if not, she prepares the basis-
independent stapg,; without selecting a basis.

Similarly to the protocol in Sec. 3.3.1, we assume thaorrectness of the protocol is ensured
by an error-correction method with encryption consumitgg pre-obtained secret keys. The
description of the protocol with the replacement of state preparation (which corresponds to the
actual protocol in Sec. 3.3.1) is given as follows.

(1') Alice determines whether a round is tagged or untagged with probabifigsnd 1— riag.
For a tagged round, she seleZt®asis orX basis with probabilityp; and py, respectively, and
preparesywiag based on her basis choice. For an untagged round, she prgpaneghout se-
lecting a basis.

(2") Alice sends the part of the state (syst&to Bob over quantum channel.
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(3") Bob receives the signal and confirms whether it causes a valid-detection or not. If there is a
valid-detection, he keeps systdwithout measurement.

(4") They repeat (1') to (3’) bynyep times.

(5") Bob publicly announces whether each round has resulted in a valid-detection or niage;Let

be the number of rounds with valid-detections. bgf,n: be the number of untagged rounds with
valid-detections.

(6) For thenyunt rounds, Alice chooseZ basis orX basis with probabilitypz and px, respec-

tively. For thenge rounds, Bob choose&sbasis oiX basis with probabilitypz andpx, respectively.

They disclose all of their basis choice and discard the rounds where their choice is not identical.
Let the number oZ-labeled andX-labeled rounds be; andny, respectively. They mak¥-basis
measurement on thélabeled rounds to obtain bit stringgx andkg x. Alice publicly announces
which rounds are untagged.

(7) They disclose and compaxg x andkg x to determine the number of bit errdkg contained

in the X-labeled rounds. Lab represents the following three observed numbers:

w .= (kx, Ny, nz). (422)

Alice and Bob determine the amount of privacy amplificatimfaw) based onw and the cost of
error correctiomgc through public discussion. i, —m(w) < Agc, the protocol aborts. Ifitis not,
they determine the final key lengthlés) := n;—m(w). For privacy amplification, they randomly
selectl(w) binary vectors/y, Vs, ...V of sizenz such that each vector is linearly independent.
(8") Alice and Bob makeZ-basis measurement on systéwrand B, respectively, orZ-labeled
rounds to obtain bit stringe,z andkg 7 as sifted keys.

(9’) Through public discussion, Bob corrects his kegs to make it coincide with Alice’s key
kaz and obtainkgy (kg7 = nz).

(10) With kaz and{Vy}, final key of sizd(w) is calculated byefiAf‘z = (kaz V1, kpaz-Vo, ... Kpz -
Viw)-

The number of untagged roundg;,.; defined in Step (5’) is not an observed parameter in
practice, but only an “observable-in-principle” parameter. Similarly to this parameter; Jet
andnzg (:= Nz — Nzuny) be the number aZ-labeled untagged rounds and tagged rounds, respec-
tively, which are in principle observed in Step (6’). We also define

W= (kx, Ny, Nz, nz’unt). (423)

Let Ny ynt aNdNy tag (:= Nx —Nxuny) be the number oX-labeled untagged rounds and tagged rounds,
respectively. Themzy: + Nxunt = Niorunt IS Satisfied. We also defirg s andky ag s the number
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of bit errors onX-labeled untagged rounds and tagged rounds, respectively, which are in principle
determined in Step (7).

Based on those parameters, the theorem similar to the one in Sec. 3.3.2 is given as follows.

Theorem:
Suppose that the following inequality holds regardless of Eve’s strategy:

Pr(kphum > f(&))) < €pE (424)
Prinzun < Dz,unt) < €zunts (4.25)

where knunt is the number of phase errors on untagged rounds. If the final key lefagtbdtisfies

l(w) < min {nz,um(l - h( M@) ))} - Iogzi, (4.26)

Nzuntll7 e Nz unt €pA

the protocol ises-secret with

€ = V2 VEpPE + €pa + €z unt- (4.27)

Although the boundd$ (@) andn

, unt @€ NOt obvious here, they are derived in Chapter 6.

The proof of the theorem is quite similar to that in Sec. 3.3.4 but with several modifications.
We assume that the observable-in-principle parameters are also disclosed to Eve in the previous
protocol. LetQ be all disclosed information including. Eq. (3.29) is replaced by

1 ® ~ ) ~
Sz > Pr@) || Tre (65 @ 16(530)) — 10x) (Oxla ® 5

QeTpass

"fln Aldeal || (428)

| (4.29)

where‘fpassis a set of2 such that the protocol does not abort. For simplicity, we define

~ 1 ~
Y 1= 5| Tre (85 ® Le(@ige)) - 10x) (Oxla ® 5 5. (4.30)

viIr
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By reformulating Eq. (4.29),

_|| "fln Aldeal || (4_31)
< > Pr@) y® (4.32)
QeTpass
= > P@y? + 3 Pr@)y® (4.33)
QeTpass QeTpass
nZuntZDz’um nZunt<Dz,um
Pr@) @)
< Prnzunt > Ny ) QZ Przm > N ) Y7+ Prinzunt < Nz ) (4.34)
€Tpass
nZunt>nZunt
<@U-euw) ), PO VY + (4.35)
fle'f'pass'
nZ,untZDz.um
where the summations are ow@rsuch thatQ e Tpassananum >Ny (ornzynt < n, un)» and we
defined N
~ Pr(Q) ~
Q) = st. Q) =1 4.36
P = B Z @) (4.36)
pass
nZ,untZDz’um
We usedy® < 1 in Eq. (4.34) and also used Eq. (4.25) in Eq. (4.35). Ddfffieas
M@= J1-F (Trs (62 @ 1e(52). 100 (Oxla® 5. (4.37)
From the relation between the trace distance and the fidelity Eq. (2.9), we have
Y@ < 7@ (4.38)
Eqg. (4.35) is replaced by
_H plin _ pideal H (4.39)
<@A-ewd ), PO T + eun (4.40)
QcTpass
nZ,untZDz.um

The evaluation of @ is quite similar to that in Sec. 3.3.4. Thefférence is that a set of
vectorsSs(,) x5 IN EQ. (3.38) is replaced by another one. Since Alice and Bob tell tagged rounds
from untagged rounds in principle, we divide a vectoof sizen; into untagged part of Sizg
and tagged part of Siz® (g

A=An® Ang (4.412)
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With this notation, we define
St@xs = (A € {0, 1™ | Wt(Aunt + Xgun) < (D)}, (4.42)

where the plus sign represents addition modulo 2 of each element. Eq. (4.42) implies that the
vector patterns for the tagged rounds are totally unknown, which corresponds to the assumption
that the information of tagged rounds is fully leaked to Eve. In order to use lemma 3 and to obtain
Eqg. (3.50), we requiréf@),xBl. For untagged rounds,

'{Aunt Wt(Aunt+ XB,unt) < f([[))} < 2nz,umh(f(&))/ﬂz,unt) (4'43)
is satisfied from lemma 2. Thus, we have
|§f(&)) XB| < 2nZ,unth(f(@)/nz.unt)znz,tag. (444)

By using the argument from Eq. (3.50) to Eq. (3.53), if the amount of privacy amplificadjoh
satisfies

- 1
M(w) = o maﬁx "nz,unth(f(w)/nz,unt) + Nztag + |092€—PA , (4.45)
,UmeZ,unt
we have )
A0 EL (Dx (#2711 1004 > 1 epa (4.46)

for Q) satisfyingQ € Tpassandnzyn > n,
and (3.61), we have

By combining this with Egs. (3.33), (3.36), (3.44)

unt’

XB

r@ < \/ 2epn + ZZ Pr(Xg)Tr ((flA — Prapxe) 5y ’XB))' (4.47)

Recall that the evaluation d¥® in Eq. (4.40) is limited to{Q} satisfyingQ € Tpasand
Nzunt = N From Eq. (4.24) and Eq. (4.25), we have

Zunt*

~ €
PrKohune > F(@) | Nzunt > Ny ) < 7—— (4.48)

1- €Z unt

Let us write down the left-hand side of Eq. (4.48) explicitly. Defl‘zh@),xB based orfsf(;u),xs:

Pi@)xe := Z |Ax) (Axla - (4.49)
Aegf(@),xB
Similarly to Eq. (3.39), we have
Prikonum > T(@)) = > > Pr@)Pr(Xe) Tr ((1 - Prxe) 55, (4.50)
4

Q
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which leads to

Prigrn> 1@ | Mun2 ) = 3 > BOPIXe) Tr(( - Pryx)d @), (4.50)
QinzunzNy e Xe
where the summation in Eq. (4.51) is O\férsatisfyingnz,unt > Ny, regardless of whethe® €
'fpassor not, andp(Q) is defined in Eq. (4.36). Since each summand of Eq. (4.51) is non-negative,
the right-hand side does not increase if the summation is further limit€d @ Tpass Thus,
Eq. (4.48) and Eq. (4.51) lead to

Do D PEPIXe) Tr (1 - Pr )i ®) < 7——. (4.52)
OeTrass X8 — €zunt
Nzun2 Nz g

From Egs. (4.40), (4.47) and (4.52), we have

1y e
S|l ke - Aae™ | (4.53)
<@-eum) . PQ) [2ea+2) PriXe)Tr((la— Prayxe)ds™®) + ezum (4.54)
QeThass XB
nLuntZDZunt
<(1-eum) | 26pa+2 Z Z p(fz)Pr(XB)Tr ((ﬁA_ ﬁf(@),xs)&f’xs)) + €unt (4.55)
QeTpass X
nZ,untZDLUm
6
< (1 zun) \2eon + 75— 4 e (4.56)
— €Zunt
< \/é VEra + €PE + €zunt (457)

By using Eq. (4.45) anth(w) = nz—I(w), the protocol iss-secret withe; = V2 véepa + epe + €zunt
if the final-key lengtH(w) satisfies

f(& 1
[(w) =Nz - max nz,umh( (w)) + Nztag + Iogz—w (4.58)
Nzuntzl 7 nt Z.unt €pA
. f(& 2
< mip {nzunt(l—h( (“’)))}— log,—. (4.59)
Nzunzy ot Nzunt €PA

4.2.3 PNS attack vs. WCP-BB84 protocol

In this section, we derive the asymptotic key rate of the WCP-BB84 protocol with tagging idea
as in Ref. [10], and show that the protocol is vulnerable to PNS attack in long-distance commu-
nication. Consider the asymptotic linm{,, — co while the parameters

Nz tag nz kx
A= , Q= — &= —
Nz r]reppz Nx

(4.60)
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are fixed. By using the result of finite-key analysis Eq. (4.59), the asymptotic key rate per round
Is given by

Ry := $2Q (1 - A)( ~ h(exun), (4.61)

whereex unt := Kxunt/Nxunt @NdA are unknown parameters. Singgy/Nx — 1 — A holds in the
asymptotic limit,ky ,n: < kx leads to

(1 - A)ex,unt < &x. (4-62)

Then we have

RASwn) > 52Q (1 - A)(L - h(l A)) (4.63)
= R, (4.64)
To bound (As)ywith known parameters, we use the inequality
l'ag
A< —, 4.65
0 (4.65)
which is obtained from Eq. (4.6) and Eq. (4.60). This leads to
ltag e
32 PR G- h[ - _)) (4.66)
Q
=! Rasy (4.67)

Note thatRssy is the optimal key rate in the form of Eq. (4.61), namely, Eve can in principle
choose parameters which sati&fy, = (A ex“”‘) . Moreover, those parameters are realized by PNS
attacks introduced in Sec. 4.1. To conflrm these, it fH@ant to check the equality of Eq. (4.62)
and Eq. (4.65). Witlex tag := Kxtag/Nxtagy WE S€€ that

(1- A)eXunt e © eXtag—o o em=0 (form> 2). (4.68)

Let p™ be the probability that the source emitgphotons (assuming phase randomization). Let
Y™ be the probability that a signal emitted witlkphotons causes a detection at Bob's receiver.
Those parameters have identical meaning to those in Sec. 4.1.rgjnee ., p™ holds from

Eq. (4.13), we have

Q=rug & Y P™Wo=>p" & Yy=1 (form=>2) (4.69)
m>2

m>2

in the asymptotic limit. Both Eq. (4.68) and Eq. (4.69) are satisfied by Eq. (4.3) with PNS attack.
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To evaluate theféect of PNS attacks on the BB84 protocol, we assume the specific valug of
by adopting the model that Alice uses a coherent light source, in whjidh given by Eq. (4.19).
We derive the dependence Bfs, on total transmittancg (including detector ficiency) in the
limit of » — 0. From Eq. (4.67), the value of,,/Q has to be kept smaller than 1 to ensure
Rasy > 0. SinceQ decreases agapproaches to @y — 0 is required to keeBasy positive. Thus,
Q andrg are expressed as

Q = n(u + O?) (4.70)
Mtag = %2 + O(). (4.71)

Eq. (4.70) and Eq. (4.71) lead to
9 277('“ + O(u?)). (4.72)

If riag/ Q is held fixed agy gets small, the value ¢@f is changed ag = O(;7). Then the overall key
generation rat®.s, has square dependencespn

Rasy = O(7°). (4.73)

This implies that the BB84 protocol is vulnerable to PNS attacks in the long distance communi-
cation.

4.3 Practical aspects of WCP-BB84 protocol

In this subsection, we focus on the practical aspects of the WCP-BB84 protocol. For implemen-
tation of QKD protocols, its simplicity is crucial for several reasons. The first one is straightfor-
ward, that is, we have to reduce the cost of QKD for its commercialization [56]. Another reason

is that practical devices have security loopholes [59, 60, 61, 62, 102], which violates the assump-
tions of the security proof. This means that if complicated devices are used, we have to consider
many countermeasures (from both theoretical and practical sides) against possible attacks. The
BB84 protocol with phase-encoding (PE-BB84) is a specific form of the WCP-BB84 protocol
which can be implemented with simple devices. Since PE-BB84 protocol is vulnerable to PNS
attacks in the long distance, it is often used with the decoy-state method. Although it enables long
distance communication and many demonstrations have already been conducted, several practical
problems still remain. In the following, we introduce the PE-BB84 protocol and the decoy-state
method, and discuss their advantages and problems.
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4.3.1 Phase-encoding BB84 protocol

When QKD is implemented, we typically use free space or optical fibers as quantum channel.
While some simulations and demonstrations of free-space QKD (e.g. satellite QKD) are con-
ducted [64, 29, 30, 31], most of high-speed QKD implementations use the optical fibers to guide
signals stably [26, 27, 28]. In fiber-based QKD, a bit 0,1 tends to be encoded on optical phase
rather than polarization of photons because polarization is less stabler than optical phase in opti-
cal fibers due to their birefringence. Another advantage of phase-encoding method is that the fast
encoding and reading are possible with current techniques (e.g. 1 GHz pulse-repetition rate with
phase modulation in Ref. [35] and 10 GHz in Ref [40]).

Phase-encoding BB84 protocol (PE-BB84 protocol) is composed of simple devices, such as
atypical laser, a phase modulator and a passive Mach-Zehnder interferometer (see also Fig. 4.1).
With established security (the proof for the PE-BB84 is identical to the WCP-BB84), a number
of demonstrations are conducted [33, 34, 35]. In the protocol, double pulses with imierval
are generated at Alice’s site, followed by phase modulation which includes randomization of the
global phase as well as changing the relative phase to encode a bit. At Bob's site, each pulse is fed
to a delayed interferometer with its delay being equaltoThe longer arm of the interferometer
passes through a phase modulator which incurs phasedghiftO or 7. After the interferome-
ter, the pulses are measured by two photon detectors corresponding to bit values “0” and “1”. If
there is a detection from the superposition of the double pulses, we call it as valid detection (see
Fig. 4.2). The description of the PE-BB84 protocol is identical to that in Sec. 2.2.3 except that
Step (1)-(3) have more concrete expressions.

(1) Alice choose« basis orX basis with probabilityp; and px, respectively. She chooses a
uniformly random bit0, 1}.

(2) Alice generates double pulses and modulates the relative phase between those pulses as
0,7, 7/2,3r/2 if her basis and bit areZ(0), (Z, 1), (X,0), (X, 1), respectively. She also changes

the global phase of the double pulses at random.

(3) Bob choose& basis orX basis with probabilityp; and py, respectively. He sets the phase

shift 6 = 0 andfg = /2 if he select<Z basis andX basis, respectively. If an invalid detec-

tion occurs, Bob declares no-detection. If both detectors have detections at a valid timing, Bob
randomly generates a bit 0 or 1. He obtains the outc{iimé&, no-detection

Bob’s random-bit assignment in Step 3 is for the sake of satisfying the receiver’s condition
() in Sec. 3.1. Since a valid detection occurs only when the first pulse in the long arm and the
second pulse in the short arm have interference, there are invalid detections with probgbility 1
due to the use of the passive interferometer (see Fig. 4.2). Although invalid detections can be
reduced by using an optical switch, it typically has insertion loss larger tf2aely. 4 dB loss



4.3. PRACTICAL ASPECTS OF WCP-BB84 PROTOCOL 47

Alice : : Bob
I I
I I
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Figure 4.1: Set up of the BB84 protocol. Alice generates double pulses (in a dashed block in the
figure) and modulates the global phase at random and also modulate the relative phase based on
her basis and bit. Bob changes the phase ghifiased on his basis choice. The delay in the long

arm equals to the interval of the double putse which enables neighboring pulses to interfere

each other. A detection from the interference between double pulses in a block is regarded as
valid, and outcomes from other detections are invalid.

long arm
E At : — A\ [\

short arm i

detection timing: 3 2 1

Figure 4.2: Sketch of valid interference at Bob's site. The double pulses are split and the ones
going through the longer arm are delayedAxyfrom the others going through the shorter arm.

The interference between the first pulse in the longer arm and the second pulse in the shorter arm
is regarded as valid, which occurs at Timing 2 (in the figure) with probabilzy 1
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for 10 ns switching time [103]). Thus, the problem of half invalid detections is essential in the
PE-BB84 protocol, and actually, it is the origin of the advantage of the DQPS protocol over the
PE-BB84 protocol, which is considered in Chapter 5.

