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Abstract

Quantum key distribution (QKD) allows two distant parties to share a secret key and re-

alizes a communication with information-theoretic security by combining it with one-time-pad

encryption. Since the Bennett-Brassard 1984 (BB84) protocol was proposed, a large number

of researches on QKD have been conducted from both aspects of theory and implementations.

For implementations of QKD, weak coherent pulses (WCP) are heavily used as optical signals

because they are easily generated by typical lasers and attenuators. The security for QKD with

WCP has been also studied along the development of the implementations.

In this thesis, the security analysis of the QKD with WCP is considered and further developed

from two aspects. First, the security of the differential-quadrature-phase-shift (DQPS) protocol

is proved. The DQPS protocol has essentially the same set up as the phase-encoding BB84

(PE-BB84) protocol, which is one of the most frequently demonstrated protocols. Since the

known proof techniques for the BB84 protocol is not directly applicable, a modified approach

is developed which is suitable for the DQPS protocol. As a result, the advantage of the DQPS

protocol in the key generation rate over the PE-BB84 protocol is shown in the asymptotic limit

where the size of communication data is assumed to be infinite.

Second, a new method for security analysis with finite-key size is proposed as a suitable

method for QKD protocols using WCP. Differently from the current method based on simple ran-

dom sampling, the proposed method relies on Bernoulli sampling, which is associated with bino-

mial distribution. The security of the BB84 protocol is proved by using the Bernoulli-sampling

method, enabling a simpler analysis with a smaller number of parameters to be estimated com-

pared to the method with simple random sampling. The required number of detected signals to

generate a secret key is shown to be smaller than 104, which is drastic improvement from the

number∼ 107 obtained in the previous result. The proposed method is also applied to the DQPS

protocol, and its advantage over the PE-BB84 protocol is certified even in the finite-key regime.



i

Acknowledgement

This thesis has been written based on much support and advice. In particular, I would like

to thank Prof. Masato Koashi, who supervised me throughout my studies in graduate school.

He was always ready to listen to student’s concerns for both scientific and private matters. His

bright insight and accurate advice helped me numerous times. I believe that I have developed an

appreciation for science and a logical way of thinking from him.

In addition, I greatly thank my closest collaborator, Dr. Toshihiko Sasaki. It was always a

pleasure to work with him and to benefit from his wide range of knowledge. He kindly responded

to my research questions, as well as questions about general physics and mathematics. I also thank

him for proofreading this thesis. Any remaining errors and omissions are solely my responsibility.

I have been fortunate to have researchers and discussion partners who are sophisticated in

various fields. Many practical aspects of this thesis were improved due to comments from Dr.

Ken-ichiro Yoshino. Yasunari Suzuki gave me helpful advice on both theoretical and practical

aspects. I also had several discussions with Akihiro Mizutani and obtained beneficial ideas from

him. The time I spent with them was quite valuable.

I thank Prof. Hoi-Kwong Lo and Prof. Norbert Lütkenhaus for providing me with opportuni-

ties to visit their labs and other support. Those experiences broadened my outlook in research. I

am also grateful to their group members. In particular, Dr. Feihu Xu and Dr. Patrick Coles spared

a lot of time for discussions, which have been utilized to write this thesis.

I have been financially supported by the MERIT program, which gave me precious experi-

ences including interactions with students in other fields. I could enjoy a fruitful student life at

the university thanks to its continuous support.

Finally, I thank my family members, Shoko, Junko and in particular, my father, Prof. Norio

Kawakami, who gave me academic advice from the standpoint of a researcher in a different field.



ii



Contents

1 Introduction 1

1.1 Background of quantum key distribution . . . . . . . . . . . . . . . . . . . . . .1

1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.3 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

2 Basic ideas of quantum key distribution 7

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.1.1 Tools of quantum information theory . . . . . . . . . . . . . . . . . . .7

2.1.2 Notations in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . .9

2.2 QKD protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.2.1 Components and assumptions . . . . . . . . . . . . . . . . . . . . . . .10

2.2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.2.3 BB84 protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.3 Security definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

3 Security proof of the BB84 protocol 17

3.1 Three types of security proof . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.2 Tools of security proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3.2.1 Replacement of state preparation . . . . . . . . . . . . . . . . . . . . . .19

3.2.2 Phase error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.2.3 Virtual protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.3 Security proof of the BB84 protocol with complementarity . . . . . . . . . . . .21

3.3.1 Description of the actual protocol . . . . . . . . . . . . . . . . . . . . .22

3.3.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3.3.3 Construction of virtual protocol . . . . . . . . . . . . . . . . . . . . . .24

3.3.4 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . .27

3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

iii



iv CONTENTS

4 QKD with weak coherent pulses 33

4.1 Photon number splitting attack . . . . . . . . . . . . . . . . . . . . . . . . . . .34

4.2 GLLP’s tagging idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

4.2.1 Phase-randomizing operation . . . . . . . . . . . . . . . . . . . . . . . .35

4.2.2 Security analysis of WCP-BB84 with tagging idea . . . . . . . . . . . .37

4.2.3 PNS attack vs. WCP-BB84 protocol . . . . . . . . . . . . . . . . . . . .43

4.3 Practical aspects of WCP-BB84 protocol . . . . . . . . . . . . . . . . . . . . . .45

4.3.1 Phase-encoding BB84 protocol . . . . . . . . . . . . . . . . . . . . . . .46

4.3.2 Decoy-state method . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

4.4 Differential-phase-shift protocol . . . . . . . . . . . . . . . . . . . . . . . . . .49

4.4.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

4.4.2 Security of DPS protocol . . . . . . . . . . . . . . . . . . . . . . . . . .51

4.4.3 Round-robin DPS protocol . . . . . . . . . . . . . . . . . . . . . . . . .52

5 Security of the DQPS protocol 53

5.1 Protocol and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

5.2 Security proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

5.2.1 Virtual protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

5.2.2 Alternative definition of tagging . . . . . . . . . . . . . . . . . . . . . .60

5.2.3 Phase-error rate for untagged portion . . . . . . . . . . . . . . . . . . .62

5.2.4 Upper bound on tagged ratio . . . . . . . . . . . . . . . . . . . . . . . .64

5.3 Key rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

5.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

6 Simple method of finite-key analysis for WCP-QKD 71

6.1 Sampling problem in finite-key analysis . . . . . . . . . . . . . . . . . . . . . .72

6.2 Analysis for the ideal BB84 protocol . . . . . . . . . . . . . . . . . . . . . . . .73

6.2.1 Formalism for key length . . . . . . . . . . . . . . . . . . . . . . . . . .73

6.2.2 Bounds on phase errors . . . . . . . . . . . . . . . . . . . . . . . . . . .74

6.2.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

6.3 Analysis for WCP-based protocol . . . . . . . . . . . . . . . . . . . . . . . . .79

6.3.1 The WCP-BB84 protocol . . . . . . . . . . . . . . . . . . . . . . . . . .79

6.3.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

6.3.3 The DQPS protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

6.4.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89



CONTENTS v

6.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

7 Conclusion and outlook 93

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

7.2 Related works and future outlook . . . . . . . . . . . . . . . . . . . . . . . . . .94

A Proof of lemma 1 97

B Untagged check-basis outcomes as an unbiased sample 99

C Security proof for DQPS with a general light source 101

D Calibration of light sources 105





Chapter 1

Introduction

1.1 Background of quantum key distribution

Quantum information theory not only allows us to understand quantum physics deeply through

classical information theory but also gives us a brand-new applications to the present information

technology. One of the applications with high possibility of realization is quantum cryptography,

which is expected to be a part of the future-cryptographic system. While quantum cryptography

has information-theoretic security, the security of most cryptography used in these days rely on

the computational hardness assumption, in which some mathematical problems are supposed to

be difficult to solve in practical time with the present computational resources and algorithms.

This indicates that even if important information is strictly protected by the present cryptography,

it might be decrypted by strong computational power or a new algorithm in the future. A famous

example is Shor’s algorithm [1] implemented with quantum computer. It is known to solve the

prime-factorization problem in polynomial time to threaten the security of the RSA cryptography,

which is widely used in the present communication system. Such an anxiety for the future devel-

opment of computer science is needless as far as the quantum cryptography is concerned thanks to

its security assured by information theory. Quantum cryptography is composed of two elements:

secret-key cryptography and quantum key distribution (QKD). For secret-key cryptography, the

information-theoretic security is proved if a secret key is used only one time and its length is not

shorter than that of the plain text, which is called one-time pad [2]. The problem is to share a

secret key between distant parties, and this is the purpose of the quantum key distribution.

The first QKD protocol was proposed by Bennett and Brassard in 1984 and is called the

BB84 protocol [3]. Differently from the present cryptography where eavesdropping is generally

undetectable, the intervention of an eavesdropper can be detected in the protocol by monitoring

bit errors between two parties. In 1988, Bennettet al. also proposed the concept of the privacy

1



2 CHAPTER 1. INTRODUCTION

amplification [4]. They show that if the amount of eavesdropper’s information is bounded, a

secure key can be extracted by compressing the shared key by the corresponding amount. This

opens the field of security proof of QKD, in which the amount of eavesdropped information is

theoretically bounded based on the rules of quantum physics. In 1996, the first security proof of

the BB84 protocol is given by Mayers [5], followed by Shor and Preskill [6] based on the ideas

of Lo and Chau [7]. On the other hand, these proofs assume ideal situations where Alice sends a

single photon and Bob also receives it. Furthermore, the proofs were asymptotic analysis where

the key size is assumed to be infinite to eliminate the statistical fluctuation.

For implementations of quantum key distribution, the behaviors of practical devices such as

lasers and detectors deviate from the ideal mathematical model. In particular, the effect of light

sources emitting multiple photons is serious because there is a photon-number-splitting (PNS) at-

tack [8], in which Eve can obtain the full information of a secret key without disturbing the signal

by using a part of multiple photons. The first security proof considering this effect is conducted

by Inamoriet al. in 2001 [9]. Later Gottesmannet al. proposed a quite simple concept of “tag-

ging” to treat the multiple-photon emissions [10]. They pointed out that a round where the sender

emits multiple photons and a round where she emits a single photon can be in principle classified

if the optical phase of each signal is randomized. A round with multiple photons is regarded as

tagged and considered to be insecure, while a round with a single photon is regarded as secure by

applying the security proofs for the single-photon protocol. By combining the tagging idea with

the later security proof which does not require the specific model of the receivers [11, 12, 13],

the security of various practical QKD protocols including the BB84 protocols can be proved with

simple theory [14, 15, 16, 17].

Another theoretical problem in practical situations is the security proof considering the effect

of finite key size. Since the security analysis contains estimations of parameters related to leaked

information, statistical fluctuations due to the finiteness must be taken into account, which is

called finite-key analysis. Although there appeared security proofs with finite-key analysis based

on Mayer’s proof [9] and Shor and Preskill’s proof [18, 19], these earlier results did not follow

the security definition with composability [20, 21], which most of the current security proofs rely

on. On the other hand, several proofs [22, 23] with composable security definition used law of

large numbers for parameter estimations, which resulted in low key generation rate if the size of

exchanged data is limited. It is expected that a simple security analysis with a smaller number

of estimated parameters achieves higher key rate due to the small overhead for finite-size effect.

Many of the current security proofs [24, 15, 16, 17] with composable finite-key analysis use

random sampling theory or Azuma’s inequality [25] as the estimation methods.

As theoretical aspects of QKD develop, many implementations of QKD were conducted in

laboratories, on fields [26, 27, 28] and even in the space [29, 30, 31]. For the implementations in
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laboratories and on fields, a signal light is usually guided by optical fibers, in which the informa-

tion tends to be encoded on the optical phase of weak coherent pulses (WCP). One of the benefits

to use the phase-encoding method is that it can be conducted with simple set up using the current

technology. The simplicity is desired not only because of a lower cost and a higher clock rate,

but also because complicated systems and procedures tend to impose severe restrictions on the

model of the practical apparatus, and to suffer from a large overhead involved in the finite-key

analysis. The BB84 protocol with phase encoding (Phase-encoding BB84, PE-BB84 henceforth)

[3, 32], which uses four relative phases{0, π2, π,
3π
2 } between two neighboring pulses, is one of the

simplest QKD implementations among phase-encoding protocols. In the PE-BB84 protocol, the

sender and the receiver only need phase modulators and a passive Mach-Zehnder interferometer

with two detectors. With its established security [5, 6, 10, 12], a number of demonstrations have

so far been reported [33, 34, 35].

For long-distance communication, the laser-based BB84 protocol suffers from PNS attacks.

It is often used with decoy-state method [36, 37, 38] to add protection against such attacks, but

the decoy-state method sacrifices the simplicity of the PE-BB84 protocol, requiring additional

devices as well as severer physical assumptions on the light source. It is common to assume

Poissonian statistics of the photon number, and an attempt to relax it into conditions on the general

photon number distribution still involves infinite number of inequalities [39]. In contrast, several

protocols have been proposed to achieve protection from PNS attacks without decoy states. The

differential-phase-shift (DPS) protocol has robustness against PNS attacks while retaining (or

even improving) the simplicity of the PE-BB84 protocol, and the demonstration with a high clock

rate was conducted [40]. In 2014, the round-robin DPS (RR-DPS) protocol was proposed [41]

as a variant of DPS protocol, which is numerically shown to achieve higher key generation rate

compared to the decoy-state BB84 protocol, but its implementations [42, 43, 44, 45] are not

simple because of an additional element which is required in the receiver’s apparatus to measure

relative phases of two pulses with various intervals.

1.2 Contributions of this thesis

For the purpose of achieving a higher key generation rate with a simpler protocol, in this thesis

two contributions are shown in terms of the security of QKD using practical WCP. The first one

is the security proof of the differential-quadrature-phase-shift protocol (DQPS) protocol [46] in

asymptotic-key regime. This work was published in [47]. The DQPS protocol was proposed

by Iwai and Inoue in 2009 and is regarded as a variant of the DPS protocol as well as the PE-

BB84 protocol. It is implemented with essentially the same set up as the PE-BB84 protocol

without sacrificing its simplicity. The security of the DQPS protocol is proved by modifying the
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tagging idea in this thesis. The result shows that its secure key rate is eight-third as high as that

of the PE-BB84 protocol in the asymptotic limit. Practical aspects of the DQPS protocol is also

investigated, in which the calibration method for light source is shown to be as simple as that of

the PE-BB84 protocol.

The second contribution is the proposition of a new method for finite-key analysis. While

most of the finite-key analysis is based on simple random sampling, the proposed method relies on

Bernoulli sampling, which is associated to binomial distribution. This work was motivated by the

finite-key analysis for the DQPS protocol, but it can be applied to various kinds of protocols, such

as the BB84 protocol, the six-state protocol [48], and high-dimensional QKD protocols [49, 50].

In particular, the method enables simpler analysis with less estimation process for the WCP-

BB84 protocol compared to the analysis with simple random sampling. The required number

of detected signals to generate a secure key reduces to 104 from 107, which was obtained in the

previous work [23]. Furthermore, by applying the analysis to the DQPS protocol, its advantage

of the key rate over the PE-BB84 protocol is confirmed also in the finite-key regime.

1.3 Organization of this thesis

This thesis is organized as follows.

In Chapter 2, basic ideas of QKD are introduced. First, we summarize the concepts and

notations used in this thesis. Next, various elements of QKD protocol (devices, procedures) are

shown along with their assumptions. As an example of a QKD protocol, the BB84 protocol is

described. The security definition of QKD is also given in this chapter.

In Chapter 3, the security of the BB84 protocol is proved based on the proof with comple-

mentarity [12]. The useful tools for security proof, source replacement, phase error, and a virtual

protocol are introduced. By using those tools, we prove the security of the BB84 protocol under

the assumption that the number of phase errors are bounded.

In Chapter 4, QKD using WCP are discussed from both theoretical and practical aspects.

First, PNS attacks are described. After GLLP’s tagging idea is introduced, the dependence of

secret-key length on phase errors is derived for WCP-BB84 protocol by using the tagging idea.

Based on the resulting key length in the asymptotic limit, we analyze the effect of PNS attacks on

the WCP-BB84 protocol. For practical aspects, the PE-BB84 protocol is introduced as a specific

form of the WCP-BB84 protocol. Decoy-state method is also discussed with its current practical

problems. Finally, the DPS protocol is introduced with its variant, the RR-DPS protocol.

In Chapter 5, the security of the DQPS protocol is proved in the asymptotic limit. After

describing the protocol and assumptions, the security proof is conducted with construction of a

virtual protocol and an alternative rule of tagging. The result of numerical calculation is shown
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to make comparison to the PE-BB84 protocol in terms of key-generation rate. We discuss the

generality of the proof and simplicity of the DQPS protocol, and a possible improvement for the

proof is suggested.

In Chapter 6, the method for finite-key analysis based on Bernoulli sampling is proposed.

First the sampling problems in security analysis are introduced along with their related statistics.

The proposed method is applied to the ideal BB84 protocol and WCP-BB84 protocol to make

comparison with the conventional method with simple random sampling. The proposed method

is also applied to the DQPS protocol to confirm its advantage over the PE-BB84 protocol in the

finite-key regime. Finally, the obtained results are summarized and outlooks related to this work

are discussed.

In Chapter 7, the summary of my researches and prospects for the future works are presented.





Chapter 2

Basic ideas of quantum key distribution

Quantum cryptography enables communication with information-theoretic security. Although its

security depends on the whole system [28] including one-time-pad communication and secret-key

management, this thesis focuses on “quantum layer” of quantum cryptography, namely, quantum

key distribution (QKD). In this thesis, we treat QKD with two-level system (qubit-based QKD)

rather than qudit-based QKD [49, 50] and continuous-variable QKD [51]. This chapter is for in-

troduction of basic ideas used in QKD. Sec. 2.1 represents the tools and notations used throughout

this thesis. The typical structure and assumptions of QKD protocols are shown in Sec 2.2. The

security definition of QKD protocol is given in Sec 2.3.

2.1 Preliminaries

For later convenience, we introduce several basic concepts and properties in quantum information

theory, and summarize notations frequently used in this thesis.

2.1.1 Tools of quantum information theory

Here we introduce several useful tools of quantum information theory: POVM, CPTP map, trace

distance, and fidelity.

POVM

POVM (positive operator valued measure) is one of the forms representing quantum measure-

ment. POVM represents a set of positive operators{Êi} satisfying
∑

i Êi = 1̂ where 1̂ is the

identity operator. Each element of the setÊi is called POVM element. Any physical measure-

ment can be represented with POVM. For a density operator ˆρ, the probability that the outcome

7
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corresponding tôEi is obtained is given by Tr( ˆρÊi).

CPTP map

CPTP map is short for completely-positive and trace-preserving map. A mapE : ρ̂ 7→ E(ρ̂) acting

on a density operator ˆρ is called a completely-positive map if

(1 ⊗ E)(ρ̂′) ≥ 0 (2.1)

holds where1 is the identity map on the auxiliary system and ˆρ′ is a density operator on the joint

system. The mapE is called a trace-preserving map if

Tr(E(ρ̂)) = 1 (2.2)

for any normalized density operator ˆρ. Note that any input-output relation which is physically

realizable is a CPTP map. A CPTP map can be expressed with operator-sum representation as

E(ρ̂) =
∑

i

K̂i ρ̂K̂†i , (2.3)

whereK̂i is an operator acting on the same Hilbert space as ˆρ, and
∑

i K̂†i K̂i = 1̂ with the identity

operator1̂.

Trace distance

Trace distance represents distance between two quantum states. We define*1) trace distance

between two states ˆρ and σ̂ as 1
2 || ρ̂ − σ̂ || with trace norm||A|| := Tr(

√
AA†). The triangle

inequality holds in terms of trace distance:

1
2
|| ρ̂ − σ̂ || + 1

2
|| σ̂ − τ̂ || ≥ 1

2
|| ρ̂ − τ̂ ||. (2.4)

Trace distance has a property ofmonotonicity, that is, for any CPTP mapE,

1
2
|| E(ρ̂) − E(σ̂) || ≤ 1

2
|| ρ̂ − σ̂ || (2.5)

is satisfied.

Fidelity

Fidelity is another distance measure for quantum information. We define*2) fidelity of two states

ρ̂ andσ̂ as

F(ρ̂, σ̂) :=
∣∣∣∣∣∣∣∣ √ρ̂√σ̂ ∣∣∣∣∣∣∣∣2 . (2.6)

*1)The definition is not unique, and sometimes|| ρ̂ − σ̂ || is called trace distance.
*2)The definition is not unique, and sometimes

∣∣∣∣∣∣ √ρ̂√σ̂ ∣∣∣∣∣∣ is called fidelity.
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Uhlmann’s theorem [52] holds in terms of fidelity:

F(ρ̂, σ̂) = max
|ψσ⟩
| ⟨ψρ|ψσ⟩ |2, (2.7)

where |ψρ⟩ and |ψσ⟩ are purifications of ˆρ and σ̂, respectively. Fidelity also has a property of

monotonicity: For any CPTP mapE,

F(E(ρ̂),E(σ̂)) ≥ F(ρ̂, σ̂) (2.8)

holds. Trace distance is upper-bounded by fidelity as

1
2
|| ρ̂ − σ̂ || ≤

√
1− F(ρ̂, σ̂). (2.9)

2.1.2 Notations in this thesis

Here, we summarize notations used in this thesis. We adopt an abuse of notation to use the same

symbol for a random variable ˜n and its valuen, whenever the distinction is obvious. For example,

we denote Pr(n > 3) instead of Pr(˜n > 3). We denote by Pr(n) the probability mass function

Pr(ñ = n). Similarly, we use Pr(n | m) instead of Pr(˜n = n | m̃= m).

A bold character, for exampleV, represents a vector of bit strings where addition of two

vectors is defined by addition modulo 2 for each element. We use the notation|V| as the length of

V, and use wt(V) as weight ofV, namely, the number of 1s contained inV. We define the product

of two vectorsV ·W (where|V| = |W|) asV ·W = V1W1 + V2W2 + .....V|V|W|W| where the plus

sign represents addition modulo 2 (henceV ·W ∈ {0, 1}). For example, forV = (0,1, 0,0,1) and

W = (1,0,0,0, 1), we have|V| = 5, wt(V) = 2 andV ·W = 1.

We define the following increasing function ofx defined forx ≥ 0:

h(x) =

−xlog2x− (1− x)log2(1− x) (0 ≤ x ≤ 1/2)

1 (x > 1/2).
(2.10)

For 0≤ x ≤ 1/2, h(x) is identical to the binary-entropy function.

This thesis mainly deals with the BB84 protocol and the DQPS protocol, both of which use

two bases, one for generating a secret key (data basis) and the other for monitoring leaked infor-

mation (check basis). Throughout this thesis except Chapter 5, we assign theZ basis to the data

basis, and theX basis to the check basis.

We define|0Z⟩ and|1Z⟩ as basis vectors ofZ basis on a qubit system,|0X⟩ := (|0Z⟩ + |1Z⟩)/
√

2

and|1X⟩ := (|0Z⟩ − |1Z⟩)/
√

2 as those ofX basis. When the same notations are used for an optical

signal (usually denoted by systemS), it should be understood that they refer to the states in the

subspace of a single photon contained in two modes, such as polarizations. For simplicity, we
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denote|0⟩ ⊗ |0⟩ as|00⟩. The ket notation characterized by vector represents|V⟩ :=
⊗|V|

i=1 |Vi⟩. The

four Bell states are represented by|Φ±⟩ and|Ψ±⟩ where

|Φ±⟩ :=
1
√

2
(|00Z⟩ ± |11Z⟩), (2.11)

|Ψ±⟩ :=
1
√

2
(|01Z⟩ ± |10Z⟩). (2.12)

2.2 QKD protocol

Although there are various types of QKD protocols, they generally have similar components and

procedures. In this section we introduce basic components of QKD with their assumptions and

the procedures in QKD protocol. We also introduce the BB84 protocol as an example of QKD

protocol.

2.2.1 Components and assumptions

We divide QKD components into the sender’s devices, the receiver’s devices, quantum channel

and classical channel to clarify the assumptions usually adopted in QKD protocols. In most

QKD protocols, there appear legitimate parties Alice and Bob who want to share secret keys and

eavesdropper Eve. Throughout this thesis, we assume that Alice is a signal sender and Bob is a

receiver.

Alice’s (sender’s) devices

Alice’s devices are mainly used for preparing quantum states. One of essential devices at Alice’s

site is a light source. From the viewpoint of simplicity and high repetition rate, an attenuated

laser is usually used as a signal source, while QKD with single-photon source has been demon-

strated [53] and sophisticated ideas for sources using spontaneous parametric down conversion

were proposed [54, 55]. Random number generator is also necessary for basis choice, generating

a raw key bit, randomization of optical phase and generating hash functions and so on. Although

we assume that perfect (uniform and independent) random numbers can be prepared, practical

random number generators have imperfections causing non-uniformity of random numbers and

correlations to outside systems. To fill the gap from the practical side, researches on quantum ran-

dom number generator (QRNG) have been conducted. In these days, QRNG using the random-

ness of which-path information of photon is commercially available with the rate 4 Mbits/s [56],

and faster one with 6 Gbits/s was demonstrated based on quantum-phase fluctuations [57]. As

is referred to as “side channel attack” in the current cryptography system, in practice there are
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attacks using unintended information leak (such as feeble electromagnetic wave from devices),

and hence the appropriate countermeasures are required. On the other hand, in this thesis we

assume that internal information of the devices is not leaked outside.

Bob’s (receiver’s) devices

The role of Bob’s devices is to carry out measurement on quantum states to obtain a key bit. A

main device at Bob’s site is a detector. In practice, threshold detectors, which can tell a single

photon or more from vacuum, are often used without sacrificing the security. In several QKD

demonstrations with high clock rate [40, 53], superconducting single photon detectors (SSPDs)

were used. Recently, SSPDs with high detection efficiency (93 %), low dark count rate (1 c.p.s)

and low timing jitter (150 ps) were developed [58]. A random number generator is also necessary

if Bob needs basis choice in the protocol. A larger number of side-channel attacks (security loop-

holes) are known for the receiver’s devices [59, 60, 61, 62] than the sender’s devices, which leads

to the idea of measurement-device-independent (MDI) QKD [63]. In MDI QKD, both Alice and

Bob are senders and the receiver’s devices are possessed by an untrusted party “Charlie”. The

protocols dealt in this thesis are based on conventional Alice’s state preparation and Bob’s mea-

surement. We assume that Bob’s devices are also side-channel free similarly to Alice’s devices.

Quantum channel

Quantum channel is used for communication with quantum states between Alice and Bob. For

practical aspects, optical fibers or free space are suitable as quantum channel for light. Optical

fibers are used for most QKD implementations on the ground [26, 27, 28], while the use of free

space is expected for implementations involving satellites [29, 30, 31, 64]. We impose no as-

sumption on quantum channel and hence Eve can conduct any physical operation on transmitting

signal without constraints on technology. For example, she can use noiseless and lossless channel

in principle.

Classical channel

Classical channel is used for all communication between Alice and Bob except the one with

quantum channel. While the information on classical channel is publicly open, we assume

that the information can not be tampered. This assumption is realized by Wegman-Carter au-

thentication [65], for example, consuming a small number of secret key (∼ logarithm of the

communication-data size). Thus, Alice and Bob need to share secret keys in advance, which

implies that the role of QKD is not secret-key generation, but secret-key amplification. If we

compromise the information-theoretic security, the authentication is conducted by public-key

cryptography relying on computational-hardness assumptions, which partially makes sense since
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it is sufficient that the authentication succeeds at the present time to make the secret key shared

through QKD be secure even in the future.

2.2.2 Procedures

QKD protocols are composed of manipulation of quantum states and classical post processing.

In post processing, the procedures are classified as sifting, parameter estimation, error correction

and privacy amplification. Here we explain each procedure and introduce several related works.

Quantum manipulations

Quantum manipulations include Alice’s preparation of a quantum state, transmission of the state

and Bob’s measurement. Alice prepares a quantum state based on a random bit and basis choice

(if the protocol uses multiple bases) and sends it to Bob through quantum channel. Bob makes

measurement on the state to obtain one of outcomes{0, 1, no-detection} and additional informa-

tion depending on protocols. We name the series of the above procedures for a single state as a

“round”. Alice and Bob repeat the round many times.

Sifting

In sifting process, Alice and Bob communicate with classical channel to determine whether each

round of the protocol is valid or invalid. For example, a round with no detection at Bob’s site is

invalid, and a round with basis mismatch between Alice and Bob is also regarded as invalid. Some

rounds may be chosen as samples for the following parameter estimation process. Alice and Bob

obtain bit strings called “sifted key” by concatenating the bits on valid and no-sample rounds.

In several works [13, 15, 16], sifting process is conducted at each round of the protocol. On the

other hand, Pfisteret al. have recently pointed out [66] that the conventional security proof based

on simple random sampling can not be applied if we disclose the basis choice at each round of

the protocol. Thus, if one prefers tight security analysis currently used, sifting process is desired

to be conducted after all rounds are over in practical QKD protocols.

Parameter estimation

To certify the security of the protocol, we require parameters which characterizes Eve’s interven-

tion on quantum channel. For this, Alice and Bob disclose sample bits through classical channel

to obtain the statistics of bit errors. Based on the resulting statistics, Alice and Bob determine

whether they proceed to the following steps or abort the protocol. For example, if the number of

errors is too large compared to the data size, they abort the protocol.
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Error correction

Even if Eve is absent, Bob’s sifted key is generally different from Alice’s one because of the noise

inherent in quantum channel. In error correction process, Alice and Bob correct the obtained

keys to make it coincide with each other’s one through the communication with classical channel.

