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Simulation of Kelvin-Helmholtz Instability 
at the Magnetospheric Boundary 

AKIRA MIURA 

Geophysics Research Laboratory, University of Tokyo, Japan 

A two-dimensional magnetohydrodynamic simulation of Kelvin-Helmholtz instability at the terrestrial 
magnetospheric boundary is performed by including gradients of plasma and magnetic field normal to 
the dayside low-latitude magnetospheric boundary. A magnetopause current layer is corrugated highly 
nonlinearly by the instability, and a plasma blob is formed by an interchange motion associated with the 
instability. The magnetosheath plasma flow momentum is diffused into the magnetosphere by the anom- 
alous tangential (Reynolds plus Maxwell) stresses associated with the instability, and a wide velocity 
boundary layer is formed just inside the magnetopause current layer, while the thickness of the mag- 
netopause current layer remains almost constant during the evolution of the instability. The convection 
voltage drop (integral of the convection electric field) across the velocity shear layer is amplified several 
times by the anomalous momentum transport associated with the instability. The anomalous momentum 
flux into the magnetosphere (tangential stress) reaches 0.6 to a few percent of the magnetosheath flow 
momentum flux, and this anomalous momentum flux into the magnetosphere is sufficient for accounting 
for the observed tailward momentum flux in the low-latitude boundary layer. The value of the anoma- 
lous viscosity Va, o depends importantly on the magnetosheath Alfvbn Mach number M 4, which is defined 
by a magnetosheath magnetic field component parallel to the magnetosheath flow velocity; for M A = 2.5, 
Va, o is equal to •,-0.014 x 2aV0, where 2a is the thickness of the initial velocity shear layer and V 0 is the 
total jump of the flow velocity across the magnetospheric boundary, and it increases with MA, and for 
M,• > 5.0 it is equal to ,-•0.2 x 2aV o. For a reasonable set of parameters at the dayside magnetospheric 
boundary the anomalous viscosity obtained is just the right magnitude for driving a magnetospheric 
convection in the terrestrial magnetosphere. 

1. INTRODUCTION 

Kelvin-Helmholtz (K-H) instability has long been studied 
regarding the stability of the magnetopause boundary between 
the solar wind plasma flow and the terrestrial magnetospheric 
plasma (e.g., Dungey [1955] and Parker [1958]; see also 
Getwin [1968] and Southwood [1979]), and its importance in 
the "viscouslike interaction" at the terrestrial magnetopause 
boundary has recently been emphasized [Miura, 1982, 1984, 
1985b]: Axford and Hines [1961] have suggested that a vis- 
couslike interaction along the flanks of the magnetosphere can 
permit solar wind momentum to diffuse onto closed mag- 
netospheric field lines. The resulting tailward convection flow 
would eventually be closed by an earthward return flow in the 
center of the tail, and a magnetospheric plasma convection 
(circulation) is formed inside the magnetosphere. 

Since the magnetospheric plasma convection is a plasma 
circulation by E x B electric field drift, a good measure of the 
global plasma circulation is a total convection voltage drop 
(not necessarily electrostatic potential difference but an inte- 
gral of the convection electric field) over the polar cap of the 
magnetosphere: The maximum of the convection voltage drop 
over the polar cap is 60-150 kV [Reiff et al., 1981; Wygant et 
al., 1983; Doyle and Burke, 1983], and its dominant compo- 
nent, which is controlled by a north-south component of the 
interplanetary magnetic field, is thought to be due to intercon- 
nection of interplanetary magnetic field lines with terrestrial 
magnetospheric field lines by dayside reconnection process 
[Dun•ley, 1961; Petschek, 1964; Levy et al., 1964]; for detail of 
the reconnection process, see Vasyliunas [1975] and Sonnerup 
[1979], and for its importance in the magnetospheric convec- 
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tion, see Cowley [1982]. An important and quite interesting 
observation of the plasma convection inside the terrestrial 
magnetosphere, however, is that this plasma circulation inside 
the magnetosphere has a residual component which is not 
controlled by the north-south component of the interplanetary 
magnetic field [Reiff et al., 1981; Wy•lant et al., 1983; Doyle 
and Burke, 1983]. According to suggestions by Axford and 
Hines [1961], it is natural to hypothesize that this observed 
residual plasma convection is caused by some viscouslike in- 
teraction between the flowing magnetosheath plasma and the 
stationary magnetospheric plasma. Although such a vis- 
couslike contribution to the magnetospheric convection ap- 
pears to be small (5-30 kV) in comparison with a 
reconnection-induced convection voltage drop, the determi- 
nation of the physical mechanism of the "viscouslike interac- 
tion" and its contribution to the magnetospheric convection 
by its tangential stress is important for complete understand- 
ing of the solar wind-magnetosphere interaction. 

