博士論文

カチオンの水和状態制御に基づく

マンガン系複酸化物ナノ粒子の合成と特性に関する研究

2017年

東京大学大学院工学系研究科応用化学専攻

宮本 唯未

目次

第1章 序論	1
1.1. 金属複酸化物	2
1.1.1. 金属複酸化物の有用性	2
1.1.2. 金属複酸化物の代表的な合成法	2
1.1.2.1. 固相法	2
1.1.2.2. ゾル-ゲル法	3
1.1.2.3. 共沈法	4
1.1.2.4. ソルボサーマル法 / 水熱合成法	4
1.2. Mn 系複酸化物	5
1.2.1. Mn 系複酸化物の構造と合成法	6
1.2.1.1. 層状構造(2次元構造)	6
1.2.1.2. トンネル構造(1 次元構造)	11
1.2.1.3. スピネル構造(3 次元構造)	17
1.2.1.4. Mn 系複酸化物の結晶構造に関する考察	26
1.2.2. Mn 系複酸化物の応用	32
1.2.2.1. イオン交換体	32
1.2.2.1.1. イオン交換体による Li 回収の重	医性 32
1.2.2.1.2. Mn 系複酸化物のイオン交換特性	主 33
1.2.2.1.2.1. スピネル構造(3 次元構	5 造) 33
1.2.2.1.2.2. トンネル構造(1 次元構	5 造) 37
1.2.2.1.2.3. 層状構造(2次元構造)	37
1.2.2.2. 蓄電材料(リチウムイオン電池)	38
1.2.2.3. 酸化剤・酸化触媒	44
1.3. まとめ	53
1.4. 本研究の目的	54
1.5. 参考文献	55
第2章 カチオンの水和状態制御に基づくマンガン系複酸化物	
ナノ粒子の合成	67
2.1. 緒言	68
2.2. 実験	70
2.2.1. 試薬	70
2.2.2. 合成	70

	2.2.3.	キャラクタリゼーション	73
2.3.	結果	と考察	75
	2.3.1.	Li ⁺ の水和状態制御に基づく Li–Mn スピネルナノ粒子の	
		合成	/5
		2.3.1.1. アモルファス MnO ₂ を前駆体とした Li–Mn	
		スピネル酸化物の合成	15
		2.3.1.2. アモルファス Li-Mn 酸化物を前駆体とした Li-Mn	70
		スピネル酸化物の合成	79
		2.3.1.3. TBAMnO4 を前駆体とした Li-Mn スピネル酸化物	0.4
		の one-pot 合成	84
		2.3.1.4. 粒径の小さな Li-Mn スピネルナノ粒子の表面分析	89
		2.3.1.5. TBAMnO4 を前駆体とした有機溶媒中での Li-Mn	02
		スピネル酸化物の one-pot 合成時の合成条件の検討	93
		2.3.1.6. TBAMnO4 を前駆体とした one-pot での Li–Mn	06
		酸化物合成時の水の影響	90
		2.3.1.7. KMnO ₄ を前駆体とした有機溶媒中での Li–Mn	00
		酸化物の one-pot 合成	99
	2.3.2.2	2 価カチオンの水和状態制御に基づく Mn 系複酸化物	105
		ナノ粒子の合成	105
		2.3.2.1. Mn 系スピネルナノ粒子の合成	105
		2.3.2.2. Mn 系複酸化物ナノ粒子合成時の水の影響	108
2.4.	まとめ)	115
2.5.	参考文	に献	116
第3章	重 マン	ガン系複酸化物ナノ粒子の特性	119
3.1.	緒言		119
3.2.	実騎		121
	3.2.1.	試薬	121
	3.2.2.	合成と特性	121
	3.2.3.	キャラクタリゼーション	124
3.3.	結果	と考察	130
	3.3.1.	イオン交換特性	130
	3.3.2.	電気化学特性	144
		3.3.2.1. Li–Mn スピネルナノ粒子の充放電曲線	144
		3.3.2.2. Li–Mn スピネルナノ粒子の高速放電特性	147

3.3.2.2.1. Li-Mn >	スピネルナ	ノ粒子凝集体の高速放電特性	147
--------------------	-------	---------------	-----

3.3.2.2.2. Li-Mn スピネル-グラフェン複合体の合成 148

3.3.2.2.3. Li-Mn スピネル-	グラフェン複合体の高速放電	151
特性		151

3.3.3. 酸化触媒特性

164

- 3.3.3.1. 酸化求核法によるチオシアネートの合成 164
- 3.3.3.2. 触媒活性の粒径依存性
 175
- 3.3.3.3. アンモ酸化・酸化的アミド化反応 177
- 3.3.3.4. スルフィド・アルキルアレーンの酸素化反応 186
- 3.4. まとめ
 187

 3.5. 参考文献
 188

191

発表状況	195
謝辞	197

第1章

序論

第1章 序論

1.1. 金属複酸化物

1.1.1. 金属複酸化物の有用性

複酸化物とは、2種類以上の元素の酸化物や同じ元素のみで構成される酸化物の中で も異なる酸化数をとる元素の酸化物のことをいう。^[1] 金属複酸化物は、構造・組成に応 じて様々な物性・機能を有する。^[2] 金属複酸化物は、構造に応じてイオン交換材料やイ オンセンサーといった構造に由来する機能を発現する。さらに、金属種の酸化還元の可 能な金属複酸化物は、高容量な蓄電材料(電池やキャパシタ)や触媒としての利用が可 能である。さらに、金属種のとる電子状態によっては、磁性材料としての利用も可能で ある。このように、多様な物性・機能を有する金属複酸化物を目的に応じて自在につく り分けることは、無機化学のみならず、高機能性材料設計の上でも極めて重要である。

1.1.2. 金属複酸化物の代表的な合成法

金属複酸化物は、固相法、ゾル-ゲル法、共沈法、ソルボサーマル法(水熱合成法を 含む)、溶融塩フラックス法、噴霧熱分解法等により合成されてきた。そのなかでも特 に、原料粉末を混合した後、高温で焼成する固相法が古くから用いられてきた。一方、 近年、液相での化学反応を利用した合成法であるゾル-ゲル法、共沈法、ソルボサーマ ル法等が注目されている。ただし、ゾル-ゲル法や共沈法では結晶性生成物を得るため には、数百度以上での焼成が必要となる場合が多い。一方、液相での反応は、数百度以 上の高温で反応を行う固相法よりも比較的穏和な条件で酸化物の合成が可能であるこ とやナノ粒子の合成が可能であること等の利点がある。以下に、各合成法の詳細を記述 する。

1.1.2.1. 固相法^[3]

固相法では、原料間の固体における化学反応により目的とする生成物を合成する。こ の合成法では、目的生成物の構成元素を含む金属塩等の粉末を均一に混合し、それを高 温で反応させることで生成物を得る。固相法では、原料の混合比により生成物の組成や 結晶構造をある程度制御することが可能であることや結晶性の高い生成物を得やすい といった特徴がある。また、固相法は操作が単純で安価な手法であるため、工業的にも 用いられる。一方、固相では、気相や液相と比べて原子・分子の運動の自由度が低いた め、原料が均一に混合されていないと局所的な物質移動の遅れが原因で、高純度の生成 物を得られないことがある。そのため、固相法で高純度の生成物を得るためには、高温 での反応や長時間の反応が必要になる場合が多い。また、固相法では、しばしば粒子同 士の焼結により、粒径の大きな生成物が得られる。^[4]

1.1.2.2. ゾル-ゲル法^[3,5]

ゾル-ゲル法では、金属アルコキシド等の金属源を溶液中で加水分解、重縮合させる ことにより、種々の酸化物を合成することが可能である。固相法と比べて比較的低温で の酸化物の合成が可能である。生成物の形態をある程度制御することが可能であり、粒 子だけでなく、ナノファイバーや薄膜の合成にも用いられる。金属アルコキシドは、化 学式 M(OR)_x(M:金属, OR:アルコキシ基)で表される物質である。金属アルコキシド は、金属とアルコールの反応、金属水酸化物あるいは金属酸化物とアルコールの反応、 金属塩化物とアルコールの反応、金属ジアルキルアミドとアルコールの反応等により合 成される。^[6a] ゾル-ゲル法での酸化物形成過程は以下のように記述できる。

 $M(OR)_{x} + H_{2}O \rightarrow M(OR)_{x-1}OH + ROH$ (1.1)

 $2M(OR)_{x-1}OH \rightarrow (OR)_{x-1}M-O-M(OR)_{x-1} + H_2O \qquad (1.2)$

酸や塩基を触媒として金属アルコキシドを加水分解することで、OH 基が生成し、生成 した OH 基が他の OH 基と重縮合することで M-O-M 結合を形成する。これらの反応に より、M-O-M 結合を有する分子からなるゾル (ナノ粒子が分散した溶液) が形成され、 さらに重縮合が進行することでゾルが凝集し、溶媒を含むゲルを形成する。このゲルを 乾燥させ、生成物を得る。生成物は多くの場合、アモルファスであり、結晶性の生成物 を得るためには、焼成や後述する水熱反応により結晶化させる必要がある。また、複数 種の金属アルコキシドを同時に加水分解、重縮合させることで複酸化物の合成も可能で ある。複酸化物を合成する際は、金属種によって加水分解や重縮合の速度が異なるため、 反応条件の調整やあらかじめ複数の金属種からなるアルコキシドを調製する^[60]等の工 夫が必要となる。

金属アルコキシドを前駆体とする典型的なゾル-ゲル法を適用できない金属種では、 Pechini 法が用いられる。^[5c-d] Pechini 法では、クエン酸やエチレンジアミン四酢酸 (EDTA) 等のキレート剤を添加し、錯体を形成させる。その後、エチレングリコールやポリビニ ルアルコール等の多価アルコールによって錯体同士を架橋させ、ゲルを形成させる。そ の後、ゲルを焼成し、複酸化物を得る。Pechini 法は、水酸化物前駆体を形成しない金 属種を原料とする場合に用いられることが多い。これは、Pechini 法では、キレート剤 が幅広い pH 領域で様々な金属種と安定な錯体を形成可能であることに由来する。一方、 Pechini 法では、生成物の粒子径や粒子形態の制御が典型的なゾル-ゲル法よりも困難で ある。^[5d] これは、典型的なゾル-ゲル法では金属種がゲルの架橋構造内に含まれるのに対 し、Pechini 法では、架橋構造はキレート剤と多価アルコールの反応により形成されて おり、金属種がゲルの架橋構造内に含まれないことに起因すると考えられる。

また、近年、非水ゾル-ゲル法と呼ばれる有機溶媒中での合成法により、種々の金属酸化物を合成可能であることが報告されている。^[7]この合成法では、ハロゲン化金属(or金属カルボン酸塩、ケトン)と金属アルコキシド(金属ハロゲン化物とアルコールの反

応により生成)の反応により、金属-酸素結合を形成し、金属酸化物を形成する

(Scheme 1-1)。具体的には、チタニアや酸化ハフニウム、酸化亜鉛、酸化インジウム 等の金属酸化物や $BaTiO_3$ や $SrTiO_3$ 、 $CoFe_2O_4$ 等の金属複酸化物の合成が報告されている。

Scheme 1-1. 非水ゾル-ゲル法による金属酸化物の形成反応((a) ハロゲン化アルキル, (b) エーテル, (c) エステルが副生する場合, (d) アルドール反応に類似した縮合反応).^[7]

1.1.2.3. 共沈法^[3,5d]

共沈法では、2種類以上の金属種を溶解させた溶液に添加物を加えることで金属種の 溶解度を下げることで粒子を沈殿させる。共沈法では、水溶液のpHを変化させること で水酸化物等の沈殿を得ることが多い。共沈法では、均質な沈殿を得るために、沈殿を 生成するpHが近い原料の選択や過剰量の沈殿剤の添加等の工夫が必要となる。共沈法 は、溶液中から粒子を析出させる手法であるため、ナノ粒子の合成にしばしば用いられ る。

1.1.2.4. ソルボサーマル法 / 水熱合成法^[3,5d]

ソルボサーマル法は、溶液中で原料を高温・高圧下で反応させることで生成物を得る 手法である。なかでも、水を溶媒とする場合は水熱合成法と呼ばれる場合が多い。溶液 中の反応で酸化物等の合成を行う手法は、近年注目されているが、有機溶媒を用いた例 は少なく、水熱合成法による合成がしばしば報告されている。水熱合成法は、水を溶媒 とし、オートクレーブ等の耐圧容器中で原料を高温・高圧で反応させることにより、生 成物を得る手法である。水熱合成法は、高温・高圧下での反応であるため、反応は多く の場合ブラックボックスであり、生成物の形成過程はあまりよく知られていない。水熱 合成法では、多くの場合、焼成を行うことなく、比較的低温で結晶性の生成物を得るこ とが可能である。また、固相法では、数百度以上の高温での反応により安定相を得るの に対し、水熱合成法は固相法と比べると比較的低温での反応であるため、準安定相を合 成することも可能である。水熱合成法は、溶液中から粒子を析出させる手法であり、ナノ粒子の合成に用いられることが多い。また、水熱合成法では、熱水への金属種の溶解 度の高さから、溶解再析出による粒子形態の変化が起こる場合がある。^[8]

溶液中での反応時に界面活性剤やポリマーを添加し、粒子表面に配位させることで、 粒子成長を抑制し、ナノ粒子を合成可能であることが報告されている。^[9]また、この手 法は、溶液中に高分散した状態でナノ粒子を得ることが可能であるため、凝集していな い状態のナノ粒子の特性の検討や薄膜材料の作成等に有用である。一方、界面活性剤を 用いることで、生成物の粒子表面に界面活性剤が強く配位した状態となるため、触媒や 電池材料等として用いる際に、物質が粒子表面と接触しにくくなり、機能を阻害すると いったような、材料として用いる上での課題もある。

1.2. Mn 系複酸化物

本研究では、金属複酸化物のなかでも、蓄電材料、イオン交換材料、触媒、磁性材料 等の多様な用途で有用であることが知られている Mn 系複酸化物^[10]に着目した。Mn 酸 化物は、天然にも鉱石として産出される等、地球上に豊富に存在するため、比較的安価 な材料として用いられる。^[11] 主な Mn 系複酸化物の結晶構造として、層状構造、トンネ ル構造、スピネル構造等が挙げられる。Mn 系複酸化物は、MnO₆ ユニットが稜共有や 頂点共有により規則的に連結し、MnO₆ ユニット間の空隙に金属カチオン等が入ること で多様な結晶構造を形成している(Figure 1-1)。MnO₆ ユニット間の空隙に入る金属カ チオンのサイズや電荷等に応じて、Mn 系複酸化物は異なる結晶構造をとることが知ら れている。^[10]

Figure 1-1. (a) 層状構造, (b) トンネル構造 (一例として 3×3 トンネル構造 (OMS-1, OMS = octahedral molecular sieves)), (c) スピネル構造を有する Mn 系複酸化物の結晶構造 (八 面体: MnO₆ユニット, 球: 金属カチオン, 灰色の球: H₂O).

1.2.1. Mn 系複酸化物の構造と合成法

1.2.1.1. 層状構造(2次元構造)[12,13]

Mn 系複酸化物の中には、MnO₆ユニットが稜共有して形成された 2 次元シート構造 が積層し、層状構造を形成しているものがある(Figure 1-2)。^[12,13] それらは、層間に K⁺ や Na⁺等の水和した金属イオンを有する場合が多い。層間に水和した金属イオンを含む Mn 系複酸化物として、buserite や birnessite が知られている。層間距離は、buserite で約 10 Å、birnessite で約 7 Å である。buserite は birnessite の生成過程で準安定相として得ら れ、脱水して birnessite へ不可逆的に構造変化する。^[12b]

birnessite は、buserite 中の水和イオンが部分的に脱水した構造を有している。birnessite の MnO₆層は負電荷を有し、電荷補償のために層間カチオンを有する。広域 X 線吸収微 細構造 (EXAFS = Extended X-ray adsorption fine structure) スペクトルにより、層間カチ オンは、2 種類のサイトに位置することが示唆されている (Figure 1-3)。^[12a] アルカリ金 属やアルカリ土類金属などの大きな金属カチオンは、層間の H₂O と同じサイトに位置 することが示唆されている (Figure 1-3a)。^[10b,12a] また、遷移金属カチオンなどの小さな カチオン (Zn²⁺, Cu²⁺, Ni²⁺, Co²⁺, Mn²⁺) では、MnO₆シートの欠陥の上下のサイトに位置 することが示唆されている (Figure 1-3b)。^[10b,12a]

Table 1-1 に既報^[13]で報告されている birnessite や buserite の合成法についてまとめた。 birnessite や buserite は、主に、① Mn^{2+} の酸化、② MnO_4^- の還元、③ Mn^{2+} と Mn^{7+} の酸 化還元により、合成される場合が多い。 以下にそれぞれの反応過程の例を挙げる。こ れらの反応により、層状構造を有する Mn系複酸化物は、室温付近といった比較的低温 条件での合成が可能である場合が多い。

Mn²⁺の酸化による合成^[13y]

 $Mn(OAc)_2$ の塩基性水溶液中に H_2O_2 を加え、 Mn^{2+} を酸化することで birnessite が形成 される。その際、はじめに $Mn(OH)_2$ (pyrochroite) が形成される。その後、Mn 種が酸 化され、 β -MnOOH (feitknechtite) が形成された後、birnessite への構造変化が起こる。 これらの化合物は、いずれも層状構造をとっており、構造変化は topotactic に起こって いると考えられる。

② MnO₄⁻の還元による合成^[13y]

KMnO₄の塩基性水溶液をKOH水溶液とエタノールの混合溶液中に加えたものをエー ジングすることで、birnessite が形成される。溶液の混合直後にアモルファス MnO₂が形 成され、その後、アモルファス MnO₂が溶液に溶解し、birnessite として再結晶化する。

また、層状構造を有する Mn 系複酸化物の中には、第4級アンモニウムカチオン等の 有機カチオンを層間に有するものも報告されており、buserite や birnessite よりも広い層 間距離を有するものも報告されている。^[14] 有機カチオンを含む層状構造は、birnessite 等 の層状酸化物を前駆体とし、イオン交換により合成される場合が多い。^[144,14e,14j,14l,14m,140] 層間の広い層状構造は、層同士の静電相互作用が弱いため、水中に分散させる等の手法 により、単層に剥離することが可能である場合が多い。さらに、剥離したナノシートは、 電極材料等として応用可能である。^[14p]

Figure 1-2. 層状構造を有する Mn 系複酸化物 (birnessite) (橙色の球: Mn^{3+} or Mn^{4+} , 赤い球: O^{2-} , 青い球: K^+ 等のカチオン, 灰色の球: H_2O).

Figure 1-3. birnessite の金属イオン吸着サイト. (a) 層間の H_2O と同じサイトにアルカリ 金属やアルカリ土類金属などの大きな金属カチオンが位置する場合. (b) MnO_6 シートの 欠陥の上下のサイトに遷移金属カチオンなどの小さなカチオン (Zn^{2+} , Cu^{2+} , Ni^{2+} , Co^{2+} , Mn^{2+}) が位置する場合.^[10b,12a]

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	参考文献
Na-buserite (or birnessite)	Mn ²⁺ の酸化	MnCl ₂ , NaOH, O ₂	_	_	_	_	13a
Ca-birnessite	水熱合成法	Mn(OAc) ₂ •4H ₂ O, Ca(NO ₃) ₂ , KMnO ₄ , KOH	40 °C for 72 h	_	_	207.3	13b
Cu-birnessite	イオン交換	$\begin{array}{l} Mn(NO_3)_2 \bullet 4H_2O,\\ NaOH, Na_2S_2O_8,\\ Cu(NO_3)_2 \end{array}$	Na-birnessite を調 製後イオン交換	12	19 (SEM)	86	13c
Na-birnessite	Mn ²⁺ と Mn ⁷⁺ の 酸化還元	KMnO4, MnCl2•4H2O, NaOH, NaCl	rt for 4 h	_	2–4 (TEM)	330	13d,13e, 13g
birnessite	Mn ²⁺ と Mn ⁷⁺ の 酸化還元	KMnO4, MnCl2, NaOH	rt for 24 h	_	_	42.8	13f
Ni-birnessite	電気化学	$Mn(OAc)_2 \bullet 4H_2O,$ $Ni(OAc)_2 \bullet 4H_2O,$ $Na(OAc), H_2SO_4$	_	_	5–7 (TEM)	_	13h
Ni-birnessite	水熱合成法	KMnO ₄ , NiCl ₂ , HCl	100 °C for 30 min, 60 °C overnight	_	_	70.67	13i, 13j
Na-birnessite	Mn ²⁺ と Mn ⁷⁺ の 酸化還元	KMnO ₄ , MnCl ₂ , NaNO ₃	_	5–6	5-10 (TEM)	_	13k

	Table 1-1.	層状構造を有す	るMn	系複酸化物の合成法	(既報).[13]
--	------------	---------	-----	-----------	-----------

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	参考文献
Na-birnessite	Mn ²⁺ と Mn ⁷⁺ の 酸化還元	KMnO ₄ , MnCl ₂ •4H ₂ O, NaOH, NaCl	rt for 4 h	16	_	150	131
Ce-dope K-birnessite	水熱合成法	KMnO ₄ , Ce(NO ₃) ₃ , HCl	60 °C for 12 h	_	_	135	13m
CTAC-birnessite	電気化学	MnSO ₄ , Na ₂ SO ₄ , CTAC	_	_	_	102	13n
birnessite– graphene	Mn ⁷⁺ の還元 (マイクロウェ ーブ)	KMnO ₄ , graphene	700 W for 5 min	_	5-10 (TEM)	_	130
K-birnessite–CNT	水熱合成法	KMnO ₄ , SDBS, CNT	160 °C for 6 h	_	10-20 (TEM)	110.38	13p
K-birnessite–CNF	Mn ⁷⁺ の還元	KMnO ₄ , CNF, H ₂ SO ₄	_	_	40 (thickness) (TEM)	20–40	13q
K-birnessite	水熱合成法	KMnO ₄ , HCl	_	_	_	35.4	13r
K-birnessite	Mn ⁷⁺ の還元	KMnO ₄ , HCl, CH ₂ Cl ₂ , thiophene	4 °C for 24 h	_	50-100 (SEM)	226	13s
Cu-birnessite	Mn ²⁺ の酸化	Mn(NO ₃) ₂ •4H ₂ O, NaOH, Na ₂ S ₂ O ₈ , Cu(NO ₃) ₂ •2.5H ₂ O	_	12	_	_	13t
K-birnessite	水熱合成法	KMnO ₄ , oleic acid	120 °C for 12 h	_	4 (dimeter), 300 (length) (SEM)	94.6	13u

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	参考文献
K-birnessite@iron oxide	水熱合成法	KMnO ₄ , HCl, iron oxide	100 °C for 3 h	_	5 (thickness) (TEM)	175–225	13v
H ⁺ -birnessite–CC	電気化学	$\begin{array}{l} MnSO_4 \bullet 5H_2O, \\ H_2SO_4 \end{array}$	_	_	100 (width) (TEM)	133.2	13w
K-birnessite	ゾル-ゲル法	KMnO ₄ , glucose (or sucrose)	rt for 30 min, 400– 450 °C for 2 h	_	_	_	13x
birnessite	Mn ²⁺ の酸化	Mn(OAc) ₂ •4H ₂ O, KOH, H ₂ O ₂	rt for ca. 20 min	_	_	_	13y
birnessite	水熱合成法	MnCl ₂ •4H ₂ O, NaOH, PVP, ethylene glycol	100 °C for 1 h	_	10 (thickness), 300–500 (diameter) (SEM)	49.11	13z
birnessite	水熱合成法	MnCl ₂ , NaOH, O ₂	60 °C	_	_	37.8	13aa

[a] XRD パターンからシェラー式により見積もられた結晶子径.

SEM = scanning electron microscopy, TEM = transmission electron microscopy, OAc = acetate, CTAC = cetyltrimethylammonium chloride, SDBS = sodium dodecylbenzenesulfonate, CNT = carbon nanotube, CNF = carbon nanofiber, CC = carbon cloth, PVP = poly(vinyl pyrrolidone).

1.2.1.2. トンネル構造(1次元構造)

Mn 系複酸化物の中には、MnO₆ユニットが稜共有して 1 次元の鎖状構造を形成し、 それらが頂点共有により環状に連結することで、1 次元のトンネル構造を形成するもの ¹⁰⁰があり、それらの多くは、天然鉱物として産出される(Figure 1-4)。¹¹¹ 特に、2×2 ト ンネル構造のOMS-2 (cryptomelane, Figure 1-4a) や3×3 トンネル構造のOMS-1 (todorokite, Figure 1-4b) は、水熱合成法をはじめとした種々の手法により調製され、触媒や電極材 料等としての応用が検討されている。トンネル構造を有する Mn 系複酸化物は、主に① 固相法、② 溶融塩フラックス法、③ 酸化還元沈殿法、④ ゾル-ゲル法、⑤ 水熱合成 法により合成される。^{110b} 以下に反応例を挙げる。特に、3×3 トンネル構造を有するOMS-1 については、Table 1-2 に示すように、水熱合成法による合成が最も多く報告されており、 層状構造を有する Mn 系複酸化物 (buserite) からの構造変化により合成される場合が多 い。^[15] また、OMS-1 については、70 ℃ 程度の比較的低温での合成が可能である。

固相法

原料を混合し、数百度以上の高温で焼成することで生成物を得る。Mn 源(MnCO₃, MnO₂, Mn₂O₃, MnOOH, Mn(OAc)₂等)、異種金属源(M₂CO₃, MOH, MNO₃, M(OAc)(M = Na⁺ or K⁺)等)を高温で焼成する(例: 600 °C, 2 h)ことで、 2×2 トンネル構造(Figure 1-4a) を有する Mn 系複酸化物(OMS-2)を合成可能である。その際、トンネル内に入る金属 カチオンとして Na⁺や K⁺がしばしば用いられる。^[10b,16]

② 溶融塩フラックス法

溶融塩中で原料を高温で反応させることで生成物を得る。この手法では、BaCO₃ と $MnO_2 \epsilon Bi_2O_3$ の溶融塩中で 1270 °C で反応させることで $Ba_6Mn_{24}O_{48}$ というトンネル構造を有する Mn系複酸化物を合成可能である。得られた生成物は単結晶であり、この構造はこの手法ではじめて合成された。^[10b]

③ 酸化還元沈殿法

 Mn^{2+} と MnO_4^- の酸化還元により、生成物を得る。この合成法は K^+ や NH_4^+ を内部に有 する 2×2 トンネル構造のMn 系複酸化物である OMS-2 (Figure 1-4a) の合成によく用い られる。例えば、トンネル内に K^+ を有する K-OMS-2 は、1 M H₂SO₄ 中で $MnSO_4$ (or $Mn(NO_3)_2$) と KMnO₄ (or KClO₃) を 60 °C 以上で反応させることで合成可能である。 ^[17]また、 NH_4^+ -OMS-2 は、KMnO₄ (or KClO₃) の代わりに(NH_4)₂S₂O₈ を酸化剤として用 いることで合成可能である。^[18]

④ ゾル-ゲル法

グルコースやフマル酸といった多価アルコールを用いて KMnO₄を水溶液中で還元し、 ゲルを形成させる。そのゲルを焼成(例: 440 °C, 2 h) することで、生成物を得る。^[19] 生 成物の組成における K/Mn 比が小さいと、OMS-2 (2×2 トンネル構造, Figure 1-4a) が得 られる。また、K/Mn 比が大きいと層状構造が形成される。固相法では、組成により、 生成物の構造が決まる。ゾル-ゲル法も数百度以上の焼成プロセスを含むため、固相法 と同様に前駆体の組成で生成物が決まった可能性が考えられる。K⁺が大量に存在する条 件では、トンネル構造内に K⁺が入りきらず、代わりに層間に広い空間を有する層状構 造を形成したと考えられる。

⑤ 水熱合成法

水熱合成法でトンネル構造を有する Mn 系複酸化物を合成する手法は、(i) Mn 源と異 種金属種の水熱反応による1段階での合成、(ii) Mn 系層状複酸化物の合成とその水熱反 応による構造変化による2段階での合成の2通りに分類できる。(ii)の手法では、多様 な構造を有する Mn 系複酸化物のつくり分けが可能であると報告されている。

(i) Mn 源と異種金属種の水熱反応による1段階での合成

Mn 源(KMnO₄, Mn₂O₃等)を異種金属種存在下で水熱反応させることで生成物を得る。K⁺、NH₄⁺、Rb⁺を溶解させた硫酸水溶液中で Mn₂O₃を 100 °C で水熱反応させることで OMS-2(2×2 トンネル構造, Figure 1-4a)が得られることが報告されている^[20] 一方、 β-MnO₂を RbOH 水溶液中で 400 °C 以上で水熱反応させることで 2×5 トンネル構造を有 する Rb_{0.27}MnO₂が得られる。^[21] Rb_{0.27}MnO₂の構造中では、4 つの Rb⁺が 2×5 トンネル構 造の内部に位置するといわれている。また、トンネル構造の大きさは、RbOH の濃度に 依存することも報告されている^[22] 生成物は、Rb⁺濃度が低い場合に 2×2 トンネル構造、 高い場合に 2×5 トンネル構造や層状構造が形成される。このことから、塩基性条件下、 高濃度の異種金属カチオン(Rb⁺等)が存在すると、大きなトンネル構造や層状構造と いった大きな空隙を有する結晶構造が形成されると考えられている。

(ii) Mn 系層状複酸化物の合成とその水熱反応での構造変化による2段階での合成

層状構造を有する Mn 系複酸化物の層間に種々の金属カチオンを導入し、水熱反応さ せることで、様々な大きさのトンネル構造をつくり分ける Hydrothermal soft chemical process が報告されている (Figure 1-5)。^[15m,15n,23]まず層間に Na⁺等の異種金属カチオンを 層間に含む birnessite を前駆体として合成する。さらに birnessite の層間カチオンを目的 構造の Mn 系複酸化物に含まれる異種金属カチオンとイオン交換する。イオン交換によ り得られた birnessite を水熱反応させることで、Mn-O 骨格を再配列し、生成物を得る。 例えば、層状酸化物である Mg-birnessite を 155 ℃ で水熱反応させると、3×3 トンネル 構造が形成される。生成物は、K⁺を用いると、2×2 (OMS-2, hollandite)、Ba²⁺を用いる と 2×3 (romanechite)、Rb⁺を用いると 2×4 (RUB-7)、Mg²⁺を用いると 3×3 トンネル構造 (OMS-1, todorokite) が形成される。3×3 トンネル構造内部のカチオンとして、2 価の 遷移金属カチオン (Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺)を用いることもできる。^[12b]また、Li⁺を用いる ことでスピネル構造、Li_xAl_n(OH)^{x²⁺}という水酸化物イオンを用いることでサンドイッチ 型の層状構造 (lithiophorite) の合成も可能である。以上のように、この手法では、導入 するカチオンの種類によって生成物の構造を制御することができる。固相法をはじめと する、高温の合成法では、合成可能なトンネル構造は、多くの場合 OMS-2 (2×2 トンネ ル構造) に限られる。水熱合成法を利用すると、OMS-1 (3×3 トンネル構造)等の、よ り内部空間の大きな構造を形成可能となる。これは、より内部空間の大きなトンネル構 造は、熱的安定性が比較的低いことに由来すると考えられる(例えば, 3×3 トンネル構 造は約 600 °C で構造が崩壊する)。

Figure 1-4. トンネル構造を有する Mn 系複酸化物((a) 2×2 トンネル構造 (cryptomelane (OMS-2)), (b) 3×3 トンネル構造 (todorokite (OMS-1))) (橙色の球: Mn³⁺ or Mn⁴⁺, 赤い球: O²⁻, 青い球: K⁺や Rb⁺等, 緑の球: Co²⁺等の 2 価カチオン, 灰色の球: H₂O).

Figure 1-5. 層状構造を有する Mn 系複酸化物前駆体からの構造変化による Mn 系複酸化物のつくり分け (Hydrothermal soft chemical process).^[15m,15n,23]

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	参考文献
Mg-OMS-1	水熱合成法	Mg-buserite	160 °C for 24 h	14.5	10–15 (width) (TEM)	44	15a
		$Mn(NO_3)_2$,	100 °C for 16 h		5-6 (width), 50-		
Ca-OMS-1	水熱合成法	NaMnO ₄ , MnSO ₄ ,	(water vapor	_	70 (length)	62	15b
		Ca(NO ₃) ₂ , HNO ₃	pressure: 120 kPa)		(TEM)		
					40 (diameter),		
Mg-OMS-1	水埶合戓法	$Mg(Mn\Omega_{1})_{2} \bullet 6H_{2}\Omega_{1}$	240 °C for 6–96 h	_	several	44 5	15c
Mg-OM5-1			240 € 101 0 90 11		micrometer		100
					(length) (TEM)		
Mg-OMS-1	水埶合戓法	Na-birnessite,	160 °C	_	_	17	15d
WIg-OWID-1		MgCl ₂	100 C			17	150
Mg-OMS-1	水熱合成法	Mg-buserite	150 °C for 4 h	_	70 (width) (SEM)	81	15e
Mg-OMS-1	水埶合戓注	Ma-buserite	180 °C for 24 h	_	50-100 (width)	_	15f
WIg-OWID-1		Wig-busefile	100 € 101 24 11		(TEM)		151
Mg-OMS-1	水熱合成法	Mg-buserite	reflux for 8–24 h	_	-	77	15g
Mg-OMS-1	水熱合成法	Mg-buserite	reflux for 24 h	_	_	_	15h
Mg OMS 1	水熱合成注	$Mn(OAc)_2•4H_2O,$	reflux for 24 h		10 (thickness)	84.4	15;
Ing-Omb-1	小款合成法	$Mg(OAc)_2, K_2CrO_4$	1011ux 101 24 II	—	(TEM)	04.4	151
Co(NH ₃) ₆ ³⁺ -OMS-1	水熱合成法	Co(NH ₃) ₆ ³⁺ -buserite	reflux for 24 h	_	20–40 (thickness) (TEM)	98.2	15j

Table 1-2. 3×3 トンネル構造を有する Mn 系複酸化物 (OMS-1) の合成法 (既報).^[15]

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	参考文献
Mg-OMS-1	水熱合成法	Mg-birnessite	155 °C for 8 h	_	20–50 (width), 50000 (length) (TEM)	_	15k
Mg-OMS-1	水熱合成法	Mg-buserite	155–170 °C for 10– 40 h	_	_	140–180	151
Mg-OMS-1	水熱合成法	Mg-buserite	150 °C for 2 days	_	_	_	15m, 15n
Mg-OMS-1	水熱合成法	Mg-buserite	160 °C for 4 days	_	90 (SEM)	_	150
Mg-OMS-1	水熱合成法	Mg-buserite	160 °C for 24 h	_	_	_	15p
Mg-OMS-1	水熱合成法	Mg-buserite	70–100 °C for 2 h– 35 days	_	_	_	15q
M-OMS-1 (M = Mg, Co, Ni, Cu, Zn)	水熱合成法	buserite	150–170 °C for 2 days	_	_	_	15r
Mg-OMS-1	水熱合成法	Mg-buserite	100 °C for 3–48 h	_	15–100 (width), 1000–2500 (length) (TEM)	_	15s
Mg-OMS-1	水熱合成法	Mg-buserite	reflux for 72 h	_	50–100 (width) (TEM)	_	15t

[a] XRD パターンからシェラー式により見積もられた結晶子径.

SEM = scanning electron microscopy, TEM = transmission electron microscopy, OAc = acetate.

1.2.1.3. スピネル構造(3次元構造)

スピネル構造は、立方最密充填した酸素の間の四面体サイトの 1/8 (A サイト)、八面 体サイトの 1/2 (B サイト)を2価、3価(場合によっては1価や4価)の金属カチオ ンが占めた構造である (Figure 1-6a)。特に、B サイトが Mn³⁺や Mn⁴⁺からなる Mn 系ス ピネル酸化物の構造は、MnO₆ ユニットが稜共有により連結した、3 次元骨格構造と見 なすことができる。その空隙(A サイト)には、異種金属カチオン(Li⁺, Mg²⁺, Fe²⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺等)が入っており、これらの性質により様々な物性・機能を示す。また、 A サイトに Co²⁺や Mg²⁺等の2 価の異種金属カチオンが入る場合には、B サイトの Mn 種の多くは3 価をとる。その場合、Mn³⁺の Jahn-Teller 効果により、スピネル構造は、cubic から tetragonal へ歪む (Figure 1-6a and 1-6e)。

Mn 系スピネル酸化物は、主に、固相法、ゾル-ゲル法、共沈法、水熱合成法等により 合成されている。A サイトに Li⁺を有する Li–Mn スピネル酸化物の既報での合成例^[24] を Table 1-3 に示す。固相法やゾル-ゲル法といった焼成を合成過程に含む合成法では、 数百度以上での加熱が必要である。一方、水熱合成法といった液相での反応を含む合成 法では、比較的低温でのスピネル構造合成が報告されているが、典型的には、180 ℃ 以 上の高温条件が必要である。また、Li–Mn スピネル酸化物は、スピネル構造から Li⁺を 電気化学的に脱挿入可能であるため、Li⁺イオン電池の正極材料としての利用が検討さ れている。Li–Mn スピネル酸化物をナノサイズ化したり、細孔壁の薄いメソポーラス構 造等を形成させたりすることで、Li⁺の粒子内拡散長を低減させ、高速での充放電を行 う試みがなされている。

固相法では、多孔性前駆体を用いたり、前駆体形成時にメソポーラスシリカ等の多孔 性物質を鋳型として用いて焼成を行うことで、多孔性の Li-Mn スピネル酸化物の合成 が検討されている。これにより、壁厚 7 nm 程度の多孔性 Li-Mn スピネル酸化物が合成 されている。^[24d]

ゾル-ゲル法は固体同士を混合して焼成するだけの固相法よりも比較的低温での合成 が可能であるが、粒子同士の焼結により生成物は、比較的粒子径の大きな数十から数百 ナノメートルのものとして得られている。一方、合成後に、ボールミル処理を行うこと で、5 nm 程度のナノ粒子を得ることが可能であると報告されている。^[24b]

一方、溶液中での反応によるナノサイズの酸化物合成法が注目されている。液相での 反応では、上記の固相法やゾル-ゲル法等と異なり、焼成を行うことなく結晶性の生成 物を比較的低温で合成可能である。なかでも、水を溶媒とした水熱合成法が最もよく用 いられている。水熱合成法では、焼結による粒子成長が起こらないため、比較的粒子径 の小さな生成物を合成可能であるが、Mn 種の溶解再析出^[8]による粒子成長等が起こる ため、数ナノメートルの Li-Mn スピネルナノ粒子を合成することは容易ではない。ま た、水熱合成法は、高温・高圧条件での反応であることが多く、反応過程はしばしばブ ラックボックスであるため、生成物の形成過程はあまり解明されていない。また、水の 代わりに有機溶媒を溶媒として用いた Li-Mn スピネル酸化物合成法(ソルボサーマル 法)は1例のみ報告されている。^[24w] その合成法では、Mn 酸化物を 220 ℃ といった高温 条件で加熱することで構造変化させるものであり、生成物の粒子径も 180 nm (TEM 像 から算出)といった比較的大きなものである。

また、Li⁺以外の 2 価カチオンを含む Mn 系スピネル酸化物の既報での合成例^[25]を Table 1-4 に示す。3 nm 程度(TEM 像より算出)の粒径が比較的小さな Co-Mn スピネ ル酸化物のソルボサーマル合成が報告されている。^[25b] その手法では、界面活性剤として オレイルアミンを用い、還元酸化グラフェン上にスピネルナノ粒子を担持している。合 成時に界面活性剤を用いることは、ナノ粒子を分散した状態で得る上では有用であるが、 粒子表面を被覆してしまうため、粒子の表面での反応を用いるような応用(触媒反応等) には不向きである可能性がある。

上述のように、液相での反応は、酸化物ナノ粒子の低温合成に有用であると考えられ るが、① 低温合成(特にスピネル構造)、② 数ナノメートルのナノ粒子合成、③ 低温 合成による生成物の形成過程の理解が既存の研究では十分に実現されているとは言い 難い。

Figure 1-6. Mn 系スピネル酸化物の結晶構造. (a) cubic スピネル構造の単位格子, (b) MnO_6 を八面体, Li⁺サイトを四面体で示した cubic スピネル構造, (c) 110 面からみた cubic スピネル構造の原子配置, (d) 100 面からみた cubic スピネル構造の原子配置, (e) tetragonal スピネル構造の単位格子, (f) MnO_6 を八面体, Co^{2+} サイトを四面体で示した tetragonal スピネル構造(橙色の球: Mn^{3+} or Mn^{4+} , 赤い球: O^{2-} , 黄色い球: Li⁺, 緑の球: Co^{2+}).

生成物	合成法	原料 合成条件 ^新		結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比 表面積 (m ² g ⁻¹)	参考 文献
LiMn ₂ O ₄ – RGO	水熱合成法	KMnO ₄ , LiOH	200 °C for 3 h	3.5	10–30 (SEM)	_	24a
LiMn ₂ O ₄	ゾル-ゲル法 (ボールミル)	Mn(OAc) ₂ , Li(OAc)	100 °C, 600 °C for 6 h	-	5 (TEM)	_	24b
$LiMn_2O_4$	噴霧熱分解法	Li(acac), $Mn(acac)_3$	_	6.8	_	203.4	24c
LiMn ₂ O ₄	鋳型法	Mn ₃ O ₄ , LiOH	350 °C for 1 h	_	7 (wall diameter) (TEM)	90	24d
$LiMn_2O_4$	水熱合成法	CTAMnO ₄ , LiOH	70 °C for 48 h	7	70 (SEM)	_	24e
LiMn ₂ O ₄	噴霧熱分解法	Li- <i>t</i> -butoxide, Mn-2-ethylhexanoate	_	7	_	200	24f
LiMn ₂ O ₄ -grap hene (or CNT)	固相法	Mn ₃ O ₄ , LiOH	380 °C for 1 h	-	~7 (TEM)	_	24g
$LiMn_2O_4$	水熱合成法	LiMnO ₂ , LiOH	180 °C for 12 h	9	15 (TEM)	38.7	24h
$LiMn_2O_4$	水熱合成法	KMnO ₄ , LiOH	180 °C 5 h	14	10-30 (SEM)	_	24i
$LiMn_2O_4$	噴霧熱分解法	Mn(acac) ₃ , Li(acac)	1000–2400 °C 5 min	10	_	134	24j
$LiMn_2O_4$	固相法	α -MnO ₂ , LiOH•H ₂ O	480 °C	-	10 (diameter) (TEM)	95.6	24k
LiMn ₂ O ₄	水熱合成法	Mn(NO ₃) ₂ , LiOH	110 °C for 8 h	-	10–20 (diameter) (TEM)	57.85	241

Table 1-3. Li-Mn スピネル酸化物の合成法(既報).^[24]

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比 表面積 (m ² g ⁻¹)	参考 文献
LiMn ₂ O ₄ CNT	水熱合成法	KMnO ₄ , LiOH•H ₂ O	180 °C for 10 h	_	10–20, 200–500 (SEM)	_	24m
LiMn ₂ O ₄ – CNT	水熱合成法	KMnO ₄ , LiOH	180 °C for 5 h	_	10–20 (diameter) (TEM)	_	24n
LiMn ₂ O ₄ RGO	水熱合成法	MnO ₂ –RGO, LiOH	200 °C for 30 min	_	10-40 (TEM)	_	240
LiMn ₂ O ₄	ゾル-ゲル法 (ボールミル)	Mn(OAc) ₂ , Li(OAc)	205 °C for 1 h, 800 °C for 15 h	6	10 (TEM)	_	24p
LiMn ₂ O ₄	水熱合成法	MnO ₂ , LiOH•H ₂ O	180 °C for 96 h	_	15 (TEM)	_	24q
carbon-coated LiMn ₂ O ₄	水熱合成法	LiOH, Mn(OAc) ₂	110 °C for 12 h	_	>20 (TEM)	65	24r
LiMn ₂ O ₄	水熱合成法	Mn(NO ₃) _{2,} LiOH	110 °C for 8 h	_	20 (diameter) (TEM)	57.85	24s
LiMn ₂ O ₄	固相法	Mn ₂ O ₃ , LiOH	700 °C for 10 h	_	20 (TEM)	8.6	24t
LiMn ₂ O ₄	鋳型法	Mn(NO ₃) ₂ , Li(NO ₃)	80 °C for 8 h, 500 °C for 8 h (3 times)	_	20–30 (wall thickness) (TEM)	65	24u
LiMn ₂ O ₄	噴霧熱分解法	$Mn(OAc)_2 \bullet 4H_2O, Li_2CO_3$	_	20	27 (TEM)	_	24v
LiMn ₂ O ₄	ソルボサーマ ル法	MnO ₂ , LiOH•H ₂ O, NaOH	160–220 °C for 12 h	36	180 (TEM)	16.44	24w

生成物	合成法	原料 合成条件 結晶子径 粒径 (直接 (nm) ^[a] (nm)		粒径 (直接観察) (nm)	BET 比 表面積 (m ² g ⁻¹)	参考 文献	
LiMn ₂ O ₄	水熱合成法	KMnO ₄ , LiOH	180 °C 5 h, 500 °C for 4 h	_	- 30–50, 100–300 (SEM)		24x
$LiMn_2O_4$	燃焼法	Mn(NO ₃) ₂ , LiNO ₃	500 °C for 10 h	_	40 (TEM)	3.0252	24y
LiMn ₂ O ₄	ゾル-ゲル法	Mn(OAc) ₂ •4H ₂ O, Li(OAc)•2H ₂ O	450 °C for 5 h, 550 °C for 10 h	44	40–100 (SEM)	13.81	24z
$LiMn_2O_4$	ゾル-ゲル法	$Mn(NO_3)_2, Li_2CO_3$	80 °C for 0.5 h, 400 °C	47	47 50–80 (TEM)		24aa
LiMn ₂ O ₄	燃焼法	Mn(NO ₃)•4H ₂ O, LiNO ₃	500 °C for 15 min	23	3 50 (SEM)		24ab
LiMn ₂ O ₄	溶融塩フラッ クス法	Na _{0.44} MnO ₂ , LiNO ₃ , LiCl	450 °C for 1 h, 800 °C for 1 h	_	50-100 (diameter)	_	24ac
LiMn ₂ O ₄	水熱合成法	MnO ₂ (EMD), Mn(NO ₃) ₂ , LiOH•H ₂ O	280 °C for 36 h	_	– 50–300 (SEM)		24ad
LiMn ₂ O ₄ CNT	水熱合成法	MnO ₂ CNT, LiOH	180 °C for 25 h	_	– 50–150 (SEM)		24ae
LiMn ₂ O ₄	ゾル-ゲル法	Mn(OAc) ₂ •4H ₂ O, Li(OAc)•2H ₂ O	90 °C for 24 h, 750 °C for 12 h	_	– 50–100 (SEM)		24af
LiMn ₂ O ₄	鋳型法	MnCO ₃ , LiI	70 °C for 12 h, 350 °C for 2 h	- 60–100 (wall thickness) (TEM)		78.4	24ag
LiMn ₂ O ₄	ゾル-ゲル法	Mn(OAc) ₂ •4H ₂ O, Li(OAc)•2H ₂ O	60 °C, 360 °C for 10 h, 650 °C for 10 h	_	60 (TEM)	12.6	24ah
LiMn ₂ O ₄	燃焼法	Mn(NO ₃) ₂ •6H ₂ O, LiNO ₃	120 °C, 700 °C	14–20	70 (TEM)	23	24ai

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径 (直接観察) (nm)	BET 比 表面積 (m ² g ⁻¹)	参考 文献
LiMn ₂ O ₄ - CNT	水熱合成法	MnO ₂ , LiOH	180 °C for 48 h	– 100 (SEM)		16.3	24aj
LiMn ₂ O ₄	ゾル-ゲル法	Mn(NO ₃) ₂ , LiNO ₃	110 °C for 12 h, 750 °C for 5 h	_	– 100 (TEM)		24ak
LiMn ₂ O ₄	ゾル-ゲル法	Mn(OAc) ₂ , Li(OAc)	80 °C for 4 h, 300 °C for 6 h, 800 °C for 6 h	– <100 (SEM)		_	24al
MgO coated LiMn ₂ O ₄	固相法	MnO ₂ , Li(OAc)•2H ₂ O	700 °C for 10 h	_	ca. 100 (SEM)	18	24am
LiMn ₂ O ₄	ゾル-ゲル法	Mn(OAc) ₂ , Li(OAc)	450–700 °C for a few hours	23	ca. 100–300 (SEM)	_	24an
LiMn ₂ O ₄	ゾル-ゲル法	Mn(OAc) ₂ , Li(OAc)	60 °C for 12 h, 600 °C for 10 h	– 119 (SEM)		ca. 14.5	24ao
LiMn ₂ O ₄ - CNT	水熱合成法	MnO ₂ –CNT, LiOH•H ₂ O	180 °C for 48 h, 700 °C for 8 h	– 150–400 (TEM)		_	24ap
LiMn ₂ O ₄	固相法	Mn(OAc) ₂ , Li(OAc)	750 °C for 6 h	_	150–500 (TEM)	1.15	24aq
LiMn ₂ O ₄	固相法	γ-MnOOH, LiOH•H ₂ O	750 °C for 3 h	_	ca. 200–300 (SEM)	-	24ar

[a] XRD パターンからシェラー式により見積もられた結晶子径. SEM = scanning electron microscopy, TEM = transmission electron microscopy, RGO = reduced graphene oxide, CNT = carbon nanotube, OAc = acetate, acac = acetylacetonate, CTA = cetyltrimethylammonium, EMD = electrolytic manganese dioxide.