Based on the estimated bit-error rate on the sifted key, Alice and Bob apply an appropriate error-

correcting code. If multiple bases are used in the protocol and bit errors on sifted key do not

contribute to the security analysis (e.g. in BB84), the estimation of error rate on the sifted key can

be omitted. Instead, they apply an error-correcting code with predetermined communication cost

followed by verification process. In verification process, Alice and Bob compare a small number

of hash values computed from the sifted keys, and if those values are different between Alice

and Bob, they abort the protocol. In practice, the low-density parity-check (LDPC) code [67] is

often used for error correction. For fast implementation of LDPC code, the size of a sifted key is

desired to be fixed.

Privacy amplification

Privacy amplification is the process to obtain a secret key decoupling from Eve’s system. The

concept of privacy amplification was proposed and developed by Bennettet al. [4, 68] in early

days. The idea is that if the amount of information leaked to Eve is upper-bounded, the secret

key can be generated by applying an appropriate compressing function on the sifted key, which

shortens the key length by the amount corresponding to the leaked information. The bound on

leaked information is not directly observed and has to be theoretically determined based on esti-

mated parameters. One of compressing functions established for the privacy amplification is the

universal2 hash function [69], and Toeplitz matrix is frequently used in practice due to its small

computational complexity. Recently, Hayashi and Tsurumaru constructed another hash func-

tions [70] which belong to a broader class than universal2 hash function. These functions require

less random seeds as well as enables us to treat their non-uniformity, which is useful considering

the imperfection of random number generators. Although the concept of privacy amplification

was proposed mainly for quantum key distribution, recently it has been applied to other fields

such as randomness extraction [71] for quantum random number generators.

2.2.3 BB84 protocol

As an example of QKD protocol, we introduce the Bennett-Brassard 1984 (BB84) protocol [3]. In

the protocol, Alice and Bob independently chooses two bases (Z basis andX basis) with a biased

probability. The final key is generated only fromZ-basis data, whileX-basis data is used for leak
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monitoring to determine the amount for privacy amplification. We say a round is “Z(X)-labeled”

if both Alice and Bob choseZ(X) basis and photon detections are reported at that round. The

number of total rounds is fixed to benrep, and hence the size of the final key is variable.

The protocol proceeds as follows with predetermined parameters ˜pZ, p̃X = 1 − p̃Z andnrep.

Following the classification in the previous section, Steps (1)-(4) correspond to quantum manip-

ulations, Steps (5) and (6) represent sifting process and Step (7) is parameter estimation.

(1) Alice choosesZ basis orX basis with probability ˜pZ and p̃X, respectively. She chooses a

uniformly random bit{0,1}.
(2) Alice prepares one of states{ρ̂Z,0, ρ̂Z,1, ρ̂X,0, ρ̂X,1} based on the selected basis and bit. She sends

the prepared state to Bob over the quantum channel.

(3) Bob choosesZ basis orX basis with probability ˜pZ and p̃X, respectively. He measures a re-

ceived state in chosen basis and obtains the outcome{0, 1, no-detection}.
(4) They repeat the sequence (1) to (3) (which we call a round) bynrep times.

(5) Bob publicly announces whether each round has resulted in a detection or not. Letndet be the

number of rounds with detection.

(6) Alice and Bob disclose all of their basis choices. They define sifted keysκA,Z andκB,Z by con-

catenating the bits for theZ-labeled rounds, and similarly defineκA,X andκB,X for the X-labeled

rounds. Let their sizes benZ := |κA,Z| = |κB,Z| andnX := |κA,X| = |κB,X|.
(7) They disclose and compareκA,X andκB,X to determine the number of bit errorskX included in

them. Letω represents the following three observed numbers:

ω := (kX,nX,nZ). (2.13)

Through public discussion, Alice and Bob determine whether they abort the protocol or not. If

the protocol does not abort, they determine the final key sizel(ω) (≥ 0).

(8) Through public discussion, Bob corrects his keysκB,Z to make it coincide with Alice’s key

κA,Z and obtainsκcor
B,Z (|κcor

B,Z| = nZ).

(9) Alice and Bob conduct privacy amplification by shorteningκA,Z andκcor
B,Z to obtain final keys

κfin
A,Z andκfin

B,Z of sizel.

Intuitively, security of the BB84 protocol is ensured by the uncertainty principle: If Eve at-

tempts to access information forZ basis, then information forX basis is disturbed. Although the

BB84 protocol is the first QKD protocol, it is as well the most frequently demonstrated protocol

even in the current QKD implementations. A possible reason for the popularity is the simplicity

of the protocol, but another remarkable property is that the BB84 protocol also has established se-

curity with simple proof, which originates from the symmetry of theZ andX bases. In Chapter 3,



2.3. SECURITY DEFINITION 15

we show the simple security analysis of the BB84 protocol by using the proof of complementar-

ity [12].

2.3 Security definition

Here we introduce the security criteria with “composability” which are currently accepted in

the field of QKD. The concept of composable security originates in modern cryptography (not

quantum) [72] and was first discussed in the context of QKD by Ben-Oret al. [21, 73], followed

by Renneret al. [20] and Unruh [74]. Roughly speaking, composable security implies that if two

protocols are respectively shown to be almost secure, the protocol combining the two protocols

is also almost secure. This property is important because secret keys generated from a QKD

protocol are used in other protocols, such as one-time pad and authentication of classical channel

(see Sec. 2.2.1).

As is adopted in the current security proofs [13, 75, 15, 16, 24, 76, 17], in this thesis we follow

the composable security definition represented in Ref. [21]. For a bit stringsκ ∈ {∅,0,1, 00,01,10,

11,000, ...}, let us define{|κ⟩} as a set of orthogonal bases on the spaceH0⊕H1⊕H2⊕ ....⊕Hnrep

with each dimension ofH j being 2j. Let ρ̂fin
ABE be a state after finishing the protocol defined on

the systemA (Alice), B (Bob) andE (Eve), which is written as

ρ̂fin
ABE :=

∑
κfin

A,Z,κ
fin
B,Z

Pr(κfin
A,Z, κ

fin
B,Z) |κfin

A,Z, κ
fin
B,Z⟩ ⟨κfin

A,Z, κ
fin
B,Z|AB

⊗ ρ̂fin
E (κfin

A,Z, κ
fin
B,Z), (2.14)

where Pr(κfin
A,Z, κ

fin
B,Z) represents the probability that Alice and Bob obtain the final keyκfin

A,Z and

κfin
B,Z, respectively, and|κfin

A,Z, κ
fin
B,Z⟩AB

:= |κfin
A,Z⟩A |κ

fin
B,Z⟩B. Let ρ̂ideal

AE be an ideal state where Alice’s and

Bob’s final keys are uniform and independent of Eve’s system (except final-key sizel):

ρ̂ideal
ABE :=

∑
l

∑
κ: |κ|=l

Pr(l)
1
2l
|κ, κ⟩ ⟨κ, κ|AB⊗ ρ̂fin

E (l), (2.15)

where Pr(l) represents the probability to obtain the final key of sizel and ρ̂fin
E (l) is Eve’s state

conditioned onl, which are related to the parameters in the protocol as

Pr(l) =
∑

κfin
A,Z,κ

fin
B,Z: |κfin

A,Z|=|κfin
B,Z|=l

Pr(κfin
A,Z, κ

fin
B,Z), (2.16)

ρ̂fin
E (l) :=

1
Pr(l)

∑
κfin

A,Z,κ
fin
B,Z: |κfin

A,Z|=|κfin
B,Z|=l

Pr(κfin
A,Z, κ

fin
B,Z)ρ̂fin

E (κfin
A,Z, κ

fin
B,Z). (2.17)

Since it is practically impossible to obtain the final state as in the ideal form Eq. (2.15), we allow

the small probabilityϵsec that the protocol is insecure. Such a concept is calledϵsec-security, and
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its exact definition is described as follows.

Definition of ϵsec-security

The protocol isϵsec-secure if and only if the trace distance betweenρ̂fin
ABE and ρ̂ideal

ABE is no larger

thanϵsec:
1
2
|| ρ̂fin

ABE− ρ̂ideal
ABE || ≤ ϵsec. (2.18)

Typically the value ofϵsec is set toϵsec∼ 10−10.

For the convenience of security proof,ϵsec-security is usually divided intoϵc-correctness and

ϵs-secrecy [77]. The protocol is calledϵc-correct if and only if

Pr(κfin
A,Z , κ

fin
B,Z) ≤ ϵc. (2.19)

Defineρ̂fin
AE andρ̂ideal

AE as

ρ̂fin
AE := TrB(ρ̂fin

ABE) =
∑
κfin

A,Z

Pr(κfin
A,Z) |κfin

A,Z⟩ ⟨κfin
A,Z|A ⊗ ρ̂

fin
E (κfin

A,Z) (2.20)

ρ̂ideal
AE := TrB(ρ̂ideal

ABE) =
∑

l

∑
κ: |κ|=l

Pr(l)
1
2l
|κ⟩ ⟨κ|A ⊗ ρ̂fin

E (l). (2.21)

The protocol is calledϵs-secret if and only if

1
2
|| ρ̂fin

AE − ρ̂ideal
AE || ≤ ϵs. (2.22)

By using the triangle inequality Eq. (2.4) in terms of trace distance, one can show that if the

protocol isϵc-correct andϵs-secret, the protocol is alsoϵsec-secure withϵsec= ϵc+ϵs (see Ref. [12],

for example). It is useful to quantifyϵc-correctness andϵs-secrecy separately. Sinceϵc-correctness

is ensured in the protocol through the verification process or estimation of bit errors, the target of

security proof is to ensureϵs-secrecy of the protocol.

Until the concept of composable security was generally accepted, the security of QKD was

typically evaluated by Shannon mutual informationI (κfin
A,Z; KE) [78] between Alice’s final key

κfin
A,Z and Eve’s classical stringsKE obtained by measurement on her system [9, 18, 19]. However,

small I (κfin
A,Z; KE) does not necessarily meansϵs-secrecy with smallϵs. Ref. [21] shows thatϵs-

secrecy is satisfied if

I (κfin
A,Z; KE) ≤ 2−(l+2)ϵ2

s , (2.23)

where we fixed the value ofl = |κfin
A,Z| for simplicity. Later, the exponential dependence of the

mutual information on the final key size as in Eq. (2.23) was shown [79] to be necessary as well

as sufficient for ϵs-secrecy, which implies that the mutual information is not suitable as security

definition.



Chapter 3

Security proof of the BB84 protocol

So far a large number of security proofs are given for various protocols, but the number of the

security proofs for the BB84 protocol is outstanding compared to those for others. The reason

is supposed to be that it has a beautiful symmetry of two conjugate observables, which enables

a simple proof. Many security proofs for other protocols also use the property of two conju-

gate observables and they are regarded as a variant of the proof for the BB84 protocol. Thus,

understanding the security proof for the BB84 protocol might be essential to address the secu-

rity of general QKD protocols. The first security proof for the BB84 protocol was given by

Mayers [5] although it was complicated. The simple proof using quantum error correction was

proposed by Shor and Preskill in 2000 [6]. Later, the other simple proofs are suggested by Koashi

in 2005 [11] and by Tomamichelet al. in 2012 [13]. In this chapter, the security of the BB84

protocol is shown with a method based on complementarity proposed by Koashi [11, 12]. The

proofs includes finite-key analysis and satisfies the composable security definition [20, 21]. As a

preliminary, three methods (mentioned above except Mayers’) of security proofs currently used

are introduced and compared in Sec 3.1. In Sec. 3.2, tools for security proof are introduced to

use the proof with complementarity, containing replacement of state preparation, phase error and

virtual protocol. By using those tools, the security of the BB84 protocol is shown based on the

proof with complementarity in Sec. 3.3. The result of this chapter is applied to Chapter 5 and 6.

3.1 Three types of security proof

As far as the qubit-based protocols (c f. continuous variable QKD [51]) including the BB84 pro-

tocol are concerned, the security proofs which are valid for Eve’s general attack are mainly clas-

sified into three types: the proof with entanglement distillation protocol (EDP) [7, 6], the proof

with complementarity [11, 12] and the proof with entropic uncertainty principle [13]. We briefly

17



18 CHAPTER 3. SECURITY PROOF OF THE BB84 PROTOCOL

introduce those three proofs focusing on what concepts are used and what physical assumptions

on devices are required.

Security proof with EDP

The security proof with EDP was originally proposed by Lo and Chau in 1999 [7]. They prove the

security of the BBM92 protocol [80], in which an entangled photon pair is separately distributed

to Alice and Bob, by using the ideas of entanglement distillation protocol [81, 82, 83]. Later in

2000, Shor and Preskill show that the security of the BB84 protocol is reduced to the proof of the

BBM92 protocol [6]. The proof is based on simple CSS quantum error correction code [84, 85]

and the security is evaluated how good both bit errors and phase errors (mentioned in Sec. 3.2.2)

are corrected. On the other hand, it requires an assumption that Alice and Bob make ideal qubit

measurements. The proof with EDP is used not only for the above two protocols but also for B92

protocol [86, 87], six-state protocol [48, 88], DPS protocol [89, 90] and so on.

Security proof with complementarity

The security proof with complementarity was proposed by Koashi in 2005 [11]. It follows the

spirit of the first proof for the BB84 protocol given by Mayers [5], in which the security is an-

alyzed with uncertainty principle at Alice’s system. While it adopts the similar proof with EDP

by using the idea of phase error correction, the bit error correction is separated from the security

analysis and the security is evaluated how good phase errors are corrected. Compared to the proof

with EDP, the physical assumption at receiver’s devices is relaxed as follows:

Condition of the receiver(∗): The probability that a signal is detected at the receiver is indepen-

dent of the basis choice.

The proof with complementarity is applied to the BB84 protocol [14], round-robin DPS proto-

col [41] and so on.

Security proof with entropic uncertainty relation

The security proof with entropic uncertainty relation was proposed by Tomamichelet al. in

2012 [13]. Differently from the previous two proofs considering phase error correction, the secu-

rity proof is denoted in terms of smooth min-entropy. Smooth min-entropy quantifies the amount

of uniform randomness that can be extracted from the quantum system of finite size and it directly

bounds the eavesdropped information in finite-key regime. The security proof is composed of the

uncertainty relation of smooth entropies [91] and quantum leftover hashing lemma [92], which

were also shown by Tomamichelet al.. The assumption for source and receiver is identical to

that of the proof with complementarity. The proof is applied to the BB84 protocol [13, 15], MDI

protocol [63, 16] and continuous-variable QKD [75].
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3.2 Tools of security proof

Here three theoretical tools are introduced to use the security proof with complementarity in

Sec. 3.3. The replacement of state preparation is the idea to assume an auxiliary qubit at Alice’s

site, which is commonly used for the three proofs in the previous section. Phase error and virtual

protocol are used in the proof with EDP and that with complementarity although their meanings

are slightly different between the two proofs.

3.2.1 Replacement of state preparation

Most protocols of QKD including the BB84 protocol belong to “prepare-and-measure (PM)”

type, in which Alice prepares a quantum state based on a selecting bit and sends to Bob, and

he makes measurement on the state to obtain a key bit. Another type of QKD protocol is called

entanglement-based protocol, in which an entanglement state is distributed to Alice and Bob and

they make measurement to share key bits. While the PM-type protocol is easier to implement in

general, it is convenient for the security proof to convert the PM-type protocol to entanglement-

based protocol where Alice generates an entanglement state and sends a part of it while keeping

the other part. Suppose that in the PM-type protocol, Alice selects a bit 0,1 with probability 1/2

and that she prepares ˆρZ,0 andρ̂Z,1 on the systemS based on her selecting bit 0 and 1, respectively.

The state preparation of ˆρZ,0 andρ̂Z,1 is replaced by the procedure that Alice prepares ˆχAS on the

systemAS satisfying

Tr (|aZ⟩ ⟨aZ|A χ̂AS) =
1
2
ρ̂Z,a (a ∈ {0,1}), (3.1)

followed by making measurement on the systemA with Z basis{|0Z⟩A , |1Z⟩A}. The state on the

systemAS Eafter Eve’s interruption does not depend on the timing of Alice’s measurement on the

systemA because the systemA is protected from Eve. WithES E representing Eve’s interaction

between the accessible systemS and her systemE, this property is roughly sketched by

|aZ⟩ ⟨aZ|AES E(χ̂AS ⊗ ρ̂E) |aZ⟩ ⟨aZ|A (3.2)

= ES E(TrA (|aZ⟩ ⟨aZ|A (χ̂AS ⊗ ρ̂E))) (3.3)

= ES E

(
1
2
ρ̂Z,a ⊗ ρ̂E

)
. (3.4)

The form of Eq. (3.2) represents the state (not normalized) on the systemAS Ewhere the measure-

ment on the systemA is conducted after Eve’s intervention and the form of Eq. (3.4) represents

the state where the measurement is conducted before her intervention. Although the above argu-

ment is limited to a single round of the protocol, it can be extended to total rounds whereES E

includes Eve’s coherent interaction among different rounds.
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3.2.2 Phase error

Phase error is a convenient concept to express the amount of eavesdropped information, which

is adopted in the security proof with EDP and complementarity. In contrast to the fact that an

observed error in the protocol is called as “bit error”, a phase error is defined through the virtual

process which is not conducted in the protocol. Let ˆχint
AS be a state which is changed from ˆχAS

in Eq. (3.1) after Eve’s intervention on the systemS. A phase error is defined as a virtual error

occurring when Alice and Bob makeX-basis measurement on ˆχint
AS on aZ-labeled round. Here,

in the proof with complementarity, Alice’s measurement is an idealX-basis{|0X⟩A , |1X⟩A} mea-

surement on the systemA while Bob’s X-basis measurement on the systemS is not limited if

the detection probability is identical to that ofZ-basis measurement (In BB84, we use the actual

X-basis measurement which is conducted in the protocol). In the proof with EDP, both Alice

and Bob’s measurements are idealX-basis measurements, which implies that a phase error is ob-

tained by the projective measurement to obtain the result of|01X⟩AS or |10X⟩AS. This corresponds

to another definition of phase error in the proof with EDP, in which a phase error occurs by Bell-

basis measurement to obtain the result|Φ−⟩AS or |Ψ−⟩AS (Notations of Bell states are shown in

Sec. 2.1.2). This is because we have the relation

|Φ−⟩ ⟨Φ−|AB+ |Ψ−⟩ ⟨Ψ−|AB = |01X⟩ ⟨01X|AB+ |10X⟩ ⟨10X|AB . (3.5)

Intuitively, Eve’s strong interaction to readZ-basis information leads to a large number of phase

errors because of the uncertainty principle. In the proof with EDP and complementarity, the

security is evaluated how good phase errors (also bit errors for EDP) are corrected through the

virtual protocol which is shown in the following.

3.2.3 Virtual protocol

The definition of the virtual protocol is not uniquely determined, but roughly speaking, it is re-

garded as a tool for security proof satisfying the following property: If the virtual protocol is

secure, then the actual protocol is also secure. Although the concept of the virtual protocol ap-

pears in both proofs with EDP and with complementarity, the requirement for the virtual protocol

is different from each other. For the proof with complementarity, Alice and Bob do not need to

share final keys in the virtual protocol but the goal is to generate a secure key at Alice’s site. The

only condition for the virtual protocol is given as follows.

Condition for virtual protocol:

For any Eve’s attack in the actual protocol, the final state of Alice and Eve in the virtual protocol
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is identical to that of the actual protocol which is written as Eq. (2.20).

This condition means that if the virtual protocol isϵs-secret for any attack in the actual protocol,

the actual protocol is alsoϵs-secret. In the virtual protocol, we only need to consider the attack

conducted in the actual protocol. Thus, the use of additional public information is allowed in the

virtual protocol while the public information announced in the actual protocol has to be disclosed

in the virtual protocol. For the proof with complementarity, the virtual protocol includes phase

error correction to obtain a number ofX-basis eigenstate|0X⟩A at Alice’s site, followed by making

Z-basis{|0Z⟩ , |1Z⟩}measurement on the Alice’s system. Since|0X⟩A is a separable state as well as

causes the outcome 0,1 with even probability by makingZ-basis measurement, the final state is

expected to be close to the ideal state Eq. (2.21) if the success probability of phase error correction

is high.

For comparison, let us mention the proof with EDP. In the proof with EDP, the virtual protocol

is the EDP followed by idealZ-basis{|0Z⟩ , |1Z⟩}measurement by Alice and Bob. The goal of the

EDP is to generate maximally entangled state|Φ+⟩AB between Alice and Bob by correcting bit

errors and phase errors simultaneously (with CSS code, for example). This requires the ideal qubit

measurements at Bob’s site (affecting the definition of phase error) and prevents us to decouple

the analysis of phase error correction from the bit error correction. In practical case where Bob

receives multiple photons, the EDP is incorporated to the squash operation [93, 94], in which the

measurement of the multiple photons is replaced by the equivalent single-photon measurement.

Differently from the proof with complementarity, the final state of the virtual protocol has to be

that of the actual protocol in terms of the whole system of Alice, Bob and Eve.

3.3 Security proof of the BB84 protocol with complementarity

Here, the security of the BB84 protocol is proved based on the proof with complementarity [12].

We assume that Alice’s and Bob’s apparatuses are ideal, namely, Alice sends a single photon

in the states{ρ̂W,a = |aW⟩ ⟨aW|S} (W ∈ {Z,X},a ∈ {0,1}) in Step (2) of the protocol shown

in Sec. 2.2.3 and Bob conducts ideal measurement with unit efficiency described by POVM

{|0W⟩ ⟨0W|S , |1W⟩ ⟨1W|S , 1̂S − |0W⟩ ⟨0W|S − |1W⟩ ⟨1W|S} in Step (3) corresponding to the outcome

{0,1,no-detection}. In this case, Bob’s measurement satisfies the condition (∗) in Sec. 3.1.

In Sec. 3.3.1, the actual protocol is described with the replacement of state preparation. After

the main theorem denoting theϵs-secrecy of the actual protocol is given in Sec. 3.3.2, the virtual

protocol satisfying the condition in 3.2.3 is constructed in Sec. 3.3.3. Finally the main theorem

is proved in Sec. 3.3.4. Since the statement about the fidelity extension in the original paper

(Eq. (18) in Ref. [12]) is not correct from the perspective of composable security definition, it is
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replaced by the lemma 1 in Sec. 3.3.4.

3.3.1 Description of the actual protocol

Here we describe the ideal BB84 protocol in Sec. 2.2.3 in the alternative form based on the

replacement idea introduced in Sec. 3.2.1. In the ideal BB84 protocol, ˆχAS = |Φ+⟩ ⟨Φ+|AS satisfies

Eq. (3.1) as well as

Tr (|aX⟩ ⟨aX|A χ̂AS) =
1
2
ρ̂X,a (a ∈ {0,1}). (3.6)

This means that the state preparation for bothZ basis andX basis are replaced by preparation

of χ̂AS followed by the measurement on the systemA with the corresponding basis. Bob’s mea-

surement on the systemS is also replaced by a filtering operation to make sure a single pho-

ton is received and transfer its state to a qubitB, followed by the orthogonal measurement of

B on {|0W⟩ ⟨0W|B , |1W⟩ ⟨1W|B} depending on the chosen basis to determine the outcome 0 or 1.

Let us call it a “valid-detection” when the filtering succeeds, namely, when the outcome is not

“no-detection”. The above replacement implies that the basis choices by Alice and Bob can be

postponed after valid-detection/no-detection is declared by Bob.

For simplicity, we assume that there is an error-correction scheme which ensuresϵc-correctness

of the protocol, and denote the total cost for the error correction byλEC. We also assume that the

communication for error correction is encrypted by consuming secret key shared in advance,

which allows us to assume that no public information is announced for error correction. Further-

more, Bob corrects his key to agree on Alice’s one while Alice’s key is unchanged. Then we

see that the error correction scheme is no longer necessary for the virtual protocol to fulfill the

condition in Sec. 3.2.3. The actual protocol to prove the security is described as follows.

Actual Protocol.

(1’) Alice prepares|Φ+⟩AS.

(2’) Alice sends the part of the state (systemS) to Bob over quantum channel.

(3’) Bob receives the signal and confirms whether it causes a valid-detection or not. If there is a

valid-detection, he keeps the qubitB without measurement.

(4’) They repeat (1’) to (3’) bynrep times.

(5’) Bob publicly announces whether each round has resulted in a valid-detection or not. Letndet

be the number of rounds with valid-detections.

(6’) For thendet rounds, Alice and Bob chooseZ basis orX basis with probability ˜pZ and p̃X,

respectively. They disclose all of their basis choices and discard the rounds where their choice

is not identical. Let the number ofZ-labeled andX-labeled rounds benZ andnX, respectively.

Alice and Bob makeX-basis measurement on the systemA andB, respectively, on theX-labeled
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rounds to obtain bit stringsκA,X andκB,X.

(7’) They disclose and compareκA,X andκB,X to determine the number of bit errorskX contained

in theX-labeled rounds. Letω represents the following three observed numbers:

ω := (kX,nX,nZ). (3.7)

Alice and Bob determine the amount of privacy amplificationm(ω) based onω and the cost of

error correctionλEC through public discussion*1). If nZ − m(ω) ≤ λEC, the protocol aborts. If

it is not, they determine the final key length asl(ω) := nZ − m(ω). For privacy amplification,

they randomly selectl(ω) binary vectorsV1,V2, ...Vl(ω) of sizenZ such that each vector is linearly

independent.

(8’) Alice and Bob makeZ-basis measurement on the systemA andB, respectively, onZ-labeled

rounds to obtain bit stringsκA,Z andκB,Z as sifted keys.

(9’) Through public discussion, Bob corrects his keyκB,Z to make it coincide with Alice’s key

κA,Z and obtainsκcor
B,Z (|κcor

B,Z| = nZ).

(10’) With κA,Z and{Vk}, final key of sizel(ω) is calculated byκfin
A,Z = (κA,Z ·V1, κA,Z ·V2, ....., κA,Z ·

Vl(ω)).

We defineΩ as all public information after step (7’), includingω, λEC and{Vk}. Here,ω andΩ

are not fixed and treated as random variables. DefineTpassas the set ofΩ such that the protocol

does not abort. Let

pabort := 1−
∑
Ω∈Tpass

Pr(Ω) (3.8)

be the probability that the protocol aborts, and

ρ̂abort
ABE := |∅⟩ ⟨∅|AB⊗ ρ̂fin

E (∅) (3.9)

be the state under the condition that the protocol aborts. Since Eve can use the informationΩ

freely, we assume that Eve has a state|Ω⟩ ⟨Ω| depending onΩ where⟨Ω|Ω′⟩ = δΩ,Ω′ with δi, j

being Kronecker delta. The state on the systemABEafter step (7’) is described as

ρ̂ABE :=
∑
Ω∈Tpass

Pr(Ω)ρ̂(Ω)
ABE+ pabort ρ̂

abort
ABE, (3.10)

whereρ̂(Ω)
ABE has a form of

ρ̂(Ω)
ABE = ρ̂

(Ω)
ABE′ ⊗ |Ω⟩ ⟨Ω| . (3.11)

*1)One of methods to determine the cost for error correction is sampling a small portion of bits onZ-labeled rounds

at random. In this case, Step (7’) contains measurement and announcement of the sampled bits, and the sifted keys

κA,Z andκB,Z are defined as bit strings onZ rounds in which the sampled bits are removed.
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For later convenience, define the following partial states:

ρ̂(Ω)
E := TrAB(ρ̂(Ω)

ABE) (3.12)

ρ̂(Ω)
AB := TrE(ρ̂(Ω)

ABE). (3.13)

We define ˆρ(Ω)
AE, ρ̂(Ω)

BE andρ̂abort
AE in the same manner. The state ˆρABE is changed to ˆρfin

ABE after Step

(10’), which has a form of Eq. (2.14).

3.3.2 Main theorem

Sinceϵc-correctness of the protocol is assumed, it is sufficient to prove that the protocol isϵs-

secret to certify theϵsec (= ϵc + ϵs) -security (see Sec. 2.3). Let ˆρfin
AE and ρ̂ideal

AE be the final state

and the ideal state of the protocol written as in Eq. (2.20) and Eq. (2.21), respectively. The main

theorem is given as follows.

Theorem:

Suppose that the following inequality holds regardless of Eve’s strategy:

Pr(kph > f (ω)) ≤ ϵPE, (3.14)

where kph is the number of phase errors. If the amount of privacy amplification is set to m(ω) =⌈
nZh( f (ω)

nZ
) + log2

1
ϵPA

⌉
, then we have

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ ≤ √2
√
ϵPE+ ϵPA, (3.15)

where⌈ ⌉ represents ceiling function.

The theorem ensures (
√

2
√
ϵPE+ ϵPA)-secrecy of the protocol. Although a functionf (ω) satisfy-

ing Eq. (3.14) is not obvious here, it is obtained by classical sampling theory, which is treated in

Chapter 6.

3.3.3 Construction of virtual protocol

Here we show an example of the virtual protocol satisfying the condition in Sec. 3.2.3. A virtual

protocol is not uniquely determined and convenient one can be chosen. Define the following

operators on the systemA:

ζ̂Z(C) :=
nZ⊗
i=1

σ̂Ci
Z , ζ̂X(C) :=

nZ⊗
i=1

σ̂Ci
X , (3.16)
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whereσ̂Z and σ̂X are Pauli operators (bit flip operators onX basis andZ basis, respectively)

andCi ∈ {0,1} is the i-th element of a vectorC of sizenZ. We see that calculatingκA,Z · Vk

after theZ-basis measurement is equivalent to obtain the measurement outcome of the observable

ζ̂Z(Vk). LetE(ω)
act be an operation defined on Alice’s system, which is equivalent to Alice’sZ-basis

measurement followed by calculating{κA,Z ·Vk} in step (8’), (9’) and (10’) of the actual protocol.