In pursuing a viscouslike interaction process at the terres- 
trial magnetopause boundary we must notice that a classical 
viscosity by ion-ion Coulomb collision is negligibly small to 
explain the tangential stress necessary for the observed re- 
sidual plasma convection; the viscosity at the magnetopause 
boundary must therefore be essentially "anomalous," and 
some anomalous plasma process must be responsible for yield- 
ing the required momentum transport or the required vis- 
cosity. Although there is no present agreement as to the exact 
physical mechanism involved in the viscouslike drag at the 
magnetopause, it has been demonstrated [Miura, 1982, 1984, 
1985b] by using a magnetohydrodynamic (MHD) simulation 
that the Kelvin-Helmholtz instability gives an anomalous vis- 
cosity necessary for the "viscouslike interaction" at the mag- 
netopause. In that simulation it is demonstrated that when the 
magnetosheath flow velocity (or the total velocity jump at the 
magnetopause) is super-Alfv6nic with respect to a magnetic 
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Fig. 1. A model of the finite thick tangential discontinuity repre- 
senting the dayside low-latitude magnetospheric boundary on the 
equatorial plane. 

field component parallel to the flow velocity, the shear flow at 
the magnetopause becomes unstable to the Kelvin-Helmholtz 
instability and gives rise to a viscouslike drag by finite Reyn- 
olds and Maxwell stresses by the instability. Since the mag- 
netosheath Alfvbn Mach number M A, which is defined by a 
magnetosheath magnetic field component parallel to the mag- 
netosheath flow velocity is a variable depending on the inter- 
planetary magnetic field and on the external flow (mag- 
netosheath flow), it is important to see how the K-H vis- 
couslike interaction, that is, the anomalous momentum trans- 

port by the K-H instability, is controlled by the external con- 
dition (magnetosheath Alfvbn Mach number M A). The pur- 
pose of this paper is therefore to extend further the previous 
simulation model EMiura, 1985b] including gradients of 
plasma and magnetic field normal to the magnetopause and to 
investigate the dependence of the Kelvin-Helmholtz instability 
on the external variable (magnetosheath Alfv6n Mach number 
M•) and thus to obtain a more complete understanding of the 
K-H viscouslike interaction at the terrestrial magnetospheric 
boundary. 

In section 2 we explain a model of the dayside low-latitude 
magnetospheric boundary. Numerical results are presented 
and discussed in section 3. Section 4 contains a summary of 
results and discussion of their implications in the viscouslike 
interaction at the terrestrial magnetospheric boundary. 

2. MODEL 

In the present simulation we assume that a magnetospheric 
boundary is a "finite thick tangential discontinuity" because 
the magnetopause current layer and the velocity shear layer at 
the boundary are at least several finite Larmor radii thick 
[e.g., parker, 1967; Berchem and Russell, 1982]; such a tangen- 
tial discontinuity is at times observed on the dayside mag- 
netospheric boundary I-Papamastorakis et al., 1984]. It is also 
known that an initial value treatment of the Kelvin-Helmholtz 

instability is improperly posed for the velocity shear layer of 
zero thickness [Richtmyer and Morton, 1967]. 

Shown in Figure 1 is an MHD model of the finite thick 
tangential discontinuity representing the dayside low-latitude 
magnetospheric boundary on the equatorial plane (although 
we are aware that the use of MHD at the magnetopause is in 

a sense doubtful, for example, finite Larmor radius effect, an- 
isotropic pressure effect, we believe that an MHD approach is 
a necessary first step toward complete understanding of the 
magnetopause stability). In this model the magnetospheric 
boundary, where two different plasmas are in contact, is 
characterized by the shear in the flow velocity, the change of 
the magnetic field, and the gradient of the plasma density: The 
magnetosheath plasma is flowing with a velocity V0, and the 
magnetospheric plasma is stationary with a transition repre- 
sented by a hyperbolic tangent velocity shear profile. The 
magnetosheath magnetic field (solid arrows) is taken parallel 
to the flow (dashed arrows), and the magnetospheric magnetic 
field is taken transverse to the magnetosheath flow. In this 
MHD model of the finite thick tangential discontinuity the 
ratio of the thickness of the velocity shear layer to the mag- 
netopause thickness is arbitrary, but for simplicity we assume 
in the present model that this ratio is equal to unity. Therefore 
in order to represent that both flow velocity and magnetic 
field are changed in the same thickness 2a we express the flow 
velocity Voy(X ) and y and z components of the magnetic field as 
follows: 

Voy(X ) = (V0/2)[1 - tan h(x/a)] (1) 

Boy(X ) = (B0/2)[-1 -- tan h(x/a)] (2) 

Bo:(X ) = (Bo/2)[(1 + fiSH)/(1 + flsp)] 1/211 + tan h(x/a)] (3) 

where fiSH and flSl, are the plasma fl(fl = 21UoPo/Bo 2) in the 
magnetosheath and in the magnetosphere, respectively. The 
plasma pressure is taken to satisfy the total pressure balance. 
The plasma temperature is assumed uniform across the 
boundary. The magnetosheath flow is characterized by the 
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Fig. 3. Flow velocity vectors (left panels) and magnetic field vectors (right panels) at initial (T = 10) and quasi-stationary 

(T = 40) stages for the case of M• = 10, M s = 1.0, and 2k•a = 0.8 (case A of Figure 2). 