4.3.2 Decoy-state method

The decoy-state method is a practical countermeasure against PNS attacks, which was proposed
and developed by Hwang [36], Let al. [104] and Wang [37]. They are incorporated to various
protocols, such as the BB84 protocol, the six-state protocol [48], the MDI protocols [63, 105,
16], and high-dimensional protocols [106, 107]. In the decoy-state method, Alice chooses the
intensity (mean photon number) of each signal from a predetermingg s€ < i < igecoy | = 0
corresponds to the signal) and monitor the detection rate separately for each intensity. Define
Q as the observed detection rate for the intengityLet p™ be the probability that the source
emitsm photons under the condition of mean photon numbeWith parameter¥,, defined in

Sec. 4.2.3, we have the following..y+ 1 simultaneous equations in the asymptotic limit.

{Qi => pi(m)Ym} (0 < i < igecoy. (4.74)
m>0

This implies that if we increase the number of decoy intenigify,, the better bound oY, is

obtained. Recalling the fact that the valueYof was totally under control of Eve with PNS

attacks (see Eqg. (4.3) and Eq. (4.4)), we see that threat of PNS attack can be limited by adopting

decoy states. In practice, it is shown that the BB84 protocol with two decoy stglgs € 2)

achieves nonzero key rate over 100 km communication in finite-key regime [15].

Although the decoy-state method seems attractive, there still remain practical problems be-
cause additional operations tend to enlarge the gap between physical models of devices and their
practical behaviours. Let us show two examples for a light source. Although we use weak coher-
ent pulses in QKD implementations, the distributionp§? can deviate from Poissonian and it
has to be estimated through the calibration of the light source. Although the security proof with
a general light source using decoy states was conducted [39], it assumes the following infinite
number of inequalities, which cannot be confirmed through calibration:

p(1) p(m)
—5 <~ (formx2), (4.75)
Py Py

wherep(™ and p{” represent the lower and the upper bound®t, respectively. Another ex-
ample is that the intensity of a decoy pulse deviates from the predetermined value because the
intensity of the decoy pulse is in the middle of the signal’s intensity and the vacuum, and hence
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it is at the steep slope in the intensity-modulation curve. The deviation over 10% is reported in
Ref. [108], for example.

Even if the above problems are solved from either theoretical or experimental side, the decoy-
state method holds inevitable complexity and disadvantage associated with it. Since it uses
higher-orderp™ to estimate the value of,,, more complicated calibration method is required
compared to the protocol without decoy states. Since it includes more estimation processes, the
larger overhead is sacrificed by the statistical fluctuation in the finite-key analysis. Thus, for short
distance communication where PNS attacks are not so threatening, the protocol without decoy
states may be preferred from the perspective of simplicity.

4.4 Differential-phase-shift protocol

The diferential-phase-shift (DPS) protocol is as simple (or simper) protocol as the PE-BB84
protocol, in which only two phase®, 7} are used for the relative phase between neighboring
pulses. It was proposed by Inoaeal. in 2002 [89] as a protocol with robustness against PNS
attacks. Although there are several protocols which are expected to be robust against PNS at-
tacks [109, 110, 111], the simplicity of the DPS protocol is outstanding, which enables the
demonstration with a high clock rate of 10 GHz [40]. Since the DPS protocol is an origin of
the diferential-quadrature-phase-shift (DQPS) protocol which is treated in Chapter 5, here we
review the DPS protocol and its security. In this section, the protocol description and the security
analysis of the DPS protocol are briefly introduced based on Ref.[90]. Afterwards, we discuss the
round-robin DPS protocol, which is a variant of the DPS protocol solving the complexity of the
security proof for the DPS protocol.

4.4.1 Protocol description

Here, we describe the DPS protocol based on Ref. [90]. The set up for the DPS protocol is
identical to that of the PE-BB84 protocol with several exceptions (see Fig. 4.3). In the DPS
protocol, sequential pulses are divided by a block.gfulses for the convenience of security
proof. The phase-randomizing operation is applied to the whole blodkerBntly from the PE-

BB84 protocol, the relative phase is either Qrphence the phase modulator is not necessary at
the receiver’s site. The photon-number resolving detectors were assumed as in Ref. [90]. If there
Is a detection from the superposition of thén and ( — 1)-th original pulses, we call it as valid
detection at-th timing (1< | < L — 1). The protocol is described as follows.
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| |
Alice : : Bob
| |
| |
randorzl_phase I I
TS om ! i ij?
el AA A AAABRL L (O eslde ] o
__________________________ I L shont P
I I 'GGl,,
long it s o2 1 o)
ALA A /\/\/\/\i
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Figure 4.3: Set up of the DPS protocol. At Alice’s site, pulse trains are generated by a laser
followed by phase randomization as well as phase modulation (PM) {@jtt} based on her
random bits. At Bob’s site, each pulse train is fed to a delayed Mach-Zehnder interferometer.
The trains leaving the interferometer are measured by two photon detectors corresponding to bit
values “0” and “1”. Valid timings of detection are labeled by integerg, 1,L — 1, according

to the index of the pulse from the short arm of the interferometer. Detection from interference
between pulses from fierent blocks is regarded as invalid and ignored.

1. Alice generatek random bitsy, € {0, 1} (0,1,..,L — 1).
2. Alice prepares optical pulses (syster8) in the state

L-1
X117 Vg, (4.76)
1=0

where| Vi), represents a coherent stat&/’? 3", L\/%k lk)s, of thel-th pulse mode. Alice random-
izes the overall optical phase of thepulse train, and sends it to Bob.

3. If there is no detection of photons in the valid timings, Bob $ets0. Bob also set$ = O if

he detects two photons or more in the whble 1 time slots. If detections have only occurred at
a single valid timing, the variablgis set to the index of the timing. [f # 0, Bob determines his
raw key bitb € {0, 1} depending on which detector has reported detection gtthdéiming. Bob
announceg through the public channel.

4. If j # 0, Alice determines her raw key bit as= a;_1 + a;.

5. Alice and Bob repeat the above procedurgstimes.
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6. Alice and Bob randomly select a small portion of the rounds Wih0, and compare the bit
values over the public channel. They define sifted keyandxg, respectively, by concatenating

the remaining bits withj # 0.

7. Alice and Bob conduct error correction and privacy amplification by discussing over the public
channel and obtain the final ke{" and«".

The plus sign in Step 4 represents addition modulo 2 and corresponds to reading the relative phase
of neighboring pulses.

4.4.2 Security of DPS protocol

Since the DPS protocol does not require multiple bases but uses the set of non-orthogonal states
Eq. (4.76), it seems close to the B92 protocol [86] rather than the BB84 protocol. The remarkable
property of the DPS protocol is that the optical phase of each pulse is not independent of each
other but connected via the relative phases, just as chain. In fact, the robustness of the DPS
protocol against PNS attacks can also be explained intuitively with the property of “coherence
chain”. If Eve splits photons from a multi-photon signal and sends a remaining photon to Bob,
the probability that her detection timirjgs identical to Bob’s one is only/IL — 1). Furthermore,
if she attempts to make the photon detected at the same timing as hers, it disturbs the coherence
chain and causes a bit error between Alice and Bob. Thus, the DPS protocol is expected to be
robust against PNS attacks.

On the other hand, the property of coherence chain introduéigsudty in the security proof
for the DPS protocol as well. This is because the coherence chain prohibits us from working
on each pulse separately, and we have to deal with a large Hilbert space at once. In spite of
the complexity, the security of the DPS protocol was proved in 2012 by Taetali in the
asymptotic limit [90]. They focused on the fact that the phase errors in the DPS protocol are
related to the photon number contained in pulses, and used the technique to estimate the photon-
number information. The proof shows that a key can be generated from two-photon signals,
as well as shows that the dependence of key rate on the channel transmitiar®©g;*?) in
the range of smal, which certifies the expected robustness of the DPS protocol against PNS
attacks. On the other hand, the security proof was still complicated and the obtained key rate was
low because of the asymmetric property of the DPS protocol. For example, one of Eve’s optimal
attacks was that she sends Bob a superposition of the states containing phdttmginmng
whose co#ficients are not uniform. This is coming from the fact that the detections only with
1< j<L-1areregarded as valid and the detections at the edge of a block are discarded. The
problem due to the asymmetry led to the idea of the round-robin DPS protocol introduced in the
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following subsection.

4.4.3 Round-robin DPS protocol

The round-robin DPS (RR-DPS) protocol is regarded as the “symmetrized” DPS protocol, which
removes the asymmetry among detection timings by modifying the set up of the protocol [41].
While the DPS protocol uses fixed amount of defayat the interferometer, the delay is variable

in {At, 2Ar, ...., (L — 1)At} in the RR-DPS protocol. This additional randomness at Bob’s site pre-
vents Eve from fixing two pulses which cause interference at her will, as well as largely simplifies
the security proof. The security proof adopts a similar idea to that of the DPS protocol, in which
phase errors are related to the photon number contained in the signal pulses. The obtained key
rate is expressed as

Q 1_h(eoit)_6_(1_6)h(l__l

whereeg,; is the observed error rate, aagl andvy, are connected through the following inequality
in terms of the photon numberin L pulses:

€src €src Vth )) (4.77)

Pr(v > vin) < €src. (4.78)

In EQ. (4.77), the second term represents the cost for error correction, and the third and fourth
terms represent the cost for privacy amplification. Eq. (4.77) implies that the amount of privacy
amplification is independent of the observed error egteand only depends on the property of a
light source and the predetermined block dizeThis is totally a new concept in the security of
QKD because the security of QKD protocols prior to this protocol was based on the uncertainty
principle and the amount of leaked information is estimated by monitoring signal disturbance (bit
error). It is not certain what kind of principle in quantum mechanics enables such a property,
though the authors implies [41] that it may relate to the information causality [112].

Thanks to the property d@,-independence, it has high tolerance against noisy environment.
The numerical simulation in Ref. [41] shows that it still generates a key at the errog,kate
11%, in which no key can be extracted with the BB84 protocol. On the other hand, the simplicity
of the DPS protocol is sacrificed in the RR-DPS protocol. Although several demonstrations have
already been conducted, implementations of the variable delay withllafige- 5 [43], L = 65
[45], L = 129 [44]) are not considered to be simple.



Chapter 5

Security of the DQPS protocol

As introduced in the previous chapter, the DPS protocol is composed of simple devices and is
robust against PNS attacks, while the security proof is complicated. In this chapter, we seek after
the benefit of the DPS protocol in aldirent direction, namely, for short-distance communication

in which PNS attacks do not impose a severe problem. We provide a security proof of a variant
of the DPS protocol called flerential quadrature phase shift (DQPS) protocol [46] by applying
the simple proof for the BB84 protocol, and establish its definite advantage over the PE-BB84
protocol. The DQPS protocol can be implemented with essentially the same hardware as the
PE-BB84 protocol, but our security proof shows that its key generation ratd as&igh as that

of the PE-BB84 protocol. The benefit from the simplicity of PE-BB84 protocol is not sacrificed
because the requirement for the properties of the light source and the detection apparatus is shown
to be kept to minimum as in the PE-BB84 protocol. Although the security proof is limited to the
asymptotic regime in this chapter, it is extended to the finite-key case in Chapter 6.

In this chapter, we use severaldrent notations from those in the previous chapters. We
call the basis to generate a key “data basis” and call the basis for monitoring signal disturbance
“check basis”. In the BB84 protocol considered in the previous sections, the data basis and the
check basis were callefibasis andX basis, respectively. But here, we do not associate the data
and check bases to qubit bases (suctXandZ) in the description of the DQPS protocol in
Sec. 5.1. Qubits will be introduced in the security analysis in Sec. 5.2. There, we opt to follow
the convention of taking the photon-number states as the standard basis, and hence associate
the {|0),|1)} basis of a qubit to the (parity of) photon number. We assume that Alice’s state
preparation on the data basis is replaced|by, |-)}-basis measurement, and also assume that
the measurement to obtain phase error is made-by, |+i)} basis wheret) := (|0y+|1))/ V2 and
1+i) = (|0) + i |1))/ V2. When we represent an outcome of the , |-)} basis measurement by a
bit, it should be understood that st&t¢ corresponds to bit value 0 and statgto 1. On the other

53
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hand, for{|-i), |+i)}-basis measurement, we adopt an unconventional rule-thatorresponds
to bit value 0 and+i) to 1 for the convenience of the proof.

This chapter is organized as follows. In Sec. 2, we describe details of the DQPS protocol and
assumptions on the light source and the detection apparatus. Sec. 3 gives the security proof of
the protocol, and shows an explicit formula for the key rate. Based on the formula, numerical
results for the secure key rate is shown in Sec. 4. Finally, Sec. 5 deals with discussions including
an analytical expression for the scaling of the optimal key rate and sinfplme calibration
methods for the light source.

5.1 Protocol and assumptions

Here we introduce a DQPS protocol considered in this chapter, which is slightly modified from
the one [46] proposed by Inoue and Iwai (See Fig. 5.1). The protocol uses two bases, data
basis for generating the final key and check basis for monitoring the leak of information. In
the data and check bases, relative phases between adjacent pulses are mody(atedalmygl
{3 3—2”}, respectively. The protocol regards a trainLopulses as a block, and the working basis
is randomly chosen for each block. The randomization of overall optical phase is also done for
each block oL pulses. Bob’s receiver is composed of delayed interferometer with its delay being
equal to the intervahr of adjacent pulses. The longer arm of the interferometer passes through
a phase modulator that incurs phase shift= 0 or 7. After the interferometer, the pulses are
measured by two photon detectors corresponding to bit values “0” and “1”. If there is a detection
from the superposition of tHeth and the l(— 1)-th original pulses, we call it as valid detection at
I-th timing (1< 1 < L -1).

The protocol proceeds as follows, which includes predetermined paranpeter®,” o, =
1- Py, 1 > 0, andneep. In its description|k| represents the length of a bit sequerce
1. Alice selects a bit € {0, 1} with probability po andp;, which correspond to the choice of data
basis and check basis, respectively. Bob also setket®, 1} with probability po and p;.
2. Alice generatet random bitsy € {0, 1} (0,1, ..,L — 1), and preparek optical pulses (system

S) in the state
L-1

Q1@ Vig, . 6i(a.c) = am + e, (5.1)
1=0
wherela)s, represents coherent statest’/2 >k i/’—% Ik)s, of thel-th pulse mode. Alice randomizes
the overall optical phase of thepulse train, and sends it to Bob.
3. Ifd=0, Bob setgs = 0. If d = 1, he setg = .
4. If there is no detection of photons in the valid timings, Bob $ets0. If the detections have
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only occurred at a single valid timing, the varialles set to the index of the timing. If there are
detections at multiple timings, the smallest (earliest) index of them is assignetf tp# 0, Bob
determines his raw key bit € {0, 1} depending on which detector has reported detection at the
j-th timing. If both detectors have reported at flueh timing, a random bit is assigned bo Bob
announceg through the public channel.

5. If j # 0O, Alice determines her raw key bit @as= a;_; + a; where the plus sign represents
addition modulo 2.

6. Alice and Bob repeat the above procedurgstimes. They publicly discloseandd for each

of the np, rounds.

7-1. Alice and Bob define sifted keya; andkg;, respectively, by concatenating their determined
bits with j # 0 andc = d = 1. They publicly disclos&s; andkg;.

7-2. Alice defines a sifted kegng by concatenating her determined bits wjtiz 0 andc = d = 0.

7-3. Bob defines a sifted kayy by concatenating his determined bits wjtk 0 andc = d = 0.

8. Bob corrects the errors in his sifted key to make it coincide with Alice’s kexao through
lkaolSec bits of encrypted public communication from Alice by consuming the same length of
pre-obtained secret key. Alice and Bob conduct privacy amplification by shortening their keys by
lkaolSpa to oObtain the final keys.

In this chapter, we only consider the secure key rate in the asymptotic limit of an infinite sifted
key length. We consider the limit ofe, — co while the following observed parameters are fixed:

_ |Kkaol __ Wit(kgo — Ka0) _ Wi(kp1 — Ka1)
Q L ~2 0 -— —..27 El - —,..2
NrepPy NrepPy NrepPy
where the minus sign is a bit-by-bit modulo-2 subtraction. In this liByt is given by a function
of the bit error ratéey/ Q. In Sec. 5.2, the asymptotic value ®f, is determined as a function of

Q andE;. The asymptotic key rate per pulRe is then given by

: (5.2)

;2
R. = 2Q(L - Spa(Q. Ex) - Sec(Eo/Q). 53)

The security of the above protocol is proved in Sec. 5.2 under the following assumptions on
the devices used by Alice and Bob. For clarity, up to Sec. 5.3, we assume that Alice’s laser source
and modulator produces the states in Eqg. (1) precisely. The assumption on the laser will then
be relaxed in Sec. 5.4. The randomization of the overall phase in Step 2 is assumed to be done
by choosing a common optical phase shifandomly from the continuous range of ), and
applying it to all theL pulses. As is seen in Sec. 4.2.1, this eliminates the coherence among
different photon-number states. The state emitted from Alice in Step 2 is thus expressed as

L-1
2N (X119 vy, (€49 vl )i, (5.4)
m 1=0
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Figure 5.1: Setup for the-pulse DQPS protocol. At Alice’s site, pulse trains are generated by

a laser followed by phase randomization as well as phase modulation (PMOwtthor {7 3”}
according to her random bits and basis choice. At Bob's site, each pulse train is fed to a delayed
Mach-Zehnder interferometer with phase shift 0aaccording to his basis choice. The trains
leaving the interferometer are measured by two photon detectors corresponding to bit values “0”
and “1”. Valid timings of detection are labeled by integerg,1, L — 1, according to the index

of the pulse from the short arm of the interferometer. Detection from interference between pulses
from different blocks is regarded as invalid and ignored.

whereN, represents the projector onto the subspace mighotons in the. pulses.

As for Bob’s apparatus, we assume that he uses threshold detectors, and further assume that
the ingficiency and dark countings of the detectors are equivalently represented by an absorber
and a stray photon source placed in front of Bob’s apparatus, and hence they are included in the
guantum channel. This allows us to regard each of the detectors in Fig. 5.1 as a perfect threshold
detector, which reports detection if and only if it receives one or more photons. To represent a
relevant consequence of that assumption in a useful form, we introduce POVM elements for Bob’s
j, when the basisl was selected in Step 1. We further decompose the elemenjs#00 as

B = B + BIY, whereB} corresponds to the outcomgf). These operators satisfy

BY + Z(B(d) + B = 1. (5.5)
j=1
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Under the model of detectors mentioned above, whether there is a detection or not at each timing
does not depend on the phase shift applied on the long arm. Hence, the procedure to d¢termine
is the same fod = 0 andd = 1, and we have

BY=B" (0<j<L-1) (5.6)

which will be used in the security proof given in the next section.