Operation E(ω)
act: Alice measuresl(ω) observables{ζ̂Z(Vk)}1≤k≤l(ω) on the systemA and register

obtained results asκfin
A,Z.

The operationE(ω)
act ⊗ 1BE on the systemABEsatisfies*2)

∑
Ω∈Tpass

Pr(Ω) TrB

(
E(ω)

act ⊗ 1BE(ρ̂(Ω)
ABE)

)
+ pabort ρ̂

abort
AE = ρ̂

fin
AE (3.17)∑

Ω∈Tpass

Pr(Ω) TrB

(
E(ω)

act ⊗ 1BE(|0X⟩ ⟨0X|A ⊗ ρ̂(Ω)
BE)

)
+ pabort ρ̂

abort
AE = ρ̂

ideal
AE , (3.18)

where|0X⟩A :=
⊗nZ

i=1 |0X⟩A,i is an eigenstate of theX basis.

Next we consider the following virtual operation on Alice’s and Bob’s system which is not

included in the actual protocol.

Operation E(ω)
vir : Bob makes measurement on his system withX basis and obtain the outcome

XB ∈ {0,1}nZ. He sendsXB to Alice through the public channel. Alice randomly choosesm(ω)

binary vectorsW1,W2, ...Wm(ω) such thatVk ·W j = 0 holds for all (j, k). She measuresm(ω)

observables{ζ̂X(W j)} on the systemA. Based on the measurement outcomes and the classical

information (ω, XB), she determines “error vector”Eest of sizenZ and appliesX-flip operation

ζ̂Z(Eest).

The goal of operationE(ω)
vir is to obtain the eigenstate onX basis|0X⟩A in order to use the relation

Eq. (3.18). In practice, there is a failure probability to obtain|0X⟩A, which is analyzed in the next

section. By simple calculation, we see that the conditionVk ·W j = 0 leads to
[
ζ̂Z(Vk), ζ̂X(W j)

]
=

0, which means that the measurement ofζ̂Z(Vk) and ζ̂X(W j) commutes. In addition, theX-flip

operationζ̂Z(Eest) does not change the measurement outcomes onZ basis and commutes with

the measurement of̂ζZ(Vk). Thus, the final state on the systemAE is not changed even if the

*2)Assuming the identity map on Eve’s system in Eq. (3.17) and Eq. (3.18) does not lose generality of the security

proof since all public information is disclosed by Step (7’) and any Eve’s operation after Step (7’) only reduces the

trace distance in Eq. (3.28).
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operationE(ω)
vir is conducted before the actual operation:

TrB

(
E(ω)

act ⊗ 1BE

(
E(ω)

vir ⊗ 1E(ρ̂(Ω)
ABE)

))
= TrB

(
E(ω)

act ⊗ 1BE(ρ̂(Ω)
ABE)

)
. (3.19)

For later convenience, let us defineE(ω,XB)
A,vir as Alice’s operation inE(ω)

vir conditioned onXB. With

this notation, the state on the systemABafter the operationE(ω)
vir is described as

E(ω)
vir (ρ̂(Ω)

AB) =
∑
XB

E(ω,XB)
A,vir

(
B ⟨(XB)X| ρ̂(Ω)

AB |(XB)X⟩B
)
⊗ |(XB)X⟩ ⟨(XB)X|B (3.20)

=
∑
XB

Pr(XB) E(ω,XB)
A,vir

(
σ̂(Ω,XB)

A

)
⊗ |(XB)X⟩ ⟨(XB)X|B , (3.21)

where

Pr(XB) = TrA

(
B ⟨(XB)X| ρ̂(Ω)

AB |(XB)X⟩B
)
, σ̂(Ω,XB)

A :=
B ⟨(XB)X| ρ̂(Ω)

AB |(XB)X⟩B
Pr(XB)

. (3.22)

SinceE(ω,XB)
A,vir is only composed of the measurement of{ζ̂X(W j)} and the flip operation onX basis,

A ⟨0X| E(ω,XB)
A,vir (σ̂(Ω,XB)

A ) |0X⟩A = A ⟨0X| E(ω,XB)
A,vir (DX(σ̂(Ω,XB)

A )) |0X⟩A (3.23)

holds whereDX is an operation which preserves diagonal element onX basis but changes non-

diagonal element to 0. We see that applyingE(ω,XB)
A,vir on DX(σ̂(Ω,XB)

A ) is identical to a classical parity

check and bit flip on anZ bit sequence, i.e. classical error correction. This implies that the fidelity

in Eq. (3.23) is given by the success probability of classical error correction which corresponds

to the operationE(ω,XB)
A,vir .

By usingE(ω)
act andE(ω)

vir , we define the virtual protocol as follows.

Virtual protocol . Alice and Bob conduct steps (1′) ∼ (7′) of the actual protocol to obtain ˆρ(Ω)
AB.

They operateE(ω)
vir on the systemAB followed by operatingE(ω)

act.

From Eq. (3.17) and the Eq. (3.19), the final state on the systemAE of the virtual protocol is

given by ∑
Ω∈Tpass

Pr(Ω) TrB

(
E(ω)

act ⊗ 1BE(E(ω)
vir ⊗ 1E(ρ̂(Ω)

ABE))
)
+ pabort ρ̂

abort
AE (3.24)

=
∑
Ω∈Tpass

Pr(Ω) TrB

(
E(ω)

act ⊗ 1BE(ρ̂(Ω)
ABE)

)
+ pabort ρ̂

abort
AE (3.25)

= ρ̂fin
AE, (3.26)

which satisfies the condition for the virtual protocol in Sec. 3.2.3.
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3.3.4 Proof of the main theorem

Here we prove the main theorem in Sec. 3.3.2. Since the state on the systemE is orthogonal for

differentΩ (see Eq. (3.11)), Eq. (3.18) and Eq. (3.26) lead to

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ (3.27)

=
1
2

∑
Ω∈Tpass

Pr(Ω)
∣∣∣∣∣∣ TrB

(
E(ω)

act ⊗ 1BE

(
E(ω)

vir ⊗ 1E(ρ̂(Ω)
ABE) − |0X⟩ ⟨0X|A ⊗ ρ̂(Ω)

BE

)) ∣∣∣∣∣∣ (3.28)

≤ 1
2

∑
Ω∈Tpass

Pr(Ω)
∣∣∣∣∣∣ TrB

(
E(ω)

vir ⊗ 1E(ρ̂(Ω)
ABE)

)
− |0X⟩ ⟨0X|A ⊗ ρ̂(Ω)

E

∣∣∣∣∣∣ (3.29)

≤
∑
Ω∈Tpass

Pr(Ω)
√

1− F
(
TrB

(
E(ω)

vir ⊗ 1E(ρ̂(Ω)
ABE)

)
, |0X⟩ ⟨0X|A ⊗ ρ̂(Ω)

E

)
, (3.30)

where Eq. (3.29) is obtained by monotonicity of trace distance Eq. (2.5), and Eq. (3.30) is obtained

by the relation between trace distance and fidelity Eq. (2.9). The reason that the trace distance

is replaced by the fidelity is because we want to use the following lemma which connects the

fidelity of the systemAE with systemA.

lemma1:

For any statêτAE on the system AE and any pure state|0̃⟩ ⟨0̃|A on the system A ,

F(τ̂AE, |0̃⟩ ⟨0̃|A ⊗ τ̂E) ≥
(
F(τ̂A, |0̃⟩ ⟨0̃|A)

)2
(3.31)

holds wherêτE := TrA(τ̂AE) and τ̂A := TrE(τ̂AE).

The proof is shown in Appendix A. Since

TrA

(
TrB

(
E(ω)

vir ⊗ 1E(ρ̂(Ω)
ABE)

))
= TrAB(ρ̂(Ω)

ABE) = ρ̂(Ω)
E (3.32)

holds, lemma1 lead to

F
(
TrB

(
E(ω)

vir ⊗ 1E(ρ̂(Ω)
ABE)

)
, |0X⟩ ⟨0X|A ⊗ ρ̂(Ω)

E

)
≥

(
F

(
TrB

(
E(ω)

vir (ρ̂(Ω)
AB)

)
, |0X⟩ ⟨0X|A

))2
. (3.33)

Eq. (3.30) is replaced by

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ (3.34)

≤
∑
Ω∈Tpass

Pr(Ω)

√
1−

(
F

(
TrB

(
E(ω)

vir (ρ̂(Ω)
AB)

)
, |0X⟩ ⟨0X|A

))2
. (3.35)
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Thus, we only need to evaluate the fidelity of the two states in the systemA. From Eq. (3.21), we

have

F
(
TrB

(
E(ω)

vir (ρ̂(Ω)
AB)

)
, |0X⟩ ⟨0X|A

)
=

∑
XB

Pr(XB)A ⟨0X| E(ω,XB)
A,vir

(
σ̂(Ω,XB)

A

)
|0X⟩A . (3.36)

Next we evaluate each term of the right-hand side of Eq. (3.36). For convenience, define

P̂f (ω),XB as a projector on the subspace which can be corrected to|0X⟩ ⟨0X|A (except small proba-

bility) throughE(ω,XB)
A,vir based on a given phase-error boundf (ω) and Bob’s measurement outcomes

XB. In mathematical expression,

P̂f (ω),XB :=
∑

A∈S f (ω),XB

|AX⟩ ⟨AX|A (3.37)

S f (ω),XB := {A ∈ {0,1}nZ | wt(A + XB) ≤ f (ω)}, (3.38)

where wt(X) is weight of a vectorX. Recalling that a phase error is defined as a bit error where

Alice and Bob make virtualX-basis measurement onZ-labeled incidents, the state|A′X⟩ ⟨A′X|A
satisfying wt(A′ + XB) = k causesk phase errors if it is measured onX basis. Thus, the projector

P̂f (ω),XB is interpreted as a projector onto a subspace which causes no more thanf (ω) phase errors.

Thus, the probability that the number of phase errorskph is more thanf (ω) is written with the

random variableskph, ω,Ω andXB as follows:

Pr(kph > f (ω)) =
∑
Ω

∑
XB

Pr(Ω)Pr(XB) Tr
(
(1̂A − P̂f (ω),XB)σ̂(Ω,XB)

A

)
, (3.39)

where the summation is over allΩ regardless of abort or pass of the protocol. WithP̂f (ω),XB, we

evaluate how closely ˆσ(Ω,XB)
A is corrected to|0X⟩ ⟨0X|A throughE(ω,XB)

A,vir :

A ⟨0X| E(ω,XB)
A,vir (σ̂(Ω,XB)

A ) |0X⟩A (3.40)

= A ⟨0X| E(ω,XB)
A,vir

(
DX(σ̂(Ω,XB)

A )
)
|0X⟩A (3.41)

= A ⟨0X| E(ω,XB)
A,vir

(
DX

(
(P̂f (ω),XB + 1̂ − P̂f (ω),XB)σ̂(Ω,XB)

A (P̂f (ω),XB + 1̂ − P̂f (ω),XB)
))
|0X⟩A (3.42)

= A ⟨0X| E(ω,XB)
A,vir

(
DX(P̂f (ω),XBσ̂

(Ω,XB)
A P̂f (ω),XB)

)
|0X⟩A

+ A ⟨0X| E(ω,XB)
A,vir

(
DX

(
(1̂ − P̂f (ω),XB)σ̂(Ω,XB)

A (1̂ − P̂f (ω),XB)
))
|0X⟩A (3.43)

≥ Tr(P̂f (ω),XBσ̂
(Ω,XB)
A )A ⟨0X| E(ω,XB)

A,vir

(
DX

(
χ̂

(Ω,XB, f (ω))
A

))
|0X⟩A , (3.44)

where we used Eq. (3.23) in Eq. (3.41) and used complete positivity ofE(ω,XB)
A,vir (see Eq. (2.1)) in

Eq. (3.44). We defined ˆχ
(Ω,XB, f (ω))
A in Eq. (3.44) as a normalized state

χ̂
(Ω,XB, f (ω))
A :=

P̂f (ω),XBσ̂
(Ω,XB)
A P̂f (ω),XB

Tr(P̂f (ω),XBσ̂
(Ω,XB)
A )

. (3.45)
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From what was mentioned after Eq. (3.23) about the operationE(ω,XB)
A,vir ,

A ⟨0X| E(ω,XB)
A,vir

(
DX

(
χ̂

(Ω,XB, f (ω))
A

))
|0X⟩A (3.46)

in Eq. (3.44) is regarded as the success probability of classical error correction. Furthermore, this

time the error correction is conducted for the confined setS f (ω),XB. There the syndrome of a vector

A ∈ S f (ω),XB is obtained by calculating (A ·W1, A ·W2, ...., A ·Wm(ω)) followed by applying bit flip

to makeA coincide (0,0,0....,0). From the classical code theory, we introduce the following two

lemmas.

lemma 2 (classical):

With k,n ∈ N satisfying k/n ≤ 1/2,
∣∣∣∣{E ∈ {0,1}n | wt(E) ≤ k

}∣∣∣∣ ≤ 2nh(k/n) holds.

The lemma means that the number of the vector patterns is bounded if its weight has an upper

bound. The proof is equivalent to shownCk ≤ 2nh(k/n), which can be seen inExample12.1.3 in

Ref. [78], for instance.

lemma 3 (classical):

Suppose m random binary vectors(M1, M2, ..., Mm) of size n. For allE ∈ S ⊂ {0,1}n, the

probability that there isE′ ∈ S such thatM i · E = M i · E′ (for any i) andE , E′ is no more than

2−m|S|.

The similar argument to lemma 3 can be seen in the hashing method of EDP [83]. Lete(E,S)
cor be

the probability to fail the error correction for a given setS and vectorE ∈ S, which equals to the

failure probability to uniquely identify the original vectorE in the confined setS based on the

obtained syndrome{M i · E}. The lemma 3 indicatese(E,S)
cor ≤ 2−m|S|.

From lemma 2, we have∣∣∣∣{A + XB ∈ {0,1}nZ | wt(A + XB) ≤ f (ω)
}∣∣∣∣ ≤ 2nZh( f (ω)/nZ). (3.47)

SinceXB is known in the virtual protocol,∣∣∣∣{A ∈ {0,1}nZ | wt(A + XB) ≤ f (ω)
}∣∣∣∣ ≤ 2nZh( f (ω)/nZ), (3.48)

which leads to

|S f (ω),XB| ≤ 2nZh( f (ω)/nZ) (3.49)

from Eq. (3.38). From lemma 3, we have

e
(A,S f (ω),XB)
cor ≤ 2−m(ω)|S f (ω),XB|. (3.50)
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for arbitraryA ∈ S f (ω),XB. Combining Eq. (3.49) with Eq. (3.50),

e
(A,S f (ω),XB)
cor ≤ 2nZh( f (ω)/nZ)−m(ω) (3.51)

holds. Therefore, if we set

m(ω) =

⌈
nZh

(
f (ω)
nZ

)
+ log2

1
ϵPA

⌉
, (3.52)

the failure probability of error correction inS f (ω),XB is not larger thanϵPA, which leads to

A ⟨0X| E(ω,XB)
A,vir

(
DX

(
χ̂

(Ω,XB, f (ω))
A

))
|0X⟩A ≥ 1− ϵPA. (3.53)

Now we obtained all elements to bound Eq. (3.35). From Eq. (3.44) and Eq. (3.53), we have

A ⟨0X| E(ω,XB)
A,vir (σ̂(Ω,XB)

A ) |0X⟩A ≥ (1− ϵPA)Tr(P̂f (ω),XBσ̂
(Ω,XB)
A ) (3.54)

for all XB. Combining this with Eq. (3.36),

F
(
TrB

(
E(ω)

vir (ρ̂(Ω)
AB)

)
, |0X⟩ ⟨0X|A

)
≥ (1− ϵPA)

∑
XB

Pr(XB)Tr(P̂f (ω),XBσ̂
(Ω,XB)
A )

 , (3.55)

which leads to

1−
(
F

(
TrB

(
E(ω)

vir (ρ̂(Ω)
AB)

)
, |0X⟩ ⟨0X|A

))2
(3.56)

≤ 2(1− F
(
TrB

(
E(ω)

vir (ρ̂(Ω)
AB)

)
, |0X⟩ ⟨0X|A

)
) (3.57)

≤ 2(1− (1− ϵPA)

∑
XB

Pr(XB)Tr(P̂f (ω),XBσ̂
(Ω,XB)
A )

) (3.58)

= 2(1− (1− ϵPA)

∑
XB

Pr(XB)
(
1− Tr

(
(1̂A − P̂f (ω),XB)σ̂(Ω,XB)

A

))) (3.59)

= 2(1− (1− ϵPA)

1−∑
XB

Pr(XB)Tr
(
(1̂A − P̂f (ω),XB)σ̂(Ω,XB)

A

)) (3.60)

≤ 2ϵPA + 2
∑
XB

Pr(XB)Tr
(
(1̂A − P̂f (ω),XB)σ̂(Ω,XB)

A

)
. (3.61)

By combining this with Eq. (3.35), we have

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ (3.62)

≤
∑
Ω∈Tpass

Pr(Ω)

√
2ϵPA + 2

∑
XB

Pr(XB) Tr
(
(1̂A − P̂f (ω),XB)σ̂(Ω,XB)

A

)
(3.63)

≤
√

2ϵPA + 2
∑
Ω∈Tpass

∑
XB

Pr(Ω) Pr(XB) Tr
(
(1̂A − P̂f (ω),XB)σ̂(Ω,XB)

A

)
(3.64)

≤
√

2
√
ϵPA + Pr(kph > f (ω)), (3.65)
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where we used the concavity of square root function in Eq. (3.64) and used Eq. (3.39) in Eq. (3.65).

From the assumption of the main theorem Pr(kph ≥ f (ω)) ≤ ϵPE, we have

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ ≤ √2
√
ϵPA + ϵPE. (3.66)

3.3.5 Discussion

Although the proof shown in the previous section basically followed the one in Ref. [12], lemma 1

did not appear there. In Ref. [12], the similar argument is used to connect two fidelities where

Eve’s state of the ideal state (ρE in Eq. (4) in Ref. [12]) is not related to the actual protocol and

chosen freely to satisfy Eq. (18) in Ref. [12]. However, this might not satisfy the security criteria

with composability. Suppose that a protocolP is conducted before the QKD protocolQ (to prove

the security) whereQ uses secret keys generated byP. In general, Eve’s stateρE defined onQ
depends on the information obtained inP, which includes Alice and Bob’s set up forP. Thus,

ρE should not be chosen freely for ideal states and in this case we are not sure that composable

security is satisfied.

In the proof discussed in the previous section, we assumed the protocol where the final-key

lengthl(ω) is not fixed and the condition for aborting the protocol is given bynZ −m(ω) ≤ λEC.

On the other hand, the proof is also applicable to the protocols with fixed final-key length, which

is seen in Ref. [13], for example. The fixed-key-length protocol, in which the data sizenZ and

nX have thresholdnZ andnX, is finished whenevernZ ≥ nZ andnX ≥ nX are satisfied. (To realize

it, a basis choice is assumed to be disclosed at each round.) IfnZ > nZ or nX > nX, the surplus

nZ − nZ bits ornX − nX bits are randomly discarded. For the number of bit errorsk′X contained in

the nX rounds, the protocol also has a thresholdkX, namely, the protocol aborts whenk′X > kX.

With these thresholds,f (ω) is fixed to be the predetermined valuef (ω) whereω = (kX,nZ,nX),

and the amount of privacy amplification is also fixed tom(ω) =
⌈
nZh( f (ω)/nZ) + log2(1/ϵPA)

⌉
if

the protocol does not abort. The theorem in the previous section is still valid in this case as long

as Eq. (3.14) is satisfied forf (ω).





Chapter 4

QKD with weak coherent pulses

After the security of the ideal BB84 protocol was proved by Mayers [5] and Shor and Preskill [6],

the focus on the security proof was shifted to the practical case using conventional lasers and

threshold detectors which can only tell single photon or more from vacuum. In particular, the

security proof for QKD using weak coherent pulses (WCP) was a crucial issue not only because a

single-photon source with high repetition rate is technically hard to realize, but also because there

is a strong attack using multiple photons called photon number splitting (PNS) attack. Although

the proof for the BB84 protocol with WCP (WCP-BB84) was given by Inamoriet al. in 2001 [9],

it uses the modified proof of Mayers [5] and inherits its complexity. On the other hand, Gottes-

man, Lo, L̈utkenhaus and Preskill (GLLP) proposed a simple idea which can be incorporated to

various proof techniques for ideal QKD assuming single-photon emission. They proposed the

concept of “tagging”, in which a round with multiple-photon emission is classified as “tagged”

(insecure) while a round with single-photon emission is classified as “untagged” (secure). If the

tagging idea is combined with the security proof based on complementarity [12] or entropic un-

certainty relation [13], uncharacterized receiver can be assumed as long as the condition (∗) in

Sec. 3.1 is satisfied. The security of QKD protocols with general source flaws (e.g. modulation of

polarization, optical phase and intensity) were also proved in sophisticated ways [95, 17, 96, 97],

but in this thesis we focus on the practical effect of multiple-photon emission.

This chapter is organized as follows. In Sec. 4.1, PNS attack is introduced. Sec 4.2 briefly

shows the GLLP’s tagging idea and derive the key length of WCP-BB84 protocol in terms of

phase errors on untagged rounds. In Sec. 4.3, we focus on practical aspects of the WCP-BB84

protocol by introducing the phase-encoding BB84 (PE-BB84) protocol which is suitable for im-

plementation with optical fibers, and also by introducing the decoy-state method, a countermea-

sure against PNS attacks. In Sec. 4.4, the DPS protocol is shown as a simple protocol with

robustness against PNS attacks.

33
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4.1 Photon number splitting attack

Photon number splitting (PNS) attack is an Eve’s strong strategy where she exploits full informa-

tion of the signal with multiple-photon emission without causing any disturbance. It was pointed

out by Brassardet al. in 2000 [8]. The details of PNS attack are as follows. Suppose the protocol

where bit information is encoded on polarization of light. After receiving the signal emitted from

the source, Eve projects the signal state onto the subspaces characterized by the total photon num-

berm. This projective measurement is regarded as quantum-non-demolition (QND) measurement

which does not disturb the signal’s polarization. Next she performs splitting operation preserving

polarization wheren− 1 photons are kept at her system and only one photon is sent to Bob. After

Eve learns the basis choices of Alice and Bob which is disclosed on the classical channel, she

makes measurement on the preserved photons with the corresponding basis. Since then− 1 ex-

tracted photons have the same polarization as the other single photon which is sent to Bob, signal

information with multiple-photon emissions is totally leaked without any disturbance.

For later convenience, let us denote PNS attack in a mathematical way. We define the fol-

lowing parameters. LetQ represents the detection rate of the protocol (=rounds with detections

/ total rounds) andeX represents the bit-error rate on theX-labeled rounds. Letp(m) be the prob-

ability that the state emitted from the source was projected tom-photon subspace by Eve. Let

Ym represents the probability that the signal projected tom-photon subspace causes detection at

Bob’s site, andeX,m represents the error rate on theX-labeled rounds where the signal is projected

to m-photon subspace. If Eve conducts PNS attack in the above manner, we have the following

equations in the asymptotic limit:

Q =
∑
m≥0

p(m)Ym (4.1)

QeX =
∑
m≥0

p(m)Ym eX,m. (4.2)

The parametersQ andeX are observed values in the protocol, and the parameterp(m) is determined

by the property of the source and known through its calibration. Here we consider Eve’s strategy

to changeYm andeX,m under the fixed values ofQ, eX and p(m). Eve’s optimal attack is to make

multi-photon signals detected perfectly, and use allowed errors to eavesdrop single-photon signal

as much as possible. If we assume that Eve has no technical limit and she can use lossless and

noiseless channel, the optimal choice is

Ym = 1, eX,m = 0 for m≥ 2, (4.3)
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which leads to

p(0)Y0 + p(1)Y1 = Q−
∑
m≥2

p(m) (4.4)

p(0)Y0 eX,0 + p(1)Y1 eX,1 = eX. (4.5)

Eq. (4.4) implies that ifQ ≤ ∑
m≥2 p(m), no secure key can be extracted.

4.2 GLLP’s tagging idea

The tagging idea (called “tagged signal” in the original paper [10]) is a quite useful method to

prove the security of QKD using WCP, which was proposed by Gottesman, Lo, Lütkenhaus and

Preskill (GLLP). In their idea, a round with multiple-photon emission is regarded as tagged and

that with single-photon emission is regarded as untagged. The tagged rounds are considered to

be totally insecure (considering PNS attack) and they show that the security of the WCP protocol

only depends on the security of the untagged rounds even if Alice and Bob do not know which

rounds are tagged in the actual protocol. This allows various security proofs for the ideal single-

photon protocols to be applied to the practical QKD protocols with WCP. By using this idea,

GLLP showed the asymptotic key rate of the WCP-BB84 protocol, which is slightly better than

that obtained in the previous work of Inamoriet al. [9]. In this section, first we introduce the

phase-randomizing operation, which allows us to use the tagging idea. Next the key length of

the WCP-BB84 protocol is derived in terms of phase errors on untagged rounds by applying the

proof in Sec. 3.3. Finally, we evaluate the effect of PNS attacks on the WCP-BB84 protocol by

using the asymptotic key rate.

4.2.1 Phase-randomizing operation

In this subsection, we introduce a sufficient condition for the light source to use the tagging idea

and show that it is satisfied by the randomizing operation on the optical phase. Suppose that at

each round of the protocol, Alice prepares an i.i.d state ˆρW,a on the systemS depending on her

basis choiceW (∈ {Z,X} for BB84 protocol) and a selected bita ∈ 0,1. The condition to use the

tagging idea is that ˆρW,a is expressed as

ρ̂W,a = (1− r tag)ρ̂W,a,unt⊕ r tagρ̂W,a,tag, (4.6)

which indicates that each round is in principle classified to tagged or untagged. In the following,

we show that this condition is satisfied if the optical phase of each signal is randomized, and if
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the probability that the state before phase randomization ˆσW,a has two or more photons is given

by ∑
m≥2

Tr(N̂mσ̂W,a) = r tag, (4.7)

where we defined̂Nm as the projector onto the subspace withmphotons. Suppose that the phase-

shift operatorĴ(θ) := exp(iθ
∑

m mN̂m) is acting onσ̂W,a. By defining phase-randomizing operation

asEPR, we have

ρ̂W,a = EPR(σ̂W,a) (4.8)

=
1
2π

∫ 2π

0
Ĵ(θ) σ̂W,a Ĵ(θ)†dθ (4.9)

=
1
2π

∑
m,m′

∫ 2π

0
eiθ(m−m′)N̂mσ̂W,aN̂m′dθ (4.10)

=
∑

m

N̂mσ̂W,aN̂m. (4.11)

Thus, any optical state is regarded as a classical mixture of photon-number state by randomizing

its optical phase. By reformulating Eq. (4.11),

ρ̂W,a =
∑

m=0,1

(1− r tag)
N̂mσ̂W,aN̂m

1− r tag
+

∑
m≥2

r tag
N̂mσ̂W,aN̂m

r tag
(4.12)

holds. Eq. (4.6) is satisfied by taking

ρ̂W,a,unt =
∑

m=0,1

N̂mσ̂W,aN̂m

1− r tag

ρ̂W,a,tag =
∑
m≥2

N̂mσ̂W,aN̂m

r tag
. (4.13)

It is instructive to learn the negative effect on WCP protocols caused by imperfection of phase

randomization because most of QKD protocols these days adopt phase-randomizing operation to

use the tagging idea for their security proofs [98, 90]. At least for the WCP-BB84 protocol, the

achievable key rate of the protocol without phase randomization is shown to be lower than that

with phase randomization [99], which implies that there is an Eve’s attack to use the coherence

between different photon numbers. In practice, randomizing the optical phase in continuous range

[0, 2π) as in Eq. (4.9) can be difficult if the resource of random numbers is limited. Recently

Caoet al. [100] have shown the security of QKD with discrete-phase randomization where the

optical phase is randomly chosen from{2π/n | 1 ≤ n ≤ n} with finite n. Although many QKD

demonstrations realize the random phases by switching on and off a laser repeatedly under the

assumption that the optical phase is randomized once the laser is switched off, it is controversial

whether the phase is truly independent of that of the previous pulse or not [101].
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4.2.2 Security analysis of WCP-BB84 with tagging idea

Here we derive the secure key length of the WCP-BB84 protocol in terms of phase errors by

combining the tagging idea with the complementarity proof introduced in Sec. 3.3. If the bound

of phase errors on untagged rounds is known (derived in Sec. 6), this subsection gives a complete

security proof for the WCP-BB84 protocol. Similarly to the ideal qubit-based protocol, the WCP-

BB84 protocol also follows the procedures described in Sec. 2.2.3, but the latter assumes more

general light sources and measurement apparatuses.