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径(直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	参考文献
$\begin{split} MMn_2O_4 \ (M=Co,\\ Ni,\ Zn) \end{split}$		Mn(OAc) ₂ ,	75 °C, 800 °C (Co),	65 (Co),	200–500 (Co),		
	共沈法	$M(OAc)_2 \bullet 4H_2O$,	400 °C (Ni, Zn) for	11(Ni),	10 (Ni),	_	25a
		oxalic acid	2 h	11.4 (Zn)	5–10 (Zn),		
	以几乎开一一	$Mn(OAc)_2, CoCl_2,$				412	
CoMn ₂ O ₄ -RGO	シルホリーマ	xylene, oleylamine,	120 °C for 3 h	_	<3 (TEM)	(CoMn ₂ O ₄ -	25b
	ル法	H_2O				RGO)	
CoMn ₂ O ₄	水熱合成法	$Mn(NO_3)_2$,	190 °C for 40 min		10 (TEM)	94	250
		$Co(NO_3)_2$, NH_3 aq.	180 C for 40 min	_	10(1 EM)	84	250
	ソルギサーマ	$Mn(OAc)_2 \bullet 4H_2O,$					
CoMn ₂ O ₄ -carbon	ノルホリーマ	Co(OAc) ₂ ,	180 °C for 10 h	_	280 (TEM)	_	25d
)FIZ	ethyleneglycol					
CoMn ₂ O ₄ -PDDA-	水劫入武法	$Mn(OAc)_2 \bullet 6H_2O,$	80 °C for 1 h,		15 (TEM)		250
CNT	小杰石风伝	$Co(OAc)_2 \bullet 6H_2O$	180 °C for 10 h	_	13(1 EM)	—	25e
CoMn O		$Mn(OAc)_2 \bullet 4H_2O,$			90 (thistrass)		
Colvin ₂ O ₄ -	水熱合成法	$Co(OAc)_2 \bullet 4H_2O$,	200 °C for 6 h	_	ou (unickness)	133.1	25f
graphene		NaOH, DMF			$(1 \mathbf{E} \mathbf{N} \mathbf{I})$		
		Co–Mn					
$CoMn_2O_4$	固相法	hydroxycarbonate	400 °C	_	6–12 (TEM)	183	25g
		precursor					

Table 1-4.2 価異種金属カチオンを含む Mn 系スピネル酸化物の合成法(既報).^[25]

生成物	合成法	原料	合成条件	結晶子径 (nm) ^[a]	粒径(直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	参考文献
CoMn ₂ O ₄ -Ni foam	水熱合成法 (焼成あり)	MnSO ₄ •H ₂ O, CoSO ₄ •7H ₂ O, ethanol, urea, NH ₄ F	90 °C for 6 h, 350 °C 6 h	_	ca. 5 (thickness) (SEM)	_	25h
$MMn_2O_4 (M = Co,$ Ni, Cu)	ゾル-ゲル法	$Mn(NO_3)_2,$ $Co(NO_3)_2$	60 °C for several hours, 700 °C for 6 h	10 (Co), 15 (Ni), 13 (Cu)	35 (Co), 50 (Ni), 40 (Cu)	31 (Co), 27.2 (Ni), 29.4 (Cu)	25i
CoMn ₂ O ₄ NRGO	水熱合成法	Mn(OAc)₂, Co(OAc)₂, NH₄OH, GO, ethanol	80 °C for 10 h, 150 °C for 3 h	_	~20 (TEM)	51.67	25j
MMn ₂ O ₄ –SiO ₂ (M = Fe, Co, Ni, Zn)	固相法	MCl ₂ , Na ₂ SiO ₃ •9H ₂ O	750–850 °C (Fe), 600–850 °C (Co), 750–900 °C (Ni), 700–800 °C (Zn)	7.3–9.3 (Fe), 2.8–5 (Co), 3.4–22.1 (Ni), 4.2– 14.3 (Zn)	_	_	25k

SEM = scanning electron microscopy, TEM = transmission electron microscopy, RGO = reduced graphene oxide, PDDA-CNT = poly (diallyldimethylammonium chloride) functionalized carbon nanotube, DMF = N,N-dimethylformamide, NRGO = nitrogen-doped reduced graphene oxide, NG = nitrogen-doped graphene, OAc = acetate.

1.2.1.4. Mn 系複酸化物の結晶構造に関する考察

Mn 系複酸化物は、MnO₆ ユニット間に入るカチオンの種類に応じて多様な結晶構造 を形成することが知られている。Mn 系複酸化物の結晶構造をつくり分けるためには、 どのような要素が結晶構造を決定づけているのかを理解する必要がある。そこで、Mn 系複酸化物のそれぞれの構造 (Figure 1-7) について、MnO₆ユニット間に入る異種金属 カチオンの種類・サイズ・水和数・水和エンタルピー・合成条件等について Table 1-5 にまとめた。ここでは、主に Mn 系複酸化物の MnO₆ユニット間の空間とそこに入る異 種金属カチオンに着目して結晶構造を決定づける要因について考察した。

pyrolusite (1×1 トンネル構造)、ramsdellite (1×2 トンネル構造)、nsutite (1×1/1×2 トンネル構造) といった 1×n の小さなトンネル構造を有する Mn 系複酸化物は、MnO₆ユニット間に H⁺が入ることで、形成されている。1×n トンネル構造のトンネル (MnO₆ユニット間の空間)のサイズは、幅の狭い方では 0.76 Å となり、極めて小さいため、トンネル内には、金属カチオンは入ることができず、H⁺が存在すると考えられる (Figure 1-8a and 1-8b)。

スピネル構造は、MnO₆ユニット間に狭い空間を有し、MnO₆ユニット間には、Li⁺、 Mg²⁺、Fe²⁺、Co²⁺、Ni²⁺、Zn²⁺等の異種金属カチオンが入る。スピネル構造のMnO₆ユニ ット間の空間のサイズは、1.54–1.70 Å であるのに対し、スピネル構造内に入る異種金 属カチオンのサイズは、1.38–1.54 Å である。このことから、スピネル構造では、MnO₆ ユニット間の空間サイズと異種金属カチオンのサイズが同程度であることが示唆され た(Figure 1-8c)。このことから、スピネル構造は、K⁺等のサイズの大きなイオンや水 和によりサイズが増大したイオンでは形成することができないと考えられる。そのため、 スピネル構造を水熱合成法等の水存在下の条件で合成する際には、水和イオンから水和 水を除去する必要があるために、典型的には 180 ℃ 以上での高温・高圧下での反応が 必要であったと考えられる。

cryptomelane (2×2 トンネル構造 (OMS-2))、romanechite (2×3 トンネル構造)、RUB-7 (2×4 トンネル構造)、Rb_{0.27}MnO₂ (2×5 トンネル構造) といった 2×n トンネル構造は、 トンネル内に K⁺、Rb⁺、Ba²⁺、Na⁺等の異種金属カチオンが入る。2×n トンネル構造のト ンネルサイズは、幅の狭い方で 3.56 Å であり、異種金属カチオンのサイズ 2.26–3.50 Å と同程度であった (Figure 1-8d)。このことから、トンネル内の異種金属カチオンは水 和水に取り囲まれた状態ではトンネル内に存在しないことが示唆された。K⁺等の 2×n トンネル内の異種金属カチオンの水和エンタルピーは、比較的小さな値をとるため、異 種金属カチオンは、水和しても脱水が比較的容易であると考えられる。このことから、 2×n トンネル内の異種金属カチオンは、① 脱水した状態、あるいは、② 結晶水と異種 金属カチオンが一部隣り合う(同じサイトに存在する)と考えられる。2×2 トンネル構 造 (OMS-2)は、水熱合成法だけでなく、固相法やゾル-ゲル法といった数百度以上で の焼成プロセスを含む合成法や溶融塩フラックス法といった極めて高温条件での合成 も可能である。OMS-2 内に入るカチオンの水和エンタルピーは、K⁺で 314 kJ mol⁻¹、Rb⁺ で 289 kJ mol⁻¹と比較的小さいため、高温条件での合成では、脱水状態で異種金属カチ オンが存在すると考えられる。一方、水熱合成法で得られた OMS-2 では、異種金属カ チオンは、トンネル内に結晶水と異種金属カチオンが交互に列をなした状態で存在する と考えられる。OMS-2 は層状構造の birnessite から形成されることが報告されている。 ^[15m,15n,23] 層状構造を有する birnessite では、アルカリ金属やアルカリ土類金属などの大き な金属カチオンは、層間の H₂O と同じサイト(層)に位置することが示唆されている

(Figure 1-8e)。^[10b,12a] このことから、OMS-2 のトンネル内に結晶水と異種金属カチオン が交互に列をなした状態で存在するという推定は妥当であると考えられる。また、 OMS-2 は K⁺等の1価の異種金属カチオンをトンネル内に有するが、Li⁺のみをトンネル 内に有する OMS-2 の合成は困難である。これは、Li⁺は K⁺等と比べ、サイズの小さなイ オンであり、トンネル構造を十分に保持することができないためであると考えられる。

層状構造を有する birnessite は、 MnO_6 ユニット間に幅 3.24 Å の空間を有し、1.38–3.02 Å の異種金属カチオンを層間に有する。一方、さらに層間距離の広い buserite は、 MnO_6 ユニット間に幅 6.24 Å の空間を有する。buserite の層間に入る Na⁺の水和イオンとしてのサイズは、5.52 Å と buserite の層間の広さよりも小さいため、buserite では、異種金属カチオンは、水和水に取り囲まれた状態で存在する可能性が高いと考えられる。

todorokite (3×3 トンネル構造 (OMS-1)) は、広い MnO₆ユニット間の空間を有し、2 価の異種金属カチオンがトンネル内に位置する。OMS-1の MnO₆ユニット間の空間のサ イズは、5.66 Å であるのに対し、異種金属カチオンのサイズは、1.38-1.48 Å と MnO₆ ユニット間の空間サイズと異種金属カチオンのサイズには差がある。 異種金属カチオン に水和水が6配位すると仮定した際の異種金属カチオン-水和水ユニットのサイズは、 5.21-5.67 Å となり、OMS-1 の MnO₆ユニット間の空間のサイズ (5.66 Å) とよく一致す る。このことから、OMS-1 は水が 6 つ配位した異種金属カチオンがトンネル内に密に 入ることで形成されていると考えられる。OMS-1 は、トンネル内に水和イオンが存在 することで形成されている(Figure 1-8f)。OMS-1 は、層状構造を有する buserite を水熱 反応させることにより、形成される。buserite は、乾燥条件での加熱では、層間の水和 水が不可逆的に脱離し、birnessiteに構造変化する。^[12b]一方、2価カチオンは、水和エン タルピーが大きいため、水熱合成法といった水存在下の条件では、低温では、層間の水 和水の脱離は進行しにくいと考えられる。そのため、buserite は、水熱条件で加熱して も、その広い層間を維持しつつ構造変化し、広い空間を有する OMS-1 を形成可能であ ると考えられる。一方、層間の広い buserite からでは、MnO₆ユニット間の空間の比較 的狭い、2×n 以下のトンネル構造やスピネル構造を形成できないため、比較的低温での 水熱合成法では、2 価カチオンを用いた場合、OMS-1 が形成されると考えられる。また、 1 価の異種金属カチオンは、2 価カチオンよりも水和エンタルピーが小さいため、比較 的容易に buserite からの脱水が起こり、buserite よりも層間の狭い birnessite に変化する。 そのため、1 価の異種金属カチオンをトンネル内に有する OMS-1 の合成は困難であっ たと考えられる。

Figure 1-7. Mn 系複酸化物の結晶構造. (a) 1×1 トンネル構造 (pyrolusite), (b) 1×2 トンネル 構造 (ramsdellite), (c) 1×1 / 1×2 トンネル構造 (nsutite), (d) スピネル構造, (e) 2×2 トンネ ル構造 (cryptomelane (OMS-2)), (f) 2×3 トンネル構造 (romanechite), (g) 2×4 トンネル構 造 (RUB-7), (h) 2×5 トンネル構造 (Rb_{0.27}MnO₂), (i) 層状構造 (birnessite, buserite), (j) 3×3 トンネル構造 (todorokite (OMS-1)). 橙色の八面体は MnO₆ ユニットを示している.

Figure 1-8. Mn 系複酸化物の空間充填モデル. (a) 1×1 トンネル構造 (pyrolusite), (b) 1×2 トンネル構造 (ramsdellite), (c) スピネル構造, (d) 2×2 トンネル構造 (cryptomelane (OMS-2)), (e) 層状構造 (birnessite), (f) 3×3 トンネル構造 (todorokite (OMS-1)) (赤い球: O²⁻, 橙色の球: Mn³⁺ or Mn⁴⁺, 灰色の球: H₂O, 黄色い球: Li⁺, 青い球: K⁺, 緑の球: Mg²⁺).

結晶構造	異種金 属カチ オン ^{IDI}	カチオン サイズ (Å) ^[26]	MnO ₆ 間の 空間サイ ズ (Å) ^[c]	水和イオンサ イズ (Å)	水和数 (±1 ^[27])	水和エンタル ピー <i>-</i> ΔH (kJ mol ⁻¹) ^[3]	前駆体	合成条件	参考 文献		
pyrolusite (1×1 トンネル構 造)	H^{+}	_	0.76	_	_	_	birnessite	水熱合成法 (180 °C for 2 days, pH 1)	10b, 29		
ramsdellite (1×2 トンネル構 造)	H^{+}	_	0.76	_	_	_	MnSO ₄ , (NH ₄) ₂ S ₂ O ₈	水熱合成法 (85 °C for 12 h)	10b, 30		
nsutite (1×1 / 1×2 トンネル構造)	$\mathrm{H}^{\scriptscriptstyle +}$	_	0.76	_	-	_	EMD	電気化学	10b, 31		
スピネル構造 (cubic)	Li^+	1.46	1.54	7.6 ^[27]	5 ^[27]	507					
	Mg^{2+}	1.42		8.6 ^[27]	6 ^[27]	1909	Mn 塩,	固相法, ブル ゲル注	105		
フレウル推進	Fe ²⁺	1.54				$6.66^{[28b]}$	-	1909	manganese	水教会成法	24 25
、C 小P 再近 (tetragonal)	Co^{2+}	1.44	1.70	$6.58 - 6.62^{[28b]}$	$6^{[28b]}$	2051	oxide etc.	$(180 ^{\circ}\text{C} \text{etc})$	<i>2</i> т , <i>2</i> Ј		
(tetragonal)	Ni ²⁺	1.38		6.50–6.54 ^[28b]	6 ^[28b]	2093		(100 °C ctc.)			
	Zn^{2+}	1.48		6.58–6.64 ^[28b]	6 ^[28b]	2030					
	\mathbf{K}^+	3.02		6.6 ^[27]	3 ^[27]	314		水熱合成法			
cryptomelane,	\mathbf{Rb}^+	3.50		$4.56^{[28a]}$	_	289	Mn 炬	(reflux for 1 h-	10b		
OMS-2 (2×2 ト ンネル構造) Ba ²⁺ 3.12	3.56	8.22 ^[28b]	9.5 ^[28b]	1289	(KMnO ₄ etc.)	7 days), 固相 法, ゾル-ゲル 法 etc.	20				
romanechite (2×3 トンネル構	Ba ²⁺	3.12	3.56	8.22 ^[28b]	9.5 ^[28b]	1289	birnessite	水熱合成法 (180 °C for	10b,		
造)	Na ⁺	2.26		$5.52^{[28a]}$	_	398		2 days, pH 7)	29		

Table 1-5. Mn 系複酸化物の結晶構造形成要因.^[a]
結晶構造	異種金 属カチ オン ^[b]	カチオン サイズ (Å) ^[26]	MnO ₆ 間の 空間サイ ズ (Å) ^[c]	水和イオンサ イズ (Å)	水和数 (±1 ^[27])	水和エンタル ピー <i>-</i> ΔH (kJ mol ⁻¹) ^[3]	前駆体	合成条件	参考 文献
RUB-7	Rb^+	3.50		4.56 ^[28a]	_	289	birnessite	水熱合成法	
(2×4 トンネル構	\mathbf{K}^+	3.02	3.56	6.6 ^[27]	3 ^[27]	314	MOH (M =	(350 °C for 48 h	10b,
造)	Na^+	2.26		5.52 ^[28a]	_	398	Rb^+, K^+, Na^+)	2 days, pH 13)	32
Rb _{0.27} MnO ₂ (2×5 トンネル構 造)	Rb^+	3.50	3.56	4.56 ^[28a]	_	289	β-MnO ₂ , RbOH	水熱合成法 (350 °C for 48 h)	10b, 21
	\mathbf{K}^+	3.02		6.6 ^[27]	3 ^[27]	314			
himaggita	Na^+	2.26		$5.52^{[28a]}$	-	398	Mn 塩	水中でのMn種	10b
onnessne (層坐構造)	Ca ²⁺	1.84	3.24	$8.2^{[27]}$	6 ^[27]	1578	(KMnO ₄ ,	の酸化還元	100,
()皆小()舟(旦)	Cu^{2+}	1.42		6.36–7.02 ^[28b]	$4-6^{[28b]}$	2093	MnCl ₂ etc.)	(rt-160 °C)	15
	Ni ²⁺	1.38		6.50–6.54 ^[28b]	6 ^[28b]	2093			
buserite (層状構造)	Na ⁺	2.26	6.24	5.52 ^[28a]	_	398	Mn 塩 (KMnO4, MnCl2 etc.)	_	10b, 13
	Mg^{2+}	1.42		5.25-5.46 ^[28b]	6 ^[27,28b]	1909	_ ,		
todorokite, OMS-1 (3×3トンネル構	Co ²⁺	1.44		5.36-5.39 ^[28b]	6 ^[28b]	2051			1.01
	Ni ²⁺	1.38	5.66	5.30-5.33 ^[28b]	6 ^[28b]	2093	buserite	水熱合成法	10b,
	Cu^{2+}	1.42		5.21-5.67 ^[28b]	4-6 ^[28b]	2093		(70-240 °C)	15
坦)	Zn^{2+}	1.48		5.36-5.40 ^[28b]	6 ^[28b]	2030			

EMD = electrolytic manganese dioxide. [a] カチオン,水和イオン(球と仮定)のサイズは直径で表記. ただしOMS-1 では水和イオンサイズ を水和水は6配位であると仮定し、カチオン-水和水の八面体ユニットの水和水間のサイズ(水和水のサイズ含む)を表記. [b] Mn 系複酸 化物中に含まれるカチオンで MnO₆ユニット間の空隙に入るもの. [c] MnO₆ユニット間の空隙に入り得る球の最大の直径を表記.

1.2.2. Mn 系複酸化物の応用

1.2.2.1. イオン交換体

1.2.2.1.1. イオン交換体による Li 回収の重要性

Li は、原子量 6.94 と他の金属元素と比べて極めて軽量であるため、軽量さの求めら れる携帯電子機器用の電池、車載用リチウムイオン電池、家庭用蓄電池等の構成元素と して、近年、ますます需要が増している。これまでに、Li 供給源として、オーストラリ アやカナダ等で産出されるリチア輝石等の鉱石や主に南米を中心とした塩湖から採取 されるかん水等が着目されてきた。かん水中には、1630 mg L⁻¹の Li が含まれており、 水を蒸発させることで Li を濃縮して回収することが可能である(Table 1-6)。^[33] かん水 からの Li 濃縮による回収は、鉱石から Li を精製する手法よりも低コストであるとされ ている。^[34] そのため、日本企業としては、豊田通商株式会社によって、アルゼンチンの オロラス塩湖のかん水から Li を精製するプラントが建設され、2014 年から稼働してい る。^[34] このように、近年ではかん水からの Li 回収が注目されている。しかしながら、か ん水を蒸発させて Li を回収する手法では、自然蒸発により Li を濃縮するため、回収に は 1 年以上の長い時間がかかる。そのため、Li の需要が急増すれば、Li の供給が追い 付かなくなる可能性がある。今後も Li 使用量の増大が見込まれるため、Li 資源の枯渇 も懸念され、新たな Li 供給源が望まれる。

そこで、近年、新たな Li 供給源として海水が注目されている。鉱石等の地上にある Li 資源の埋蔵量は、約 1400 万トン^[35]であるのに対して、豊富に存在する海水中の Li の埋蔵量は、約 2300 億トンにもなると推定されている。このことから、海水は、極め て有用な Li 資源となる可能性を秘めている。しかしながら、海水中の Li 濃度は 0.18 mg kg⁻¹ と極めて薄いことに加え、Na⁺、Mg²⁺、Ca²⁺、K⁺等の共存イオンが大量に存 在するため、効率的にかつ選択的に Li を濃縮・回収する手法が望まれる (Table 1-7)。^[36]

近年、海水から Li を選択的に回収可能な材料の研究が行われている。なかでも、ゼ オライト、粘土鉱物、無機酸化物等の無機イオン交換体は、有機イオン交換体と比べて、 強固な構造を有し、高い耐熱性、選択性等の特長がある。^[37] 無機イオン交換体を用いた 海水からの Li 回収について検討がなされている。^[37] 近年では、リチウムイオン伝導体で ある Li_{1+x+y}Al_x(Ti, Ge)_{2-x}Si_yP_{3-y}O₁₂、(Li_x, La_y)TiO_z、(Li_x, La_y)ZrO_z で調製したセラミックス 膜を分離膜とすることで、3 日間で海水中の Li のうち 7%が回収可能であることが報告 されている。^[37d,37e]

1.2.2.1.2. Mn 系複酸化物のイオン交換特性

Mn 系複酸化物は、優れた陽イオン吸着性、結晶構造(ナノ空間)の多様性、吸着性の結晶構造依存性等から注目されている。^[38] Mn 系複酸化物のトンネル内部や層間といった MnO₆ユニット間の空隙には、通常、金属カチオンが入っている。一部の複酸化物においてその空隙内の金属カチオンは脱挿入可能である。空隙の大きさによって脱挿入できるカチオンの種類が変化するため、Mn 系複酸化物はサイズ選択的なイオン交換特性を示す。以下に、それぞれの構造のMn 系複酸化物のイオン交換特性について述べる。

1.2.2.1.2.1. スピネル構造(3次元構造)

スピネル構造を有する Mn 系複酸化物である λ -MnO₂ は、海水やかん水からの Li 選択 的な吸着材料として期待されている。^[39-41] λ -MnO₂ は、Li-Mn スピネル酸化物を酸性条件 で処理し、スピネル構造の主に四面体サイト内に位置する Li⁺を脱離させることで調製 される。 λ -MnO₂は、再度 Li を選択的に取り込むことも可能であることが知られている。 その際、 λ -MnO₂は、共存イオン存在下でも、Li⁺以外の Na⁺、K⁺、Mg²⁺、K⁺等の他の金 属イオンをほとんど吸着せず、Li⁺選択的な吸着材料として機能するため、海水からの Li⁺回収のための吸着材料としての応用が期待されている。^[39-41] λ -MnO₂の Li⁺吸着の選択 性は、スピネル構造の四面体サイトのサイズ依存性により発現したと考えられている。 また、 λ -MnO₂への Li⁺の吸着は、Li⁺の粒子内拡散が律速であることが示唆されており、 短時間で Li を回収するためには、イオンの粒子内拡散長の短い粒径の小さな λ -MnO₂ が望ましいと考えられる。^[39b,39c] このように、 λ -MnO₂ を吸着材料とすることで、水溶液 中から効率的に Li を回収可能であると期待される。

λ-MnO₂を用いた海水からのLi資源回収に向けた大スケールでの検討例^[40]を Table 1-8 に示す。キチン、アルミナ、シリカ等のバインダーを用いて造粒した λ-MnO₂をカラム に充填し、そこに海水を流すことで λ -MnO₂に Li⁺を吸着させる。^[40] その後、Li⁺を吸着し た λ -MnO₂カラム中に HCl 等の酸を流すことで Li⁺を水溶液として回収する^[40] 回収した Li⁺を含む水溶液に塩基を添加することで、不純物として存在する 2 価金属種 (Mg²⁺, Ca²⁺, Mn²⁺等)を沈殿として除去した後、濃縮して得た固体生成物を熱水洗浄する等により、 Li を Li₂CO₃ や LiCl として得ることが可能である^[40] 現在報告されている最大の Li 収量 としては、4233 m³の海水から 28 日間で Li を Li₂CO₃ として 750 g 回収可能であること が報告されている。^[40c,40d]

Li⁺を吸着後の λ-MnO₂から Li を回収する際に、HCl 等の酸で処理することで Li⁺を水 溶液中に脱離させた後、Li 塩の精製・回収が行われている。酸性条件下での Li⁺の脱離 時に、Mn の溶出が起こり、イオン交換体の劣化や不純物としての MnCl₂等の混入が課 題となっている。^[41]

酸性条件下での Li 脱離時の反応としては、以下に示す「酸化還元型」と「イオン交換型」の2種類の反応が提唱されている。^[41]酸性条件下での Li 脱離時の反応について述べる。酸性条件下での Li 脱離時の Mn の溶出は、以下に示す「酸化還元型」の反応に

より起こっていると考えられる。

酸化還元型の反応

通常、酸性条件下で Li-Mn スピネル酸化物から Li⁺を脱離させる際、Mn³⁺の不均化反応 ($2Mn^{3+} \rightarrow Mn^{2+} + Mn^{4+}$) により Mn^{2+} が溶出する。^[41] 一方、不均化反応により生じた Mn^{4+} は固体内に残るため、見かけ上、Mn 平均酸化数が増大する酸化還元型の反応で Li⁺ が脱離する。

$4(\text{Li})[\text{Mn}^{3+}\text{Mn}^{4+}]\text{O}_4 + 8\text{H}^+ \rightarrow 3()[\text{Mn}^{4+}]_2\text{O}_4 + 4\text{Li}^+ + 2\text{Mn}^{2+} + 4\text{H}_2\text{O}_4$

イオン交換型の反応

Mn の溶出を防ぐために、B サイトを Li⁺や他の異種金属種(Mg²⁺, Al³⁺, Ti⁴⁺, Fe³⁺, Zn²⁺ 等)で置換し、Mn を 4 価にすることで、Mn³⁺の不均化を防ぐ等の工夫がなされている。 ^[42] その場合は、Mn の酸化数の増大を伴わずに Li⁺の脱離が可能となり、Li⁺と H⁺のイオ ン交換が可能になる。^[42]

$$(\text{Li})[\text{Li}_{0.33}\text{Mn}^{4+}_{1.67}]\text{O}_4 + 1.33\text{H}^+ \rightarrow (\text{H})[\text{H}_{0.33}\text{Mn}^{4+}_{1.67}]\text{O}_4 + 1.33\text{Li}^+$$

また、Li-Mn スピネル酸化物の表面では、Li⁺と H⁺のイオン交換が起こることが提唱 されている。^[43]

イオン	濃度 (mg L ⁻¹)
Li^+	1630 ± 30
Na^+	59100 ± 500
\mathbf{K}^{+}	18700 ± 200
Mg^{2+}	29200 ± 100
Ca^{2+}	230 ± 5
Cl^-	235000 ± 100
$\mathrm{SO_4}^{2-}$	26300 ± 50
NO ₃ ⁻	970 ± 1

Table 1-6. かん水に含まれるイオン.^[33]

元素	濃度 (mg kg ⁻¹)	元素	濃度 (mg kg ⁻¹)
Li	0.18	Ba	0.015
Na	10780	Мо	0.01
Mg	1280	U	0.0032
Ca	412	V	0.002
K	399	As	0.0012
С	27	Cl	19350
Ν	8.72	S	898
Sr	7.8	Br	67
Si	2.8	В	4.5
Ar	0.62	Ο	2.8
Rb	0.12	F	1.3
Р	0.062	Ι	0.058

Table 1-7. 海水に含まれる元素.^[36]

イオン交換体	Li ⁺ 吸着条件	Li 回収量	Li回収時の生成物の組成	参考 文献
chitin-Li _{1.5} Mn ₂ O ₄ (60 kg) (0.85 M HCl 処理後使用)	海水 (140 t), 200 L h ⁻¹ , 30 days	27.6 g 相当 ^[a] (LiCl, 20% recovery)	LiCl (18.2 wt%), NaCl (45.5 wt%), MnO ₂ (4.3 wt%), CaCl ₂ (30.3 wt%), KCl (1.6 wt%)	40a
chitin–λ-MnO ₂	海水, 200 L h ⁻¹ , 150 days	33% recovery ^[a]	LiCl (33.3 wt%, 濃縮係数 11000), NaCl (20.4 wt%, 濃縮係数 0.26), MgCl ₂ (8.2 wt%, 濃縮係数 0.57), CaCl ₂ (13.4 wt%, 濃縮係数 4.11), KCl (3.3 wt%, 濃縮係数 0.94), SrCl ₂ (2.0 wt%, 濃縮係数 50), MnCl ₂ (19.4 wt%)	40b
$M_{\rm PO}$ (2.5 kg)	海水(4233 m ³), 15 L min ⁻¹ ,	750 g (Li ₂ CO ₃ ,	Li ₂ CO ₃ (純度 99.1%, 塩基による不純物除去・熱水洗	40c,
λ -MinO ₂ (2.3 kg)	28 days	20% recovery) ^[b]	浄による精製処理後)	40d
chitin–λ-MnO ₂ (60 kg)	海水 (816 m ³), 150 days	192 g 相当 (LiCl, 31% recovery) ^[a]	LiCl (24.3 wt%, 濃縮係数 8100), NaCl (24.5 wt%, 濃縮 係数 78.1), KCl (17.8 wt%, 濃縮係数 3.5), MgCl ₂ (2.3 wt%, 濃縮係数 14.3), CaCl ₂ (21.6 wt%, 濃縮係数 3.26), MnCl ₂ (4.7 wt%), SrCl ₂ (6.0 wt%, 濃縮係数 0.04)	40e

Table 1-8. λ-MnO₂を用いた海水からのLi 資源の回収の実用化に向けた検討例.^[40]

[a] 精製操作を行っていない,不純物を含む生成物中の Li 塩相当量.

[b] 精製操作を行い, 高純度の Li₂CO₃ として回収.

1.2.2.1.2.2.トンネル構造(1次元構造)

2×2 トンネル構造を有する Mn 系複酸化物(OMS-2)は、酸処理によりトンネル内の K⁺を一部取り除くことが可能である。^[42d,44] K-OMS-2 から K⁺を取り除く際の反応は、Li– Mn スピネル酸化物からのLi⁺の除去の際と同様に Mn の平均酸化数の増大を伴う反応と K⁺と H⁺のイオン交換反応の 2 通りに分類できる。^[10b,44]

酸化還元型の反応では、 Mn^{3+} の不均化反応 ($2Mn^{3+} \rightarrow Mn^{2+} + Mn^{4+}$) により、生成した Mn^{2+} が溶出し、固体内の Mn 平均酸化数が増大する。一方、イオン交換型の反応では、Mnの溶出、Mn 平均酸化数の増大は起こらない。

酸化還元型の反応

 $8(K_2)[Mn_{2}^{3+}Mn_{6}^{4+}]O_{16} + 32H^{+} \rightarrow 7()[Mn_{8}^{4+}]O_{16} + 16K^{+} + 8Mn_{2}^{2+} + 16H_2O$

イオン交換型の反応

(K₂)[□_{0.5}Mn⁴⁺_{7.5}]O₁₆+2H⁺→(H₂)[□_{0.5}Mn⁴⁺_{7.5}]O₁₆+2K⁺ (□: 空孔)

K⁺を取り除いた OMS-2 は、構造を保持したまま Li⁺、Na⁺、K⁺、Rb⁺を取り込むこと ができる。^[10b,44] また、pH10 以下でのイオン交換では、K⁺に対して高い選択性を示す。^[38]

1.2.2.1.2.3. 層状構造(2次元構造)

層状構造を有する Mn 系複酸化物である birnessite は、イオン交換体として機能する。 特に、イオン交換により調製された birnessite は、Mn 系複酸化物の結晶構造を水熱合成 法でつくり分ける際の前駆体として有用であることが知られている。^[15m,15n,23] Na-birnessite を酸処理することで層間の Na⁺を H⁺と交換したものは、Rb⁺に対して高い 選択性を示すことが報告されている。^[45]

1.2.2.2. 蓄電材料(リチウムイオン電池)

リチウムイオン電池は、二次電池の一種であり、正極(Li⁺を脱挿入可能な金属酸化物等)や負極(金属Li,合金,グラファイト等のLi⁺脱挿入が可能な材料等)から構成される。正極と負極間のイオン伝導のために、LiClO₄やLiPF₆等のLi塩を添加した有機溶 媒を電解液として用いる場合が多い。充電時に、負極では電子とともに電解液中のLi⁺ が負極の活物質に挿入される。一方、正極では、電子の放出を伴い、正極活物質中の Li⁺が脱離する。正極材料としてLiCoO₂、負極材料としてグラファイトを用いた場合、 充電時の反応は以下のように示すことができる。

> 負極: $C(/ ラファイ h) + xLi^+ + xe^- \rightarrow Li_xC$ 正極: $LiCoO_2 \rightarrow Li_{1-x}CoO_2 + xLi^+ + xe^-$

リチウムイオン電池は、約4Vという他の二次電池よりも極めて高い起電力を有する。 他の代表的な二次電池の起電力は、ニッケルカドミニウム電池とニッケル水素電池で 1.3V、鉛蓄電池では2Vである。エネルギーは起電力に比例するため、起電力が大き いということが高エネルギー密度を実現する上で重要になる。また、Liの原子量は、6.94 と小さく、高エネルギー密度を達成するために理想的な金属である。電池の起電力は、 正極と負極の電位差で決定され、リチウムイオン電池の大きな起電力は、Liの酸化還元 電位が低い(-3.03 V vs. SHE, SHE = standard hydrogen electrode)ことに起因する。金属 Liを用いた場合だけでなく、グラファイトを負極として用いた場合も、Li⁺がグラファ イトの層間に挿入されると、負極の電位は金属 Li のものとほぼ等しくなることから、 高い起電力が実現可能である。

リチウムイオン電池の安全性は、重要な課題の一つである。リチウムイオン電池の開 発初期段階には、Liの高い酸化還元電位を利用するために、金属Liが負極に用いられ ていた。しかし、金属Liは強い還元剤であり、水と激しく反応し、水素を発生するた め、電解液は水でなく有機溶媒を用いる必要があった。また、金属Liを負極として充 放電を繰り返すと、金属Liのデンドライトが生成するといった問題があった。デンド ライトは電池内部で短絡を起こしやすく、電池容量の低下や発熱・発火の原因となる恐 れがあった。一方、現在は、負極としてグラファイト等のLi⁺を挿入可能な化合物を金 属Liの代わりに用いることで上述の問題は解決されている。

リチウムイオン電池は、高エネルギー密度を有するため、小型電子機器用の電池をは じめとし、広く利用されている。リチウムイオン電池は、その高エネルギー密度から、 電気自動車等への利用も期待されている。^[46]現在市販されているリチウムイオン電池の 正極には、主にLiCoO₂が用いられている。LiCoO₂は高いエネルギー密度を示すが、Co 資源の枯渇といった問題がある。そのため、より資源として豊富な Fe や Mn 等をベー スとした化合物である、Fe 酸化物(LiFePO₄等)や Mn 酸化物(Li-Mn スピネル酸化物 等)等に注目が集まっている。Mn 酸化物を電極として用いる際には、Mn³⁺の不均化 $(2Mn^{3+} \rightarrow Mn^{4+} + Mn^{2+})$ による Mn の溶出に起因する容量低下が課題となっている。 Mn³⁺の不均化での Mn 溶出による充放電容量低下を防ぐために、Mn サイトに異なる金 属種をドープすることにより、酸化物中の Mn³⁺を減らし、Mn の不均化を防ぐという対 策がとられている。^[47]また、電極として用いる酸化物表面に他の酸化物等をコーティン グすることにより、安定性を向上させ、サイクル特性を向上させる試みもなされている。 ^[24am]上記のような工夫により、材料自身のデメリットもカバーすることが可能である。

Li-Mn スピネル酸化物のように、電極として充放電反応を行う際、イオン(Li⁺等)の粒子内の移動を伴う材料では、イオンの粒子内拡散長の低減や比表面積の増大により、高速放電が可能になると期待されている。イオンの粒子内拡散長の低減や比表面積の増大のために、材料自身をナノサイズのものとして合成したり、鋳型を用いて細孔壁の薄い多孔性材料として合成し、電極材料として使用するといった試みがなされている。一方、特に、酸化物ナノ粒子を電極材料とする場合には、酸化物自身の導電性が低いため、酸化物粒子の凝集による導電性の低下による充放電性能の低下が懸念される。そこで、導電助剤となるカーボン材料(グラフェンやカーボンナノチューブ等)と酸化物粒子を複合化したり、 $^{[24a,24g,24m,24a,24aj,24ap]}$ 酸化物表面上にカーボンコートを施す $^{[24r]}$ ことにより、電極としての導電性を向上させる検討が行われている。Table 1-9 に Li-Mn スピネル酸化物の放電特性の既報をまとめた。高速放電特性は、約100 nm 以下の Li-Mn スピネル酸化物で多く報告されているが、100 C (1 C = 148 mA g⁻¹) といったような極めて高速条件での放電では、最大でも110 mAh g⁻¹(理論容量の74%)の放電容量しか得られていない。

化合物	結晶子径 (nm) ^[a]	粒子径(直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	放電容量 (mAh g ⁻¹) ^[b]	参考文献
carbon-coated LiMn ₂ O ₄	_	>20 (TEM)	67	ca. 56 (243 C), ca. 83 (162 C), 99 (81 C), 105 (41 C), 113 (8.1 C), 118 (2.4 C), 121 (0.81 C) (3.0–4.5 V, 0.5 C 充電)	24r
LiMn ₂ O ₄	_	10 (diameter), several micrometers (length) (TEM)	95.6	78 (150 C, 1.5–4.5 V), 91 (100 C, 2.2–4.4 V), 108 (60 C, 2.4–4.4 V), 107 (10 C, 3.1–4.3 V)	24k
LiMn ₂ O ₄	_	50-100 (diameter)	_	ca. 87 (135 C), ca. 100 (68 C), ca. 106 (34 C), ca. 115 (13 C), ca. 116 (7 C), ca. 117 (0.7 C) (1.7–4.5 V)	24ac
LiMn ₂ O ₄	_	500 (TEM)	_	ca. 94 (100 C, 2.2–4.3 V), ca. 106 (50 C), ca. 110 (20 C, 3.1–4.3 V), ca. 109 (5 C), 112 (1 C, 3.5–4.3V), 113 (0.5 C), 116 (0.1 C)	48a
LiMn ₂ O ₄ -RGO	_	10-40 (TEM)	_	101 (100 C), 117 (50 C), ca, 128 (20 C), ca. 131 (10 C), ca. 134 (5 C), 137 (1 C)	240
LiMn ₂ O ₄	_	100–200 (SEM)	_	110 (100 C, 2.8-4.5 V)	48b
LiMn ₂ O ₄	44	40–100 (SEM)	13.81	ca. 70 (80 C), ca. 100 (60 C), ca. 112 (40 C), ca. 127 (20 C), ca. 130 (10 C), ca. 134 (1 C), ca. 137 (0.2 C) (4.3–3 V)	24z

Table 1-9. Li–Mn スピネル酸化物の放電特性(既報).