Alfvbn Mach number M A -Vo/vA, and the sound Mach 
number M s -- Vo/cs, where v• and c s are the Alfvbn speed and 
the sound speed in the magnetosheath, respectively. The 
plasma/? in the magnetosheath is given by (3/2)(M,dMs) 2 and 
that in the magnetosphere /?sv is 0.2. A periodic boundary 
condition is imposed at y = 0 and y- Ly. In the x direction 
we have placed boundaries at x--+10a, which are far 
enough from the velocity shear region to make boundary ef- 
fects negligible. Two-step Lax-Wendroff method [Richtmyer 
and Morton, 1967] with an artificial viscosity term [Lapidus, 
1967] is used to solve MHD equations. Time is normalized by 
2a/V o. More detail regarding the numerics used is described by 
Miura [1985a]. 

3. NUMERICAL RESULTS 

MHD simulation is initiated by adding a small seed of un- 
stable perturbation to the flowing equilibrium described by 
equations (1)-(3). The small seed of unstable perturbation has 
a peak velocity v x equal to 0.005Vo and a wavelength equal to 
Ly, and hence the K-H instability is treated as an absolute 
instability in the present simulation. 

Figure 2 shows temporal evolution of the peak of the x 
component of the flow velocity I%l normalized by V 0 (solid 
lines) and peak of the spatial average over one wave period of 
the total (Reynolds plus Maxwell) stress -(pVxVy - lao -• 

BxBy) normalized by P0 V02 (dot-dash lines), where the angular 
bracket represents the spatial average over one wave period 
and P0 is the plasma density in the magnetosheath, for differ- 
ent periodicity lengths Ly and for different Alfv6n Mach num- 
bers M• in the magnetosheath. For all cases treated in the 
present study, sound Mach number M s in the magnetosheath 
is 1.0. Using the wave number ky of an unstable mode, the 
periodicity length Ly is given by 

Ly-- 2rc/ky (4) 

For M a = 5.0 and M s = 1.0 the wave number satisfying 
2kya = 0.8 is nearly equal to the wave number of the fastest 
growing unstable mode. Figure 2 shows that after initial ir= 
regular evolutions of the velocity perturbations owing to the 
difference between the initial seed of the unstable perturbation 
and the exact unstable eigenfunction, all cases show linear 
growths of the velocity perturbations [Vxl, which tend to satu- 
rate in a later period. It should be emphasized here that the 

case of longer wavelength M A = 5 and 2kya = 0.4 (case D) has 
smaller growth rate than the case of M• = 5 and 2kya = 0.8 
(case B) but has a slightly larger saturation amplitude than the 
case of 2kya -- 0.8 (case B); it seems therefore that the longer- 
wavelength mode has a larger saturation amplitude than the 
shorter-wavelength mode. Such a tendency has already been 
noted in a simulation of the electrostatic transverse K-H insta- 
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Fig. 4. Three-dimensional views of the plasma pressure at four different times for M A = 10, M s = 1.0, and 2kya = 0.8 
(case A of Figure 2). 

bility [Pritchett and Coroniti, 1984]; they have found that in a 
later period of the evolution of the electrostatic transverse 
K-H instability a long-wavelength mode dominates plasma 
dynamics. For cases A, B, and D the total stress reaches 2-4 
x 0.01poVo2; this means that about 2-4% of the flow mo- 

mentum flux in the magnetosheath is transported into the 
magnetosphere by the K-H instability. The case A of M A = 10 
and 2kya = 0.8 has the largest growth rate, since the stabiliz- 
ing tension force of the magnetic field lines in the mag- 
netosheath is smallest and reaches a slightly larger amplitude 
than the case of M A = 5 and 2kya = 0.8 (case B). Owing to a 
large stabilizing tension force of magnetic field lines, the case 

C of Figure 2 (Ma = 2.5 and 2k•a = 0.5) has the smallest 
growth rate, and the total stress for this case reaches 
0.006po Vo 2 . 

Figure 3 shows flow velocity vectors (left panels) and mag- 
netic field vectors (right panels) at initial (T = 10) and quasi- 
stationary (T = 40) stages for the case of M• - 10, M s - 1.0, 
and 2kya - 0.8 (case A of Figure 2). The parallel shear flow in 
the initial stage (top left panel) is disturbed very strongly at 
T = 40; by this time the gradient of the flow velocity has been 
diffused quite markedly (bottom left panel), and a large flow in 
the positive y direction is induced in the region x > 0, which 
was originally the stationary magnetosphere. This formation 
of a wide velocity shear layer from an initially narrow velocity 
shear layer is due to the anomalous momentum transport 
associated with the K-H instability. In addition to the relax- 

ation of the flow velocity shear and a consequent diffusion of 
the flow velocity from the magnetosheath into the mag- 
netosphere it is seen in the bottom left panel that the plasma 
flow is accelerated slightly where the initial straight flow is 
deflected most by the vortex motion. Such a flow acceleration 
by the K-H instability has already been noted for the K-H 
instability in a uniform plasma [Miura, 1984], and it occurs 
because the flow vortex motion is added onto the undisturbed 

background flow. As we shall see later, this flow acceleration 
occurs in coincidence with the increase of the x component of 
the electric field E,, and thus the accelerated flow is mainly due 
to the increase of the E x B motion of the plasma. Right 
panels show that the magnetopause current layer (a region of 
the magnetic field gradient) also undulates with time and at 
T- 40 the magnetic field lines in the magnetosheath are 
stretched and twisted and the magnetopause current layer is 
corrugated highly nonlinearly (bottom right panel). In con- 
trast to the flow evolution shown in the left panels the mag- 
netopause current layer characterized by a steep gradient of 
the magnetic field has still a clear field gradient at T- 40. 
This is because in the present ideal MHD with frozen-in con- 
straint the K-H instability gives an anomalous viscosity but 
not an anomalous resistivity, which is necessary to diffuse the 
magnetopause current layer. 