For Alice’s state preparation, we assume that the state prepared by Alice has a form of

Eq. (4.6) and that there is a basis-independent state ˆχunt on the systemAS satisfying

trA

(
(|aW⟩ ⟨aW|A ⊗ 1̂S)χ̂unt

)
=

1
2
ρ̂W,a,unt, (4.14)

which corresponds to Eq. (3.1) and Eq. (3.6) in the ideal BB84 protocol. Those assumptions

allow Alice’s basis choice to be postponed after Eve’s intervention as far as untagged rounds are

concerned. Eqs. (4.6) and (4.14) are realized, for example, if Alice uses a laser emitting an ideally

polarized coherent state

|αW,a⟩S :=
∑

m

e−
|α|2
2
αm

√
m!
|mW,a⟩S , (4.15)

whereα is a complex number and|mW,a⟩S is a photon-number state on the systemS with a basis

W and a bita, and if its optical phase is randomized. From Eq. (4.11), the state after phase-

randomizing operation is

EPR(|αW,a⟩ ⟨αW,a|S) =
∑

m

e−µ
µm

m!
|mW,a⟩ ⟨mW,a|S , (4.16)

where we defined a parameterµ := |α|2 as mean photon number of the coherent light. From

Eq. (4.13), ˆρW,a,unt andρ̂W,a,tag in Eq. (4.6) are written as

(1− r tag)ρ̂W,a,unt = e−µ |0W,a⟩ ⟨0W,a| + µe−µ |1W,a⟩ ⟨1W,a| (4.17)

r tagρ̂W,a,tag = e−µ
∞∑

m=2

µm

m!
|mW,a⟩ ⟨mW,a| (4.18)

with

r tag = 1− e−µ − µe−µ. (4.19)

For Bob’s measurement apparatus, we impose either of the following two assumptions.

(i) The probability of detecting a signal at Bob’s receiver is independent of his basis choice.

(ii) The measurement of an input signal on the systemS is replaced by an ideal single-photon
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measurement on the systemB preceding by a squashing operation [93, 94].

The condition (ii), which is stronger than the condition (i), validates the use of the security proof

with entanglement distillation. The proof with complementarity works under the weaker condi-

tion (i), because it essentially validates the argument given in Sec. 3.3.1. Under the condition

(i), Bob’s measurement on the systemS can be replaced by a filtering operation to make sure

a valid-detection and to transfer its state to a systemB (not necessarily a qubit), followed by a

measurement onB depending on the chosen basis to determine the outcome 0 or 1. Hence, as in

Sec. 3.3.1, Bob’s choice of basis can be postponed until he declares valid-detection/no-detection.

For the WCP-BB84 protocol, both conditions are satisfied if we assume the following model for

Bob’s apparatus: Bob actively chooses the basis, and uses two threshold detectors corresponding

to the measurement result “0” and “1” after a polarization beam splitter. He assigns random bit if

both detectors report their detections. In addition, the inefficiency and dark countings of the de-

tectors are allowed as long as they are equivalently represented by an absorber and a stray photon

source placed in front of Bob’s apparatus.

For the WCP-BB84 protocol, the preparation of the state Eq. (4.6) on basisW is replaced by

that of basis-dependent state on the systemAS

χ̂W := (1− r tag)χ̂unt⊕ r tagχ̂W,tag, (4.20)

followed by theW-basis measurement on the systemA, in which χ̂W,tag is a basis-dependent state

satisfying

trA

(
(|aW⟩ ⟨aW|A ⊗ 1̂S)χ̂W,tag

)
=

1
2
ρ̂W,a,tag. (4.21)

This implies that Alice’s state preparation is described as follows. At each round, Alice deter-

mines whether it is tagged or not with probabilitiesr tag and 1− r tag. If the round is tagged, she

selects a basis and prepares ˆχW,tag based on her basis choice, and if not, she prepares the basis-

independent state ˆχunt without selecting a basis.

Similarly to the protocol in Sec. 3.3.1, we assume thatϵc-correctness of the protocol is ensured

by an error-correction method with encryption consumingλEC pre-obtained secret keys. The

description of the protocol with the replacement of state preparation (which corresponds to the

actual protocol in Sec. 3.3.1) is given as follows.

(1’) Alice determines whether a round is tagged or untagged with probabilitiesr tag and 1− r tag.

For a tagged round, she selectsZ basis orX basis with probability ˜pZ and p̃X, respectively, and

prepares ˆχW,tag based on her basis choice. For an untagged round, she prepares ˆχunt without se-

lecting a basis.

(2’) Alice sends the part of the state (systemS) to Bob over quantum channel.
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(3’) Bob receives the signal and confirms whether it causes a valid-detection or not. If there is a

valid-detection, he keeps systemB without measurement.

(4’) They repeat (1’) to (3’) bynrep times.

(5’) Bob publicly announces whether each round has resulted in a valid-detection or not. Letndet

be the number of rounds with valid-detections. Letntot,unt be the number of untagged rounds with

valid-detections.

(6’) For thentot,unt rounds, Alice choosesZ basis orX basis with probability ˜pZ and p̃X, respec-

tively. For thendet rounds, Bob choosesZ basis orX basis with probability ˜pZ andp̃X, respectively.

They disclose all of their basis choice and discard the rounds where their choice is not identical.

Let the number ofZ-labeled andX-labeled rounds benZ andnX, respectively. They makeX-basis

measurement on theX-labeled rounds to obtain bit stringsκA,X andκB,X. Alice publicly announces

which rounds are untagged.

(7’) They disclose and compareκA,X andκB,X to determine the number of bit errorskX contained

in theX-labeled rounds. Letω represents the following three observed numbers:

ω := (kX,nX,nZ). (4.22)

Alice and Bob determine the amount of privacy amplificationm(ω) based onω and the cost of

error correctionλEC through public discussion. IfnZ−m(ω) ≤ λEC, the protocol aborts. If it is not,

they determine the final key length asl(ω) := nZ−m(ω). For privacy amplification, they randomly

selectl(ω) binary vectorsV1,V2, ...Vl(ω) of sizenZ such that each vector is linearly independent.

(8’) Alice and Bob makeZ-basis measurement on systemA and B, respectively, onZ-labeled

rounds to obtain bit stringsκA,Z andκB,Z as sifted keys.

(9’) Through public discussion, Bob corrects his keysκB,Z to make it coincide with Alice’s key

κA,Z and obtainsκcor
B,Z (|κcor

B,Z| = nZ).

(10’) With κA,Z and{Vk}, final key of sizel(ω) is calculated byκfin
A,Z = (κA,Z ·V1, κA,Z ·V2, ....., κA,Z ·

Vl(ω)).

The number of untagged roundsntot,unt defined in Step (5’) is not an observed parameter in

practice, but only an “observable-in-principle” parameter. Similarly to this parameter, letnZ,unt

andnZ,tag (:= nZ − nZ,unt) be the number ofZ-labeled untagged rounds and tagged rounds, respec-

tively, which are in principle observed in Step (6’). We also define

ω̃ = (kX,nX,nZ, nZ,unt). (4.23)

Let nX,unt andnX,tag (:= nX−nX,unt) be the number ofX-labeled untagged rounds and tagged rounds,

respectively. ThennZ,unt+ nX,unt = ntot,unt is satisfied. We also definekX,unt andkX,tag as the number
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of bit errors onX-labeled untagged rounds and tagged rounds, respectively, which are in principle

determined in Step (7’).

Based on those parameters, the theorem similar to the one in Sec. 3.3.2 is given as follows.

Theorem:

Suppose that the following inequality holds regardless of Eve’s strategy:

Pr(kph,unt > f (ω̃)) ≤ ϵPE (4.24)

Pr(nZ,unt < nZ,unt) ≤ ϵZ,unt, (4.25)

where kph,unt is the number of phase errors on untagged rounds. If the final key length l(ω) satisfies

l(ω) ≤ min
nZ,unt≥nZ,unt

{
nZ,unt(1− h

(
f (ω̃)
nZ,unt

)
)

}
− log2

2
ϵPA

, (4.26)

the protocol isϵs-secret with

ϵs =
√

2
√
ϵPE+ ϵPA + ϵZ,unt. (4.27)

Although the boundsf (ω̃) andnZ,unt are not obvious here, they are derived in Chapter 6.

The proof of the theorem is quite similar to that in Sec. 3.3.4 but with several modifications.

We assume that the observable-in-principle parameters are also disclosed to Eve in the previous

protocol. LetΩ̃ be all disclosed information including ˜ω. Eq. (3.29) is replaced by

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ (4.28)

≤ 1
2

∑
Ω̃∈T̃pass

Pr(Ω̃)
∣∣∣∣∣∣ TrB

(
E(ω̃)

vir ⊗ 1E(ρ̂(Ω̃)
ABE)

)
− |0X⟩ ⟨0X|A ⊗ ρ̂(Ω̃)

E

∣∣∣∣∣∣, (4.29)

whereT̃passis a set ofΩ̃ such that the protocol does not abort. For simplicity, we define

γ(Ω̃) :=
1
2

∣∣∣∣∣∣ TrB

(
E(ω̃)

vir ⊗ 1E(ρ̂(Ω̃)
ABE)

)
− |0X⟩ ⟨0X|A ⊗ ρ̂(Ω̃)

E

∣∣∣∣∣∣. (4.30)
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By reformulating Eq. (4.29),

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ (4.31)

≤
∑
Ω̃∈T̃pass

Pr(Ω̃) γ(Ω̃) (4.32)

=
∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

Pr(Ω̃) γ(Ω̃) +
∑
Ω̃∈T̃pass:

nZ,unt<nZ,unt

Pr(Ω̃) γ(Ω̃) (4.33)

≤ Pr(nZ,unt ≥ nZ,unt)
∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

Pr(Ω̃)
Pr(nZ,unt ≥ nZ,unt)

γ(Ω̃) + Pr(nZ,unt < nZ,unt) (4.34)

≤ (1− ϵZ,unt)
∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

p(Ω̃) γ(Ω̃) + ϵZ,unt, (4.35)

where the summations are overΩ̃ such thatΩ̃ ∈ T̃passandnZ,unt ≥ nZ,unt (or nZ,unt < nZ,unt), and we

defined

p(Ω̃) :=
Pr(Ω̃)

Pr(nZ,unt ≥ nZ,unt)
s.t.

∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

p(Ω̃) = 1. (4.36)

We usedγ(Ω̃) ≤ 1 in Eq. (4.34) and also used Eq. (4.25) in Eq. (4.35). DefineΓ(Ω̃) as

Γ(Ω̃) :=
√

1− F
(
TrB

(
E(ω̃)

vir ⊗ 1E(ρ̂(Ω̃)
ABE)

)
, |0X⟩ ⟨0X|A ⊗ ρ̂(Ω̃)

E

)
. (4.37)

From the relation between the trace distance and the fidelity Eq. (2.9), we have

γ(Ω̃) ≤ Γ(Ω̃). (4.38)

Eq. (4.35) is replaced by

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ (4.39)

≤ (1− ϵZ,unt)
∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

p(Ω̃) Γ(Ω̃) + ϵZ,unt. (4.40)

The evaluation ofΓ(Ω̃) is quite similar to that in Sec. 3.3.4. The difference is that a set of

vectorsS f (ω),XB in Eq. (3.38) is replaced by another one. Since Alice and Bob tell tagged rounds

from untagged rounds in principle, we divide a vectorA of sizenZ into untagged part of sizenZ,unt

and tagged part of sizenZ,tag:

A = Aunt⊕ Atag. (4.41)
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With this notation, we define

S̃ f (ω̃),XB := {A ∈ {0,1}nZ | wt(Aunt+ XB,unt) ≤ f (ω̃)}, (4.42)

where the plus sign represents addition modulo 2 of each element. Eq. (4.42) implies that the

vector patterns for the tagged rounds are totally unknown, which corresponds to the assumption

that the information of tagged rounds is fully leaked to Eve. In order to use lemma 3 and to obtain

Eq. (3.50), we require|S̃ f (ω̃),XB|. For untagged rounds,∣∣∣∣∣{Aunt

∣∣∣∣wt(Aunt+ XB,unt) ≤ f (ω̃)
}∣∣∣∣∣ ≤ 2nZ,unth( f (ω̃)/nZ,unt) (4.43)

is satisfied from lemma 2. Thus, we have∣∣∣S̃ f (ω̃),XB

∣∣∣ ≤ 2nZ,unth( f (ω̃)/nZ,unt)2nZ,tag. (4.44)

By using the argument from Eq. (3.50) to Eq. (3.53), if the amount of privacy amplificationm(ω)

satisfies

m(ω) = max
nZ,unt≥nZ,unt

⌈
nZ,unth( f (ω̃)/nZ,unt) + nZ,tag+ log2

1
ϵPA

⌉
, (4.45)

we have

A ⟨0X| E(ω̃,XB)
A,vir

(
DX

(
χ̂

(Ω̃,XB, f (ω̃))
A

))
|0X⟩A ≥ 1− ϵPA (4.46)

for Ω̃ satisfyingΩ̃ ∈ T̃passandnZ,unt ≥ nZ,unt. By combining this with Eqs. (3.33), (3.36), (3.44)

and (3.61), we have

Γ(Ω̃) ≤
√

2ϵPA + 2
∑
XB

Pr(XB)Tr
(
(1̂A − P̂f (ω̃),XB)σ̂(Ω̃,XB)

A

)
. (4.47)

Recall that the evaluation ofΓ(Ω̃) in Eq. (4.40) is limited to{Ω̃} satisfyingΩ̃ ∈ T̃pass and

nZ,unt ≥ nZ,unt. From Eq. (4.24) and Eq. (4.25), we have

Pr(kph,unt > f (ω̃) | nZ,unt ≥ nZ,unt) ≤
ϵPE

1− ϵZ,unt
. (4.48)

Let us write down the left-hand side of Eq. (4.48) explicitly. Defineˆ̃Pf (ω̃),XB based oñS f (ω̃),XB:

ˆ̃Pf (ω̃),XB :=
∑

A∈S̃ f (ω̃),XB

|AX⟩ ⟨AX|A . (4.49)

Similarly to Eq. (3.39), we have

Pr(kph,unt > f (ω̃)) =
∑
Ω̃

∑
XB

Pr(Ω̃)Pr(XB) Tr
(
(1̂ − P̂f (ω̃),XB)σ̂(Ω̃,XB)

A

)
, (4.50)
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which leads to

Pr(kph,unt > f (ω̃) | nZ,unt ≥ nZ,unt) =
∑

Ω̃:nZ,unt≥nZ,unt

∑
XB

p(Ω̃)Pr(XB) Tr
(
(1̂ − P̂f (ω̃),XB)σ̂(Ω̃,XB)

A

)
, (4.51)

where the summation in Eq. (4.51) is overΩ̃ satisfyingnZ,unt ≥ nZ,unt regardless of whether̃Ω ∈
T̃passor not, andp(Ω̃) is defined in Eq. (4.36). Since each summand of Eq. (4.51) is non-negative,

the right-hand side does not increase if the summation is further limited toΩ̃ ∈ T̃pass. Thus,

Eq. (4.48) and Eq. (4.51) lead to∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

∑
XB

p(Ω̃)Pr(XB) Tr
(
(1̂ − P̂f (ω̃),XB)σ̂(Ω̃,XB)

A

)
≤ ϵPE

1− ϵZ,unt
. (4.52)

From Eqs. (4.40), (4.47) and (4.52), we have

1
2

∣∣∣∣∣∣ ρ̂fin
AE − ρ̂ideal

AE

∣∣∣∣∣∣ (4.53)

≤ (1− ϵZ,unt)
∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

p(Ω̃)

√
2ϵPA + 2

∑
XB

Pr(XB)Tr
(
(1̂A − P̂f (ω̃),XB)σ̂(Ω̃,XB)

A

)
+ ϵZ,unt (4.54)

≤ (1− ϵZ,unt)
√√√√ 2ϵPA + 2

∑
Ω̃∈T̃pass:

nZ,unt≥nZ,unt

∑
XB

p(Ω̃)Pr(XB)Tr
(
(1̂A − P̂f (ω̃),XB)σ̂(Ω̃,XB)

A

)
+ ϵZ,unt (4.55)

≤ (1− ϵZ,unt)
√

2ϵPA +
ϵPE

1− ϵZ,unt
+ ϵZ,unt (4.56)

≤
√

2
√
ϵPA + ϵPE + ϵZ,unt. (4.57)

By using Eq. (4.45) andm(ω) = nZ−l(ω), the protocol isϵs-secret withϵs =
√

2
√
ϵPA + ϵPE + ϵZ,unt

if the final-key lengthl(ω) satisfies

l(ω) = nZ − max
nZ,unt≥nZ,unt

⌈
nZ,unth

(
f (ω̃)
nZ,unt

)
+ nZ,tag+ log2

1
ϵPA

⌉
(4.58)

≤ min
nZ,unt≥nZ,unt

{
nZ,unt(1− h

(
f (ω̃)
nZ,unt

)
)

}
− log2

2
ϵPA

. (4.59)

4.2.3 PNS attack vs. WCP-BB84 protocol

In this section, we derive the asymptotic key rate of the WCP-BB84 protocol with tagging idea

as in Ref. [10], and show that the protocol is vulnerable to PNS attack in long-distance commu-

nication. Consider the asymptotic limitnrep→ ∞ while the parameters

∆ :=
nZ,tag

nZ
, Q :=

nZ

nrepp̃2
Z

, eX :=
kX

nX
(4.60)
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are fixed. By using the result of finite-key analysis Eq. (4.59), the asymptotic key rate per round

is given by

R(∆,eX,unt)
asy := p̃2

ZQ (1− ∆)(1− h
(
eX,unt

)
), (4.61)

whereeX,unt := kX,unt/nX,unt and∆ are unknown parameters. SincenX,unt/nX → 1− ∆ holds in the

asymptotic limit,kX,unt ≤ kX leads to

(1− ∆)eX,unt ≤ eX. (4.62)

Then we have

R(∆,eX,unt)
asy ≥ p̃2

ZQ (1− ∆)(1− h
( eX

1− ∆

)
) (4.63)

=: R(∆)
asy. (4.64)

To boundR(∆)
asy with known parameters, we use the inequality

∆ ≤
r tag

Q
, (4.65)

which is obtained from Eq. (4.6) and Eq. (4.60). This leads to

R(∆)
asy≥ p̃2

ZQ (1−
r tag

Q
)(1− h

 e

1− rtag

Q

) (4.66)

=: Rasy. (4.67)

Note thatRasy is the optimal key rate in the form of Eq. (4.61), namely, Eve can in principle

choose parameters which satisfyRasy= R(∆,eX,unt)
asy . Moreover, those parameters are realized by PNS

attacks introduced in Sec. 4.1. To confirm these, it is sufficient to check the equality of Eq. (4.62)

and Eq. (4.65). WitheX,tag := kX,tag/nX,tag, we see that

(1− ∆)eX,unt = eX ↔ eX,tag = 0 ↔ eX,m = 0 (for m≥ 2). (4.68)

Let p(m) be the probability that the source emitsm photons (assuming phase randomization). Let

Y(m) be the probability that a signal emitted withm-photons causes a detection at Bob’s receiver.

Those parameters have identical meaning to those in Sec. 4.1. Sincer tag =
∑

m≥2 p(m) holds from

Eq. (4.13), we have

Q∆ = r tag ↔
∑
m≥2

p(m)Ym =
∑
m≥2

p(m) ↔ Ym = 1 (for m≥ 2) (4.69)

in the asymptotic limit. Both Eq. (4.68) and Eq. (4.69) are satisfied by Eq. (4.3) with PNS attack.
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To evaluate the effect of PNS attacks on the BB84 protocol, we assume the specific value ofr tag

by adopting the model that Alice uses a coherent light source, in whichr tag is given by Eq. (4.19).

We derive the dependence ofRasy on total transmittanceη (including detector efficiency) in the

limit of η → 0. From Eq. (4.67), the value ofr tag/Q has to be kept smaller than 1 to ensure

Rasy > 0. SinceQ decreases asη approaches to 0,µ → 0 is required to keepRasy positive. Thus,

Q andr tag are expressed as

Q = η(µ +O(µ2)) (4.70)

r tag =
µ2

2
+O(µ3). (4.71)

Eq. (4.70) and Eq. (4.71) lead to
r tag

Q
=

1
2η

(µ +O(µ2)). (4.72)

If r tag/Q is held fixed asη gets small, the value ofµ is changed asµ = O(η). Then the overall key

generation rateRasy has square dependence onη:

Rasy= O(η2). (4.73)

This implies that the BB84 protocol is vulnerable to PNS attacks in the long distance communi-

cation.

4.3 Practical aspects of WCP-BB84 protocol

In this subsection, we focus on the practical aspects of the WCP-BB84 protocol. For implemen-

tation of QKD protocols, its simplicity is crucial for several reasons. The first one is straightfor-

ward, that is, we have to reduce the cost of QKD for its commercialization [56]. Another reason

is that practical devices have security loopholes [59, 60, 61, 62, 102], which violates the assump-

tions of the security proof. This means that if complicated devices are used, we have to consider

many countermeasures (from both theoretical and practical sides) against possible attacks. The

BB84 protocol with phase-encoding (PE-BB84) is a specific form of the WCP-BB84 protocol

which can be implemented with simple devices. Since PE-BB84 protocol is vulnerable to PNS

attacks in the long distance, it is often used with the decoy-state method. Although it enables long

distance communication and many demonstrations have already been conducted, several practical

problems still remain. In the following, we introduce the PE-BB84 protocol and the decoy-state

method, and discuss their advantages and problems.
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4.3.1 Phase-encoding BB84 protocol

When QKD is implemented, we typically use free space or optical fibers as quantum channel.

While some simulations and demonstrations of free-space QKD (e.g. satellite QKD) are con-

ducted [64, 29, 30, 31], most of high-speed QKD implementations use the optical fibers to guide

signals stably [26, 27, 28]. In fiber-based QKD, a bit 0,1 tends to be encoded on optical phase

rather than polarization of photons because polarization is less stabler than optical phase in opti-

cal fibers due to their birefringence. Another advantage of phase-encoding method is that the fast

encoding and reading are possible with current techniques (e.g. 1 GHz pulse-repetition rate with

phase modulation in Ref. [35] and 10 GHz in Ref [40]).

Phase-encoding BB84 protocol (PE-BB84 protocol) is composed of simple devices, such as

a typical laser, a phase modulator and a passive Mach-Zehnder interferometer (see also Fig. 4.1).

With established security (the proof for the PE-BB84 is identical to the WCP-BB84), a number

of demonstrations are conducted [33, 34, 35]. In the protocol, double pulses with interval∆τ

are generated at Alice’s site, followed by phase modulation which includes randomization of the

global phase as well as changing the relative phase to encode a bit. At Bob’s site, each pulse is fed

to a delayed interferometer with its delay being equal to∆τ. The longer arm of the interferometer

passes through a phase modulator which incurs phase shiftθB = 0 or π
2. After the interferome-

ter, the pulses are measured by two photon detectors corresponding to bit values “0” and “1”. If

there is a detection from the superposition of the double pulses, we call it as valid detection (see

Fig. 4.2). The description of the PE-BB84 protocol is identical to that in Sec. 2.2.3 except that

Step (1)-(3) have more concrete expressions.

(1) Alice choosesZ basis orX basis with probability ˜pZ and p̃X, respectively. She chooses a

uniformly random bit{0,1}.
(2) Alice generates double pulses and modulates the relative phase between those pulses as

0, π, π/2, 3π/2 if her basis and bit are (Z,0), (Z,1), (X,0), (X,1), respectively. She also changes

the global phase of the double pulses at random.

(3) Bob choosesZ basis orX basis with probability ˜pZ and p̃X, respectively. He sets the phase

shift θB = 0 andθB = π/2 if he selectsZ basis andX basis, respectively. If an invalid detec-

tion occurs, Bob declares no-detection. If both detectors have detections at a valid timing, Bob

randomly generates a bit 0 or 1. He obtains the outcome{0, 1, no-detection}.
Bob’s random-bit assignment in Step 3 is for the sake of satisfying the receiver’s condition

(∗) in Sec. 3.1. Since a valid detection occurs only when the first pulse in the long arm and the

second pulse in the short arm have interference, there are invalid detections with probability 1/2

due to the use of the passive interferometer (see Fig. 4.2). Although invalid detections can be

reduced by using an optical switch, it typically has insertion loss larger than 1/2 (e.g. 4 dB loss
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Figure 4.1: Set up of the BB84 protocol. Alice generates double pulses (in a dashed block in the

figure) and modulates the global phase at random and also modulate the relative phase based on

her basis and bit. Bob changes the phase shiftθB based on his basis choice. The delay in the long

arm equals to the interval of the double pulse∆τ, which enables neighboring pulses to interfere

each other. A detection from the interference between double pulses in a block is regarded as

valid, and outcomes from other detections are invalid.

long arm

short arm

valid

detection timing: 3 2 1

Figure 4.2: Sketch of valid interference at Bob’s site. The double pulses are split and the ones

going through the longer arm are delayed by∆τ from the others going through the shorter arm.

The interference between the first pulse in the longer arm and the second pulse in the shorter arm

is regarded as valid, which occurs at Timing 2 (in the figure) with probability 1/2.
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for 10 ns switching time [103]). Thus, the problem of half invalid detections is essential in the

PE-BB84 protocol, and actually, it is the origin of the advantage of the DQPS protocol over the

PE-BB84 protocol, which is considered in Chapter 5.

4.3.2 Decoy-state method

The decoy-state method is a practical countermeasure against PNS attacks, which was proposed

and developed by Hwang [36], Loet al. [104] and Wang [37]. They are incorporated to various

protocols, such as the BB84 protocol, the six-state protocol [48], the MDI protocols [63, 105,

16], and high-dimensional protocols [106, 107]. In the decoy-state method, Alice chooses the

intensity (mean photon number) of each signal from a predetermined set{µi} (0 ≤ i ≤ idecoy, i = 0

corresponds to the signal) and monitor the detection rate separately for each intensity. Define

Qi as the observed detection rate for the intensityµi. Let p(m)
i be the probability that the source

emitsm photons under the condition of mean photon numberµi. With parametersYm defined in

Sec. 4.2.3, we have the followingidecoy+ 1 simultaneous equations in the asymptotic limit.Qi =
∑
m≥0

p(m)
i Ym

 (0 ≤ i ≤ idecoy). (4.74)

This implies that if we increase the number of decoy intensityidecoy, the better bound ofYm is

obtained. Recalling the fact that the value ofYm was totally under control of Eve with PNS

attacks (see Eq. (4.3) and Eq. (4.4)), we see that threat of PNS attack can be limited by adopting

decoy states. In practice, it is shown that the BB84 protocol with two decoy states (idecoy = 2)

achieves nonzero key rate over 100 km communication in finite-key regime [15].

Although the decoy-state method seems attractive, there still remain practical problems be-

cause additional operations tend to enlarge the gap between physical models of devices and their

practical behaviours. Let us show two examples for a light source. Although we use weak coher-

ent pulses in QKD implementations, the distribution ofp(m) can deviate from Poissonian and it

has to be estimated through the calibration of the light source. Although the security proof with

a general light source using decoy states was conducted [39], it assumes the following infinite

number of inequalities, which cannot be confirmed through calibration:

p(1)
L

p(1)
U

≤
p(m)

L

p(m)
U

(for m≥ 2), (4.75)

wherep(m)
L and p(m)

U represent the lower and the upper bound ofp(m), respectively. Another ex-

ample is that the intensity of a decoy pulse deviates from the predetermined value because the

intensity of the decoy pulse is in the middle of the signal’s intensity and the vacuum, and hence
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it is at the steep slope in the intensity-modulation curve. The deviation over 10% is reported in

Ref. [108], for example.

Even if the above problems are solved from either theoretical or experimental side, the decoy-

state method holds inevitable complexity and disadvantage associated with it. Since it uses

higher-orderp(m) to estimate the value ofYm, more complicated calibration method is required

compared to the protocol without decoy states. Since it includes more estimation processes, the

larger overhead is sacrificed by the statistical fluctuation in the finite-key analysis. Thus, for short

distance communication where PNS attacks are not so threatening, the protocol without decoy

states may be preferred from the perspective of simplicity.

4.4 Differential-phase-shift protocol

The differential-phase-shift (DPS) protocol is as simple (or simper) protocol as the PE-BB84

protocol, in which only two phases{0, π} are used for the relative phase between neighboring

pulses. It was proposed by Inoueet al. in 2002 [89] as a protocol with robustness against PNS

attacks. Although there are several protocols which are expected to be robust against PNS at-

tacks [109, 110, 111], the simplicity of the DPS protocol is outstanding, which enables the

demonstration with a high clock rate of 10 GHz [40]. Since the DPS protocol is an origin of

the differential-quadrature-phase-shift (DQPS) protocol which is treated in Chapter 5, here we

review the DPS protocol and its security. In this section, the protocol description and the security

analysis of the DPS protocol are briefly introduced based on Ref.[90]. Afterwards, we discuss the

round-robin DPS protocol, which is a variant of the DPS protocol solving the complexity of the

security proof for the DPS protocol.

4.4.1 Protocol description

Here, we describe the DPS protocol based on Ref. [90]. The set up for the DPS protocol is

identical to that of the PE-BB84 protocol with several exceptions (see Fig. 4.3). In the DPS

protocol, sequential pulses are divided by a block ofL pulses for the convenience of security

proof. The phase-randomizing operation is applied to the whole block. Differently from the PE-

BB84 protocol, the relative phase is either 0 orπ, hence the phase modulator is not necessary at

the receiver’s site. The photon-number resolving detectors were assumed as in Ref. [90]. If there

is a detection from the superposition of thel-th and (l − 1)-th original pulses, we call it as valid

detection atl-th timing (1≤ l ≤ L − 1). The protocol is described as follows.
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Figure 4.3: Set up of the DPS protocol. At Alice’s site, pulse trains are generated by a laser

followed by phase randomization as well as phase modulation (PM) with{0, π} based on her

random bits. At Bob’s site, each pulse train is fed to a delayed Mach-Zehnder interferometer.

The trains leaving the interferometer are measured by two photon detectors corresponding to bit

values “0” and “1”. Valid timings of detection are labeled by integers 1,2, .., L − 1, according

to the index of the pulse from the short arm of the interferometer. Detection from interference

between pulses from different blocks is regarded as invalid and ignored.