5.2 Security proof

Here we prove the security of the protocol introduced in Sec. 5.1 and determine the amount
of privacy amplificationSpa(Q, E;) in the asymptotic limit. Our proof is based on the security
analysis with complementarity as well as the tagging technique with a modification. Before
introducing the detail of the proof, let us discuss thi&edence between the original tagging idea

and ours. In the security proof of the PE-BB84 protocol, if a pair of pulses emitted from Alice
contains more than a single photon, that signal is considered to be tagged and totally insecure.
The argument relies on the fact that the state emitted by Alice is expressed as mixture of photon-
number states as in Eq. (4.6) with Eq. (4.13). Intuitively, we might want to use the same idea for
the security proof of the DQPS protocol because a key bit is generated from a pair of pulses like
in the PE-BB84 protocol. However, this turns out to bffidult because in the DQPS protocol,
Alice generates a key bit= a;_; +a; after Bob’s announcement of detection timipgdbviously,

the (j — 1)-th andj-th pulses were already received by Bob and it is too late for Alice to conduct a
direct measurement to determine the total photon number, and hence itis impossible to assume the
form of Eq. (4.6), even in principle. In what follows, we will circumvent this issue by introducing

a tagging rule defined through measurements on Alice’s fictitious auxiliary qubits, which remain
at Alice’s site during the whole protocol.

5.2.1 Virtual protocol

For the security proof with complementarity, we consider virtual protocol in which Alice’s sifted
key kpo are obtained from measurements on auxiliary qubitg+en |-)} basis, while Bob, instead

of aiming to learrxa, tries to guess the value of the complementary observable (the outcome of
{|-i), |+i)}-basis measurement) for Alice’s qubits. The virtual protocol is designed to fulfill the
following conditions:

(i) Alice’s procedure of releasing optical pulses, making her public announcedgersnd pro-
ducing the final key is identical to the actual protocol.
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(i) Bob’s procedure of receiving pulses and making his public announcemjgffior each round)
andkg; in the actual protocol is identical to the corresponding procedure in the virtual protocol.

Apparently, the protocol satisfying the conditions (i) and (ii) also satisfies the condition of the

virtual protocol mentioned in Sec. 3.2.3. Hence, Alice’s final key in the actual protocol is secure
(random and decoupled from Eve’s system) if that in the virtual protocol is secure against Eve’s
general attack.

Now we introduce an virtual entanglement-based protocol satisfying conditions (i) and (ii) by
using the replacement of state preparation (see Sec. 3.2.1). In the protocol, Alice correlates an
auxiliary qubit to each optical pulse, and prepare a state by making measuremgnt,on)}
basis. A controlled-NOT (CNOT) gatég,)\,OT appearing in the protocol below is defined on
{|0),|1)} basis byUgR,OT|x>A,j Waj1 = XajlX+ymod 2, ; (XY € {0,1}). The detail of the
virtual protocol is described below, where a step includingf@ed#nt procedure from the actual
protocol is marked with an asterisk (*).

Virtual protocol .
1. Alice selects a bit € {0, 1} with probability gy and p;, which correspond to the choice of data
basis and check basis, respectively. Bob also seteetf), 1} with probability pp and p;.
2. Alice prepared. auxiliary qubits (system) andL optical pulses (systei8) in state

L-1
¥(Cas = (X) W(CDasy (5.7)
1=0
depending on her basis choice, where
1 . .
(s 3= 5 )a €5 Vi) + 1ar I-€2C VD)), (5.8)

She measures the total photon numiven the L pulses with the projective measuremeNy,,

and sends the pulses to Bob.

3*. Bob set¥p = 7 regardless of the value df

4. If there is no detection of photons in the valid timings, Bob $etsO. If the detections have
only occurred at a single valid timing, the varialjles set to the index of the timing. If there are
detections at multiple timings, the smallest (earliest) index of them is assignetf tp# 0, Bob
determines his raw key bit € {0, 1} depending on which detector has reported detection at the
j-th timing. If both detectors have reported at flueh timing, a random bit is assigned o Bob
announceg through the public channel.

5-1". If j =0, proceed to Step 6. Otherwise, Alice operates a CNOT@%@@T on the ( — 1)-th
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qubit (target) and th¢-th qubit (control).

5-2°. Alice measures all the qubits but tireh one on{|0),, , |1)A;} basis to obtain the outcomes
z (1 #)).

5-3. Alice measures thg-th qubit on{|+),;,|-)a;} basis and determines her raw key &it
accordingly.

6. Alice and Bob repeat the above procedurgstimes. They publicly discloseandd for each
of the nep rounds.

7-1. Alice and Bob define sifted keys; andkg;, respectively, by concatenating their determined
bits with j # 0 andc = d = 1. They publicly disclos&x; andkg;.

7-2. Alice defines a sifted kegyo by concatenating her determined bits wyjti# 0 andc = d = 0.
7-3'. Bob defines a sifted kexf,, by concatenating his determined bits wjtk 0 andc = d = 0.
He publicly disclosegy,,.

8. Alice conducts privacy amplification by shortening her keyday|Sra to obtain the final key.

The above protocol satisfies the condition (ii) because of the following reasons. Sincé Step 3
is identical to the actual protocol for= 1, so is Bob’s announcementgf;. The change in Step
3" does not fect the announcement ¢fin each round due to Eqg. (5.6). Note that the change in
Step 7-3 is an additional announcement which is not disclosed in the actual protocol. In order
to see that the condition (i) holds, we will modify the virtual protocol in such a way that Alice’s
procedure dictated in (i) is unchanged. Since the outcdmida Step 5-2 are neither announced
nor used in determining the final key, we can omit this step. Since a CNOT g4d{8)01i)}
basis is equivalent to a CNOT gate (), |—)} basis with target and control exchanged, Steps
5-1" and 5-3 are equivalently done by measuring all thejubits on{|+),|-)} basis to obtain
L bits ag, &, .., a1 as the outcome, and then settiag= a;_; + a;. Since the{|+),|-)}-basis
measurement on all the qubits does not require the knowledgewef may assume that it is done
in Step 2. Then, using the relation

1 x
Al (£ (Cas) = 7 £€2° \y, (5.9)

we see that thé-bit sequencey, ay, .., a,_; is random and conditioned on its value the emitted
state is identical to Eq. (5.4). Hence, it is equivalent to Steps 2 and 5 of the actual protocol.
Finally, Steps 7-3and 8 are the same as in the actual protocol as far as Alice is concerned.
Therefore, the virtual protocol satisfies the condition (i), as well as (ii), which means that the
security of the virtual protocol implies the security of the actual protocol.



60 CHAPTER 5. SECURITY OF THE DQPS PROTOCOL

5.2.2 Alternative definition of tagging

To prove the security of the virtual protocol, we focus on the tagging technique for the PE-BB84
protocol, in which the incidents with multi-photon emission in double pulses are tagged and
considered to be insecure. In a similar vein, we might want to tag the events wheje-thgth

and j-th pulses include multiphotons upon emission. However, the number of emitted photons in
the two pulses is not well-defined due to the phase coherence with other pulses. Instead, we define
a rule to classify tagged € 1) and untagged & 0) incidents in terms of variables well-defined

in the virtual protocol:

dYza=m-ot=0 Yz<mot=1 (5.10)

I#] I#]
Let kaount € the concatenation of all the untagged bitxig, and define the ratio of tagged
incidents as

A =1 Keound (5.11)
Kol

From Eq. (4.45) and the argument in Sec. 4.2.2, if the phase-error rate for untagged portion is
bounded bys(Q, E;, A), kao can be made to be secure in the asymptotic limit by reducing its
length by|kao|Spa satisfying

Spa(Q. E1) = max(A + (1 - A)h(6(Q, E1, 4)) ). (5.12)

Let us discuss the implication of the condition Eq. (5.10) for the tagging, and derive important
relations that will be used in the subsequent proof of security. According to Eq. (5.8), it is not
difficult to see thak (0| [¢/(C)) a5, includes only even number of photons, and1] [¢(C)) s, does
odd number of photons. For convenience, let us define projectors related to such a property by

L-1
Thei= (R0,
1=0

1O := P(0)a) ( >, |5(|n>s,|)] + 15(|1>A,.)(Z F3(|n>s,.)], (5.13)

n:even n:odd

wherelf’(|->) = |-)(:|. Notice that the initial state in Eq. (5.7) satisfies
'Y'As [P(C))as = [P(C))as - (5.14)

Thanks to the correlation specified Biys, the measured quantiti¢s} are related to the parity
of the photon numbers in the syst&n To see this, let us define the projector corresponding to
the state om photons in thé-th pulse by

L-1

Nimy = (X) PIm)s)). (5.15)

=0
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Alice’s procedure of determiningg} (I # j) at Steps 5-1and 5-2 will be associated with the
projector defined by

0 = 0| T (R P00 | O
%]
= [P0 ;-1 1z-2n ) + P(Daj1 11 - Z0)a )| X) Pli2)a). (5.16)

%] 1,j

Then, itis easy to confirm that

(FY ® Nim))Tas # 0 only if

z=m mod2(+j-1j) and z_, = mj_3 + m; mod 2

(5.17)
SinceNyNm, = 0 unlessy,, m = m, we have
(F? ® NpNim))Tas # 0 only if
z<m(#j-1j), za<m+m and > m=m
| (5.18)

If we confine ourselves to the case Wil z = m, the condition in the above equation is satisfied
onlybyz =m (I # j - 1, j) andz;_, = mj_; + m;. We thus conclude that

('f{(;n)} ® Nm)‘i’AS = ('f{(zj,)} ®ég,)})'%As for Z Z =m, (5.19)
)
where
2D = P(0)s110)s;) (X) Pliz)s)) for z.1=0 (5.20)
1#]-1]
2D = [P(0)sj1IDs ) + P(Dsjo110)s))] @ P(z)s)) for z1=1.  (5.21)

%L

This may lead to an interpretation that, whenever the event is untagged, every pulse should have
contained no more than one photon upon emission, andjthelj-th and thej-th pulse pair
contained no more than one photon in total. On the other hand, we should also take notice that
Alice’s measurement dfz} (I # j) in the virtual protocol can be carried out only after the pulse
train was measured by Bob and the valug fas announced. Hence the above interpretation has

an ambiguity in the operational sense, which is why we only use strict mathematical statements
of Egs. (5.14) and (5.19) in the subsequent proof and do not rely on the interpretation.
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5.2.3 Phase-error rate for untagged portion

Our next goal is to determine the upper bound of the phase-error rate for untagged portion
6(Q, E1, A) following the definition in the security proof with complementarity (see Sec. 3.2.2).
To represent the phase error explicitly, let us introduce the following procedure instead of the
Steps 5-3and 7-2.

5-3". If c = 1, Alice measures thgth qubit on{|+),;,|-)a j} basis and determines her raw key
bit a accordingly. Ifc = 0, Alice measures thgth qubit on{|-i), . [+i)a j} basis and determines
her raw key bita accordingly.

7-2. Alice defines a sifted key,, by concatenating her determined bits wjtiz 0 andc = d =

0.

Let kpg e AN &G, D€ the concatenations of all the untagged bitgjnandxg,, respectively.
Phase errors for untagged portion are given as bit errors betgiggnandxky, ,,, and the number

of the phase errors is given by Wi .. — Kxp.n)- SUuppose that we have a bound on phase error
ratedun(Q, E1, A), which asymptotically satisfies

Wt(KEO,unt - K,*B\O,unt)

Sunt(Q, E1, A) > (5.22)

|K,*Ao,unt|

Notice that the measurement on Alice’s qubits for extrackirgor «,, can be postponed until
after Step 7-3 namely, after she learns the valuesQfE,, A andxg, .. Then, an extreme case
of 6unl(Q, E1, A) = 0 will mean that the state dkaound Untagged qubits before the measurement
is exactly &|-i), |+i)}-basis eigenstate specified :Ué(wm, and hence&agunt, Which is an outcome
of {|+), |-)}-basis measurement, is secure (random and decoupled from Eve’s system).

It can be shown thai,,; is connected to the check-basis error fateof the actual protocol
through a fair sampling. For given valuesadnd |, Alice’s procedure of determininig} anda at
Steps 5-1, 5-2 and 5-3 corresponds to the projection onto the stat§)) , which is defined

by

j 1 T .
A= 75 080r| (100 = 1717 D)) () 0ar | (5.23)
1#]
Since these states satisfy
() jgledy _ g
Fias Moz a = Majg))a (5.24)

Egs. (5.19) and (5.24) lead to

A<ﬂ§i2}| NmTas = A(ﬂgiim ég)}"\rAS for Z z=m (5.25)

I#]
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From Eq. (5.14), we have

ACAS) IR (B (Q))as = ACASD 1D [W(0Pas for D z=m (5.26)

%]

The basis-choice dependence of sty ), and|¥(c))as can be represented by

Agiaa = (PUOA)) +1° P(DA)) KA, (5.27)
and
L-1 i
W(0))ps = (@ i 'mC] W(O))as (5.28)
1=0

wherem := 3, mP(Im),) is the photon number operator for théh pulse. Since the range of the
pI‘OjeC'[OI"_'(J) includes only zero- or one-photon states for each mode, we have

[(P(I0)a}) + (-1)°P(1)a;) ® ZD 1T as = (=) ™ED Tas. (5.29)

Combining Egs. (5.14), (5.27), (5.28) and (5.29), we obtain

L-1
ACASDIED W(0)as = (AT (=)™ (@ i 'm] =0 ¥ (0)as - (5.30)
=0

Using the definition of Egs. (5.20) and (5.21), it is easy to confirm that

(i)™ (@I Imc] &0 _ j (-Dz- 10[ n i'm)ég)} (5.31)

l#j-1,j

holds. Therefore, we have

AASDIED | W(O0)as = () Da(ALTDIED | (s, (5.32)

Z

whereu(]) == X4j-1j 1z + (j — 1)z;_1 and this leads, with Eq. (5.26), to

ACASD IR [9(0))as = (=)D a (AL i [P(Uas for >z =m (5.33)
%]

This relation may suggest that for untagged incidents, the state of pulses transmitted from Alice
would be independent of the value@fand hence the = d = 1 incidents would be regarded as
a fair sampling. Again, this interpretationfiers from ambiguity since the protocol assumes that
Alice’s qubits are measured only after the optical pulses are received by Bob and the value of
is announced. Therefore we need a mathematical proof for the fairness of the sampling, which is
given in Appendix B. The proof confirms that

* * ~ \2
Wt(KBO,unt B KAO,unt) _ (pO)

5.34
WI(Kg1,unt — KaLunt) ( )
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holds in the limit ofn,e, — co. Then we have

Wt(KEO,unt - KZO,unt) _ (@)2 Wt(KBl,unt - KAl,unt)
|Kjg@,unt' P1 |K:&o,unt|
< (@)2 Wt(kp1 — K1)
B ’31 |'(/kko,untl
=]
= — (5.35)
Q(1-4)

Thus,6(Q, E1, A) = E;1/(Q(1-A)) is an upper bound on the phase error rate satisfying Eqg. (5.22).
From Eq. (5.12), we conclude that asymptotically a privacy amplification with a ratio

Sea(Q. E1) > max(A + (1 - A)h( 5 (15 A))) (5.36)

is enough to make the sifted key, secure.

5.2.4 Upper bound on tagged ratio

Since the argument of the max in Eq. (5.36) is an increasing functian®, will be determined
through finding an upper bound @n According to the definition of Eq. (5.11), what we need
is a lower bound ofikaound, Which is determined as follows. If we denote bf{conditior) the
number of rounds satisfying thenditionin the n,, rounds repeated in the virtual protocol, we
havelkaol = n(c=d =0, j # 0) andlkaound = N(c=d =0, j # 0,t = 0), wheret = 0 is equivalent
to 3%.j2 = maccording to Eqg. (5.10). Under a given attack strategy of Eve, the statistics of
nc=d=0,j#0)andn(c=d=0,] # 0,t = 0) is unchanged if we omit Step 5-8nd stop the
protocol at Step 6. We may further equivalently replace Stepsad 5-2 with a procedure of
measuring thé qubits on the|0),,, 1)} basis to obtain the outcomés - --z ,, followed by
substitutions ;=7 (I # j -1, ) andz_; := Z_1+7 mod 2 in case of # 0. Let us define a set
of values ofL. nonnegative integers as

r(m) = {(kO’ cee kL—l)

L-1
k|_1+k.sl(1sIsL—1),Zk.:m}, (5.37)
1=0

and operators associated with it by

EEEDY ®P(|4>A.) Q= > ®P(|m>5|) (5.38)

{z}erm 1=0 {m)erm 1=0
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We see that,, -z ;) € T™ implies 3’,.; 2 = mregardless of the value gf as long ag # 0.
Hence we have

nc=d=0,j#0,t=0)

nc=d=0,j#0,(z, -4 ,)el™)

= nlc=d=0,j#£0)-nlc=d=0,j#0,(%,---Z_,) ¢ [™)

> nlc=d=0,j£0)-nlc=d=0,(z,---7_,) ¢ [™M). (5.39)

\%

The numben(c = d = 0,(z,---Z_,) ¢ I'™) is independent of Eve’s strategy, and it follows the
binomial distribution with success probabilirﬁr{ag with

Mag:=1- Z as (P(0)l ﬁf{“) ® N, [¥'(0))as - (5.40)
m
Sincez = m mod 2 and i, ...,m1) € I™ imply (Z,---Z_,) € I™, we havell{’Ts =

(1Y @ 1Y) T as. On the other hand = m mod 2 andy, Z = 3, m imply Z = m, which leads
to (1Y ® Niy)Tas = (1Y @ 1) T'as. We thus obtain

(ﬁgm) ® Np)Tas = ﬁ(sm)'?As (5.41)
Combined with Eq. (5.14), we obtain

lag= 1= ) as (PO T ¥(0Pns, (5.42)

which gives us a clear interpretation of quantify, being the probability that the-pulse train
emitted from Alice contains at least two photons in the same pulse or in neighboring pulses. As
a function ofy, it is calculated as

/2]
_ L+1-m)
Mag = 1- E ertym : 5.43
@ £ Hmi(C+ 1-2m)! (543)

In the asymptotic limit ofep — 0, Eq. (5.39) implies

nc=d=0,j#0t=0)_ n(c=d=0,j#0)

)
— P&l tao 5.44
Mrep Mrep Poltag ( )

which means thakaound /Nrep > [Kaol/Nrep — ﬁgrtag. Using Egs. (5.2) and (5.11), we have
r
A< 29 (5.45)

Hence, choosing

smqm:%+(l%% E1) (5.46)
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makes the virtual protocol, and hence the actual protocol, secure. An achievable asymptotic key
rate per pulse is thus given by

S
Q - rtag

2
R = ((Q- rad(1 - (5 =-—)) - QSec(Eo/Q) (5.47)

whenever the right side is positive.