Figure 4 shows three-dimensional views of the plasma pres- 
sure at four different times for M• = 10, Ms= 1.0, and 
2kya- 0.8 (case A of Figure 2). The initially straight mag- 
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Fig. 5. Flow velocity vectors (left panels) and magnetic field vectors (right panels) at quasi-stationary stages for three 
different values of M A (cases A, B, and C of Figure 2). 

netopause boundary (characterized by steep pressure gradient) 
is undulated with time, and at T = 40 the magnetopause 
boundary is deformed in a very complicated, highly nonlinear 
manner to form a plasma blob in x > 0 as a result of the 
interchange motion by the K-H instability. These panels dem- 
onstrate clearly how the plasma of the high-pressure side 
(magnetosheath) tends to penetrate into the low-pressure side 
(magnetosphere) owing to the interchange motion associated 
with the K-H instability. Notice. however, that owing to the 
frozen-in constraint in the ideal MHD, the transport of mag- 
netosheath plasma through the magnetopause onto closed 
field lines of the magnetosphere is inhibited and the plasma 
blob formed in x > 0 is still threaded by magnetic field lines of 
the magnetosheath; namely, although the momentum and 
energy are transported across the magnetopause to form a 
velocity boundary layer within the magnetopause by the pres- 
ent MHD process, the plasma mass can not be transported 
across the magnetopause by the present ideal MHD process. 

Figure 5 shows flow velocity vectors (left panels) and mag- 
netic field vectors (right panels) at quasi-stationary stages for 
three different M 4 (cases A, B, and C of Figure 2). As M A 

increases, the stabilizing tension force of magnetic field lines 
decreases in the magnetosheath, and the growth rate of the 
instability increases (see Figure 2). For all three cases, left 
panels show that the initial flow velocity gradients are diffused 
quite markedly by the instability in the quasi-stationary 
stages. Right panels show that for M A = 5 and 10 (cases B and 
A of Figure 2) the magnetopause boundary characterized by 
large gradient of the magnetic field is corrugated highly non- 
linearly and this corrugation of the magnetopause boundary is 
more noticeable for larger M•. It is also seen in right panels 
that the magnetic field is amplified along the magnetopause by 
converging flows. 

Figure 6 shows three-dimensional views of top surfaces of 
the plasma pressure distribution in the quasi-stationary stages 
for the same three cases as shown in Figure 5. For M• = 2.5 
(case C of Figure 2) the corrugation of the magnetopause 
boundary characterized by the large pressure gradient is small, 
but for M• = 5 and 10 the magnetopause boundaries are cor- 
rugated highly nonlinearly by the interchange motion associ- 
ated with the K-H instability. These panels demonstrate clear- 
ly how the plasma in the magnetosheath tends to penetrate 
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Fig. 6. Three-dimensional views of top surfaces of the plasma 
pressure distribution in the quasi-stationary stages for the same three 
cases as shown in Figure 5. 

into the magnetosphere by the K-H instability; this tendency 
is larger for larger Alfv6n Mach number M A or for larger 
plasma/• in the magnetosheath. 

In order to see effects of changing the wavelength (periodic- 
ity length) on the development of the K-H instability we show 
in Figure 7 flow velocity vectors (top left), magnetic field vec- 
tors (bottom left), and a three-dimensional view of top surface 
of the plasma pressure (right) at T -- 60 for 2kya = 0.4, M A = 
5.0, and M s -- 1.0 (case D of Figure 2). It is obvious that this 
case with longer wavelength has much wider perturbation in 
the x direction than the middle panels of Figure 5 and 6 for 

2kya- 0.8. In comparison with the case of 2kya- 0.8 (see 
middle panels of Figures 5 and 6) this case with longer wave- 
length shows larger flow acceleration (top left panel) than the 
case of 2kya = 0.8 (see middle panels of Figure 5). 

Figure 8 shows profiles (cross sections) as a function of x of 
MHD variables, that is, the x component of the electric field 