1. Alice generatesL random bitsal ∈ {0,1} (0,1, .., L − 1).

2. Alice preparesL optical pulses (systemS) in the state

L−1⊗
l=0

|(−1)al
√
µ⟩S,l , (4.76)

where| √µ⟩S,l represents a coherent statee−µ/2
∑

k

√
µk

√
k!
|k⟩S,l of the l-th pulse mode. Alice random-

izes the overall optical phase of theL-pulse train, and sends it to Bob.

3. If there is no detection of photons in the valid timings, Bob setsj = 0. Bob also setsj = 0 if

he detects two photons or more in the wholeL + 1 time slots. If detections have only occurred at

a single valid timing, the variablej is set to the index of the timing. Ifj , 0, Bob determines his

raw key bitb ∈ {0,1} depending on which detector has reported detection at thej-th timing. Bob

announcesj through the public channel.

4. If j , 0, Alice determines her raw key bit asa = aj−1 + aj.

5. Alice and Bob repeat the above proceduresnrep times.



4.4. DIFFERENTIAL-PHASE-SHIFT PROTOCOL 51

6. Alice and Bob randomly select a small portion of the rounds withj , 0, and compare the bit

values over the public channel. They define sifted keysκA andκB, respectively, by concatenating

the remaining bits withj , 0.

7. Alice and Bob conduct error correction and privacy amplification by discussing over the public

channel and obtain the final keyκfin
A andκfin

B .

The plus sign in Step 4 represents addition modulo 2 and corresponds to reading the relative phase

of neighboring pulses.

4.4.2 Security of DPS protocol

Since the DPS protocol does not require multiple bases but uses the set of non-orthogonal states

Eq. (4.76), it seems close to the B92 protocol [86] rather than the BB84 protocol. The remarkable

property of the DPS protocol is that the optical phase of each pulse is not independent of each

other but connected via the relative phases, just as chain. In fact, the robustness of the DPS

protocol against PNS attacks can also be explained intuitively with the property of “coherence

chain”. If Eve splits photons from a multi-photon signal and sends a remaining photon to Bob,

the probability that her detection timingj is identical to Bob’s one is only 1/(L−1). Furthermore,

if she attempts to make the photon detected at the same timing as hers, it disturbs the coherence

chain and causes a bit error between Alice and Bob. Thus, the DPS protocol is expected to be

robust against PNS attacks.

On the other hand, the property of coherence chain introduces difficulty in the security proof

for the DPS protocol as well. This is because the coherence chain prohibits us from working

on each pulse separately, and we have to deal with a large Hilbert space at once. In spite of

the complexity, the security of the DPS protocol was proved in 2012 by Tamakiet al. in the

asymptotic limit [90]. They focused on the fact that the phase errors in the DPS protocol are

related to the photon number contained in pulses, and used the technique to estimate the photon-

number information. The proof shows that a key can be generated from two-photon signals,

as well as shows that the dependence of key rate on the channel transmittanceη is O(η3/2) in

the range of smallη, which certifies the expected robustness of the DPS protocol against PNS

attacks. On the other hand, the security proof was still complicated and the obtained key rate was

low because of the asymmetric property of the DPS protocol. For example, one of Eve’s optimal

attacks was that she sends Bob a superposition of the states containing photons inl-th timing

whose coefficients are not uniform. This is coming from the fact that the detections only with

1 ≤ j ≤ L − 1 are regarded as valid and the detections at the edge of a block are discarded. The

problem due to the asymmetry led to the idea of the round-robin DPS protocol introduced in the
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following subsection.

4.4.3 Round-robin DPS protocol

The round-robin DPS (RR-DPS) protocol is regarded as the “symmetrized” DPS protocol, which

removes the asymmetry among detection timings by modifying the set up of the protocol [41].

While the DPS protocol uses fixed amount of delay∆τ at the interferometer, the delay is variable

in {∆τ,2∆τ, ...., (L−1)∆τ} in the RR-DPS protocol. This additional randomness at Bob’s site pre-

vents Eve from fixing two pulses which cause interference at her will, as well as largely simplifies

the security proof. The security proof adopts a similar idea to that of the DPS protocol, in which

phase errors are related to the photon number contained in the signal pulses. The obtained key

rate is expressed as

Q

(
1− h(ebit) −

esrc

Q
− (1− esrc

Q
)h(

νth

L − 1
)

)
, (4.77)

whereebit is the observed error rate, andesrc andνth are connected through the following inequality

in terms of the photon numberν in L pulses:

Pr(ν > νth) ≤ esrc. (4.78)

In Eq. (4.77), the second term represents the cost for error correction, and the third and fourth

terms represent the cost for privacy amplification. Eq. (4.77) implies that the amount of privacy

amplification is independent of the observed error rateebit and only depends on the property of a

light source and the predetermined block sizeL. This is totally a new concept in the security of

QKD because the security of QKD protocols prior to this protocol was based on the uncertainty

principle and the amount of leaked information is estimated by monitoring signal disturbance (bit

error). It is not certain what kind of principle in quantum mechanics enables such a property,

though the authors implies [41] that it may relate to the information causality [112].

Thanks to the property ofebit-independence, it has high tolerance against noisy environment.

The numerical simulation in Ref. [41] shows that it still generates a key at the error rateebit ≥
11%, in which no key can be extracted with the BB84 protocol. On the other hand, the simplicity

of the DPS protocol is sacrificed in the RR-DPS protocol. Although several demonstrations have

already been conducted, implementations of the variable delay with largeL (L = 5 [43], L = 65

[45], L = 129 [44]) are not considered to be simple.



Chapter 5

Security of the DQPS protocol

As introduced in the previous chapter, the DPS protocol is composed of simple devices and is

robust against PNS attacks, while the security proof is complicated. In this chapter, we seek after

the benefit of the DPS protocol in a different direction, namely, for short-distance communication

in which PNS attacks do not impose a severe problem. We provide a security proof of a variant

of the DPS protocol called differential quadrature phase shift (DQPS) protocol [46] by applying

the simple proof for the BB84 protocol, and establish its definite advantage over the PE-BB84

protocol. The DQPS protocol can be implemented with essentially the same hardware as the

PE-BB84 protocol, but our security proof shows that its key generation rate is 8/3 as high as that

of the PE-BB84 protocol. The benefit from the simplicity of PE-BB84 protocol is not sacrificed

because the requirement for the properties of the light source and the detection apparatus is shown

to be kept to minimum as in the PE-BB84 protocol. Although the security proof is limited to the

asymptotic regime in this chapter, it is extended to the finite-key case in Chapter 6.

In this chapter, we use several different notations from those in the previous chapters. We

call the basis to generate a key “data basis” and call the basis for monitoring signal disturbance

“check basis”. In the BB84 protocol considered in the previous sections, the data basis and the

check basis were calledZ basis andX basis, respectively. But here, we do not associate the data

and check bases to qubit bases (such asX andZ) in the description of the DQPS protocol in

Sec. 5.1. Qubits will be introduced in the security analysis in Sec. 5.2. There, we opt to follow

the convention of taking the photon-number states as the standard basis, and hence associate

the {|0⟩ , |1⟩} basis of a qubit to the (parity of) photon number. We assume that Alice’s state

preparation on the data basis is replaced by{|+⟩ , |−⟩}-basis measurement, and also assume that

the measurement to obtain phase error is made by{|−i⟩ , |+i⟩} basis where|±⟩ := (|0⟩±|1⟩)/
√

2 and

|±i⟩ := (|0⟩ ± i |1⟩)/
√

2. When we represent an outcome of the{|+⟩ , |−⟩} basis measurement by a

bit, it should be understood that state|+⟩ corresponds to bit value 0 and state|−⟩ to 1. On the other

53
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hand, for{|−i⟩ , |+i⟩}-basis measurement, we adopt an unconventional rule that|−i⟩ corresponds

to bit value 0 and|+i⟩ to 1 for the convenience of the proof.

This chapter is organized as follows. In Sec. 2, we describe details of the DQPS protocol and

assumptions on the light source and the detection apparatus. Sec. 3 gives the security proof of

the protocol, and shows an explicit formula for the key rate. Based on the formula, numerical

results for the secure key rate is shown in Sec. 4. Finally, Sec. 5 deals with discussions including

an analytical expression for the scaling of the optimal key rate and simple off-line calibration

methods for the light source.

5.1 Protocol and assumptions

Here we introduce a DQPS protocol considered in this chapter, which is slightly modified from

the one [46] proposed by Inoue and Iwai (See Fig. 5.1). The protocol uses two bases, data

basis for generating the final key and check basis for monitoring the leak of information. In

the data and check bases, relative phases between adjacent pulses are modulated by{0, π} and

{π2,
3π
2 }, respectively. The protocol regards a train ofL pulses as a block, and the working basis

is randomly chosen for each block. The randomization of overall optical phase is also done for

each block ofL pulses. Bob’s receiver is composed of delayed interferometer with its delay being

equal to the interval∆τ of adjacent pulses. The longer arm of the interferometer passes through

a phase modulator that incurs phase shiftθB = 0 or π
2. After the interferometer, the pulses are

measured by two photon detectors corresponding to bit values “0” and “1”. If there is a detection

from the superposition of thel-th and the (l − 1)-th original pulses, we call it as valid detection at

l-th timing (1≤ l ≤ L − 1).

The protocol proceeds as follows, which includes predetermined parameters ˜p1 > 0, p̃0 B
1− p̃1, µ > 0, andnrep. In its description,|κ| represents the length of a bit sequenceκ.

1. Alice selects a bitc ∈ {0,1} with probability p̃0 and p̃1, which correspond to the choice of data

basis and check basis, respectively. Bob also selectsd ∈ {0,1} with probability p̃0 and p̃1.

2. Alice generatesL random bitsal ∈ {0,1} (0, 1, .., L − 1), and preparesL optical pulses (system

S) in the state
L−1⊗
l=0

|eiθl (al ,c)√µ⟩S,l , θl(al , c) B alπ +
π

2
lc, (5.1)

where|α⟩S,l represents coherent statee−|α|
2/2 ∑

k
αk
√

k!
|k⟩S,l of thel-th pulse mode. Alice randomizes

the overall optical phase of theL-pulse train, and sends it to Bob.

3. If d = 0, Bob setsθB = 0. If d = 1, he setsθB =
π
2.

4. If there is no detection of photons in the valid timings, Bob setsj = 0. If the detections have
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only occurred at a single valid timing, the variablej is set to the index of the timing. If there are

detections at multiple timings, the smallest (earliest) index of them is assigned toj. If j , 0, Bob

determines his raw key bitb ∈ {0,1} depending on which detector has reported detection at the

j-th timing. If both detectors have reported at thej-th timing, a random bit is assigned tob. Bob

announcesj through the public channel.

5. If j , 0, Alice determines her raw key bit asa = aj−1 + aj where the plus sign represents

addition modulo 2.

6. Alice and Bob repeat the above proceduresnrep times. They publicly disclosec andd for each

of thenrep rounds.

7-1. Alice and Bob define sifted keysκA1 andκB1, respectively, by concatenating their determined

bits with j , 0 andc = d = 1. They publicly discloseκA1 andκB1.

7-2. Alice defines a sifted keyκA0 by concatenating her determined bits withj , 0 andc = d = 0.

7-3. Bob defines a sifted keyκB0 by concatenating his determined bits withj , 0 andc = d = 0.

8. Bob corrects the errors in his sifted keyκB0 to make it coincide with Alice’s keyκA0 through

|κA0|SEC bits of encrypted public communication from Alice by consuming the same length of

pre-obtained secret key. Alice and Bob conduct privacy amplification by shortening their keys by

|κA0|SPA to obtain the final keys.

In this chapter, we only consider the secure key rate in the asymptotic limit of an infinite sifted

key length. We consider the limit ofnrep→ ∞ while the following observed parameters are fixed:

QB
|κA0|

nrepp̃2
0

, E0 B
wt(κB0 − κA0)

nrepp̃2
0

, E1 B
wt(κB1 − κA1)

nrepp̃2
1

, (5.2)

where the minus sign is a bit-by-bit modulo-2 subtraction. In this limit,SEC is given by a function

of the bit error rateE0/Q. In Sec. 5.2, the asymptotic value ofSPA is determined as a function of

Q andE1. The asymptotic key rate per pulseRL is then given by

RL =
p̃2

0

L
Q(1− SPA(Q,E1) − SEC(E0/Q)). (5.3)

The security of the above protocol is proved in Sec. 5.2 under the following assumptions on

the devices used by Alice and Bob. For clarity, up to Sec. 5.3, we assume that Alice’s laser source

and modulator produces the states in Eq. (1) precisely. The assumption on the laser will then

be relaxed in Sec. 5.4. The randomization of the overall phase in Step 2 is assumed to be done

by choosing a common optical phase shiftϕ randomly from the continuous range of [0,2π), and

applying it to all theL pulses. As is seen in Sec. 4.2.1, this eliminates the coherence among

different photon-number states. The state emitted from Alice in Step 2 is thus expressed as∑
m

N̂m
( L−1⊗

l=0

|eiθl (al ,c)√µ⟩S,l ⟨eiθl (al ,c)√µ| )N̂m, (5.4)
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Figure 5.1: Setup for theL-pulse DQPS protocol. At Alice’s site, pulse trains are generated by

a laser followed by phase randomization as well as phase modulation (PM) with{0, π} or {π2,
3π
2 }

according to her random bits and basis choice. At Bob’s site, each pulse train is fed to a delayed

Mach-Zehnder interferometer with phase shift 0 orπ
2 according to his basis choice. The trains

leaving the interferometer are measured by two photon detectors corresponding to bit values “0”

and “1”. Valid timings of detection are labeled by integers 1,2, .., L − 1, according to the index

of the pulse from the short arm of the interferometer. Detection from interference between pulses

from different blocks is regarded as invalid and ignored.

whereN̂m represents the projector onto the subspace withm photons in theL pulses.

As for Bob’s apparatus, we assume that he uses threshold detectors, and further assume that

the inefficiency and dark countings of the detectors are equivalently represented by an absorber

and a stray photon source placed in front of Bob’s apparatus, and hence they are included in the

quantum channel. This allows us to regard each of the detectors in Fig. 5.1 as a perfect threshold

detector, which reports detection if and only if it receives one or more photons. To represent a

relevant consequence of that assumption in a useful form, we introduce POVM elements for Bob’s

procedure in Steps 3 and 4. Let{B̂(d)
j } j=0,...,L−1 be the POVM for Bob’s procedure of determining

j, when the basisd was selected in Step 1. We further decompose the elements forj , 0 as

B̂(d)
j = B̂(d)

j,0 + B̂(d)
j,1, whereB̂(d)

j,b corresponds to the outcome (j,b). These operators satisfy

B̂(d)
0 +

L−1∑
j=1

(B̂(d)
j,0 + B̂(d)

j,1) = 1̂. (5.5)
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Under the model of detectors mentioned above, whether there is a detection or not at each timing

does not depend on the phase shift applied on the long arm. Hence, the procedure to determinej

is the same ford = 0 andd = 1, and we have

B̂(0)
j = B̂(1)

j (0 ≤ j ≤ L − 1), (5.6)

which will be used in the security proof given in the next section.

5.2 Security proof

Here we prove the security of the protocol introduced in Sec. 5.1 and determine the amount

of privacy amplificationSPA(Q,E1) in the asymptotic limit. Our proof is based on the security

analysis with complementarity as well as the tagging technique with a modification. Before

introducing the detail of the proof, let us discuss the difference between the original tagging idea

and ours. In the security proof of the PE-BB84 protocol, if a pair of pulses emitted from Alice

contains more than a single photon, that signal is considered to be tagged and totally insecure.

The argument relies on the fact that the state emitted by Alice is expressed as mixture of photon-

number states as in Eq. (4.6) with Eq. (4.13). Intuitively, we might want to use the same idea for

the security proof of the DQPS protocol because a key bit is generated from a pair of pulses like

in the PE-BB84 protocol. However, this turns out to be difficult because in the DQPS protocol,

Alice generates a key bita = aj−1+aj after Bob’s announcement of detection timingj. Obviously,

the (j −1)-th andj-th pulses were already received by Bob and it is too late for Alice to conduct a

direct measurement to determine the total photon number, and hence it is impossible to assume the

form of Eq. (4.6), even in principle. In what follows, we will circumvent this issue by introducing

a tagging rule defined through measurements on Alice’s fictitious auxiliary qubits, which remain

at Alice’s site during the whole protocol.

5.2.1 Virtual protocol

For the security proof with complementarity, we consider virtual protocol in which Alice’s sifted

keyκA0 are obtained from measurements on auxiliary qubits on{|+⟩ , |−⟩} basis, while Bob, instead

of aiming to learnκA0, tries to guess the value of the complementary observable (the outcome of

{|−i⟩ , |+i⟩}-basis measurement) for Alice’s qubits. The virtual protocol is designed to fulfill the

following conditions:

(i) Alice’s procedure of releasing optical pulses, making her public announcementκA1, and pro-

ducing the final key is identical to the actual protocol.
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(ii) Bob’s procedure of receivingL pulses and making his public announcementj (for each round)

andκB1 in the actual protocol is identical to the corresponding procedure in the virtual protocol.

Apparently, the protocol satisfying the conditions (i) and (ii) also satisfies the condition of the

virtual protocol mentioned in Sec. 3.2.3. Hence, Alice’s final key in the actual protocol is secure

(random and decoupled from Eve’s system) if that in the virtual protocol is secure against Eve’s

general attack.

Now we introduce an virtual entanglement-based protocol satisfying conditions (i) and (ii) by

using the replacement of state preparation (see Sec. 3.2.1). In the protocol, Alice correlates an

auxiliary qubit to each optical pulse, and prepare a state by making measurement on{|+⟩ , |−⟩}
basis. A controlled-NOT (CNOT) gatêU ( j)

CNOT appearing in the protocol below is defined on

{|0⟩ , |1⟩} basis byÛ ( j)
CNOT |x⟩A, j |y⟩A, j−1 = |x⟩A, j |x+ y mod 2⟩A, j−1 (x, y ∈ {0,1}). The detail of the

virtual protocol is described below, where a step including a different procedure from the actual

protocol is marked with an asterisk (*).

Virtual protocol .

1. Alice selects a bitc ∈ {0,1} with probability p̃0 and p̃1, which correspond to the choice of data

basis and check basis, respectively. Bob also selectsd ∈ {0,1} with probability p̃0 and p̃1.

2∗. Alice preparesL auxiliary qubits (systemA) andL optical pulses (systemS) in state

|Ψ(c)⟩AS B
L−1⊗
l=0

|ψ(c)⟩AS,l (5.7)

depending on her basis choice, where

|ψ(c)⟩AS,l B
1
√

2
(|+⟩A,l |ei π2 lc√µ⟩S,l + |−⟩A,l |−ei π2 lc√µ⟩S,l). (5.8)

She measures the total photon numberm in the L pulses with the projective measurement{N̂m},
and sends theL pulses to Bob.

3∗. Bob setsθB =
π
2 regardless of the value ofd.

4. If there is no detection of photons in the valid timings, Bob setsj = 0. If the detections have

only occurred at a single valid timing, the variablej is set to the index of the timing. If there are

detections at multiple timings, the smallest (earliest) index of them is assigned toj. If j , 0, Bob

determines his raw key bitb ∈ {0,1} depending on which detector has reported detection at the

j-th timing. If both detectors have reported at thej-th timing, a random bit is assigned tob. Bob

announcesj through the public channel.

5-1∗. If j = 0, proceed to Step 6. Otherwise, Alice operates a CNOT gateÛ ( j)
CNOT on the (j − 1)-th
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qubit (target) and thej-th qubit (control).

5-2∗. Alice measures all the qubits but thej-th one on{|0⟩A,l , |1⟩A,l} basis to obtain the outcomes

zl (l , j).

5-3∗. Alice measures thej-th qubit on{|+⟩A, j , |−⟩A, j} basis and determines her raw key bita

accordingly.

6. Alice and Bob repeat the above proceduresnrep times. They publicly disclosec andd for each

of thenrep rounds.

7-1. Alice and Bob define sifted keysκA1 andκB1, respectively, by concatenating their determined

bits with j , 0 andc = d = 1. They publicly discloseκA1 andκB1.

7-2. Alice defines a sifted keyκA0 by concatenating her determined bits withj , 0 andc = d = 0.

7-3∗. Bob defines a sifted keyκ∗B0 by concatenating his determined bits withj , 0 andc = d = 0.

He publicly disclosesκ∗B0.

8∗. Alice conducts privacy amplification by shortening her key by|κA0|SPA to obtain the final key.

The above protocol satisfies the condition (ii) because of the following reasons. Since Step 3∗

is identical to the actual protocol ford = 1, so is Bob’s announcement ofκB1. The change in Step

3∗ does not affect the announcement ofj in each round due to Eq. (5.6). Note that the change in

Step 7-3∗ is an additional announcement which is not disclosed in the actual protocol. In order

to see that the condition (i) holds, we will modify the virtual protocol in such a way that Alice’s

procedure dictated in (i) is unchanged. Since the outcomes{zl} in Step 5-2∗ are neither announced

nor used in determining the final key, we can omit this step. Since a CNOT gate on{|0⟩ , |1⟩}
basis is equivalent to a CNOT gate on{|+⟩ , |−⟩} basis with target and control exchanged, Steps

5-1∗ and 5-3∗ are equivalently done by measuring all theL qubits on{|+⟩ , |−⟩} basis to obtain

L bits a0,a1, .., aL−1 as the outcome, and then settinga = aj−1 + aj. Since the{|+⟩ , |−⟩}-basis

measurement on all the qubits does not require the knowledge ofj, we may assume that it is done

in Step 2∗. Then, using the relation

A,l ⟨±| |ψ(c)⟩AS,l =
1
√

2
|±ei π2 lc√µ⟩ , (5.9)

we see that theL-bit sequencea0,a1, .., aL−1 is random and conditioned on its value the emitted

state is identical to Eq. (5.4). Hence, it is equivalent to Steps 2 and 5 of the actual protocol.

Finally, Steps 7-3∗ and 8∗ are the same as in the actual protocol as far as Alice is concerned.

Therefore, the virtual protocol satisfies the condition (i), as well as (ii), which means that the

security of the virtual protocol implies the security of the actual protocol.
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5.2.2 Alternative definition of tagging

To prove the security of the virtual protocol, we focus on the tagging technique for the PE-BB84

protocol, in which the incidents with multi-photon emission in double pulses are tagged and

considered to be insecure. In a similar vein, we might want to tag the events where the (j − 1)-th

and j-th pulses include multiphotons upon emission. However, the number of emitted photons in

the two pulses is not well-defined due to the phase coherence with other pulses. Instead, we define

a rule to classify tagged (t = 1) and untagged (t = 0) incidents in terms of variables well-defined

in the virtual protocol: ∑
l, j

zl = m → t = 0,
∑
l, j

zl < m → t = 1. (5.10)

Let κA0,unt be the concatenation of all the untagged bits inκA0, and define the ratio of tagged

incidents as

∆ B 1− |κA0,unt|
|κA0|

. (5.11)

From Eq. (4.45) and the argument in Sec. 4.2.2, if the phase-error rate for untagged portion is

bounded byδ(Q,E1,∆), κA0 can be made to be secure in the asymptotic limit by reducing its

length by|κA0|SPA satisfying

SPA(Q,E1) ≥ max
∆

(
∆ + (1− ∆)h (δ(Q,E1,∆))

)
. (5.12)

Let us discuss the implication of the condition Eq. (5.10) for the tagging, and derive important

relations that will be used in the subsequent proof of security. According to Eq. (5.8), it is not

difficult to see thatA,l ⟨0| |ψ(c)⟩AS,l includes only even number of photons, andA,l ⟨1| |ψ(c)⟩AS,l does

odd number of photons. For convenience, let us define projectors related to such a property by

Υ̂AS :=
L−1⊗
l=0

Υ̂(l),

Υ̂(l) := P̂(|0⟩A,l)
 ∑

n:even

P̂(|n⟩S,l)
 + P̂(|1⟩A,l)

∑
n:odd

P̂(|n⟩S,l)
 , (5.13)

whereP̂(|·⟩) = |·⟩ ⟨·|. Notice that the initial state in Eq. (5.7) satisfies

Υ̂AS |Ψ(c)⟩AS = |Ψ(c)⟩AS . (5.14)

Thanks to the correlation specified byΥ̂AS, the measured quantities{zl} are related to the parity

of the photon numbers in the systemS. To see this, let us define the projector corresponding to

the state ofml photons in thel-th pulse by

N̂{ml } B
L−1⊗
l=0

P̂(|ml⟩S,l). (5.15)
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Alice’s procedure of determining{zl} (l , j) at Steps 5-1∗ and 5-2∗ will be associated with the

projector defined by

F̂( j)
{zl } B Û ( j)†

CNOT

1̂A, j ⊗
(⊗

l, j

P̂(|zl⟩A,l)
) Û ( j)

CNOT

=
[
P̂(|0⟩A, j−1 |zj−1⟩A, j) + P̂(|1⟩A, j−1 |1− zj−1⟩A, j)

] ⊗
l, j−1, j

P̂(|zl⟩A,l). (5.16)

Then, it is easy to confirm that

(F̂( j)
{zl } ⊗ N̂{ml })Υ̂AS , 0 only if

zl = ml mod 2 (l , j − 1, j) and zj−1 = mj−1 +mj mod 2.

(5.17)

SinceN̂mN̂{ml } = 0 unless
∑

l ml = m, we have

(F̂( j)
{zl } ⊗ N̂mN̂{ml })Υ̂AS , 0 only if

zl ≤ ml (l , j − 1, j), zj−1 ≤ mj−1 +mj and
∑

l

ml = m.

(5.18)

If we confine ourselves to the case with
∑

l, j zl = m, the condition in the above equation is satisfied

only byzl = ml (l , j − 1, j) andzj−1 = mj−1 +mj. We thus conclude that

(F̂( j)
{zl } ⊗ N̂m)Υ̂AS = (F̂( j)

{zl } ⊗ Ξ̂
( j)
{zl })Υ̂AS for

∑
l, j

zl = m, (5.19)

where

Ξ̂
( j)
{zl } := P̂(|0⟩S, j−1 |0⟩S, j)

⊗
l, j−1, j

P̂(|zl⟩S,l) for zj−1 = 0 (5.20)

Ξ̂
( j)
{zl } := [P̂(|0⟩S, j−1 |1⟩S, j) + P̂(|1⟩S, j−1 |0⟩S, j)]

⊗
l, j−1, j

P̂(|zl⟩S,l) for zj−1 = 1. (5.21)

This may lead to an interpretation that, whenever the event is untagged, every pulse should have

contained no more than one photon upon emission, and the (j − 1)-th and thej-th pulse pair

contained no more than one photon in total. On the other hand, we should also take notice that

Alice’s measurement of{zl} (l , j) in the virtual protocol can be carried out only after the pulse

train was measured by Bob and the value ofj was announced. Hence the above interpretation has

an ambiguity in the operational sense, which is why we only use strict mathematical statements

of Eqs. (5.14) and (5.19) in the subsequent proof and do not rely on the interpretation.
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5.2.3 Phase-error rate for untagged portion

Our next goal is to determine the upper bound of the phase-error rate for untagged portion

δ(Q,E1,∆) following the definition in the security proof with complementarity (see Sec. 3.2.2).

To represent the phase error explicitly, let us introduce the following procedure instead of the

Steps 5-3∗ and 7-2.

5-3∗∗. If c = 1, Alice measures thej-th qubit on{|+⟩A, j , |−⟩A, j} basis and determines her raw key

bit a accordingly. Ifc = 0, Alice measures thej-th qubit on{|−i⟩A, j , |+i⟩A, j} basis and determines

her raw key bita accordingly.

7-2∗∗. Alice defines a sifted keyκ∗A0 by concatenating her determined bits withj , 0 andc = d =

0.

Let κ∗A0,unt andκ∗B0,unt be the concatenations of all the untagged bits inκ∗A0 andκ∗B0, respectively.

Phase errors for untagged portion are given as bit errors betweenκ∗A0,unt andκ∗B0,unt and the number

of the phase errors is given by wt(κ∗B0,unt − κ∗A0,unt). Suppose that we have a bound on phase error

rateδunt(Q,E1,∆), which asymptotically satisfies

δunt(Q,E1,∆) ≥
wt(κ∗B0,unt− κ∗A0,unt)

|κ∗A0,unt|
. (5.22)

Notice that the measurement on Alice’s qubits for extractingκA0 or κ∗A0 can be postponed until

after Step 7-3∗, namely, after she learns the values ofQ,E1,∆ andκ∗B0,unt. Then, an extreme case

of δunt(Q,E1,∆) = 0 will mean that the state of|κA0,unt| untagged qubits before the measurement

is exactly a{|−i⟩ , |+i⟩}-basis eigenstate specified byκ∗B0,unt, and henceκA0,unt, which is an outcome

of {|+⟩ , |−⟩}-basis measurement, is secure (random and decoupled from Eve’s system).