5.3 Keyrates

We show results of numerical calculation of the key rate per pB|sgiven by Eq. (5.47) to
compare the conventional passive PE-BB84 protocel) and the DQPS protocoL (> 3). In

Fig. 5.2, dependence &_ on overall transmission (including detector #iciency) is shown for

L = 2,4,20. We adopte®ec(Eo/Q) = h(Eo/Q) andpy = 1. The solid curves represent the key
rate R_ under the assumption that a dark count probabilitpdgx = 0.5 x 107> per pulse per
detector. We assun®@ = 1 — e &7 4 2(L — 1)pyane reflecting the fact that there ark € 1)

valid timings per block of pulses. We also assume that the error rate depemdsandn in
addition to a loss-independent rate 3%, namglys= E; = 0.03(1— e 1) 4+ (L — 1)pgan. The

key rateR_ was then optimized over for each value of;. We see that except for a very low
loss, a larger value df leads to a higher rate and achieves a longer distance. The dotted curves
represent the key rate f@ga« = 0. From these curves, we see tHat,for different values oL

are all proportional tey? in the limit of smally, but its codficient increases ds gets larger. For
example, at 20 dB loss, we found tHai/R, = 2.67, which clearly shows an advantage of the
DQPS protocol over the PE-BB84 protocol when we use essentially the same hardware. We also
see that even in the limit of no loss (& 1), the DQPS protocol withh. = 4 is superior to the
PE-BB84 protocol.

5.4 Discussion and conclusion

Figure 2 shows that the optimized key rates are proportiong o the limit of  — 0, with its
codficient dependent on the block sike In the special case where the bit error rate is zero, we
can analytically determine the déieient as a function of. ForLu? < 1, the parametéf,g in

Eq. (5.43) is approximated aigg = %‘Z,uz. ForLun < 1, the paramete® is approximated as

Q = (L — L)un. Hence, forLy? < 1, the key ratdR, = (Q — rag)/L is optimized aj = " =
+=17 to attain the optimal valug™ := 2&;—322)772. In the limit of a large block size, we have
R™ . = 1?/6 andR™_/RS™ = 8/3. The result seems interesting in the sense that the secure key

rate for a large value df is more than twiceas large as that df = 2 while the inherent loss in
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Key generation rate (log,R,)

0 5 10 15 20
Total dB loss (-10logon)

Figure 5.2: Secure key rate per puRe as a function of the overall channel transmissipn

The solid curves represent the key rate under the assumption that a dark count probability is
Paark = 0.5x107° per pulse per detector, and the dotted curves represent the key rapgwith 0.

For both solid and dotted curves, the top, the middle and the bottom curve (at a high dB loss)
represent the rates far= 20,L = 4 andL = 2, respectively. The bit error rate of the sifted key
depends ompgark andn in addition to a 3% loss-independent error. The block &ize chosen to

be 2, 4, and 20, where = 2 corresponds to the PE-BB84 protocol and the other values to the
DQPS protocol.
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the passive interferometer itself i2ifor L = 2. On the other hand, it does not mean that the key
rate exceeds the caselof= 2 without the interferometer loss, namely, implementation with an
ideal active optical switch. Sind&™ « 72 holds in the limit of small, the key rate of an ideal
active protocol is 4 times the rate of the passive ond_fer2. If the loss in the optical switch is
taken into account, the passive DQPS protocol is mfiteient than the active PE-BB84 protocol
when the loss of optical switch is larger thar20%.

While we have assumed so far that the initial pure state represented in Eq. (5.1) is prepared
by Alice, the proof can be extended to a general light source, which is shown in Appendix C. The
proof there assumes that the phase modulator (PM in Fig. 5.1) works perfectly, and that every
L-pulse train from the source is independent and represented by the same density eperator ~
(not necessarily identical for each pulse). For the general light source described above, the secure
key rate is still given by Eq. (5.47) with

Mag=1— Z tr (M6s). (5.48)
m

Even when the staies of the L pulse train is unknown, an upper boundrgg can be deter-
mined from an €-line coincidence measurement on the light source using a few detectors. As
shown in Appendix D, the calibration method reveals an upper bound that is close to the true
value ofry,g, as long as the state from the source is close to a coherent state with its mean photon
numbern < L2,

For long distance communication, the DQPS protocol can be improved by using decoy-state
method, in which intensities df pulses are randomly changed block by block. However, it is
less défective asL gets larger. This is because only the statistics of the total number of photons
emitted in thel pulses are obtained and no further information on their distribution ovel the
pulses is available. As a result, the improvement is limited to the events where a single photon
has been emitted in tHepulses. Thus, for long distance communication, a secret key is extracted
only from such single-photon events. When Alice uses a laser source, the maximum probability
that a single photon is containedlinpulses is le regardless of.. Bob’s detection has a loss of
1/L due to detection at invalid timings in Fig. 5.1. Therefore, theency of key generation per
pulse isx (L — 1)/L2, which shows that the key rateslof> 2 is smaller than that df = 2 in the
limit of long distance.

On the other hand, for short distance communication, the DQPS protocol is expected to com-
pensate for several disadvantages of the decoy-state BB84 protocol mentioned in Sec. 4.3.2. First,
the decoy-state BB84 protocol uses the knowledge on the probability of higher photon numbers
from the light source, which will require complicated devices for calibration while the DQPS
protocol requires as simple devices as the BB84 protocol. Second, the decoy-state BB84 protocol
relies on an involved parameter estimation, which leads to a large overhead from the finite-key
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size dfect. In comparison, the simplicity of the key rate formula (5.47) of the DQPS protocol
suggests a small overhead from the finite-key stfecg¢ which is actually confirmed in Chap-

ter 6. From the above insights, the DQPS protocol is expected to be useful for the practical cases
where one prefers a simple setup or short time operation for short distance communication.

Another possible improvement of our result may be obtained from the expected robustness
of general DPS protocols against PNS attacks. As is seen in Sec. 4.4.2, in the DPS protocols
(including the DQPS protocol), Eve’s attempts to control the timing of dete¢tiends to violate
the coherence chain and increase the probability of a bit error, which is expected to result in the
robustness against PNS attacks. While the robustness can be sep%adﬂ)andence of the key
rate in a security proof of the DPS protocol [90], our key rate of the DQPS protocol scajés as
This is because our proof assumed the pessimistic assumption that Eve is able to control the value
of j without causing any bit error. If we analyze the security based on the proof technique for
the DPS protocol [90], our protocol may benefit from the robustness against PNS attacks without
using decoy states.

As a conclusion, we have proved the security dfatential quadrature phase shift (DQPS)
guantum key distribution protocol, which can be implemented with almost the same setup as the
phase-encoding (PE) BB84 protocol. The proof is based on the a careful adaptation of the tagging
idea and the complementarity argument. We found that the key generation rate exceeds that of
the PE-BB84 protocol for any channel transmission, and3s8 high as the rate of the PE-BB84
protocol in the limit of small transmission.






Chapter 6

Simple method of finite-key analysis for
WCP-QKD

In contrast to the asymptotic analysis conducted in Chapter 5, security analysis of QKD should
take into account statistical fluctuations due to the finite size of communication data, which re-
quires so-called “finite-key analysis”. Although the secure key generation rate of the DQPS
protocol was higher than that of the PE-BB84 protocol in the asymptotic analysis, it is not ob-
vious whether the advantage is still retained in the finite-key regime since the security proof of
the DQPS protocol is not as straightforward as that of the BB84 protocol. This motivates us to
conduct finite-key analysis for the DQPS protocol. Interestingly, on the way to address this prob-
lem, we discovered a new method for finite-key analysis which is suitable not only for the DQPS
protocol but also for other QKD protocols using WCP, enabling a smaller number of estimated
parameters. The method is based on Bernoulli sampling, which is related to binomial distribution,
in contrast to the currently used method based on the simple random sampling, which is associ-
ated with hypergeometric distribution. For WCP-BB84 protocol, a higher key generation rate is
obtained with the proposed method compared to the conventional method with simple random
sampling. Furthermore, the required number of detected signals to generate a secret key reduces
drastically from the previous works. By applying the proposed method to the DQPS protocol,
we show that the advantage of the DQPS protocol over the PE-BB84 protocol still remains in the
finite key regime.

This chapter is organized as follows. In Sec. 6.1, we briefly introduce basic ideas in the sam-
pling problem which are necessary for finite-key analysis, simple random sampling and Bernoulli
sampling, and also mention related works. In Sec. 6.2, we propose a method of finite-key analy-
sis based on Bernoulli sampling, and applies it to the ideal BB84 protocol where Alice and Bob
can manipulate perfect single-photon states. The proposed method is then applied to the BB84

71
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protocol with WCP as well as the DQPS protocol in Sec. 6.3. Finally, we give discussion and

conclusion in Sec. 6.4. The results of this chapter complete the security proof for the BB84 pro-
tocol in Sec. 3.3 and Sec. 4.2.2 by explicitly determining the bounds on the numbers of phase
errors and untagged rounds.

6.1 Sampling problem in finite-key analysis

The statistical fluctuations in the finite-key analysis appear in the estimation of the number of
phase errors and the estimation of the number of untagged incidents, for example. To obtain
concise analysis and also to avoid thieet of unnecessary fluctuations, a simple method with a
smaller number of estimation processes is preferred. Although several proofs [17, 113, 114] use
Azuma'’s inequality [25] to treat specific protocols, a number of recent finite-key analyses [13,
15, 16, 24, 76] are based on the method with simple random sampling, which is used to model
n, draws, without replacement, from a finite population of sizehat contains, errors. The
probability that the number of errors in the sampl&isbeys hypergeometric distribution

(€)Ge)
()

In several finite-key analyses [24, 76] based on simple random sampfiogsavere made to
find bounds on hypergeometric distribution which are related to binomial distribution in order to
simplify numerical calculation.

In order to mitigate the irféiciency arising from basis mismatch between the sender and
the receiver, the BB84 protocol is often implemented with biased basis choice [115], in which
the minor basis is used solely for monitoring leaked information in the major basis. The BB84
protocols and the DQPS protocol we have investigated in Chaps. 3-5 include such a bias in the
form of the basis choice probabilitigz and px (or fp and p;). In such cases, the whole data
from the rounds in the monitoring basis is regarded as a sample, with each round selected with
a constant probability dictated in the protocol as that of the basis choice. This suggests that the
data from the monitoring basis is related to Bernoulli sampling, in which each element of the
population of sizen, is sampled with fixed probability,” The number of samples, obeys
binomial distribution

HG(k]_, Ny, k2, nz) = (61)

~ N2\ . ~ o
BI(ny; Ny, P 1= (nj) B (L~ P ™. (6.2)

If the BB84 protocol with biased basis choice essentially includes the property of the binomial
distribution, analysis based on the conventional simple random sampling may introduce unneces-
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sary complexity and possibly leads to a lower key rate. This is the intuitive advantage expected in
using the Bernoulli sampling for finite-key analysis, which is certified in the following chapters.

6.2 Analysis for the ideal BB84 protocol

Here we consider finite-key analysis for the ideal BB84 protocol. The protocol follows the de-
scription in Sec. 2.2.3 and assumptions in Sec. 3.3. For convenience, we define several variables
and parameters as

Mot 1= Nz + N, (6.3)
and
p2
Pz ‘=% s
TR+
5
Px == —. (6.4)
TR+

6.2.1 Formalism for key length

We show a formalism for key length in terms of phase errors by using the result of 3.3. From
Sec. 3.2.2, aphase error is defined as a bit error which occurs when Alice and Bob conduct virtual
X-basis measurement onZalabeled round after Step (7’) in Sec. 3.3.1. An important property
which will be used in the next subsection is that the measurement for a phase eridiaimeded
round and the measurement for a bit error onXalabeled round are identical, and hence they
only differs in the labeling.

Let kon be a random variable which represents the number of phase errogs Hiabeled
rounds. Once we have a good upper boundkgn a secure key length can be calculated as
follows. Suppose that we have a functidfky, nx, not) Which satisfies

Pr(kon > f(kx, Nx, Nior)) < €pe (6.5)

regardless of Eve’s attack strategy. From the theorem in Sec. 3.3.2, by setting

€ = \/é VEPE * €pa, (66)

the protocol is-correct andss-secret if the final key length,, satisfies

f(Kx, Ny, N 2
lin < Nz(1 - h(M)) - |092€— — Aec(e), (6.7)
P

Nz A

wherelgc(&) is the cost of error correction to achiexgecorrectness.
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6.2.2 Bounds on phase errors

In this subsection, we discuss the specific methods to oli{laj ny, N in Eq. (6.5) including

a method based on the Bernoulli sampling, and a more conventional method based on the sim-
ple random sampling. We also introduce a third, rather convoluted method, which will help to
elucidate the dference between the former two methods.

Before discussing each of the methods, we first derive general statistical properties. Since

theZ-labeled phase error and tielabeled bit error are obtained by identical measurements, the
procedure to obtain those errors is equivalent to the following steps after Step (5’) in Sec. 3.3.1:
(a) Alice and Bob further discard each of the remaining rounds with probabikitypd — p2.
(b) They makeX-basis measurements on the remainmgg rounds and obtait errors. (c)
Finally, they label each of the, rounds asZ or X with probability p; and px (see Eq. (6.4)),
respectively, and obtaik,, phase errors iZ-labeled rounds anbly = ki — kpn bit errors in
X-labeled round®). In this procedure, sincky errors are sampled froiq,, errors with a fixed
probability py, it follows a binomial distribution ik, andn, are fixed:

Prkx | kot Nor) = BI(Kx; Kiot, Px)- (6.8)

On the other hand, the step (c) of the above procedure is equivalently denoted as follows: Alice
and Bob draw a number based on the binomial distribution B nit, Px), and then seleaty
random rounds among timg; rounds to label aX, thereby determiningy. This implies that the
numberky obeys hypergeometric distributionnf, ki andny, are fixed:

Pr(kx | nx, Kot, Niot) = HG(Kx; N, Kot, Niot)- (6.9)

In order to use the properties derived above, it is convenient to reformulate Eq. (6.5) as fol-
lows. From Eq. (6.5), we have

D, Prilon> T (ke N, M) | kiots Meo)Prlkion, M) < epe: (6.10)
Kiot,Mtot
Since Prkt, Niot) can be under control of Eve, we seek fdky, ny, nyt) satisfying
Prkon > f(Kx, Nx, Niot) | Keots Neot) < €pe (6.11)

for any kot and ny, Which is a sfficient condition for Eq. (6.5). For later convenience, we
equivalently describe Eq. (6.11) as

Pr(kx, nx | Kiot, Ntot) < €pE. (6.12)
kx,nx ;kx <kiot— f (Kx,Nx,Ntot)
"DIf one uses sampled bits ailabeled rounds to determine the cost for error correction (see Actual protocol in
Sec. 3.3.1), it should be done as a Bernoulli sampling with a probabili§ince these sampled bits are discarded,

the probabilitieg; andpx defined in Eq. (6.4) should be modified gs= ﬁz‘?%(_;?ﬁz andpx = ﬁzrfxﬁz , respectively.
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The first method to determingky, Ny, Nyt), Whose utility we will emphasize throughout this
chapter, is based on Bernoulli sampling using the property of binomial distribution Eq. (6.8). This
method adoptd$ (kx, nx, Nwt) = fei(kx) where

fai(kx) = min{ktot Cai(kx; Keot, Px) < €PE} -kx—-1 (6.13)
Cai (K ko Px) 1=, BI(K: kiots Px). (6.14)
K <kx

The proof thatfg (kx) satisfies Eq. (6.11) is as follows. Defikgkior) := maxky | kot > fai(kx) +
kyx}. Then we have

Bl(Kx; Kiots Px) < Cai(Kx(Kiot); keot» Px)- (6.15)

kx: Kiot> fai(Kx)+kx

SinceCg, (kx; kiot, Px) is @ decreasing function df,;, from Eq. (6.13) we hav€g (Kx; Kot, Px) <

epe for any pair kx. kior) satisfyingkior > fai (kx)+kx+1. Sincekor > fai(kx (ki) +kx (ko) +1 holds
by definition ofky(kit), we haveCg, (Kx(kiot); Kiots Px) < epe. By connecting this to Eq. (6.15), we
have

BI(kx; kiot: Px) < €pe (6.16)
kx; kx<kiot— fa1(kx)

for anyk. From Egs. (6.8) and (6.16), we have

Pr(kX, Nx | ktot’ ntot)
kx.nx; kx<kiot— fa1 (Kx)

= Z Pr(kx | ktot, r]tot)
kx; kx<kiot—fai(kx)

< e, (6.17)
which is identical to Eq. (6.12) witli(kx, nx, net) = fgi(kx). Therefore, we have

Prkon > fai(Kx) | Kiot, Ntot) < €pE. (6.18)

As a result of the Bernoulli-sampling method, the protocakisorrect ands-secret if the final
key lengthls, satisfies

Iﬁn < |(BI) = nz(l - h(@)) - |0926£ - /lEC(EC)’ (619)

zZ PA

wheree; is given by Eq. (6.6).
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The second method is based on simple random sampling, applying the property of the hyper-
geometric distribution EqQ. (6.9), which is already seen in Ref. [13, 15, 16, 24], for example. This
method adopts (kx, Nx, Nt) = fre(Kx, Nx, Nwt) Where

frc(Kx, Nx, Niot) := min{k(ot

Cric(kx; Nx, Kiots Niot) < EPE} —kx -1

CHG(kX; Nx, k[OI’ ntO'[) = Z HG(k, y Nx, k(OD ntO'[)' (620)
K <kx
The proof thatfy(kx, Nx, Nt) satisfies Eq. (6.11) is similar to the proof f&y;(kx). Recall that
the proof forfg(kx) did not use the explicit form of BK, ki, Px) but only used the decreasing
property ofCg (kyx; kiot, Px) @s a function oky. SinceCpg(Kx; Nx, Kot Niot) iS also a decreasing
function ofk, we have

HG (kx; Nx, Kot, Ntot) < €pe (6.21)
kx; kx <ktot— g (Kx:Nx,Mtot)
for anyny, kit @andng, Which is analogous to Eq. (6.16). From Egs. (6.9) and (6.21), we have
Pr(kX, Nx | k(Ota ntot)

kx.Nx; kx <kiot— fra (Kx,Nx,Mtot)

= Z Pr(kx | nx, Keot, Niot) Prnx | Kiots Niot)

kx.nx; kx <kiot— fa (Kx.Nx.Neot)

< €PE (6.22)
which is identical to Eq. (6.12) witli(kx, Nx, Nt) = fia(Kx, Nx, Nwt). Therefore, we have

Prkon > fra(kx, Nx, Niot) | Keot, Niot) < €pe. (6.23)

As a result of the method with simple random sampling, the protoegiésrrect ands-secret if
the secret key length, satisfies

2
—logy— — Aec(e) (6.24)

lin < |(HG) . — nz(1- h( fHG(kX’ nx, ntot)))
€PA

nz
wheree; is given by Eq. (6.6).