E x, the plasma/•, the density p, the temperature T, the x and y 
components of the velocity v x and vy, the z, y, and x compo- 
nents of the magnetic field B=, By, and B x, the intensity of 
magnetic field IBI, and the pressure p from top at y -- 15.7 (left 
panel) and at y-- 22.0 (right panel) for the case of M• = 5.0, 
M s = 1.0, and 2kya = 0.4 (case D in Figure 2) at T = 60. The 
dashed lines in these panels show initial profiles of those 
MHD variables; all variables are so normalized that only 
relative scales are meaningful. In the left panel, MP represents 
the magnetopause current layer, where B= has a large gradient. 
A hatched region designated as VBL is a velocity boundary 
layer formed just inside the magnetopause current layer. In 

this layer the flow velocity vy becomes substantially nonzero, 
and formation of this velocity boundary layer within the mag- 
netopause current layer is due to the anomalous momentum 
transport from the magnetosheath into the magnetosphere 
(onto the closed magnetospheric field lines) by the K-H insta- 
bility. The right panel shows a cross section passing through 
the plasma blob' in this case there are three magnetopause 
current layers. As has been already noted in Figure 3, a quite 
interesting result seen in this cross section is that in the mag- 
netosphere at x-- --4a •--0 the flow is accelerated substan- 
tially (hatched region in vy profile), and the flow velocity in the 
y direction vy reaches almost 2V o. This acceleration occurs in 
coincidence with the increase of E x in the magnetosphere, 
where the magnetic field B• is large, and is hence due to the 
increase of the E x B flow velocity. For a uniform plasma, 
such a flow acceleration by the K-H instability leads to a 
formation of a fast shock discontinuity from an initially sub- 
fast shear flow [Miura, 1984]. 

Figure 9 shows profiles in the x direction of spatial averages 
over one wave period of Reynolds stress (solid lines), Maxwell 
stress (dashed lines), the x component of the electric field E,,, 
the plasma momentum in the y direction pry, and the y com- 
ponent of the flow velocity vy from top for M•- 5.0, M s -- 
1.0, and 2 kya--0.8 (left) and for M a = 5.0, M s = 1.0, and 
2kya - 0.4 (right) at their quasi-stationary stages. The stress is 
normalized by poVo 2, and other variables are so normalized 
that only relative scales are meaningful. The dashed lines in 

the profile of E x, pry, and vy show initial profiles of those 
MHD variables. For both cases, the Reynolds stress becomes 
larger than 2% of the flow momentum flux poVo 2, and the 
plasma momentum pry in the magnetosheath is diffused from 
the magnetosheath into the magnetosphere (hatched region). 
In coincidence with this momentum transport the magnitude 
of the electric field IExl increases from dashed lines to solid 
lines. 

Notice that those stresses become large where the electric 
field E,, is amplified. For both cases, the Reynolds stress (solid 
line) is larger than the Maxwell stress (dashed line). The Reyn- 
olds stress for 2kya = 0.4 (right panel) becomes nonzero in 
much wider region than the case of 2kya - 0.8 (left panel), and 
the velocity boundary layer for 2kya = 0.4 (right panel) be- 
comes wider than the case of 2kya- 0.8 (left panel). It seems 
therefore that a longer-wavelength mode leads to a wider ve- 
locity boundary layer. In order to evaluate the contribution of 
the K-H instability to the magnetospheric convection we have 
calculated the spatial average over one wave period of the 
convection potential drop (not necessarily electrostatic poten- 
tial but integral of the electric field) across the boundary layer 
defined by •(E.,,) dx, where the angular bracket denotes spa- 
tial average over one wave period. The ratio of this integral of 
the electric field to its initial value has been calculated for two 
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Fig. 7. Flow velocity vectors (top left), magnetic field vectors (bottom left), and three-dimensional view of top surface of 
the plasma pressure (right) at T = 60 for 2k•a = 0.4, Ma = 5.0, and M s = 1.0 (case D of Figure 2). 

different cases shown in Figure 9, and we obtained those 
ratios of 4.70 (left panel) and 6.46 (right panel); thus the anti- 
sunward convection voltage drop (strength) is amplified sev- 
eral times by the anomalous momentum transport associated 
with the K-H instability, and this ratio is larger for a longer- 
wavelength mode. 

In order to see the dependence of the anomalous momen- 
tum transport on the magnetosheath Alfv•n Mach number 
M• we define the anomalous viscosity according to the defini- 
tion of eddy viscosity in ordinary hydrodynamics [e.g., Lamb, 
1945] as follows: 

/ / . \/ .-1 
V•n o = -- (PVxV • -- BxB•/ #o)(d•pv• // dx) 

where the bracket represents spatial average over one wave 

period. The part of V,n o owing to the Reynolds stress --pv•v• is 
the anomalous eddy viscosity in ordinary hydrodynamics, and 
the part due to the Maxwell (magnetic) stress BxB•/#o is the 
anomalous magnetic viscosity [e.g., Eardley and Lightman, 
1975]. Figure 10 shows time evolutions of the eddy viscosity 
v,aay, the magnetic viscosity Vm, •, and the total (eddy plus 
magnetic) anomalous viscosity v,. o normalized by 2aV o at 
x = 0 for M n = 5 and 2k•a = 0.8 (case B in Figure 2). All 
viscosities grow exponentially with time, reach the maximum 
values at T = 36 ,-• 38, and then decay. At T = 37 the anoma- 

lous viscosity becomes ,-•0.2 x 2aV o. Figure 11 shows the de- 
pendence of the maximum anomalous viscosity at x = 0 at- 
tained during the time evolution on the Alfv•n Mach number 
Mn in the magnetosheath. For Mn = 2.5 the anomalous vis- 
cosity v,. o is minimum and equal to ,-•0.014 x 2aVo, and with 
the increase of M n from 2.5 to 6.0 the anomalous viscosity v,. o 
increases, and for M• larger than 5.0 it reaches almost con- 
stant value ,-•0.2 x 2aV o. Therefore depending on the value of 
the Alfv•n Mach number M n in the magnetosheath, the 
anomalous viscosity v,. o takes a value of 0.01-0.2 x 2aVo. 
Figure 12 shows the ratio of the magnetic viscosity Vm, • at 
x = 0 to the eddy viscosity v,aay at x = 0 as a function of M_•. 
For Mn = 2.5, Vm, • is comparable to v,aay, but this ratio de- 
creases considerably with the increase of M•. 