It can be shown thatδunt is connected to the check-basis error rateE1 of the actual protocol

through a fair sampling. For given values ofc and j, Alice’s procedure of determining{zl} anda at

Steps 5-1∗, 5-2∗ and 5-3∗∗ corresponds to the projection onto the state|A(c, j)
a,{zl }⟩A, which is defined

by

|A(c, j)
a,{zl }⟩A B

1
√

2
Û ( j)†

CNOT

( |0⟩A, j − (−1)a i c+1 |1⟩A, j
)⊗

l, j

|zl⟩A,l

 . (5.23)

Since these states satisfy

F̂( j)
{zl } |A

(c, j)
a,{zl }⟩A = |A

(c, j)
a,{zl }⟩A , (5.24)

Eqs. (5.19) and (5.24) lead to

A ⟨A(c, j)
a,{zl }| N̂mΥ̂AS = A ⟨A(c, j)

a,{zl }| Ξ̂
( j)
{zl }Υ̂AS for

∑
l, j

zl = m. (5.25)
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From Eq. (5.14), we have

A ⟨A(c, j)
a,{zl }| N̂m |Ψ(c)⟩AS = A ⟨A(c, j)

a,{zl }| Ξ̂
( j)
{zl } |Ψ(c)⟩AS for

∑
l, j

zl = m. (5.26)

The basis-choice dependence of states|A(c, j)
a,{zl }⟩A and|Ψ(c)⟩AS can be represented by

|A(c, j)
a,{zl }⟩A =

(
P̂(|0⟩A, j) + i c P̂(|1⟩A, j)

)
|A(0, j)

a,{zl }⟩A (5.27)

and

|Ψ(c)⟩AS =

 L−1⊗
l=0

i lm̂lc

 |Ψ(0)⟩AS , (5.28)

wherem̂l :=
∑

m mP̂(|m⟩l) is the photon number operator for thel-th pulse. Since the range of the

projectorΞ̂( j)
{zl } includes only zero- or one-photon states for each mode, we have

[(P̂(|0⟩A, j) + (−i)cP̂(|1⟩A, j)) ⊗ Ξ̂( j)
{zl }]Υ̂AS = (−i)cm̂j Ξ̂

( j)
{zl }Υ̂AS. (5.29)

Combining Eqs. (5.14), (5.27), (5.28) and (5.29), we obtain

A ⟨A(c, j)
a,{zl }| Ξ̂

( j)
{zl } |Ψ(c)⟩AS = A ⟨A(0, j)

a,{zl }| (−i)m̂jc

 L−1⊗
l=0

i lm̂lc

 Ξ̂( j)
{zl } |Ψ(0)⟩AS . (5.30)

Using the definition of Eqs. (5.20) and (5.21), it is easy to confirm that

(−i)cm̂j

 L−1⊗
l=0

i lm̂lc

 Ξ̂( j)
{zl } = i ( j−1)zj−1c

 ∏
l, j−1, j

i lzlc

 Ξ̂( j)
{zl } (5.31)

holds. Therefore, we have

A ⟨A(0, j)
a,{zl }| Ξ̂

( j)
{zj−1} |Ψ(0)⟩AS = (−i)u( j)

A ⟨A(1, j)
a,{zl }| Ξ̂

( j)
{zj−1} |Ψ(1)⟩AS , (5.32)

whereu( j) B
∑

l, j−1, j lzl + ( j − 1)zj−1 and this leads, with Eq. (5.26), to

A ⟨A(0, j)
a,{zl }| N̂m |Ψ(0)⟩AS = (−i)u( j)

A ⟨A(1, j)
a,{zl }| N̂m |Ψ(1)⟩AS for

∑
l, j

zl = m. (5.33)

This relation may suggest that for untagged incidents, the state of pulses transmitted from Alice

would be independent of the value ofc, and hence thec = d = 1 incidents would be regarded as

a fair sampling. Again, this interpretation suffers from ambiguity since the protocol assumes that

Alice’s qubits are measured only after the optical pulses are received by Bob and the value ofj

is announced. Therefore we need a mathematical proof for the fairness of the sampling, which is

given in Appendix B. The proof confirms that

wt(κ∗B0,unt− κ∗A0,unt)

wt(κB1,unt− κA1,unt)
=

(
p̃0

p̃1

)2

(5.34)
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holds in the limit ofnrep→ ∞. Then we have

wt(κ∗B0,unt− κ∗A0,unt)

|κ∗A0,unt|
=

(
p̃0

p̃1

)2 wt(κB1,unt− κA1,unt)
|κ∗A0,unt|

≤
(

p̃0

p̃1

)2 wt(κB1 − κA1)
|κ∗A0,unt|

=
E1

Q(1− ∆)
. (5.35)

Thus,δ(Q,E1,∆) = E1/(Q(1−∆)) is an upper bound on the phase error rate satisfying Eq. (5.22).

From Eq. (5.12), we conclude that asymptotically a privacy amplification with a ratio

SPA(Q,E1) ≥ max
∆

(
∆ + (1− ∆)h

( E1

Q(1− ∆)

))
(5.36)

is enough to make the sifted keyκA0 secure.

5.2.4 Upper bound on tagged ratio

Since the argument of the max in Eq. (5.36) is an increasing function of∆, SPA will be determined

through finding an upper bound on∆. According to the definition of Eq. (5.11), what we need

is a lower bound on|κA0,unt|, which is determined as follows. If we denote byn(condition) the

number of rounds satisfying theconditionin thenrep rounds repeated in the virtual protocol, we

have|κA0| = n(c = d = 0, j , 0) and|κA0,unt| = n(c = d = 0, j , 0, t = 0), wheret = 0 is equivalent

to
∑

l, j zl = m according to Eq. (5.10). Under a given attack strategy of Eve, the statistics of

n(c = d = 0, j , 0) andn(c = d = 0, j , 0, t = 0) is unchanged if we omit Step 5-3∗ and stop the

protocol at Step 6. We may further equivalently replace Steps 5-1∗ and 5-2∗ with a procedure of

measuring theL qubits on the{|0⟩A,l , |1⟩A,l} basis to obtain the outcomesz′0, · · · z′L−1, followed by

substitutionszl := z′l (l , j − 1, j) andzj−1 := z′j−1+ z′j mod 2 in case ofj , 0. Let us define a set

of values ofL nonnegative integers as

Γ(m) :=

(k0, · · · , kL−1)

∣∣∣∣∣∣ kl−1 + kl ≤ 1(1≤ l ≤ L − 1),
L−1∑
l=0

kl = m

 , (5.37)

and operators associated with it by

Π̂
(m)
A :=

∑
{z′l }∈Γ(m)

L−1⊗
l=0

P̂(|z′l ⟩A,l), Π̂
(m)
S :=

∑
{ml }∈Γ(m)

L−1⊗
l=0

P̂(|ml⟩S,l). (5.38)
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We see that (z′0, · · · z′L−1) ∈ Γ(m) implies
∑

l, j zl = m regardless of the value ofj, as long asj , 0.

Hence we have

n(c = d = 0, j , 0, t = 0)

≥ n(c = d = 0, j , 0, (z′0, · · · z′L−1) ∈ Γ(m))

= n(c = d = 0, j , 0)− n(c = d = 0, j , 0, (z′0, · · · z′L−1) < Γ
(m))

≥ n(c = d = 0, j , 0)− n(c = d = 0, (z′0, · · · z′L−1) < Γ
(m)). (5.39)

The numbern(c = d = 0, (z′0, · · · z′L−1) < Γ
(m)) is independent of Eve’s strategy, and it follows the

binomial distribution with success probability ˜p2
0r tag with

r tagB 1−
∑

m

AS ⟨Ψ(0)| Π̂(m)
A ⊗ N̂m |Ψ(0)⟩AS . (5.40)

Sincez′l = ml mod 2 and (m0, . . . ,mL−1) ∈ Γ(m) imply (z′0, · · · z′L−1) ∈ Γ(m), we haveΠ̂(m)
S Υ̂AS =

(Π̂(m)
A ⊗ Π̂

(m)
S )Υ̂AS. On the other hand,z′l = ml mod 2 and

∑
l z′l =

∑
l ml imply z′l = ml, which leads

to (Π̂(m)
A ⊗ N̂m)Υ̂AS = (Π̂(m)

A ⊗ Π̂
(m)
S )Υ̂AS. We thus obtain

(Π̂(m)
A ⊗ N̂m)Υ̂AS = Π̂

(m)
S Υ̂AS. (5.41)

Combined with Eq. (5.14), we obtain

r tag = 1−
∑

m

AS ⟨Ψ(0)| Π̂(m)
S |Ψ(0)⟩AS , (5.42)

which gives us a clear interpretation of quantityr tag being the probability that theL-pulse train

emitted from Alice contains at least two photons in the same pulse or in neighboring pulses. As

a function ofµ, it is calculated as

r tag = 1−
⌈L/2⌉∑
m=0

e−µLµm (L + 1−m)!
m!(L + 1− 2m)!

. (5.43)

In the asymptotic limit ofnrep→ ∞, Eq. (5.39) implies

n(c = d = 0, j , 0, t = 0)
nrep

≥ n(c = d = 0, j , 0)
nrep

− p̃2
0r tag, (5.44)

which means that|κA0,unt|/nrep ≥ |κA0|/nrep− p̃2
0r tag. Using Eqs. (5.2) and (5.11), we have

∆ ≤
r tag

Q
. (5.45)

Hence, choosing

SPA(Q,E1) =
r tag

Q
+

(
1−

r tag

Q

)
h

(
E1

Q− r tag

)
(5.46)
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makes the virtual protocol, and hence the actual protocol, secure. An achievable asymptotic key

rate per pulse is thus given by

RL =
p̃2

0

L

(
(Q− r tag)(1− h

( E1

Q− r tag

)
) − QSEC(E0/Q)

)
(5.47)

whenever the right side is positive.

5.3 Key rates

We show results of numerical calculation of the key rate per pulseRL given by Eq. (5.47) to

compare the conventional passive PE-BB84 protocol (L=2) and the DQPS protocol (L ≥ 3). In

Fig. 5.2, dependence ofRL on overall transmissionη (including detector efficiency) is shown for

L = 2,4,20. We adoptedSEC(E0/Q) = h(E0/Q) and p̃0 = 1. The solid curves represent the key

rateRL under the assumption that a dark count probability ispdark = 0.5 × 10−5 per pulse per

detector. We assumeQ = 1 − e−(L−1)µη + 2(L − 1)pdark, reflecting the fact that there are (L − 1)

valid timings per block of pulses. We also assume that the error rate depends onpdark andη in

addition to a loss-independent rate 3%, namely,E0 = E1 = 0.03(1− e−(L−1)µη) + (L − 1)pdark. The

key rateRL was then optimized overµ for each value ofη. We see that except for a very low

loss, a larger value ofL leads to a higher rate and achieves a longer distance. The dotted curves

represent the key rate forpdark = 0. From these curves, we see that,RL for different values ofL

are all proportional toη2 in the limit of smallη, but its coefficient increases asL gets larger. For

example, at 20 dB loss, we found thatR20/R2 � 2.67, which clearly shows an advantage of the

DQPS protocol over the PE-BB84 protocol when we use essentially the same hardware. We also

see that even in the limit of no loss (η → 1), the DQPS protocol withL = 4 is superior to the

PE-BB84 protocol.

5.4 Discussion and conclusion

Figure 2 shows that the optimized key rates are proportional toη2 in the limit of η → 0, with its

coefficient dependent on the block sizeL. In the special case where the bit error rate is zero, we

can analytically determine the coefficient as a function ofL. For Lµ2 ≪ 1, the parameterr tag in

Eq. (5.43) is approximated asr tag =
3L−2

2 µ2. For Lµη ≪ 1, the parameterQ is approximated as

Q = (L − 1)µη. Hence, forLη2 ≪ 1, the key rateRL = (Q − r tag)/L is optimized atµ = µopt B
L−1
3L−2η to attain the optimal valueRopt

L B (L−1)2

2L(3L−2)η
2. In the limit of a large block size, we have

Ropt
L→∞ = η

2/6 andRopt
L→∞/R

opt
2 = 8/3. The result seems interesting in the sense that the secure key

rate for a large value ofL is more than twiceas large as that ofL = 2 while the inherent loss in
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Figure 5.2: Secure key rate per pulseRL as a function of the overall channel transmissionη.

The solid curves represent the key rate under the assumption that a dark count probability is

pdark = 0.5×10−5 per pulse per detector, and the dotted curves represent the key rate withpdark = 0.

For both solid and dotted curves, the top, the middle and the bottom curve (at a high dB loss)

represent the rates forL = 20, L = 4 andL = 2, respectively. The bit error rate of the sifted key

depends onpdark andη in addition to a 3% loss-independent error. The block sizeL is chosen to

be 2, 4, and 20, whereL = 2 corresponds to the PE-BB84 protocol and the other values to the

DQPS protocol.
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the passive interferometer itself is 1/2 for L = 2. On the other hand, it does not mean that the key

rate exceeds the case ofL = 2 without the interferometer loss, namely, implementation with an

ideal active optical switch. SinceRopt
L ∝ η2 holds in the limit of smallη, the key rate of an ideal

active protocol is 4 times the rate of the passive one forL = 2. If the loss in the optical switch is

taken into account, the passive DQPS protocol is more efficient than the active PE-BB84 protocol

when the loss of optical switch is larger than∼ 20%.

While we have assumed so far that the initial pure state represented in Eq. (5.1) is prepared

by Alice, the proof can be extended to a general light source, which is shown in Appendix C. The

proof there assumes that the phase modulator (PM in Fig. 5.1) works perfectly, and that every

L-pulse train from the source is independent and represented by the same density operator ˆσS

(not necessarily identical for each pulse). For the general light source described above, the secure

key rate is still given by Eq. (5.47) with

r tag = 1−
∑

m

tr
(
Π̂

(m)
S σ̂S

)
. (5.48)

Even when the state ˆσS of theL pulse train is unknown, an upper bound onr tag can be deter-

mined from an off-line coincidence measurement on the light source using a few detectors. As

shown in Appendix D, the calibration method reveals an upper bound that is close to the true

value ofr tag, as long as the state from the source is close to a coherent state with its mean photon

numberµ ≪ L−1/2.

For long distance communication, the DQPS protocol can be improved by using decoy-state

method, in which intensities ofL pulses are randomly changed block by block. However, it is

less effective asL gets larger. This is because only the statistics of the total number of photons

emitted in theL pulses are obtained and no further information on their distribution over theL

pulses is available. As a result, the improvement is limited to the events where a single photon

has been emitted in theL pulses. Thus, for long distance communication, a secret key is extracted

only from such single-photon events. When Alice uses a laser source, the maximum probability

that a single photon is contained inL pulses is 1/e regardless ofL. Bob’s detection has a loss of

1/L due to detection at invalid timings in Fig. 5.1. Therefore, the efficiency of key generation per

pulse is∝ (L − 1)/L2, which shows that the key rates ofL > 2 is smaller than that ofL = 2 in the

limit of long distance.

On the other hand, for short distance communication, the DQPS protocol is expected to com-

pensate for several disadvantages of the decoy-state BB84 protocol mentioned in Sec. 4.3.2. First,

the decoy-state BB84 protocol uses the knowledge on the probability of higher photon numbers

from the light source, which will require complicated devices for calibration while the DQPS

protocol requires as simple devices as the BB84 protocol. Second, the decoy-state BB84 protocol

relies on an involved parameter estimation, which leads to a large overhead from the finite-key
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size effect. In comparison, the simplicity of the key rate formula (5.47) of the DQPS protocol

suggests a small overhead from the finite-key size effect, which is actually confirmed in Chap-

ter 6. From the above insights, the DQPS protocol is expected to be useful for the practical cases

where one prefers a simple setup or short time operation for short distance communication.

Another possible improvement of our result may be obtained from the expected robustness

of general DPS protocols against PNS attacks. As is seen in Sec. 4.4.2, in the DPS protocols

(including the DQPS protocol), Eve’s attempts to control the timing of detectionj tends to violate

the coherence chain and increase the probability of a bit error, which is expected to result in the

robustness against PNS attacks. While the robustness can be seen as aη
3
2 -dependence of the key

rate in a security proof of the DPS protocol [90], our key rate of the DQPS protocol scales asη2.

This is because our proof assumed the pessimistic assumption that Eve is able to control the value

of j without causing any bit error. If we analyze the security based on the proof technique for

the DPS protocol [90], our protocol may benefit from the robustness against PNS attacks without

using decoy states.

As a conclusion, we have proved the security of differential quadrature phase shift (DQPS)

quantum key distribution protocol, which can be implemented with almost the same setup as the

phase-encoding (PE) BB84 protocol. The proof is based on the a careful adaptation of the tagging

idea and the complementarity argument. We found that the key generation rate exceeds that of

the PE-BB84 protocol for any channel transmission, and is 8/3 as high as the rate of the PE-BB84

protocol in the limit of small transmission.





Chapter 6

Simple method of finite-key analysis for

WCP-QKD

In contrast to the asymptotic analysis conducted in Chapter 5, security analysis of QKD should

take into account statistical fluctuations due to the finite size of communication data, which re-

quires so-called “finite-key analysis”. Although the secure key generation rate of the DQPS

protocol was higher than that of the PE-BB84 protocol in the asymptotic analysis, it is not ob-

vious whether the advantage is still retained in the finite-key regime since the security proof of

the DQPS protocol is not as straightforward as that of the BB84 protocol. This motivates us to

conduct finite-key analysis for the DQPS protocol. Interestingly, on the way to address this prob-

lem, we discovered a new method for finite-key analysis which is suitable not only for the DQPS

protocol but also for other QKD protocols using WCP, enabling a smaller number of estimated

parameters. The method is based on Bernoulli sampling, which is related to binomial distribution,

in contrast to the currently used method based on the simple random sampling, which is associ-

ated with hypergeometric distribution. For WCP-BB84 protocol, a higher key generation rate is

obtained with the proposed method compared to the conventional method with simple random

sampling. Furthermore, the required number of detected signals to generate a secret key reduces

drastically from the previous works. By applying the proposed method to the DQPS protocol,

we show that the advantage of the DQPS protocol over the PE-BB84 protocol still remains in the

finite key regime.

This chapter is organized as follows. In Sec. 6.1, we briefly introduce basic ideas in the sam-

pling problem which are necessary for finite-key analysis, simple random sampling and Bernoulli

sampling, and also mention related works. In Sec. 6.2, we propose a method of finite-key analy-

sis based on Bernoulli sampling, and applies it to the ideal BB84 protocol where Alice and Bob

can manipulate perfect single-photon states. The proposed method is then applied to the BB84

71
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protocol with WCP as well as the DQPS protocol in Sec. 6.3. Finally, we give discussion and

conclusion in Sec. 6.4. The results of this chapter complete the security proof for the BB84 pro-

tocol in Sec. 3.3 and Sec. 4.2.2 by explicitly determining the bounds on the numbers of phase

errors and untagged rounds.

6.1 Sampling problem in finite-key analysis

The statistical fluctuations in the finite-key analysis appear in the estimation of the number of

phase errors and the estimation of the number of untagged incidents, for example. To obtain

concise analysis and also to avoid the effect of unnecessary fluctuations, a simple method with a

smaller number of estimation processes is preferred. Although several proofs [17, 113, 114] use

Azuma’s inequality [25] to treat specific protocols, a number of recent finite-key analyses [13,

15, 16, 24, 76] are based on the method with simple random sampling, which is used to model

n1 draws, without replacement, from a finite population of sizen2 that containsk2 errors. The

probability that the number of errors in the sample isk1 obeys hypergeometric distribution

HG(k1; n1, k2,n2) :=

(
k2
k1

)(
n2−k2
n1−k1

)(
n2
n1

) . (6.1)

In several finite-key analyses [24, 76] based on simple random sampling, efforts were made to

find bounds on hypergeometric distribution which are related to binomial distribution in order to

simplify numerical calculation.

In order to mitigate the inefficiency arising from basis mismatch between the sender and

the receiver, the BB84 protocol is often implemented with biased basis choice [115], in which

the minor basis is used solely for monitoring leaked information in the major basis. The BB84

protocols and the DQPS protocol we have investigated in Chaps. 3-5 include such a bias in the

form of the basis choice probabilities ˜pZ and p̃X (or p̃0 and p̃1). In such cases, the whole data

from the rounds in the monitoring basis is regarded as a sample, with each round selected with

a constant probability dictated in the protocol as that of the basis choice. This suggests that the

data from the monitoring basis is related to Bernoulli sampling, in which each element of the

population of sizen2 is sampled with fixed probability ˜p1. The number of samplesn1 obeys

binomial distribution

BI(n1; n2, p̃1) :=

(
n2

n1

)
p̃n1

1 (1− p̃1)
n2−n1. (6.2)

If the BB84 protocol with biased basis choice essentially includes the property of the binomial

distribution, analysis based on the conventional simple random sampling may introduce unneces-
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sary complexity and possibly leads to a lower key rate. This is the intuitive advantage expected in

using the Bernoulli sampling for finite-key analysis, which is certified in the following chapters.

6.2 Analysis for the ideal BB84 protocol

Here we consider finite-key analysis for the ideal BB84 protocol. The protocol follows the de-

scription in Sec. 2.2.3 and assumptions in Sec. 3.3. For convenience, we define several variables

and parameters as

ntot := nZ + nX, (6.3)

and

pZ :=
p̃2

Z

p̃2
Z + p̃2

X

,

pX :=
p̃2

X

p̃2
Z + p̃2

X

. (6.4)

6.2.1 Formalism for key length

We show a formalism for key length in terms of phase errors by using the result of 3.3. From

Sec. 3.2.2, a phase error is defined as a bit error which occurs when Alice and Bob conduct virtual

X-basis measurement on aZ-labeled round after Step (7’) in Sec. 3.3.1. An important property

which will be used in the next subsection is that the measurement for a phase error on aZ-labeled

round and the measurement for a bit error on anX-labeled round are identical, and hence they

only differs in the labeling.

Let kph be a random variable which represents the number of phase errors onnZ Z-labeled

rounds. Once we have a good upper bound onkph, a secure key length can be calculated as

follows. Suppose that we have a functionf (kX, nX,ntot) which satisfies

Pr(kph > f (kX,nX, ntot)) ≤ ϵPE (6.5)

regardless of Eve’s attack strategy. From the theorem in Sec. 3.3.2, by setting

ϵs =
√

2
√
ϵPE+ ϵPA, (6.6)

the protocol isϵc-correct andϵs-secret if the final key lengthlfin satisfies

lfin ≤ nZ(1− h

(
f (kX,nX,ntot)

nZ

)
) − log2

2
ϵPA
− λEC(ϵc), (6.7)

whereλEC(ϵc) is the cost of error correction to achieveϵc-correctness.
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6.2.2 Bounds on phase errors

In this subsection, we discuss the specific methods to obtainf (kX,nX,ntot) in Eq. (6.5) including

a method based on the Bernoulli sampling, and a more conventional method based on the sim-

ple random sampling. We also introduce a third, rather convoluted method, which will help to

elucidate the difference between the former two methods.

Before discussing each of the methods, we first derive general statistical properties. Since

theZ-labeled phase error and theX-labeled bit error are obtained by identical measurements, the

procedure to obtain those errors is equivalent to the following steps after Step (5’) in Sec. 3.3.1:

(a) Alice and Bob further discard each of the remaining rounds with probability 1− p̃2
Z − p̃2

X.

(b) They makeX-basis measurements on the remainingntot rounds and obtainktot errors. (c)

Finally, they label each of thentot rounds asZ or X with probability pZ and pX (see Eq. (6.4)),

respectively, and obtainkph phase errors inZ-labeled rounds andkX = ktot − kph bit errors in

X-labeled rounds*1). In this procedure, sincekX errors are sampled fromktot errors with a fixed

probability pX, it follows a binomial distribution ifktot andntot are fixed:

Pr(kX | ktot,ntot) = BI(kX; ktot, pX). (6.8)

On the other hand, the step (c) of the above procedure is equivalently denoted as follows: Alice

and Bob draw a numbernX based on the binomial distribution BI(nX; ntot, pX), and then selectnX

random rounds among thentot rounds to label asX, thereby determiningkX. This implies that the

numberkX obeys hypergeometric distribution ifnX, ktot andntot are fixed:

Pr(kX | nX, ktot,ntot) = HG(kX; nX, ktot,ntot). (6.9)

In order to use the properties derived above, it is convenient to reformulate Eq. (6.5) as fol-

lows. From Eq. (6.5), we have∑
ktot,ntot

Pr(kph > f (kX,nX,ntot) | ktot,ntot)Pr(ktot,ntot) ≤ ϵPE. (6.10)

Since Pr(ktot,ntot) can be under control of Eve, we seek forf (kX,nX,ntot) satisfying

Pr(kph > f (kX,nX,ntot) | ktot,ntot) ≤ ϵPE (6.11)

for any ktot and ntot, which is a sufficient condition for Eq. (6.5). For later convenience, we

equivalently describe Eq. (6.11) as∑
kX,nX;kX<ktot− f (kX,nX,ntot)

Pr(kX,nX | ktot,ntot) ≤ ϵPE. (6.12)

*1) If one uses sampled bits onZ-labeled rounds to determine the cost for error correction (see Actual protocol in

Sec. 3.3.1), it should be done as a Bernoulli sampling with a probabilityξ. Since these sampled bits are discarded,

the probabilitiespZ andpX defined in Eq. (6.4) should be modified aspZ =
p̃2

Z(1−ξ)
p̃2

Z(1−ξ)+p̃2
X

andpX =
p̃2

X

p̃2
Z+p̃2

X
, respectively.
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The first method to determinef (kX,nX,ntot), whose utility we will emphasize throughout this

chapter, is based on Bernoulli sampling using the property of binomial distribution Eq. (6.8). This

method adoptsf (kX,nX,ntot) = fBI(kX) where

fBI(kX) := min

{
ktot

∣∣∣∣CBI(kX; ktot, pX) ≤ ϵPE

}
− kX − 1 (6.13)

CBI(kX; ktot, pX) :=
∑

k′X≤kX

BI(k′X; ktot, pX). (6.14)

The proof thatfBI(kX) satisfies Eq. (6.11) is as follows. DefinekX(ktot) := max{kX | ktot > fBI(kX)+

kX}. Then we have ∑
kX; ktot> fBI (kX)+kX

BI(kX; ktot, pX) ≤ CBI(kX(ktot); ktot, pX). (6.15)

SinceCBI(kX; ktot, pX) is a decreasing function ofktot, from Eq. (6.13) we haveCBI(kX; ktot, pX) ≤
ϵPE for any pair (kX, ktot) satisfyingktot ≥ fBI(kX)+kX+1. Sincektot ≥ fBI(kX(ktot))+kX(ktot)+1 holds

by definition ofkX(ktot), we haveCBI(kX(ktot); ktot, pX) ≤ ϵPE. By connecting this to Eq. (6.15), we

have ∑
kX; kX<ktot− fBI (kX)

BI(kX; ktot, pX) ≤ ϵPE (6.16)

for anyktot. From Eqs. (6.8) and (6.16), we have∑
kX,nX; kX<ktot− fBI (kX)

Pr(kX,nX | ktot,ntot)

=
∑

kX; kX<ktot− fBI (kX)

Pr(kX | ktot, ntot)

≤ ϵPE, (6.17)

which is identical to Eq. (6.12) withf (kX, nX,ntot) = fBI(kX). Therefore, we have

Pr(kph > fBI(kX) | ktot,ntot) ≤ ϵPE. (6.18)

As a result of the Bernoulli-sampling method, the protocol isϵc-correct andϵs-secret if the final

key lengthlfin satisfies

lfin ≤ l(BI) := nZ(1− h

(
fBI(kX)

nZ

)
) − log2

2
ϵPA
− λEC(ϵc), (6.19)

whereϵs is given by Eq. (6.6).
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The second method is based on simple random sampling, applying the property of the hyper-

geometric distribution Eq. (6.9), which is already seen in Ref. [13, 15, 16, 24], for example. This

method adoptsf (kX,nX, ntot) = fHG(kX,nX,ntot) where

fHG(kX,nX,ntot) := min

{
ktot

∣∣∣∣CHG(kX; nX, ktot,ntot) ≤ ϵPE

}
− kX − 1

CHG(kX; nX, ktot,ntot) :=
∑

k′X≤kX

HG(k′X; nX, ktot,ntot). (6.20)

The proof thatfHG(kX,nX,ntot) satisfies Eq. (6.11) is similar to the proof forfBI(kX). Recall that

the proof for fBI(kX) did not use the explicit form of BI(k′X, ktot, pX) but only used the decreasing

property ofCBI(kX; ktot, pX) as a function ofktot. SinceCHG(kX; nX, ktot,ntot) is also a decreasing

function ofktot, we have ∑
kX; kX<ktot− fHG(kX,nX,ntot)

HG(kX; nX, ktot,ntot) ≤ ϵPE (6.21)

for anynX, ktot andntot, which is analogous to Eq. (6.16). From Eqs. (6.9) and (6.21), we have∑
kX,nX; kX<ktot− fHG(kX,nX,ntot)

Pr(kX,nX | ktot,ntot)

=
∑

kX,nX; kX<ktot− fHG(kX,nX,ntot)

Pr(kX | nX, ktot,ntot)Pr(nX | ktot,ntot)

≤ ϵPE, (6.22)

which is identical to Eq. (6.12) withf (kX,nX,ntot) = fHG(kX,nX,ntot). Therefore, we have

Pr(kph > fHG(kX,nX, ntot) | ktot,ntot) ≤ ϵPE. (6.23)

As a result of the method with simple random sampling, the protocol isϵc-correct andϵs-secret if

the secret key lengthlfin satisfies

lfin ≤ l(HG) := nZ(1− h

(
fHG(kX,nX,ntot)

nZ

)
) − log2

2
ϵPA
− λEC(ϵc) (6.24)

whereϵs is given by Eq. (6.6).