化合物	結晶子径 (nm) ^[a]	粒子径(直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	放電容量 (mAh g ⁻¹) ^[b]	参考文献
LiMn ₂ O ₄	_	50–100 (SEM)	14	ca. 104 (60 C), ca. 120 (20 C), ca. 126 (10 C), ca. 127 (1 C), ca. 129 (0.2 C) (3.5–4.3 V, 30 °C)	24af
LiMn ₂ O ₄	6.8	_	203.4	80 (50 C) ,ca. 88 (20 C) , 87.5 (10 C), 92 (5 C), 95 (2 C) 97 (1 C), 114 (0.5 C) (3.5–4.3 V)	24c
LiMn ₂ O ₄	-	20 (TEM)	8.6	ca. 83 (30 C), ca. 101 (20 C), ca. 105 (15 C), ca. 109 (10 C), ca. 112 (8 C), ca. 115 (6 C), ca. 120 (4 C), ca. 127 (2 C) (3–4.4 V) (1 C 充電)	24t
LiMn ₂ O ₄	-	150 (diameter), 20000 (length) (SEM)	_	92 (30 C), 103 (20 C), 112 (10 C), 146 (0.1 C) (2.6-4.3 V)	48c
LiMn ₂ O ₄	-	ca. 40 (SEM)	_	69 (25 C), 82 (15 C), 90 (8 C), 96 (5 C), 102 (3 C), 115 (1 C) (3.2–4.3 V)	48d
LiMn ₂ O ₄	9	15 (TEM)	38.7	180 (20 C), ca. 182 (10 C), 201 (2 C), 213 (0.5 C) (2–4.3 V)	24h
LiMn ₂ O ₄	_	7 (wall diameter) (TEM)	90	ca. 72 (20 C) (3–4.3 V)	24d

化合物	結晶子径 (nm) ^[a]	粒子径(直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	放電容量 (mAh g ⁻¹) ^[b]	参考文献
CeO ₂ coated LiMn ₂ O ₄	_	250-600 (SEM)	_	ca. 102 (20 C), ca. 118 (15 C), ca. 122 (10 C), ca. 126 (5 C), ca. 127 (0.5 C) (0.5 C 充電, 3– 4.5 V) (60 °C)	48e
LiMn ₂ O ₄ -graphene	_	10–30 (TEM)	_	97 (20 C), 115 (10 C), 132 (5 C), 139 (1 C) (3–4.4 V)	48f
LiMn ₂ O ₄	_	100 (TEM)	_	101 (20 C), 111 (10 C), 117 (5 C), 122 (1 C), 123 (0.5 C) (3–4.4 V)	48g
LiMn ₂ O ₄ CNT	_	100 (SEM)	16.3	90 (19 C), 102 (9.7 C), 109 (4.8 C), 117 (1.9 C), 124 (0.97 C) (放電と同条件で充電, 3-4.5 V)	24aj
LiMn ₂ O ₄ CNT	_	10–20, 200–500 (SEM)	-	94 (19 C), 116 (9.7 C), 121 (4.8 C), 122 (1.9 C), 123 (0.97 C) (0.1C で充電) (3.5-4.3 V)	24m
LiMn ₂ O ₄	_	100 (TEM)	_	ca. 59 (14 C), ca. 83 (6.8 C), ca. 95 (3.4 C), ca. 100 (1.4 C), ca. 101 (0.68 C) (3–4.5 V)	24ak
LiMn ₂ O ₄ -CNT	_	150-400 (TEM)	_	126 (13.5 C) , ca. 135 (2.7 C) (0–1.3 V vs. SCE)	24ap
LiMn ₂ O ₄ CNT	_	20-40 (SEM)	_	ca. 34 (13 C), ca. 56 (8 C), ca. 64 (2 C), ca. 69 (1 C), ca. 73 (0.5 C) (3–4.3 V)	48h
6.3 wt% Ag– LiMn ₂ O ₄	_	_	_	103.2 (10 C) (3–4.4 V)	48i

化合物	結晶子径 (nm) ^[a]	粒子径(直接観察) (nm)	BET 比表面 積 (m ² g ⁻¹)	放電容量 (mAh g ⁻¹) ^[b]	参考文献
LiMn O	_	7000–9000 (SEM)	_	87 (10 C), 106.3 (5 C), 118.1 (1 C), 127.1	48j
				(0.2 C) (4.3–3.4 V)	
LiMn O CNT		50-150 (SEM)	_	85 (10 C), 100 (5 C), 117 (2 C), 118 (1 C)	24ae
$LIMII_2O_4$ -CINI	_			(3.3–4.5 V)	
LiMp O CNT		10-20 (diameter)		ca. 107 (10 C), ca. 121 (5 C), ca. 127 (2 C or	24n
$LIWIII_2O_4$ –CINI	—	(TEM)	—	1 C) (3–4.5 V)	
L Mn O		ca. 7 (wall thickness)	160	ca. 75 (10 C), ca. 88 (5 C), ca. 93 (2 C), ca. 96	191-
$L1WIn_2O_4$	_	(TEM)	100	(1 C), ca. 97 (0.5 C), ca. 101 (0.1 C) (3–4.3 V)	40K
$LiMn_2O_4$	_	120 (SEM)	4.0829	109.8 (10 C), 133.2 (0.1 C) (3–4.5 V)	481
LiMn ₂ O ₄	_	100 (SEM)	10.30	104.6 (10 C), 120.5 (0.5 C) (3–4.3 V)	48m

CNT = carbon nanotube, RGO = reduced graphene oxide, SCE = saturated calomel electrode.

[a] XRD パターンからシェラー式により算出した結晶子径. [b] カッコ内には放電条件を示しており,電位はLi/Li⁺基準で記している(1C= 148 mAg⁻¹).

1.2.2.3. 酸化剂·酸化触媒

Mn 酸化物は、Mn が複数の酸化数をとり得るため、酸化剤や酸化触媒として有用であることが知られている。天然鉱物として産出される^[11]等 Mn 酸化物は、自然界にも多く存在し、貴金属触媒等と比べ、安価である。さらに、Mn 酸化物は、不均一系触媒として働き、多くの場合、酸化剤や触媒としての使用後にろ過により回収可能であるといった利点がある。

Mn 系複酸化物は、アルコールの酸化反応、アンモ酸化反応、酸化的アミド化反応、 スルフィドの酸素化反応、アルキルアレーンの酸素化反応、アミンの α-シアノ化反応、 チオアミドの酸化的水素化脱硫反応、水の酸化反応等の種々の酸化反応に対する優れた 触媒であることが報告されている。その際、酸素を酸化剤として用いることで他の量論 酸化剤等と異なり、金属塩などの有害な副生成物が生成することなく、水のみが副生す る環境に優しい反応を実現可能となっている。以下に Mn 酸化物を用いた酸化反応の例 を挙げる。

アルコールの酸化反応

アルコールをアルデヒドやケトンに酸化する反応は、学術においてだけでなく、合成 中間体を得る手段としても重要な反応である。酸素を酸化剤として用いたアルコールの 酸化反応は、副生成物が水のみとなることや低コストであることから、注目されている。 Co^{(49a]}Cu^{(49b]}Pd^{(49c]}Pt^{(49d]}Ru^[49e,49f]等の金属を含む触媒による酸素を酸化剤とした酸化反 応が報告されている。Co 錯体^{(49a]}Cu 錯体^{(49b]}Ru 錯体^[49e]を触媒として用いた際には、 アルデヒド、K₂CO₃、モレキュラーシーブス等の添加剤を必要とする場合がある。

Mn 酸化物は、アルコールの酸化反応に対して酸化剤として働くことが報告されているが、基質に対して大過剰量の Mn 酸化物を必要とする (Scheme 1-2)。^[50] 一方、Mn 系複酸化物である K-OMS-2 (2×2 トンネル構造)や birnessite を触媒として用いることで、酸素を酸化剤としたアルコールの触媒反応が効率的に進行することが報告されている。 [^{51]} 酸素を酸化剤とした酸化反応では、いかに酸素を活性化するかが重要となる。Mn 酸化物を触媒、酸素を酸化剤として用いたアルコールの酸化反応では、① 気相からの酸素を活性化して反応に高与する場合があると提唱されている。気相からの酸素を活性化して反応に用いる場合は、気相の酸素がMn³⁺に配位することで活性化され、Mn-superoxo種が形成される (Figure 1-9)。^[51] そして、Mn-superoxo種が触媒表面に吸着したアルコールと反応することで酸化反応が進行すると提唱されている (Figure 1-9)。^[51] Mn-superoxo種の生成については、赤外吸収スペクトル (IR = Infrared spectroscopy) 測定により確認されている。触媒を加熱して脱水した後に ¹⁸O₂にさらした場合に見られる v(O-O)振動に帰属可能なピークと比べてシフトが見られたことから、気相から供給された酸素種が触媒表面上に吸着し、Mn-superoxo種を形成したことが示唆された。一方、2×2 トンネル構造を 有する Mn 系複酸化物である OMS-2 を触媒として用いた場合、酸化物触媒中の格子酸素が反応に寄与するとされる Mars-van Krevelen 機構により反応が進行すると提唱されている(Figure 1-10)。^[51b] この反応経路では、酸化物格子中の酸素が反応に寄与した後に、気相から供給される酸素によって触媒が再酸化され、触媒サイクルが成立する(Figure 1-10)。この反応経路については、反応時に¹⁸O₂を用い、生成物に含まれる¹⁸Oと¹⁶Oを定量することで確認されている。

Scheme 1-2. Mn 酸化物を量論量以上使用したアルコールの酸化反応.^[50a,50b]

Figure 1-9. 気相から供給される酸素を活性化して酸化剤として用いるアルコールの酸 化反応.^[51f]

Figure 1-10. Mars-van Krevelen 機構による酸化物触媒中の格子酸素を用いたアルコール酸化反応.^[51b]口:空孔.

アンモ酸化反応

ニトリルは、医薬品や農薬やファインケミカル等の広い用途で有用な重要な化合物で ある。^[52]ニトリルは、金属シアン化物によるハロゲン化アルキルの置換反応、アルカン やアルケンの気相でのアンモ酸化反応等の種々の反応により合成されてきた。^[53]一方、 アルコールを基質とし、系中でアルデヒドへ酸化させることで、アルコールと NH₃ か らの one-pot でのニトリル合成が報告されている。^[54]アルコールからの直接的なニトリ ル合成には、NiSO₄/K₂S₂O₈/NaOH、^[54a] TBA₂S₂O₈/Cu(HCO₂)₂/Ni(HCO₂)₂/KOH、^[54b] I₂、^[54c,54d] 1,3-diiodo-5,5-dimethylhydantoin、^[54c,54e]Fe(NO₃)₃/TEMPO (TEMPO=2,2,6,6-tetramethylpiperidine 1-oxyl) ^[54]等の量論酸化剤や添加剤が必要な場合が多い。一方、Ru(OH)_{*}/Al₂O₃^[55]や Co-phenanthroline/C^[56]を触媒として用いることで、酸素を酸化剤としたアルコールのア ンモ酸化反応が効率的に進行することが報告されている。アルコールからのニトリル合 成は、Figure 1-11 のように、(i) アルコールからのアルデヒド形成、(ii) アルデヒドとア ンモニアの脱水縮合によるアルジミンの形成、(iii) アルジミンの酸化的脱水素によるニ トリルの形成により進行する。^[57]また、Ru(OH)_{*}/Al₂O₃を触媒とすることで、アジドから のニトリル合成も可能である。^[58]

Mn酸化物 (or 複酸化物)を酸化剤・触媒として用いたアルコールやアルデヒドから のニトリル合成についても報告されている。量論酸化剤として過剰量の Mn 酸化物と MgSO4を使用することで、NH₃存在下でのアルデヒドのアンモ酸化反応により、ニトリ ルが生成することが報告されている。^[59] 一方、Mn 酸化物を用い、窒素源として NH₃ ガ スを 0.85 MPa 封入することで酸素を酸化剤としたアルコールからのニトリル合成が可 能であることが報告されている。^[60]

Figure 1-11. 第1級アルコールからの one-pot でのニトリル・アミド合成.^[57]

酸化的アミド化反応

アミドは、合成中間体や医薬品として有用な化合物である。^[61] アミドは、一般的には、 酸塩化物とアミンの縮合反応、オキシムからの Beckmann 転位、アジドとカルボニル化 合物からの Aube-Schmidt 転位、予備修飾したホスフィン化合物とアジドからの Staudinger ligation により合成される。^[53c,62] しかしながら、これらの反応では、量論量の 試薬を必要とし、有害な副生成物が生成するといった課題があった。

安価で容易に入手可能なアルコールを基質とした直接的なアミドの合成が報告され ている。アルコールを基質とすることで、理論的には、水や水素のみが副生成物として 生成するため、環境にやさしい反応が実現可能であると考えられる。Ru 錯体等を触媒 として用いたアルコールからの第2級アミドの合成が報告されている。^[63] アルコールか らの第2級アミド合成では、アルコールからアルデヒドが形成された後、アルデヒドと アミンの縮合反応によりヘミアミナール中間体が形成され、ヘミアミナールの脱水素に より対応する第2級アミドが形成される (Scheme 1-3)。^[63] また、不均一系触媒反応によ るアルコールからの第2級アミドの合成は、Al₂O₃に担持された Ag クラスターを触媒 とした例が報告されているが、報告例は極めて少ない。^[64] また、アルコールからの第1 級アミド合成例は、極めて少ない。Rh 錯体を触媒とした場合、効率的に反応を進行さ せるためには、methylmethacrylate の添加が必要であった。^[65a] Au/DNA^[65b]や Au ナノ粒子 触媒^[65c]を用いた場合には、窒素源としてアンモニア水を用いていたが、反応の促進に はLiOH・H₂O の添加が必要であること、^[55b] アミドの収率が低いこと(ベンズアミド収率: 50%)、^[55b] 第1級アミド合成の基質適用性が狭い^[65b,65c]といった課題があった。また、近 年、KMnO₄を酸化剤としたアルコールからの第1級アミド合成が報告されたが、KMnO₄ は量論酸化剤として用いられており、再使用が不可能といった課題がある。[654]

2×2 トンネル構造を有する Mn 系複酸化物である OMS-2 を触媒とし、酸素を酸化剤、 アンモニア水を窒素源として用いることで、第 1 級アルコールのアミド化が高効率に進 行することが報告されている。^[57,66] この反応は、(i) アルコールからの酸化的脱水素反応 によるアルデヒドの生成、(ii) アルデヒドとアンモニアの脱水縮合によるアルジミンの 形成、(iii) アルジミンの酸化的脱水素によるニトリルの形成、(iv) ニトリルの水和によ るアミドの形成により進行する (Figure 1-11)。^[57] OMS-2 による one-pot での第 1 級アル コールのアミド化反応の報告の後、酸化グラフェン上に担持された Mn 酸化物によるア ンモニア水中での第 1 級アルコールのアミド化反応が報告されている。^[67] また、触媒と してアモルファス MnO₂を用いた場合、アンモニア水存在下で基質としてメチルアレー ンを用いた場合でも、アルデヒド中間体を形成し、第 1 級アミドの合成が可能となった。 ^[68] また、触媒としてアモルファス MnO₂を用い、基質としてアミンを用いた場合にも、 アミンからの酸化的脱水素反応によりアルジミンを形成し、第 1 級アミドを合成可能で あった。^[69] このように、Mn 酸化物は、第 1 級アミド合成に対して優れた触媒活性を有 していることが判明した。

Scheme 1-3. アルコールからの第2級アミドの合成.^[63a]

スルフィドの酸素化反応

スルフィドからスルホキシドへの酸化反応は、生理活性物質や合成中間体の形成において重要な反応である。^[70] 従来、スルフィドの酸化反応は、Mn 錯体やトリクロロイソシアヌル酸等の酸化剤を量論量必要とし、それに伴い、有害な副生成物が生成していた。 ^[71] 近年、量論量の酸化剤を用いる代わりに、過酸化水素や酸素を酸化剤とし、適切な触媒と組み合わせることで、安価かつ副生成物として水のみが生成する環境に優しい酸化反応が検討されている。^[72-74] なかでも、酸素を酸化剤とすることは、過酸化水素よりもより環境にやさしく、注目を集めている。酸素を用い、犠牲剤としてアルデヒド等の添加を必要としないスルフィドの酸素化反応の例を以下に示す。

酸素と NO₂を用いたスルフィドの酸素化反応が報告されている。^[73]この反応では、 BiBr₃-Bi(NO₃)₃、DBDMH/TBN/H₂O(DBDMH = 1,3-dibromo-5,5-dimethylhydantoin, TBN = *tert*-butylnitrite)、Br₂/NaNO₂/H₂O、HNO₃/FeBr₃、Fe(NO₃)₃/FeBr₃等を用い、NO₂を酸化剤 とし、スルフィドの酸素化反応が進行する。DBDMH/TBN/H₂Oを用いた反応では、 Figure 1-12 のような経路で系中に NO₂を生成し、反応が進行すると提唱されている。^[73f] この反応では、はじめに酸素で NO が NO₂に酸化され、NO₂により Br⁻が Br へ酸化される。その後、Br と系中の H₂O の反応により、スルフィドがスルホキシドへ変換される。

一方、トリアルキルボランを用いたスルフィドの酸素酸化反応が報告されている。^[74]酸素存在下では、トリアルキルボランからアルキルラジカルが生成し、^[75]それに伴い、 過酸化物が生成する(Scheme 1-4)。その後、生成した過酸化物によってスルフィドが スルホキシドへ酸化される(Scheme 1-4)。^[74]この反応では、トリアルキルボランに対し、 最大3当量のスルフィドが酸化され、トリエトキシボランが副生する。

遷移金属を中心とした金属種を含む触媒を用いたスルフィドの酸素化反応が報告さ れている。均一系でのスルフィドの酸素化反応では、Ru₂(OCOCH₃)₄Cl、^[76a] Fe(acetylacetonate)₂、^[76b] (NH₄)₂Ce(NO₃)₆、^[76c,76d] [Pd(¹Bu₂PH)(µ-¹Bu₂P)]₂、^[76e] ポリオキソメタレ ート、^[76f,76g,76h] 光反応、^[76i,76j] 等を触媒とした例が報告されている。一方、不均一系でのス ルフィドの酸素化反応は報告例が少ないが、担持 TEMPO/polystyrene 触媒、^[76k] MoS₂/Ta₃N₅、 ^[76i] Au 担持金属酸化物触媒^[76m]が報告されている。

TEMPO/polystyrene 触媒は、ろ過により容易に回収可能な不均一系触媒として利用可 能であり、触媒としての再使用も可能である。しかしながら、反応促進のために、 **Mn**(NO₃)₃ と Co(NO₃)₃ が犠牲剤として使用されており、反応サイクルごとに **Mn**(NO₃)₃ と Co(NO₃)₃ を補充する必要がある。^[76k]

MoS₂/Ta₃N₅ 触媒では、アルコールの酸化反応は効率的に進行したが、触媒が N や S での被毒による影響を受けやすく、スルフィドの酸素化反応の効率が悪く、触媒の再使 用もできない。^[76]

Au 担持金属酸化物触媒^[76m]では、Mn、V、Co、Ce、Al、Si、Ti、Fe、Ni、Cu、Zn、 Zr、Mo、Sn、La、W 等の金属種を含む種々の金属酸化物の利用が検討されたが、大部 分の金属酸化物は活性を示さなかった。そのなかで、Au/MnO₂のみが高い触媒活性を示 した。Au/MnO₂では、Mars-van Krevelen 機構による酸素酸化反応が進行したことが示唆 された。また、Au/MnO₂は焼成することにより再使用が可能となった。

2×2 トンネル構造を有する Mn 系複酸化物である OMS-2 は、スルフィドの酸素化反応に対して優れた触媒として機能する。^[77] OMS-2 は、他の Mn 酸化物 (α -MnO₂, β -MnO₂, γ -MnO₂, δ -MnO₂) よりもスルフィドの酸素化反応に対して高い触媒活性を示し、スルフィドの酸素化反応に対する優れた触媒であることが判明した。^[77] さらに、OMS-2 の骨格中に Mo をドープした触媒では、OMS-2 よりも高い触媒活性を示し、種々のスルホキシドを高収率かつ高選択的に合成可能であった。また、Mo-OMS-2 を触媒としたスルフィドの酸素化反応は、2,6-di-*tert*-butyl-4-methylphenol といったラジカル捕捉剤を添加することでスルホキシドの収率が大幅に減少したことから、ラジカル中間体を経由する1電子酸化反応により進行していることが示唆された。^[77]

Figure 1-12. 反応系中で生成した NO₂を酸化剤としたスルフィドの酸素化反応(TBN = *tert*-butylnitrite).^[73f]

Scheme 1-4.トリアルキルボランを用いたスルフィドの酸素化反応.^[74]

<u>アルキルアレーンの</u>酸素化反応

ファインケミカルや香料等の様々な用途で有用なケトン等の合成のためには、有機化 合物の選択的な酸化反応が重要となる。^[78] 従来の量論量の有害な試薬を用いた酸化反応 と比べて、過酸化水素や酸素を酸化剤とした酸化反応が副生成物として水のみを生成す る環境にやさしい反応として注目されている。

Mn 酸化物を用いたアルキルアレーンの酸素化反応が報告されている。^[79]なかでも、

2×2 トンネル構造を有する Mn 系複酸化物である OMS-2 を触媒とした場合、ラジカル 発生を伴う 1 電子酸化反応によりアルキルアレーンの酸素化反応が進行することが報 告されている (Figure 1-13)。^[79a]

Figure 1-13. OMS-2 を触媒としたアルキルアレーンの酸素化反応.^[79a]

<u>α-シアノ化反応</u>

α-アミノニトリルは、アミノ酸等の合成中間体として有用な化合物である。^[80] 従来の 量論試薬を用いた反応や光反応等によるアミンのα-シアノ化反応では、基質適用性が限 られている場合が多く、触媒の再使用も困難であった。^[81]

近年、2×2 トンネル構造を有する Mn 系複酸化物である OMS-2 を触媒とした第 3 級 アミンの α-シアノ化反応が報告されている (Figure 1-14)。^[82] OMS-2 を触媒として用いる ことで、酸素を酸化剤とし、トリアルキル、ベンジル、*N,N-ジ*アルキルアニリン誘導体 といった種々の α-アミノニトリルを合成可能であった。さらに、OMS-2 触媒は、再使 用も可能であった。

Figure 1-14. 第3級アミンの α-シアノ化反応.^[82] TMSCN = trimethylsilyl cyanide, SET = single electron transfer.

酸化的水素化脱硫反応

アモルファス MnO₂を触媒とすることで第1級チオアミドからニトリルを合成可能で あることが報告されている (Scheme 1-5)。^[83] アモルファス MnO₂ 触媒は、使用後も MnS 等の種に変化することなく、再使用が可能であった。

$$\underset{\mathsf{R}}{\overset{\mathsf{S}}{\amalg}} \underset{\mathsf{NH}_2}{\overset{\mathsf{O}_2}{\longrightarrow}} \mathsf{R}\text{-}\mathsf{CN} + \mathsf{S} + \mathsf{H}_2\mathsf{O}$$

Scheme 1-5. アモルファス MnO₂を触媒とした第1級チオアミドの酸化的水素化脱硫反応.^[83]

水の酸化還元反応

水の酸化反応 $(2H_2O \rightarrow O_2 + 4H^+ + 4e^-)$ は、酸素発生を伴う4 電子酸化反応であり、 光合成といった自然界で最も重要な反応に関連する。さらに、水の分解反応は、太陽光 エネルギーを貯蔵可能な水素という形に変換するために、近年注目を集めている。光合 成における反応活性点は、 μ -オキシド架橋をした Mn 種を有する歪んだいす型構造の CaMn₄O₅クラスターであるといわれている。^[84] そのため、 μ -オキシド架橋をした Mn 種 を有する Mn 錯体を中心に、水の酸化反応が検討されてきたが、ほとんどの場合、触媒 活性を示さないといった結果が得られている。^[85] 一方、Ru や Ir といった貴金属触媒を 用いた場合に、水の酸化反応は効率的に進行することが知られている。^[86] 一方、Mn 酸 化物 (or 複酸化物)を触媒とすることで効率的に水の酸化反応が進行することも報告 されている。^[87] Mn 酸化物は、ナノ粒子の方が粒子径の大きな酸化物よりも触媒として高 活性を示すことが報告されている。例えば、Mn 酸化物ナノ粒子(TEM 観察から 6–10 nm) の方が粒子径の大きな酸化物(TEM 観察から 30–100 nm)よりも電気化学的な水の酸化 における酸素発生での TOF (TOF = turn over frequency)が6倍大きく、水の酸化反応に 対して高い触媒活性を示した。^[87e]

また、Mn酸化物は、水の酸化反応(酸素発生反応(OER = oxygen evolution reaction)) だけでなく、酸素の還元反応(ORR = oxygen reduction reaction) にも有用であるため、 燃料電池や空気電池用の電極触媒として期待されている。^[88]酸素の還元反応は、 $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ とあらわすことができる。Mn酸化物による酸素の還元反応は、準 4電子反応であることが報告されている。^[88i]Mn酸化物は、酸素を用いた有機化合物等の 酸化反応に対する触媒としても有用であり、Mn酸化物がORR・OER 活性を有してい たことは、Mn酸化物が酸素を活性化する能力に優れていることを示唆している可能性 がある。

1.3. まとめ

Mn 系複酸化物は、蓄電材料、イオン交換体、酸化触媒をはじめとし、様々な用途で 有用な材料である。ナノ粒子は、高い比表面積やイオンの粒子内拡散長の低減により、 高効率な表面反応やイオンの脱挿入による高機能性材料としての利用が期待される。従 来、結晶性の Mn 系複酸化物を得るためには、① 固相法やゾル-ゲル法といった焼成を 必要とする手法、② 水熱合成法等の焼成を必要としない溶液中での反応が用いられて きた。焼成が必要な合成法では、粒子の焼結等による粒子成長が起こり、小さなナノ粒 子の合成が難しいのに対し、焼成を必要としない溶液中での反応では、比較的低温で粒 子径の小さなナノ粒子の合成が可能である。しかしながら、従来の合成法では、生成物 の形成過程はしばしばブラックボックスであり、意図した構造を有する Mn 系複酸化物 ナノ粒子を数ナノメートルオーダーのナノ粒子として合成することは困難であった。 Mn 系複酸化物を高機能性材料として利用するだけでなく、これまでに明らかになって いないナノ粒子の特性を明らかにする上でも、さらに粒子径の小さなナノ粒子として目 的構造を有する Mn 系複酸化物を合成することが望まれる。

1.4. 本研究の目的

金属複酸化物は、構造・組成に応じて様々な機能・物性を示す。金属複酸化物をナノ サイズ化することで触媒反応等の粒子表面で起こる反応や金属種の脱挿入等を高効率 に行うことができ、高機能性材料としての利用が可能になると期待される。特に、Mn 系複酸化物は、電極材料、イオン交換体、触媒等の多様な用途で有用な材料である。 Mn 系複酸化物ナノ粒子は、しばしば水熱合成法により合成されてきた。しかしながら、 水熱反応は多くの場合、ブラックボックスであるため、生成物の形成過程はあまり解明 されておらず、生成物の結晶構造と粒子径の制御の両立は困難であった。そこで、本研 究では、目的とする Mn 系複酸化物をナノ粒子として合理的につくり分けることが可能 な手法の開発を目指し、研究を行った(Figure 1-15)。まず、本研究では、Mn 系複酸化 物の従来の合成条件と結晶構造に着目した。Mn 系複酸化物は、MnO₆ ユニットが規則 的に連結することにより、多様な結晶構造を形成している。Mn 系複酸化物のうち、MnO₆ ユニット間に広い空間を有し、水和イオンが MnO₆ユニット間に入ることで形成される 層状構造やトンネル構造は比較的低温(層状構造: ca. 30 ℃, トンネル構造: ca. 70 ℃) での合成が可能である。一方、MnO₆ユニット間に狭い空間を有するスピネル構造は、 水和イオンでは形成することができず、合成には典型的には 180 ℃ 以上の高温を要す る。これらのことから、Mn 系複酸化物に入る異種金属カチオンの水和状態を制御する ことで、低温でも目的とする結晶構造を形成させることが可能になると考えられる。

本研究では、Mn 系複酸化物の構造中に含まれる異種金属カチオンの水和状態を制御 するため、有機溶媒を溶媒兼還元剤として用いた。また、低温での有機溶媒への金属種 の溶解度は水と比べて小さいため、有機溶媒中での合成では、溶解再析出による粒子成 長を抑制し、ナノ粒子を合成可能であると期待される。

第2章では、有機溶媒中でLi⁺の水和状態を制御することで、Li イオン電池の正極材料として有用なLi-Mn スピネル酸化物を比較的低温で選択的に合成可能な手法を確立した。本合成法では、結晶性前駆体よりも構造変化が容易であると考えられるアモルファス前駆体に着目した。アモルファス前駆体からのLi-Mn スピネル酸化物の形成過程を詳細に検討した後、本合成法をone-pot 反応でのLi-Mn スピネルナノ粒子合成法として発展させた。さらに、2価カチオンの水和状態を制御することで、本合成法を多様な構造・組成を有するMn 系複酸化物ナノ粒子のone-pot 合成法として発展させた。有機溶媒中で脱水したイオンを用いることでスピネル構造、水を添加し、水和イオンを用いることでトンネル構造や層状構造を有するMn 系複酸化物をいずれもナノ粒子として合成可能であることを見出した。

第3章では、本合成法で得た Mn 系複酸化物ナノ粒子のイオン交換体、電極材料、酸化触媒としての利用について検討した。本合成法で得た Mn 系複酸化物ナノ粒子は、極めて粒径が小さく、粒径の大きな酸化物とは異なる特異的な性質(Li⁺と H⁺のイオン交換特性,高速放電特性,高い酸化触媒活性)を示すことを明らかにした。

Figure 1-15. 本合成法の概要. 有機溶媒中で脱水したイオンではスピネル構造が形成されるが,水和イオンではより空間の広い層状構造が形成される(八面体: MnO₆ユニット,球:金属カチオン,灰色の球: H₂O). 本合成法で得られた Mn 系スピネルナノ粒子は、粒径の大きな酸化物とは異なる特異的性質を示した.

1.5. 参考文献

- [1] 日本化学会,標準化学用語辞典,第2版,丸善,2005.
- [2] (a) T. Ohzuku, A. Ueda, Solid State Ionics 1994, 69, 201–211. (b) X. He, D. Antonelli, Angew. Chem. Int. Ed. 2002, 41, 214–229. (c) J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 2012, 24, 5408–5427. (d) J. B. Goodenough, Chem. Mater. 2014, 26, 820–829. (e) M. E. G. Lyons, R. L. Doyle, D. Fernandez, I. J. Godwin, M. P. Browne, A. Rovetta, Electrochem. Commun. 2014, 45, 56–59. (f) T. Guo, M.-S. Yao, Y.-H. Lin, C.-W. Nan, CrystEngComm 2015, 17, 3551–3585. (g) Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, J. Mater. Chem. A 2015, 3, 43–59. (h) W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404–1427.
- [3] 日本化学会, 実験化学講座, 第5版, 丸善, 2003.
- [4] 御園生誠, 斉藤泰和, 触媒化学, 第2版, 丸善, 2012.
- [5] (a) R. Roy, Science 1987, 238, 1664–1669. (b) J. Livage, M. Henry, C. Sanchez, Prog. Solid

State Chem. 1988, 18, 259–341. (c) M. Kakihana, M. Yoshimura, Bull. Chem. Soc. Jpn.
1999, 72, 1427–1443. (d) B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Chem. Rev.
2004, 104, 3893–3946.

- [6] (a) R. C. Mehrotra, J. Non-Crystalline Solids 1988, 100, 1–15. (b) U. Schubert, J. Sol-Gel Sci. Technol. 2016, 79, 249–261.
- [7] (a) S. Ching, E. J. Welch, S. M. Hughes, A. B. F. Bahadoor, *Chem. Mater.* 2002, *14*, 1292–1299. (b) G. Garnweitner, M. Niederberger, *J. Am. Ceram. Soc.* 2006, *89*, 1801–1808. (c) M. Niederberger, G. Garnweitner, *Chem. Eur. J.* 2006, *12*, 7282–7302. (d) M. Niederberger, *Acc. Chem. Res.* 2007, *40*, 793–800. (e) N. Pinna, M. Niederberger, *Angew. Chem. Int. Ed.* 2008, *47*, 5292–5304.
- [8] (a) D. Portehault, S. Cassaignon, E. Baudrin, J.-P. Jolivet, *Chem. Mater.* 2007, *19*, 5410–5417. (b) T. Gao, H. Fjellvåg, P. Norby, *Nanotechnol.* 2009, *20*, 055610. (c) H. Jiang, T. Zhao, C. Yan, J. Ma, C. Li, *Nanoscale* 2010, *2*, 2195–2198. (d) Q. Zhang, Z. Xiao, X. Feng, W. Tan, G. Qiu, F. Liu, *Mater. Chem. Phys.* 2011, *125*, 678–685. (e) T. Gao, P. Norby, *Eur. J. Inorg. Chem.* 2013, 4948–4957.
- [9] (a) S. L. Brock, M. Sanabria, S. L. Suib, V. Urban, P. Thiyagarajan, D. I. Potter, J. Phys. Chem. B 1999, 103, 7416–7428. (b) O. Giraldo, S. L. Brock, W. S. Willis, M. Marquez, S. L. Suib, J. Am. Chem. Soc. 2000, 122, 9330–9331. (c) S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204–8205. (d) Y. Jun, J. Choi, J. Cheon, Angew. Chem. Int. Ed. 2006, 45, 3414–3439. (e) J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 4630–4660. (f) U. Vukičevic, S. Zhiemian, A. Bismarck, M. S. P. Shaffer, J. Mater. Chem. 2008, 18, 3448–3453. (g) W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 2008, 3, 397–415. (h) R. A. Sperling, W. J. Parak, Phil. Trans. R. Soc. A 2010, 368, 1333–1383. (i) K. Fujinami, K. Katagiri, J. Kamiya, T. Hamanaka, K. Koumoto, Nanoscale 2010, 2, 2080–2083. (j) Y. Zhao, C. Li, F. Li, Z. Shi, S. Feng, Dalton Trans. 2011, 40, 583–588.
- [10] (a) S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, S. L. Suib, *Chem. Mater.* 1998, 10, 2619–2628. (b) Q. Feng, H. Kanoh, K. Ooi, *J. Mater. Chem.* 1999, 9, 319–333. (c) J. E. Post, *Proc. Natl. Acad. Sci. USA* 1999, 96, 3447–3454. (d) S. L. Suib, *J. Mater. Chem.* 2008, 18, 1623–1631. (e) Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C.-H. Shek, C. M. L. Wu, J. K. L. Lai, *Chem. Rev.* 2012, 112, 3833–3855.
- [11] (a) F. V. Chukhrov, A. I. Gorshkov, E. S. Rudnitskaya, *Clays Clay Miner.* 1980, 28, 346–354. (b) S. Turner, M. D. Siegel, P. R. Buseck, *Nature* 1982, 296, 841–842. (c) S. Turner, P. R. Buseck, *Science* 1981, 212, 1024–1027. (d) D. L. Bish, J. E. Post, *Amer. Mineral.* 1989, 74, 177–186. (e) M. D. Siegel, S. Turner, *Science* 1983, 219, 172–174.
- [12] (a) P. Strobel, J. Durr, M.-H. Tuilier, J.-C. Charenton, J. Mater. Chem. 1993, 3, 453–458.
 (b) Y.-F. Shen, S. L. Suib, C.-L. O'Young, J. Am. Chem. Soc. 1994, 116, 11020–11029.
- [13] (a) P. Le Goff, N. Baffier, S. Bach, J, P. Pereira-Ramos, Mater. Res. Bull. 1996, 31, 63-75.

(b) J. Wang, D. Li, P. Li, P. Zhang, O. Xu, J. Yu, RSC. Adv. 2015, 5, 100434–100442. (c) Y. R. Li, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, J. Electrochem. Soc. 2016, 163, A281-A285. (d) O.W. Duckworth, G. Sposito, Chem. Geol. 2007, 242, 497-508. (e) M. Villalobos, B. Toner, J. Bargar, G. Sposito, Geochim. Cosmochim. Acta 2003, 67, 2649-2662. (f) H. Liu, H. Zhang, L. Shi, X. Hai, J. Ye, Appl. Catal. A 2016, 521, 149–153. (g) A. A. Simanova, K. D. Kwon, S. E. Bone, J. R. Bargar, K. Refson, Geochim. Cosmochim. Acta 2015, 164, 191–204. (h) M. H. Tahmasebi, K. Raeissi, M. A. Golozar, A. Vicenzo, M. Hashempour, M. Bestetti, Electrochim. Acta 2016, 190, 636-647. (i) H. Yin, W. Tan, L. Zheng, H. Cui, G. Qiu, F. Liu, X. Feng, Geochim. Cosmochim. Acta 2012, 93, 47-62. (j) H. Yin, X. Feng, G. Qiu, W. Tan, F. Liu, J. Hazard. Mater. 2011, 188, 341-349. (k) S. Grangeon, A. Manceau, J. Guilhermet, A.-G. Gaillot, M. Lanson, B. Lanson, Geochim. Cosmochim. Acta 2012, 85, 302-313. (1) H. Zhao, M. Zhu, W. Li, E. J. Elzinga, M. Villalobos, F. Liu, J. Zhang, X. Feng, D. L. Sparks, Environ. Sci. Technol. 2016, 50, 1750-1758. (m) G. Wang, Z. Ma, G. Zhang, C. Li, G. Shao, Electrochim. Acta 2015, 182, 1070-1077. (n) Y. Li, X. Cai, W. Shen, *Electrochim. Acta* 2014, 149, 306–315. (o) J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 2010, 48, 3825–3833. (p) H. K. Moghaddam, M. Pakizeh, J. Ind. Eng. Chem. 2015, 21, 221–229. (q) J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, *Electrochim. Acta* **2011**, *56*, 9240–9247. (r) S. E. O'Reilly, M. F. Hochella, Jr., Geochim. Cosmochim. Acta 2003, 67, 4471–4487. (s) A. K. Thapa, B. Pandit, R. Thapa, T. Luitel, H. S. Paudel, G. Sumanasekera, M. K. Sunkara, N. Gunawardhana, T. Ishihara, M. Yoshio, Electrochim. Acta 2014, 116, 188-193. (t) C. J. Pelliccione, Y. R. Li, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, Phys. Chem. Chem. Phys. 2016, 18, 2959–2967. (u) L. Zhou, J. Zhang, J. He, Y. Hu, H. Tian, *Mater. Res. Bull.* **2011**, *46*, 1714–1722. (v) G. Elmaci, C. E. Frey, P. Kurz, B. Zümreoğlu-Karan, Inorg. Chem. 2015, 54, 2734–2741. (w) Y.-C. Chen, Y.-K. Hsu, Y.-G. Lin, Y.-K. Lin, Y.-Y. Horng, L.-C. Chen, K.-H. Chen, Electrochim. Acta 2011, 56, 7124-7130. (x) S. Ching, J. A. Landrigan, M. L. Jorgensen, Chem. Mater. 1995, 7, 1604–1606. (y) J. Luo, Q. Zhang, S. L. Suib, Inorg. Chem. 2000, 39, 741–747. (z) J. Zhou, L. Yu, M. Sun, S. Yang, F. Ye, J. He, Z. Hao, Ind. Eng. Chem. Res. 2013, 52, 9586–9593. (aa) X. H. Feng, F. Liu, W. F. Tan, X. W. Liu, Clays Clay Miner. **2004**, *52*, 240–250.

[14] (a) J. Luo, S. L. Suib, *Chem. Commun.* 1997, 1031–1032. (b) S. L. Brock, M. Sanabria, S. L. Suib, *J. Phys. Chem. B* 1999, *103*, 7416–7428. (c) T. Ressler, S. L. Brock, J. Wong, S. L. Suib, *J. Phys. Chem. B* 1999, *103*, 6407–6420. (d) Z. Liu, K. Ooi, H. Kanoh, W. Tang, T. Tomida, *Langmuir* 2000, *16*, 4154–4164. (e) E. Wortham, B. Bonnet, D. J. Jones, J. Roxiére, G. R. Burns, *J. Mater. Chem.* 2004, *14*, 121–126. (f) M. Nakayama, S. Konishi, H. Tagashira, K. Ogura, *Langmuir* 2005, *21*, 354–359. (g) M. Nakayama, H. Tagashira, *Langmuir* 2006, *22*, 3864–3869. (h) C.-H. Chen, V. M. B. Crisostomo, W.-N. Li, L. Xu, S.

L. Suib, J. Am. Chem. Soc. 2008, 130, 14390–14391. (i) K. Kai, Y. Yoshida, H. Kageyama,
G. Saito, T. Ishigaki, Y. Furukawa, J. Kawamata, J. Am. Chem. Soc. 2008, 130, 15938– 15943. (j) J.-H. Kang, S.-J. Hwang, J.-H. Choy, J. Mater. Chem. 2010, 20, 2033–2038. (k)
M. Nakayama, M. Shamoto, A. Kamimura, Chem. Mater. 2010, 22, 5887–5894. (l) Y.
Yoshida, K. Kai, H. Kageyama, G. Saito, J. Mater. Chem. 2011, 21, 5863–5866. (m) K. M.
Lee, M.-S. Song, I. Y. Kim, T. W. Kim, S.-J. Hwang, Mater. Chem. Phys. 2011, 127, 271– 277. (n) K. Kai, Y. Yoshida, Y. Kobayashi, H. Kageyama, G. Saito, Dalton Trans. 2012, 41, 825–830. (o) H. Pan, X. Kong, P. Wen, T. Kitayama, Q. Feng, Mater. Res. Bull. 2012, 47, 2428–2436. (p) M. Yano, S. Suzuki, M. Miyayama, M. Ohgaki, Solid State Ionics 2013, 233, 32–37.

- [15] (a) F. A. Al-Sagheer, M. I. Zaki, Micropor. Mesopor. Mater. 2004, 67, 43-52. (b) A. A. Ali, F. A. Al-Sagheer, M. I. Zaki, Int. J. Inorg. Mater. 2001, 3, 427-435. (c) H. Huang, C.-H. Chen, L. Xu, H. Genuino, J. Garcia-Martinez, H. F. Garces, L. Jin, C. K. Kithongo, S. L. Suib, Chem. Commun. 2010, 46, 5945–5947. (d) K. A. Malinger, K. Laubernds, Y.-C. Son, S. L. Suib, Chem. Mater. 2004, 16, 4296–4303. (e) J. Liu, J. Cai, Y.-C. Son, Q. Gao, S. L. Suib, M. Aindow, J. Phys. Chem. B 2002, 106, 9761–9768. (f) B. W. Byles, P. West, D. A. Cullen, K. L. More, E. Pomerantseva, RSC Adv. 2015, 5, 106265-106271. (g) X. H. Feng, W. F. Tan, F. Liu, J. B. Wang, H. D. Ruan, Chem. Mater. 2004, 16, 4330–4336. (h) J. Pakarinen, M. Laatikainen, K. Sirola, E. Paatero, R. Koivula, R. Harjula, Separ. Sci. Technol. 2009, 44, 3045–3074. (i) H.-J. Cui, J.-W. Shi, F. Liu, M.-L. Fu, J. Mater. Chem. 2011, 21, 18527–18529. (j) H. Cui, X. Feng, W. Tan, W. Zhao, M. K. Wang, T. M. Tsao, F. Liu, Cryst. Growth Des. 2010, 10, 3355-3362. (k) D. C. Golden, C. C. Chen, J. B. Dixon, Science 1986, 231, 717–719. (I) Y. F. Shen, R. P. Zerger, R. N. DeGuzman, S. L. Suib, L. McCurdy, D. I. Potter, C. L. O'Young, Science 1993, 260, 511-515. (m) Q. Feng, K. Yanagisawa, N. Yamasaki, Chem. Commun. 1996, 1607–1608. (n) Q. Feng, K. Yanagisawa, N. Yamasaki, J. Porous Mater. 1998, 5, 153–161. (o) Z. Liu, L. Kang, K. Ooi, Y. Makita, Q. Feng, J. Colloid. Interface Sci. 2005, 285, 239-246. (p) S. Ching, K. S. Krukowska, S. L. Suib, Inorg. Chim. Acta 1999, 294, 123–132. (q) H.-J. Cui, X.-H. Feng, J.-Z. He, W.-F. Tan, F.Liu, Clays Clay Miner. 2006, 54, 605-615. (r) Y.-F. Shen, S. L. Suib, C.-L. O'Young, J. Am. Chem. Soc. 1994, 116, 11020-11029. (s) S. Bodeï, A. Manceau, N. Geoffroy, A. Baronnet, M. Buatier, Geochim. Cosmochim. Acta 2007, 71, 5698–5716. (t) A. L. Atkins, S. Shaw, C. L. Peacock, Geochim. Cosmochim. Acta 2014, 144, 109–125.
- [16] Y. Tanaka, M. Tsuji, Mater. Res. Bull. 1994, 29, 1183–1191.
- [17] (a) J. B. Fernandes, B. D. Desai, V. N. K. Dalal, *Electrochim. Acta* 1984, 29, 181–185. (b)
 R. N. DeGuzman, Y.-F. Shen, E. J. Neth, S. L. Suib, C.-L. O'Young, S. Levine, J. M. Newsam, *Chem. Mater.* 1994, 6, 815–821.
- [18] Ph. Botkovitz, Ph. Deniard, M. Tournoux, R. Brec, J. Power Sources 1993, 44, 657–665.