To understand the relation between the two methods with Bernoulli sampling and simple
random sampling, we introduce another method which uses full knowledge of the distribution
Prkx, nx | kot Mot) @ppearing in Eq. (6.12). The argument before Eq. (6.8) also implies that
the numbemy := nx — kyx of X-labeled rounds without bit error obeys binomial distribution
Bl(my; Nt — Keot, Px), @nd thatmy andky are independent conditioned &g, andny;. We thus
obtain

Pr(kx, Nx | Kot, Ntot) = BI(Kx; Keot, Px)BI(Nx — Kx; Niot — Kiots Px)- (6.25)
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The argument leading to Eq. (6.9) gives another expression for the distribution as

Pr(kx, Nx | Kiot, Nor) = HG(Kx; Nx, Kiot, Niot) BI(Nx; Neot, Px)- (6.26)

As aresult, Eq. (6.12) is expressed in the following two equivalent ways:

Bl(kx; Kiots Px)BI(M; Niot — Kiot, Px) < €pe.

kx,Mix;kx <keot— f (Kx . Kx +Mx,Nrot)

(6.27)

or

HG (kx; Nx, Kiot, Not) BI(Nx; Niot, Px) < €pe (6.28)

kx,Nx;kx <Kiot— T (Kx,nx,Ntor)

Since fg(kx) satisfies Eq. (6.16), Eq. (6.27) holdsfifky, kx + My, Net) = fgi(Kx). Similarly,
since fyg(kx, Nx, Nt) satisfies Eq. (6.21), Eq. (6.28) holds fitky, Nx, Nt) = Tra(Kx, Nx, Neot)-

On the other hand, the condition of Egs. (6.27) and (6.28) do not imply Eq. (6.16) or Eq. (6.21).
Therefore, there could be a better bound compardgl tky) and fc(kx, Nx, Nt) based on Eq. (6.27)

or Eg. (6.28). In general, it is very complicated to determine the optimal funé{iion ny, Nt

for the final key lengtHs,, since it will depend on the explicit functional dependencé;pbn

f(kx, Nx, Neot).

The diference between the two equivalent conditions Egs. (6.27) and (6.28) is the choice of
two variables from three no-independent random variaklesx andmy. When x, ny) are
chosen in Eq. (6.28), the distribution kf, HG(kx; nx, kiot, Niot) IS dependent on the value of.

On the other hand, Eq. (6.27) implies that two variablgsrfy) are independent of each other.
This suggests that the underlying statistics in the BB84 protocol with biased basis choice are
understood in terms of independent binomial distributions.

Let us mention the dierence from the other works [24, 76] which deal with relations between
bounds on binomial distribution and ones on hypergeometric distribution since the former are
easily treated with existing mathematical packages. Ref. [24] uses the property, which dates
back to Ho&ding [116], that expectation of a convex function over hypergeometric distribution
is no larger than that over binomial distribution. In [76], Ahrens map [117] was used to show
that hypergeometric distribution is bounded by a permutated binomial distribution within a factor
of V2. In contrast to these works, in our case the probability distribution Eq. (6.8) reflects the
binomial distribution inherent in the BB84 protocol with biased basis choice.

6.2.3 Numerical examples

Here we numerically compare the final key lengths derived from the three methods in the last
subsection in the simplest cases. We calculate the key lengths for the case where no error is
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Figure 6.1: Secure key ratio of the qubit-based BB84 protocol to the asymptotic limit as a function
of total rounds of the protocai.,. We assume no error( = 0) and no lossrte; = Nyep). The
security parameters are sekto= 107° andes = 10720, The top, middle and bottom curves repre-
sent the ratiof°PY/nyep, 1) /nye, (Method with simple random sampling) aft} /nrep, (Bernoulli-
sampling method), respectively. In the limitipf, — oo, each curve converges ite, = 1.

observedKx = 0) and every signal is detecteqlf = n.p). The cost of error correction is set to
Aec(&) = 10g,(1/e). We also assume, = NrepPz andny = NrepPa.

If we do not care about the key length fgr > 0, the optimal choice of (kyx, ny, ny) satisfying
Eq. (6.28) (or Eq. (6.27)) is given bff(ky, Ny, Nwt) = Mt — Nx for kx > 1 and f (0, ny, Nyy) =

FO (N, Neoy) with

félr(a?:o)(nx, MNot) = min{ktot G(nx; Kiot, Neot) < pr} -1

G(nx; Kiot, Niot) = Z HG(0;nY, Keot, Niot) BI(NY; Neot, Px)- (6.29)

Nx <N <Not—kot
The proof is analogous to the one figy(ky) or fue(Kx, Nx, Nwt). SinceG(N; Kiot, Niot) IS @ decreas-
ing function ofksy, by using an argument similar to the one leading to Eq. (6.16), we have

HG(0;nx, kiot, Ntot) BI(Nx; Niot, Px) < €pE. (6.30)
nx; kiot> fé;i(zo)(nx,ntot)
This is identical to Eq. (6.28) sinde < kit — f(Kx, Nx, Niot) IS Never satisfied fokx > 1. The key
length wherky = 0 was observed is then given by

ky =
A () ntoo) 2

|©PY = n, (1 - h( ) = l0g2— — Aec(er). (6.31)
€pA
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In Fig. 6.1, we show the secure key ratios to the asymptotic B85, 1¢)/n,, and
1©PY /N, as functions of total rounds of the protoawl,. For eachn,, the value ofpx was
optimized to maximize the key length. In the limitaf, — oo, each curve converges e, =
1. The security parameters are sekgo= 107 andes = 10720, epg = 1/4 x 1072° and epa =
1/4 x 107%%, We see that although the key r&&! is the best, the three methods achieve almost
the same key length.

6.3 Analysis for WCP-based protocol

Here, we apply the analyses introduced in the previous section to the protocols using WCP. We
consider the WCP-based BB84 protocol in the subsections 6.3.1 and 6.3.2, and move to the DQPS
protocol in subsection 6.3.3.

6.3.1 The WCP-BB84 protocol

The WCP-BB84 protocol follows the procedures described in Sec. 2.2.3 and assumptions in
Sec. 4.2.2. Here, we prove the security of the WCP-BB84 protocol using the theorem in Sec. 4.2.2.
From Sec. 3.2.2, a phase error id-dabeled round was defined as an error occurring when Alice
makes an ideaX-basis measurement on the syst@m@ind Bob makes the actudtbasis measure-

ment on the syster8 (the measurement conducted Xxabeled rounds in the actual protocol).

Let konunt be the total number of phase errors on the untaggbeled rounds. Suppose that an
upper bound oKyt is given as a function diy, nx, N andngz yns:

I:)r(kph,unt > f(kx, Nx, Not, nLunt)) < €PE (6.32)

wherenz . is the number of untagged a@dabeled round defined in Sec. 4.2.2. We also suppose
that there is a probabilistic lower bound . which satisfies

I:)r(nZ,unt < DZ,unt) < €unt- (633)
According to the theorem in Sec. 4.2.2, by setting
€ = \/é VEpPE + €pa + €zunts (634)

the protocol is-correct andss-secret if

. f k ’ ’ ) 2
lin < min {nz’um(l— h( (kx, M, Mhot, Nzun) ))} - l0g2 = Aecled) (6.35)

Nzuntzllz nt nZ,U nt A

is satisfied.
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Under the assumptions for the source and measurement apparatus, the basic distributions used
in the previous section, Egs. (6.8) and (6.9), are still valid if we confine ourselves to the untagged
rounds. Although the fact may be intuitively obvious for the WCP-BB84 protocol by seeing the
equivalent protocol in Sec. 4.2.2, here we give its mathematical justification since it helps when
we treat the DQPS protocol in Sec. 6.3.3. We define a set of integers labeling the rounds in the
protocol asNep = {1, 2, ....nep}. AS subsets ofV,e, let us define the set of the integers labeling
the rounds where Alice (Bob) choos¥dasis asXa (Xg) regardless of detection. Define those
labeling the untagged and detected round§¥@s Let K, be a subset oV, labeling the rounds
which have errors when Alice and Bob conduct virtabasis measurements regardless of their
basis choice. For any subskt, let M := Nrep \ M. With these notations,

I‘(ph,unt: |)TA N )TB N 7<‘unt|a
Nz unt = |X_A N {TB N Nunt'- (6-36)

We define other random variables as follows:

kX,unt L= |XA N XB N (](untL
Nxunt - = |XA N XB N Nuntla

Kiotunt : = Kxunt + Kpnunt
Niotunt -+ = Nxunt + Nzunt. (6-37)

Since bases are selected at Step (6’) in the protocol in Sec. 4.2.2, at Whicand K. have
already been determined, we have

Pr(Xa N Nunt = Ma, Xg N Nunt = Mg | Kunt, Nun)) = O(Ma, NundO(Me, Nuny) (6.38)
for all Ma € Nyt and Mg € Ny, Where we defined
O(My, My) = piulpMe\ M, (6.39)
By simple calculation of the probability theory, we have
Prkxunt | Kiotunts Motunt) = BI(Kxunt; Kiotunts Px) (6.40)
and
Prkx.unt | Nxunt> Keotunts Meotunt) = HG(Kxunts Nunts Kiotunts Motunt) (6.41)

which means that Eqgs. (6.8) and (6.9) essentially hold true for the untagged rounds.
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Now we derive a key rate formula for the WCP-BB84 protocol based on Eq. (6.40), as was
done with the Bernoulli-sampling method for the ideal protocol in Sec. 6.2.2. First, we seek for
f (Kx, Nx, Niot, Nzunt) Which satisfies Eq. (6.32). Analogous to the derivation of Eq. (6.18) from
Eq. (6.8), Eq. (6.40) leads to

Pr(kphunt > fBl(kx,unt) | ktot,unt, ntoLunt) < €pe (6-42)

for anykiotunt andnyerunt, @nd hence we have

Prkonunt > fai(Kxunt) < €pe. (6.43)
Sincekx nt IS Not an observed value, we use the obvious bound
Kx unt < Kx. (6.44)
Using the inequality

Cai(kx + 1; kot + 1, px)
= Cai(kx; kot Px) + (1 — px)BI(kx + 1; keot, Px)
> Cgi(Kx; Kiot, Px) (6.45)

in Eq. (6.13), we havdg,(kx) < fg(kx + 1), implying that fg(kx) is an increasing function.
Hence, Egs. (6.43) and (6.44) lead to

Pronunt > fai(kx)) < epe (6.46)

which means thatg, (kx) fulfills Eq. (6.32).
Next, we determin@, . which satisfies Eq. (6.33). To determine a lower boundQf;, we

=Zunt
consider an upper bound 0f ag = Nz — Nzyn. Let Nzag be the number of rounds where Alice

choose< basis, Bob choosesbasis and the light source emits a tagged signal (two photons or
more). As those conditions are independent of each other as seen from Eq. (4.6), we have

Pr(Nztag) = BI(Nztag Nreps Itagi3)- (6.47)
Sincengz,g is the number of detected rounds amonghtheg rounds,
Nztag < Nztag (6.48)
holds. Egs. (6.47) and (6.48) lead to

I:)r(nz,tag >n) < 1-Cg(n; Nrep rtagﬁ%) (6.49)
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for anyn. Thus, we have

Prinziag > g(rtagﬁ%, €zunt) < €zunts (6.50)
where
ax,y) := min{n‘l — Cgi(N; Nrep, X) < y} . (6.51)
Letn, . be
N, ot = Nz = O(TtagP2, €zun)- (6.52)

By usingnzag = Nz — Nzunt, EQ. (6.50) leads to
I:)r(nz,unt < DZ,unt) < €unt (6.53)

Combined with Egs. (6.35), (6.46) and (6.53), the protocel-isorrect andss-secret if

fai(k 2
lin < e 1= Ny~ h( el X)]) ~logy— — Aec(eo). (6.54)

Zzunt €PA

wheree; is given by Eq. (6.34). Together with Egs. (6.13), (6.14), (6.51) and (6.52), Eq. (6.54)
constitutes the main result of Sec. 6.3.1.

For the purpose of comparison, here we also discuss what the key rate formula looks like if
we start from Eqg. (6.41), based on simple random sampling. As we have derived Eq. (6.23) from
Eqg. (6.9), Eg. (6.41) leads to

Pr(kphunt > fre(Kxunt Nxunt Notunt) | Kiotunt Niotunt) < €pE, (6.55)
which, in turn, leads to
I:)r(kph,unt > 1:HG(kX,unt, Nx unts ntot,unt)) < €pE (6.56)

Similarly to fg (kx), we can prove thafys(kx, Nx, Nwt) IS an increasing function dd. Sinceky ynt
is upper-bounded by Eq. (6.44), Eq. (6.56) leads to

I:)r(kph,unt > frc(kx, N unts ntot,unt)) < €pE (6.57)

In contrast to Eq. (6.46), it requires an additional estimation processfarto obtain fyg(kx,
Ny.unts Meotunt)- A lower bound defined ng’um =Ny — g(rtagf)i, €xunt) Satisfies

Pr(nx,unt < Dx,unt) < Exunt (6.58)

Sincenynt is known in principle in the actual protocol (Step (6°) in Sec. 4.2.2), the trace distance

between the final state and the ideal state is written as a sum of the pagt.fox n, . and



6.3. ANALYSIS FOR WCP-BASED PROTOCOL 83

the one fomyyn: > n
(6.58), by setting

as in Eqg. (4.33). Hence, combined with Egs. (6.35), (6.53), (6.57) and

X,unt

€ = \/E VEPE + €pa + €zunt + EXunt (659)

the protocol is-correct andss-secret if

< |(HG) .

Ifin = lwcp- min f(kx, DX,unt’ nZ,unt)

nZ,unthz,um

- 2
E(Kt, Ny e Nzunt) 7= E(Kx, Ny o Nzunt) — |0926— — Aec(e)
PA

fra (Kxs Ny o Dy une + Nz.unt) ))

r]Z,unt

(6.60)

5(kx, Dx,unt’ r]Z,unt) = nLunt(l - h(

The reason that the minimization of . appears is becaugéky, Ny une Nzunt) IS NOt Monotone-
increasing function ofiz. For example, withepe = 1/16 x 10-2°, we numerically confirmed
that£(0, 25000 25318)~ 24631 and(0, 25000 25319) ~ 24623. This means that the protocol
with final key lengthl = &(kx, Ny ,.» N7 ) IS NOt Necessarily secure.

As can be seen from the comparison between Egs. (6.54) and (6.60), the method with simple
random sampling is much more complicated than the Bernoulli-sampling method, involving an
additional estimated parameter and a minimization. Moreover, as shown in Sec. 6.3.2, it tends
to give a key rate lower than the Bernoulli-sampling method, probably because of the use of
pessimistic bound ony nt.

6.3.2 Numerical examples

Here, we show two examples of numerical calculation for the WCP-BB84 protocol. We assume
that the light source emits a pulse whose photon-number distribution is Poissonian witlx,mean
namely,rq is given by Eq. (4.19). Like Fig. 6.1 for the ideal protocol, we first calculated the
simplest case where no error is observgd= 0) and no loss occursig; = Nen(1 — €7)), which

is shown in Fig. 6.2. The cost of error correction was setgg(e;) = l0og,(1/€). We assumed

ny; = ntmr)% andny = ntotf)i. The values ofpx andu were optimized for each value ofg, For
calculation ofl 82, the security parameters were setde: 107%, & = 10710, epg = 1/16x 1072,

epa = 1/16x 1072° andezynt = 1/2x 10720, The result is shown as the red curve in Fig. 6.2, where
the key length Eq. (6.54) is normalized by the optimized asymptotic key ratgeqfet signal at

u =1andpx — 0. We see that a final key can be extracted when the total roygds more than

~ 10*7 while the threshold isiep, ~ 10*2 for the ideal protocol using the same parameters (see
also Fig. 6.1). For comparison, we also calculated the valugkefn, .0, )/ (Nep/€) under

the same condition, which is shown as the blue curve in Fig. 6.2. The security parameters were

the same as the red curve, exceptdap: = exunt = 1/4 x 1071°, The quantity(ky, Ny une Nz.und)
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Figure 6.2: Comparison of estimation methods for the WCP-BB84 protocol. Upper curve
(Bernoulli-sampling method): Secure key ratio to the asymptotic Ii@ﬁp/(nrep/e) as a func-

tion of total rounds of the protocol.,. Lower curve (method with simple random sampling): An
upper bound on the derived secure key rdafﬂ@,l/(nrep/e). We assume no errok{ = 0) and no

l0sS ot = Nrep(1— €7)). The security parameters are sette= 10°*° andes = 10719, In the limit

of ne, = o0, each curve converges ligcp/(Nrep/€) = 1.

is an upper bound dff'>) derived in Eq. (6.60). The figure shows that the key lenth, from
Bernoulli sampling is higher thalr\‘ﬁg,l from simple random sampling. A possible reason is that
the estimation oh, .., which is a pessimistic bound @k, is not required in determining
fai(kx).