To understand the relation between the two methods with Bernoulli sampling and simple

random sampling, we introduce another method which uses full knowledge of the distribution

Pr(kX, nX | ktot,ntot) appearing in Eq. (6.12). The argument before Eq. (6.8) also implies that

the numbermX := nX − kX of X-labeled rounds without bit error obeys binomial distribution

BI(mX; ntot − ktot, pX), and thatmX andkX are independent conditioned onktot andntot. We thus

obtain

Pr(kX,nX | ktot,ntot) = BI(kX; ktot, pX)BI(nX − kX; ntot − ktot, pX). (6.25)
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The argument leading to Eq. (6.9) gives another expression for the distribution as

Pr(kX,nX | ktot,ntot) = HG(kX; nX, ktot,ntot)BI(nX; ntot, pX). (6.26)

As a result, Eq. (6.12) is expressed in the following two equivalent ways:∑
kX,mX;kX<ktot− f (kX,kX+mX,ntot)

BI(kX; ktot, pX)BI(mX; ntot − ktot, pX) ≤ ϵPE.

(6.27)

or ∑
kX,nX;kX<ktot− f (kX,nX,ntot)

HG(kX; nX, ktot,ntot)BI(nX; ntot, pX) ≤ ϵPE. (6.28)

Since fBI(kX) satisfies Eq. (6.16), Eq. (6.27) holds iff (kX, kX +mX,ntot) = fBI(kX). Similarly,

since fHG(kX,nX,ntot) satisfies Eq. (6.21), Eq. (6.28) holds iff (kX,nX,ntot) = fHG(kX, nX,ntot).

On the other hand, the condition of Eqs. (6.27) and (6.28) do not imply Eq. (6.16) or Eq. (6.21).

Therefore, there could be a better bound compared tofBI(kX) and fHG(kX, nX,ntot) based on Eq. (6.27)

or Eq. (6.28). In general, it is very complicated to determine the optimal functionf (kX,nX,ntot)

for the final key lengthlfin, since it will depend on the explicit functional dependence oflfin on

f (kX, nX,ntot).

The difference between the two equivalent conditions Eqs. (6.27) and (6.28) is the choice of

two variables from three no-independent random variableskX, nX and mX. When (kX,nX) are

chosen in Eq. (6.28), the distribution ofkX, HG(kX; nX, ktot,ntot) is dependent on the value ofnX.

On the other hand, Eq. (6.27) implies that two variables (kX,mX) are independent of each other.

This suggests that the underlying statistics in the BB84 protocol with biased basis choice are

understood in terms of independent binomial distributions.

Let us mention the difference from the other works [24, 76] which deal with relations between

bounds on binomial distribution and ones on hypergeometric distribution since the former are

easily treated with existing mathematical packages. Ref. [24] uses the property, which dates

back to Hoeffding [116], that expectation of a convex function over hypergeometric distribution

is no larger than that over binomial distribution. In [76], Ahrens map [117] was used to show

that hypergeometric distribution is bounded by a permutated binomial distribution within a factor

of
√

2. In contrast to these works, in our case the probability distribution Eq. (6.8) reflects the

binomial distribution inherent in the BB84 protocol with biased basis choice.

6.2.3 Numerical examples

Here we numerically compare the final key lengths derived from the three methods in the last

subsection in the simplest cases. We calculate the key lengths for the case where no error is
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Figure 6.1: Secure key ratio of the qubit-based BB84 protocol to the asymptotic limit as a function

of total rounds of the protocolnrep. We assume no errors (kX = 0) and no loss (ntot = nrep). The

security parameters are set toϵc = 10−15 andϵs = 10−10. The top, middle and bottom curves repre-

sent the ratiosl(opt)/nrep, l(HG)/nrep (method with simple random sampling) andl(BI)/nrep (Bernoulli-

sampling method), respectively. In the limit ofnrep→ ∞, each curve converges tol/nrep = 1.

observed (kX = 0) and every signal is detected (ntot = nrep). The cost of error correction is set to

λEC(ϵc) = log2(1/ϵc). We also assumenZ = nrepp̃2
Z andnX = nrepp̃2

X.

If we do not care about the key length forkX > 0, the optimal choice off (kX,nX, ntot) satisfying

Eq. (6.28) (or Eq. (6.27)) is given byf (kX,nX,ntot) = ntot − nX for kX ≥ 1 and f (0,nX,ntot) =

f (kX=0)
opt (nX,ntot) with

f (kX=0)
opt (nX,ntot) := min

{
ktot

∣∣∣∣G(nX; ktot,ntot) ≤ ϵPE

}
− 1

G(nX; ktot,ntot) :=
∑

nX≤n′X≤ntot−ktot

HG(0;n′X, ktot, ntot)BI(n′X; ntot, pX). (6.29)

The proof is analogous to the one forfBI(kX) or fHG(kX,nX,ntot). SinceG(nX; ktot,ntot) is a decreas-

ing function ofktot, by using an argument similar to the one leading to Eq. (6.16), we have∑
nX; ktot> f

(kX=0)
opt (nX,ntot)

HG(0;nX, ktot,ntot)BI(nX; ntot, pX) ≤ ϵPE. (6.30)

This is identical to Eq. (6.28) sincekX < ktot− f (kX,nX,ntot) is never satisfied forkX ≥ 1. The key

length whenkX = 0 was observed is then given by

l(opt) := nZ(1− h

 f (kX=0)
opt (nX,ntot)

nZ

) − log2
2
ϵPA
− λEC(ϵc). (6.31)
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In Fig. 6.1, we show the secure key ratios to the asymptotic casel(BI)/nrep, l(HG)/nrep and

l(opt)/nrep as functions of total rounds of the protocolnrep. For eachnrep, the value of ˜pX was

optimized to maximize the key length. In the limit ofnrep→ ∞, each curve converges tol/nrep =

1. The security parameters are set toϵc = 10−15 andϵs = 10−10, ϵPE = 1/4 × 10−20 andϵPA =

1/4× 10−20. We see that although the key ratel(opt) is the best, the three methods achieve almost

the same key length.

6.3 Analysis for WCP-based protocol

Here, we apply the analyses introduced in the previous section to the protocols using WCP. We

consider the WCP-based BB84 protocol in the subsections 6.3.1 and 6.3.2, and move to the DQPS

protocol in subsection 6.3.3.

6.3.1 The WCP-BB84 protocol

The WCP-BB84 protocol follows the procedures described in Sec. 2.2.3 and assumptions in

Sec. 4.2.2. Here, we prove the security of the WCP-BB84 protocol using the theorem in Sec. 4.2.2.

From Sec. 3.2.2, a phase error in aZ-labeled round was defined as an error occurring when Alice

makes an idealX-basis measurement on the systemA and Bob makes the actualX-basis measure-

ment on the systemS (the measurement conducted onX-labeled rounds in the actual protocol).

Let kph,unt be the total number of phase errors on the untaggedZ-labeled rounds. Suppose that an

upper bound ofkph,unt is given as a function ofkX, nX, ntot andnZ,unt:

Pr(kph,unt > f (kX,nX,ntot,nZ,unt)) ≤ ϵPE, (6.32)

wherenZ,unt is the number of untagged andZ-labeled round defined in Sec. 4.2.2. We also suppose

that there is a probabilistic lower boundnZ,unt which satisfies

Pr(nZ,unt < nZ,unt) ≤ ϵZ,unt. (6.33)

According to the theorem in Sec. 4.2.2, by setting

ϵs =
√

2
√
ϵPE+ ϵPA + ϵZ,unt, (6.34)

the protocol isϵc-correct andϵs-secret if

lfin ≤ min
nZ,unt≥nZ,unt

{
nZ,unt(1− h

(
f (kX,nX,ntot,nZ,unt)

nZ,unt

)
)

}
− log2

2
ϵPA
− λEC(ϵc) (6.35)

is satisfied.
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Under the assumptions for the source and measurement apparatus, the basic distributions used

in the previous section, Eqs. (6.8) and (6.9), are still valid if we confine ourselves to the untagged

rounds. Although the fact may be intuitively obvious for the WCP-BB84 protocol by seeing the

equivalent protocol in Sec. 4.2.2, here we give its mathematical justification since it helps when

we treat the DQPS protocol in Sec. 6.3.3. We define a set of integers labeling the rounds in the

protocol asNrep := {1,2, ....nrep}. As subsets ofNrep, let us define the set of the integers labeling

the rounds where Alice (Bob) choosesX basis asXA (XB) regardless of detection. Define those

labeling the untagged and detected rounds asNunt. LetKunt be a subset ofNunt labeling the rounds

which have errors when Alice and Bob conduct virtualX-basis measurements regardless of their

basis choice. For any subsetM, letM := Nrep \M. With these notations,

kph,unt= |XA ∩ XB ∩ Kunt|,
nZ,unt = |XA ∩ XB ∩ Nunt|. (6.36)

We define other random variables as follows:

kX,unt : = |XA ∩ XB ∩ Kunt|,
nX,unt : = |XA ∩ XB ∩ Nunt|,
ktot,unt : = kX,unt+ kph,unt,

ntot,unt : = nX,unt+ nZ,unt. (6.37)

Since bases are selected at Step (6’) in the protocol in Sec. 4.2.2, at whichNunt andKunt have

already been determined, we have

Pr(XA ∩ Nunt =MA,XB ∩ Nunt =MB | Kunt,Nunt) = Θ(MA,Nunt)Θ(MB,Nunt) (6.38)

for allMA ⊂ Nunt andMB ⊂ Nunt, where we defined

Θ(M1,M2) = p̃|M1|
X p̃|M2\M1|

Z . (6.39)

By simple calculation of the probability theory, we have

Pr(kX,unt | ktot,unt,ntot,unt) = BI(kX,unt; ktot,unt, pX) (6.40)

and

Pr(kX,unt | nX,unt, ktot,unt,ntot,unt) = HG(kX,unt; nX,unt, ktot,unt,ntot,unt), (6.41)

which means that Eqs. (6.8) and (6.9) essentially hold true for the untagged rounds.
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Now we derive a key rate formula for the WCP-BB84 protocol based on Eq. (6.40), as was

done with the Bernoulli-sampling method for the ideal protocol in Sec. 6.2.2. First, we seek for

f (kX, nX,ntot,nZ,unt) which satisfies Eq. (6.32). Analogous to the derivation of Eq. (6.18) from

Eq. (6.8), Eq. (6.40) leads to

Pr(kph,unt > fBI(kX,unt) | ktot,unt,ntot,unt) ≤ ϵPE (6.42)

for anyktot,unt andntot,unt, and hence we have

Pr(kph,unt > fBI(kX,unt)) ≤ ϵPE. (6.43)

SincekX,unt is not an observed value, we use the obvious bound

kX,unt ≤ kX. (6.44)

Using the inequality

CBI(kX + 1;ktot + 1, pX)

= CBI(kX; ktot, pX) + (1− pX)BI(kX + 1;ktot, pX)

≥ CBI(kX; ktot, pX) (6.45)

in Eq. (6.13), we havefBI(kX) ≤ fBI(kX + 1), implying that fBI(kX) is an increasing function.

Hence, Eqs. (6.43) and (6.44) lead to

Pr(kph,unt > fBI(kX)) ≤ ϵPE, (6.46)

which means thatfBI(kX) fulfills Eq. (6.32).

Next, we determinenZ,unt which satisfies Eq. (6.33). To determine a lower bound ofnZ,unt, we

consider an upper bound ofnZ,tag := nZ − nZ,unt. Let NZ,tag be the number of rounds where Alice

choosesZ basis, Bob choosesZ basis and the light source emits a tagged signal (two photons or

more). As those conditions are independent of each other as seen from Eq. (4.6), we have

Pr(NZ,tag) = BI(NZ,tag,nrep, r tagp̃
2
Z). (6.47)

SincenZ,tag is the number of detected rounds among theNZ,tag rounds,

nZ,tag ≤ NZ,tag (6.48)

holds. Eqs. (6.47) and (6.48) lead to

Pr(nZ,tag > n) ≤ 1−CBI(n; nrep, r tagp̃
2
Z) (6.49)
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for anyn. Thus, we have

Pr(nZ,tag > g(r tagp̃
2
Z, ϵZ,unt)) ≤ ϵZ,unt, (6.50)

where

g(x, y) := min
{
n
∣∣∣∣1−CBI(n; nrep, x) ≤ y

}
. (6.51)

Let nZ,unt be

nZ,unt := nZ − g(r tagp̃
2
Z, ϵZ,unt). (6.52)

By usingnZ,tag = nZ − nZ,unt, Eq. (6.50) leads to

Pr(nZ,unt < nZ,unt) ≤ ϵZ,unt. (6.53)

Combined with Eqs. (6.35), (6.46) and (6.53), the protocol isϵc-correct andϵs-secret if

lfin ≤ l(BI)
WCP := nZ,unt(1− h

 fBI(kX)
nZ,unt

) − log2
2
ϵPA
− λEC(ϵc), (6.54)

whereϵs is given by Eq. (6.34). Together with Eqs. (6.13), (6.14), (6.51) and (6.52), Eq. (6.54)

constitutes the main result of Sec. 6.3.1.

For the purpose of comparison, here we also discuss what the key rate formula looks like if

we start from Eq. (6.41), based on simple random sampling. As we have derived Eq. (6.23) from

Eq. (6.9), Eq. (6.41) leads to

Pr(kph,unt > fHG(kX,unt, nX,unt,ntot,unt) | ktot,unt,ntot,unt) ≤ ϵPE, (6.55)

which, in turn, leads to

Pr(kph,unt > fHG(kX,unt,nX,unt,ntot,unt)) ≤ ϵPE. (6.56)

Similarly to fBI(kX), we can prove thatfHG(kX,nX,ntot) is an increasing function ofkX. SincekX,unt

is upper-bounded by Eq. (6.44), Eq. (6.56) leads to

Pr(kph,unt > fHG(kX,nX,unt, ntot,unt)) ≤ ϵPE. (6.57)

In contrast to Eq. (6.46), it requires an additional estimation process fornX,unt to obtain fHG(kX,

nX,unt,ntot,unt). A lower bound defined bynX,unt := nX − g(r tagp̃2
X, ϵX,unt) satisfies

Pr(nX,unt < nX,unt) ≤ ϵX,unt. (6.58)

SincenX,unt is known in principle in the actual protocol (Step (6’) in Sec. 4.2.2), the trace distance

between the final state and the ideal state is written as a sum of the part fornX,unt < nX,unt and
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the one fornX,unt ≥ nX,unt as in Eq. (4.33). Hence, combined with Eqs. (6.35), (6.53), (6.57) and

(6.58), by setting

ϵs =
√

2
√
ϵPE+ ϵPA + ϵZ,unt+ ϵX,unt, (6.59)

the protocol isϵc-correct andϵs-secret if

lfin ≤ l(HG)
WCP := min

nZ,unt≥nZ,unt

ξ(kX,nX,unt,nZ,unt)

ξ(kX,nX,unt,nZ,unt) := ξ̃(kX,nX,unt,nZ,unt) − log2
2
ϵPA
− λEC(ϵc)

ξ̃(kX,nX,unt,nZ,unt) := nZ,unt(1− h

(
fHG(kX,nX,unt,nX,unt+ nZ,unt)

nZ,unt

)
). (6.60)

The reason that the minimization ofnZ,unt appears is becauseξ̃(kX,nX,unt,nZ,unt) is not monotone-

increasing function ofnZ,unt. For example, withϵPE = 1/16× 10−20, we numerically confirmed

that ξ̃(0,25000,25318)∼ 24631 and̃ξ(0,25000,25319)∼ 24623. This means that the protocol

with final key lengthl = ξ(kX, nX,unt,nZ,unt) is not necessarily secure.

As can be seen from the comparison between Eqs. (6.54) and (6.60), the method with simple

random sampling is much more complicated than the Bernoulli-sampling method, involving an

additional estimated parameter and a minimization. Moreover, as shown in Sec. 6.3.2, it tends

to give a key rate lower than the Bernoulli-sampling method, probably because of the use of

pessimistic bound onnX,unt.

6.3.2 Numerical examples

Here, we show two examples of numerical calculation for the WCP-BB84 protocol. We assume

that the light source emits a pulse whose photon-number distribution is Poissonian with meanµ,

namely,r tag is given by Eq. (4.19). Like Fig. 6.1 for the ideal protocol, we first calculated the

simplest case where no error is observed (kX = 0) and no loss occurs (ntot = nrep(1− e−µ)), which

is shown in Fig. 6.2. The cost of error correction was set toλEC(ϵc) = log2(1/ϵc). We assumed

nZ = ntotp̃2
Z andnX = ntotp̃2

X. The values of ˜pX andµ were optimized for each value ofnrep. For

calculation ofl(BI)
WCP, the security parameters were set toϵc = 10−15, ϵs = 10−10, ϵPE = 1/16×10−20,

ϵPA = 1/16×10−20 andϵZ,unt = 1/2×10−10. The result is shown as the red curve in Fig. 6.2, where

the key length Eq. (6.54) is normalized by the optimized asymptotic key rate of 1/e per signal at

µ = 1 andp̃X → 0. We see that a final key can be extracted when the total roundsnrep is more than

∼ 103.7 while the threshold isnrep ∼ 103.2 for the ideal protocol using the same parameters (see

also Fig. 6.1). For comparison, we also calculated the value ofξ(kX,nX,unt,nZ,unt)/(nrep/e) under

the same condition, which is shown as the blue curve in Fig. 6.2. The security parameters were

the same as the red curve, except forϵZ,unt = ϵX,unt = 1/4× 10−10. The quantityξ(kX,nX,unt,nZ,unt)
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Figure 6.2: Comparison of estimation methods for the WCP-BB84 protocol. Upper curve

(Bernoulli-sampling method): Secure key ratio to the asymptotic limitl(BI)
WCP/(nrep/e) as a func-

tion of total rounds of the protocolnrep. Lower curve (method with simple random sampling): An

upper bound on the derived secure key ratiol(HG)
WCP/(nrep/e). We assume no error (kX = 0) and no

loss (ntot = nrep(1−e−µ)). The security parameters are set toϵc = 10−15 andϵs = 10−10. In the limit

of nrep→ ∞, each curve converges tolWCP/(nrep/e) = 1.

is an upper bound ofl(HG)
WCP derived in Eq. (6.60). The figure shows that the key lengthl(BI)

WCP from

Bernoulli sampling is higher thanl(HG)
WCP from simple random sampling. A possible reason is that

the estimation ofnX,unt, which is a pessimistic bound ofnX,unt, is not required in determining

fBI(kX).

In Fig. 6.3, we show a result in more practical situations based on Eq. (6.54) to make com-

parison to the previous finite-key analysis for the WCP-BB84 protocol [23]. The figure shows

the dependence of secure key ratel(BI)
WCP/nrep on the channel transmissionηc. In each curve, the

number of Bob’s detected signalsndet is fixed asndet = 104,105,106 and 107. The parameters

were chosen to be the same as [23]: Quantum efficiency of both detectors isηd = 0.1 and a

dark count probability per pulse ispdark = 10−5 per detector. In addition to errors from dark

counts, there is a 0.5% loss-independent bit error. The security parameters were set toϵc = 10−10,

ϵs = 10−5, ϵPE = 1/16×10−10, ϵPA = 1/16×10−10, andϵZ,unt = 1/2×10−5. Total transmission rate is

Q = 1−(1−2pdark)e−µηcηd, and error rate is given byE/Q whereE = 0.005(1−e−µηcηd)+pdarke−µηcηd.

Based on the parameters above, we assumeλEC(ϵc) = 1.05h(E/Q) + log2(1/ϵc), nrep = ndet/Q,

nZ = ndetp̃2
Z, nX = ndetp̃2

X andkX = nXE/Q. To save the computation time, we used Chernoff
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Figure 6.3: Secure key rate per signal of the WCP-BB84 protocoll(BI)
WCP/nrep as a function of

channel transmissionηc. The parameters are set to be the same as Ref. [23]. Quantum efficiency

of detectors:ηd = 0.1. Dark count probability per pulse per detector:pdark = 10−5. Loss-

independent bit error: 0.5%. Error correction cost:λEC(ϵc) = 1.05h(E/Q) + log2(1/ϵc). The

security parameters:ϵc = 10−10 andϵs = 10−5. From the top to the bottom curve, the number of

detected signals arendet = 107,106,105 and 104, respectively. The required number of detected

signals to generate a final key is less than 104, while it was∼ 107 in the previous result [23].

bound [118]

CBI(kX; ktot, pX) ≤ D

(
kX

ktot
, ktot, pX

)
(6.61)

for (kX, ktot, pX) satisfyingkX ≤ ktotpX, where

D(x, y, z) :=

( z
x

)x(
1− z
1− x

)1−xy

. (6.62)

In Fig. 6.3, we see that a key can be extracted even whenndet = 104. This is a significant

improvement from the result of [23], in which the required number of detected signals to generate

a final key isndet ∼ 107.

6.3.3 The DQPS protocol

In this section, we conduct finite-key analysis of the DQPS protocol based on the property of

binomial distribution Eq. (6.40). The precise description of the protocol and physical assumptions

for the security proof follow those in Chapter 5 except several notations. In order to establish
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the analogy to the WCP-BB84 protocol analyzed in the previous section, we identify Alice’s

{|+⟩ , |−⟩} measurement withZ-basis measurement, and{|−i⟩ , |+i⟩} measurement withX-basis

measurement. Accordingly, we replace the notations as follows:

p̃0→ p̃Z (6.63)

p̃1→ p̃X (6.64)

κA0, κB0→ κA,Z, κB,Z (6.65)

κA1, κB1→ κA,X, κB,X. (6.66)

The alternative tagging rule proposed in Chapter 5 allows the variableskph,unt andnZ,unt to be

defined in the same way as in the WCP-BB84 protocol, and the argument up to Eq. (6.35) holds

for the DQPS protocol as well. The remaining tasks are to find a functionf satisfying Eq. (6.32)

and to find a boundnZ,unt satisfying Eq. (6.33), both of which require slightly different approaches

from the WCP-BB84 protocol.

Since our tagging definition for the DQPS protocol involves Bob’s detection timingj, we

cannot decompose the emitted states as in Eq. (4.6). As a result, we cannot rewrite the protocol to

postpone the basis selection as in the one shown in Sec. 4.2.2. Hence we need to justify Eq. (6.38)

on a different ground. This was essentially done in Chapter 5 along with appendix B, namely, in

Eq. (B.4), which reads

Pr(c, a, b, j, t) = Pr(c)β(gt, j(c), a, b, j, t). (6.67)

The random variablesc, a, b, j and t are bit strings of lengthnrep. Let us rewrite them by various

sets introduced in Sec. 6.3.1. Since there is a one-to-one correspondence betweenXA andc, and

gt, j(c) is a function of{XA ∩ Nunt,Nunt}, we have

Pr(XA, a, b, j, t) = Pr(XA)β̃(XA ∩ Nunt,Nunt, a, b, j, t). (6.68)

By using the fact thatKunt andNunt are functions ofa, b, j and t, namely, they are written as

Kunt = FKunt( j, t) andNunt = FNunt(a, b, j, t), define

β′(XA ∩ Nunt,Kunt,Nunt) :=
∑

a,b, j,t

β̃(XA ∩ Nunt,Nunt, a, b, j, t), (6.69)

where the summation is over{a, b, j, t} satisfyingFKunt( j, t) = Kunt andFNunt(a, b, j, t) = Nunt.

From Eq. (6.68), we have

Pr(XA,Kunt,Nunt) = Pr(XA)β′(XA ∩ Nunt,Kunt,Nunt), (6.70)

which leads to

Pr(XA,Kunt,Nunt) = Θ(XA,Nrep)β
′(XA ∩ Nunt,Kunt,Nunt). (6.71)
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SinceΘ(M,Nrep) defined in Eq. (6.39) satisfies

Θ(M,Nrep) = Θ(M∩Nunt,Nunt)Θ(M∩Nunt,Nunt) (6.72)

for anyM ⊂ Nrep, from Eq. (6.71) we have

Pr(XA ∩ Nunt =MA | Kunt,Nunt)

= Θ(MA,Nunt)γ(Kunt,Nunt) (6.73)

for anyMA ⊂ Nunt, where

γ(Kunt,Nunt)

:=

∑
M′A⊂Nunt

Θ(M′A,Nunt)β′(M′A,Kunt,Nunt)

Pr(Kunt,Nunt)
. (6.74)

Since the sum ofΘ(MA,Nunt) overMA is unity, Eq. (6.73) leads toγ(Kunt,Nunt) = 1. Thus, we

have

Pr(XA ∩ Nunt =MA | Kunt,Nunt)

= Θ(MA,Nunt). (6.75)

In the DQPS protocol, the assumption on Bob’s apparatus Eq. (5.6) allows his basis choice to

be postponed after he confirms photon detection, which means that the choice ofXB can be

conducted afterKunt andNunt are determined. Hence, we have

Pr(XA ∩ Nunt =MA,XB ∩ Nunt =MB | Kunt,Nunt)

= Θ(MA,Nunt)Θ(MB,Nunt), (6.76)

which is identical to Eq. (6.38). Similarly to the WCP-BB84 protocol, Eq. (6.40) holds, which

leads to Eq. (6.43):

Pr(kph,unt > fBI(kX)) ≤ ϵPE. (6.77)

The task of finding a boundnZ,unt satisfying Eq. (6.33) is done as follows. In Chapter 5, a

modified protocol having exactly the same Pr(nZ,tag) as the original protocol was introduced, in

which a random variableN (denoted asn(c = d = 0, (z′0...z
′
L−1) < Γ

(m)) in Eq. (5.39) of Chapter 5)

satisfyingN ≥ nZ,tag is defined. The variable obeys binomial distribution BI(N, nrep, r tagp̃2
Z), where

r tag is a property of the light source defined as Eq. (5.43) (or Eq. (5.48) for general light sources).

This implies that Pr(nZ,tag) in the original protocol has the following property: There exists a
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functionP(nZ,tag,N) satisfying

Pr(nZ,tag) =
∑

N

P(nZ,tag,N)

P(nZ,tag,N) = 0 for nZ,tag > N∑
nZ,tag

P(nZ,tag,N) = BI(N,nrep, r tagp̃
2
Z). (6.78)

This leads to

Pr(nZ,tag > n) ≤ 1−CBI(n; nrep, r tagp̃
2
Z) (6.79)

for anyn, which is identical to Eq. (6.49). Then, following the same argument as the WCP-BB84

protocol, we see that

Pr(nZ,unt < nZ,unt) ≤ ϵZ,unt (6.80)

holds with

nZ,unt := nZ − g(r tagp̃
2
Z, ϵZ,unt). (6.81)

From Eqs. (6.35), (6.77) and (6.80), we arrive at a key rate formula which is identical to

Eq. (6.54): TheL-pulse DQPS protocol isϵc-correct andϵs-secret if the final key lengthlfin satis-

fies

lfin ≤ lDQPS := nZ,unt(1− h

 fBI(kX)
nZ,unt

) − log2
2
ϵPA
− λEC(ϵc), (6.82)

whereϵs is given in Eq. (6.34). Together with Eqs. (5.43), (6.13), (6.14), (6.51) and (6.81),

Eq. (6.82) constitutes the main result of Sec. 6.3.3.

In Fig. 6.4, we show numerical results of secure key rate per pulselDQPS/(nrepL) as a function

of overall transmittanceη := ηcηd to compare the DQPS protocol (L > 2) and the PE-BB84

protocol (L = 2). The solid curves represent the key rate with fixed pulse numbernrepL = 107,

and the dashed curves represent the one for the asymptotic case, which is obtained in Chapter 5.

We assumed that Alice generates a weak coherent pulse of mean photon numberµ, namely,r tag

is given by Eq. (5.43). We assume dark count rate per pulse per detectorpdark = 0.5 × 10−5 and

a loss-independent bit error rate 3%. We also assumed thatQ = 1− (1− 2(L − 1)pdark)e−(L−1)µη,

reflecting the fact that there areL − 1 valid timings in a block. Error rate is given byE/Q

whereE = 0.03(1− e−(L−1)µη) + pdarke−(L−1)µη(L − 1). Based on these parameters, we assume

λEC(ϵc) = 1.1h(E/Q) + log2(1/ϵc), nZ = nrepQp̃2
Z, nX = nrepQp̃2

X andkX = nXE/Q. The values

of p̃X andµ are optimized to maximize the key length. In the asymptotic limit, the parameter

optimization leads to ˜pX → 0, nZ,unt → nrep(Q − r tag) and fBI(kX)/nZ,unt → E/(Q − r tag) while Q

andE are fixed. In finite-key cases, the Chernoff bound is used to calculate the key rate. The
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nrepL→ ∞

nrepL= 107

Figure 6.4: Secure key rate per pulse of the DQPS protocollDQPS/(nrepL) as a function of overall

transmissionη. Solid curves are the results of the finite key analysis with total pulse number

nrepL = 107 and dashed curves are the results of the asymptotic case (nrepL → ∞), which are

obtained in Chapter 5. For both solid and dotted curves, the top, middle and bottom curves

represent the key rate forL = 20, L = 4 andL = 2, respectively. The parameters are set as

follows. Dark count rate per pulse per detector:pdark = 0.5 × 10−5. Loss-independent bit error:

3%. Cost for error correction:λEC(ϵc) = 1.1h(E)+ log2(1/ϵc). The security parameter:ϵc = 10−15

andϵs = 10−10. We see that the key rate of the DQPS protocol (L > 2) is higher than that of the

PE-BB84 protocol (L = 2) for both the asymptotic and finite-key cases.

security parameters are set to be the same as those in Fig. 6.2. We see that the advantage of

the DQPS protocol over the PE-BB84 protocol is maintained even if we include the effect of the

finiteness of the key.