- [19] (a) S. Ching, D. J. Petrovay, M. L. Jorgensen, S. L. Suib, *Inorg. Chem.* 1997, *36*, 883–890.
 (b) S. Ching, J. L. Roark, N. Duan, S. L. Suib, *Chem. Mater.* 1997, *9*, 750–754.
- [20] (a) T. Ohzuku, M. Kitagawa, K. Sawai, T. Hirai, J. Electrochem. Soc. 1991, 138, 360–365.
 (b) Q. Zhang, X. Cheng, G. Qiu, F. Liu, X. Feng, Solid State Sci. 2016, 55, 152–158.
- [21] N. Yamamoto, O. Tamada, J. Cryst. Growth 1985, 73, 199–200.
- [22] N. Yamamoto, O. Tamada, Bull. Inst. Chem. Res. Kyoto Univ. 1986, 64, 218–226.
- [23] Q. Feng, Y. Higashimoto, K. Kajiyoshi, K. Yanagisawa, J. Mater. Sci. Lett. 2001, 20, 269– 271.
- [24] (a) K.-Y. Jo, S.-Y. Han, J. M. Lee, I. Y. Kim, S. Nahm, J.-W. Choi, S.-J. Hwang, Electrochim. Acta 2013, 92, 188–196. (b) N. Kamarulzaman, R. Yusoff, N. Kamarudin, N. H. Shaari, N. A. Abdul Aziz, M. A. Bustam, N. Blagojevic, M. Elcombe, M. Blackford, M. Avdeev, A. K. Arof, J. Power Sources 2009, 188, 274–280. (c) T. J. Patey, R. Buchel, M. Nakayama, P. Novák, Phys. Chem. Chem. Phys. 2009, 11, 3756-3761. (d) F. Jiao, J. Bao, A. H. Hill, P. G. Bruce, Angew. Chem. Int. Ed. 2008, 47, 9711-9716. (e) Z. Liu, W. Wang, X. Liu, M. Wu, Z. Zeng, D. Li, Inorg. Chem. Commun. 2004, 7, 308-310. (f) F. O. Ernst, H. K. Kammler, A. Roessler, S. E. Pratsinis, W. J. Stark, J. Ufheil, P. Novák, Mater. Chem. Phys. 2007, 101, 372-378. (g) X. Zhao, C. M. Hayner, H. H. Kung, J. Mater. Chem. 2011, 21, 17297–17303. (h) M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano 2010, 4, 741-752. (i) B. J. Liddle, S. M. Collins, B. M. Bartlett, Energy Environ. Sci. 2010, 3, 1339–1346. (j) S. Y. Chew, T. J. Patey, O. Waser, S. H. Ng, R. Buchel, A. Tricoli, F. Krumeich, J. Wang, H. K. Liu, S.E. Pratsinis, P. Novak, J. Power Sources 2009, 189, 449–453. (k) H.-W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, D. K. Kim, Nano Lett. 2010, 10, 3852-3856. (1) Q.-H. Zhang, S.-P. Li, S.-Y. Sun, X.-S. Yin, J.-G. Yu, Chem. Eng. Sci. 2010, 65, 169–173. (m) J. F. von Bülow, H.-L. Zhang, D. E. Morse, Adv. Energy Mater. 2012, 2, 309–315. (n) H. Xia, K. R. Ragavendran, J. Xie, L. Lu, J. Power Sources 2012, 212, 28–34. (o) S. Bak, K. Nam, C. Lee, K. Kim, H. Jung, X. Yang, K. Kim, J. Mater. Chem. 2011, 21, 17309–17315. (p) R. Singhal, O. Resto, R. S. Katiyar, J. Renewable and Sustainable Energy 2009, 1, 023103. (q) X. Li, R. Xiang, T. Su, Y. Qian, Mater. Lett. 2007, 61, 3597-3600. (r) S. Lee, Y. Cho, H.-K. Song, K. T. Lee, J. Cho, Angew. Chem. Int. Ed. 2012, 51, 8748-8752. (s) Q.-H. Zhang, S.-Y. Sun, S.-P. Li, X.-S. Yin, J.-G. Yu, Ann. N. Y. Acad. Sci. 2009, 1161, 500. (t) F. Cheng, H. Wang, Z. Zhu, Y. Wang, T. Zhang, Z. Tao, J. Chen, Energy Environ. Sci. 2011, 4, 3668–3675. (u) X. Li, F. Cheng, B. Guo, J. Chen, J. Phys. Chem. B 2005, 109, 14017-14024. (v) J. H. Yi, J. H. Kim, H. Y. Koo, Y. N. Ko, Y. C. Kang, J. H. Lee, J. Power Sources 2011, 196, 2858-2862. (w) W.-J. Li, E.-W. Shi, Z.-Z. Chen, Y.-Q. Zhen, Z.-W. Yin, J. Solid State Chem. 2002, 163, 132-136. (x) X. Hao, O. Gourdon, B. J. Liddle, B. M. Bartlett, J. Mater. Chem. 2012, 22, 1578–1591. (y) C.-Z. Lu, G. T.-K. Fey, J. Phys. Chem. 2006, 67, 756–761. (z) Y. Chen, K.

- Xie, Y. Pan, C. Zheng, Solid State Ionics 2010, 181, 1445–1450. (aa) J.-H. Choy, D.-H. Kim, C.-W. Kwon, S.-J. Hwang, Y.-I. Kim, J. Power Sources 1999, 77, 1–11. (ab) G. T.-K. Fey, Y.-D. Cho, T. P. Kumar, Mater. Chem. Phys. 2006, 99, 451-458. (ac) E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou, Nano Lett. 2009, 9, 1045–1051. (ad) H. M. Wu, J. P. Tu, Y. F. Yuan, X. T. Chen, J. Y. Xiang, X. B. Zhao, G. S. Cao, J. Power Sources 2006, 161, 1260–1263. (ae) Y. Ding, J. Li, Y. Zhao, L. Guan, Mater. Lett. 2012, 68, 197–200. (af) K. M. Shaju, P. G. Bruce, Chem. Mater. 2008, 20, 5557–5562. (ag) Y. Wu, Z. Wen, H. Feng, J. Li, Small 2012, 8, 858-862. (ah) Y. Chen, K. Xie, Y. Pan, C. Zheng, J. Power Sources 2011, 196, 6493–6497. (ai) M. W. Raja, S. Mahanty, P. Ghosh, R. N. Basu, H. S. Maiti, Mater. Res. Bull. 2007, 42, 1499–1506. (aj) B.-K. Zou, X.-H. Ma, Z.-F. Tang, C.-X. Ding, Z.-Y. Wen, C.-H. Chen, J. Power Sources 2014, 268, 491–497. (ak) W. Tang, X. J. Wang. Y. Y. Hou, L. L. Li, H. Sun, Y. S. Zhu, Y. Bai, Y. P. Wu, K. Zhu, T. van Ree, J. Power Sources 2012, 198, 308–311. (al) B. J. Hwang, R. Santhanam, D. G. Liu, J. Power. Sources 2001, 97–98, 443–446. (am) S. Lim, J. Cho, Chem. Commun. 2008, 4472–4474. (an) M. Michalska, L. Lipinska, R. Diduszko, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, K. J. Kurzydlowski, Phys. Status. Solidi C 8, 2011, 7, 2538–2541. (ao) A. V. Murugan, B. B. Kale, L. B. Kunde, A. V. Kulkarni, J. Solid State Electrochem. 2006, 10, 104–109. (ap) M. Tang, A. Yuan, H. Zhao, J. Xu, J. Power Sources 2013, 235, 5–13. (aq) A. Sakunthala, M. V. Reddy, S. Selvasekarapandian, B. V. R. Chowdari, P. C. Selvin, Electrochimica Acta 2010, 55, 4441–4450. (ar) H. Zhao, D. Chen, M. Yan, J. Peng, M. M. Wu, X. L. Xiao, Z.-B. Hu, J. Mater. Res. 2012, 27, 1750-1754.
- [25] (a) F. M. Courtel, H. Duncan, Y. A.-Lebdeh, I. J. Davidson, J. Mater. Chem. 2011, 21, 10206–10218. (b) J. Du, C. Chen, F. Cheng, J. Chen, Inorg. Chem. 2015, 54, 5467–5474. (c) C. Li, X. Hao, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun. 2015, 6, 7345 (doi: 10.1038/ncomms8345). (d) L.-X. Zhang, Y.-L. Wang, H.-F. Jiu, W.-H. Zheng, J.-X. Chang, G.-F. He, Electrochim. Acta 2015, 182, 550–558. (e) X. Zhai, W. Yang, M. Li, G. Lv, J. Liu, X. Zhang, Carbon 2013, 65, 277–286. (f) J. Chen, Y. Cui, X. Wang, M. Zhi, M. Levorgna, A. P. Baker, J. Wu, Electrochim. Acta 2016, 188, 704–709. (g) D. G. Klissurski, E. L. Uzunova, Appl. Surf. Sci. 2003, 214, 370–374. (h) F. Yunyun, L. Xu, Z. Wankun, Z. Yuxuan, Y. Yunhan, Q. Honglin, X. Xuetang, W. Fan, Appl. Surf. Sci. 2015, 357, 2013–2021. (i) S. A. Hosseini, A. Niaei, D. Salari, S. R. Nabavi, Ceream. Int. 2012, 38, 1655–1661. (j) M. Prabu, P. Ramakrishnan, S. Shanmugam, Electrochem. Commun. 2014, 41, 59–63. (k) Y. Liu, J. Li, W. Li, Y. Li, Q. Chen, F. Zhan, J. Power Sources 2015, 299, 492–500.
- [26] R. D. Shannon, Acta Cryst. 1976, A32, 751–767.
- [27] J. N. Israelachvili, Intermolecular and Surface Forces, 3rd edition, Elsevier Inc., 2011.
- [28] (a) F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, A Comprehensive Text, 3rd

edition, John Wiley & Sons, Inc., 1972. (b) S. Funahashi, Bunseki Kagaku 1999, 48, 3-20.

- [29] X.-F. Shen, Y.-S. Ding, J. Liu, J. Cai, K. Laubernds, R. P. Zerger, A. Vasiliev, M. Aindow, S. L. Suib, Adv. Mater. 2005, 17, 805–809.
- [30] O. Ghodbane, J.-L. Pascal, F. Favier, Appl. Mater. Interfaces 2009, 1, 1130–1139.
- [31] M. R. Bailey, S. W. Donne, *Electrochim. Acta* 2011, 56, 5037–5045.
- [32] T. Rziha, H. Gies, J. Rius, Eur. J. Mineral. 1996, 8, 675–686.
- [33] A. Stamp, D. J. Lang, P. A. Wäger, J. Cleaner Prod. 2012, 23, 104–112.
- [34] トヨタ通商株式会社ホームページ (http://www.toyota-tsusho.com/about/project/04/).
- [35] P. W. Scott, S. R. Critchley, F. C. F. Wilkinson, Miner. Mag. 1986, 50, 141–147.
- [36] J. Hisamatsu, S. Ikeda, Bull. Soc. Sea Water Sci. Jpn. 2010, 64, 250-255.
- [37] (a) 大井健太, 宮井良孝, 加藤俊作, 阿部光雄, *日本海水学会誌*, **1989**, *42*, 219–227.
 (b) A. Clearfield, *Chem. Rev.* **1988**, *88*, 125–148. (c) C. Martinez, A. Corma, *Coord. Chem. Rev.* **2011**, *255*, 1558–1580. (d) T. Hoshino, *Desalination* **2015**, *359*, 59–63. (e) 独立行政法人日本原子力研究開発機構ホームページ(https://www.jaea.go.jp/02/press2013/p14020701/02.html).
- [38] Q. Feng, H. Kanoh, K. Ooi, J. Ion Exchange 1997, 8, 102–114.
- [39] (a) J. C. Hunter, J. Solid State Chem. 1981, 39, 142–147. (b) Y. Miyai, K. Ooi, T. Nishimura, J. Kumamoto, 日本海水学会誌, 1994, 48, 411–415. (c) 宮井良孝, 加納博文, 馮旗, 大井健太, 日本海水学会誌, 1995, 49, 347–351. (d) K. Ooi, Y. Miyai, H. Kanoh, J. Ion Exchange 1997, 8, 214–226. (e) K. Yoshizuka, K. Fukui, K. Inoue, Ars Separatoria Acta 2002, 1, 79–86. (f) A. Kitajou, T. Suzuki, S. Nishihama, K. Yoshizuka, Ars Separatoria Acta 2003, 2, 97–106. (g) A. Kitajou, Y. Suzuka, S. Nishihama, T. Suzuki, K. Yoshizuka, J. Ion Exchange 2006, 17, 7–13. (h) Y. Suzuka, Y. Yoshioka, S. Nishihama, K. Yoshizuka, J. Ion Exchange 2007, 18, 514–515. (i) K. Onishi, T. Nakamura, S. Nishihara, K. Yoshizuka, Ind. Eng. Chem. Res. 2010, 49, 6554–6558. (j) J. Park, H. Sato, S. Mishihama, K. Yoshizuka, Ion Exchange Lett. 2012, 5, 1–5. (k) J. Park, H. Sato, S. Nishihama, K. Yoshizuka, Solvent Extraction and Ion Exchange 2012, 30, 398–404.
- [40] (a) A. Kitajou, M. Holba, T. Suzuki, S. Nishihama, K. Yoshizuka, J. Ion Exchange 2005, 16, 49–54. (b) S. Nishihama, K. Ooi, K. Yoshizuka, Solvent Extraction and Ion Exchange 2011, 29, 421–431. (c) 宫井良孝, 加納博文, 馮旗, 大井健太, 日本海水学会誌, 1995, 49, 226–230. (d) 宫井良孝, 加納博文, 馮旗, 大井健太, 日本海水学会誌, 1995, 49, 220–225. (e) K. Yoshizuka, J. Ion Exchange 2012, 23, 59–65.
- [41] Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, *Langmuir* 1992, 8, 1861–1867.
- [42] (a) Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, *Chem. Mater.* 1993, *5*, 311–316. (b) Y.-F. Liu, Q. Feng, K. Ooi, *J. Colloid Interface Sci.* 1994, *163*, 130–136. (c) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 379–384. (d) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–153. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–154. (h) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–154. (h) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–154. (h) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, *7*, 148–154. (h) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, *7*, 148–154. (h) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, *7*, 148–154. (h) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, *7*, 148–154. (h) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater.

1995, 7, 379–384. (f) 宮井良孝, 加納博文, Ramesh Chitrakar, 大井健太, *日本海水学 会誌*, **2000**, *54*, 189–195. (g) R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* **2000**, *12*, 3151–3157. (h) P. Aitchison, B. Ammundsen, T. Bell, D. Jones, J. Roziére, G. Burns, H. Berg, R. Tellgren, J. Thomas, *Physica B* **2000**, *276–278*, 847–848. (i) R. Chitrakar, H. Kanoh, Y. Makita, Y. Miyai, K. Ooi, *J. Mater. Chem.* **2000**, *10*, 2325–2329. (j) X. Yang, H. Kanoh, W. Tang, K. Ooi, *J. Mater. Chem.* **2000**, *10*, 1903–1909. (k) R. Chitrakar, S. Kasaishi, A. Umeno, K. Sakane, N. Takagi, Y.-S. Kim, K. Ooi, *J. Solid State Chem.* **2002**, *169*, 35–43. (l) Y.-S. Kim, K.-S. No, K.-S. Chung, J.-C. Lee, K. Ooi, *Mater. Lett.* **2003**, *57*, 4140–4146. (m) L.-W. Ma, B.-Z. Chen, X.-C. Shi, W. Zhang, K. Zhang, *Colloids Surf. A Physicochem. Eng. Asp.* **2010**, *369*, 88–94. (n) M. Li-wen, C. Bai-zhen, S. Xi-chang, Z. Kun, *Trans. Nonferrous Met. Soc. China* **2011**, *21*, 1660–1664. (o) R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, *Bull. Chem. Soc. Jpn.* **2013**, *86*, 850–855.

- [43] K. Sato, D. M. Poojary, A. Clearfield, M. Kohno, Y. Inoue, J. Solid State Chem. 1997, 131, 84–93.
- [44] (a) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, *Chem. Mater.* 1995, 7, 1722–1727. (b) A. Dyer, M. Pillinger. J. Newton, R. Harjula, T. Möller, S. Amin, *Chem. Mater.* 2000, *12*, 3798–3804. (c) Z. Liu, K. Ooi, *Chem. Mater.* 2003, *15*, 3696–3703. (d) J. Liu, V. Makwana, J. Cai, S. L. Suib, M. Aindow, *J. Phys. Chem. B* 2003, *107*, 9185–9194. (e) S. V. Balakhonov, Y. V. Kolen'ko, B. R. Churagulov, E. A. Gudilin, A. G. Veresov, Y. D. Tret'yakov, *Doklady Chem.* 2006, *409*, 101–105. (f) A. Lu, X. Gao, C. Wang, Y. Gao, D. Zheng, T. Chen, D. Zhao, S. Qin, *J. Miner. Petrol. Sci.* 2007, *102*, 217–225.
- [45] Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, 7, 1226–1232.
- [46] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 2013, 226, 272–288.
- [47] L. Guohua, H. Ikuta, T. Uchida, M. Wakihara, J. Electrochem. Soc. 1996, 143, 178-182.
- [48] (a) J.-S. Kim, K. Kim, W. Cho, W. H. Shin, R. Kanno, *Nano Lett.* 2012, *12*, 6358–6365. (b)
 N. Laszczynski, J. von Zamory, N. Loeffler, G. B. Cho, G.-T. Kim, S. Passerini, *ChemElectroChem* 2014, *1*, 1537–1542. (c) H. Zhou, X. Ding, G. Liu, Y. Jiang, Z. Yin, X.
 Wang, *Electrochim. Acta* 2015, *152*, 274–279. (d) W. Sun, F. Cao, Y. Liu, X. Zhao, X. Liu,
 J. Yuan, *J. Mater. Chem.* 2012, *22*, 20952–20957. (e) D. Arumugam, G. P. Kalaignan, *Electrochimica Acta*, 2010, *55*, 8709–8716. (f) B. Lin, Q. Yin, H. Hu, F. Lu, H. Xia, *J. Solid State Chem.* 2014, *209*, 23–28. (g) M. Qian, J. Huang, S. Han, X. Cai, *Electrochim. Acta* 2014, *120*, 16–22. (h) X. Liu, Z. Huang, S. Oh, P. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, J. Kim, *J. Power Sources* 2010, *195*, 4290–4296. (i) Z. Wen, S. Huang, X. Yang, B. Lin, *Solid State Ionics* 2008, *179*, 1800–1805. (j) D. Guo, Z. Chang, H. Tang, B. Li, X. Xu, X.-Z. Yuan, *Electrochim. Acta* 2014, *123*, 254–259. (k) Y. Park, W. Shin, J. Lee, *Micropor. Mesopor. Mater.* 2012, *153*, 137–141. (l) P. Zhu, X. Chu, F. Zhou, R. Sun, C. Wong, *RSC*

Adv. **2014**, *4*, 3293–3298. (m) Y. Sun, C. Xu, B. Li, J. Xu, Y. He, H. Du, F. Kang, Int. J. Electrochem. Sci. **2014**, *9*, 6387–6401.

- [49] (a) S. R. Cicco, M. Latronico, P. Mastrorilli, G. P. Suranna, C. F. Nobile, J. Mol. Catal. A 2001, 165, 135–140. (b) I. E. Markó, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J. Urch, Science 1996, 274, 2044–2046. (c) K. Kaneda, Y. Fujie, K. Ebitani, Tetrahedron Lett. 1997, 38, 9023–9026. (d) A. F. Lee, J. Gee, H. J. Theyers, Green Chem. 2000, 2, 279–282. (e) I. E. Markó, P. R. Giles, M. Tsukazaki, I. Chellé-Regnaut, C. J. Urch, S. M. Brown, J. Am. Chem. Soc. 1997, 119, 12661–12662. (f) K. Kaneda, T. Yamashita, T. Matsushita, K. Ebitani, J. Org. Chem. 1998, 63, 1750–1751.
- [50] (a) I. M. Goldman, J. Org. Chem. 1969, 34, 1979–1981. (b) L. A. Carpino, J. Org. Chem. 1970, 35, 3971–3972. (c) A. J. Fatiadi, Synthesis 1976, 2, 65–104. (d) A. J. Fatiadi, Synthesis 1976, 3, 133–167.
- [51] (a) Y.-C. Son, V. D. Makwana, A. R. Howell, S. L. Suib, Angew. Chem. Int. Ed. 2001, 40, 4280–4283. (b) V. D. Makwana, Y.-C. Son, A. R. Howell, S. L. Suib, J. Catal. 2002, 210, 46–52. (c) A. Kamimura, Y. Nozaki, S. Ishikawa, R. Inoue, M. Nakayama, Tetrahedron Lett. 2011, 52, 538540. (d) A. Kamimura, H. Komatsu, T. Moriyama, Y. Nozaki, Tetrahedron 2013, 69, 5968–5972. (e) A. Kamimura, Y. Nozaki, M. Nishiyama, M. Nakayama, RSC Adv. 2013, 3, 468–472. (f) S. Kawasaki, K. Kamata, M. Hara, ChemCatChem 2016, 8, 3247–3253.
- [52] (a) J. S. Miller, J. L. Manson, Acc. Chem. Res. 2001, 34, 563–570. (b) P. Magnus, D. A. Scott, M. R. Fielding, Tetrahedron Lett. 2001, 42, 4127–4129. (c) S. T. Murphy, H. L. Case, E. Ellsworth, S. Hagen, M. Huband, T. Joannides, C. Limberakis, K. R. Marotti, A. M. Ottolini, M. Rauckhorst, J. Starr, M. Stier, C. Taylor, T. Zhu, A. Blaser, W. A. Denny, G.-L. Lu, J. B. Smaill, F. Rivault, *Bioorg. Med. Chem. Lett.* 2007, 17, 2150–2155. (d) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, J. Med. Chem. 2010, 53, 7902–7917.
- [53] (a) R. K. Grasselli, *Catal. Today* 1999, 49, 141–153. (b) A. Martin, B. Lücke, *Catal. Today* 2000, 57, 61–70. (c) M. B. Smith, J. March, *March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*, 6th edition., John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.
- [54] (a) S. Yamazaki, Y. Yamazaki, *Chem. Lett.* 1990, 571–574. (b) F.-E. Chen, Y.-Y. Li, M. Xu, H.-Q. Jia, *Synlett* 2002, 1804–1806. (c) S. Iida, H. Togo, *Tetrahedron* 2007, *63*, 8274–8281. (d) N. Mori, H. Togo, *Synlett* 2005, 1456–1458. (e) S. Iida, H. Togo, *Synlett* 2007, 407–410. (f) S. U. Dighe, D. Chowdhury, S. Batra, *Adv. Synth. Catal.* 2014, *356*, 3892–3896.
- [55] T. Oishi, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2009, 48, 6286-6288.
- [56] R. V. Kagadeesh, H. Junge, M. Beller, *Nat. Commun.* **2014**, *5*, 4123 (doi: 10.1038/ncomms5123).

- [57] K. Yamaguchi, H. Kobayashi, T. Oishi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 544– 547.
- [58] J. He, K. Yamaguchi, N. Mizuno, J. Org. Chem. 2011, 76, 4606-4610.
- [59] G. Lai, N. K. Bhamare, W. K. Anderson, Synlett 2001, 230–231.
- [60] T. Ishida, H. Watanabe, T. Takei, A. Hamasaki, M. Tokunaga, M. Haruta, *Appl. Catal. A* 2012, 425–426, 85–90.
- [61] R. García-Álvarez, P. Crochet, V. Cadierno, Green Chem. 2013, 15, 46-66.
- [62] (a) J. Aubé, G. L. Milligan, J. Am. Chem. Soc. 1991, 113, 8965–8966. (b) B. S. Jursic, Z. Zdravkivski, Synth. Commun. 1993, 23, 2761–2770. (c) E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606–631.
- [63] (a) C. Gunanathan, Y. Ben-David, D. Milstein, *Science* 2007, *317*, 790–792. (b) G. E. Dobereiner, R. H. Crabtree, *Chem. Rev.* 2010, *110*, 681–703. (c) C. Chen, S. H. Hong, *Org. Biomol. Chem.* 2011, *9*, 20–26. (d) H. Zeng, Z. Guan, *J. Am. Chem. Soc.* 2011, *133*, 1159–1161.
- [64] K. Shimizu, K. Ohshima, A. Satsuma, Chem. Eur. J. 2009, 15, 9977–9980.
- [65] (a) T. Zweifel, J.-V. Naubron, H. Grützmacher, Angew. Chem. Int. Ed. 2009, 48, 559–563.
 (b) Y. Wang, D. Zhu, L. Tang, W. Wang, Z. Wang, Angew. Chem. Int. Ed. 2011, 50, 8917–8921.
 (c) J.-F. Soulé, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 2011, 133, 18550–18553.
 (d) D. Antoniak, A. Sakowicz, R. Loska, M. Makosza, Synlett 2015, 26, 84–86.
- [66] K. Yamaguchi, H. Kobayashi, Y. Wang, T. Oishi, Y. Ogasawara, N. Mizuno, Catal. Sci. Technol. 2013, 3, 318–327.
- [67] R. Nie, J. Shi, S. Xia, L. Shen, P. Chen, Z. Hou, F.-S. Xiao, J. Mater. Chem. 2012, 22, 18115–18118.
- [68] Y. Wang, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 7250–7253.
- [69] (a) K. Yamaguchi, Y. Wang, N. Mizuno, *Chem. Lett.* 2012, 41, 633–635. (b)Y. Wang, H. Kobayashi, K. Yamaguchi, N. Mizuno, *Chem. Commun.* 2012, 48, 2642–2644.
- [70] (a) M. C. Carreño, *Chem. Rev.* 1995, 95, 1717–1760. (b) Y. Shiraishi, H. Hara, T. Hirai, I. Komasawa, *Ind. Eng. Chem. Res.* 1999, 38, 1589–1595. (c) K. Hiroi, Y. Suzuki, I. Abe, R. Kawagishi, *Tetrahedron* 2000, 56, 4701–4710. (d) S. Otsuki, T. Nonaka, N. Takashima, W. Qian, A. Ishihara, T. Imai, T. Kabe, *Energy Fuels* 2000, 14, 1232–1239. (e) S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, D. H. B. Ripin, *Chem. Rev.* 2006, 106, 2943–2989. (f) R. F. Pradilla, I. Colomer, A. Viso, *Org. Lett.* 2012, 14, 3068–3071.
- [71] (a) D. H. R. Barton, W. Li, J. A. Smith, *Tetrahedron Lett.* 1998, 39, 7055–7058. (b) Z.-X. Xiong, N.-P. Huang, P. Zhong, *Synth. Commun.* 2001, 31, 245–248.
- [72] (a) Y. Watanabe, T. Numata, S. Oae, *Synthesis* 1981, 204–206. (b) M. Madesclaire, *Tetrahedron* 1986, 42, 5459–5495. (c) B. Machura, J. Palion, J. Mroziński, B. Kalińska, M. Amini, M. M. Najafpour, R. Kruszynski, *Polyhedron* 2013, 53, 132–143. (d) M. Jafarpour,

M. Ghahramaninezhad, A. Rezaeifard, *RSC Adv.* **2014**, *4*, 1601–1608. (e) A. Rezaeifard, R. Haddad, M. Jafarpour, M. Hakimi, *ACS Sustainable Chem. Eng.* **2014**, *2*, 942–950.

- [73] (a) E. Bosch, J. K. Kochi, J. Org. Chem. 1995, 60, 3172–3183. (b) N. Komatsu, M. Uda, H. Suzuki, Chem. Lett. 1997, 1229–1230. (c) S. E. Martin, L. I. Rossi, Tetrahedron Lett. 2001, 42, 7147–7151. (d) C. O. Kinen, L. I. Rossi, R. H. de Rossi, J. Org. Chem. 2009, 74, 7132–7139. (e) H. Zhang, C. Chen, R. Liu, Q. Xu, W. Zhao, Molecules 2010, 15, 83–92. (f) H. Zhang, C. Chen, R. Liu, Synth. Commun. 2012, 42, 811–819.
- [74] K. Motoshima, A. Sato, H. Yorimitsu, K. Oshima, Bull. Chem. Soc. Jpn. 2007, 80, 2229– 2231.
- [75] Z.-C. Zhang, T. C. Chung, Macromolecules 2006, 39, 5187-5189.
- [76] (a) H. B. Lee, T. Ren, *Inorg. Chim. Acta* 2009, *362*, 1467–1470. (b) B. Lin, A.-H. Liu, L.-N. He, Z.-S. Yang, J. Gao, K.-H. Chen, *Green Chem.* 2012, *14*, 130–135. (c) D. P. Riley, M. R. Smith, P. E. Correa, *J. Am. Chem. Soc.* 1988, *110*, 177–180. (d) A. Dhakshinamoorthy, K. Pitchumani, *Catal. Commun.* 2009, *10*, 872–878. (e) R. Aldea, H. Alper, *J. Org. Chem.* 1995, *60*, 8365–8366. (f) N. M. Okun, T. M. Anderson, C. L. Hill, *J. Mol. Catal. A* 2003, *197*, 283–290. (g) N. M. Okun, J. C. Tarr, D. A. Hilleshiem, L. Zhang, K. I. Hardcastle, C. L. Hill, *J. Mol. Catal. A* 2006, *246*, 11–17. (h) N. M. Okun, M. D. Ritorto, T. M. Anderson, R. P. Apkarian, C. L. Hill, *Chem. Mater.* 2004, *16*, 2551–2558. (i) W. Li, Z. Xie, X. Jing, *Catal. Commun.* 2011, *16*, 94–97. (j) X. Gu, X. Li, Y. Chai, Q. Yang, P. Li, Y. Yao, *Green Chem.* 2013, *15*, 357–361. (k) T. Chinnusamy, O. Reiser, *ChemSusChem* 2010, *3*, 1040–1042. (l) Q. Gao, C. Giordano, M. Antonietti, *Angew. Chem. Int. Ed.* 2012, *51*, 11740–11744. (m) A. Taketoshi, P. Concepción, H. García, A. Corma, M. Haruta, *Bull. Chem. Soc. Jpn.* 2013, *86*, 1412–1418.
- [77] T. Uematsu, Y. Miyamoto, Y. Ogasawara, K. Suzuki, K. Yamaguchi, N. Mizuno, *Catal. Sci. Technol.* 2016, 6, 222–233.
- [78] H. J. Sanders, H. F. Keag, H. S. Mccullough, Ind. Eng. Chem. 1953, 45, 2-14.
- [79] (a) N. Opembe, Y.-C. Son, T. Sriskandakumar, S. L. Suib, *ChemSusChem* 2008, 1, 182–185.
 (b) J. Mondal, P. Borah, S. Sreejith, K. T. Nguyen, X. Han, X. Ma, Y. Zhao, *ChemCatChem* 2014, 6, 3518–3529. (c) A. Shaabani, M. B. Boroujeni, M. S. Laeini, *Appl. Organomet. Chem.* 2016, *30*, 154–159.
- [80] D. Enders, J. P. Shilvock, Chem. Soc. Rev. 2000, 29, 359–373.
- [81] (a) C.-K. Chen, A. G. Hortmann, M. R. Marzabadi, J. Am. Chem. Soc. 1988, 110, 4829–4831. (b) C. Ferroud, P. Rool, J. Santamaria, *Tetrahedron Lett.* 1998, 39, 9423–9426. (c) S. Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am. Chem. Soc. 2003, 125, 15312–15313. (d) S. Murahashi, T. Nakae, H. Terai, N. Komiya, J. Am. Chem. Soc. 2008, 130, 11005–11012. (e) W. Han, A. R. Ofial, Chem. Commun. 2009, 5024–5026. (f) X.-Z. Shu, X.-F. Xia, Y.-F. Yang, K.-G. Ji, X.-Y. Liu, Y.-M. Liang, J. Org. Chem. 2009, 74, 7464–7469. (g) J. M.

Allen, T. H. Lambert, *J. Am. Chem. Soc.* **2011**, *133*, 1260–1262. (h) Y. Pan, S. Wang, C. W. Kee, E. Dubuisson, Y. Yang, K. P. Loh, C.-H. Tan, *Green Chem.* **2011**, *13*, 3341–3344.

- [82] K. Yamaguchi, Y. Wang, N. Mizuno, *ChemCatChem* **2013**, *5*, 2835–2838.
- [83] K. Yamaguchi, K. Yajima, N. Mizuno, Chem. Commun. 2012, 48, 11247–11249.
- [84] (a) K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, *Science* 2004, *303*, 1831–1838. (b) H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, *ChemCatChem* 2010, *2*, 724–761. (c) Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, *Nature* 2011, *473*, 55–60.
- [85] (a) S. Mukhopadhyay, S. K. Mandal, S. Bhaduri, W. H. Armstrong, *Chem. Rev.* 2004, 104, 3981–4026. (b) M. Wiechen, H.-M. Berends, P. Kurz, *Dalton Trans.* 2012, 41, 21–31. (c) A. Singh, L. Spiccia, *Coord. Chem. Rev.* 2013, 257, 2607–2622.
- [86] (a) V. Artero, M. Chavarot-Kerlidou, M. Fontecave, *Angew. Chem. Int. Ed.* 2011, 50, 7238–7266. (b) R. Cao, W. Lai, P. Du, *Energy Environ. Sci.* 2012, 5, 8134–8157. (c) K. S. Joya, Y. F. Joya, K. Ocakoglu, R. van de Krol, *Angew. Chem. Int. Ed.* 2013, 52, 10426–10437.
- [87] (a) A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess, *Angew. Chem. Int. Ed.* 2013, *52*, 13206–13210. (b) Y. Gorlin, B. Lassalle-Kaiser, J. D. Bench, S. Gul, S. M. Webb, V. K. Yachandra, J. Yano, T. F. Jaramillo, *J. Am. Chem. Soc.* 2013, *135*, 8525–8534. (c) M. Wiechen, L. Spiccia, *ChemCatChem* 2014, *6*, 439–441. (d) Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, H. Dau, *Energy Environ. Sci.* 2012, *5*, 7081–7089. (e) A. Singh, R. K. Hocking, S. L.-Y. Chang, B. M. Gerorge, M. Fehr, K. Lips, A. Schnegg, L. Spiccia, *Chem. Mater.* 2013, *25*, 1098–1108. (f) M. Wiechen, I. Zaharieva, H. Dau, P. Kurz, *Chem. Sci.* 2012, *3*, 2330–2339.
- [88] (a) T. Ohsaka, L. Mao, K. Arihara, T. Sotomura, *Electrochem. Commun.* 2004, *6*, 273–277.
 (b) D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes, *J. Am. Chem. Soc.* 2010, *132*, 11467–11469. (c) Y. Gorlin, T. F. Jaramillo, *J. Am. Chem. Soc.* 2010, *132*, 13612–13614. (d) F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, *Nat. Chem.* 2011, *3*, 79–84. (e) E. M. Benbow, S. P. Kelly, L. Zhao, J. W. Reutenauer, S. L. Suib, *J. Phys. Chem. C* 2011, *115*, 22009–22017. (f) F. Cheng, J. Chen, *Chem. Soc. Rev.* 2012, *41*, 2172–2192. (g) M. Wiechen, L. Spiccia, *ChemCatChem* 2014, *6*, 439–441. (h) K. A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, *ACS Catal.* 2015, *5*, 6021–6031. (i) F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, *Chem. Mater.* 2010, *22*, 898–905.
第2章

カチオンの水和状態制御に基づくマンガン系複酸化物ナノ粒子の合成

第2章 カチオンの水和状態制御に基づくマンガン系複酸化物 ナノ粒子の合成

2.1. 緒言

金属酸化物は、構造・組成に応じて多様な機能・物性を示す。Mn 系複酸化物は、その電極材料、^[1] イオン交換体、^[2] 触媒、^[3] 触媒担体、^[4] 酸化剤^[5]等としての有用性から、注目を集めている。特に、Li-Mn スピネル酸化物は、化学的、電気化学的な Li⁺の脱挿入が可能であり、Li イオン電池の正極材料、^[1] Li⁺選択的なイオン交換体^[2a-d, 2h]として有用である。近年、高機能性材料の実現のために、ナノサイズの金属複酸化物が注目されている。金属複酸化物のナノ粒子化は、高比表面積による表面での反応の促進やイオンの粒子内拡散長の減少による高効率な金属種の脱挿入を可能とするため、高機能な材料の実現につながると期待される。^[1c-j]

従来、Mn 系複酸化物ナノ粒子の合成には、水熱合成法がしばしば用いられてきた。⁶⁻²¹ Hydrothermal soft chemical process と呼ばれる方法では、層状構造を有する Mn 系複酸 化物 (birnessite) に各結晶構造を構成する金属カチオンを導入し、これを水熱反応により結晶化させることで、種々の構造を有する結晶性 Mn 系複酸化物を合成することが可能である。^[10,12,14] しかしながら、オートクレーブ中で行われる水熱合成は、多くの場合 ブラックボックスであり、反応過程の詳細の検討が困難であるため、粒子形態制御と結晶構造制御を両立させることには限界があった。

Mn 系複酸化物は、MnO₆ ユニットが三次元的に連結したフレームワークを形成し、 異種金属がその間隙を占める。^[23-28] 異種金属の種類により形成される結晶構造は変化す る。^[9,15] Mn 系複酸化物は、1 次元のトンネル構造、^[7-9,11,16,19,22] 2 次元の層状構造、^[6,13,14,29-32] 3 次元のスピネル構造^[17,18,20,21]といった多様な構造をとる。トンネル構造や層状構造は MnO₆ ユニット間に広い空間を有し、MnO₆ ユニット間の空間に水和イオンを有し、比 較的低温(トンネル構造では 70 ℃ 程度,層状構造では 27 ℃ 程度)での合成が可能で ある。^[13,14,16,29-32] スピネル構造は、MnO₆ ユニット間の空間が狭く、多くの場合、高温(典 型的には 180 ℃ 以上)や長時間での反応による合成が必要である。^[17,18,29,33-37] トンネル構 造や層状構造は MnO₆ ユニット間に大きな空間を有する構造であり、ナノ空間には水和 した金属カチオンが取り込まれている。一方、スピネル構造は MnO₆ ユニット間の空間 が狭く、水和イオンではスピネル構造を形成することはできない。

本研究では、Mn 系複酸化物の結晶構造と粒子径の制御の両立が可能な合成法を開発 した(Figure 2-1)。本合成法は、有機溶媒に可溶な MnO₄⁻前駆体を、異種金属カチオン 存在下で還元し、アモルファス前駆体を形成させた後、結晶化させる手法である。その 際、有機溶媒を用いることで、溶液中でのカチオンの水和状態制御を可能とした。さら に、有機溶媒兼還元剤として穏和な還元剤である 2-プロパノールを用いることで Mn³⁺ や Mn⁴⁺からなる複酸化物形成に適したアモルファス前駆体を形成させ、目的とする Mn 系複酸化物の合成が可能となった。本合成法では、結晶化の際に、異種金属カチオンの 水和状態を制御することで、スピネル構造、層状構造、トンネル構造を有する Mn 系複 酸化物ナノ粒子のつくり分けが可能であった。例えば、有機溶媒中で脱水したカチオン を用いることで、Mn 系スピネルナノ粒子(Li-Mn スピネルナノ粒子, Co-Mn スピネル ナノ粒子, Zn-Mn スピネルナノ粒子)が合成可能であった。また、有機溶媒中に水を少 量添加し、水和イオンとすることで、トンネル構造を有する Mn 系複酸化物ナノ粒子 (Co-OMS-1, Mg-OMS-1, Ni-OMS-1)が得られた。さらに、水添加量を増やして合成を 行うことで、層状構造を有する Mn 系複酸化物ナノ粒子(Li-birnessite, Co-buserite)を得 ることができた。このように、本合成法では、目的組成に応じて様々な金属源を用いる ことで、多様な組成・構造を有する Mn 系複酸化物ナノ粒子が合成可能であった。Li-Mn スピネルナノ粒子の合成法について詳細に検討した後、他の組成・構造を有する Mn 系複酸化物ナノ粒子合成法へ展開した。本章では、まず、Li-Mn スピネル酸化物の 形成過程について、アモルファス前駆体を単離し、詳細に検討した後、本合成法を one-pot 反応による Li-Mn スピネルナノ粒子合成法へと発展させた結果について述べる。

Figure 2-1. 本合成法の概念図. 有機溶媒中で脱水したイオンではスピネル構造が形成 されるが,水和イオンではより空間の広いトンネル構造や層状構造が形成される(八面 体: MnO₆ユニット, 黄色や青色の球: 金属カチオン,灰色の球: H₂O).

2.2. 実験

2.2.1. 試薬

KMnO₄、2-プロパノール、エタノール、アセトン、CoCl₂、CoCl₂•6H₂O、MgCl₂•6H₂O、 NiCl₂•6H₂O、MgCl₂•6H₂O、メタノール、エタノール、1-プロパノール、1-ブタノール、 1-ペンタノール、1-ヘプタノール、1-オクタノール、1-デカノールは関東化学から購入 した。テトラ-*n*-ブチルアンモニウムブロミド(TBABr)、1-ヘキサノール、1-デカノー ルは東京化成から購入した。また、LiCl、ZnCl₂、エチレングリコール、ベンジルアル コールは和光純薬から購入した。酢酸リチウムは Aldrich から購入した。

2.2.2. 合成

Li⁺の水和状態制御に基づくLi-Mn スピネルナノ粒子の合成

アモルファス MnO2を前駆体とした Li-Mn 複酸化物の合成

アモルファス MnO₂の合成は、既報と同様の手法で行った。^[38] KMnO₄ 水溶液(40 mM, 300 mL)を調製し、1 M NaOH 水溶液を用いて pH を 12 に調整した。この水溶液を撹拌しながら、Mn(OAc)₂•4H₂O 水溶液(30 mM, 600 mL)をゆっくり加えたところ、褐色の沈殿が速やかに沈殿した。この懸濁液を 3 h 撹拌した後、孔径 0.2 μ m のメンブレンフィルターを用いて吸引濾過した。得られた沈殿を純水及びアセトンを用いて洗浄し、60 °C で一晩乾燥させ、アモルファス MnO₂を得た。次に、以下の手法で、アモルファス MnO₂を前駆体とし、Li-Mn スピネル酸化物の合成を行った。試験管に LiCl (10 mmol) と 2-プロパノール(5 mL)を加えて加熱溶解させ、室温に冷却した。これにアモルファス MnO₂(50 mg)を加え、70-86 °C で 24 h 加熱した。その後、沈殿を濾過により回収し、純水及びアセトンで洗浄し、風乾させることで Li-Mn 複酸化物を得た。

TBAMnO₄の合成

KMnO₄水溶液(0.4 M, 50 mL)中に TBABr 水溶液(0.4 M, 50 mL)を激しく撹拌しな がら、ゆっくり加えたところ、紫色の沈殿が速やかに生成した。このスラリーをそのま ま3h 撹拌し、吸引濾過により固体を分離した。分離した濾紙上の固体にさらに純水を 流して洗浄した。沈殿を常温で一晩減圧乾燥し、TBAMnO₄(6.6 g)を得た。注意事項: TBAMnO₄は反応性が高く、それ自身で反応してしまう可能性があるため(MnO₄⁻⁻が TBA カチオンの C-H 結合を酸化する等)、注意して取り扱う必要がある。

アモルファス Li-Mn 複酸化物ナノ粒子を前駆体とした Li-Mn 複酸化物ナノ粒子の合成

試験管に LiCl (20 mmol) と 2-プロパノール (10 mL) を加えて加熱溶解させ、室温 に冷却した。これに TBAMnO₄ (0.3 mmol) を加え、室温で 5 min 撹拌した後、孔径 0.2 μm のメンブレンフィルターを用いて吸引濾過した。得られた沈殿を 2-プロパノールを用い て数回洗浄し、風乾することでアモルファス Li–Mn 複酸化物ナノ粒子 (32 mg) を得た。 アモルファス Li–Mn 複酸化物ナノ粒子を前駆体とした Li–Mn スピネルナノ粒子の合成 は、以下の手順で行った。試験管に LiCl (10 mmol) と 2-プロパノール (5 mL) を加え て加熱溶解させ、室温に冷却した。これにアモルファス Li–Mn 複酸化物ナノ粒子 (20 mg) を加え、86 ℃ で 3 h 加熱した。沈殿を濾過により回収し、純水及びアセトンで洗浄し、 120 ℃ で一晩乾燥させ、Li–Mn スピネルナノ粒子 (結晶子径: 2.4 nm) を得た。また、 生成物への水の影響についても、H₂O/2-プロパノール混合溶媒を用いることで検討した (86 ℃, 3 h)。

TBAMnO₄を用いた one-pot での Li-Mn 複酸化物ナノ粒子の合成

ナス型フラスコに 2-プロパノール (200 mL)、LiCl (400 mmol) を加え、加熱して溶 解させた後、室温に冷却した。これに TBAMnO₄(6 mmol)を加え、室温で 5 min 撹拌 したところ、褐色の沈殿が得られた。続けて、反応溶液を 86 °C で 30 min 加熱した。沈 殿を孔径 0.2 μm のメンブレンフィルターを用いて吸引濾過することで回収し、純水及 びアセトンで洗浄し、120 ℃ で一晩乾燥させ、Li–Mn スピネルナノ粒子(600 mg)を得 た。また、Li-Mn スピネルナノ粒子合成時の低温合成の意義を明確にするため、高温で の結晶化(150°C, 24 h)についても検討した。2-プロパノール(5 mL, 65 mmol)に LiCl (10 mmol) を溶解させ、それに TBAMnO₄ (0.15 mmol) を加え、オートクレーブに密 閉し、150 °C で 24 h 加熱した。生成物はメンブレンフィルター(孔径: 0.2 μm)を用い て吸引ろ過し、純水で洗浄した後、120 ℃ で乾燥させた。さらに、生成物への水の影響 についても、H₂O/2-プロパノール混合溶媒を用いることで検討した(86 ℃,3h)。その 際の反応溶液の組成を Table 2-1 に示す。Li-birnessite ナノ粒子(948 mg)は、H₂O/2-プ ロパノール混合溶媒(H₂O/Li = 500 (mol/mol))を用いて合成した。Li-Mn スピネルナノ 粒子合成時のLi源や溶媒の種類の検討はLiClまたはは酢酸リチウム(10mmol)、アル コールまたはアミン (65 mmol)、TBAMnO₄ (0.15 mmol) を用いて行った。さらに、高 温·高圧下での Li-Mn 酸化物合成は、2-プロパノール(5 mL, 65 mmol)に LiCl(10 mmol) を溶解させ、それに TBAMnO₄(0.15 mmol)を加えたものをオートクレーブ中に封入し、 150 °C で 24 h 加熱することで行った。また、Li-Mn スピネルナノ粒子は、市販の KMnO₄ を前駆体として用いた場合でも合成可能であった。試験管に LiCl(2.5 mmol)と 2-プロ パノール (5 mL)、水 (100 μL) を加えて加熱溶解させ、室温に冷却した。これに KMnO4 (0.575 mmol) を加え、86 ℃ で 48 h 加熱した。沈殿を濾過により回収し、純水及びア セトンで洗浄し、120 ℃ で一晩乾燥させ、Li-Mn スピネルナノ粒子(52 mg)を得た。 KMnO₄を前駆体とした Li-Mn スピネルナノ粒子合成時の反応温度についても、上記の 条件で反応温度のみを変えて検討した。

H ₂ O/Li (mol/mol)	LiCl (mmol)	2-プロパノ ール (mL)	H ₂ O (mL)	TBAMnO ₄ (mmol)	生成物
0 ^[a]	400	200	0	6	スピネル
10	10	3.2	1.8	0.15	-
20	10	1.4	3.6	0.15	層状
200	1.25	0.5	4.5	0.15	層状
500	30	30	270	9	層状

Table 2-1. TBAMnO₄を前駆体とした one-pot での Li–Mn 酸化物の合成時の水の影響の検 討条件(86°C, 3 h).

[a] 反応時間: 30 min.