4. SUMMARY AND DISCUSSION 

For a realistic model of the dayside low-latitude mag- 
netospheric boundary characterized by gradients of plasma 
and magnetic field normal to the magnetopause we have per- 
formed MHD simulations of Kelvin-Helmholtz instability. 
Important results obtained by these simulations are summa- 
rized as follows: 

1. The magnetopause current layer is highly nonlinearly 
corrugated by the K-H instability, and a plasma blob is 



3202 MIURA' KELVIN-HELMHOLTZ INSTABILITY AT THE MAGNETOPAUSE 

0.0 

-1 .0 

0.0 
1o0 

0.0 

1o0 

0.0 
1.0 

0.0 

-1..13 
1.0 

0.0 

1.0 

0.0 

1.0 

0.0 

-1 .0 
1.0 

0.0 

-1 .0 
1.0 

0.0 
1.0 

0.0 
-10 

T 

BI - 

Yx 

0.0 10 0 -10 0 0 .0 10 

x/a x/a 

0.0 

1.0 

1.0 

0.0 

1.0 

0.0 
1.0 

0.0 

1.0 

0.0 

1.0 

0.0 

-1 oC) 
1.0 

0.0 

-1 .0 
1.0 

0.0 

O 0 
1.0 

0.0 
0 

Fig. 8. Profiles as a function of x of MHD variables, that is, the x component of the electric field Ex; the plasma//; the 
density p; the temperature T; the x and y components of the velocity %, and vy; the z, y, and x components of the 
magnetic field B:, By, and Bx; the intensity of magnetic field IBI; and the pressure p from top at y = 15.7 (left panel) and at 
y = 22.0 (right panel) for the case of M A = 5.0, M s = 1.0, and 2kya = 0.4 (case D in Figure 2) at T = 60. The dashed lines 
in these panels show initial profiles of those MHD variables. MP is the magnetopause current layer, and VBL is a velocity 
boundary layer formed just inside the magnetopause current layer. 

formed by the interchange motion associated with the K-H 
instability. 

2. The corrugation of the magnetopause current layer be- 
comes more noticeable with the increase of the magnetosheath 
Alfv6n Mach number M A, where M A is defined by using a 
magnetosheath magnetic field component parallel to the mag- 
netosheath flow. 

3. A wide velocity boundary layer is formed just inside the 
magnetopause current layer by the anomalous momentum 
transport associated with the K-H instability. 

4. Where the vortex motion is added onto the undisturbed 

background flow, the plasma flow is accelerated substantially 
by the K-H instability. This flow acceleration is due to the 
increase in the electric field drift E x B. 

5. For a longer-wavelength mode the saturation ampli- 
tude of the K-H instability becomes larger, and the corruga- 
tion of the magnetopause current layer occurs in much wider 
region in the x direction. 

6. The convection electric field in the magnetosphere re- 
sponsible for the E x B sheared plasma flow is amplified by 
the K-H instability, and the total voltage drop (not necessarily 
electrostatic potential but an integral of the electric field) 
across the velocity boundary layer is amplified several times. 

7. The magnetosheath plasma flow momentum is diffused 
into the magnetosphere by the anomalous tangential (Reyn- 
olds plus Maxwell) stresses associated with the K-H insta- 
bility, and the velocity shear layer is widened by the insta- 
bility, whereas the thickness of the magnetopause current 
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component of the flow velocity vy from top for MA = 5.0, M s = 1.0, and 2kya = 0.8 (left panel) and for M• = 5.0, M s = 1.0, 
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viscosity Vmag, and the total (eddy plus magnetic) anomalous viscosity 
Vano at x = 0 for MA = 5 and 2kya = 0.8 (case B in Figure 2). 

In the present two-dimensional model of the K-H instability 
at the magnetospheric boundary we have neglected a fact that 
magnetic field lines in the magnetosphere are tied to the iono- 
sphere. We have also assumed in the present model that the 
magnetosheath flow velocity is smaller than twice the fast 
magnetosonic speed, although actually the magnetosheath 
flow velocity reaches twice the fast magnetosonic speed at 
somewhere in downstream flank. For superfast shear flow with 

Vo/v f > 2, where vf is the fast magnetosonic speed, the evanes- 
cent eigenmode is no more unstable, and the K-H instability 
becomes unstable only when the radiating boundary condition 
is imposed [Blumen et al., 1977; Drazin and Davey, 1977-]. The 
energy being radiated from such a superfast shear layer, the 
growth rate of the K-H instability for the superfast shear flow 
in the downstream flank, is quite small compared with the 
growth rate for the subfast shear flow on the dayside; there- 
fore although we may consider that the K-H instability is 
dynamically important as a viscouslike drag where the mag- 
netosheath flow speed remains smaller than twice the fast 
magnetosonic speed, the consequence of the K-H instability in 
the downstream flank, where the velocity jump becomes larger 
than twice the fast magnetosonic speed, is not obvious from 
the present simulation. 