In Fig. 6.3, we show a result in more practical situations based on Eq. (6.54) to make com-
parison to the previous finite-key analysis for the WCP-BB84 protocol [23]. The figure shows
the dependence of secure key ré@ép/nmp on the channel transmissiag. In each curve, the
number of Bob’s detected signatge; is fixed asnge = 10%, 10°,10° and 13. The parameters
were chosen to be the same as [23]: Quanttiiciency of both detectors igy = 0.1 and a
dark count probability per pulse isjark = 107° per detector. In addition to errors from dark
counts, there is a.8% loss-independent bit error. The security parameters were et th01°,
€= 107, epp = 1/16x 10710, epp = 1/16x 10720, andez o = 1/2x107°. Total transmission rate is
Q = 1-(1-2pgar)e ™™™, and error rate is given b/ Q whereE = 0.005(1—e#7) + pyqpe #1e,
Based on the parameters above, we asstggé:) = 1.050(E/Q) + 109,(1/€c), Nep = Ner/ Q,

Nz = NgeP, Nx = NgetP% andkx = NxE/Q. To save the computation time, we used Chérno
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Figure 6.3: Secure key rate per signal of the WCP-BB84 prottﬁ/@@/nrep as a function of
channel transmissiof,. The parameters are set to be the same as Ref. [23]. Quafiiciarey

of detectors:ny = 0.1. Dark count probability per pulse per detectqyax = 107°. Loss-
independent bit error: .6%. Error correction costigc(e;) = 1.05h(E/Q) + log,(1/e). The
security parameters; = 107% andes = 10°°. From the top to the bottom curve, the number of
detected signals amge, = 107, 10°, 10° and 10, respectively. The required number of detected
signals to generate a final key is less thafy, ¥hile it was~ 107 in the previous result [23].

bound [118]

Cai(kx; kiot, Px) < D (ﬁ, Kiots px) (6.61)

ot

for (kx, keot, Px) Satisfyingkx < ketpx, where

D(x,Y,2) := (()—Z()X(H)l_x)y. (6.62)

In Fig. 6.3, we see that a key can be extracted even wihgn= 10*. This is a significant
improvement from the result of [23], in which the required number of detected signals to generate
a final key isnge; ~ 10’.

6.3.3 The DQPS protocol

In this section, we conduct finite-key analysis of the DQPS protocol based on the property of
binomial distribution Eq. (6.40). The precise description of the protocol and physical assumptions
for the security proof follow those in Chapter 5 except several notations. In order to establish
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the analogy to the WCP-BB84 protocol analyzed in the previous section, we identify Alice’s
{|+),]-)} measurement witlZ-basis measurement, afid-i),|+i)} measurement witkX-basis
measurement. Accordingly, we replace the notations as follows:

Po — Pz (6.63)
P — Px (6.64)
Kpo, Ko — Kpaz, KBz (6.65)
Kp1, KBl — Kax, KBX- (6.66)

The alternative tagging rule proposed in Chapter 5 allows the varighlgs andnz .. to be
defined in the same way as in the WCP-BB84 protocol, and the argument up to Eq. (6.35) holds
for the DQPS protocol as well. The remaining tasks are to find a funétsatisfying Eq. (6.32)
and to find a bound, , , satisfying Eq. (6.33), both of which require slightlyfigrent approaches
from the WCP-BB84 protocol.

Since our tagging definition for the DQPS protocol involves Bob’s detection timirvge
cannot decompose the emitted states as in Eq. (4.6). As a result, we cannot rewrite the protocol to
postpone the basis selection as in the one shown in Sec. 4.2.2. Hence we need to justify Eq. (6.38)
on a diferent ground. This was essentially done in Chapter 5 along with appendix B, namely, in
Eqg. (B.4), which reads

Pr(c.a b, |, t) = Pr(©)3(a.(c). a, b, j, 1). (6.67)

The random variables a, b, j andt are bit strings of length,e,. Let us rewrite them by various
sets introduced in Sec. 6.3.1. Since there is a one-to-one correspondence béjvaeerT, and
0:;(C) is a function oftXa N Nynt Nunt), We have

Pr(Xa, a b, j, t) = PriXa)B(Xa N Nunts Nuns @, b, j, t). (6.68)

By using the fact thaf,,; and Ny are functions ofa, b, j andt, namely, they are written as
Kunt = Fx,..(J, ) and Nyt = Fa, (& b, J, t), define

ﬁ’(XA N mta 7<Ul’lta Nunt) = Z E(XA N A{_Unta Nunt, aa b’ j’ t)7 (669)

ab,j.t

where the summation is ovéa, b, j, t} satisfyingFy, . (j,t) = Kunc andFy, (. b, j,t) = Nunt.
From Eg. (6.68), we have

Pr(XA, 7(unt, Nunt) = Pr(XA),B,(XA N /V_unt, 7(unt, Nunt), (670)
which leads to

Pr(XAa 7(unta Nunt) = ®(XA, Nrep)ﬁ,(XA N ma 7(unta Nunt)- (6-71)
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Since®(M, N.ep) defined in Eq. (6.39) satisfies
@(M, Nrep) = ®(M N Nunt, Nunt)@(M N /Wnt, mt) (672)
for any M C Nep, from Eq. (6.71) we have

Pr(XA N Nunt = MA | 7<unt, Nunt)
= ®(MA, Nunt))’(q(unt, Nunt) (6.73)

for any Ma C Nynt, Where

Y(Kunts Nund)
] ZM’ACm ®(M’ 5 mt)ﬁ/ (M/ 5 (]<Uﬂt? Nunt)
- Pr(q(unt, Nunt) .

(6.74)

Since the sum o®(Ma, Nunt) over M, is unity, Eq. (6.73) leads t9(Kynt, Nunt) = 1. Thus, we
have

Pr(Xa N Nunt = Ma | Kunts Nunt)
= @(MA, Nunt). (675)

In the DQPS protocol, the assumption on Bob’s apparatus Eq. (5.6) allows his basis choice to
be postponed after he confirms photon detection, which means that the cholgecah be
conducted afte’, and NV are determined. Hence, we have

Pr(XA N Nunt = MA, XB N Nunt = MB | 7(unt’ Nunt)
= @(MA, Nun[)@(MB, Nunt), (6.76)

which is identical to Eq. (6.38). Similarly to the WCP-BB84 protocol, Eg. (6.40) holds, which
leads to Eq. (6.43):

Pr®&onunt > fai(kx)) < ere. (6.77)

The task of finding a bound, ., satisfying Eq. (6.33) is done as follows. In Chapter 5, a
modified protocol having exactly the samemtg) as the original protocol was introduced, in
which a random variablbl (denoted as(c =d = 0,(%,...Z ;) ¢ ™M) in Eq. (5.39) of Chapter 5)
satisfyingN > nz,qis defined. The variable obeys binomial distributioniep, ragP3), Where
l'ag iS @ property of the light source defined as Eq. (5.43) (or Eq. (5.48) for general light sources).
This implies that Prfzg) in the original protocol has the following property: There exists a
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function P(nz g N) satisfying
Pr(nZ,tag) = Z P(nZ,tag, N)
N

P(Nztag, N) = 0 for nzepg> N
> P(Nz1ag N) = BI(N, Nrep, Tiagf32). (6.78)

Nz tag
This leads to
Pr(nz,tag >n) < 1-Cg(m; Nreps rtagf’%) (6.79)

for anyn, which is identical to Eq. (6.49). Then, following the same argument as the WCP-BB84
protocol, we see that

I:)r(nz,unt < Dz,um) < €zunt (6.80)
holds with

DZ,unt =Nz - g(rtagﬁ%, GZ,unt)- (6.81)

From Egs. (6.35), (6.77) and (6.80), we arrive at a key rate formula which is identical to
Eqg. (6.54): Thda_-pulse DQPS protocol ig-correct ancks-secret if the final key length,, satis-
fies

2
00— — Aec(€), (6.82)
€pA

fo () J) N

—Zunt

lfin < lpgps =Ny (1 - h(

wheree; is given in Eq. (6.34). Together with Egs. (5.43), (6.13), (6.14), (6.51) and (6.81),
Eq. (6.82) constitutes the main result of Sec. 6.3.3.

In Fig. 6.4, we show numerical results of secure key rate per ise/ (nepl) as a function
of overall transmittance := n.ng to compare the DQPS protocdl (> 2) and the PE-BB84
protocol L = 2). The solid curves represent the key rate with fixed pulse numigr = 107,
and the dashed curves represent the one for the asymptotic case, which is obtained in Chapter 5.
We assumed that Alice generates a weak coherent pulse of mean photon pumd@ely,r g
is given by Eq. (5.43). We assume dark count rate per pulse per depagfor 0.5 x 10-° and
a loss-independent bit error rate 3%. We also assumed}kat — (1 — 2(L — 1)pgan)e™ -k,
reflecting the fact that there ate— 1 valid timings in a block. Error rate is given dy/Q
whereE = 0.03(1- e D) + pyae (L — 1). Based on these parameters, we assume
Aec(e) = 1.INE/Q) + logy(1/e:), Nz = NepQP2, Nx = NepQP% andkx = NxE/Q. The values
of Ppx andu are optimized to maximize the key length. In the asymptotic limit, the parameter
optimization leads t@x — 0, N, . = Mrep(Q — I'ag) and fai(kx)/N, oy = E/(Q — T'ag) While Q
andE are fixed. In finite-key cases, the Cheffnbound is used to calculate the key rate. The
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Figure 6.4: Secure key rate per pulse of the DQPS prolgepd/ (necL) as a function of overall
transmissiom. Solid curves are the results of the finite key analysis with total pulse number
nepl = 107 and dashed curves are the results of the asymptotic cage & o), which are
obtained in Chapter 5. For both solid and dotted curves, the top, middle and bottom curves
represent the key rate fdr = 20, L = 4 andL = 2, respectively. The parameters are set as
follows. Dark count rate per pulse per detectpgax = 0.5 x 107°. Loss-independent bit error:

3%. Cost for error correctiomec(e.) = 1.1h(E) + log,(1/e:). The security parametet; = 1071°

andes = 1071%. We see that the key rate of the DQPS prototob(2) is higher than that of the
PE-BB84 protocolI( = 2) for both the asymptotic and finite-key cases.

security parameters are set to be the same as those in Fig. 6.2. We see that the advantage of
the DQPS protocol over the PE-BB84 protocol is maintained even if we includdtde ef the
finiteness of the key.

6.4 Concluding remarks

6.4.1 Summary of results

In this chapter, we proposed a method of finite-key analysis based on Bernoulli sampling instead
of simple random sampling. For the BB84 protocol using biased basis choice, the data gathered
on one of the basis is solely used for estimation of the disturbance in the other basis, which enables
us to regard the former as a sample drawn from the population via Bernoulli sampling. As a result,
we obtained finite-sized key-length formulas based on the binomial distribution parametrized by
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the probability of the basis choice in the protocol. The appearance of the binomial distribution
in our case is a direct consequence of the inherent statistics of the protocol, and it should be
differentiated from the previous works which uses a binomial distribution to derive an upper
bound on the hypergeometric distribution arising from simple random sampling.

The new method is particularly suited for the BB84 protocol with WCP. It enables simpler
analysis compared to the method with simple random sampling since only the latter requires
the estimation of the sample sizay (). We may expect that this additional pessimistic bound
makes the conventional method lesBogent, which is corroborated by a numerical example
showing that the key rate for the WCP-BB84 protocol obtained with our method is higher than
that with simple random sampling. To make comparison with the previous finite-key analysis for
the WCP-BB84 protocol [23], we calculated the key rate as a function of channel transmission
and the number of detected signals, in the same practical parameter settings. The result shows
that, whilenge; ~ 10’ signals are necessary for producing a key in Ref. [23], our method only
needsnge ~ 10% with the same parameters. In addition, the improved numbkcla@ifies that
the use of WCP instead of an ideal single photon causes only a small change in the finite-size
effect. This was also confirmed in the numerical simulation assuming the perfect channel, in
which the required number of rounds to generate a kayjs- 10* for the WCP-BB84 protocol
and isnyep, ~ 10°2 for the single-photon BB84 protocol.

Finally, we applied the Bernoulli-sampling method to the DQPS protocol, which was recently
proved to be secure in the asymptotic regime. Although the asymptotic proof is based on the
tagging of the insecure rounds as in the WCP-BB84 protocol, the definition of the tagged round
is much more convoluted and makes sense only after the signal was detected by Bob. Nonetheless,
our finite-key analysis has led to a key rate formula closely analogous to the one for the WCP-
BB84 protocol. Numerical calculation shows that the DQPS protocol retains higher key rates
than the PE-BB84 even in the finite-key regimengf, = 10’

6.4.2 Discussion

Itis expected that our method can also be applied to protocols with decoy states [36, 37, 38]. Since
the existing analyses [15, 16, 24, 76] with decoy states involve the estimation of the sample size
Nxunt the present method may provide a simpler analysis compared to the conventional methods
with simple random sampling. It should be mentioned that some of the finite key analyses [15,
16] assumed the announcement of basis choice after each round to make the sample size fixed,
which were later pointed out [66] to open a security hole against a sifting attack. This illustrates
an importance of simpler and more straightforward methods, and we believe that the method
proposed here will contribute in this regard.
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Figure 6.5: Procedures of “O-filling” idea for error correction of fixed data Bjzelf the sifted

key sizenz is larger tham;z, the protocol aborts. Iii; < nz is confirmed,hz; — n; Os are added

to the sifted key in trivial positions (e.g. the edge of the key). After error correction, privacy
amplification is conducted to shorten the key to the EZén;), which is obtained in the security
proof and independent of;.

Another interest is practical use of our method. In practice, the length of sifted key is desired
to be predetermined for the sake of fast error correction, using LDPC code, for example. On
the other hand, our method is valid for the protocol where the number of round is fixed and the
length of sifted key varies (obeying binomial distribution). Although this may seem to weaken
the utility of our method, here we propose a possible idea to amend it (see Fig. 6.5). Suppose
that the input-data size for error correction is fixedifo In the proposed idea, we determine the
number of total rounds,e, So that the length of obtained sifted keyis smallerthann; with high
probability, and we add thig; — nz Os to the sifted key in order to obtain the bit strings of $ize
After the error-correcting process is finished, we shorten the bit strings in privacy-amplification
process by the length @f — nz in addition to non-trivial amount estimated with security analysis.
This method is possible without using any secret keys or random numbers, which is in contrast
to the recently-proposed method [66] whexg, is determined so that; is larger thann; with
high probability followed by discarding; — iz bits at random. The security of our method is
intuitively explained by the tagging idea. That is, if the insecure (tagged) rounds are in principle
identified, the size of secret key is determined by the security of the other (untagged) rounds.
Obviously, the position of insecure rounds (0s) in the bit strings of igizare identified in our
idea. Although more rigorous argument is expected in the future, we believe that the utility of the
Bernoulli-sampling method is ensured by the proposed idea.






Chapter 7

Conclusion and outlook

7.1 Conclusion

In this thesis, the security of QKD protocols using weak coherent pulses (WCP) was studied. We
focused on the DQPS protocol, which is a variant of the DPS protocol and is also regarded as a
variant of the PE-BB84 protocol. Although the conventional tagging technique used for the BB84
protocol cannot be applied to the DQPS protocol because of its property of coherence chain, the
alternative rule of tagging was constructed through the outcomes of Alice’s virtual measurement
on ancillary qubits. By using this technique and the security proof of the BB84 protocol with
complementarity, the security of the DQPS protocol was proved, and its key generation rate was
shown to be 8 times as high as that of the PE-BB84 protocol in the asymptotic limit. We
also showed that the set up for calibration of light source, which tends to be complicated in the
decoy-state method, is kept to be minimum in the DQPS protocol as in the BB84 protocol.

In order to consolidate the advantage of the DQPS protocol over the PE-BB84 protocol, we
worked on the finite-key analysis for the WCP-QKD protocols. A new method of the finite-key
analysis was proposed based on the Bernoulli sampling related to binomial distribution, which is
in contrast to the currently used method based on simple random sampling associated with hy-
pergeometric distribution. Not only the expected advantage of the DQPS protocol was confirmed
even in the finite-key regime with the proposed method, the method was shown to be suitable
for the WCP-BB84 protocol. For the WCP-BB84 protocol, security analysis with estimation of
a smaller number of parameters is possible by using the Bernoulli-sampling method, which leads
to a higher key rate compared to the method with simple random sampling. Furthermore, the re-
quired number of detected signals reduces tg Which is drastic improvement from the number
10’ required in the previous work for the WCP-BB84 protocol.

For further development of QKD systems, the simplicity is crucial from both practical and
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theoretical aspects. The complicated devices lead to higher cost for their installation, and also
enlarge the gap between the physical models assumed in the security proof and their actual be-
haviors. The DQPS protocol is beneficial in this sense, for it has essentially the same set up as the
PE-BB84 protocol including calibration of light source, which only requires a typical laser, phase
modulators, a passive interferometer and detectors. For the theoretical aspect, the security anal-
yses of the QKD protocols should be simple and clear since its correctness can not be directly
certified by experiment (unlike conventional physics theory), and users of QKD are supposed
to rely on the security proofs. In the proposed method based on Bernoulli sampling, binomial
distribution parametrized by the probability of basis choice is used instead of hypergeometric
distribution, which enables simpler analysis with smaller number of estimations. This method
is expected to be applied to the decoy-state method, which has more complicated analysis with
larger number of estimating parameters than the WCP-BB84 protocol and the DQPS protocol.

7.2 Related works and future outlook

One of the motivations that | focused on the DQPS protocols was to seek for a fficrene
protocol than the BB84 protocol. Although the advantage of the DQPS protocol over the PE-
BB84 protocol was shown, further improvement for the security analysis is expected to show
its robustness against PNS attacks which was certified in the DPS protocol. Another protocol |
worked on was high-dimensional (HD) protocol (qudit-based protocol) although the details were
not mentioned in this thesis. HD protocols enable eneffgient communication, and they are
expected to have high-error tolerance [49, 50]. Recently, the entanglement-based HD protocol,
which uses time (photon position) and frequency as two bases, were proved to be secure [106,
107] based on the security analysis for continuous variable QKD as well as were demonstrated
with high key generation rate [119]. | analyzed the security of a prepare-and-measure-type HD
protocol, which uses information of discrete time and frequency, based on the security proof
with complementarity to evaluate its tolerance to practical errors. The result was not positive at
least in my case, that is, no higher-error tolerance was confirmed compared to the two-dimension
protocol (BB84 protocol) if we assume practical errors, mainly because the use of a larger number
of temporal modes results in more errors caused by dark counts of detectors. On the other hand,
some of my collaborators recently showed that the round-robin DPS (RR-DPS) protocol, which
uses many temporal modes with symmetrization, has robustness against PNS attacks as well as
high error tolerance that a secret key can be generated even with 50 % errors in principle.
Although the RR-DPS protocol has such an unusual property, it is not fully understood what
kind of principle of quantum physics contributes to it. The high error tolerance is not confirmed
in the DPS protocol with current complicated security proof resulting in low key generation rate,
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while it has a room for improvement. A similar situation applies to another protocol using the
property of coherence chain, the coherent-one-way (COW) protocol [111], in which the robust-
ness against PNS attacks is not confirmed against standard predictions but possible improvements
of hardware and proof are suggested [98]. The security analysis of the DQPS protocol can be an
important step to address the above involved problems. For example, our result implies that if
one wants to confirm the robustness against PNS attacks in the non-symmetrized protocol such
as the DPS protocol and the DQPS protocol, it is essential to use bit errors reflecting disturbance
of coherence chain in the security proof (as is done in the security proof for the DPS protocol).
Several theoretical interests still remain:

- Is the symmetrization of the temporal mode necessary to confirm the high error tolerance?