2価カチオンの水和状態制御に基づくマンガン系複酸化物ナノ粒子の合成

Co-Mn 複酸化物ナノ粒子の合成

CoCl₂ (0.075 mmol) を 2-プロパノール (5 mL) に加熱溶解させ、室温に冷却した。 この溶液に TBAMnO₄ (0.15 mmol) を加え、室温で 5 min 撹拌すると、褐色沈殿が生成 した。続いて、懸濁液を ca. 82 °C で 30 min 加熱した。沈殿を濾過により回収し、水及 びアセトンを用いて洗浄した。試料を 120 °C で一晩乾燥させ、Co-Mn スピネルナノ粒 子 (20 mg) を得た。また、H₂O/2-プロパノール混合溶媒を用い、結晶化の際の水の影 響の検討も行った。試験管に Table 2-2 の組成で各試薬を混合し、加熱溶解させ、反応 溶液を調製した。反応溶液を室温に冷却した後、TBAMnO₄ を加え、フタをして、室温 で 5 min 撹拌した。続いて、ca. 82 °C で 3 h 加熱した。沈殿を濾過により回収し、水及 びアセトンを用いて洗浄した。H₂O/2-プロパノール混合溶媒 (H₂O/Co = 20 (mol/mol)) の条件で、Co-buserite (27 mg) を得た。

H ₂ O/Co (mol/mol)	CoCl ₂ (mmol)	2-プロパノー ル (mL)	H ₂ O (mmol)	TBAMnO ₄ (mmol)	生成物
0 ^[a]	0.075	5	0	0.15	スピネル
6	0.5	5	3	0.15	_
20	3	30	60	0.9	トンネル
30	0.5	5	15	0.15	トンネル
60	0.5	5	30	0.15	層状

Table 2-2. Co-Mn 複酸化物合成における水の影響の検討条件.

[a] 反応時間: 30 min.

Zn-Mn スピネルナノ粒子の合成

ZnCl₂(0.075 mmol) を 2-プロパノール(5 mL)に加熱溶解させ、室温に冷却した。 この溶液に TBAMnO₄(0.15 mmol)を加え、室温で 5 min 撹拌すると、褐色沈殿が生成 した。続いて、懸濁液を ca. 82 ℃ で 12 h 加熱した。沈殿を濾過により回収し、水及び アセトンを用いて洗浄した。試料を 120 ℃ で一晩乾燥させ、Zn-Mn スピネルナノ粒子 (17 mg)を得た。

Mg-OMS-1 ナノ粒子、Co-OMS-1 ナノ粒子、Ni-OMS-1 ナノ粒子の合成

Mg-OMS-1、Co-OMS-1、Ni-OMS-1 は、それぞれ MgCl₂•6H₂O、CoCl₂•6H₂O、NiCl₂•6H₂O を用いて合成を行った。フラスコに Table 2-3 の組成で異種金属源、2-プロパノール、水 を混合し、加熱溶解させ、反応溶液を調製した。反応溶液を室温に冷却した後、Table 2-3 に示した量の TBAMnO₄を加え、室温で 5 min 攪拌した。続いて、ca. 82 °C で Table 2-3 に示す時間加熱した。沈殿を濾過により回収し、水及びアセトンを用いて洗浄した。試 料を 120 °C で一晩乾燥させ、それぞれ、Mg-OMS-1 (140 mg)、Co-OMS-1 (200 mg)、 Ni-OMS-1 (50 mg) を得た。

生成物	MCl ₂ •6H ₂ O (mmol)	2-プロパノ ール (mL)	H ₂ O (mL)	TBAMnO ₄ (mmol)	反応時間 (h)
Co-OMS-1	3	30	0.756	0.9	3
Mg-OMS-1	30	30	0	0.9	3
Ni-OMS-1	0.5	5	0.486	0.3	72

Table 2-3. Co-OMS-1, Mg-OMS-1, Ni-OMS-1の合成条件.

2.2.3. キャラクタリゼーション

X-ray diffraction (XRD) パターンは Rigaku SmartLab を用い、CuKα線、45 kV、200 mA の条件で測定した。Mn 系複酸化物の結晶子径は Table 2-4 に示す XRD ピークからシェ ラー式を用いて算出した。Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) は、Shimadzu ICPS-8100 を用いて測定した。C、H、N についての元素分析 は、東京大学理学部化学科の有機元素分析室に依頼した。原子吸光測定は、日立偏光ゼ ーマン原子吸光光度計 Z-2000 シリーズを用いて行った。Mn の平均酸化数は、試料を過 剰の硫酸鉄(II)アンモニウムにより還元し、余剰の Fe²⁺を KMnO₄ で滴定すること(酸化 還元滴定) により求めた(測定は、3 回ずつ行い、その平均値 ± 標準偏差で Mn 平均酸 化数を表記した)。Brunauer-Emmett-Teller (BET) 比表面積は、micromertics ASAP 2010 により-196 °C での N₂吸着により測定した。小角 X 線散乱 (SAXS = small angle X-ray scattering) プロファイルは Rigaku Nano-Viewer を用いて、0.3-4°、CuKa線、40 kV、30 mA の条件で測定した。粒径分布は、Nano-Solver ソフトウェアを用いて、球状粒子モデル を用いて解析した。Transmission electron microscopy (TEM) 像は JEOL JEM-2800、 JEM-2010HC 及び JEM-2000EX II により加速電圧 200 kV で撮影した。Scanning electron microscopy (SEM) 像は Hitachi S-4700 を用い、加速電圧 15 kV で撮影した。TEM およ び SEM 観察用試料は、粉末試料をエタノールに分散させたものを Cu グリッドに載せ、 乾燥させることで調製した。X-ray photoelectron spectroscopy (XPS) 測定は、JEOL JPS-9000 を用い、MgKa線 (hv = 1253.6 eV, 8 kV, 10 mA) で測定した。ピーク位置は C 1s のピーク (284.0 eV) を基準とし、補正した。バックグラウンドは Shirley 法により差し 引いた。Electron paramagnetic resonance (EPR) 測定は、JEOL JES-RE-1X を用いて-100°C で行った。ラマンスペクトル測定は、JASCO NRS 5100 を用い、531.99 nm のレーザー を用いて測定した。

サンプル	結晶子径 (nm)	結晶子径算出に用いた XRD ピーク
Li–Mn spinel	2.3	111
Co–Mn spinel	1.9	101
Zn–Mn spinel	3.0	101
Co-OMS-1	4.0	002
Ni-OMS-1	3.9	002
Mg-OMS-1	2.1	002
Li-birnessite	3.1	001
Co-buserite	15	001

Table 2-4. Mn 系複酸化物ナノ粒子の結晶子径を算出する際に用いた XRD ピーク.

2.3. 結果と考察

2.3.1. Li⁺の水和状態制御に基づく Li–Mn スピネルナノ粒子の合成

2.3.1.1. アモルファス MnO₂を前駆体とした Li-Mn スピネル酸化物の合成

本研究では、有機溶媒中でカチオンの水和状態を制御することで、Li-Mn スピネルナ ノ粒子等の Mn 系複酸化物ナノ粒子の合理的な低温合成法を開発した(Figure 2-1)。Li-Mn スピネル酸化物の低温合成を実現するために、前駆体としてアモルファス物質に着 目した。アモルファス物質は、結晶性物質と比べて格子安定化エネルギーが小さく、結 晶性物質よりも構造変化がより容易であると考えられる。近年、アモルファス MnO₂を 還元することで種々の M-Mn スピネル酸化物(M=Co, Mg, Zn)を低温で合成可能であ ることが報告されている。^[38] その合成法では、アモルファス MnO₂を水溶液中で NaBH₄ といった強い還元剤で還元することで M-Mn スピネル酸化物を合成している。この合 成法は、M-Mnスピネル酸化物を低温で合成可能といった利点がある。一方、生成物に は不純物として層状 Mn 複酸化物である birnessite が含まれるといった課題があった。 また、この合成法と同様の手法で Li-Mn スピネル酸化物の合成を試みたが、Li-Mn ス ピネル酸化物は形成されなかった。さらに、詳細は後述するが、実際、本合成法でも水 が大量に存在する条件では、birnessite が形成されやすいといった結果を得ており、Mn 系スピネル酸化物を単一相として合成するためには、合成時の水量を制御する必要があ ると考えられる。そこで、本合成法では、Li⁺の水和を抑制するために、有機溶媒中で Li-Mn スピネル酸化物の合成を検討した(Figure 2-2)。本研究では、結晶性前駆体より も構造変化が容易であると考えられるアモルファス物質を前駆体として用いた。アモル ファス MnO₂は既報^[38]と同様に Mn⁷⁺(KMnO₄)と Mn²⁺(Mn(OAc)₂•4H₂O)の酸化還元 反応により調製した (Figure 2-2c and Figure 2-4a)。今回用いたアモルファス MnO₂ は randomly-stacked birnessite^[39]に帰属することが可能であった。アモルファス MnO₂の 12°、 24°、66°のピークはそれぞれ 001、002、020 反射に帰属可能であった(Figure 2-2c and Figure 2-4a)。今回調製したアモルファス MnO2 は層状構造に類似した構造規則性を有す るため、想定よりも構造変化が容易でない可能性が懸念されるが、それを用いて以下の 検討を行った。有機溶媒兼還元剤として、2-プロパノールを用いた。LiClの2-プロパノ ール溶液中で 86 ℃ で 24 h アモルファス MnO₂を加熱しても結晶化は全く起こらず、生 成物は、アモルファス MnO₂と同様の XRD パターンを示し、スピネル構造は形成され なかった (Figure 2-2d)。合成時に溶媒中に微量の水 (H₂O/Li = 0.56 (mol/mol)) を添加 したところ、Li-Mn スピネル酸化物に帰属可能な生成物(組成 Li/Mn = 0.54 (mol/mol), BET 比表面積: 42 m²g⁻¹) が得られた(Figure 2-2e)。これは、Li-Mn スピネル酸化物を 形成させるためには、水を添加し、アモルファス MnO2の Mn-O 結合を加水分解し、Li+ を構造中に取り込む必要があったためであると考えられる。得られた Li-Mn スピネル 酸化物は、結晶子径が 25 nm 程度(シェラー式を用いて算出)であり、比較的粒径の大 きなものであった。これは、溶解再析出によるアモルファス MnO2からの粒子形態の変 化によるものと考えられる。アモルファス MnO2の平均粒子径は、小角 X 線散乱(SAXS)

から、4.5 nm であると見積もられ、アモルファス MnO₂から Li-Mn スピネル酸化物への 結晶化時に粒子形態の変化が起こったことが示唆された。このことから、アモルファス MnO₂は、Li-Mn スピネル酸化物への結晶化時に一度、溶液中に溶解した後、再析出し、 粒子径の比較的大きな Li-Mn スピネル酸化物を形成した可能性が考えられる。

本合成法は、有機溶媒中でLi⁺の水和を抑制し、スピネル構造の合成を行ったことが 特徴である。そこで、アモルファス MnO₂の結晶化時の水の影響を溶媒中に水を意図的 に加えることによって検討した(Figure 2-2f and 2-3)。合成時に溶媒中に水を H₂O/Li = 2.8 (mol/mol)相当加えたところ、層状構造を有する Mn 系複酸化物である birnessite が形 成された。これは、水存在下で水和した Li⁺では MnO₆ユニット間の空間の狭いスピネ ル構造を形成することができず、代わりに層間に広い空間を有する層状構造を形成した ためであると考えられる。合成時の水の影響についてより詳細に検討したところ、合成 時の反応温度と水量に応じて、生成物の相が変化することが明らかになった

(Figure 2-3)。合成温度が低温になるにつれて、Li-Mn スピネル酸化物単相が得られる 水量の範囲は狭くなり、birnessite が形成される水量の範囲が広くなった。このことから、 低温でのアモルファス MnO₂の Li-Mn スピネル酸化物への結晶化では、水量が生成物の 相に顕著に影響することが明らかになった。今回用いたアモルファス MnO₂は、層状構 造に類似した構造を有するため、構造規則性が比較的高く、構造変換の障壁が大きいと 考えられる。また、アモルファス MnO₂は構造中に Li⁺を含まないため、Li-Mn スピネ ル酸化物の形成のためには水を微量に添加し、Mn-O 結合を加水分解し、構造中に Li を取り込み、結晶化させる必要があったと考えられる。

Figure 2-2. アモルファス MnO₂ を前駆体とした Li-Mn スピネル酸化物の合成. (a) LiMn₂O₄ (JCPDS 35-0782), (b) Li-birnessite (JCPDS 50-0009), (c) アモルファス MnO₂, ア モルファス MnO₂ を水添加量 H₂O/Li = (d) 0, (e) 0.56, (f) 2.8 (mol/mol)で 86 °C で 24 h 加熱 した生成物の XRD パターン.

Figure 2-3. アモルファス MnO₂を前駆体とした Li–Mn 酸化物の合成における異なる温度, 水添加量でのアモルファス MnO₂の結晶化(反応時間: 24 h, ×: アモルファス MnO₂(結 晶化していない), ●: Li–Mn スピネル酸化物, ○: Li–Mn スピネル酸化物と birnessite, ▲: birnessite).

2.3.1.2. アモルファス Li-Mn 酸化物を前駆体とした Li-Mn スピネル酸化物の合成

前述の結果より、はじめから構造中にLi⁺を取り込んだアモルファス MnO₂を合成し、 それを前駆体として用いることができれば、より合理的に低温で Li-Mn スピネルナノ 粒子を合成することが可能になると考えられる。そこで、脱水した Li⁺をアモルファス 前駆体に取り込ませるために、有機溶媒中でアモルファス Li-Mn 酸化物を調製した。 原料として、有機溶媒に可溶な TBAMnO₄ (TBA = テトラ-*n*-ブチルアンモニウム)を用 いた。溶媒兼還元剤として 2-プロパノールを用いた。LiCl の 2-プロパノール溶液中に TBAMnO₄を加え、室温で 5 min 撹拌した。反応開始後、MnO₄-に由来する赤紫色が速や かに消失し、アモルファス Li-Mn 酸化物が得られた。アモルファス Li-Mn 複酸化物は ブロードな XRD パターンを示し、規則性の低い構造をとっていることが示唆された

(Figure 2-4b and 2-4c)。また、アモルファス Li–Mn 複酸化物の 37°、44°、65°のブロードな回折線は、スピネル構造の酸素の配置と同様の面心立方構造に帰属可能であり、格子定数 ca. 4.1 Å の立方晶として指数付けすることが可能であった (Figure 2-4b and 2-4c)。したがって、アモルファス構造の一部は、最密充填した酸素の間隙に金属カチオンがランダムに取り込まれた構造を取っていると推定される。アモルファス Li–Mn 酸化物の組成は、Li/Mn = 1.71 (mol/mol)、Mn 平均酸化数は+3.68 ± 0.91 であった。アモルファス Li–Mn 酸化物の組成は、副生成物として Li₂CO₃等の Li 塩が含まれていたため、水で洗浄し、Li 塩を除去した。水で洗浄した後も、Li/Mn = 0.41 (mol/mol)に相当する Li が残存していたため、少なくとも Li/Mn = 0.41 (mol/mol)以上の Li が Mn と複酸化物を形成していると考えられる。また、SAXS 測定から、アモルファス Li–Mn 酸化物ナノ粒子の平均粒子径は、1.6 nm であることが見積もられた。

回収したアモルファス Li-Mn 複酸化物ナノ粒子を LiCl の 2-プロパノール溶液中で 86 °C で 3 h 加熱し、結晶化させたところ、cubic の Li-Mn スピネル酸化物に帰属可能な 生成物を得た(組成 Li/Mn = 0.34 (mol/mol), Figure 2-5b)。得られた Li-Mn スピネルナノ 粒子の XRD パターンがブロードであり、結晶子径が 2.4 nm と見積もられたことから、 生成物は極めて小さなナノ粒子であることが示唆された(Figure 2-5b)。アモルファス Li-Mn 酸化物を形成、結晶化させることで Li⁺を含まないアモルファス MnO₂を前駆体 とした場合よりも、極めて粒径の小さな Li-Mn スピネルナノ粒子が得られたことが示 唆された。また、アモルファス Li-Mn 酸化物を前駆体とすることで、反応温度 70 °C と いったさらに低温の条件でも Li-Mn スピネルナノ粒子が合成可能であった

(Figure 2-5c)。これらの結果から、アモルファス前駆体形成時に Li⁺を取り込ませるこ とで、アモルファス前駆体の Mn-O 結合を切断し構造を再構築する必要がなくなり、結 晶化時に水を添加することなく、粒径の小さな Li-Mn スピネルナノ粒子の低温合成が 可能になったと考えられる。

アモルファス Li-Mn 複酸化物ナノ粒子の結晶化時の生成物への水の影響について検討した。アモルファス Li-Mn 複酸化物ナノ粒子は、水中で容易に層状構造に類似した構造に、構造にへ構造変化する (Figure 2-4d)。アモルファス Li-Mn 複酸化物ナノ粒子を水存在

下で 86 ℃ で 3h 加熱し、結晶化させると、層状構造とスピネル構造が形成された (Figure 2-6)。この際、アモルファス Li-Mn 酸化物ナノ粒子は水と反応することで一部 層状構造に類似した構造へ変化し、それが加熱されることで birnessite が形成されたと 考えられる。アモルファス Li-Mn 酸化物ナノ粒子は、MnO₄⁻が 2-プロパノールによって 還元される際に、脱水した Li⁺を取り込みつつ形成される (Scheme 2-1)。そのため、ア モルファス Li-Mn 酸化物ナノ粒子は脱水した Li⁺を強く構造中に取り込んでおり、水中 であっても一部スピネル構造が形成されたと考えられる。このことから、スピネル構造 を低温で形成させるためには、アモルファス構造形成時に Li⁺を脱水した状態で取り込 んでいることが重要であることが明らかになった。

有機溶媒中でLi⁺の水和を抑制することがLi-Mnスピネル酸化物の低温合成では重要であった。アモルファスMnO₂を前駆体として用いた場合、Li-Mnスピネル酸化物を得るためには、水を少量添加し、Mn-O結合を加水分解し、構造中にLi⁺を取り込む必要があり、得られたLi-Mnスピネル酸化物は比較的粒径の大きなもの(結晶子径:25 nm)であった。一方、有機溶媒中で脱水したLi⁺を取り込んだアモルファスLi-Mn酸化物を前駆体として形成、結晶化させた場合、極めて粒径が小さなLi-Mnスピネルナノ粒子

(結晶子径: 2.4 nm)を低温で合成することが可能であった。粒径の小さな Li-Mn スピ ネルナノ粒子を合成するためには、構造中に脱水した Li⁺を取り込んだアモルファス前 駆体を形成させ、低温で水を排除した条件で結晶化させることが重要であることが明ら かになった。

Scheme 2-1. アモルファス Li-Mn 酸化物前駆体の形成と結晶化における反応イメージ.

Figure 2-4. (a) アモルファス MnO₂, (b) アモルファス Li–Mn 酸化物, (c) アモルファス Li–Mn 酸化物を超音波で 15 min 処理することで, 2-プロパノール中に分散させた後, 2-プロパノールで洗浄することで, 未反応の LiCl を除去したものの XRD パターン. (d) ア モルファス Li–Mn 酸化物 40 mg を水 5 mL 中, 室温で 10 min 撹拌したものの XRD パタ ーン. 水との反応により, アモルファス Li–Mn 酸化物は, 層状構造に類似した構造へ容 易に変化した.*は不純物の Li₂CO₃ を示している.

Figure 2-5. アモルファスLi–Mn酸化物を前駆体としたLi–Mnスピネル酸化物の合成. (a) LiMn₂O₄ (JCPDS 35-0782), アモルファス Li–Mn 酸化物を前駆体として, (b) 86 °C, (c) 70 °C で合成した Li–Mn スピネルナノ粒子の XRD パターン.

Figure 2-6 (a) LiMn₂O₄ (JCPDS 35-0782), (b) Li-birnessite (JCPDS 50-0009). アモルファス Li–Mn 酸化物ナノ粒子を H₂O/プロパノール混合溶媒 (H₂O/Li = (c) 0, (d) 500, (e) 1000, (f) 2000 (mol/mol))を用いて結晶化させた生成物, (g) 水中で結晶化させた生成物の XRD パ ターン. XRD パターンは X 線の空気散乱を低減するためナイフエッジを用いて測定を 行った.

2.3.1.3. TBAMnO4を前駆体とした Li-Mn スピネル酸化物の one-pot 合成

より簡便に粒径の小さな Li–Mn スピネルナノ粒子を合成するために、one-pot でのア モルファス Li-Mn 酸化物の形成、結晶化を検討した。Mn 源として有機溶媒に可溶な TBAMnO4、溶媒兼還元剤として、2-プロパノールを用いた。TBAMnO4を LiCl の 2-プ ロパノール溶液中で室温にて 5 min 撹拌すると、MnO4-に由来する赤紫色が速やかに消 失し、茶色のアモルファス Li–Mn 酸化物が形成された(Figure 2-4b and 2-7)。前駆体を 単離せずに続けて、86 ℃ で加熱したところ、30 min で cubic の Li-Mn スピネル酸化物 に帰属可能な生成物を得た(Figure 2-8)。生成物は、合成直後は溶液中によく分散して いたが、水を少量添加して粒子を凝集させることでろ過により容易に回収可能であった。 本合成法で得た Li-Mn スピネルナノ粒子の格子定数は 8.12 Å であり、バルクの Li-Mn スピネル酸化物の格子定数の値(a = 8.24 Å)よりも小さかった。合成した Li–Mn スピ ネルナノ粒子の格子定数が小さい要因は、以下の要因の寄与が考えられる。① Mn の平 均酸化数が理想的な Li-Mn スピネル酸化物(Mn 平均酸化数: +3.5) よりも高い(Mn 平 均酸化数: +3.68) こと、(40] ② ナノ粒子の表面における水酸基の形成等に由来する格子収 縮^[1f] 等が挙げられる。Mn⁴⁺のイオン半径(0.670 Å(配位数: 6))^[41a] は Mn³⁺のイオン半 径(0.785 Å(配位数: 6))^[41a] よりも小さく、Mn 平均酸化数が大きな値をとると格子定 数が減少すると考えられる。また、試料の回折線のピーク強度比は Li-Mn スピネルの ものと良く一致していた。従って、生成物を Li-Mn スピネル酸化物と帰属することは 妥当であると考えられる。生成物の組成は ICP 測定より、Li/Mn = 0.46 (mol/mol)、Mn の酸化還元滴定により、Mn 平均酸化数は+3.68 ± 0.068 であることが明らかになった。 生成物中のLi量が多少ばらつく要因としては、本合成法で得たLi-Mnスピネルナノ粒 子の構造中のLi⁺は脱離が容易なため、純水で洗浄中にLi⁺とH⁺のイオン交換が起こり、 Li⁺が抜けてしまうことによると考えられる(詳細は第3章で述べる)。また、元素分析 より、生成物には、Nが全く含まれていなかったことから、原料として用いた TBAMnO4 の TBA カチオンは生成物に残存していないことが判明した。得られた Li-Mn スピネル ナノ粒子の XRD パターンはブロードであり、結晶子径が 2.3 nm と見積もられたことか ら、生成物はアモルファス Li-Mn 酸化物を結晶化させた場合に得られた Li-Mn スピネ ルナノ粒子(結晶子径:2.4 nm)と同等の小さなナノ粒子であることが示唆された。TEM 観察により、得られた生成物の 1 次粒子は粒径 2–3 nm に主な分布を有する平均粒径 2.55 nm (標準偏差 = 19.4% (0.49 nm))の小さなナノ粒子であることが明らかになった (Figure 2-9a, b, d)。電子線回折パターンにおいて、ハローパターンがみられなかったこ とから、生成物にはアモルファスがほとんど含まれておらず、結晶性のナノ粒子が得ら れたことが示唆された(Figure 2-9c)。また、TEM 像において粒子の全体にわたって明 瞭な格子縞が観測されたことからも、生成物は結晶性のナノ粒子であることが明らかに なった (Figure 2-9a, b)。Li-Mn スピネルナノ粒子が 371 ± 15 m² g⁻¹ といった大きな BET 比表面積を有していたことも、Li-Mn スピネルナノ粒子が極めて粒径の小さなナノ粒子 であることを支持していた。また、SEM 観察から、Li-Mn スピネルナノ粒子は、小さ

な1 次粒子が密に凝集したミクロンサイズの凝集体として得られたことが明らかになった(Figure 2-10)。凝集体は、触媒やイオン交換体等として用いる際に、ろ過により溶液中から容易に回収可能であるという利点がある。Li-Mn スピネルナノ粒子の多孔性を N₂吸脱着測定により検討した。TBAMnO₄を前駆体として用いて合成した Li-Mn スピネルナノ粒子はともに IV 型の吸脱着等温線を示したことから、生成物はナノ粒子が凝集したメソ多孔体であることが明らかになった。さらに、BJH (Barrett-Joyner-Halenda) 法により、Li-Mn スピネルナノ粒子の凝集体の細孔径分布を算出したところ、Li-Mn スピネルナノ粒子は数ナノメートルオーダーの細孔を多く有していることが判明した

(Figure 2-11)。このことから、Li–Mn スピネルナノ粒子を触媒やイオン交換体等の機能性材料として用いる際に、凝集体の表面だけでなく細孔内も反応に用いることが可能であることが示唆された。

有機溶媒中でカチオンの水和状態を制御し、低温で短時間で結晶化させる本合成法に より、極めて粒径が小さく高比表面積な Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm, BET 比表面積: $371 \pm 15 \text{ m}^2 \text{ g}^{-1}$)の合成が可能となった。本合成法で得た Li-Mn スピネ ルナノ粒子は既報と比べて最も粒径が小さく、高比表面積なものであり、本合成法は粒 径の小さな Li-Mn スピネルナノ粒子合成に対する優れた手法であるといえる。

Figure 2-7. 有機溶媒中での one-pot での Li–Mn スピネルナノ粒子合成時の溶液の色変化 (2 M の LiCl の 2-プロパノール溶液 5 mL に対して TBAMnO₄を 0.015 mmol 使用). (a)
LiCl の 2-プロパノール溶液に TBAMnO₄を加えた直後, (b) 室温で 5 min 撹拌した後, (c)
86 °C で 30 min 撹拌した後の合成溶液の色.

Figure 2-8. (a) LiMn₂O₄ (JCPDS 35-0782), (b) TBAMnO₄を前駆体として one-pot で合成した Li–Mn スピネルナノ粒子の XRD パターン.

Figure 2-9. Li–Mn スピネルナノ粒子の(a) TEM 像, (b) 格子, (c) 回折パターン, (d) 粒径分 布 (250 個の粒子から算出,標準偏差 = 19.4% (0.49 nm)).

Figure 2-10. TBAMnO₄を前駆体として合成した Li-Mn スピネルナノ粒子の SEM 像.

Figure 2-11. TBAMnO₄を前駆体として合成した Li–Mn スピネルナノ粒子の(a) N₂吸着等 温線, (b) BJH 細孔径分布.

2.3.1.4. 粒径の小さな Li-Mn スピネルナノ粒子の表面分析

本合成法で、TBAMnO4を前駆体とし、one-pot で合成した Li-Mn スピネルナノ粒子 は、極めて粒径が小さく、大きな比表面積を有していた。そのため、粒径の極めて小さ な Li-Mn スピネルナノ粒子では、粒径の大きな Li-Mn スピネル酸化物とは異なる表面 構造を有する可能性があると考えられる。そこで、TBAMnO4を前駆体とし、本合成法 で得た粒径の小さな Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)と固相法で合成した 粒径の大きな Li-Mn スピネルナノ粒子 (BET 比表面積から見積もられた粒径が 410 nm, 以下ではバルクと表記, Figure 2-12)の表面分析を行い、その比較を行った。Mnの酸化 還元滴定から求めた Mn の平均酸化数は、それぞれ Li-Mn スピネルナノ粒子(結晶子 径: 2.3 nm) で 3.62 ± 0.065、粒径の大きな Li–Mn スピネル酸化物 (バルク) で 3.48 ± 0.018 であったことから、Li-Mn スピネル酸化物中の Mn は複数の酸化数をとっていることが 示唆された。Li–Mn スピネルナノ粒子(結晶子径: 2.3 nm)の EPR スペクトル測定を行 ったところ、ブロードで強度の弱いピークのみを示し、Mn²⁺に由来する6本に分裂した ピークを示さなかったことから、Mn²⁺は Li-Mn スピネルナノ粒子中には存在しないこ とが明らかになった(Figure 2-13)。このことから、Li-Mn スピネル酸化物中の Mn 種は、 Mn⁴⁺と Mn³⁺からなることが示唆された。Li-Mn スピネルナノ粒子、粒径の大きな Li-Mn スピネル酸化物(バルク)のラマンスペクトルはほとんど変わらなかったことから、 同様の結合状態を有していることが示唆された(Figure 2-14)。また、粒径の小さな Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)と粒径の大きな Li-Mn スピネル酸化物(バ ルク)の XPS 測定を行ったところ、Mn の 2p 領域のスペクトルは類似した形状をとっ ており、明確な違いはみられなかった(Figure 2-15)。このことから、粒径の小さな Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)と粒径の大きな Li-Mn スピネル酸化物(バ ルク)では表面の Mn⁴⁺や Mn³⁺といった種の相対的な濃度はほとんど同じであることが 判明した。一方、粒径の小さな Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)と粒径の 大きな Li–Mn スピネル酸化物(バルク)の XPS スペクトルの O 1s 領域においては、顕 著な違いがみられた(Figure 2-16)。XPS スペクトルの O 1s 領域のピークは、酸素種の 種類に応じて、3 つのピークに分けることができることが報告されている。^[42] 低エネル ギー側のピーク(530 eV 付近)は、結合が飽和な酸素種(格子酸素, Osat と表記)、中間 のピーク(531 eV 付近)は結合が不飽和な酸素種(表面に吸着した酸素や表面の OH 基 や酸素欠陥, Ounsatと表記)、高エネルギー側のピーク(533 eV 付近)は表面に吸着した H₂O 分子に相当する。^[42] XPS スペクトルの O 1s 領域では、粒径の大きな Li-Mn スピネ ル酸化物(バルク)では不飽和な酸素種(Ounsat)が少ないのに対し、粒径の小さなLi-Mn スピネルナノ粒子(結晶子径: 2.3 nm)では不飽和な酸素種(Ounsal)が多く観測され ている。XPS スペクトルの O 1s 領域のカーブフィッティング結果から不飽和な酸素種 の割合 Ounsal/(Osat + Ounsal)を算出すると、粒径の小さな Li-Mn スピネルナノ粒子(結晶子 径: 2.3 nm) と粒径の大きな Li-Mn スピネル酸化物(バルク) でそれぞれ、0.38 と 0.13 という値をとった。このことから、粒径の小さな Li-Mn スピネルナノ粒子(結晶子径:

2.3 nm) では、粒径の大きな Li-Mn スピネル酸化物よりも、表面の O の Mn への配位 数が小さい環境にあるということが示唆された。これらのことから、粒径の小さな Li-Mn スピネルナノ粒子では、表面の反応性が高く、触媒として高い活性を示すなどの高 機能性材料としての利用が期待される(Mn 系複酸化物ナノ粒子の応用についての詳細 は第3章に記載した)。

Figure 2-12. 固相法で合成した Li-Mn スピネル酸化物 (バルク)の SEM 像.

Figure 2-13. TBAMnO₄を前駆体として one-pot で合成した Li–Mn スピネルナノ粒子の EPR スペクトル.

Figure 2-14. (a) 固相法で合成したバルクの Li–Mn スピネル酸化物 (BET 比表面積から 見積もられる粒径: 410 nm), (b) 本合成法で TBAMnO₄ を前駆体として one-pot で合成し た Li–Mn スピネルナノ粒子のラマンスペクトル.

Figure 2-15. (a) 固相法で合成したバルクの Li-Mn スピネル酸化物 (BET 比表面積から 見積もられる粒径: 410 nm), (b) 本合成法で TBAMnO₄ を前駆体として one-pot で合成し た Li-Mn スピネルナノ粒子の Mn 2p 領域の XPS スペクトル.

Figure 2-16. (a) 固相法で合成したバルクの Li–Mn スピネル酸化物(BET 比表面積から 見積もられる粒径: 410 nm), (b) 本合成法で TBAMnO₄ を前駆体として one-pot で合成し た Li–Mn スピネルナノ粒子の O 1s 領域の XPS スペクトル. 黒丸は XPS スペクトルの実 際の測定データ,青線はフィッティング曲線,赤線はフィッティング曲線の和を示して いる. 低エネルギー側(529.6 eV)のピークは格子酸素,中間のピーク(530.8–531.1 eV) は表面吸着酸素あるいは表面の OH 基や酸素欠陥,高エネルギー側(532.7–533.1 eV)の ピークは吸着水を示している.^[42]

2.3.1.5. TBAMnO₄を前駆体とした有機溶媒中での Li–Mn スピネル酸化物の one-pot 合成時の合成条件の検討

TBAMnO4を前駆体としたLi-Mnスピネルナノ粒子のone-pot合成の条件を検討した。 本合成法では、86 ℃という比較的低温での反応により、粒径の小さな Li-Mn スピネル ナノ粒子(結晶子径: 2.3 nm)の合成を達成した。極めて粒径の小さな Li–Mn スピネル ナノ粒子の合成における低温合成の重要性を検証するため、高温・高圧下での合成につ いても検討した。LiClを溶解させた 2-プロパノール中に TBAMnO4を溶解させたものを オートクレーブ中に封入し、150 ℃ で加熱した。生成物は、Li-Mn スピネル酸化物と LiMnO₂の混合物であった(Figure 2-17)。得られた Li–Mn スピネル酸化物の粒径は結晶 子径 10.5 nm と比較的大きく、高温・高圧下での反応により生成物の粒子成長が促進さ れたことが示唆された。さらに、副生成物として形成された LiMnO2は、3 価の Mn か らなる複酸化物であり、高温・高圧下での反応により 2-プロパノールによる Mn の還元 がより進行したと考えられる。これらのことから、粒径の小さな Li-Mn スピネルナノ 粒子の合成のためには、低温での合成が重要であることが明らかになった。また、Li 源として LiCl の代わりに酢酸リチウムを用いて合成を行った。しかしながら、生成物 としてスピネル構造は形成されなかった(Figure 2-18)。このことから、LiCl が Li-Mn スピネルナノ粒子合成に適した Li 源であったことが明らかになった。これは、酢酸リ チウムの 2-プロパノールへの溶解度は、LiCl と比べて低かったことによる可能性が考 えられる。本合成法では、スピネル構造形成のためには、アモルファス前駆体形成時に Li⁺を構造中に取り込むことが重要となる。そのため、溶解度の低い酢酸リチウムでは、 アモルファス前駆体形成時に構造中に Li⁺が十分に取り込まれず、スピネル構造が形成 されなかった可能性が考えられる。さらに、2-プロパノールの代わりに他のアルコール を用いて Li-Mn スピネルナノ粒子の合成を試みた。メタノール、エチレングリコール 以外のアルコールを用いた場合に Li-Mn スピネルナノ粒子が形成された。このことか ら、2-プロパノール以外のアルコールを用いた場合でもLi-Mn スピネルナノ粒子の合成 は可能であることが判明した(Figure 2-19)。

以上より、本合成法では、① スピネル構造への構造変化が容易なアモルファス Li-Mn酸化物前駆体の形成、② 低温合成、③ 溶解再析出の抑制により、生成物の粒成長 を抑制し、粒径の極めて小さな Li-Mn スピネルナノ粒子を合成できたと考えられる。

93

Figure 2-17. (a) LiMn₂O₄ (JCPDS 35-0782), (b) LiMnO₂ (JCPDS 35-0749), (c) 高温高圧下での反応による生成物 (150°C, 24 h).

Figure 2-18. (a) LiMn₂O₄ (JCPDS 35-0782), TBAMnO₄を前駆体として, (b) LiCl, (c) 酢酸リ チウムを Li 源として用いた場合の生成物の XRD パターン.

Figure 2-19. TBAMnO₄を前駆体とした Li–Mn スピネルナノ粒子合成時の溶媒兼還元剤 の検討における生成物の XRD パターン ((a) LiMn₂O₄ (JCPDS 35-0782), (b) 2-プロパノー ル, (c) メタノール, (d) エタノール, (e) 1-プロパノール, (f) 1-ブタノール, (g) 1-ペンタノ ール, (h) 1-ヘキサノール, (i) 1-ヘプタノール, (j) 1-オクタノール, (k) 1-デカノール, (l) ベ ンジルアルコール, (m) エチレングリコール).

2.3.1.6. TBAMnO4 を前駆体とした one-pot での Li-Mn 酸化物合成時の水の影響

本合成法において、低温でスピネル構造を形成できたことは、主に有機溶媒を用いて 水を排除したことに由来すると考えられる。そこで、有機溶媒中に水を加え、合成を行 うことで水の生成物の相への影響について検討した。H₂O/2-プロパノール混合溶媒を用 いたところ、水の量に応じた生成物の構造変化が確認できた。H₂O/Li = 10 (mol/mol)で スピネル構造の特徴が消失し (Figure 2-20d)、H₂O/Li = 20 (mol/mol)まで水添加量を増や すと、層状構造 (birnessite) に特徴的な回折パターンを示した (Figure 2-20e)。H₂O/Li = 200 及び 500 (mol/mol)では、より発達した層状構造 (birnessite)が形成された (Figure 2-20f and 2-20g)。このことから、水添加量の制御により生成物の相を制御できることがわか った。スピネル構造は最密充填した酸素間の四面体サイトを Li⁺が占める。スピネル構 造の四面体サイト内には、最大でも 1.54 Å までのサイズのカチオンしか入り得ない

(Figure 2-21)。Li⁺のイオンサイズ(直径)は1.46 Å、水和したLi⁺のサイズ(直径)は 7.6 Å (水和数: 5)^[43]であり、スピネル構造の四面体サイトにLi⁺が入ると、余剰の空間 はほとんど存在しないことになる。そのため、水和イオンではスピネル構造を形成する ことはできず、スピネル構造形成のためには水和イオンとして存在するLi⁺から水和水 を除去する必要があると考えられる。大量の水存在下で水和したLi⁺ではスピネル構造 が形成できず、層間に広い空間を有する層状構造(birnessite)が形成されたと考えられ る。以上より、Li-Mn スピネルナノ粒子の低温合成のためには、有機溶媒中でLi⁺の水 和状態を制御することが極めて重要であることが明らかになった。

Figure 2-20. (a) LiMn₂O₄ (JCPDS 35-0782), (b) Li-birnessite (JCPDS 50-0009), H₂O/2-プロパ ノール混合溶媒を用いて合成した生成物の XRD パターン (H₂O/Li = (c) 0, (d) 10, (e) 20, (f) 200, (g) 500 (mol/mol)).

Figure 2-21. (a) スピネル構造, (b) 層状構造 (birnessite) の MnO_6 ユニット間の空間サイズ (スピネル構造については,四面体サイトに入り得る最大の球のサイズを表記). 橙色 の八面体は MnO_6 ユニット,黄色の四面体はスピネル構造の四面体サイト,橙色の球は Mn^{3+} or Mn^{4+} ,赤色の球は O^{2-} ,黄色の球はスピネル構造の四面体サイトに入り得る最大 のサイズのカチオン.

2.3.1.7. KMnO₄を前駆体とした有機溶媒中での Li-Mn 酸化物の one-pot 合成

本合成法では、Mn 源として TBAMnO₄ よりも容易に入手可能な KMnO₄ を用いた場合 でも、極めて粒径の小さな Li-Mn スピネルナノ粒子(結晶子径: 3.9 nm, BET 比表面積: 263 m² g⁻¹,組成 Li/Mn = 0.49 (mol/mol), Figure 2-22 and 2-23)を合成することが可能であ った。また、生成物中の K 量を原子吸光分析により定量したが、K/Mn = 0.021 (mol/mol) となり、生成物中には K がほとんど存在しないことが明らかになった。TBAMnO₄を前 駆体として用い、本合成法で得た Li-Mn スピネルナノ粒子は小さな 1 次粒子が密に凝 集し大きな 2 次粒子を形成していた (Figure 2-10)。一方、TBAMnO₄の代わりに KMnO₄ を用いて合成した場合、より疎に凝集した Li-Mn スピネルナノ粒子が得られた (Figure 2-24)。ただし、KMnO₄ は 2-プロパノールへの溶解度が小さいため、KMnO₄ が完全に消費されるまでに長時間の反応(48 h)を要した。

Li-Mn スピネルナノ粒子の多孔性を N₂ 吸脱着測定により検討した (Figure 2-11 and 2-25)。TBAMnO₄、KMnO₄を前駆体として用いて合成した Li-Mn スピネルナノ粒子は ともに IV 型の吸脱着等温線を示したことから、生成物はともにナノ粒子が凝集したメ ソ多孔体であることが明らかになった(Figure 2-11a and 2-25a)。BJH 法により細孔径分 布を算出したところ、TBAMnO₄を原料として合成した生成物のメソ孔は主に細孔径 5 nm 以下に分布し、10 nm 以上の細孔がほとんど存在しなかった (Figure 2-11b)。一方、 KMnO₄を原料として合成した生成物ではTBAMnO₄を前駆体とした場合と比べて、細孔 径 5 nm 以下の細孔が少なく、細孔径 10 nm 以上の比較的大きな細孔を多く有すること が明らかになった(Figure 2-25b)。これらのことは、SEM 像からわかる Li-Mn スピネ ルナノ粒子の粒子形態とも一致している(Figure 2-10 and 2-24)。このような Li-Mn ス ピネルナノ粒子の細孔径、粒子形態の違いは、原料として用いた TBAMnO₄ と KMnO₄ の2-プロパノールへの溶解度の違いに由来すると考えられる。TBAMnO4は0.03 M 程度 の条件で 2-プロパノールによく溶解するが、KMnO4 は同条件ではわずかにしか溶解し ない。そのため、TBAMnO4を原料とすると、反応初期にほとんど全ての Mn 種が反応 して大量のLi-Mn 複化物ナノ粒子が析出するため、密に凝集した大きな2次粒子が形 成された可能性が考えられる。一方、KMnO₄を原料とした場合には、反応初期にごく 一部の KMnO₄ しか反応せず凝集が抑制されるため、疎に凝集した Li–Mn スピネルナノ 粒子が得られると考えられる。生成物の凝集状態や多孔性は原料の有機溶媒への溶解性 により制御可能であることが示唆された。

KMnO₄を前駆体とし 86 ℃ よりも低温での Li-Mn スピネルナノ粒子の合成が可能で あるか検討した。LiCl を溶解させた 2-プロパノール中に KMnO₄を加え、反応温度 50-86 ℃ で 48 h 加熱したところ、スピネル構造に帰属可能な生成物を得ることができた

(Figure 2-26)。また、反応温度 25 ℃ であっても 5 か月間反応させることでスピネル構造が形成された(Figure 2-26c)。反応温度が低いほど結晶子径が小さくなる傾向がみられた(Table 2-5)。既報では、Li–Mn スピネル酸化物の合成温度は最も低いものでも 70 ℃であり、生成物は本合成法で得られる Li–Mn スピネルナノ粒子よりも粒径の大きなも

の(結晶子径:7 nm (シェラー式に基づき算出))であった。^[44]本合成法は Li–Mn スピネ ルナノ粒子の低温合成法として優れていることが明らかになった。また、KMnO₄を前 駆体として用いた場合にも、TBAMnO₄を用いた場合と同様の生成物への水の影響があ り、水存在下では層状構造が形成される傾向がみられた(Figure 2-27)。

反応温度 (°C)	相	Li/Mn (mol/mol)	結晶子径 (nm) ^[a]
86	スピネル	0.35	3.4
80	スピネル	0.39	3.0
70	スピネル	0.36	2.6
60	スピネル	0.31	2.4
50	スピネル	0.26	2.1
40	アモルファス	0.19	_
25	アモルファス	0.19	_
25 ^[b]	スピネル	0.45	2.0

Table 2-5. KMnO₄を前駆体として合成した各反応温度での生成物(反応時間: 48 h).

[a] 結晶子径は Li-Mn スピネル酸化物の(111)面の XRD ピークから算出.

[b] 25 °C, 5 months.

Figure 2-22. (a) LiMn₂O₄ (JCPDS 35-0782), (b) KMnO₄を前駆体として合成した Li–Mn ス ピネルナノ粒子の XRD パターン.

Figure 2-23. KMnO₄を前駆体として合成した Li-Mn スピネルナノ粒子の(a, b) TEM 像, (c) 格子, (d) 粒径分布 (288 個の粒子から算出,標準偏差 = 30.2% (0.85 nm)).

Figure 2-24. KMnO₄を前駆体として合成した Li-Mn スピネルナノ粒子の SEM 像.

Figure 2-25. KMnO₄を前駆体として合成した Li-Mn スピネルナノ粒子の(a) N₂吸着等温線, (b) BJH 細孔径分布.

Figure 2-26. (a) LiMn₂O₄ (JCPDS 35-0782), KMnO₄を前駆体として用い, 異なる反応温度 で合成した生成物の XRD パターン (反応温度: (b) 25 °C (48 h), (c) 25 °C (5 months), (d) 40 °C (48 h), (e) 50 °C (48 h), (f) 60 °C (48 h), (g) 70 °C (48 h), (h) 80 °C (48 h), (i) 86 °C (48 h)).

Figure 2-27. (a) LiMn₂O₄ (JCPDS 35-0782), (b) Li-birnessite (JCPDS 50-0009), H₂O/2-プロパ ノール混合溶媒を用いて合成した生成物の XRD パターン (H₂O/Li = (c) 0, (d) 14, (e) 21, (f) 27 (mol/mol)).