6.4 Concluding remarks

6.4.1 Summary of results

In this chapter, we proposed a method of finite-key analysis based on Bernoulli sampling instead

of simple random sampling. For the BB84 protocol using biased basis choice, the data gathered

on one of the basis is solely used for estimation of the disturbance in the other basis, which enables

us to regard the former as a sample drawn from the population via Bernoulli sampling. As a result,

we obtained finite-sized key-length formulas based on the binomial distribution parametrized by
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the probability of the basis choice in the protocol. The appearance of the binomial distribution

in our case is a direct consequence of the inherent statistics of the protocol, and it should be

differentiated from the previous works which uses a binomial distribution to derive an upper

bound on the hypergeometric distribution arising from simple random sampling.

The new method is particularly suited for the BB84 protocol with WCP. It enables simpler

analysis compared to the method with simple random sampling since only the latter requires

the estimation of the sample size (nX,unt). We may expect that this additional pessimistic bound

makes the conventional method less efficient, which is corroborated by a numerical example

showing that the key rate for the WCP-BB84 protocol obtained with our method is higher than

that with simple random sampling. To make comparison with the previous finite-key analysis for

the WCP-BB84 protocol [23], we calculated the key rate as a function of channel transmission

and the number of detected signals, in the same practical parameter settings. The result shows

that, whilendet ∼ 107 signals are necessary for producing a key in Ref. [23], our method only

needsndet ∼ 104 with the same parameters. In addition, the improved number 104 clarifies that

the use of WCP instead of an ideal single photon causes only a small change in the finite-size

effect. This was also confirmed in the numerical simulation assuming the perfect channel, in

which the required number of rounds to generate a key isnrep ∼ 103.7 for the WCP-BB84 protocol

and isnrep ∼ 103.2 for the single-photon BB84 protocol.

Finally, we applied the Bernoulli-sampling method to the DQPS protocol, which was recently

proved to be secure in the asymptotic regime. Although the asymptotic proof is based on the

tagging of the insecure rounds as in the WCP-BB84 protocol, the definition of the tagged round

is much more convoluted and makes sense only after the signal was detected by Bob. Nonetheless,

our finite-key analysis has led to a key rate formula closely analogous to the one for the WCP-

BB84 protocol. Numerical calculation shows that the DQPS protocol retains higher key rates

than the PE-BB84 even in the finite-key regime ofnrep = 107.

6.4.2 Discussion

It is expected that our method can also be applied to protocols with decoy states [36, 37, 38]. Since

the existing analyses [15, 16, 24, 76] with decoy states involve the estimation of the sample size

nX,unt, the present method may provide a simpler analysis compared to the conventional methods

with simple random sampling. It should be mentioned that some of the finite key analyses [15,

16] assumed the announcement of basis choice after each round to make the sample size fixed,

which were later pointed out [66] to open a security hole against a sifting attack. This illustrates

an importance of simpler and more straightforward methods, and we believe that the method

proposed here will contribute in this regard.
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Figure 6.5: Procedures of “0-filling” idea for error correction of fixed data sizenZ. If the sifted

key sizenZ is larger thannZ, the protocol aborts. IfnZ ≤ nZ is confirmed,nZ − nZ 0s are added

to the sifted key in trivial positions (e.g. the edge of the key). After error correction, privacy

amplification is conducted to shorten the key to the sizel(BI)(nZ), which is obtained in the security

proof and independent ofnZ.

Another interest is practical use of our method. In practice, the length of sifted key is desired

to be predetermined for the sake of fast error correction, using LDPC code, for example. On

the other hand, our method is valid for the protocol where the number of round is fixed and the

length of sifted key varies (obeying binomial distribution). Although this may seem to weaken

the utility of our method, here we propose a possible idea to amend it (see Fig. 6.5). Suppose

that the input-data size for error correction is fixed tonZ. In the proposed idea, we determine the

number of total roundsnrep so that the length of obtained sifted keynZ is smallerthannZ with high

probability, and we add thenZ − nZ 0s to the sifted key in order to obtain the bit strings of sizenZ.

After the error-correcting process is finished, we shorten the bit strings in privacy-amplification

process by the length ofnZ−nZ in addition to non-trivial amount estimated with security analysis.

This method is possible without using any secret keys or random numbers, which is in contrast

to the recently-proposed method [66] wherenrep is determined so thatnZ is larger thannZ with

high probability followed by discardingnZ − nZ bits at random. The security of our method is

intuitively explained by the tagging idea. That is, if the insecure (tagged) rounds are in principle

identified, the size of secret key is determined by the security of the other (untagged) rounds.

Obviously, the position of insecure rounds (0s) in the bit strings of sizenZ are identified in our

idea. Although more rigorous argument is expected in the future, we believe that the utility of the

Bernoulli-sampling method is ensured by the proposed idea.





Chapter 7

Conclusion and outlook

7.1 Conclusion

In this thesis, the security of QKD protocols using weak coherent pulses (WCP) was studied. We

focused on the DQPS protocol, which is a variant of the DPS protocol and is also regarded as a

variant of the PE-BB84 protocol. Although the conventional tagging technique used for the BB84

protocol cannot be applied to the DQPS protocol because of its property of coherence chain, the

alternative rule of tagging was constructed through the outcomes of Alice’s virtual measurement

on ancillary qubits. By using this technique and the security proof of the BB84 protocol with

complementarity, the security of the DQPS protocol was proved, and its key generation rate was

shown to be 8/3 times as high as that of the PE-BB84 protocol in the asymptotic limit. We

also showed that the set up for calibration of light source, which tends to be complicated in the

decoy-state method, is kept to be minimum in the DQPS protocol as in the BB84 protocol.

In order to consolidate the advantage of the DQPS protocol over the PE-BB84 protocol, we

worked on the finite-key analysis for the WCP-QKD protocols. A new method of the finite-key

analysis was proposed based on the Bernoulli sampling related to binomial distribution, which is

in contrast to the currently used method based on simple random sampling associated with hy-

pergeometric distribution. Not only the expected advantage of the DQPS protocol was confirmed

even in the finite-key regime with the proposed method, the method was shown to be suitable

for the WCP-BB84 protocol. For the WCP-BB84 protocol, security analysis with estimation of

a smaller number of parameters is possible by using the Bernoulli-sampling method, which leads

to a higher key rate compared to the method with simple random sampling. Furthermore, the re-

quired number of detected signals reduces to 104, which is drastic improvement from the number

107 required in the previous work for the WCP-BB84 protocol.

For further development of QKD systems, the simplicity is crucial from both practical and

93
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theoretical aspects. The complicated devices lead to higher cost for their installation, and also

enlarge the gap between the physical models assumed in the security proof and their actual be-

haviors. The DQPS protocol is beneficial in this sense, for it has essentially the same set up as the

PE-BB84 protocol including calibration of light source, which only requires a typical laser, phase

modulators, a passive interferometer and detectors. For the theoretical aspect, the security anal-

yses of the QKD protocols should be simple and clear since its correctness can not be directly

certified by experiment (unlike conventional physics theory), and users of QKD are supposed

to rely on the security proofs. In the proposed method based on Bernoulli sampling, binomial

distribution parametrized by the probability of basis choice is used instead of hypergeometric

distribution, which enables simpler analysis with smaller number of estimations. This method

is expected to be applied to the decoy-state method, which has more complicated analysis with

larger number of estimating parameters than the WCP-BB84 protocol and the DQPS protocol.

7.2 Related works and future outlook

One of the motivations that I focused on the DQPS protocols was to seek for a more efficient

protocol than the BB84 protocol. Although the advantage of the DQPS protocol over the PE-

BB84 protocol was shown, further improvement for the security analysis is expected to show

its robustness against PNS attacks which was certified in the DPS protocol. Another protocol I

worked on was high-dimensional (HD) protocol (qudit-based protocol) although the details were

not mentioned in this thesis. HD protocols enable energy-efficient communication, and they are

expected to have high-error tolerance [49, 50]. Recently, the entanglement-based HD protocol,

which uses time (photon position) and frequency as two bases, were proved to be secure [106,

107] based on the security analysis for continuous variable QKD as well as were demonstrated

with high key generation rate [119]. I analyzed the security of a prepare-and-measure-type HD

protocol, which uses information of discrete time and frequency, based on the security proof

with complementarity to evaluate its tolerance to practical errors. The result was not positive at

least in my case, that is, no higher-error tolerance was confirmed compared to the two-dimension

protocol (BB84 protocol) if we assume practical errors, mainly because the use of a larger number

of temporal modes results in more errors caused by dark counts of detectors. On the other hand,

some of my collaborators recently showed that the round-robin DPS (RR-DPS) protocol, which

uses many temporal modes with symmetrization, has robustness against PNS attacks as well as

high error tolerance that a secret key can be generated even with 50 % errors in principle.

Although the RR-DPS protocol has such an unusual property, it is not fully understood what

kind of principle of quantum physics contributes to it. The high error tolerance is not confirmed

in the DPS protocol with current complicated security proof resulting in low key generation rate,
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while it has a room for improvement. A similar situation applies to another protocol using the

property of coherence chain, the coherent-one-way (COW) protocol [111], in which the robust-

ness against PNS attacks is not confirmed against standard predictions but possible improvements

of hardware and proof are suggested [98]. The security analysis of the DQPS protocol can be an

important step to address the above involved problems. For example, our result implies that if

one wants to confirm the robustness against PNS attacks in the non-symmetrized protocol such

as the DPS protocol and the DQPS protocol, it is essential to use bit errors reflecting disturbance

of coherence chain in the security proof (as is done in the security proof for the DPS protocol).

Several theoretical interests still remain:

· Is the symmetrization of the temporal mode necessary to confirm the high error tolerance?

· Although the protocols with coherence chain (DPS, DQPS, RR-DPS, COW) assume that se-

quential pulses are separated by blocks, is it essentially possible to remove the assumption? If it

is true, are some interesting properties (PNS robustness, high error tolerance or others) confirmed

as a result of security proof?

Tackling those problems may not only lead to improvements of those protocols in terms of key

generation efficiency, but also clarify the mechanism of how quantum properties contribute to

the essential bound on leaked information, which can help us to understand the relation between

quantum physics and information theory more deeply.





Appendix A

Proof of lemma 1

With ancillary systemQ andR, let us introduce|Ψ⟩AEQR and|Φ⟩AEQR as purified state of ˆτAE and

|0̃⟩ ⟨0̃|A ⊗ τ̂E, respectively, which are written as

|Ψ⟩AEQR :=
∑
i≥0

|ĩ⟩A |ψi⟩EQ |0⟩R (A.1)

|Φ⟩AEQR := |0̃⟩A |ϕ⟩EQR, (A.2)

where{|ĩ⟩A}i≥0 is an orthogonal set. By using Uhlmann’s theorem Eq. (2.7),

F(τ̂AE, |0̃⟩ ⟨0̃|A ⊗ τ̂E)

= max
|Φ⟩: TrQR|Φ⟩⟨Φ|=|0̃⟩⟨0̃|A⊗τ̂E

∣∣∣AEQR⟨Ψ|Φ⟩AEQR

∣∣∣2 (A.3)

= max
|ϕ⟩: TrQR|ϕ⟩⟨ϕ|=τ̂E

∣∣∣EQ ⟨ψ0| R ⟨0| |ϕ⟩EQR

∣∣∣2 . (A.4)

If we set|ϕ⟩EQR=
∑

i≥0 |ψi⟩EQ |i⟩R with an orthogonal set{|i⟩R}i≥0, we have

TrQR(|ϕ⟩ ⟨ϕ|EQR)

=
∑
i, j

TrQR

(
|ψi⟩ ⟨ψ j |EQ |i⟩ ⟨ j|R

)
(A.5)

=
∑

i

TrQ

(
|ψi⟩ ⟨ψi |EQ

)
(A.6)

= τ̂E. (A.7)

Then from (A.4),

F(τ̂AE, |0̃⟩ ⟨0̃|A ⊗ τ̂E)

≥
∣∣∣∣∣∣∣∑i

EQ ⟨ψ0| R ⟨0| |ψi⟩EQ |i⟩R

∣∣∣∣∣∣∣
2

(A.8)

=
∣∣∣EQ ⟨ψ0|ψ0⟩EQ

∣∣∣2 (A.9)
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holds. On the other hand, we have

F(τ̂A, |0̃⟩ ⟨0̃|A)

= A ⟨0̃|TrEQR

(
|Ψ⟩ ⟨Ψ|AEQR

)
|0̃⟩A (A.10)

=
∑
i, j

A ⟨0̃|TrEQR

(
|ĩ⟩ ⟨ j̃|A |ψi⟩ ⟨ψ j |EQ |0⟩ ⟨0|R

)
|0̃⟩A (A.11)

= TrEQ(|ψ0⟩ ⟨ψ0|EQ) (A.12)

= EQ ⟨ψ0|ψ0⟩EQ . (A.13)

Eq. (A.9) and Eq. (A.13) lead to

F(τ̂AE, |0̃⟩ ⟨0̃|A ⊗ τ̂E) ≥
(
F(τ̂A, |0̃⟩ ⟨0̃|A)

)2
. (A.14)



Appendix B

Untagged check-basis outcomes as an

unbiased sample

Here, we prove Eq. (5.34) in the main text by showing that the untagged rounds withc = 1

is uniformly extracted from the whole untagged events. For fixedc, j (, 0) andm, define a

projectorT̂(c, j,m)
a,t B

∑
{zl } |A

(c, j)
a,{zl }⟩A ⟨A

(c, j)
a,{zl }| where the summation is over{zl} satisfying

∑
l, j zl = m

for t = 0 and
∑

l, j zl < m for t = 1. The projectorT̂(c, j,m)
a,t can be regarded as the POVM element

for the measurement on systemA to determinea andt through Steps 5-1∗, 5-2∗, and 5-3∗∗ with

the rule of Eq. (5.10). Although the protocol does not define the values ofa, b, and t in case

of j = 0, it simplifies the notations if we also define those values to bea = b = t = 0 for

j = 0, and defineT̂(c,0,m)
a,t accordingly. We label each of thenrep rounds byr = 1, 2, . . . , nrep, and

usecr ,ar ,br , jr ,mr , tr to denote the values ofc,a,b, j,m, t in ther-th round. Letc, a, b, j,m, t be

vectors withnrep elements corresponding tor = 1,2, . . . , nrep. With these notations, the procedure

of determining these vectors in the virtual protocol (with replacement 5-3∗∗) is summarized as

follows.

i) Alice selectsc randomly, prepares ˆρAS(c) B
⊗nrep

r=1 σ̂AS(cr) with σ̂AS(cr) B |Ψ(cr)⟩AS ⟨Ψ(cr)|,
and measuresm by a projection measurement.

ii) Eve’s attack onnrep copies of systemS followed by Bob’s measurement determinesj andb.

For a given attack strategy by Eve, this whole procedure onnrep systems should be represented by

POVM with elements{D̂ j,b}.
iii) Given c, j, and m, Alice measuresnrep copies of systemA to obtain a and t, which is

represented by the POVM elements{T̂(c, j,m)
a,t B

⊗nrep

r=1 T̂(cr , jr ,mr )
ar ,tr }.

The joint probability thatc, a, b, j, t are obtained is written as

Pr(c, a, b, j, t) =
∑

m

Pr(c) tr
(
(T̂(c, j,m)

a,t ⊗ D̂ j,b)(N̂mρ̂AS(c)N̂m)
)
. (B.1)
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Let gt, j(c) be a function for fixedt and j defined asgt, j(c) = (c1, c2, ..cnrep) wherecr = cr (tr=1 or

jr = 0) andcr = 0 (tr=0 and jr , 0). From Eq. (5.33), fortr = 0 and jr , 0 we have

trA

(
(T̂(0, jr ,mr )

ar ,0
⊗ 1̂S)(N̂mr σ̂AS(0)N̂mr )

)
= trA

(
(T̂(1, jr ,mr )

ar ,0
⊗ 1̂S)(N̂mr σ̂AS(1)N̂mr )

)
, (B.2)

sinceσ̂AS(cr) = |Ψ(cr)⟩AS ⟨Ψ(cr)|. Thus, forc, c′ satisfyinggt, j(c) = gt, j(c′) = cconst, we have

trA

(
(T̂(c, j,m)

a,t ⊗ 1̂S)(N̂mρ̂AS(c)N̂m)
)
= trA

(
(T̂(c′, j,m)

a,t ⊗ 1̂S)(N̂mρ̂AS(c′)N̂m)
)
. (B.3)

Therefore, Eq. (B.1) is written in the form

Pr(c, a, b, j, t) = Pr(c)β(gt, j(c), a, b, j, t), (B.4)

which leads to, for a given value ofcconst, we obtain

Pr(c, a, b, j, t)∑
c′:gt, j (c′)=cconst

Pr(c′, a, b, j, t)

=
Pr(c)β(cconst, a, b, j, t)∑

c′:gt, j (c′)=cconst
Pr(c′)β(cconst, a, b, j, t)

=
Pr(c)∑

c′:gt, j (c′)=cconst
Pr(c′)

(B.5)

for c satisfyinggt, j(c) = cconst. Eq. (B.5) shows that for the rounds witht = 0 and j , 0, the

probability of obtainingc = 0,1 is p̃0, p̃1 and is independent of the value ofa, b, j. Therefore, in

the limit of nrep→ ∞,
n(c = 0, t = 0,a , b, j , 0)
n(c = 1, t = 0,a , b, j , 0)

=
p̃0

p̃1
(B.6)

holds, wheren(condition) denotes the number of rounds satisfying thecondition in the nrep

rounds. Finally, notice that Bob conducts check-basis measurement regardless of the value of

d in the virtual protocol, and henced is independent of the other variables. Therefore, we have

n(c = d = 0, t = 0,a , b, j , 0)
n(c = d = 1, t = 0,a , b, j , 0)

=

(
p̃0

p̃1

)2

, (B.7)

which corresponds to Eq. (5.34).



Appendix C

Security proof for DQPS with a general

light source

Here we show that the security proof in Sec. 5.2 can be extended to the use of a general light

source. Suppose that the laser in Fig. 5.1 emits a train ofL pulses in a general mixed state ˆσS. We

assume that every train from the laser is independent and has the same state ˆσS. We also assume

that the subsequent phase modulation is ideal. The state after the phase modulation, which was

given in Eq. (5.1) in the description of the actual protocol, is now given by L−1⊗
l=0

exp
(
iθl(al , c)m̂l

) σ̂S

 L−1⊗
l′=0

exp
( − iθl′(al′ , c)m̂l′

) , (C.1)

and the one after the randomization of the overall optical phase is (see Sec. 4.2.1)

∑
m

N̂m

 L−1⊗
l=0

exp
(
iθl(al , c)m̂l

) σ̂S

 L−1⊗
l′=0

exp
( − iθl′(al′ , c)m̂l′

) N̂m (C.2)

instead of Eq. (5.4).

The security proof in Sec. 5.2 used the assumption of pure coherent states Eq. (5.1) in several

occasions, which are listed as follows:

i) The state preparation in the virtual protocol [Eq. (5.7)], and its relation [Eq. (5.9)] to the actual

protocol.

ii) The parity correlation [Eq. (5.14)] between the auxiliary qubits and the photon numbers in

pulses.

iii) The derived properties [Eqs. (5.26), (5.28), (5.30), (5.32), (5.33) and (B.2)] for proving that

the sampling is unbiased as in Eq. (5.34).

iv) The expressions [Eqs. (5.40) and (5.48)] for the parameterr tag.
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In what follows, we describe how each of the above arguments are rephrased in terms of the

general state ˆσS.

i) In the virtual protocol, we assume that Alice prepares the following state on systemAS,

σ̂AS(c) B R̂(c)σ̂SR̂(c)†, (C.3)

instead of Eq. (5.7). HerêR(c) is defined by

R̂(c) B
L−1⊗
l=0

[ 1
√

2

(
|+⟩A,l exp

(
i
π

2
lcm̂l

)
+ |−⟩A,l exp

(
i(π +

π

2
lc)m̂l

))]
. (C.4)

Then it is straightforward to confirm that L−1⊗
l=0

A,l ⟨±|
 σ̂AS(c)

 L−1⊗
l′=0

|±⟩A,l′


=
1
2L

 L−1⊗
l=0

exp
(
iθl(al , c)m̂l

) σ̂S

 L−1⊗
l′=0

exp
( − iθl′(al′ , c)m̂l′

) ,
(C.5)

where± of the l-th qubit should be chosen according to the bital. This is the general-state

expression for Eq. (5.9), which leads to the equivalence of state preparation between the actual

and the virtual protocol.

ii) As R̂(c) is written inZ basis as

R̂(c) =
L−1⊗
l=0

[1
2

i lcm̂l
(
|0⟩A,l

(
1̂S,l + (−1)m̂l

)
+ |1⟩A,l

(
1̂S,l − (−1)m̂l

))]
=

L−1⊗
l=0

[
i lcm̂l

(
|0⟩A,l

∑
ml :even

P̂(|ml⟩S,l) + |1⟩A,l
∑

ml :odd

P̂(|ml⟩S,l)
)]
,

(C.6)

we have

Υ̂ASR̂(c) = R̂(c), (C.7)

which is a generalization of Eq. (5.14). It immediately implies thatΥ̂ASσ̂AS(c)Υ̂AS = σ̂AS(c),

which indicates a property of state ˆσAS that the measurement outcome onZ basis{|0⟩A,l , |1⟩A,l}
always coincides with the parity of photon number in thel-th pulse.

iii) From Eq. (C.6), we have

R̂(c) =

 L−1⊗
l=0

i lcm̂l

 R̂(0). (C.8)
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Comparing Eqs. (5.14) and (5.28) to Eqs. (C.7) and (C.8), we see that the derived properties of

Eqs. (5.26), (5.30), and (5.32) for|Ψ(c)⟩AS should also hold for̂R(c). As a result, we obtain

A ⟨A(0, j)
a,{zl }| N̂mR̂(0) = (−i)u( j)

A ⟨A(1, j)
a,{zl }| N̂mR̂(1) for

∑
l, j

zl = m (C.9)

as a generalization of Eq. (5.33). From Eq. (C.9), we have

A ⟨A(0, j)
a,{zl }| N̂mσ̂AS(0)N̂m |A(0, j)

a,{zl }⟩A = A ⟨A(1, j)
a,{zl }| N̂mσ̂AS(1)N̂m |A(1, j)

a,{zl }⟩A for
∑
l, j

zl = m,

(C.10)

which assures that Eq. (B.2) is also true when ˆσAS(c) is given by Eq. (C.3). Hence, Eq. (5.34)

holds.

iv) For the initial state given by Eq. (C.3), the definition of the parameterr tag of Eq. (5.40) is

replaced by

r tag = 1−
∑

m

tr
(
(Π̂(m)

A ⊗ N̂m)σ̂AS(0)
)
. (C.11)

Together with Eqs. (5.41) and (C.7), we have

r tag = 1−
∑

m

tr
(
(1̂A ⊗ Π̂(m)

S )σ̂AS(0)
)
= 1−

∑
m

tr
(
Π̂

(m)
S σ̂S

)
. (C.12)





Appendix D

Calibration of light sources

Here we discuss how we may determine an upper bound on the parameterr tag, which is given by

Eq. (C.12), from an off-line experiment on the light source. We use a beam splitter characterized

by transmittanceT and reflectanceR and two threshold detectors with quantum efficienciesη(1)
det

andη(2)
det, as in Fig. 3. No precise values of these parameters are needed, and we assume that there

are known lower boundsη1 ≤ Tη(1)
det andη2 ≤ Rη(2)

det. For simplicity, we neglect the effect of dark

countings of the detectors. We assume that the dead time of the detectors are shorter than the pulse

interval such that they are ready for every incident pulse. For anL pulse train emitted from the

source, we record the timings of detection at the two detectors, and define a double coincidence

event to be the case when both detectors have reported detections within a pair of neighboring

pulses.

Since a state in the range of1̂−∑
m Π̂

(m)
S contains at least two photons in a pair of neighboring

pulses, such a state has a probability of resulting in a double coincidence event no smaller than

2η1η2. Thus, if we repeat the measurementntest times and find that double coincidence events

have occurredndouble times, an upper bound onr tag is given by

r tagB
ndouble

ntest

1
2η1η2

≥ r tag, (D.1)

in the asymptotic limit of largentest. Although the tightness of the upper boundr tag varies depend-

ing on the state ˆσS in general, we may show that it can be quite tight when the state is close to

an ideal coherent state. Suppose thatη1 andη2 are equal to the actual efficiencies, and each pulse

is exactly in the coherent state with amplitudeµ. For every pulse, detector 1 and 2 independently

report detection with probabilityp(click)
k = 1− e−ηkµ ≤ ηkµ (k = 1,2). Since there areL + 2(L − 1)

different combinations of timings leading to double coincidence, we have

ndouble

ntest
≤ (3L − 2)p(click)

1 p(click)
2 ≤ η1η2µ

2(3L − 2), (D.2)
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Figure D.1: Off-line calibration setup to determine an upper bound onr tag for a general light

source, when the dead time of detectors is shorter than pulse interval∆τ. R and T represent

reflectance and transmittance of the beam splitter, respectively.η(1)
det andη(2)

det represent detection

efficiencies of detector 1 and 2, respectively.

Figure D.2: Off-line calibration setup to determine an upper bound onr tag for a general light

source, when the dead time of detectors is longer than pulse interval∆τ. An optical linear absorber

with transmittanceηabsis set in front of beam splitters.R(1), R(2), T(1) andT(2) represent reflectance

and transmittance of the two beam splitters.η(1)
det, η

(2)
det andη(3)

det represent detection efficiencies of

threshold detector 1, 2 and 3, respectively.
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which leads to

r tag ≤
µ2(3L − 2)

2
. (D.3)

On the other hand, direct calculation shows that, in the limit ofLµ2→ 0,

r tag = µ23L − 2
2
+ µ3

(−10L + 12
3

)
+ µ4

(−9L2 + 82L − 120
8

)
+O(L2µ5 + L3µ6)

= µ23L − 2
2
− µ3L

(9
8
µL +

10
3

)
+O(L2µ5 + L3µ6), (D.4)

which leads to
r tag− r tag

r tag
≤ µ

(3
4
µL +

20
9

)
+O(Lµ3 + L2µ4). (D.5)

Hence, the boundr tag is a good approximation ofr tag for µ ≪ L−1/2 .

In a more practical case where the dead time (τdead) of the detectors is longer than the pulse

interval (τdead> ∆τ), there is a possibility that the presence of two photons is masked by an earlier

detection of a third photon. In such a case, we may use a setup in Fig. 4 with three detectors

and a linear absorber with transmittanceηabs. Assume that we know lower bounds, ˜ηabs ≤ ηabs,

η̃1 ≤ T(1)T(2)η(1)
det, η̃2 ≤ T(1)R(2)η(2)

det and η̃3 ≤ R(1)η(3)
det. Define a triple coincidence event to be the

case when all three detectors has reported detections within the whole train ofL pulses. Letq3 be

the probability that theL pulse train leaving the linear absorber contains three or more photons.

If we repeat the measurementntest times and triple coincidence events have occurredntriple times,

we have

q3 ≤
ntriple

ntest

1
6η̃1η̃2η̃3

(D.6)

in the limit of largentest. Suppose that one records the numbern(obs)
double of double coincidence

events in the samentest runs, which is defined as the case when detectors 1 and 2 have reported

detections within a pair of neighboring pulses. Since the effect of the dead time can be simulated

with a fictitious detector with no dead time by ignoring detection events that occurred when the

real detector would have been dead, we may consider the numbern(true)
double of double coincidence

events defined from these fictitious detectors. Since the two definitions of a double coincidence

event differs only when three or more photons are incident on the two detectors, we have

n(true)
double

ntest
≤

n(obs)
double

ntest
+ q3 (D.7)

in the limit of largentest. On the other hand, as in Eq. (D.1),n(true)
doublesatisfies

r tag ≤ r tag =
n(true)

double

ntest

1
2η1η2

(D.8)
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by takingη1 = η̃absη̃1 andη2 = η̃absη̃2. We thus obtain an upper bound from Eqs. (D.6)-(D.8) as

r tag ≤ r ∗tagB
(n(obs)

double

ntest
+

ntriple

ntest

1
6η̃1η̃2η̃3

) 1

2η̃1η̃2η̃
2
abs

. (D.9)

We show thatr ∗tag also approximatesr tag well when the light source emits coherent pulses.

Suppose that ˜η1, η̃2, η̃3 andη̃abs are equal to the actual efficiencies. Sincen(obs)
double ≤ n(true)

double holds,

we have

r ∗tag ≤ r tag+
ntriple

ntest

1
6η̃1η̃2η̃3

1

2η̃1η̃2η̃
2
abs

. (D.10)

From Eq. (D.5), we have

r ∗tag− r tag

r tag
≤ µ

(3
4
µL +

20
9

)
+

ntriple

ntest

1
6η̃1η̃2η̃3

1

2η̃1η̃2η̃
2
abs

1
r tag
+O(Lµ3 + L2µ4) (D.11)

for Lµ2 → 0. SinceL pulses incident on detectork lead to one or more detections at probability

p(click)
k = 1− e−η̃kη̃absLµ ≤ η̃kη̃absLµ, we have

ntriple

ntest
≤ η̃1η̃2η̃3(η̃absLµ)3. (D.12)

Thus, we obtain

r ∗tag− r tag

r tag
≤ µ

(3
4
µL +

20
9

)
+

(η̃absLµ)3

12η̃1η̃2η̃
2
abs

1
r tag
+O(Lµ3 + L2µ4)

= µ
(3
4
µL +

20
9

)
+ µ

η̃absL2

18η̃1η̃2
+O(Lµ3 + L2µ4).

(D.13)

Therefore,r ∗tag becomes a good approximation ofr tag whenµ ≪ L−1/2 and the absorber is chosen

to satisfyη̃absµ ≪ L−2.
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