From above considerations it is apparent that in consider- 
ing K-H instability at the magnetopause we must notice the 
presence of two important time scales z w and z a, where % is a 
travel time of the Alfv6n wave propagating from the mag- 
netopause to the ionosphere and returning back to the mag- 
netopause after reflection from the ionosphere and % is a 
dynamical time scale required for the magnetosheath flow to 

layer remains almost constant. The total stress reaches 0.6 to a 
few percent of the magnetosheath flow momentum flux. 

8. The value of the anomalous viscosity Van o depends im- 
portantly on the magnetosheath Alfv6n Mach number M A 
defined by the magnetosheath magnetic field component 
parallel to the magnetosheath flow velocity. For M A = 2.5, 
van o is equal to --•0.014 x 2aV o and it increases with M•, and 
for M• > 5.0 it is equal to ,-,0.2 x 2aV o. 

The present simulation results indicate that the mag- 
netopause current layer is highly nonlinearly corrugated by 
the K-H instability. These results are consistent with observa- 
tions by Aubry et al. [1971] of large-amplitude oscillations of 
magnetopause. According to Aubry et al. [1971], the large- 
amplitude oscillations of the magnetopause have periods from 
3.5 to 6 min. For the fastest growing unstable mode treated in 
the present simulation we have 2aky = 0.8 and tor/ky = Vol2. 
Therefore if we assume a = 1000-3000 km and V o = 300 km/s, 
we obtain the wavelength of the fastest growing mode of the 
K-H instability 2- 16 x 103-47 x 103 km, and its wave 
period z = 107-313 s, which is comparable to the observed 
periods of the boundary oscillations. The formation of a wide 
velocity boundary layer within the magnetopause current 
layer (see left panel of Figure 8) as a result of the K-H insta- 
bility is consistent with observations of a tailward flow in the 
low-latitude boundary layer by Eastman and Hones [1979] 
and Williams et al. [1985]. Furthermore, the present results 
showing that a plasma blob is formed by the K-H instability 
and that the velocity boundary layer has a variable thickness 
and contains plasma eddies are in reasonable agreement with 
observations by Sckopke et al. [1981] if we interpret that in 
their observation a satellite is passing through the plasma 
blob formed by the K-H instability. 
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Fig. 11. The dependence of the maximum anomalous viscosity at 
x = 0 attained during the time evolution on the magnetosheath 
Alfv6n Mach number MA. 
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travel from the subsolar point to a point, where Vo/v.r = 2 is 
satisfied on the downstream flank of the magnetosphere. 

For the fastest growing mode of the K-H instability we 
obtain 

7K.Zw -.• 0.2( Vo /v,O(l ll /2a) 

where ?•:. is the growth rate of the K-H instability, V o is the 
total jump of the flow velocity across the boundary, v,• is the 
average Alfv•n speed along closed field lines inside the bound- 
ary, I ii is the length of the closed field line, and 2a is the 
thickness of the velocity shear layer. For a reasonable set of 
parameters at the dayside magnetopause, that is, V 0 = 200 
km/s, v A = 2000 km/s, lit- 20 R s, and 2a = 1000 km [Ber- 
chem and Russell, 1982] we obtain ?•.Zw ~ 3. It is therefore 
reasonable to assume that although the growth rate of the 
K-H instability may be reduced somewhat by the three- 
dimensional effect by coupling to the ionosphere, the stability 
of the magnetopause boundary itself is not altered by this 
three-dimensional effect; namely, the K-H instability at the 
magnetopause boundary cannot be suppressed by this three- 
dimensional effect. 

For a reasonable set of parameters we also obtain ?•% ~ 
ld/• • la/l e ~ 4, where le is the e-folding distance of the fastest 
growing mode of the K-H instability, •. is the wavelength of 
that mode, and la is the distance from the subsolar point to the 
point where Vo/v s ~ 2 is satisfied (in the absence of knowledge 
on where Vo/v • ~ 2 is satisfied we have assumed that la is 
comparable to the distance from the subsolar point to dawn 
or dusk flank of the magnetosphere); therefore the K-H insta- 
bility can e-fold several times and can impose a substantial 
tangential stress on the boundary before the magnetosheath 
flow reaches a tail flank. In a highly nonlinear stage of the 

K-H instability the longest possible wavelength mode of the 
K-H instability may dominate the plasma dynamics (Pritchett 
and Coroniti [1984]; a similar tendency that a wavelength of 
the instability increases with a spatial growth of the instability 
is also seen in Wu's [1986] simulation of the convective K-H 
instability); however, in view of the fact that the dynamical 
time scale % over the dayside magnetopause is finite and not 
much larger than the e-folding time of the K-H instability, 
only the K-H mode which has a linear growth rate com- 
parable to that of the linearly fastest growing mode of the 
K-H instability is expected to have enough time to grow into 
a large amplitude and to have a dominant effect in imposing 
the tangential stress on the flank side of the magnetospheric 
boundary. Such a speculation is consistent with the fact that 
the observed wavelength of the boundary wave (ripple) on the 
dayside magnetopause boundary [Lepping and Burlaga, 1979] 
is 47 x 103 km and is comparable to the wavelength of the 
linearly fastest growing mode of the K-H instability. 