2.3.2.2 価カチオンの水和状態制御に基づく Mn 系複酸化物ナノ粒子の合成 2.3.2.1. Mn 系スピネルナノ粒子の合成

有機溶媒中でカチオンの水和を抑制してスピネル構造を得る本合成法は、Li-Mn スピネル酸化物以外の Mn 系スピネル酸化物の合成にも適用可能であった。以下の Mn 系複酸化物合成は、TBAMnO₄を前駆体とし、one-pot で行った。LiCl の代わりに CoCl₂を用いて合成を行うことにより、tetragonal のスピネル構造に帰属可能な生成物が得られた

(Figure 2-28b)。2 価カチオンを含む Mn 系スピネル酸化物では、Mn³⁺の Jahn-Teller 効 果により、結晶構造が tetragonal に歪むといわれている。^[45] 実際、得られた Co-Mn スピ ネルナノ粒子の Mn 平均酸化数を酸化還元滴定により求めたところ、Mn 平均酸化数は +3.28 であったことから、スピネル骨格の大部分を占める Mn³⁺により、結晶構造が tetragonal に歪んだと考えられる。得られた Co-Mn スピネルナノ粒子の結晶子径(シェ ラー式から算出)は 1.9 nm であった。TEM 観察により、得られた生成物は平均粒径 2.6 nm (標準偏差 = 17.4% (0.46 nm))の小さなナノ粒子であることが明らかになった

(Figure 2-29)。TEM 像において粒子の全体にわたって明瞭な格子縞が観測されたことから、生成物は結晶性のナノ粒子であることが明らかになった(Figure 2-29a)。また、Co-Mn スピネルナノ粒子は大きな BET 比表面積(338 m² g⁻¹)を有していたことも、生成物が極めて粒径の小さなナノ粒子であることを支持していた。本合成法で得た Co-Mn スピネルナノ粒子は、既報で報告されている最も粒径の小さなもの^[46]と同程度に小さなナノ粒子であり、本合成法は、粒径の小さな Mn 系スピネルナノ粒子合成に対する優れた手法であるといえる。また、本合成法を用いることで、tetragonal の Zn-Mn スピネルナノ粒子(Figure 2-28e, 結晶子径: 3.0 nm, BET 比表面積: 110 m² g⁻¹)の合成も可能であった。有機溶媒中でカチオンの水和を抑制する本合成法により、低温で合理的に種々の Mn 系スピネルナノ粒子を合成することが可能であった。

Figure 2-28. (a) CoMn₂O₄のシミュレーションパターン,有機溶媒中で合成した Co-Mn ス ビネルナノ粒子の XRD パターン (反応時間: (b) 30 min, (c) 12 h), (d) ZnMn₂O₄のシミュ レーションパターン, (e) 有機溶媒中で合成した Zn-Mn スピネルナノ粒子 (反応時間: 12 h) の XRD パターン.

Figure 2-29. 有機溶媒中で合成した Co-Mn スピネルナノ粒子(反応時間: 30 min)の(a) TEM 像, (b) 粒径分布(粒子 110 個から算出,標準偏差 = 17.4% (0.46 nm)), (c) Co-Mn スピネルナノ粒子(反応時間: 12 h)の TEM 像.

2.3.2.2. Mn 系複酸化物ナノ粒子合成時の水の影響

前述のように、有機溶媒中でカチオンの水和を抑制することで種々の Mn 系スピネル ナノ粒子の合成が可能であった。一方、合成時に水を添加した場合の生成物への影響を 検討するため、溶媒中に意図的に水を添加し、合成を行った。Li-Mn 複酸化物合成時に 溶媒に水を添加すると、水添加量を増やすにつれて、スピネル構造に帰属可能な相はみ られなくなり、代わりに birnessite とよばれる層状の Mn 系複酸化物に帰属可能な相が 生成した(本論文の第2章2.3.1.6節を参照)。これは、MnO₆ユニット間の空間が狭い スピネル構造は水存在下で水和したイオンでは形成できず、代わりに層間に広い空間

(層間距離 ca. 7 Å) を有する層状構造が形成されたためであると考えられる。得られた Li-birnessite は結晶子径 3.1 nm、BET 比表面積 268 m² g⁻¹ と粒径が小さく、高比表面積な ものであった。

Co-Mn 複酸化物ナノ粒子合成時の生成物への水の影響を検討するため、溶媒中に意図的に水を添加した合成についても検討した。水を添加した場合、生成物はスピネル構造に特徴的な XRD パターンとは異なる回折を示した (Figure 2-30b-e)。水を H₂O/Co = 20 or 30 (mol/mol)相当加えた場合、 3×3 のトンネル構造を有する todorokite (OMS-1) とよばれる Mn 系複酸化物が形成された (Figure 2-30c, d)。生成物の XRD パターンは低角にd = ca. 0.95 nm ($2\theta = 9.3^\circ$)、ca. 0.48 nm ($2\theta = 18.6^\circ$) の 2 本の回折線を示した

(Figure 2-30c, d)。この様な長周期構造は、2次元層状構造(buserite)や3×3型の1次 元トンネル構造(OMS-1)に特徴的である。^[24]H₂O/Co = 20 (mol/mol)で合成した Co-OMS-1 を 120 ℃ で乾燥させても、これらの回折線の位置および強度に変化が見られないこと から、生成物の構造は1次元トンネル構造であると考えられる(buserite では、乾燥に 伴い、層間の水が脱離し、層間隔が縮小する)(Figure 2-31)。高角度側の回折線も、OMS-1 の構造で帰属可能であった(Figure 2-30c, d)。特に、H₂O/Co = 20 (mol/mol)の場合の生 成物の XRD パターンはブロードであり、形成された Co-OMS-1 は小さなナノ粒子(結 晶子径: 4.0 nm)であることが示唆された(Figure 2-30c)。また、この時の Co-OMS-1の BET 比表面積が166 m²g⁻¹と大きな値であったことからも、生成物が小さなナノ粒子で あることを支持していた。Co-OMS-1 試料の TEM 像から、トンネル構造に対応するス トライプパターンを観測した(Figure 2-32a)。濃い線が 0.95 nm 間隔で観測され、それ ぞれ濃い線の間に薄い線が等間隔で観測された(Figure 2-32a)。濃い線は、Mn-O 骨格 に対応し、中間の薄い線はトンネル内の Co²⁺に対応すると考えられる。TEM 像から、 Co-OMS-1 は曲がったロッド状の粒子形態を有していることが明らかになった

(Figure 2-32a)。また、TEM 像から算出される Co-OMS-1 の平均の幅は 4.2 nm、長さの 平均は 9.2 nm であった。2 価の水和イオンを用いた OMS-1 合成は Co-Mn 系以外のもの についても適用可能であり、Mg-OMS-1 (結晶子径: 2.1 nm, BET 比表面積: 155 m² g⁻¹, Figure 2-33b)、Ni-OMS-1 (結晶子径: 3.9 nm, BET 比表面積: 265 m² g⁻¹, Figure 2-33c) 等 の合成も可能であった。

さらに、水添加量を増やし、水を H₂O/Co = 60 (mol/mol)相当加えると、層状構造を有

する Mn 系複酸化物である buserite が形成された (Figure 2-30e)。得られた Co-buserite は ca. 10 Å の層間距離を有していたが、120 ℃ で乾燥させることにより、層間の水が一 部脱離し、層間距離が ca. 7 Å の層状 Mn 系複酸化物である birnessite に変化した

(Figure 2-31b)。生成物の XRD パターンと加熱後の層間距離の縮小から H₂O/Co = 60 (mol/mol)相当の水を加えた場合の生成物は層状構造を有する Co-buserite であることが 明らかになった (Figure 2-30e)。また、得られた Co-buserite は XRD パターンから見積 もられた結晶子径が 15 nm、BET 比表面積が 43 m² g⁻¹ であったことから、生成物はナノ サイズの層状酸化物であることが示唆された。実際、Co-buserite の TEM 観察を行うと、 Co-buserite はナノシート状の粒子が凝集したような粒子形態を有することが明らかに なった (Figure 2-32b)。

本研究では、有機溶媒中で脱水したイオンを用いることでスピネル構造、意図的に水 を加えて水和イオンを用いることでトンネル構造や層状構造を有する Mn 系複酸化物の つくり分けが可能であった。

Co-Mn 酸化物では、tetragonal スピネル構造の MnO₆ユニット間(四面体サイト)の サイズは、1.7 Åである。一方、Co²⁺のサイズは 1.44 Å、水和した Co²⁺のサイズ(水が 6 配位と仮定)は、5.39 Å であることから、tetragonal スピネル構造の四面体サイトには 水和イオンは入ることができない(Figure 2-34a, b)。一方、OMS-1 (3×3 トンネル構造) の MnO₆ユニット間の空間サイズは、5.66 Å であり、水和水が 6 配位した Co²⁺のサイズ とよく一致する (Figure 2-34b, c)。そのため、OMS-1 はトンネル内に水和イオンが密に 充填した構造を形成していると考えられる (Figure 2-34b, c)。また、buserite (層状構造) は、OMS-1 よりも広い MnO₆ユニット間の空間(6.24 Å)を有するため、異種金属カチ オン周りにより多くの水和水が存在する条件下でも、層状構造であれば形成し得ると考 えられる (Figure 2-34d)。これらのことから、Mn 系複酸化物に含まれる異種金属カチ オン (脱水したイオン or 水和イオン)のサイズと MnO₆ユニット間の空間のサイズは よく一致していることが示唆された。このことから、異種金属カチオンの水和状態を制 御することでカチオン(水和イオン)のサイズを制御することは、結晶構造制御におい て重要な要素であったと考えられる。

また、一連の実験により、本合成法における2価のカチオンを含む Mn 系複酸化物合成時の水添加による生成物の構造変化の傾向は、1 価のカチオンである Li⁺を含む Mn 系複酸化物合成時の生成物の変化の傾向と少し異なることが明らかになった。有機溶媒中で脱水したカチオン(Li⁺, Co²⁺, Zn²⁺)を用いた際、いずれの場合もスピネル構造が形成された。一方、合成時に水を添加し、水和イオンを用いた場合、2 価カチオンである Co²⁺を用いた場合では、水の添加量に応じて1次元トンネル構造あるいは2次元層状構造が形成された。それに対し、水和した1価カチオン(Li⁺ or K⁺)を用いた場合、1次元トンネル構造は形成されず、2次元層状構造のみが形成された(Figure 2-35)。本合成法で、水和した2 価カチオンを用いた場合に、1 価カチオンを用いた場合では形成され

ル (Z/r, Z: イオンの価数, r: イオン半径)の違いが考えられる。イオンポテンシャルが 大きな異種金属カチオンほど、その周囲に多くの{MnO_x}ⁿ⁻アニオンユニットを引きつけ、 トンネル構造等の三次元構造を形成することが可能であると考えられる。イオンポテン シャルの相対的に大きな Mg²⁺、Co²⁺、Ni²⁺等の2価カチオンはその周囲に多くの{MnO_x}ⁿ⁻ アニオンユニットを引きつけるため、これらの異種金属カチオンを取り囲んだ1次元ト ンネル構造を形成しやすい傾向にあったと考えられる。以上のことから、Mn 系複酸化 物の構造は異種金属カチオンの種類、水和状態で制御可能であることが明らかになった。 有機溶媒中でカチオンの水和状態を制御する本合成法により、スピネル構造、トンネル 構造、層状構造を有する種々の Mn 系複酸化物ナノ粒子をつくり分けることが可能であ った。

生成物	結晶子径 (nm)	BET 比表面積 (m ² g ⁻¹)	Mn の 平均酸化数 ^[a]	M (wt%)	Mn (wt%)
Li–Mn spinel	2.3	371	3.62	3.17	52.6
Co–Mn spinel	1.9	338	3.28	18.2	36.6
Zn–Mn spinel	3.0	110	3.14	19.6	41.2
Co-OMS-1	4.0	166	3.96	18.9	21.7
Mg-OMS-1	2.1	155	3.38	7.48	34.1
Ni-OMS-1	3.9	265	3.70	26.7	29.6
Li-birnessite	3.1	268	3.91	2.13	43.5
Co-buserite	15	43	3.99	17.8	26.3

Table 2-6. 本合成法で得られた Mn 系複酸化物ナノ粒子.

[a] 酸化還元滴定により決定.

Figure 2-30. H₂O/2-プロパノール混合溶媒を用いて合成した Co-Mn 酸化物の XRD パタ ーン (H₂O/Co = (a) 0, (b) 6, (c) 20, (d) 30, (e) 60 (mol/mol)).

Figure 2-31. 試料の 120 °C での乾燥前後の XRD パターン ((a) Co-OMS-1, (b) Co-Mn 層 状酸化物 (buserite)).

Figure 2-32. (a) Co-OMS-1, (b) Co-buserite ナノ粒子の TEM 像.

Figure 2-33. (a) Co-OMS-1, (b) Mg-OMS-1, (c) Ni-OMS-1のXRDパターン. 低角側は, ナイ フエッジを用い, X 線の空気散乱を低減して測定した.

Figure 2-34. Co-Mn 酸化物の結晶構造中の MnO₆ ユニット間の空間. (a) スピネル構造 (tetragonal), (b) 水和した Co²⁺が 6 配位であると仮定した際の水和イオンサイズ,^[41b] (c) OMS-1 (3×3 トンネル構造), (d) 層状構造 (buserite) の MnO₆ユニット間の空間サイズ (スピネル構造については,四面体サイトに入り得る最大の球のサイズを表記). 橙色 の八面体は MnO₆ ユニット,緑色の四面体はスピネル構造の四面体サイト,橙色の球は Mn³⁺ or Mn⁴⁺,赤色の球は O²⁻,緑色の球はスピネル構造の四面体サイトに入り得る最大 のサイズのカチオン.

Figure 2-35. K-birnessiteのXRDパターン. KMnO₄をH₂O/2-プロパノール混合溶媒(H₂O/K = 9.7 (mol/mol)) 中で 82 °C で 48 h 加熱した際の生成物.

2.4. まとめ

本研究では、有機溶媒中でカチオンの水和状態を制御することにより、種々の Mn 系 複酸化物を極めて粒径の小さなナノ粒子として低温で得られる手法を確立した。有機溶 媒中で脱水したカチオンを用いることで、Mn 系スピネルナノ粒子(Li-Mn スピネルナ ノ粒子, Co-Mn スピネルナノ粒子, Zn-Mn スピネルナノ粒子)が合成可能であった。ま た、有機溶媒中に水を少量添加し、水和イオンとすることで、トンネル構造を有する Mn 系複酸化物ナノ粒子(Co-OMS-1, Mg-OMS-1, Ni-OMS-1)が得られた。さらに、水 添加量を増やして合成を行うことで、層状構造を有する Mn 系複酸化物ナノ粒子 (Li-birnessite, Co-buserite)を得ることができた。このように、本合成法では、目的組 成・構造に応じて様々な金属源を用い、異種金属カチオンの水和状態を制御することで、 多様な組成・構造を有する Mn 系複酸化物ナノ粒子が合成可能であった(Table 2-6)。

2.5. 参考文献

- [1] (a) M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, *Mater. Res. Bull.* 1983, *18*, 461–472. (b) M. M. Thackeray, *Prog. Solid State Chem.* 1997, *25*, 1–71. (c) K. M. Shaju, P. G. Bruce, *Chem. Mater.* 2008, *20*, 5557–5562. (d) H. Uchiyama, E. Hosono, H. Zhou, H. Imai, *J. Mater. Chem.* 2009, *19*, 4012–4016. (e) E. Hosono, T. Kudo, I. Homma, H. Matsuda, H. Zhou, *Nano Lett.* 2009, *9*, 1045–1051. (f) M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, *ACS Nano* 2010, *4*, 741–752. (g) F. Cheng, H. Wang, Z. Zhu, Y. Wang, T, Zhang, Z. Tao, J. Chen, *Energy Environ. Sci.* 2011, *4*, 3668–3675. (h) W. Tang, X. J. Wang, Y. Y. Hou, L. L. Li, H. Sun, Y. S. Zhu, Y. Bai, Y. P. Wu, K. Zhu, T. van Ree, *J. Power Sources* 2012 *198*, 308–311. (i) S. Lee, Y. Cho, H.-K. Song, K. T. Lee, J. Cho, *Angew. Chem. Int. Ed.* 2012, *51*, 8748–8752. (j) H. Xia, K. R. Ragavendran, J. Xie, L. Lu, *J. Power Sources* 2012, *212*, 28–34. (k) K.-Y. Jo, S.-Y. Han, J. M. Lee, I. Y. Kim, S. Nahm, J.-W. Choi, S.-J. Hwang, *Electrochim. Acta* 2013, *92*, 188–196.
- [2] (a) J. C. Hunter, J. Solid State Chem. 1981, 39, 142–147. (b) K. Ooi, Y. Miyai, S. Katoh, H. Maeda, M. Abe, Bull. Chem. Soc. 1988, 61, 407–411. (c) K. Ooi, Y. Miyai, S. Katoh, H. Maeda, M. Abe, Langmuir 1989, 5, 150–157. (d) Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, Langmuir, 1992, 8, 1861–1867. (e) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, 7, 148–153. (f) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, 7, 1226–1232. (g) Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, 7, 1722–1727. (h) R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 2001, 40, 2054–2058. (i) Z. Liu, K. Ooi, Chem. Mater. 2003, 15, 3696–3703. (j) J. Liu, V. Makwana, J. Cai, S. L. Suib, M. Aindow, J. Phys. Chem. B 2003, 107, 9185–9194. (k) R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Bull. Chem. Soc. Jpn. 2013, 86, 850–855.
- [3] (a) Y.-C. Son, V. D. Makwana, A. R. Howell, S. L. Suib, Angew. Chem. Int. Ed. 2001, 40, 4280–4283. (b) D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2010, 132, 11467–11469. (c) K. Yamaguchi, K. Yajima, N. Mizuno, Chem. Commun. 2012, 48, 11247–11249. (d) K. Yamaguchi, H. Kobayashi, T. Oishi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 544–547. (e) Y. Wang, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 7250–7253. (f) K. Yamaguchi, H. Kobayashi, Y. Wang, T. Oishi, Y. Ogasawara, N. Mizuno, Catal. Sci. Technol. 2013, 3, 318–327.
- [4] (a) K. Yamaguchi, Y. Wang, T. Oishi, Y. Kuroda, N. Mizuno, Angew. Chem. Int. Ed. 2013, 52, 5627–5630. (b) X. Jin, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2014, 53, 455–458.
- [5] (a) A. J. Fatiadi, *Synthesis* 1976, 65–104. (b) A. J. Fatiadi, *Synthesis* 1976, 133–167. (c) A. Kamimura, H. Komatsu, T. Moriyama, Y. Nozaki, *Tetrahedron* 2013, 69, 5968–5972. (d) A. Kamimura, Y. Nozaki, M. Nishiyama, M. Nakayama, *RSC Adv.* 2013, *3*, 468–472.
- [6] S. Hirano, R. Narita, S. Naka. Mater. Res. Bull. 1984, 19, 1229–1235.

- [7] D. C. Golden, C. C. Chen, J. B. Dixon, Science 1986, 231, 717-719.
- [8] Y. F. Shen, R. P. Zerger, R. N. DeGuzman, S. L. Suib, L. McCurdy, D. I. Potter, C. L. O'Young, *Science* 1993, 260, 511–515.
- [9] Y.-F. Shen, S. L. Suib, C.-L. O'Young, J. Am. Chem. Soc. 1994, 116, 11020-11029.
- [10] Q. Feng, K. Yanagisawa, N. Yamasaki, Chem. Commun. 1996, 1607–1608.
- [11] Z.-R. Tian, Y.-G. Yin, S. L. Suib, C. L. O'Young, Chem. Mater. 1997, 9, 1126–1133.
- [12] Q. Feng, K. Yanagisawa, N. Yamasaki, J. Porous Mater. 1998, 5, 153-161.
- [13] J. Luo, Q. Zhang, S. L. Suib, Inorg. Chem. 2000, 39, 741–747.
- [14] Q. Feng, Y. Higashimoto, K. Kajiyoshi, K. Yanagisawa, J. Mater. Sci. Lett. 2001, 20, 269– 271.
- [15] J. Liu, V. Makwana, J. Cai, S. L. Suib, M. Aindow, J. Phys. Chem. B 2003, 107, 9185– 9194.
- [16] H.-J. Cui, X.-H. Feng, J.-Z. He, W.-F. Tan, F. Liu, Clays Clay Miner. 2006, 54, 605–615.
- [17] X.-D. Zhang, Z.-S. Wu, J. Zang, D. Li, Z.-D. Zhang, J. Phys. Chem. Solids 2007, 68, 1583– 1590.
- [18] B. J. Liddle, S. M. Collins, B. M. Bartlett, Energy Environ. Sci. 2010, 3, 1339–1346.
- [19] G.Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford, S. L. Suib, *Chem. Mater.* 2011, 23, 3892–3901.
- [20] X. Hao, O. Gourdon, B. J. Liddle, B. M. Bartlett, J. Mater. Chem. 2012, 22, 1578-1591.
- [21] L. Xue, Z.-S. Wu, C. Ge, X.-D. Zhang, Mater. Chem. Phys. 2013, 138, 124–130.
- [22] H. Huang, Y. Meng, A. Labonte, A. Dobley, S. L. Suib, J. Phys. Chem. C 2013, 117, 25352–25359.
- [23] S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, S. L. Suib, *Chem. Mater.* 1998, 10, 2619–2628.
- [24] Q. Feng, H. Kanoh, K. Ooi, J. Mater. Chem. 1999, 9, 319–333.
- [25] J. E. Post, Proc. Natl. Acad. Sci. USA 1999, 96, 3447-3454.
- [26] S. L. Suib, J. Mater. Chem. 2008, 18, 1623-1631.
- [27] S. L. Suib, Acc. Chem. Res. 2008, 41, 479–487.
- [28] Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C.-H. Shek, C. M. L. Wu, J. K. L. Lai, *Chem. Rev.* 2012, 112, 3833–3855.
- [29] J. F. von Bülow, H.-L. Zhang, D. E. Morse, Adv. Energy Mater. 2012, 2, 309–315.
- [30] J. Luo, S. L. Suib, J. Phys. Chem. B 1997, 101, 10403-10413.
- [31] J. Luo, A. Huang, S. H. Park, S. L. Suib, C.-L. O'Young, Chem. Mater. 1998, 10, 1561– 1568.
- [32] Y. Ma, J. Luo, S. L. Suib, Chem. Mater. 11, 1972–1979 (1999).
- [33] X. Li, R. Xiang, T. Su, Y. Qian, Mater. Lett. 2007, 61, 3597-3600.
- [34] H. Xia, K. R. Ragavendran, J. Xie, L. Lu, J. Power Sources 2012, 212, 28-34.

- [35] Y. Ding, J. Li, Y. Zhao, L. Guan, Mater. Lett. 2012, 68, 197-200.
- [36] K.-Y. Jo, S.-Y. Han, J. M. Lee, I. Y. Kim, S. Nahm, J.-W. Choi, S.-J. Hwang, *Electrochim. Acta* 2013, 92, 188–196.
- [37] B.-K. Zou, X.-H. Ma, Z.-F. Tang, C.-X. Ding, Z.-Y. Wen, C.-H. Chen, J. Power Sources 2014, 268, 491–497.
- [38] F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 2011, 3, 79-84.
- [39] S. Grangeon, B. Lanson, N. Miyata, Y. Tani, A. Manceau, Am. Mineral. 2010, 95, 1608– 1616.
- [40] G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, D. Larcher, J. M. Tarascon, *J. Power Sources* 1997, 69, 11–25.
- [41] (a) R. D. Shannon, Acta Cryst. 1976, A32, 751–767. (b) S. Funahashi, Bunseki Kagaku
 1999, 48, 3–20.
- [42] H. C. Genuino, Y. Meng, D. T. Horvath, C.-H. Kuo, M. S. Seraji, A. M. Morey, R. L. Joesten, S. L. Suib, *ChemCatChem* 2013, 5, 2306–2317.
- [43] J. N. Israelachvili, Intermolecular and Surface Forces, 3rd edition, Elsevier Inc., 2011.
- [44] Z. Liu, W. Wang, X. Liu, M. Wu, Z. Zheng, D. Li, *Inorg. Chem. Commun.* 2004, 7, 308– 310.
- [45] J. B. Goodenough, A. Wold, R. J. Arnott, N. Menyuk, Phys. Rev. 1961, 124, 373-384.
- [46] J. Du, C. Chen, F. Cheng, J. Chen, Inorg. Chem. 2015, 54, 5467–5474.

第3章

マンガン系複酸化物ナノ粒子の特性

第3章 マンガン系複酸化物ナノ粒子の特性

3.1. 緒言

金属複酸化物は、構造・組成に応じて多様な機能・物性を有する。金属複酸化物は、 ナノサイズ化により、高比表面積・イオンの粒子内拡散長の減少による表面反応の促進 や高効率なイオンの脱挿入が可能となり、高機能化が期待される。^[1-9]

Mn 系複酸化物は、酸化剤、^[10-14] 触媒、^[15-20] 蓄電材料、^[3-7] イオン交換材料^[21-30]等に幅広 く応用される有用な材料である。例えば、Li-Mn スピネル酸化物は、スピネル構造を保 持したまま電気化学的あるいは化学的に Li⁺を脱挿入可能であるため、Li イオン電池の 正極材料^[3-7]や Li⁺選択的な吸着材料^[21,24,28]としての研究が盛んに行われている。Mn 系 複酸化物は、特に、酸素酸化反応に対して高い触媒特性を示すことが明らかになってい る。^[15-20] また、近年では、Co-Mn スピネル酸化物等の Mn 系酸化物の酸素還元 (ORR) 触媒や酸素発生 (OER) 触媒としての研究が注目されている。^[31-37] このように、Mn 系 複酸化物は、酸素が関わる種々の触媒反応に対して高い活性を示すことが期待される。

第2章で述べたように、本研究では、粒径が数ナノメートルと極めて小さく、高比表 面積なナノ粒子として種々の Mn 系複酸化物をつくり分けることに成功した。 極めて粒 径の小さな Mn 系複酸化物は、高機能性材料としての利用だけでなく、これまでに明ら かになっていないMn系複酸化物のナノ粒子としての特性を明らかにする上でも重要で あると考えられる。第3章では、粒径の小さなLi-Mnスピネルナノ粒子が、粒径の大 きなLi-Mnスピネル酸化物とは異なる性質を示すことを明らかにした。Li-Mnスピネ ルナノ粒子では、粒径の大きなLi-Mnスピネル酸化物ではほとんど起こらない特異的 な Li⁺と H⁺の topotactic なイオン交換反応が可能であった。また、Li イオン電池の正極 材料として用いた際、Li-Mn スピネルナノ粒子は表面のLi⁺のサイトエネルギーの分布 に起因するなだらかな充放電曲線を示した。さらに、Li-Mn スピネルナノ粒子合成時に 導電助剤となるグラフェンを添加することでグラフェン上にスピネルナノ粒子が分散 して担持された Li-Mn スピネルナノ粒子-グラフェン複合体を合成した。Li-Mn スピネ ルナノ粒子-グラフェン複合体では、スピネル粒子が凝集した状態と比べ、電極として の抵抗が小さくなり、極めて高速での放電が可能であった。さらに、本合成法で得た Mn 系スピネルナノ粒子は、酸素を酸化剤とした種々の酸化反応(チオールの酸化的シ アノ化反応, 第1級アルコールやメチルアレーンの酸化的アミド化反応, スルフィドや アルキルアレーンの酸素化反応)に対して優れた触媒として機能することが判明した。 また、本合成法で得た Li–Mn スピネルナノ粒子は、粒径の大きな Li–Mn スピネル酸化 物よりも極めて高い触媒活性を示した。 極めて粒径の小さな Mn 系複酸化物ナノ粒子で は、通常は粒子表面でのみみられる特徴が粒子全体にわたって現れたため、上記のよう な特異的な性質を示したと考えられる。

3.2. 実験

3.2.1. 試薬

KMnO₄、2-プロパノール、エタノール、アセトン、硝酸、炭酸エチレン、炭酸ジメチ ルは関東化学から購入した。テトラブチル-*n*-アンモニウムブロミド(TBABr)は東京 化成から購入した。また、LiCl、MnCO₃•nH₂O、Li₂CO₃、ナフタレンは和光純薬から購 入した。MnSO₄•H₂O は Aldrich から購入した。アセチレンブラックは、デンカから購入 した。グラフェンは、Graphene Laboratories, Inc.から購入した。1 M LiPF₆ 炭酸エチレン (EC)/炭酸ジメチル (DMC)(1:1 (v/v))、1 M LiClO₄ 炭酸エチレン(EC)/炭酸ジェ チル (DEC)(1:1 (v/v))は、キシダ化学から購入した。チオールの酸化的カップリング 反応、酸化的シアノ化反応、第1級アルコールのアンモ酸化反応、第1級アルコール・ メチルアレーンの酸化的アミド化反応、スルフィド・アルキルアレーンの酸素化反応に 用いた試薬は、関東化学、東京化成、和光純薬、Aldrich から購入し、精製せずにその まま用いた。

3.2.2. 合成と特性

粒径の異なる Li-Mn スピネル酸化物の合成

結晶子径 6.7 nm、13 nm、40 nm の Li-Mn スピネル酸化物は、それぞれ既報と同様の 手法で合成した。^[9]LiOH 水溶液(0.1 M, 91 mL)に KMnO₄(7 mmol)を溶解させたもの に、還元剤(1.1 equiv. to Mn)を加え、室温で1 min 撹拌した。結晶子径 6.7 nm の Li-Mn スピネル酸化物ではエタノール、結晶子径 13 nm、40 nm の Li-Mn スピネル酸化物 ではアセトンをそれぞれ還元剤として用いた。次に、その溶液をオートクレーブに封入 し、180 °C で 5 時間加熱することで、結晶子径 6.7 nm、13 nm の Li-Mn スピネル酸化物 を得た。また、結晶子径 40 nm の Li-Mn スピネル酸化物は、反応時間を 72 h まで延長 することで得られた。生成した沈殿は、メンブレンフィルター(孔径: 0.2 µm)を用い て、ろ過により回収し、純水で洗浄した後、120 °C で一晩乾燥させた。粒径の大きな Li-Mn スピネル酸化物(バルク)は、既報に従い、合成した。^[38]MnCO₃・nH₂O と Li₂CO₃ をモル比 Li: Mn = 1:2 となるように乳鉢で混合し、Al ボートに入れ、700 °C で 21 h、 825 °C で 21 h 焼成した後、空冷し、回収することで、粒径の大きな Li-Mn スピネル酸 化物(バルク)を得た。

Li-Mn スピネルナノ粒子の酸処理による Li⁺の脱離

Li-Mn スピネル酸化物からの Li⁺の脱離

硝酸水溶液(40 mL)に Li–Mn スピネル酸化物(200 mg)を加え、さらに硝酸水溶液 を加えながら、30 min の間 pH を一定に保持した。反応は全て、30 min 以内に平衡に到 達したことを確認した。生成物は、メンブレンフィルター(孔径: 0.2 µm)を用いて吸 引ろ過し、純水で洗浄し、120 ℃で乾燥させた後、キャラクタリゼーションを行った。

λ-MnO₂ナノ粒子への Li⁺の挿入

LiCl (1 mmol) と LiOH・H₂O (1 mmol) を水 (10 mL) に溶解させ、LiCl-LiOH 水溶 液 (0.1 M) を調製した。その水溶液に λ -MnO₂ナノ粒子 (30 mg) を加え、室温で 30 min あるいは 6 h 撹拌した。生成物は、メンブレンフィルター (孔径: 0.2 µm) を用いて吸引 ろ過し、純水で洗浄した後、120 °C で乾燥させた後、キャラクタリゼーションを行った。

Li-Mn スピネルナノ粒子-グラフェン複合体の合成

2-プロパノール (10 mL) に LiCl (0.848 g) を溶解させ、その溶液にグラフェン (28 mg) を加えた。その後、TBAMnO₄ (108 mg) を加え、室温で 5 min 撹拌した。続けて、86 °C で 30 min 加熱し、結晶化させた。生成物はメンブレンフィルターを用いて吸引ろ過し、 純水 (ca. 30 mL) で洗浄した後、120 °C で乾燥させた。複合体中の Li–Mn スピネルナノ粒子の重量は ICP-AES により決定した。Li–Mn スピネルナノ粒子–アセチレンブラッ ク複合体の合成についても、同様の手法で検討した。

Li-Mn スピネル酸化物の電気化学測定

Li-Mn スピネルナノ粒子-グラフェン複合体 (or Li-Mn スピネル酸化物)、導電助剤と してアセチレンブラック、結着剤として PTFE (PTFE = polytetrafluoroethylene) を乳鉢 で混合し、Al メッシュ(100 mesh)に圧着することで電極を作成した(Table 3-1)。作 成した電極を120°Cで乾燥させ、作用極として用いた。対極として、金属Liを用いた。 1 M LiPF₆の炭酸エチレン(EC)と炭酸ジメチル(DMC)の1:1 (v/v)混合溶液を電解液 として用いた。これらの作用極、対極、電解液、ガラスフィルターを用いることでコイ ンセルを組み、測定用セルとした。Li-Mn スピネルナノ粒子凝集体の高速放電特性の検 討では、作用極、対極、1 M LiClO₄の炭酸エチレン(EC)と炭酸ジエチル(DEC)の 1:1 混合溶媒を用いて、3 極式ビーカーセルを組み立て、測定に用いた。また、Li-Mn スピネルナノ粒子凝集体の高速放電特性に用いた正極は、以下の手順で調製した。2-プロパノール(5 mL)、ジルコニアビーズ(粒径 0.65 mm)、Li–Mn スピネルナノ粒子 (50 mg)、アセチレンブラック(50 mg)を混合し、遊星ボールミルを用いて 600 rpm で5分間、3サイクル撹拌を行い、Li–Mn スピネルナノ粒子とアセチレンブラックを混 合した。メンブレンフィルター(孔径: 0.2 μm)を用いて試料を吸引ろ過により回収し た後、120 ℃ で乾燥させた。充放電プロファイルは、充放電測定装置(北斗電工 HJ1001SD) を用いて 25 ℃ で測定した。(x C = 1 h で容量の x 倍を充放電する速度, 1 C = 148 mA g⁻¹)。 充放電容量は、Li-Mn スピネル酸化物の重量を基準として記述した。Li-Mn スピネルナ ノ粒子–グラフェン複合体中のグラフェン分の充放電容量は、グラフェン電極を作製し、 それぞれ対応するLi-Mnスピネルナノ粒子-グラフェン複合体と同条件で別途充放電測 定を行うことで見積もった。

Table 3-1. 電極作製条件.

活物質	Li–Mn スピ ネル酸化物 (wt%)	グラフェ ン (wt%)	アセチレンブ ラック (wt%)	PTFE (wt%)
Li-Mn スピネル-グラフェン複合体	29	58	_	13
Li–Mn スピネル–グラフェン複合体	15	30	45	10
Li–Mn スピネルナノ粒子	16		47	7
(結晶子径: 2.3 nm)	40	—	47	
Li-Mn スピネル酸化物	46		47	7
(結晶子径: 6.7 nm)	40	—		
Li-Mn スピネル酸化物	16		17	7
(結晶子径: 13 nm)	40	_	47	7
Li-Mn スピネル酸化物	47		47	6
(結晶子径: 40 nm)	47	—	47	
Li–Mn スピネル酸化物 (バルク)	49	_	45	6

OMS-2の合成

KMnO₄水溶液 (0.037 M, 100 mL)、MnSO₄•H₂O 水溶液 (0.052 M, 30 mL)、硝酸 (3 mL) を混合し、100 °C で 24 h 加熱還流した。生成物はろ過により回収し、水 (ca. 3 L) で洗 浄した後、120 °C で乾燥することで OMS-2 (8.2 g) を得た。

birnessite の合成

KMnO₄ (0.04 mol)、NaOH (1.2 mol)、H₂O (400 mL)を混合した水溶液に、MnCl₂•4H₂O 水溶液 (0.28 M, 400 mL)を氷浴しながら滴下した。その後、室温で1日間エージング した。生成物はろ過により回収し、水で洗浄した後、90 °C で乾燥させた。

チオールの酸化的カップリング反応

試験管に基質、溶媒、触媒、ナフタレン(GC 測定のための内標準物質)、テフロンコ ート磁気撹拌子を加え、1気圧の酸素下、0 or 30 ℃ で ca. 600 rpm で撹拌した後、触媒 をシリンジフィルターによりろ過し、除去した。生成物の収率は、ナフタレンを内標準 物質として用い、GC 測定により決定した。また、生成物は GC-MS により定性した。

チオールの酸化的シアノ化反応

試験管に基質、溶媒、触媒、TMSCN(TMS = trimethylsilyl cyanide)、KF、ナフタレン (GC 測定のための内標準物質)、テフロンコート磁気撹拌子を加え、1気圧の酸素下、 30 ℃ で ca. 600 rpm で 1 min 撹拌した後、触媒をシリンジフィルターによりろ過し、除 去した。生成物の収率は、ナフタレンを内標準物質として用い、GC 測定により決定し た。また、生成物はGC-MSにより定性した。

第1級アルコールのアンモ酸化・酸化的アミド化反応

オートクレーブに基質(0.25 mmol)、1,4-ジオキサン(1 mL)、Mn 系複酸化物ナノ粒 子(50 mg)、28 wt%アンモニア水(50 μL)ナフタレン(GC 測定のための内標準物質)、 テフロンコート磁気撹拌子を入れ、5 気圧の空気を封入し、100–150 ℃(bath temperature) で加熱・撹拌した。生成物の収率は、ナフタレンを内標準物質として用い、GC 測定に より決定した。メチルアレーンの酸化的アミド化反応については、上記と同様の方法で 基質としてキナルジンを用い、150 ℃、1 h で検討した。

スルフィドやアルキルアレーンの酸素化反応

基質(0.5 mmol)、*o*-ジクロロベンゼン(1 mL)、Li–Mn スピネルナノ粒子(結晶子径: 2.3 nm)(50 mg)、ナフタレン(GC 測定のための内標準物質)、テフロンコート磁気撹 拌子、酸素 5 気圧をオートクレーブ中に封入し、150 ℃ で加熱した後、Li–Mn スピネル ナノ粒子(結晶子径:2.3 nm)をシリンジフィルターによりろ過し、除去した。生成物 の収率は、ナフタレンを内標準物質として用い、GC 測定により決定した。また、生成 物は GC-MS により定性した。

3.2.3. キャラクタリゼーション

X-ray diffraction (XRD) パターンは Rigaku SmartLab を用い、CuKa 線、45 kV、200 mA の条件で測定した。Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) は、Shimadzu ICPS-8100 を用いて測定した。Mn の平均酸化数は、試料を過剰の硫酸鉄 (II)アンモニウムにより還元し、余剰の Fe²⁺を KMnO₄ で滴定すること (酸化還元滴定) により求めた (測定は 3 回ずつ行い, その平均値 ± 標準偏差で Mn 平均酸化数を表記 した)。Brunauer-Emmett-Teller (BET) 比表面積は micromertics ASAP 2010 により–196 °C での N₂吸着により測定した。Transmission electron microscopy (TEM)像は JEOL JEM-2800、 JEM-2010HC 及び JEM-2000EX II により加速電圧 200 kV で撮影した。Scanning electron microscopy (SEM) 像は Hitachi S-4700 を用い、加速電圧 15 kV で撮影した。TEM およ び SEM 観察用試料は、粉末試料をエタノールに分散させたものを Cu グリッドに載せ、 乾燥させることで調製した。X-ray photoelectron spectroscopy (XPS) 測定は、JEOL JPS-9000 を用い、MgKa 線 (hv = 1253.6 eV, 8 kV, 10 mA) で測定した。ピーク位置は C 1s のピーク (284.0 eV) を基準とし、補正した。バックグラウンドは Shirley 法により差し 引いた。Electron paramagnetic resonance (EPR) 測定は、JEOL JES-RE-1X を用いて-100 °C で行った。Gas-chromatography (GC) 測定は、Shimadzu GC-2014 を用い、検出器は FID (Flame ionization detector) 検出器を用いた。GC-MS (Gas-chromatography-mass spectrometry) 測定は、Shimadzu GC MS-QP 2010 を用い、イオン化電圧 70 eV で行った。

Table 3-2. チオールの酸化的カップリング反応に用いた酸化物(本合成法以外).

金属酸化物	購入元と BET 比表面積
OMS-2	BET 比表面積: 94.0 m ² g ⁻¹
birnessite	BET 比表面積: 62.2 m ² g ⁻¹
β-MnO ₂	Aldrich より購入 (No. 529664-5G), BET: 2.6 m ² g ⁻¹
MgO	関東化学より購入 (No. 25018-33)
Al_2O_3	住友化学より購入 (No. KHS-24)
SiO ₂	富士シリシア化学より購入 (No. CARiACT Q-10)
Sc_2O_3	Aldrich より購入 (No. 307874-1G)
TiO_2	石原産業会社より購入 (No. ST-01)
V_2O_5	関東化学より購入 (No. 44017-30)
Cr_2O_3	ナカライテスクより購入 (No. 08909-22)
Fe_2O_3	Alfa Aesar より購入 (No. 12593)
Co_3O_4	和光純薬より購入 (No. 039-08792)
NiO	Aldrich より購入 (No. 637130-25G)
CuO	和光純薬より購入 (No. 036-09461)
ZnO	和光純薬より購入(No. 260-01261)
MoO ₃	和光純薬より購入(No. 138-03352)
WO ₃	Aldrich より購入 (No. 550086-5G)

ジスルフィド・チオシアネートのスペクトルデータ

MS (EI): *m*/*z* (%): 230 (8) [*M*⁺], 148 (30), 84 (6), 83 (90), 81(6), 79 (6), 67 (6), 55 (100), 54 (5), 53 (9).

MS (EI): *m*/*z* (%): 235 (7), 234 (45) [*M*⁺], 152 (8), 151 (7), 150 (80), 118 (6), 117 (64), 115 (6), 87 (11), 86 (7), 85 (100), 83 (13), 82 (6), 81 (9), 79 (11), 73 (7), 69 (9), 67 (6), 61 (9), 60 (8), 59 (9), 57 (74), 56 (12), 55 (76), 53 (8).

∽^s`s∽∕

MS (EI): *m*/*z* (%): 290 (18) [*M*⁺], 178 (15), 145 (21), 87 (10), 71 (74), 70 (6), 69 (27), 67 (8), 57 (100), 56 (9), 55 (39).

`s´^{S.}

MS (EI): *m*/*z* (%): 246 (3) [*M*⁺], 92 (8), 91 (100), 65 (17).

MS (EI): *m*/*z* (%): 219 (7), 218 (47) [*M*⁺], 185 (13), 154 (24), 140 (6), 111 (5), 110 (10), 109 (100), 108 (9), 77 (9), 69 (14), 65 (38), 51 (10).

MS (EI): *m*/*z* (%): 248 (5), 247 (9), 246 (51) [*M*⁺], 125 (5), 124 (18), 123 (100), 122 (27), 121 (26), 97 (6), 91 (26), 89 (12), 79 (26), 78 (19), 77 (60), 71(5), 69 (10), 65 (16), 63 (13), 53 (6), 51 (15).

MS (EI): *m*/*z* (%): 248 (3), 247 (5), 246 (30) [*M*⁺], 213 (6), 198 (6), 182 (10), 167 (7), 125 (5), 124 (12), 123 (100), 122 (8), 121 (20), 108(13), 97 (9), 91 (25), 89 (9), 79 (42), 78 (17), 77 (51), 69 (11), 65 (18), 63 (11), 53 (8), 51 (12).

MS (EI): *m*/*z* (%): 247(7), 246 (42) [*M*⁺], 182(6), 125 (5), 124 (13), 123 (100), 122 (7), 121 (11), 108 (7), 97 (5), 91 (14), 89 (5), 79 (35), 78 (10), 77 (34), 69 (7), 65 (8), 63 (6), 51 (6).

MS (EI): *m*/*z* (%): 278 (20) [*M*⁺], 141 (5), 140 (10), 139 (100), 124 (11), 96 (21), 95 (20), 77 (5), 70 (8), 69 (6).

MS (EI): *m*/*z* (%): 288 (6), 287 (1) [*M*⁺], 286 (8), 145 (22), 144 (6), 143 (63), 110 (5), 109 (10), 108 (100), 107 (7), 101 (7), 99 (23), 82 (12), 75 (12), 73 (10), 69 (14), 63 (15).

MS (EI): *m*/*z* (%): 222 (5), 221 (7), 220 (52) [*M*⁺], 187 (5), 156 (46), 155 (22), 142 (7), 130 (7), 129 (11), 111(5), 110 (13), 84 (8), 83 (25), 82 (11), 81(5), 79 (10), 78 (100), 69 (7), 67 (7), 58 (5), 57 (20), 52 (29), 51 (94), 50 (21).

MS (EI): *m*/*z* (%): 143 (0.14) [*M*⁺], 142 (1.3), 128 (9), 117 (6), 116 (78), 115 (6), 114 (13), 110 (17), 101 (35), 100 (18), 96 (5), 88 (8), 87 (61), 86 (6), 85 (9), 84 (11), 83 (9), 82 (12), 72 (12), 69 (35), 68 (5), 67 (8), 60 (16), 59 (13), 58 (7), 57 (42), 56 (100), 55 (82), 54 (12), 53 (9).