- Although the protocols with coherence chain (DPS, DQPS, RR-DPS, COW) assume that se-
guential pulses are separated by blocks, is it essentially possible to remove the assumption? If it
is true, are some interesting properties (PNS robustness, high error tolerance or others) confirmed
as a result of security proof?

Tackling those problems may not only lead to improvements of those protocols in terms of key
generation ficiency, but also clarify the mechanism of how quantum properties contribute to
the essential bound on leaked information, which can help us to understand the relation between
guantum physics and information theory more deeply.






Appendix A

Proof of lemma 1

With ancillary systenQ andR, let us introducé¥)agqr and|®)aeqr as purified state ofxe and
10) (0], ® 7, respectively, which are written as

where{[)A}is0 is an orthogonal set. By using Uhlmann’s theorem Eg. (2.7),

I¥)aEqQr = Z M)A Wideq|Or

i>0
[PYaEQR = 10)a l¢)eoR>
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Then from (A.4),
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If we set|g)eor = Xiso Widegli)r With an orthogonal sefi)rli-o, we have
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(A.2)
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(A.4)
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holds. On the other hand, we have

F(Za, 10)(0ln)

= a0l Treqr(I¥) (Placgr) 100 (A.10)

= > Al Treqr(ID (Tla l44) (il 10} <Olg) 103 (A.11)
i

= Treq(l¥o) (Woleqg) (A.12)

= eQYolYo)eq- (A.13)

Eq. (A.9) and Eqg. (A.13) lead to

2

F(#ae. 10)(0la®7e) 2 (F(7a, 10)¢0la)) (A.14)



Appendix B

Untagged check-basis outcomes as an
unbiased sample

Here, we prove Eq. (5.34) in the main text by showing that the untagged rounds witi
is uniformly extracted from the whole untagged events. For fixgd(+ 0) andm, define a
projectorT ™ = 5, 1AL) ) . (AL | where the summation is ovéx} satisfyingy.;z = m
fort = 0 andy},;z < mfort = 1. The projectoif ;"™ can be regarded as the POVM element
for the measurement on systekto determinea andt through Steps 541 5-2¢, and 5-3* with
the rule of Eqg. (5.10). Although the protocol does not define the values lmf andt in case
of j = 0, it simplifies the notations if we also define those values t@be b =t = 0 for
j=0,and definélcécgo’m) accordingly. We label each of thg, rounds byr = 1,2,..., ny, and
usec, a, by, jr, m, t; to denote the values afa, b, j, m,t in ther-th round. Letc, a, b, j, m, t be
vectors withn,e, elements correspondingtto= 1,2, ..., ne,. With these notations, the procedure
of determining these vectors in the virtual protocol (with replacement)bk8 summarized as
follows.
i) Alice selectsc randomly, preparesas(c) = ®?’j 0 as(Cr) with 6-as(Cy) = [P(C))as (F(C)I,
and measures) by a projection measurement.
ii) Eve’s attack omy, copies of systens followed by Bob’s measurement determineandb.
For a given attack strategy by Eve, this whole proceduregisystems should be represented by
POVM with elementgD; p}.
i) Given c, j, andm, Alice measurese, copies of systemA to obtaina and t, which is
represented by the POVM elemefitss"™ = @ T -™).

The joint probability that, a, b, j, t are obtained is written as

Prc,a b, j,t) = Z Pr(c) tr((TS™ @ B o) (Npas(©)Nm)) - (B.1)
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Let g ;(c) be a function for fixed andj defined agy,;(c) = (Cy, Cz, ..C,,,) Wherec, = ¢ (t,=1 or
jr = 0) andc, = 0 (t,=0 andj, # 0). From Eq. (5.33), fot, = 0 andj, # 0 we have

tra (T4 ™ @ Ls) (N 6as(0)Nm ) = tra (TE3™ @ Ls) (N 5as(1)Nm ) . (B.2)
sinceoas(Cr) = [¥(cr))as (F(ci)l. Thus, forc, ¢’ satisfyingg;,;(C) = 9,j(C") = Ceonsy WE have
tra (TG @ 1) (Nmpas(ONm)) = tra (TS5 7™ @ Ts)(Nmbas(c)Nm)) (B.3)
Therefore, Eq. (B.1) is written in the form
Pr(c.a, b, j,t) = Pr(©)s(g.;(c). a b, j, 1), (B.4)

which leads to, for a given value of,ns; We obtain

Pr(c,a b, j, t)
2ieige(@)=ceonst PT(C @ b, ], )
Pr(C)B(Coonst & b, |, 1)
ZC’igt,j(C’)=CconstF)r(C’)IB(Cconst, ab,jt)
Pr(c)
ZC’:g[,j(C/):CCOnS'[Pr(C’)

(B.5)

for c satisfyinggy,j(c) = Ceonst EQ. (B.5) shows that for the rounds with= 0 andj # O, the
probability of obtainingc = 0, 1 is g, P; and is independent of the valueaf, j. Therefore, in

the limit of nep — oo, _ N
n(c:O,t:O,a¢b,!¢0):& (8.6)

nc=1Lt=0,a#b,j#0) P

holds, wheren(conditio) denotes the number of rounds satisfying tendition in the ny

rounds. Finally, notice that Bob conducts check-basis measurement regardless of the value of

d in the virtual protocol, and henakis independent of the other variables. Therefore, we have

n(c:d:o,t=o,a¢b,j¢0)_(E)2 B.7)

nc=d=1t=0a#b,j#0) \p

which corresponds to Eq. (5.34).



Appendix C

Security proof for DQPS with a general
light source

Here we show that the security proof in Sec. 5.2 can be extended to the use of a general light
source. Suppose that the laser in Fig. 5.1 emits a trdinpofises in a general mixed statg. We

assume that every train from the laser is independent and has the sanee;stMedlso assume

that the subsequent phase modulation is ideal. The state after the phase modulation, which was
given in Eqg. (5.1) in the description of the actual protocol, is now given by

L-1 L-1
[@ exp(ig (a, c)rh)] Os (@ exp( — 6 (ay, c)m/)) : (C.1)
1=0 I’=0

and the one after the randomization of the overall optical phase is (see Sec. 4.2.1)

L-1 L-1
D Nm[® exp(ii(a, c)m)] Gs (@ exp( — it (a, c)m/)] & (C.2)
m =0 I’=0

instead of Eq. (5.4).

The security proof in Sec. 5.2 used the assumption of pure coherent states Eq. (5.1) in several
occasions, which are listed as follows:
I) The state preparation in the virtual protocol [Eq. (5.7)], and its relation [EqQ. (5.9)] to the actual
protocol.
ii) The parity correlation [EqQ. (5.14)] between the auxiliary qubits and the photon numbers in
pulses.
lii) The derived properties [Eqgs. (5.26), (5.28), (5.30), (5.32), (5.33) and (B.2)] for proving that
the sampling is unbiased as in Eq. (5.34).
iv) The expressions [Egs. (5.40) and (5.48)] for the paranteter
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In what follows, we describe how each of the above arguments are rephrased in terms of the
general staters.
i) In the virtual protocol, we assume that Alice prepares the following state on sys$em

6 as(€) = R©)FsR(C)", (C.3)

instead of Eq. (5.7). Her(c) is defined by

L-1
R(c) = (%) [%2( [+, exr(iglcr“n) T |=)a; X (7 + g|c)m))]. (C.4)

Then it is straightforward to confirm that

L-1 L-1
[@ A <i|) Fas(©) [(X) |i>M]

1=0 I’=0
1 L-1 L-1
= > (@ exp(ie.(a,c)m)) E (@ exp( 6y (2, O)v) .
1=0 I'=0
(C.5)
where + of the I-th qubit should be chosen according to the &it This is the general-state
expression for Eq. (5.9), which leads to the equivalence of state preparation between the actual
and the virtual protocol.
i) As R(c) is written inZ basis as

L-1

RE) = X [%i (10 ar (Tss + (1™ + 1D as (Ts1 = (~1)M)]
1=0
L-1
= Q[I"™™(100ar Y PUm)s) +Dar Y. Pm)s))].
1=0 m:even m:odd
(C.6)
we have
TasR(C) = R(©), (C.7)

which is a generalization of Eq. (5.14). It immediately implies tfagdas(c)Tas = G as(C),
which indicates a property of statens that the measurement outcome Dmasis{|0) 4 , [1)a;}
always coincides with the parity of photon number in Ithike pulse.

lii) From Eq. (C.6), we have

L-1
R(c) = (@ i 'Cm] R(0). (C.8)
1=0
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Comparing Egs. (5.14) and (5.28) to Egs. (C.7) and (C.8), we see that the derived properties of
Egs. (5.26), (5.30), and (5.32) f8¥(c)) s should also hold foR(c). As a result, we obtain

AT IRGRO) = (<) P (ASDI NaR(D) for )z =m (C.9)

1#]

as a generalization of Eq. (5.33). From Eq. (C.9), we have

ACASD I NG asORm kALY | = (ALY I NG as(DRm kAL for > z=m,
%]

(C.10)

which assures that Eq. (B.2) is also true whe(C) is given by Eq. (C.3). Hence, Eq. (5.34)
holds.

iv) For the initial state given by Eqg. (C.3), the definition of the parameigof Eq. (5.40) is
replaced by

fag=1- Y tr (1" ® Nip)as(0) (C.11)
m
Together with Egs. (5.41) and (C.7), we have

Mag=1- Ztr (Aa@M)5as(0) = 1- Y tr (16 (C.12)
m






Appendix D

Calibration of light sources

Here we discuss how we may determine an upper bound on the paramgtehich is given by
Eqg. (C.12), from an fi-line experiment on the light source. We use a beam splitter characterized
by transmittancd and reflectanc® and two threshold detectors with quantuffigencies;’>,
andnfﬁe)t, as in Fig. 3. No precise values of these parameters are needed, and we assume that there
are known lower bounds, < T7{ andn, < Ry, For simplicity, we neglect thefect of dark
countings of the detectors. We assume that the dead time of the detectors are shorter than the pulse
interval such that they are ready for every incident pulse. Fdr palse train emitted from the
source, we record the timings of detection at the two detectors, and define a double coincidence
event to be the case when both detectors have reported detections within a pair of neighboring
pulses.

Since a state in the range bf- 3,,, 1" contains at least two photons in a pair of neighboring
pulses, such a state has a probability of resulting in a double coincidence event no smaller than
2n1m2. Thus, if we repeat the measuremenqt; times and find that double coincidence events

have occurretyoupietimes, an upper bound agg is given by

_ Ndouble 1
Fag = —— > lag (D.1)
g Ntest 2771772 g

in the asymptotic limit of larg@s:. Although the tightness of the upper bouig varies depend-

ing on the staters in general, we may show that it can be quite tight when the state is close to
an ideal coherent state. Suppose thandr, are equal to the actuaficiencies, and each pulse

is exactly in the coherent state with amplitydeFor every pulse, detector 1 and 2 independently
report detection with probabilitp®™ ™ = 1 — e < puu (k = 1,2). Since there ark + 2(L - 1)
different combinations of timings leading to double coincidence, we have

Ndouble <@3L- z)p(lclick) p(zclick) < mnaP(3L - 2), (D.2)

MNtest
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detector2
(2)
[-1 L-2 2 1,0 Rindet
...... T detector1
Light source /\ /\M v — . D
L pulses T M et

Figure D.1: Qf-line calibration setup to determine an upper boundgnfor a general light
source, when the dead time of detectors is shorter than pulse infervaR and T represent
reflectance and transmittance of the beam splitter, respectiryﬁ)and nffe)t represent detection
efficiencies of detector 1 and 2, respectively.

detector3  detector2

Mget 77512)
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Figure D.2: Qf-line calibration setup to determine an upper boundgpfor a general light
source, when the dead time of detectors is longer than pulse intarvah optical linear absorber
with transmittance.psis set in front of beam splitter®, R®, TW andT®@ represent reflectance
and transmittance of the two beam splitter§), 72, andn{), represent detectiorfiiciencies of
threshold detector 1, 2 and 3, respectively.
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which leads to

_ 2(BL -2
ltag < /% (D3)
On the other hand, direct calculation shows that, in the limit;gf — 0,
3L-2 -10L + 12 -9L?+82L-12
e + 1 3 )+ u¥( 3 0)+ O(L%® + L)
3L-2 9 10
_ 2 3 2.5 3,6
= 1= —ﬂL(éﬂL+§)+O(L,u + L3u), (D.4)
which leads to ) 3 20
l'ag — l'tag 3,124
——— <ul-puL+—=)+O(L Lu™). D.5
o _/1(4/1 +9)+ (Lp® + L) (D.5)

Hence, the bountl,g is @ good approximation of,g for u < L=%2.

In a more practical case where the dead timg,f of the detectors is longer than the pulse
interval (rgeaq> AT), there is a possibility that the presence of two photons is masked by an earlier
detection of a third photon. In such a case, we may use a setup in Fig. 4 with three detectors
and a linear absorber with transmittanggs Assume that we know lower boundgys < 7aps
i < TOT@RW 7, < TORP,® andif; < RY;C). Define a triple coincidence event to be the
case when all three detectors has reported detections within the whole ttapulsies. Let; be
the probability that thé. pulse train leaving the linear absorber contains three or more photons.
If we repeat the measuremand;times and triple coincidence events have occurkggl times,

we have
< r’|triple 1

B Ntest 6771772773
in the limit of largenes. Suppose that one records the numb@)_ of double coincidence
events in the sameg runs, which is defined as the case when detectors 1 and 2 have reported
detections within a pair of neighboring pulses. Since ftiiect of the dead time can be simulated
with a fictitious detector with no dead time by ignoring detection events that occurred when the
real detector would have been dead, we may consider the nunfiflir of double coincidence
events defined from these fictitious detectors. Since the two definitions of a double coincidence
event difers only when three or more photons are incident on the two detectors, we have

(D.6)

n(true) (obs)

n
double _ _double % (D.7)
Neest Mkest

t

in the limit of largen,es. On the other hand, as in Eq. (D.1f;"?_satisfies

buble
(true)

double 1 (D. 8)
Nest 2171772

n

l'ag < Ftag =
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by takingn, = napd71 @andn, = napd72. We thus obtain an upper bound from Egs. (D.6)-(D.8) as

(obs)
ouble N Mriple 1 ) 1 (D.9)

Mest  Thest OM1T27T3/ 27jaitaiy,

L n
Mg < Fiag = (

We show thaf,;, also approximates,g well when the light source emits coherent pulses.
Suppose thaiy] 7z, iz andijass are equal to the actuaffieiencies. Sinca®>y < ni™ holds,

double —
we have

I']triple 1 1

l; * S "— + — ——— . D.lo
tag = 1129 Nest 6771772773 277177277ng ( )
From Eqg. (D.5), we have
Frog—T 3 20, Nupe 1 1 1
I u(zaL+ )+ il — +O(L® + L) (D.11)

lag Nest 6771772173 ZﬁlﬁZﬁgbsrtaQ

for Lu? — 0. SinceL pulses incident on detect&read to one or more detections at probability

p(kC"Ck) =1- e‘ﬁkﬁabsj—ﬂ < ﬁkﬁabs‘—,ul we have
Mtriple ~ o~ o~ e 3
< Mi2173(7abd-40)° (D.12)
Meest

Thus, we obtain

Fag— T 3 20 1 3 1
tag — 'tag /v‘( )+ (ﬂabs'—/l) 4 O(L/JS + I—2/J4)

< —uLk + — —
l'tag 4 9 12771772772110S ltag
3 20\ fiad?
- ,u(ZuL + 3) +ﬂ1§ﬁlﬁ2 +O(Lu® + L%u%).

(D.13)

Thereforef,;, becomes a good approximationref; whenu < L-Y/2 and the absorber is chosen
to satisfyrfapgt < L2



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

P. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum ComputerSIAM J. Cmput26, 1484 (1997).

C. E. Shannon, “Communication theory of secrecy systeB#l|'system technical journal
28, 656 (1949).

C. H. Bennett and G. Brassard,Pnoceedings of IEEE International Conference on Com-
puters, Systems and Signal ProcessiBgngalore, India (IEEE Press, New York, 1984),
\Vol. 175.

C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy Amplification by Public Discus-
sion,” SIAM J. Computl?, 210 (1988).

D. Mayers, “Quantum key distribution and string obvious transfer in noisy chanhelst,”
Notes Comput. Scl.109 343 (1996).

P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribu-
tion Protocol,”Phys. Rev. LetB5, 441 (2000).

H.-K. Lo and H. F. Chau, “Unconditional Security of Quantum Key Distribution over Ar-
bitrarily Long Distances,Science283 2050 (1999).

G. Brassard, N. Utkenhaus, T. Mor, and B. Sanders, “Limitations on Practical Quantum
Cryptography,Phy. Rev. Lett85, 1330 (2000).

H. Inamori, N. Liitkenhaus, and D. Mayers, “Unconditional Security of Practical Quantum
Key Distribution,” arXiv:quant-pf0107017 (2001).

D. Gottesman, H.-K. Lo, J. Preskill, and Nutkenhaus, “Security of quantum key distri-
bution with imperfect devicesQuant. Info. Compub, 325 (2004).

M. Koashi, “Simple security proof of quantum key distribution via uncertainty principle,”
arXiv:quant-pi0505108 (2005).

109



110 BIBLIOGRAPHY

[12] M. Koashi, “Simple security proof of guantum key distribution based on complementarity,”
New J. Phyl11, 045018 (2009).