MS (EI): m/z (%): 144 (34), 143 (7), 138 (5), 129 (7), 128 (6), 124 (11), 115 (21), 114 (9), 112 (6), 110 (16), 102 (7), 101 (61), 100 (8), 97 (5), 96 (10), 88 (6), 87 (33), 84 (15), 83 (40), 82 (12), 72 (9), 71 (27), 70 (42), 69 (59), 68 (20), 67 (12), 60 (12), 59 (7), 57 (53), 56 (64), 55 (100), 54 (12), 53 (8). ¹H NMR (500.16 MHz, CDCl₃): δ 2.95 (t, J = 7.0 Hz, 2H), 1.82 (quin, J = 7.0 Hz, 2H), 1.41–1.47 (m, 2H), 1.24–1.36 (m, 8H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (125.77 MHz, CDCl₃): δ 112.43 (SCN), 34.14, 31.75, 29.95, 29.08, 28.90, 28.01, 22.65, 14.10.

MS (EI): m/z (%): 149 (6) $[M^+]$, 92 (9), 91 (100) $[(M - SCN)^+]$, 65 (16), 63 (5). ¹H NMR (500.16 MHz, CDCl₃): δ 7.33–7.39 (m, 5H), 4.13 (s, 2H). ¹³C NMR (125.77 MHz, CDCl₃): δ 134.44, 129.18, 129.03, 128.94, 112.04 (SCN), 38.38.

MS (EI): m/z (%): 137 (5), 136 (9), 135 (100) $[M^+]$, 108 (33), 91 (24), 84 (6), 77 (44), 74 (5), 69 (7), 65 (8), 51 (23), 50 (11). ¹H NMR (500.16 MHz, CDCl₃): δ 7.51–7.53 (m, 2H), 7.39–7.45 (m, 3H). ¹³C NMR (125.77 MHz, CDCl₃): δ 130.32, 130.15, 129.62, 124.52, 110.60 (SCN).

MS (EI): m/z (%): 151 (5), 150 (11), 149 (100) $[M^+]$, 148 (15), 123 (6), 122 (6), 121 (12), 117 (7), 116 (63), 92 (6), 91 (74), 90 (5), 89 (13), 78 (5), 77 (11), 68 (7), 65 (23), 63 (13), 62 (5), 51 (8), 50 (5). ¹H NMR (500.16 MHz, CDCl₃): δ 7.39–7.42 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (125.77 MHz, CDCl₃): δ 140.29, 131.00, 130.72, 120.57, 111.07 (SCN), 21.19.

MS (EI): m/z (%): 171 (37) $[M^+]$, 170 (9), 169 (100) $[M^+]$, 144 (5), 143 (7), 142 (13), 135 (6), 134 (56), 133 (10), 125 (13), 113 (6), 111 (18), 108 (15), 107 (6), 79 (5), 75 (29), 74 (10), 73 (6), 69 (9), 63 (9), 51 (5), 50 (13). ¹H NMR (500.16 MHz, CDCl₃): δ 7.45–7.48 (m, 2H), 7.40–7.42 (m, 2H). ¹³C NMR (125.77 MHz, CDCl₃): δ 136.25, 131.52, 130.52, 122.84, 110.02 (SCN).

MS (EI): m/z (%): 187 (5), 186 (13), 185 (100) $[M^+]$, 159 (7), 158 (9), 153 (21), 141 (25), 140 (7), 127 (20), 126 (12), 115 (19), 114 (7), 79 (10), 77 (7), 75 (5), 63 (5). ¹H NMR (500.16 MHz, CDCl₃): δ 7.95 (d, J = 2.0 Hz, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.80–7.82 (m, 1H), 7.75–7.78 (m, 1H), 7.51–7.55 (m, 2H), 7.95 (dd, J = 8.5 Hz, 2.0 Hz, 1H). ¹³C NMR (125.77 MHz, CDCl₃): δ 133.65, 133.10, 130.32, 129.87, 128.00, 127.71, 127.66, 127.62, 126.25, 121.31, 110.68 (SCN).

MS (EI): m/z (%): 137 (5), 136 (56) $[M^+]$, 79 (6), 78 (100) $[(M - \text{SCN})^+]$, 52 (8), 51 (30). ¹H NMR (500.16 MHz, CDCl₃): δ 8.53 (d, J = 5.0 Hz, 1H), 7.78 (ddd, J = 8.0 Hz, 7.3 Hz, 2.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.29 (dd, J = 7.3 Hz, 5.0 Hz, 1H). ¹³C NMR (125.77 MHz, CDCl₃): δ 150.62, 150.03, 138.55, 122.86, 122.11, 109.06 (SCN).

3.3. 結果と考察

3.3.1. イオン交換特性

Li-Mn スピネル酸化物は、構造中のLi⁺を酸処理により脱離させることが可能であり、Li⁺選択的なイオン交換体として利用可能であることが知られている。^[21,39a] そのため、Li-Mn スピネル酸化物からLi⁺を脱離させた λ -MnO₂は、海水等からのLi 資源回収のためのイオン交換体としての利用が期待されている。通常、酸性水溶液中でのLi-Mn スピネル酸化物からのLi⁺脱離は、酸化還元型の反応(LiMn₂O₄ + 2H⁺ \rightarrow 0.75Mn₂O₄ + Li⁺ + 0.5Mn²⁺ + H₂O(Mn の不均化・溶出を伴う反応))により、進行し、Mn の溶出、Mn 平均酸化数の増大が起こる。^[39a] 一方、粒子表面では、イオン交換型のLi⁺の脱離(LiMn₂O₄ + H⁺ \rightarrow HMn₂O₄ + Li⁺)が進行するといわれている。^[39b] イオン交換体の粒径を小さくすることで、粒子表面で起こる反応が粒子全体で起こると考えられる。

粒径の異なる Li-Mn スピネル酸化物の酸性条件下での Li⁺の脱離挙動を比較した (Figure 3-1)。Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)を硝酸水溶液中で pH 2 に 30 min 保持することで、酸性条件下での Li⁺の脱離挙動を検討した。また、粒径の異な る Li-Mn スピネル酸化物を合成し、比較対象とした(Figure 3-2, Table 3-3)。いずれの 試料でも、酸処理前後でスピネル構造を保持していることを確認した(Figure 3-3)。ま た、Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)は酸処理後も酸処理前と同様の粒子 形態を保持していることが示唆された(Figure 3-4)。いずれの粒径の Li-Mn スピネル酸 化物でも pH 2 で 90%程度の Li⁺が脱離した(Table 3-4)。その際、Li-Mn スピネル酸化 物の粒径が大きくなるほど、Mn 平均酸化数が増大し、Mn が溶出する傾向がみられた

(Table 3-4)。Li-Mn スピネル酸化物の粒径が大きくなるほど、酸化還元型の反応の割 合が大きくなる傾向がみられた(Table 3-4)。本研究で合成した Li-Mn スピネルナノ粒 子(結晶子径: 2.3 nm)では、処理前後で Mn 平均酸化数の増大、Mn の溶出がほとんど 起こっていないことが明らかになった(Table 3-4)。また、酸性条件下で Li-Mn スピネ ルナノ粒子(結晶子径: 2.3 nm)から Li⁺を脱離させた後の試料の EPR 測定を行ったとこ ろ、Mn²⁺は試料中に存在しないことが判明した(Figure 3-5)。これらのことから、粒径 の小さな Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)では、酸性条件下での Li⁺の脱離 は、主に酸化還元型の反応ではなく、イオン交換型の反応により Li⁺が脱離したことが 示唆された。本研究で合成した Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)は極めて 粒径が小さく、イオン交換といった物質移動に関与する反応が酸化還元型の反応よりも 優勢になり、Li⁺と H⁺のイオン交換が可能になったと考えられる。

本研究で合成した Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)は、粒径の大きな Li-Mn スピネル酸化物(バルク)よりも、穏和な条件での Li⁺の脱離が可能であることも判明した(Figure 3-6, 3-7, Table 3-5)。また、いずれの処理条件でもスピネル構造が保持されていることを確認した(Figure 3-6 and 3-7)。特に、Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)では、pH4以上の条件において、ほとんど全ての Li⁺の脱離がイオン交換型の反応により進行したことが明らかになった(Figure 3-1d, 3-6, 3-7 and Table 3-5)。一方、

粒径の大きな Li-Mn スピネル酸化物(バルク)では、Li⁺の脱離は、いずれの pH にお いても、主に酸化還元型の反応により進行し、イオン交換型の反応による Li⁺の脱離は ほとんど起こらなかった(Figure 3-1d, 3-6, 3-7 and Table 3-5)。また、粒径の大きな Li-Mn スピネル酸化物(バルク)では、pH5以上では、Li⁺の脱離がほとんど起こっていな いことも判明した(Figure 3-1d, 3-6, 3-7 and Table 3-5)。Li-Mn スピネルナノ粒子の Mn に対するLi量が減少するにつれ、XRDパターンにおける回折線が高角度側にシフトし、 格子定数が減少する傾向がみられた(Figure 3-6 and 3-8)。通常、Li-Mn スピネル酸化物 を酸処理すると、固体中の Mn 平均酸化数が増大し Mn のイオン半径が小さくなるため、 格子定数が減少する。^[21]一方、本研究で合成した Li-Mn スピネルナノ粒子では、Li⁺が H⁺と交換されることで、スピネル構造の四面体サイトに入るカチオンのサイズが小さく なり、スピネル構造の格子が収縮し、格子定数の減少が起こったと考えられる。また、 本研究で合成した Li-Mn スピネルナノ粒子 100 mg を pH ca. 7 の純水 20 mL 中に分散さ せるだけでも Li⁺のうち 19% (2回の分散で 29%)を脱離させることが可能であった (Figure 3-6, 3-7 and Table 3-5)。その際、分散に用いた水の pH は 10.4 まで上昇してい た。このことから、Li-Mn スピネルナノ粒子は pH ca. 7 といった穏和な条件でも H₂O から H⁺を引き抜き、Li⁺と H⁺のイオン交換が起こったと考えられる。一方、Li-Mn スピ ネル酸化物(バルク)では純水中に分散させるだけではほとんど Li⁺を脱離させること はできなかった。このことからも、Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)は Li-Mn スピネル酸化物(バルク)と比べて極めて Li⁺が脱離しやすいということが明らかに なった。また、大量の硝酸水溶液(1000 mL)中で Li-Mn スピネル酸化物(10 mg)を 処理することにより、比較的高い pH 条件(pH 5)においても、Li-Mn スピネルナノ粒 子(結晶子径: 2.3 nm)から 90%以上の Li⁺を主にイオン交換型の反応により脱離させる ことが可能であった(Figure 3-9 and Table 3-6)。一方、粒径の大きな Li-Mn スピネル酸 化物(バルク)では、同様の条件では、39%のLi⁺のみがほぼ100%酸化還元型の反応に より脱離していることが明らかになった(Figure 3-9 and Table 3-6)。また、Li-Mn スピ ネルナノ粒子からLi⁺を脱離させたものは、LiCl-LiOH水溶液中で処理することにより、 再度 Li⁺を挿入することも可能であった(Figure 3-10 and Table 3-7)。本研究で得た Li-Mn スピネルナノ粒子は Mn の溶出なく Li⁺の脱挿入が可能であるため、優れたイオン交 換体となり得ると考えられる。本合成法で得た極めて粒径の小さな Li-Mn スピネルナ ノ粒子(結晶子径: 2.3 nm)では、通常は困難な Li⁺と H⁺のイオン交換が可能であった。 これは、粒径を極めて小さくしたことにより、粒子全体が表面であるかのような挙動を 示したためであると考えられる。

結晶子径 (nm) ^[a]	Li (wt%)	Mn (wt%)	Li/Mn (mol/mol)
2.3	3.40	50.90	0.52
6.7	3.45	52.30	0.52
13	3.41	53.87	0.50
40	3.23	57.95	0.44
バルク(410 nm) ^[b]	3.83	60.76	0.50

Table 3-3. 粒径の異なる Li-Mn スピネル酸化物の組成.

[a] XRD パターンからシェラー式に基づき算出. [b] BET 比表面積から算出.

Table 3-4. pH 2 での各粒径の Li-Mn スピネル酸化物の Li 除去率, 溶出した Mn の割合, イオン交換型の反応の割合, 処理前後の Mn 平均酸化数.

結晶子径 (nm)	Li 除去率 (%) ^[a]	Mn 溶出 (%) ^[b]	イオン交換型 の反応 (%) ^[c]	Mn 平均酸化数 (酸処理前)	Mn 平均酸化数 (酸処理後) ^[d]
2.3	91.6	2.80	87.7	3.62 ± 0.065	3.71 ± 0.042
6.7	94.4	6.32	73.1	3.55 ± 0.071	3.69 ± 0.109
13	96.5	17.2	28.3	3.57 ± 0.017	3.95 ± 0.044
40	95.9	23.9	0	3.44 ± 0.019	3.87 ± 0.043
バルク (410 nm) ^[e]	89.5	19.9	0	3.48 ± 0.018	3.88 ± 0.022

[a] Li 除去率(%) = (処理前の Li/Mn - 処理後の Li/Mn) / (処理前の Li/Mn) ×100. [b] 溶出した Mn の割合は、処理後のろ液の ICP-AES 測定により決定. [c] (酸化還元型の反応(%)) = (実際の Mn 溶出(%)) / (0.25 × Li 除去率(%))×100. [d] Mn 平均酸化数は酸化還元滴定により決定. [e] BET 比表面積から算出.

サンプル	反応条件	Li 除去率 (%) ^[a]	Mn 溶出 (%) ^[b]	Mn平均酸化数 ^[d]
	pH 1	94.7	4.47	3.55 ± 0.028
	pH 2	91.6	2.80	3.71 ± 0.042
	рН 3	85.7	0.740	3.60 ± 0.020
	pH 4	66.7	0.0100	3.62 ± 0.024
	pH 4 ^[c]	84.0	0.0400	_
Li–Mn スピネル	pH 5	54.6	0.0100	3.56 ± 0.029
(2.3 nm)	pH 5 ^[c]	73.2	0.0300	_
	рН б	41.4	0.0100	3.64 ± 0.022
	pH 6 ^[c]	61.0	0.0700	_
	$H_2O (pH ca. 7)^{[e]}$	18.9	0.0400	3.59 ± 0.070
	$H_2O (pH ca. 7)^{[c,e]}$	29.6	0.190	_
	酸処理前	_	_	3.62 ± 0.065
	pH 1	90.0	19.8	3.78 ± 0.032
	pH 2	89.5	19.9	3.88 ± 0.022
	рН 3	55.5	13.2	3.59 ± 0.047
	pH 4	42.1	10.2	3.53 ± 0.061
	pH 4 ^[c]	51.2	11.7	_
Li–Mn スピネル	pH 5	5.77	1.76	3.44 ± 0.040
(バルク, 410 nm)	pH 5 ^[c]	8.67	1.87	_
(, , , , ,	pH 6	0.00	0.380	3.44 ± 0.014
	pH 6 ^[c]	5.02	0.330	_
	$H_2O (pH ca. 7)^{[e]}$	0.00	0.0100	3.41 ± 0.039
	$H_2O (pH ca. 7)^{[c,e]}$	1.67	0.0100	_
	酸処理前	_	_	3.48 ± 0.018

Table 3-5. 様々な pH条件下での Li-Mn スピネル酸化物からの Li⁺脱離のナノ粒子とバル クの比較.

[a] Li 除去率 (%) = (処理前の Li/Mn - 処理後の Li/Mn) / (処理前の Li/Mn) ×100. [b] 溶出 した Mn の割合は、処理後のろ液の ICP-AES 測定により決定. [c] 2回処理後の生成物. [d] Mn 平均酸化数は酸化還元滴定により決定. [e] pH 7 については、Li–Mn スピネル酸化物 を pH 7 の純水中に分散させたのみで pH 調整は行わず.

Table 3-6. 大量の硝酸溶液中での処理による Li-Mn スピネル酸化物からの Li⁺の脱離 (Li-Mn スピネル酸化物 10 mg に対して硝酸溶液 1000 mL).

Li 除去率 (%) ^[a]		Mn 溶ł	Mn 溶出 (%) ^[b]		イオン交換型の反応(%) ^[c]	
	2.3 nm	バルク (410 nm)	2.3 nm	バルク (410 nm)	2.3nm	バルク (410 nm)
pH4	94.1	88.6	1.95	22.2	91.7	0
pH5	89.5	44.9	0.290	10.3	98.7	0

[a] Li 除去率(%) = (処理前の Li/Mn - 処理後の Li/Mn) / (処理前の Li/Mn) ×100. [b] 溶出 した Mn の割合は、処理後のろ液の ICP-AES 測定により決定した. [c] (酸化還元型の反応 (%)) = (実際の Mn 溶出 (%)) / (0.25 × Li 除去率 (%))×100.

Table 3-7. Li–Mn スピネルナノ粒子を pH 2 の硝酸で処理した生成物(λ-MnO₂)を LiCl– LiOH 水溶液中で処理した後の生成物の組成.

反応時間	Li/Mn (mol/mol)		
酸処理前	0.047		
30 min	0.32		
6 h	0.35		

Figure 3-1. 酸性条件下での Li-Mn スピネル酸化物からの Li⁺の脱離(反応時間: 30 min). pH 2 の硝酸水溶液中での酸処理による(a) Li⁺の脱離した割合と溶出した Mn の割合, (b) Mn 平均酸化数の変化, (c) イオン交換型の反応による Li⁺の脱離の割合, (d) 異なる pHで のイオン交換型の反応による Li⁺脱離の割合(pH 7 については、Li-Mn スピネル酸化物 を pH 7 の純水中に分散させたのみで pH 調整は行わず) 図中の粒径は XRD パターンか らシェラー式に基づいて算出した結晶子径で示している(バルクについては BET 表面 積から算出).

Figure 3-2. (a) LiMn₂O₄ (JCPDS 35-0782), 粒径の異なる Li–Mn スピネル酸化物の XRD パ ターン (結晶子径: (b) 2.3 nm (本研究), (c) 6.7 nm, (d) 13 nm, (e) 40 nm, (f) バルク (BET 比表面積から算出した粒径: 410 nm)).

Figure 3-3. pH 2 での酸処理前後の Li–Mn スピネル酸化物の XRD パターン (Li–Mn スピネル酸化物の結晶子径 (a) 2.3 nm, (b) 6.7 nm, (c) 13 nm, (d) 40 nm, (e) 410 nm (バルク)). 結晶子径は XRD パターンより, シェラー式で算出 (バルクについては BET 比表面積から算出).

Figure 3-4. Li–Mn スピネルナノ粒子を pH 2 の硝酸で処理した後の生成物 (λ-MnO₂)の TEM 像.

Figure 3-5. Li-Mn スピネルナノ粒子の酸処理(a) 前, (b) 後の EPR スペクトル.

Figure 3-6. (A) Li-Mn スピネルナノ粒子, (B) Li-Mn スピネル酸化物(バルク)の各 pH での処理前後の XRD パターン (pH = (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 純水中に分散 させたもの, (h) 処理前).

Figure 3-7. (A) Li-Mn スピネルナノ粒子, (B) Li-Mn スピネル酸化物(バルク)の各 pH での処理 2 回後の XRD パターン (pH = (a) 4, (b) 5, (c) 6, (d) 純水中に分散させたもの).

Figure 3-8. 酸処理前後の Li–Mn スピネルナノ粒子の組成(Li/Mn)に対する格子定数の 変化.

Figure 3-9. (A) Li-Mn スピネルナノ粒子, (B) Li-Mn スピネル酸化物 (バルク) の各 pH で大量の硝酸溶液中 (Li-Mn スピネル酸化物 10 mg に対して硝酸溶液 1000 mL) で処理 した後の XRD パターン (pH = (a) 4, (b) 5).

Figure 3-10. Li–Mn スピネルナノ粒子を pH 2 の硝酸で処理した生成物 (λ-MnO₂) を LiCl– LiOH 水溶液中で処理した後の生成物の XRD パターン ((a) 処理前, (b) 30 min 処理, (c) 6 h 処理).

3.3.2. 電気化学特性

3.3.2.1. Li-Mn スピネルナノ粒子の充放電曲線

Li-Mn スピネル酸化物の電気化学特性を 0.1 C(1 C = 148 mAg⁻¹)で充放電すること により検討した。通常、Li-Mn スピネル酸化物は、充放電時に約4V と約3V で電位平 坦部を示すことが知られている。^[40a] Li-Mn スピネル酸化物の充放電曲線において、約4V から約3Vの電位平坦部までの領域(領域I)は、スピネル構造中へのLi⁺の脱挿入、約 3Vの電位平坦部(領域II)はスピネル構造と岩塩型構造の2相共存状態、約3Vの電 位平坦部よりも低い電位の領域(領域III)は岩塩型構造へのLi⁺の挿入に対応する。^[40a]

粒径の小さな Li-Mn スピネル酸化物の充放電曲線ほど 4 V 付近の電位平坦部の領域 が狭くなり、領域 I と領域Ⅲにおける電位変化が緩やかになる傾向がみられた

(Figure 3-11)。このような傾向が既報でも報告されている。^[24] 特に、本研究で合成した Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)では放電曲線の緩やかな電位変化は、既 報^[4]に比べてより広い範囲でみられ、電位平坦部がほとんど観測されなかった。本合成 法で得た Li-Mn スピネルナノ粒子(結晶子径: 2.3 nm)は、平均粒径 2.5 nm という極め て小さなナノ粒子であり、本来は粒子表面でのみ現れる Li のサイトエネルギーの分布 が粒子全体に生じたため、このように、緩やかな電位変化が充放電曲線全体でみられた と考えられる(Figure 3-12)。^[40b]また、本合成法で得た Li-Mn スピネルナノ粒子(結晶 子径: 2.3 nm)でも領域 II に対応する電位平坦部がみられたことから、スピネル構造と 岩塩型の2 相共存状態を経由し、Li⁺の挿入が起こることが示唆された(Figure 3-11)。 本合成法で得た Li-Mn スピネルナノ粒子では、充放電容量が理論容量(充電容量: 148 mAh g⁻¹,放電容量: 296 mAh g⁻¹)よりも小さくなっていた。これは、本合成法で得 た Li-Mn スピネルナノ粒子が凝集体を形成していることで(Figure 2-10)、電極の導電 性が低くなり、電極反応に利用されない粒子が生じたことが原因であると考えられる。 後述するように、Li-Mn スピネルナノ粒子は、グラフェンと複合化することでほぼすべ ての粒子を電極反応に利用可能になり、大きな充放電容量が得られた。

Figure 3-11. Li–Mn スピネル酸化物の充放電曲線の粒径依存性. 図中にはそれぞれの Li–Mn スピネル酸化物の結晶子径を表記している. 0.1 C (14.8 mA g⁻¹) で 2–4.3 V の範囲で 充放電を行った. 充放電容量は, Li–Mn スピネル酸化物の重量を基準として表記した.

Figure 3-12. (a) ナノ粒子のモデル図, (b) ナノ粒子のサイトエネルギー, (c) 化学ポテンシャルの変化.

3.3.2.2. Li-Mn スピネルナノ粒子の高速放電特性

3.2.2.2.1. Li-Mn スピネルナノ粒子凝集体の高速放電特性

本合成法で得られた Li-Mn スピネルナノ粒子は密な凝集体を形成していた (Figure 2-10)。そのため、そのまま電極調製に用いても、個々のスピネル粒子と導電 助剤を十分に接触させることは困難であり、電極の大きな抵抗の要因となるため、電極 としての性能の低下が懸念される。実際、凝集体として得られた Li-Mn スピネルナノ 粒子凝集体を正極活物質として用いた場合、高速条件では、小さな放電容量しか得るこ とができなかった (Figure 3-13)。

Figure 3-13. Li–Mn スピネルナノ粒子凝集体の高速放電特性. 2–4.3 V の範囲で 0.1 C で充 電した後, 0.1 C (赤線), 10 C (青線) で放電を行った. 充放電容量は Li–Mn スピネルナ ノ粒子凝集体の重量基準で表記した (1 C = 148 mA g⁻¹).

3.3.2.2.2. Li-Mn スピネル-グラフェン複合体の合成

導電助剤となるグラフェンを Li-Mn スピネルナノ粒子の合成時に添加し、Li-Mn ス ピネルナノ粒子-グラフェン複合体を形成させることで Li-Mn スピネルナノ粒子同士の 凝集を防ぎ、電極の抵抗を低減させることを試みた。LiCl の 2-プロパノール溶液中に グラフェンを懸濁させ、TBAMnO₄を加え、5 min 撹拌した。続けて、それを 86 °C で 30 min 加熱することで、Li-Mn スピネルナノ粒子-グラフェン複合体を形成させた。XRD パターンから、グラフェン存在下でも Li-Mn スピネルナノ粒子が形成されたことを確 認した (Figure 3-14)。さらに、形成された Li-Mn スピネルナノ粒子の結晶子径は 2.4 nm であり、グラフェンを添加せずに合成したものと同等の結晶子径のものであった。Li-Mn スピネルナノ粒子-グラフェン複合体の TEM 像から、Li-Mn スピネルナノ粒子が比 較的分散した状態でグラフェンナノシートの表面に析出し、Li-Mn スピネルナノ粒子同 士の凝集が抑制されていることが明らかになった (Figure 3-15)。

一方、Li-Mn スピネルナノ粒子-グラフェン複合体の合成と同様の条件でLi-Mn スピ ネルナノ粒子とLi-Mn スピネルナノ粒子-アセチレンブラックの合成を検討した。LiCl の 2-プロパノール溶液中にアセチレンブラックを懸濁させ、TBAMnO₄を加え、5 min 撹拌した後、86 °C で 30 min 加熱した。アセチレンブラック存在下でもスピネル構造は 形成された(Figure 3-16c)。しかしながら、生成物の SEM 観察から、数珠状に連なっ た数+ナノメートルのアセチレンブラックとは別に、250 nm-1 µm の粗大な Li-Mn スピ ネルナノ粒子凝集体が形成されたことが示唆された(Figure 3-16d, e)。このことから、 Li-Mn スピネルナノ粒子と複合化する導電助剤としては、グラフェンが適していること が判明した。これは、グラフェンナノシートがアセチレンブラックといった高結晶性の カーボンと比べ、結晶性が低く、表面に水酸基等を有しているため、表面に酸化物が析 出しやすい環境にあったことによる可能性が考えられる。

Figure 3-14 (a) LiMn₂O₄ (JCPDS 35-0782), (b) グラフェン, (c) Li-Mn スピネルナノ粒子-グラフェン複合体の XRD パターン.

Figure 3-15. Li-Mn スピネルナノ粒子-グラフェン複合体の TEM 像.

Figure 3-16. (a) LiMn₂O₄ (JCPDS 35-0782), (b) アセチレンブラック, (c) Li-Mn スピネル ナノ粒子-アセチレンブラック複合体の XRD パターン. (d, e) Li-Mn スピネルナノ粒子-アセチレンブラック複合体の SEM 像.

2.3.2.2.3. Li-Mn スピネルナノ粒子-グラフェン複合体の高速放電特性

まず、Li-Mn スピネルナノ粒子-グラフェン複合体の電気化学特性を検討した。Li-Mn スピネルナノ粒子-グラフェン複合体を 0.1 C で充放電した際、1 サイクル目での放電容量は、342 mAh g⁻¹であった (Figure 3-17)。この放電容量は、2 V まで放電した際の Li-Mn スピネル酸化物の放電容量の理論値 296 mAh g⁻¹を超える値であった。この要因として、充放電容量へのグラフェンの寄与が考えられる。グラフェンの充放電測定から、グラフェンは、1 サイクル目で 46 mAh g⁻¹相当放電容量に寄与していることが示唆された (Figure 3-17)。Li-Mn スピネルナノ粒子-グラフェン複合体からグラフェンの寄与分の放電容量を差し引くと、ほぼ理論容量と同じ放電容量を示すことが示唆された。一方、1 サイクル目の充電容量は、グラフェンの充電容量分を差し引いても、159 mAh g⁻¹であり、最初の充電時に Li-Mn スピネル酸化物から Li を引き抜く際の理論容量である148 mAh g⁻¹を超える容量であった (Figure 3-17)。また、2 サイクル目以降での充電容量は、理論容量である 296 mAh g⁻¹を大きく超えていた (Figure 3-17)。この要因として、充電時に、Li-Mn スピネルナノ粒子が触媒として働き、グラフェンが酸化される等の副反応が起こっている可能性が考えられる。

本合成法で得たLi-Mn スピネルナノ粒子-グラフェン複合体の高速放電特性を検討した。完全に充電を行うため、充電は 0.1 C で行い、種々の放電レートでの電気化学特性について検討した。Li-Mn スピネルナノ粒子-グラフェン複合体の合成時にグラフェンが一部酸化され、導電性が低下していることが懸念される。そのため、10 C 以上の高速充放電時には、アセチレンブラックを導電助剤として添加して電極を調製し、測定に用いた。実際、アセチレンブラックを添加することで、高速での放電時の放電容量が向上していた(Figure 3-18)。これは、アセチレンブラックを添加することで、導電性が向上し、電極の抵抗に由来する電位の低下が軽減されたためであると考えられる。以下、充放電容量は、Li-Mn スピネルナノ粒子-グラフェン複合体からグラフェン分の容量を差し引いた値(電極中のLi-Mn スピネルナノ粒子の重量基準)で言及する。

本合成法で得た Li-Mn スピネルナノ粒子は高速での放電が可能であった (Figure 3-19)。本合成法で得た Li-Mn スピネルナノ粒子は 100 C といった極めて高速 な条件で放電した場合、グラフェン分の放電容量を除外しても 134 mAh g⁻¹ という高い 放電容量を示した。充放電前後の電極の組成分析より、100 C での放電時に Li/Mn = 0.37 (mol/mol)程度の Li⁺が電極中に挿入されていることが示唆された。この値は、放電容量 から算出される Li⁺挿入量 Li/Mn = 0.45 (mol/mol)と近い値であった。100 C での放電時、 放電後の充電時の充放電曲線において、いずれの場合も、スピネル構造と岩塩型の 2 相 共存状態(領域 II) に対応する電位平坦部はみられなかった(Figure 3-20)。これらの ことから、100 C での放電は岩塩型への構造変化を伴わない、スピネル構造への Li⁺の 挿入に対応すると考えられる。100 C で放電した場合、放電開始電位が低くなっている ことが示すように、オーム抵抗による電位低下が大きい。オーム抵抗によって電極の分 極が大きくなったため、100 C での 2 V までの放電では岩塩型への構造変化に十分な量 のLi⁺が挿入されなかったと考えられる。これらの要因により、100 C での2 V までの放 電では構造変化に起因する容量低下が起こらなかったと考えられる。また、100 C での 放電容量 134 mAh g⁻¹ はスピネル構造への Li⁺脱挿入時の充放電容量の理論値

(148 mAh g⁻¹)の91%であり、100 C でも極めて高い放電容量を実現することができた。 また、放電終了電位を 1.1 V まで下げることにより 0.1 C で充放電した場合と同様に大 きな放電容量(273 mAh g⁻¹(1 サイクル目))を得ることもできた(Figure 3-24 and 3-34)。 本研究では、Li-Mn スピネル酸化物を極めて粒径の小さなナノ粒子として合成し、高比 表面積・Li⁺の拡散長の減少が可能になったため、このような高速での放電が可能にな ったと考えられる。本研究で合成した Li-Mn スピネルナノ粒子は極めて粒径が小さく、 100 C 以上での充放電の実現も期待できる。しかしながら、放電レートが大きくなるに つれ、電極のオーム抵抗に起因する電位低下も大きくなり、放電レート 100 C 以上では 十分な放電容量が得られないと考えられる。そのため、今回は放電レート 100 C までの 検討に留めた。また、本研究で得た Li-Mn スピネルナノ粒子は高速での充電も可能で あった (Figure 3-25 and 3-35)。

放電レート 0.1-50 C で 2-4.3 V の範囲でサイクル特性を検討したところ、サイクルご とに放電容量の低下がみられた(Figure 3-21)。この容量低下は、岩塩型への構造変化 に伴う体積変化に起因すると考えられる。^[40c]一方、スピネル構造中の Li⁺の脱挿入に対 応する電位範囲での充放電測定では構造変化による容量低下は起こりにくいと考えら れる。放電レート 100 C で 2-4.3 V でサイクル特性を検討した場合、サイクルごとの容 量低下が小さく、他の放電レートでのサイクル特性とは異なる傾向がみられた

(Figure 3-21a)。前述のように 100 C での放電(範囲: 4.3-2 V) では岩塩型への構造変 化が起こらなかったため、サイクルごとの容量低下が小さかったと考えられる。また、 スピネル構造への Li⁺の脱挿入に対応する領域(4.3-2.85 V) で 0.1 C で充放電を行った ところ、比較的良いサイクル特性が得られた(Figure 3-21b and 3-22)。スピネル構造か ら岩塩型への構造変化を伴わない電位範囲であれば、比較的良いサイクル特性が得られ ることが明らかになった。

152

Figure 3-17. Li-Mn スピネルナノ粒子-グラフェン複合体(実線), グラフェン(点線)の サイクル特性(範囲: 2-4.3 V). 0.1 C(14.8 mA g⁻¹)で充電後, 0.1 Cで放電した. 充放電 容量は電極中の Li-Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-18. (a) アセチレンブラックを添加した場合, (b) アセチレンブラックを添加し なかった場合の Li-Mn スピネル-グラフェン複合体の 10 C での放電曲線の比較(範囲: 2-4.3 V). 0.1 C で充電後, 10 C で放電した. 充放電容量は電極中の Li-Mn スピネルナノ 粒子の重量基準で表記した (1 C = 148 mA g⁻¹).

Figure 3-19. Li–Mn スピネルナノ粒子–グラフェンの放電曲線(1 サイクル目, 範囲: 2–4.3 V). 0.1 C(14.8 mA g⁻¹)で充電後, 各レートで放電した. 充放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-20. Li–Mn スピネルナノ粒子–グラフェン(実線), グラフェン(点線)の充放電曲線. 0.1 C (14.8 mA g⁻¹)で充電後, 100 C (14800 mA g⁻¹)で放電した(範囲: 2–4.3 V). 充 放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-21. Li-Mn スピネルナノ粒子のサイクル特性. (a) 0.1 C (14.8 mA g⁻¹) で充電後, 各レートで放電した場合の放電容量 (範囲: 2-4.3 V). (b) 4 V 領域で 0.1 C で充放電した 場合の放電容量 (範囲: 2.85-4.3 V). 放電容量は電極中の Li-Mn スピネルナノ粒子の重 量基準で表記し, グラフェン分の放電容量を差し引いた値を表記した.

Figure 3-22. Li-Mn スピネルナノ粒子の各レートでのスピネル構造への Li⁺の脱挿入に対応する領域での放電サイクル特性. (a) 10 C (範囲: 2.85-4.3 V), (b) 20 C (範囲: 2.75-4.3 V), (c) 50 C (範囲: 2.6-4.3 V) で放電 (1 C = 148 mA g⁻¹). 放電容量は電極中の Li-Mn スピネルナノ粒子の重量基準で表記し, グラフェン分の放電容量を差し引いた値を表記した.

Figure 3-23. Li-Mn スピネルナノ粒子のスピネル構造中へのLi⁺の脱挿入に対応する領域 での放電容量(範囲: 2.85-4.3 V, 1 C = 148 mAg⁻¹). 0.1 C で充電後,各レートで3サイク ルずつ放電した.放電容量は、電極中のLi-Mn スピネルナノ粒子の重量基準で表記し、 グラフェン分の放電容量を差し引いた値を表記した. 0.1 C では十分な放電容量が得ら れたが、放電レートが大きくなるにつれ、電極の抵抗に起因する電位低下が大きくなり、 放電容量が低下する傾向がみられた.

Figure 3-24. Li–Mn スピネルナノ粒子–グラフェンの 100 C での低電位まで放電した場合の充放電サイクル特性(範囲: 1.1–4.3 V, 1 C = 148 mA g⁻¹). 0.1 C で放電した後,放電は100 C で行った. 放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記し,グラフェン分の放電容量を差し引いた値を表記した.

Figure 3-25. Li–Mn スピネルナノ粒子の充電特性. 各レートで充電後, 0.1 C で放電した (範囲: 2.85–4.3 V, 1 C = 148 mA g⁻¹). 充放電容量は電極中の Li–Mn スピネルナノ粒子の 重量基準で表記した (グラフェンの容量分を含む充放電容量を表記).

Figure 3-26. Li–Mn スピネルナノ粒子–グラフェンの充放電曲線. 0.1 C で充電した後, 10 C で放電した(範囲: 2–4.3 V, 1 C = 148 mA g⁻¹). 充放電容量は電極中の Li–Mn スピネ ルナノ粒子の重量基準で表記した.

Figure 3-27. Li–Mn スピネルナノ粒子–グラフェンの充放電曲線. 0.1 C で充電した後, 20 C で放電した(範囲: 2–4.3 V, 1 C = 148 mA g⁻¹). 充放電容量は電極中の Li–Mn スピネ ルナノ粒子の重量基準で表記した.

Figure 3-28. Li-Mn スピネルナノ粒子-グラフェンの充放電曲線. 0.1 C で充電した後, 50 C で放電した(範囲: 2-4.3 V, 1 C = 148 mA g⁻¹). 充放電容量は電極中の Li-Mn スピネ ルナノ粒子の重量基準で表記した.

Figure 3-29. Li–Mn スピネルナノ粒子–グラフェンのスピネル構造中への Li⁺脱挿入に対応する領域での充放電曲線(範囲: 2.85–4.3 V). 充放電は 0.1 C (14.8 mA g⁻¹)で行った. 充放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-30. Li–Mn スピネルナノ粒子–グラフェンのスピネル構造中への Li⁺脱挿入に対応する領域での充放電曲線(範囲: 2.85–4.3 V). 充電は 0.1 C, 放電は 10 C で行った(1 C = 148 mA g⁻¹). 充放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-31. Li–Mn スピネルナノ粒子–グラフェンのスピネル構造中への Li⁺脱挿入に対応する領域での充放電曲線(範囲: 2.75–4.3 V). 充電は 0.1 C, 放電は 20 C で行った(1 C = 148 mA g⁻¹). 充放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-32. Li–Mn スピネルナノ粒子–グラフェンのスピネル構造中への Li⁺脱挿入に対応する領域での充放電曲線 (範囲: 2.6–4.3 V). 充電は 0.1 C, 放電は 50 C で行った (1 C = 148 mA g⁻¹). 充放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-33. Li–Mn スピネルナノ粒子–グラフェン(実線), グラフェン(点線)の充放電曲線. 充電は 0.1 C (14.8 mA g⁻¹). 放電は各レートで 3 サイクルずつ行った(範囲: 2.85–4.3 V). 充放電容量は電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-34. Li–Mn スピネルナノ粒子–グラフェンの 100 C での低電位までの充放電曲線 (範囲: 1.1–4.3 V). 充電は 0.1 C, 放電は 100 C で行った (1 C = 148 mA g⁻¹). 充放電容量 ば電極中の Li–Mn スピネルナノ粒子の重量基準で表記した.

Figure 3-35. Li-Mn スピネルナノ粒子-グラフェンの充放電曲線. 放電は 0.1 C (14.8 mAg⁻¹), 充電は各レートで3サイクルずつ行った(範囲: 2.85-4.3 V). 充放電容量 は電極中の Li-Mn スピネルナノ粒子の重量基準で表記した.

3.3.3. 酸化触媒特性

3.3.3.1. 酸化求核法によるチオシアネートの合成

チオシアネートは、生化学だけでなく、化学においても、重要な化合物であり、抗菌 剤、抗喘息薬、殺菌剤、殺虫剤、加硫促進剤等の様々な用途で有用であることが知られ ている。^[4] 脂肪族のチオシアネートは、一般的には、量論量の金属チオシアニドを用い たハロゲン化アルキルの求核置換反応で合成されており、ハロゲン化水素やイソチオシ アネートが副生成物として形成される(Figure 3-36a)。^[42] また、芳香族のチオシアネー トは、Sandmeyer 反応によって合成されることが多いが、副生成物として、Cu 塩が生 成する (Figure 3-36b)。^[43] チオシアネートを合成する際、チオールは入手容易な原料で あると考えられるが、チオールは強い求核剤であるため、チオールと求核剤の直接的な 反応によるチオールのシアノ化反応は実現困難であると考えられる。実際、p-トルエン チオールと TMSCN (TMS = trimethylsilyl) を触媒なしで反応させると、チオシアネー トは全く形成されず、S-トリメチルシリルチオールが形成された (Figure 3-37)。チオシ アネートを合成する際、チオールを原料として用いるためには、SO₂Cl₂を用いてチオー ルの塩素化等の予備修飾を行った後、求核剤を作用させる必要がある(Figure 3-36c)。 さらに、その際、二酸化硫黄と塩化水素、金属塩化物といった副生成物が生成する (Figure 3-36c)。このように、従来のチオシアネート合成法では、二段階の反応が必要 であるといった合成手順の煩雑さや有害な副生成物の生成が課題であった。

本研究では、以下に示す三段階の反応を組み合わせることで金属塩等の有害な副生成 物を形成することなく、チオールからチオシアネートを one-pot で簡便に合成可能な手 法を実現した (Figure 3-38)。上述のように、チオールと求核剤を直接反応させること は困難である。そこで、本研究では、まず、触媒によって、チオールを求核剤が求核攻 撃可能なジスルフィドへと変換した。次に、ジスルフィドへの求核剤の求核攻撃により、 チオシアネートと副生成物としてチオラート種 (S-トリメチルシリルチオール)を形成 させた。さらに、触媒により、副生したチオラート種から反応中間体となるジスルフィ ドを再度形成させた。このような戦略により、副生成物を形成させることなく、チオー ルからチオシアネートを合成可能であった。

上記の戦略を実現するためには、まず、効率的にチオールからジスルフィドを生成可能な触媒を探索する必要がある。チオールのホモカップリング反応は、触媒なしでは、ほとんど進行しなかった(Table 3-8)。そこで、種々の金属酸化物を触媒とし、シクロヘキサンチオール(1a)のホモカップリング反応を検討した(Table 3-8)。すると、特に、OMS-2と呼ばれる2×2トンネル構造を有するMn系複酸化物を触媒とした場合に、30°Cで5minという極めて穏和な条件下での短時間の反応で95%という高収率でジシクロヘキシルジスルフィド(2a)を合成可能であることが判明した。これは、OMS-2が比較的高比表面積を有しており、構造安定性に優れることに起因すると考えられる。^[44,45]また、反応溶媒として、アセトニトリルやテトラヒドロフラン(THF)、*N,N*-ジメチルアセトアミド(DMAc)等の極性溶媒を中心

とした種々の溶媒を用いることが可能であることが判明した(Table 3-9)。さらに、本研究で得た Li-Mn スピネルナノ粒子を触媒として用いたところ、OMS-2 よりも短時間で高収率にジシクロヘキシルジスルフィド(2a)が高効率に得られることが判明した(Table 3-8)。また、反応時間 1 min での OMS-2 と Li-Mn スピネルナノ粒子の触媒活性

を比較したところ、OMS-2 よりも Li-Mn スピネルナノ粒子を用いた場合の方がより高 収率でジスルフィドを合成可能であることが明らかになった(Table 3-8)。Li-Mn スピ ネルナノ粒子を触媒とし、最適条件下でチオールのホモカップリング反応の基質適用性 を検討したところ、30 ℃ で 1 min という穏和な条件かつ短時間の反応で、脂肪族チオ ールやベンジルチオール、芳香環やヘテロ環を有するチオール等の様々なチオールから 種々のジスルフィドを高収率で合成可能であった(Figure 3-39)。また、チオラート種

(S-トリメチルシリルベンゼンチオール)を基質とした場合でも、高収率でジフェニル ジスルフィド(2c)を得ることができたことから、Li-Mnスピネルナノ粒子を触媒とす ることで、チオラート種のカップリング反応の実現も可能であると考えられる

(Figure 3-39)。OMS-2、*p*-トルエンチオール、α-phenyl-*tert*-butylnitron (PBN) を含む反 応溶液の EPR 測定から、PBN とチイルラジカルのカップリングを確認した(Figure 3-40)。 このことから、OMS-2 を触媒としたチオールのホモカップリング反応は、チオールの 脱プロトンを伴う1電子酸化反応により進行しており、2つのチイルラジカルのカップ リング反応により、ジスルフィドが得られていることが判明した。

また、Li-Mn スピネルナノ粒子触媒が再使用可能かどうかを、シクロヘキサンチオール(1a)のホモカップリング反応によるジシクロヘキシルジスルフィド(2a)の合成について検討した。Li-Mn スピネルナノ粒子は、触媒として使用後、ろ過により容易に回収可能であり、ほとんど活性の低下なく、少なくとも2回の再使用が可能であった(再使用1回目の収率:99%,再使用2回目の収率:95%)。さらに、Li-Mn スピネルナノ粒子触媒は、再使用後もスピネル構造を保持していることが判明した(Figure 3-41)。一方、Li-Mn スピネルナノ粒子のBET 比表面積は未使用のもので 386 m²g⁻¹であったが、1回使用すると295 m²g⁻¹、2回使用すると283 m²g⁻¹となり、比表面積はある程度減少する傾向がみられた。これは、触媒として使用した際の触媒表面への有機物の吸着等が原因であると考えられる。

OMS-2 を触媒とし、p-トルエンチオールのシアノ化を検討した。p-トルエンチオール のシアノ化反応は、DMF や DMAc といった非プロトン性の極性溶媒を用いた際に、効 率的に進行した(Table 3-10, entry 4–7 and 13–23)。一方、アセトニトリルや THF といっ た非極性溶媒では、4-メチルフェニルチオシアネート(**3f**)は、低収率でしか得られな かった(Table 3-10, entry 1, 3, and 9–12)。プロトン性の極性溶媒であるエタノールを溶 媒とした場合、チオールのシアノ化は、ほとんど進行しなかった(Table 3-10, entry 8)。 このような溶媒効果は、プロトン性極性溶媒が求核剤のカウンターカチオンと相互作用 し、求核種の生成を促進する $S_N 2$ 反応においてみられる。この反応では、DMF や DMAc のカルボニル酸素と TMSCN の Si 中心が相互作用し、CN⁻種の生成を促進したため、非 プロトン性極性溶媒でチオールのシアノ化反応が高効率に進行したと考えられる。また、 KF といった塩基を求核触媒として添加することで、チオールのシアノ化が促進される ことが明らかになった(Table 3-10, entry 2, 13–23)。また、KF存在下であれば、アセト ニトリルといった非極性溶媒中でもチオールのシアノ化反応が効率的に進行すること が判明した(Table 3-10, entry 2)。

p-トルエンチオール(1f)のシアノ化反応において、OMS-2と本合成法で得たLi-Mn スピネルナノ粒子の触媒活性を比較した。KFを添加しない条件で比較したところ、Li-Mn スピネルナノ粒子の方がOMS-2よりも高い触媒活性を示した(Figure 3-42)。Li-Mn スピネルナノ粒子を触媒とした場合、KFを添加することなく、反応時間わずか 30 min で4-メチルフェニルチオシアネート(3f)を92%という高い収率で得ることが可能であ った。さらに、Li-Mn スピネルナノ粒子を触媒として用い、チオールのシアノ化反応に おける基質適用性を検討したところ、芳香族チオールやベンジルチオール、ヘテロ環を 有するチオール等から種々のチオシアネートを高収率で得ることに成功した

(Figure 3-43)。本研究では、以下に示す三段階の反応を組み合わせることで金属塩等の有害な副生成物を形成することなく、チオールからチオシアネートを one-pot で簡便に合成可能な手法を実現した。上述のように、チオールと求核剤を直接反応させることは困難である。そこで、本研究では、① チオールのホモカップリング反応による求核剤が求核攻撃可能なジスルフィドの形成、② ジスルフィドへの求核剤の求核攻撃によるチオシアネートとチオラート種の形成、③ 副生したチオラート種から反応中間体となるジスルフィドの形成の3つの反応を組み合わせることで、チオールからチオシアネートを簡便に合成可能な手法を確立した。

Table 3-8. シクロヘキサンチオール(1a)のホモカップリング反応における触媒の比較.^[a]

Entry	酸化物 or 金属塩	Yield (%)
1	MgO	<1
2	Al_2O_3	<1
3	SiO_2	<1
4	Sc_2O_3	<1
5	${ m TiO_2}$	<1
6	V_2O_5	<1
7	Fe ₂ O ₃	<1
8	Co_3O_4	2
9	NiO	5
10	CuO	17
11	ZnO	<1
12	MoO ₃	<1
13	WO ₃	<1
14	Cr ₂ O ₃	<1
15	β -MnO ₂	<1
16	birnessite	<1
17	OMS-2	95
18 ^[b]	OMS-2	80
19 ^[c]	OMS-2	32
20	Li-Mn スピネルナノ粒子	>99
21 ^[c]	Li-Mn スピネルナノ粒子	>99
22 ^[d]	KF	<1
23	触媒なし	<1

[a] 反応条件: 酸化物等の触媒 (50 mg), シクロヘキサンチオール (0.5 mmol), アセトニトリル (2 mL), 30 °C, O₂ (1 atm), 5 min. [b] OMS-2 (10 mg), 60 °C. [c] 反応時間 1 min. [d] KF (0.13 mmol).

Table 3-9. シクロヘキサンチオール(1a)のホモカップリング反応における溶媒の比較.^[a]

Entry	溶媒	Yield (%)
1	アセトニトリル	80
2	THF	91
3	DMF	96
4	DMAc	>99
5	エタノール	70
6	ジクロロメタン	50
7	クロロホルム	26
8	n-ヘキサン	35
9	トルエン	14

[a] 反応条件: OMS-2 (50 mg), シクロヘキサンチオール (0.5 mmol), 溶媒 (2 mL), 30 °C, O₂ (1 atm), 5 min. THF = tetrahydrofuran, DMF = *N*,*N*-dimethylformamide, DMAc = *N*,*N*-dimethylacetamide.

Table 3-10. 様々な反応条件での p-トルエンチオール (1h) のシアノ化.^[a]

Entry	···六 +七	求核触媒 (mmol)	TMSCN (mmol)	反応時間 (h)	Yield (%) ^[b]		
	俗娱				1f'	2f	3f
1	アセトニトリル	_	2	1	2	95	1
2	アセトニトリル	KF (0.25)	2	1	<1	<1	>99
3	THF	_	2	1	9	82	3
4	DMF	_	2	1	<1	36	59
5	DMF	_	2	2	<1	20	77
6	DMF	_	2	4	<1	7	90
7	DMAc	_	2	1	<1	47	53
8	エタノール	_	2	1	<1	99	<1
9	ジクロロメタン	_	2	1	1	94	5
10	クロロホルム	_	2	1	1	91	8
11	n-ヘキサン	_	2	1	8	87	3
12	トルエン	_	2	1	8	88	4
13	DMF	KF (0.13)	2	1	<1	7	92
14	DMF	KF (0.25)	2	1	<1	<1	>99
15	DMF	KF (0.5)	2	0.5	<1	<1	>99
16	DMF	Na ₂ CO ₃ (0.25)	2	1	<1	30	69
17	DMF	K ₂ CO ₃ (0.25)	2	1	<1	<1	>99
18	DMF	NaOAc (0.25)	2	1	<1	6	94
19	DMF	NaOH (0.25)	2	1	<1	33	64
20	DMF	KF (0.25)	0.5	1	<1	19	78
21	DMF	KF (0.25)	0.75	1	<1	<1	>99
22	DMF	KF (0.25)	1	1	<1	1	99
23	DMF	KF (0.25)	1.5	1	<1	<1	>99

[a] 反応条件: OMS-2 (50 mg), 求核触媒 (0-0.5 mmol), 1 h (0.5 mmol), TMSCN (0.5-2 mmol), 溶媒 (2 mL), 30 °C, O₂ (1 atm). [b] 収率はナフタレンを標準物質として GC 測 定により決定した.

Figure 3-36. 既報のチオシアネート合成法 ((a) MSCN を用いた求核置換反応, (b) 予備修飾を施したアレーンと MSCN のカップリング反応, (c) MCN による求核置換反応, M = 金属).

Figure 3-37. 触媒なしでの p-トルエンチオールと TMSCN の反応. 反応条件: *p*-トルエン チオール (**1f**, 0.5 mmol), TMSCN (2 mmol), DMF (2 mL), 30 °C, O₂ (1 atm), 1 h. (注意: チ オールと TMSCN の反応を触媒なしで行うと, *S*-トリメチルシリルチオールと等量の HCN が生じるため, 実験は注意深く, 適切な設備で行う必要がある).

Figure 3-38. 酸化求核法によるチオールを原料としたチオシアネートの合成(本研究). 酸化剤や副生成物 (H₂O, TMSOH, TMS₂O 等, TMS = トリメチルシリル), 求核剤のカウ ンターカチオン (TMS) は省略した.

Figure 3-39. Li–Mn スピネルナノ粒子を触媒としたチオールのホモカップリング反応の 基質適用性.^[a] [a] 反応条件: Li–Mn スピネルナノ粒子 (20 mg), 基質 (0.25 mmol), アセ トニトリル (1 mL), 30 ℃, O₂ (1 atm), 1 min. [b] ベンゼンチオールの代わりに *S*-トリメ チルシリルベンゼンチオールを基質とした場合.

Figure 3-40. 反応溶液の EPR スペクトル. 石英セル (4 mm ID) に OMS-2 を加えた後, *p*-トルエンチオールのトルエン溶液と α -phenyl-*tert*-butylnitron (PBN) (ca. 1 mL, 0.25 M) を加えた. EPR スペクトルは-20 °C で 9.16 GHz で測定した. PBN とチイルラジカルのカップリング ($A_N = 1.3 \text{ mT}$, ◆) と PBN の酸化されたもの ($A_N = 0.85 \text{ mT}$, ▲) に帰属可能な 2 組のシグナルが観測された.^[46]

Figure 3-41. Li–Mn スピネルナノ粒子を触媒としたシクロヘキサンチオールのホモカッ プリング反応における触媒の再使用前後の XRD パターン ((a) 使用前, (b) 1 回目の再使 用後, (c) 2 回目の再使用後). 反応条件: Li–Mn スピネルナノ粒子 (20 mg), シクロヘキサ ンチオール (0.25 mmol), アセトニトリル (1 mL), 30 ℃, O₂ (1 atm), 1 min.

Figure 3-42. *p*-トルエンチオールのシアノ化反応における触媒の比較. 反応条件: Li–Mn スピネルナノ粒子 (25 mg), 基質 (0.25 mmol), TMSCN (1 mmol), DMF (1 mL), 30 °C, air (1 atm).

Figure 3-43. Li–Mn スピネルナノ粒子を触媒としたチオールからのチオシアネート合成 における基質適用性. 反応条件: Li–Mn スピネルナノ粒子 (25 mg), KF (0.125 mmol), 基 質 (0.25 mmol), TMSCN (1 mmol), DMF (1 mL), 30 ℃, air (1 atm).
3.3.3.2. 触媒活性の粒径依存性

Li-Mn スピネル酸化物の触媒活性の粒径依存性を検討するため、粒径の異なる Li-Mn スピネル酸化物 (Figure 3-2) を触媒として用いてシクロヘキサンチオール (1a) のカ ップリング反応を0℃で検討した(Figure 3-44)。最も粒径が小さく、高比表面積なLi-Mn スピネルナノ粒子(本合成法で合成)が最も高い触媒活性を示した(Figure 3-44)。 触媒として用いた Li-Mn スピネル酸化物の粒径が大きくなり、BET 比表面積が小さく なるにつれて触媒活性が低下する傾向がみられた(Figure 3-44)。反応初速度は、BET 比表面積にほぼ比例する傾向がみられた(Figure 3-44b)。一方、反応時間が長くなるほ ど、Li-Mn スピネル酸化物の触媒活性の差が顕著に観測された。固相法で合成した粒径 の大きな Li-Mn スピネル酸化物(バルク)では、反応時間 10h でもジシクロヘキシル ジスルフィド(2a)は収率が 0.66% でしか得られなかった。一方、本合成法で合成した Li-Mnスピネルナノ粒子では、反応時間2hで99%以上の収率でジシクロヘキシルジス ルフィド(2a)を合成可能であった(Figure 3-44a)。Mn 酸化物を酸化触媒として利用 する際、Mn の酸化還元(特に,酸素による触媒中の Mn の再酸化)が速やかに進行す ることが触媒反応を円滑に進行させる上で重要であると考えられる。触媒の粒径が小さ くなり高比表面積になると、表面エネルギーの影響が無視できなくなると考えられる。 近年、表面エネルギーの影響により、金属酸化物の酸化還元平衡がナノ粒子とバルクで 異なることが報告されている。^[47] Li-Mn スピネル酸化物の粒径が小さくなるにつれて Mnの酸化還元が速やかに進行したため、Li-Mnスピネル酸化物の比表面積のみに依存 しない大きな触媒活性の違いがみられたと考えられる。

Figure 3-44. シクロヘキサンチオールのホモカップリング反応での粒径の異なる Li–Mn スピネル酸化物の触媒活性の比較((a) 反応プロファイル, (b) 反応初速度). 反応条件: Li–Mn スピネルナノ粒子 (20 mg), シクロヘキサンチオール (1.25 mmol), アセトニトリル (5 mL), 0 °C, air (1 atm).

3.3.3.3. アンモ酸化・酸化的アミド化反応

本研究で調製した8種類のMn系複酸化物ナノ粒子(Table 2-6)を触媒とし、第1級 アルコールのアンモ酸化、アミド化反応について検討した。まず、Mn系複酸化物ナノ 粒子のベンジルアルコール(11)のアンモ酸化反応に対する触媒活性を比較した

(Table 3-11)。ベンジルアルコール(11)をアンモニア水、Mn 系複酸化物ナノ粒子、 空気 5 気圧とともにオートクレーブ中に封入し、100 ℃ (bath temperature)で 30 min 加 熱した。得られたベンゾニトリルの(21)収率を比較したところ、Co-Mn スピネルナノ 粒子を用いた場合に最も高収率でベンゾニトリル(21)を得ることができた(Table 3-11)。 Co-Mn スピネルナノ粒子と Li-Mn スピネルナノ粒子は同程度の比表面積を有するにも 関わらず、Co-Mn スピネルナノ粒子の方がニトリル合成に対して高い触媒活性を示し た(Table 3-11)。近年、Co-Mn 酸化物が酸素還元(ORR)触媒として高い活性を示すこ とが報告されている。^[31-37]このことから、Co-Mn 酸化物は他の Mn 系複酸化物と比べて 酸素の活性化に有用である可能性が考えられる。また、Mn 系複酸化物ナノ粒子の表面 構造の違いによる触媒活性の違いについて検討するため、XPS 測定を行った

(Figure 3-45)。Mn 系複酸化物のO1s 領域のピークは、3 種類の酸素種に分類すること ができる。^[48] 低エネルギー側のピークから順に、530 eV 付近のピークは、結合が飽和し た酸素種(格子酸素, Osat)、531 eV 付近のピークは、結合が不飽和な酸素種(表面に吸 着した酸素, 表面の OH 基, 酸素欠陥, Ounsat)、533 eV 付近のピークは、表面に吸着した 水(O_{water})に対応する^[48] XPSのO1sのピークのカーブフィッティングを行ったところ、 不飽和酸素種の割合(O_{unsat} / (O_{sat} + O_{unsat}))は、それぞれ、Co–Mn スピネルナノ粒子で は 0.47、Li-Mn スピネルナノ粒子で 0.38 となり、Co-Mn スピネルナノ粒子は Li-Mn ス ピネルナノ粒子と比べて、不飽和酸素種の割合が大きいことが明らかになった。このよ うな、触媒表面の不飽和酸素種が多いことも、Co-Mn スピネルナノ粒子の高い反応性 に関係している可能性が考えられる。触媒として用いたMn系複酸化物ナノ粒子のうち、 高収率でベンゾニトリルを得られたもの(Li–Mn スピネルナノ粒子, Li-birnessite ナノ粒 子, Co-Mn スピネルナノ粒子) について触媒として使用する前後で XRD 測定を行った が、いずれも、使用前後で構造変化していないことが判明した(Figure 3-46)。また、 ベンゾニトリル合成に対して最も高い触媒活性を示した Co-Mn スピネルナノ粒子を用 いて種々の第1級アルコールからのニトリル合成について検討した。Co-Mn スピネル ナノ粒子を用いることで、芳香族や脂肪族、ヘテロ環を有するアルコール等の種々のア ルコールから高い収率で様々なニトリルを比較的高収率で得ることが可能であった

(Figure 3-47)。また、Co-Mn スピネルナノ粒子は 120 ℃ といった比較的高温での反応 でも使用前後でスピネル構造を保持していることが判明した(Figure 3-46)。Co-Mn ス ピネルナノ粒子を触媒とし、基質としてベンズアルデヒドを用いて、空気 5 気圧を封入 したオートクレーブ中で 120 ℃ で 30 min 反応させた場合も 82% と高収率でベンゾニト リルを得ることができたことから、本反応は既報^[45b]で提唱されているように、(i) アル コールからのアルデヒド形成、(ii) アルデヒドとアンモニアの脱水縮合によるアルジミ ンの形成、(iii) アルジミンの酸化的脱水素によるニトリルの形成により進行したと考えられる (Scheme 3-1)。

本合成法で得た Mn 系複酸化物ナノ粒子のうち、前述のベンジルアルコールからのベ ンゾニトリル合成において比較的高い触媒活性を示したものを用い、第1級アルコール からのアミド合成が可能か検討した(Table 3-11)。すると、前述のニトリル合成の場合 とは対照的に、Li-Mn スピネルナノ粒子を用いた場合の方が Co-Mn スピネルナノ粒子 を用いた場合よりもより高い収率でアミドが生成した(Table 3-11)。アルコールからア ミドを生成させるためには、(i) アルコールからの酸化的脱水素反応によるアルデヒド の生成、(ii) アルデヒドとアンモニアの脱水縮合によるアルジミンの形成、(iii) アルジ ミンの酸化的脱水素によるニトリルの形成、(iv) ニトリルの水和によるアミドの形成を 経る必要がある。^[456] Co–Mn スピネルナノ粒子では、ニトリル生成までは進行したが、 Co-Mn スピネルナノ粒子はニトリルの水和能力が低いため、アミドが低収率でしか得 られなかったと考えられる。このようなニトリルの水和能力の違いは、Co-Mn スピネ ルナノ粒子と Li-Mn スピネルナノ粒子の表面構造の違いに由来する可能性が考えられ る。XPS 測定から、Li-Mn スピネルナノ粒子の表面には、OH 基といった不飽和な酸素 種が多く存在するため、バルクと比べ、反応性が高いと考えられる(Figure 3-45)。さ らに、Co-Mn スピネルナノ粒子よりも、Li-Mn スピネルナノ粒子表面には H₂O が強く 吸着していることが示唆された(Figure 3-45)。触媒反応は触媒粒子表面で起こるため、 ニトリルの水和反応では、水が触媒表面に吸着しやすいといったことも、反応が進行す るための重要な要素となったと考えられる。また、Li は Co よりも塩基性が強いといっ たことも、Li-Mn スピネルナノ粒子でニトリルからの水和反応が効率的に進行した要因 となった可能性が考えられる。Li-Mn スピネルナノ粒子を用いた第1級アルコールから のアミド合成の反応時間を検討したところ、反応温度 150 ℃ で効率的にアミドが生成 することが判明した(Table 3-12)。反応温度 150 °C で Li-Mn スピネルナノ粒子を用い て種々の第1級アルコールからの対応するアミドの合成を検討した(Figure 3-48)。Li– Mn スピネルナノ粒子を用いることで、芳香族や脂肪族、ヘテロ環を有するアルコール 等の様々な第1級アルコールから高い収率でアミドを合成可能であった(Figure 3-48)。 また、Li-Mn スピネルナノ粒子は 150 ℃ といった高温での反応でも使用前後でスピネ ル構造を保持していることが判明した(Figure 3-46)。Li-Mn スピネルナノ粒子を触媒 とし、基質としてベンズアルデヒドまたは、ベンゾニトリルを用いて、空気5気圧を封 入したオートクレーブ中で 130 ℃ (bath temperature) で 30 min 反応させた場合、ベンズ アルデヒドを用いた場合に 56%、ベンゾニトリルを用いた場合に 52%といった収率で ベンズアミドが得られ、ベンジルアルコールから合成した場合のベンズアミドの収率 (49%)と良い一致を示した。このことから、本反応は既報^[45b]で提唱されているよう に、(i) アルコールからの酸化的脱水素反応によるアルデヒドの生成、(ii) アルデヒド

とアンモニアの脱水縮合によるアルジミンの形成、(iii) アルジミンの酸化的脱水素によるニトリルの形成、(iv) ニトリルの水和によるアミドの形成といった過程を経て進行し

たと考えられる (Scheme 3-1)。以上の結果から、Li-Mn スピネルナノ粒子は、第1級ア ルコールからの one-pot でのアミド合成に対する優れた触媒であるといえる。また、固 相法で合成した粒径の大きな Li-Mn スピネル酸化物 (バルク)では、ニトリルやアミ ドがほとんど生成しなかったことから、粒径の大きな酸化物よりもナノ粒子の方が触媒 として優れていることが明らかになった (Table 3-11, entry 12)。さらに、第1級アルコ ールの代わりにメチルアレーンを基質とした場合でも、Li-Mn スピネルナノ粒子を触媒 とした場合、大過剰量の基質を用いることなく、高効率にアミドを得ることが可能であ った。キナルジンを基質として用いた場合、30%収率で対応するアミドを合成可能であ った (Figure 3-49)。

Scheme 3-1. 第1級アルコールのアンモ酸化・アミド化反応.^[45b]

Table 3-11. Mn 系複酸化物ナノ粒子を触媒とした第1級アルコールのアンモ酸化・酸化 的アミド化反応.

	`OH + O₂ + NH₃		CN	→ H			ОН
11			21	3 1	4 I	~	51
Entry	触媒	条件	Conversion of 11 (%)	Yield (%)			
				21	31	41	51
1	Co-Mn spinel	Α	96	84	12	nd	nd
2	Li–Mn spinel	Α	62	44	11	6	nd
3	Zn–Mn spinel	Α	39	9	22	nd	nd
4	Co-OMS-1	Α	45	14	25	nd	nd
5	Ni-OMS-1	Α	26	4	15	nd	nd
6	Mg-OMS-1	Α	19	10	7	nd	nd
7	Co-buserite	Α	29	2	19	nd	nd
8	Li-birnessite	Α	70	55	3	nd	nd
9	Co-Mn spinel	В	>99	74	nd	20	6
10	Li–Mn spinel	В	>99	51	nd	49	nd
11	Li-birnessite	В	98	76	nd	22	nd
12	Li–Mn spinel (bulk)	В	31	1	nd	nd	nd

[a] 反応条件 A: 触媒(50 mg), 基質(0.25 mmol), 1,4-ジオキサン(1 mL), 100 °C (bath temperature), 30 min, air(5 atm), 28 wt% NH₃水溶液(50 μL). 反応条件 B: 触媒(50 mg), 基 質(0.25 mmol), 1,4-ジオキサン(1 mL), 130 °C (bath temperature), 30 min, air(5 atm), 28 wt% NH₃水溶液(50 μL). nd = not detected.

Table 3-12. Li–Mn スピネルナノ粒子を触媒とした第1級アルコールの酸化的アミド化 反応の反応温度の検討.

ОН + C	0 ₂ + NH ₃ ►	2I					
日本 1000) Conversion of	Yield (%)					
汉心価度(U)		21	31	41	51		
100	62	44	11	6	nd		
130	>99	51	nd	49	nd		
150	>99	23	nd	77	nd		

反応条件: 触媒 (50 mg), 基質 (0.25 mmol), 1,4-ジオキサン (1 mL), 100–150 °C (bath temperature), 30 min, air (5 atm), 28 wt% NH₃ 水溶液 (50 µL). nd = not detected.

Figure 3-45. (a) Li–Mn スピネルナノ粒子, (b) Co–Mn スピネルナノ粒子のO 1s 領域の XPS スペクトル. 黒丸は XPS スペクトルの実際の測定データ,青線はフィッティング曲線,赤線はフィッティング曲線の和を示している. 低エネルギー側 (529.6 eV) のピークは 格子酸素,中間のピーク (530.8–531.1 eV) は表面吸着酸素あるいは表面の OH 基や酸素 欠陥,高エネルギー側 (532.7–533.1 eV) のピークは吸着水を示している.^[48]

Figure 3-46. 触媒として使用前の(a) Co-Mn スピネルナノ粒子, (d) Li-Mn スピネルナノ 粒子, (g) Li-birnessite ナノ粒子の XRD パターン. ベンジルアルコールのアンモ酸化に(b) Table 3-11 の条件 A, (c) Figure 3-47 の条件で使用後の Co-Mn スピネルナノ粒子の XRD パターン. ベンジルアルコールの酸化的アミド化反応に(e) Table 3-11 の条件 A, (f) Figure 3-48 の条件で使用後の Li-Mn スピネルナノ粒子の XRD パターン. (h) ベンジルア ルコールのアンモ酸化に Table 3-11 の条件 A で使用後の Li-birnessite ナノ粒子の XRD パ ターン.

Figure 3-47. Co-Mn スピネルナノ粒子を触媒とした第1級アルコールのアンモ酸化反応の基質適用性.反応条件: Co-Mn スピネルナノ粒子 (50 mg), 基質 (0.25 mmol), 1,4-ジオキサン (1 mL), 120 °C (bath temperature), 30 min, PO₂ = 1 atm (air 5 atm), 28 wt%アンモニア水 (50 μL). 収率は GC 測定により決定した. [a] 基質 (0.125 mmol), 24 h.

Figure 3-48. Li–Mn スピネルナノ粒子を用いた第1級アルコールからのアミド合成の基 質適用性. 反応条件: 触媒 (50 mg), 基質 (0.25 mmol), 1,4-ジオキサン (1 mL), 150 °C (bath temperature), 1 h, PO₂ = 1 atm (air 5 atm), 28 wt%アンモニア水 (50 μL). 収率は GC 測定に より決定した. [a] 基質 (0.125 mmol), 24 h.

Figure 3-49. メチルアレーンの酸化的アミド化反応. 反応条件: Li-Mn スピネルナノ粒子 (50 mg), キナルジン (0.25 mmol), 1,4-ジオキサン (1 mL), 150 °C (bath temperature), 1 h, O₂ (5 atm), 28 wt%アンモニア水 (50 μL). 収率は GC 測定により決定した.

3.3.3.4. スルフィド・アルキルアレーンの酸素化反応

本合成法で得た Li-Mn スピネルナノ粒子は、スルフィドやアルキルアレーンの酸素 化反応に対しても優れた触媒として働くことが明らかになった(Figure 3-50 and 3-51)。 Li-Mn スピネルナノ粒子を触媒とすることで、芳香族や脂肪族のスルフィドから種々の スルホキシドを高効率に得ることが可能であった(Figure 3-50)。さらに、Li-Mn スピ ネルナノ粒子を触媒として、種々のアルキルアレーンの酸素化反応が高効率に進行する ことも判明した(Figure 3-51)。

Figure 3-50. Li–Mn スピネルナノ粒子を触媒としたスルフィドの酸素化反応. 反応条件: Li–Mn スピネルナノ粒子 (50 mg), 基質 (0.5 mmol), *o*-ジクロロベンゼン (1 mL), 150 °C, O₂ (5 atm).

Figure 3-51. Li–Mn スピネルナノ粒子を触媒としたアルキルアレーンの酸素化反応. 反応条件: Li–Mn スピネルナノ粒子 (50 mg), 基質 (0.5 mmol), *o*-ジクロロベンゼン (1 mL), 150 °C, O₂ (5 atm). [a] Li–Mn スピネルナノ粒子 (25 mg), 基質 (0.2 mmol), O₂ (1 atm).

3.4. まとめ

本合成法で得た Mn 系複酸化物ナノ粒子は、極めて粒径が小さく、粒径の大きな酸化物とは異なる特性を示すことを見出した。Li-Mn スピネルナノ粒子は極めて粒径が小さく、通常ではほとんどみられない Li⁺と H⁺のイオン交換が可能となった。Li-Mn スピネルナノ粒子の充放電曲線は粒子表面の Li⁺サイトのエネルギー分布に起因するなだらかな電位変化を示した。また、Li-Mn スピネルナノ粒子をグラフェンと複合化し、導電性を向上させることで、ナノ粒子化で期待される高速放電も可能であった。本合成法で得た Mn 系スピネルナノ粒子は、酸素を酸化剤とした種々の酸化反応に対して高い触媒活性を示した。Li-Mn スピネルナノ粒子は、チオールの酸化的カップリング反応、チオールのシアノ化反応、第1級アルコール・メチルアレーンの酸化的アミド化反応、スルフィド・アルキルアレーンの酸素化反応に対して優れた触媒として機能することが明らかになった。また、Co-Mn スピネルナノ粒子は、第1級アルコールのアンモ酸化反応に対して優れた触媒として機能することが明らかになった。また、Co-Mn スピネルナノ粒子は、第1級アルコールのアンモ酸化反応に対して優れた触媒として機能した。本研究で得た極めて粒径の小さな Mn 系複酸化物ナノ粒子では、通常は粒子表面でみられる特徴が粒子全体にわたって現れ、上記のような特異的な性質を示したと考えられる。

3.5. 参考文献

- M. Fernández-García, A. Martínex-Arias, J. C. Hanson, J. A. Rodriguez, *Chem. Rev.* 2004, 104, 4063–4104.
- [2] M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, I. Honma, J. Am. Chem. Soc. 2007, 129, 7444–7452.
- [3] K. M. Shaju, P. G. Bruce, Chem. Mater. 2008, 20, 5557–5562.
- [4] M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano 2010, 4, 741–752.
- [5] H.-W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, D. K. Kim, *Nano Lett.* 2010, 10, 3852–3856.
- [6] M. Michalska, L. Lipinska, R. Diduszko, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, K. J. Kurzydlowski, *Phys. Status Solidi C* 8, 2011, 7–8, 2538–2541.
- [7] W. Tang, X. J. Wang. Y. Y. Hou, L. L. Li, H. Sun, Y. S. Zhu, Y. Bai, Y. P. Wu, K. Zhu, T. van Ree, J. Power Sources 2012 198, 308–311.
- [8] Y. Kuroda, Y. Miyamoto, M. Hibino, K. Yamaguchi, N. Mizuno, *Chem. Mater.* 2013, 25, 2291–2296.
- [9] B. J. Liddle, S. M. Collins, B. M. Bartlett, Energy Environ. Sci. 2010, 3, 1339–1346.
- [10] A. J. Fatiadi, J. Chem. Soc. B 1971, 889-894.
- [11] A. J. Fatiadi, Synthesis 1976, 65–104.
- [12] A. J. Fatiadi, Synthesis 1976, 133–167.
- [13] A. Kamimura, H. Komatsu, T. Moriyama, Y. Nozaki, *Tetrahedron* 2013, 69, 5968–5972.
- [14] A. Kamimura, Y. Nozaki, M. Nishiyama, M. Nakayama, RSC Adv. 2013, 3, 468–472.
- [15] J.-Y. Wang, G.-G. Xia, Y.-G. Yin, S. L. Suib, C. L. O'Young, J. Catal. 1998, 176, 275–284.
- [16] Y.-C. Son, V. D. Makwana, A. R. Howell, S. L. Suib, Angew. Chem. Int. Ed. 2001, 40, 4280–4283.
- [17] V. D. Makwana, Y.-C. Son, A. R. Howell, S. L. Suib, J. Catal. 2002, 210, 46–52.
- [18] Y. Wang, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 7250–7253.
- [19] K. Yamaguchi, H. Kobayashi, T. Oishi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 544– 547.
- [20] T. Uematsu, Y. Miyamoto, Y. Ogasawara, K. Suzuki, K. Yamaguchi, N. Mizuno, *Catal. Sci. Technol.*2016, 6, 222–233.
- [21] (a) J. C. Hunter, J. Solid State Chem. 1981, 39, 142–147. (b) W. I. F. David, M. M. Thackeray, L. A. de Picciotto, J. B. Goodenough, J. Solid State Chem. 1987, 67, 316–323.
- [22] Y. Tanaka, M. Tsuji, Mater. Res. Bull. 1994, 29, 1183-1191.
- [23] Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, 7, 148–153.
- [24] Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, 7, 1226–1232.
- [25] Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 1995, 7, 1722–1727.

- [26] P. Le Goff, N. Baffier, S. Bach, J. P. Pereira-Ramos, Mater. Res. Bull. 1996, 31, 63-75.
- [27] A. Dyer, M. Pillinger. J. Newton, R. Harjula, T. Möller, S. Amin, *Chem. Mater.* 2000, 12, 3798–3804.
- [28] R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 2001, 40, 2054–2058.
- [29] Z. Liu, K. Ooi, Chem. Mater. 2003, 15, 3696-3703.
- [30] J. Liu, V. Makwana, J. Cai, S. L. Suib, M. Aindow, J. Phys. Chem. B 2003, 107, 9185– 9194.
- [31] T. Ohsaka, L. Mao, K. Arihara, T. Sotomura, *Electrochem. Commun.* 2004, 6, 273–277.
- [32] Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612–13614.
- [33] F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 2011, 3, 79-84.
- [34] E. M. Benbow, S. P. Kelly, L. Zhao, J. W. Reutenauer, S. L. Suib, J. Phys. Chem. C 2011, 115, 22009–22017.
- [35] F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172–2192.
- [36] M. Wiechen, L. Spiccia, *ChemCatChem* **2014**, *6*, 439–441.
- [37] K. A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, ACS Catal. 2015, 5, 6021-6031.
- [38] JCPDS 35-0782.
- [39] (a) Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, *Langmuir*, **1992**, *8*, 1861–1867. (b) K. Sato, D. M. Poojary, A. Clearfield, M. Kohno, Y. Inoue, *J. Solid State Chem.* **1997**, *131*, 84–93.
- [40] (a) T. Ohzuku, M. Kitagawa, T. Hirai, J. Electrochem. Soc. 1990, 137, 769–775. (b) R. Huang, Y. H. Ikuhara, T. Mizoguchi, S. D. Findlay, A. Kuwabara, C. A. J. Fisher, H. Moriwake, H. Oki, T. Hirayama, Y. Ikuhara, Angew. Chem. Int. Ed. 2011, 50, 3053–3057.
 (c) B. Ebin, V. Battaglia, S. Gürmen, Ceram. Int. 2014, 40, 7029–7035.
- [41] (a) V. A. Kokorekin, A. O. Terent'ev, G. V. Ramenskaya, N. É. Grammatikova, G. M. Rodionova, A. I. Ilovaiskii, *Pharm. Chem. J.* 2013, 47, 422–425. (b) W. Zheng, A. Ariafard, Z. Lin, *Organometallics* 2008, 27, 246–253. (c) J. R. Falck, S. Gao, R. N. Prasad, S. R. Koduru, *Bioorg. Med. Chem. Lett.* 2008, 18, 1768–1771. (d) I. Kamiya, J.-I. Kawakami, S. Yano, A. Nomoto, A. Ogawa, *Organometallics* 2006, 25, 3562–3564. (e) E. Elhalem, B. N. Bailey, R. Docampo, I. Ujváry, S. H. Szajnman, J. B. Rodriguez, *J. Med. Chem.* 2002, 45, 3984–3999. (f) A. W. Erian, S. M. Sherif, *Tetrahedron* 1999, 55, 7957–8024.
- [42] (a) D. J. Bound, B. K. Bettadaiah, P. Srinivas, Synth. Commun. 2013, 43, 1312–1316. (b) Y. Liu, Y. Xu, S. H. Jung, J. Chae, Synlett 2012, 23, 2692–2698. (c) H. M. Meshram, P. B. Thakur, B. M. Babu, V. M. Bangade, Tetrahedron Lett. 2012, 53, 1780–1785. (d) J. Li, J.-J. Cao, J.-F. Wei, X.-Y. Shi, L.-H. Zhang, J.-J. Feng, Z.-G. Chen, Eur. J. Org. Chem. 2011, 229–233. (e) Z. Benfodda, F. Guillen, H. Arnion, A. Dahmani, H. Blancou, Heteroatom Chem. 2009, 20, 355–361. (f) N. Watanabe, M. Onaka, S. Uemura, Bull. Chem. Soc. Jpn. 1974, 47, 1312–1316.

- [43] (a) G. Danoun, B. Bayarmagnai, M. F. Gruenberg, L. J. Goossen, *Chem. Sci.* 2014, 5, 1312–1316. (b) A. S. Sigeev, I. P. Beletskaya, P. V. Petrovskii, A. S. Peregudov, *Russ. J. Org. Chem.* 2012, 48, 1055–1058. (c) I. P. Beletskaya, A. S. Sigeev, A. S. Peregudov, P. V. Petrovskii, *Mendeleev Commun.* 2006, 16, 250–251.
- [44] (a) S. L. Suib, Acc. Chem. Res. 2008, 41, 479–487. (b) R. N. DeGuzman, Y.-F. Shen, E. J. Neth, S. L. Suib, C.-L. O'Young, S. Levine, J. M. Newsam, Chem. Mater. 1994, 6, 815–821.
- [45] (a) T. Oishi, K. Yamaguchi, N. Mizuno, ACS Catal. 2011, 1, 1351–1354. (b) K. Yamaguchi, H. Kobayashi, T. Oishi, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 544–547. (c) Y. Wang, H. Kobayashi, K. Yamaguchi, N. Mizuno, Chem. Commun. 2012, 48, 2642–2644. (d) K. Yamaguchi, H. Kobayashi, Y. Wang, T. Oishi, Y. Ogasawara, N. Mizuno, Catal. Sci. Technol. 2013, 3, 318–327. (e) K. Yamaguchi, Y. Wang, T. Oishi, Y. Kuroda, N. Mizuno, Angew. Chem. Int. Ed. 2013, 52, 5627–5630. (f) K. Yamaguchi, Y. Wang, N. Mizuno, Chem. Chem. Int. Ed. 2013, 5, 2835–2838. (g) X. Jin, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2014, 53, 5356–5360.
- [46] G. R. Buttner, Free Radical Biol. Med, 1987, 3, 259–303.
- [47] (a) A. Navrotsky, C. Ma, K. Lilova, N. Birkner, *Science* 2010, *330*, 199–201. (b) M. R. Ranade, A. Navrotsky, H. Z. Zhang, J. F. Banfield, S. H. Elder, A. Zaban, P. H. Borse, S. K. Kulkarni, G. S. Doran, H. J. Whitfield, *Proc. Natl. Acad. Sci. USA* 2002, *99*, 6476–6481. (c) N. Birkner, A. Navrotsky, *Am. Mineral.* 2012, *97*, 1291–1298.
- [48] H. C. Genuino, Y. Meng, D. T. Horvath, C.–H. Kuo, M. S. Seraji, A. M. Morey, R. L. Joesten, S. L. Suib, *ChemCatChem* 2013, 5, 2306–2317.

第4章

総括

第4章 総括

金属複酸化物は、組成や構造に応じて多様な機能・物性を示す。金属複酸化物をナノ サイズ化することで触媒反応等の粒子表面で起こる反応や金属種の脱挿入等を高効率 に行うことができ、高機能性材料としての利用が可能になると期待される。本研究では、 電極材料、イオン交換体、触媒等の多様な用途で有用な Mn 系複酸化物に着目した。 Mn 系複酸化物の機能性材料としての利用のみならず、これまでに明らかにされていな いナノ粒子の特性を明らかにする上でも、さらに粒子径の小さなナノ粒子として目的構 造を有する Mn 系複酸化物を合成することが望まれる。

本研究では、Mn 系複酸化物の従来の合成条件と結晶構造に着目した。Mn 系複酸化物は、MnO₆ユニットが規則的に連結することにより、多様な結晶構造を形成している。 Mn 系複酸化物のうち、MnO₆ユニット間に広い空間を有し、水和イオンが MnO₆ユニット間に入ることで形成される層状構造やトンネル構造は比較的低温での合成が可能である。一方、MnO₆ユニット間に狭い空間を有するスピネル構造は、水和イオンでは形成することができず、合成には高温条件を要する。これらのことから、Mn 系複酸化物の構造中の異種金属カチオンの水和状態を制御することでMn 系複酸化物の構造をつくり分けるという着想に至った。

第2章では、有機溶媒中でLi⁺の水和を抑制することで、Li イオン電池の正極材料と して有用なLi-Mn スピネル酸化物を比較的低温で選択的に合成可能な手法を確立した。 また、意図的に水を添加して合成を行うことで、層状構造を有する Mn 系複酸化物であ る bimessite の合成も可能であった。本合成法では、結晶性前駆体よりも構造変化が容 易であると考えられるアモルファス前駆体に着目した。アモルファス前駆体からの Li-Mn スピネル酸化物の形成過程を詳細に検討したところ、特に、スピネル構造合成のた めには、アモルファス前駆体の構造中に脱水した Li⁺イオンを取り込むことが重要であ ることが判明した。さらに、有機溶媒に可溶な過マンガン酸塩を前駆体として用いるこ とで、本合成法を one-pot 反応での Li-Mn スピネルナノ粒子合成法として発展させた。 さらに、2 価の異種金属カチオンの水和状態を制御することで、本合成法を多様な構造・ 組成を有する Mn 系複酸化物ナノ粒子の one-pot 合成法として発展させた。有機溶媒中 で脱水したイオンを用いることでスピネル構造、水を添加し、水和イオンを用いること でトンネル構造や層状構造を有する Mn 系複酸化物をいずれも極めて粒径の小さなナノ 粒子として合成することが可能であることを見出した。

第3章では、本合成法で得た Mn 系複酸化物ナノ粒子のイオン交換体、電極材料、酸化触媒としての利用について検討した。本合成法で得た Mn 系複酸化物ナノ粒子は、極めて粒径が小さく、粒径の大きな酸化物とは異なる特異的な性質(Li⁺と H⁺のイオン交換特性,高速放電特性,高い酸化触媒活性)を有することを明らかにした。

本合成法の概念は、Mn 系以外の金属種に対しても適用できる可能性があり、金属複酸化物ナノ粒子の低温合成法としてさらに発展させることが可能であると期待される。 様々な金属酸化物をナノ粒子として自在につくり分けることが可能になれば、ナノ粒子 に期待される高効率なイオンの脱挿入、高速放電特性、高い触媒活性による高機能性材料の実現が可能になると考えられる。さらに、従来の合成法よりもさらに小さな金属酸 化物ナノ粒子を合成することができれば、ナノ粒子の新たな性質を明らかにすることが でき、さらなる機能性材料の開発にもつながると期待でき、学術的のみならず、工業的 にも多大なインパクトを与えると考えられる。

発表状況

原著論文

- "Oxidative Nucleophilic Strategy for Synthesis of Thiocyanates and Trifluoromethyl Sulfides from Thiols"
 Kazuya Yamaguchi, Konomi Sakagami, <u>Yumi Miyamoto</u>, Xiongjie Jin, Noritaka Mizuno Org. Biomol. Chem. 2014, 12, 9200–9206.
- [2] "Synthesis of Ultrasmall Li–Mn Spinel Oxides Exhibiting Unusual Ion Exchange, Electrochemical, and Catalytic Properties"
 <u>Yumi Miyamoto</u>, Yoshiyuki Kuroda, Tsubasa Uematsu, Hiroyuki Oshikawa, Naoya Shibata, Yuichi Ikuhara, Kosuke Suzuki, Mitsuhiro Hibino, Kazuya Yamaguchi, Noritaka Mizuno *Sci. Rep.* 2015, *5*, 15011 (doi: 10.1038/srep15011).
- [3] "Rational Low-Temperature Synthesis of Ultrasmall Nanocrystalline Manganese Binary Oxide Catalysts under Controlled Metal Cation Hydration in Organic Media" <u>Yumi Miyamoto</u>, Yoshiyuki Kuroda, Tsubasa Uematsu, Hiroyuki Oshikawa, Naoya Shibata, Yuichi Ikuhara, Kosuke Suzuki, Mitsuhiro Hibino, Kazuya Yamaguchi, Noritaka Mizuno *ChemNanoMat* 2016, 2, 297–306.

関連論文

- [1] "Tripodal Ligand-Stabilized Layered Double Hydroxide Nanoparticles with Highly Exchangeable CO₃²⁻"
 Yoshiyuki Kuroda, <u>Yumi Miyamoto</u>, Mitsuhiro Hibino, Kazuya Yamaguchi, Noritaka Mizuno
 Chem. Mater. 2013, 25, 2291–2296.
- [2] "Molybdenum-Doped α-MnO₂ as an Efficient Reusable Heterogeneous Catalyst for Aerobic Sulfide Oxygenation"
 Tsubasa Uematsu, <u>Yumi Miyamoto</u>, Yoshiyuki Ogasawara, Kosuke Suzuki, Kazuya Yamaguchi, Noritaka Mizuno *Catal. Sci. Technol.* 2016, 6, 222–233.

謝辞

本研究は、東京大学大学院工学系研究科応用化学専攻水野・山口研究室において、水 野哲孝教授、山口和也教授の御指導のもと、大学院工学系研究科博士後期課程の研究と して行ったものです。ここに、本論文に関わっていただいた全ての方々に、深く感謝の 意を表すとともに、謹んで御礼申し上げます。

水野哲孝教授には、修士課程から研究室に配属されて以来、御指導、御鞭撻頂き、大 変お世話になりました。水野教授の研究への先見性、視野の広い考え方に多くの感銘を 受けました。深く感謝いたします。これまでに学んだことを活かし、今後も精進してい く所存です。

山口和也教授には、本論文の主査を務めていただいただけでなく、修士課程在籍時か ら大変お世話になりました。研究の方針やまとめ方についてたびたびディスカッション していただき、貴重なご意見をいただきました。データや考察について考えがまとまら ない時にも、親身に相談に乗っていただきました。山口先生の豊富な知識・発想に基づ く鋭い考察は、いつも大変勉強になりました。私も見習いたいと思います。

本論文の副査をしていただいた宮山勝教授、小倉賢教授、下嶋敦准教授(早稲田大学)、 鎌田慶吾准教授(東京工業大学)には、的確かつ鋭いご指摘・ご助言をいただきました。 深く感謝いたします。

総合研究機構の幾原雄一教授、柴田直哉准教授、押川浩之氏(学術支援専門職員)に は、共同研究者として、ナノ粒子の電子顕微鏡(TEM)での観察で大変お世話になりま した。

黒田義之助教(早稲田大学)には、修士課程在籍時の2年間、直接御指導いただき、 大変お世話になりました。また、早稲田大学に異動されてからも、投稿論文執筆の際に アドバイスをいただく等、大変お世話になりました。

日比野光宏博士には、特に電気化学関連の研究でお世話になりました。データや考察、 実験方法について親身にディスカッションしていただき、論文投稿の際にアドバイスも いただきました。深く感謝いたします。

鈴木康介助教には、学部時代の出身研究室が同じこともあり、気にかけて頂きました。 また、コロキウムやミーティング、投稿論文執筆の際にアドバイスをいただき、感謝い たします。

研究室秘書の梅津千津氏には、事務手続きや書類提出等の様々な場面でお世話になり ました。たびたび優しく声をかけていただき、大変感謝しております。水野・山口研究 室に在籍されていた先輩、同期、後輩の方々にも大変お世話になりました。 最後に、私が不自由なく学生生活を送れるように陰ながら支え、あたたかく見守って くれた家族に深く感謝いたします。

> 平成 29 年 3 月 宮本 唯未