[13] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for
guantum cryptographyNature Communication3, 634 (2012).

[14] M. Koashi, “Hficient quantum key distribution with practical sources and detectors,”
arXiv:quant-ph0609180 (2006).

[15] C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for
practical decoy-state quantum key distributidatiys. Rev. 89, 022307 (2014).

[16] M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for
measurement-device-independent quantum key distributidaifire Commun ications,
3732 (2014).

[17] A. Mizutani, M. Curty, C. C. W. Lim, N. Imoto, and K. Tamaki, “Finite-key security
analysis of quantum key distribution with imperfect light sourcsieiv Journal of Physics
17,093011 (2015).

[18] M. Hayashi, “Practical evaluation of security for quantum key distributi®hys. Rev. A
74, 022307 (2006).

[19] M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the
decoy method,Phys. Rev. A6, 012329 (2007).

[20] R. Renner and R. Konig, ifheory of Cryptography, Second Theory of Cryptography Con-
ference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceetirig8378
of Lecture Notes in Computer Scien@pringer, ADDRESS, 2005), pp. 407-425.

[21] M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and J. OppenheinTheory of
Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA,
USA, February 10-12, 2005, Proceedinysl. 3378 ofLecture Notes in Computer Science
(Springer, ADDRESS, 2005), pp. 386—406.

[22] V. Scarani and R. Renner, “Quantum Cryptography with Finite Resources: Unconditional
Security Bound for Discrete-Variable Protocols with One-Way Postprocessihgs. Rev.
Lett. 100, 200501 (2008).

[23] R.Y. Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum
key distribution,”"New Journal of Physic¥1, 045024 (2009).



BIBLIOGRAPHY 111

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-
Brassard 1984 protocol for finite key lengthsléw Journal of Physic$6, 063009 (2014).

K. Azuma, “Weighted sums of certain dependent random variablesioku Math. J19,
357 (1967).

M. Peev, C. Pacher, R. Adhume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert,
E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, Mst-J.-D. Gautier, O. Gay,

N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, idbel, G. Humer, T. Bnger,

M. Legré, R. Lieger, J. Lodewyck, T. Lanser, N. liitkenhaus, A. Marhold, T. Matyus, O.
Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr,
L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T.
Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier,
H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC
quantum key distribution network in Viennaylew Journal of Physic$1, 075001 (2009).

F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zhao, H. Li, D. Liu,
Z. Han, and G. Guo, “Field Experiment on a Robust Hierarchical Metropolitan Quantum
Cryptography Network,” arXiv:quant-p0906.3576 (2009).

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Ya-
mashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita,
T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsu-
rumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon,
A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Ll&d8. Robyr, P. Trinkler, L.
Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart,ahder, M. Peev,
and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,”
Opt. Expresd49, 10387 (2011).

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Experi-
mental Satellite Quantum CommunicationsAture Photonics, 382 (2013).

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H.
Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren,
G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and
full-scale experimental verifications towards ground-satellite quantum key distribution,”
Nature Photonicg, 387 (2013).

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Ex-
perimental Satellite Quantum Communicatiori&;ys. Rev. Letil15 040502 (2015).



112 BIBLIOGRAPHY

[32] C. Marand and P. D. Townsend, “Quantum key distribution over distances as long as 30
km,” Opt. Lett.20, 1695 (1995).

[33] C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of stan-
dard telecom fiber,Applied Physics Letter&4, (2004).

[34] D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes,
A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-Distance Decoy-State Quantum Key
Distribution in Optical Fiber,Phys. Rev. Let®8, 010503 (2007).

[35] M. Lucamarini, K. A. Patel, J. F. Dynes, B.#hlich, A. W. Sharpe, A. R. Dixon, Z. L.
Yuan, R. V. Penty, and A. J. Shields, fii€ient decoy-state quantum key distribution with
quantified security,Opt. Expres21, 24550 (2013).

[36] W.-Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure Com-
munication,”Phys. Rev. LetB1, 057901 (2003).

[37] X.-B. Wang, “Decoy-state protocol for quantum cryptography with fotiiedent intensi-
ties of coherent light,Phys. Rev. A2, 012322 (2005).

[38] H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distributid?liys. Rev. Lett.
94, 230504 (2005).

[39] X.-B. Wang, L. Yang, C.-Z. Peng, and J.-W. Pan, “Decoy-state quantum key distribution
with both source errors and statistical fluctuatioééw Journal of Physic&l, 075006
(2009).

[40] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto,
“Quantum key distribution over a 40-dB channel loss using superconducting single-photon
detectors,Nature Photonic4, 343 (2007).

[41] T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol
without monitoring signal disturbance\ature509, 475 (2014).

[42] J.-Y. Guan, Z. Cao, Y. Liu, G.-L. Shen-Tu, J. S. Pelc, M. M. Fejer, C.-Z. Peng, X. Ma,
Q. Zhang, and J.-W. Pan, “Experimental Passive Round-RoMliie®ntial Phase-Shift
Quantum Key Distribution,Phys. Rev. Lettl14, 180502 (2015).

[43] H. Takesue, T. Sasaki, K. Tamaki, and M. Koashi, “Experimental quantum key distribution
without monitoring signal disturbance\ature Photonic®, 827 (2015).



BIBLIOGRAPHY 113

[44] Y.-H. Li, Y. Cao, H. Dai, J. Lin, Z. Zhang, W. Chen, Y. Xu, J.-Y. Guan, S.-K. Liao, J.
Yin, Q. Zhang, X. Ma, C.-Z. Peng, and J.-W. Pan, “Experimental round-rolfierditial
phase-shift quantum key distributiofi?hys. Rev. A3, 030302 (2016).

[45] S. Wang, Z.-Q. Yin, W. Chen, D.-Y. He, X.-T. Song, H.-W. Li, L.-J. Zhang, Z. Zhou, G.-C.
Guo, and Z.-F. Han, “Experimental demonstration of a quantum key distribution without
signal disturbance monitoringiNature Photonic®, 832 (2015).

[46] K.Inoue and Y. Iwali, “Diferential-quadrature-phase-shift guantum key distributiéhy’s.
Rev. A79, 022319 (2009).

[47] S. Kawakami, T. Sasaki, and M. Koashi, “Security of th&atential-quadrature-phase-
shift quantum key distributionPhys. Rev. 84, 022332 (2016).

[48] D. Bruf3, “Optimal Eavesdropping in Quantum Cryptography with Six StaRisys. Rev.
Lett.81, 3018 (1998).

[49] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum Cryptography Using Entangled
Photons in Energy-Time Bell State®hys. Rev. LetB4, 4737 (2000).

[50] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of Quantum Key Distri-
bution Usingd-Level Systems,Phys. Rev. Let88, 127902 (2002).

[51] F. Grosshans and P. Grangier, “Continuous Variable Quantum Cryptography Using Coher-
ent States,Phys. Rev. LetB8, 057902 (2002).

[52] A. Uhlmann, “The “ transition probability’ in the state space ofsaalgebra,”"Reports on
Mathematical Physic8, 273 (1976).

[53] K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y.
Arakawa, “Quantum key distribution over 120km using ultrahigh purity single-photon
source and superconducting single-photon detectSséntific Report§, 14383 (2015).

[54] Y. Adachi, T. Yamamoto, M. Koashi, and N. Imoto, “Simple anfliétent Quantum Key
Distribution with Parametric Down-ConversioriPhys. Rev. Let®9, 180503 (2007).

[55] X. Ma and H.-K. Lo, “Quantum key distribution with triggering parametric down-
conversion sourcesNew Journal of Physic$0, 073018 (2008).

[56] IDQuantique: httgywww.idquantique.cor.



114 BIBLIOGRAPHY

[57] F. Xu, B. Qi, X. Ma, H. Xu, H. Zheng, and H.-K. Lo, “Ultrafast quantum random number
generation based on quantum phase fluctuati@gt” Expres0, 12366 (2012).

[58] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, |. Vayshenker, B.
Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with
93% system iciency,” Nature Photonicg, 210 (2013).

[59] B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryp-
tosystems,” arXiv.quant-g8512080 (2005).

[60] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking com-
mercial quantum cryptography systems by tailored bright illuminatiNiafure Photonics
4, 686 (2010).

[61] F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a
practical quantum key distribution systeriigw Journal of Physic$2, 113026 (2010).

[62] S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jenneweiniitkebhaus, and V. Makarov,
“Security loophole in free-space quantum key distribution due to spatial-mode detector-
efficiency mismatch,Phys. Rev. 81, 062301 (2015).

[63] H.-K. Lo, M. Curty, and B. Qi, “Measurement-Device-Independent Quantum Key Distri-
bution,” Phys. Rev. Lettl08 130503 (2012).

[64] J.-P. Bourgoin, E. Meyer-Scott, B. L. Higgins, B. Helou, C. Erven, bekl, B. Kumar,
D. Hudson, , I. D’'Souza, R. Girard, R. Laflamme, and T. Jennewein, “A comprehensive
design and performance analysis of low Earth orbit satellite quantum communication,”
New J. Phys15, 023006 (2013).

[65] M. Wegman and L. Carter, “New Hash Functions and Their Use in Authentication and Set
Equality,” J. Comp. Sys. S22, 265 (1981).

[66] C. Pfister, N. Lutkenhaus, S. Wehner, and P. J. Coles, “Sifting attacks in finite-size quantum
key distribution,"New Journal of Physic$8, 053001 (2016).

[67] R. G. Gallager, “Low Density Parity Check CodeB/fi.D Thesig1963).

[68] C. H. Bennett, G. Brassard, C.&peau, and U. M. Maurer, “Generalized Privacy Amplifi-
cation,”|IEEE Trans. Inf. Theor¢1, 1915 (1995).

[69] J. Carter and M. N. Wegman, “Universal classes of hash functidosfhal of Computer
and System Scienc#8, 143 (1979).



BIBLIOGRAPHY 115

[70] M. Hayashi and T. Tsurumaru, “Morefiicient Privacy Amplification With Less Random
Seeds via Dual Universal Hash FunctiolEEE Transactions on Information Theo8g,
2213 (2016).

[71] X. Ma, F. Xu, H. Xu, X. Tan, B. Qi, and H.-K. Lo, “Postprocessing for quantum random-
number generators: Entropy evaluation and randomness extradibgs. Rev. A87,
062327 (2013).

[72] R. Canetti, inProceedings of the 42nd IEEE Symposium on Foundations of Computer
ScienceFOCS '01(IEEE Computer Society, Washington, DC, USA, 2001), pp. 136-145.

[73] M. Ben-Or and D. Mayers, “General Security Definition and Composability for Quantum
Classical Protocols,” arXiv:quant-f4 09062 (2004).

[74] D. Unruh, “Simulatable security for quantum protocols,” arXiv:quanBgh9125 (2004).

[75] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner,
“Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Se-
curity against Coherent Attack$?hys. Rev. Lettl09, 100502 (2012).

[76] M. Lucamarini, J. F. Dynes, B. Bhlich, Z. Yuan, and A. J. Shields, “Security Bounds
for Efficient Decoy-State Quantum Key DistributiohZEE Journal of Selected Topics in
Quantum Electronicg1, 197 (2015).

[77] J. Muller-Quade and R. Renner, “Composability in quantum cryptograpsy Journal
of Physicsl1, 085006 (2009).

[78] T. Cover and J. Thomas, “Elements of Information Thedwiley Series in Telecommuni-
cations( Wiley, New York, 1991) .

[79] R. Kodnig, R. Renner, A. Bariska, and U. Maurer, “Small Accessible Quantum Information
Does Not Imply Security,Phys. Rev. Let®8, 140502 (2007).

[80] C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's
theorem,’Phys. Rev. Let68, 557 (1992).

[81] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial
entanglement by local operation®hys. Rev. A3, 2046 (1996).

[82] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters,
“Purification of Noisy Entanglement and Faithful Teleportation via Noisy Chanrfets;s.
Rev. Lett.76, 722 (1996).



116 BIBLIOGRAPHY

[83] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entan-
glement and quantum error correctioRfiys. Rev. A4, 3824 (1996).

[84] A.R. Calderbank and P. W. Shor, “Good quantum error-correcting codes &hst. Rev.
A 54, 1098 (1996).

[85] A. Steane, “Multiple-Particle Interference and Quantum Error Correctinoteedings of
the Royal Society of London A: Mathematical, Physical and Engineering Scidb2es
2551 (1996).

[86] C. H. Bennett, “Quantum cryptography using any two nonorthogonal st&bgs. Rev.
Lett.68, 3121 (1992).

[87] K. Tamaki, M. Koashi, and N. Imoto, “Security of the Bennett 1992 quantum-key distri-
bution protocol against individual attack over a realistic chani®ys. Rev. A7, 032310
(2003).

[88] H.-K. Lo, “Proof of unconditional security of six-state quantum key distribution scheme,”
Quant. Inform. Comput, 81 (2001).

[89] K. Inoue, E. Waks, and Y. Yamamoto, “Berential Phase Shift Quantum Key Distribu-
tion,” Phys. Rev. LetB9, 037902 (2002).

[90] K. Tamaki, M. Koashi, and G. Kato, “Unconditional security of coherent-state-bafed di
ential phase shift quantum key distribution protocol with block-wise phase randomization,”
arXiv:quant-pii1208.1995 (2012).

[91] M. Tomamichel and R. Renner, “Uncertainty Relation for Smooth Entropitisys. Rev.
Lett. 106, 110506 (2011).

[92] M. Tomamichel, C. ScH#ner, A. Smith, and R. Renner, “Leftover Hashing Against Quan-
tum Side Information,IEEE Transactions on Information Theddy, 5524 (2011).

[93] T. Tsurumaru and K. Tamaki, “Security proof for quantum-key-distribution systems with
threshold detectorsPhys. Rev. A8, 032302 (2008).

[94] N. J. Beaudry, T. Moroder, and Nitkenhaus, “Squashing Models for Optical Measure-
ments in Quantum Communicatior®hys. Rev. Lettl01, 093601 (2008).

[95] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, and K. Azuma, “Loss-tolerant quantum cryptog-
raphy with imperfect sources?hys. Rev. 20, 052314 (2014).



BIBLIOGRAPHY 117

[96] F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K.
Lo, “Experimental quantum key distribution with source flanRtiys. Rev. 82, 032305
(2015).

[97] A. Mizutani, N. Imoto, and K. Tamaki, “Robustness of the round-robifedential-phase-
shift quantum-key-distribution protocol against source fladhys. Rev. 22, 060303
(2015).

[98] T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security
of Distributed-Phase-Reference Quantum Key Distributi®mys. Rev. Lettl09, 260501
(2012).

[99] H.-K. Lo and J. Preskill, “Security of Quantum Key Distribution Using Weak Coherent
States with Nonrandom Phase®uiantum Info. Comput, 431 (2007).

[100] Z. Cao, Z. Zhang, H.-K. Lo, and X. Ma, “Discrete-phase-randomized coherent state source
and its application in quantum key distributiorifew Journal of Physicd7, 053014
(2015).

[101] T. Kobayashi, A. Tomita, and A. Okamoto, “Evaluation of the phase randomness of a light
source in quantum-key-distribution systems with an attenuated |d3eys. Rev. A0,
032320 (2014).

[102] H.-W. LI, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang,
G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking a practical quantum-key-distribution
system with wavelength-dependent beam-splitter and multiwavelength soltogs, Rev.

A 84, 062308 (2011).

[103] EpiPhotonics: httgfepiphotonics.copindex.html .

[104] H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key DistributidPkiys. Rev. Lett.
94, 230504 (2005).

[105] K. Tamaki, H.-K. Lo, C.-H. F. Fung, and B. Qi, “Phase encoding schemes for
measurement-device-independent quantum key distribution with basis-dependent flaw,”
Phys. Rev. 85, 042307 (2012).

[106] J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-
dimensional quantum key distribution using dispersive optiegys. Rev. 87, 062322
(2013).



118 BIBLIOGRAPHY

[107] Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional Secu-
rity of Time-Energy Entanglement Quantum Key Distribution Using Dual-Basis Interfer-
ometry,”Phys. Rev. Lettl12 120506 (2014).

[108] K.-I. Yoshino, M. Fujiwara, K. Nakata, A. Tomita, and A. Tajima, “Secure Quantum Key
Distribution Against Pattern fEects of Optical Pulse Intensities,” Poster presentation at
QCrypt 2016 .

[109] V. Scarani, A. Aén, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust
against Photon Number Splitting Attacks for Weak Laser Pulse Implementatioimgs.
Rev. Lett92, 057901 (2004).

[110] M. Koashi, “Unconditional Security of Coherent-State Quantum Key Distribution with a
Strong Phase-Reference Puldéiys. Rev. Let®3, 120501 (2004).

[111] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way
quantum key distribution Applied Physics Letter87, 194108 (2005).

[112] M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M. Zukowski,
“Information causality as a physical principléyature461, 1101 (2009).

[113] Y. Wang, W.-S. Bao, C. Zhou, M.-S. Jiang, and H.-W. Li, “Tight finite-key analysis of
a practical decoy-state quantum key distribution with unstable sourebgs. Rev. A4,
032335 (2016).

[114] K. Tamaki, H.-K. Lo, A. Mizutani, G. Kato, C. C. W. Lim, K. Azuma, and M. Curty,
“Security of quantum key distribution with iterative sifting,” arXiv:1610.06499 (2016).

[115] H.-K. Lo, H. Chau, and M. Ardehali, “Ecient Quantum Key Distribution Scheme and a
Proof of Its Unconditional SecurityJournal of Cryptologyl8, 133 (2004).

[116] W. Hoeftding, “Probability Inequalities for Sums of Bounded Random Variabl&sjinal
of the American Statistical Associatiég, 13 (1963).

[117] J. H. Ahrens, irOkonomie und Mathematik: Rudolf Henn zum 65. Geburtstdidged by O.
Opitz and B. Rauhut (Springer Berlin Heidelberg, Berlin, Heidelberg, 1987), pp. 253-265.

[118] H. Cherndt, “A Measure of Asymptotic Hiciency for Tests of a Hypothesis Based on the
sum of ObservationsAnn. Math. Stat23, 493 (1952).



BIBLIOGRAPHY 119

[119] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C.
Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang,
D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photflitient quantum
key distribution using time-energy entanglement with high-dimensional encoditeyy’
Journal of Physic4.7, 022002 (2015).



	博士論文表紙
	川上駿_本文.pdf
	空白ページ