It should be emphasized here that although a saturation of 
the K-H instability in the present simulation occurs under the 
use of the idealized boundary condition, that is, the periodic 
boundary condition in the y direction, the saturation mecha- 
nism in the present simulation is essentially a nonlinear pro- 
cess as in the case of the actual K-H instability at the mag- 
netopause; namely, the saturation of the K-H instability 
occurs by the anomalous momentum transport from mag- 
netosheath into the magnetosphere by the finite Reynolds 

stress --p%,vy and Maxwell stress B•,By/# o, which relax the 
velocity shear profile. In the present simulation an initial seed 
of the unstable perturbation is chosen to have a wavelength 
equal to the periodicity length. Therefore the role of the 
boundary condition in the y direction, that is, to impose a 
periodic boundary condition at boundaries, is just to select a 
mode which has a wavelength equal to the periodicity length. 
In simulation runs A, B, and C this periodicity length is equal 
to the wavelength of a linearly fastest growing mode of the 
K-H instability. Since the linearly fastest growing mode is a 
mode, which grows fastest, this mode dominates the plasma 
dynamics in the early phase of the K-H instability, and it 
imposes a finite tangential stress on the magnetopause bound- 
ary. Therefore when the dynamical time scale % is finite and 
not much larger than the e-folding time of the fastest growing 
mode of the K-H instability, this linearly fastest growing mode 
plays a dominant role in imposing the finite tangential stress 
on the magnetopause boundary. On the opposite situation, 
when the dynamical time scale % is much larger than the 
e-folding time of the fastest growing mode of the K-H insta- 
bility, we expect that the longest possible wavelength mode 
has enough time to grow into a large amplitude and is there- 
fore responsible for imposing a finite tangential stress on the 
magnetopause boundary; as we have seen, however, at the 
dayside magnetopause, •:• seems to be rather small if 1 a is 
really comparable to the distance from the subsolar point to 
dawn or dusk flank of the magnetosphere. Therefore on the 
basis of an assumption that % for the terrestrial mag- 
netosphere is not much larger than the e-folding time of the 
fastest growing mode of the K-H instability, we may be able 
to justify to use the periodic condition with the periodicity 
length equal to the wavelength of the fastest growing mode for 
evaluating the nonlinear tangential stress by the K-H insta- 
bility at the magnetopause. 

Although the K-H instability in the magnetospheric inertial 
frame is likely to be convective (that is, growing spatially with 
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distance), the instability becomes absolute in the wave frame 
moving with a speed Vol2 (notice that the wave dispersion of 
the K-H instability in the magnetospheric inertial frame is 
ror/ky- Vo/2 ). Therefore the difference between the absolute 
growth and the convective growth does not seem to be essen- 
tial for considering the effect of the K-H instability on the 
momentum transport at the magnetopause. Instead, the most 
essential point in considering the effect of the K-H instability 
on the momentum transport seems to be determining a wave- 
length of the K-H instability which dominates the plasma 
dynamics at the magnetopause, since the saturation amplitude 
of that mode and hence the anomalous momentum flux by 
that mode depends on the wavelength of the K-H mode as we 
have seen in Figure 2 (that is, a longer-wavelength mode has a 
larger saturation amplitude and a larger stress; see also Prit- 
chett and Coroniti [1984]). Wu [1986] has made an MHD 
simulation of the K-H instability for convective case, where 
the setup of the simulation and the boundary condition are so 
chosen that the wavelength of the K-H instability is allowed 
to change in the evolution of the K-H instability. As was 
pointed out already, the observation of boundary wave on the 
dayside magnetopause [Lepping and Burlaga, 1979] seems to 
suggest that the wavelength of the most dominant mode of the 
K-H instability at the magnetopause is close to the wave- 
length of the fastest growing unstable mode of the K-H insta- 
bility. On the basis of these discussions we use in the following 
the result of the evaluation of the anomalous momentum 

transport in section 3 for evaluating the anomalous momen- 
tum transport by the K-H instability in the solar wind- 
magnetosphere interaction. 

Here we should mention the role of the initial seed of the 

K-H instability. In the present simulation we initiate the simu- 
lation by adding an initial seed of unstable perturbation with 
a peak velocity v x equal to 0.005V o to the flowing equilibrium. 
Such a seed perturbation is also necessary for the actual K-H 
instability at the magnetopause. Since the magnetosheath flow 
in the downstream of the bow shock includes many kinds of 
perturbations, we expect that those finite amplitude pertur- 
bations play a role of the initial seed for the K-H instability. 
Although the amplitude of such a perturbation is unknown, 
the fact that the magnetopause is nearly always in motion 
[e.g., Williams, 1980] possibly by the K-H instability suggests 
that the perturbation (seed) of sufficient amplitude (sufficient 
so that the K-H unstable mode saturates after several e- 

folding growths of the mode) is nearly always present at the 
subsolar region of the magnetopause, where the K-H insta- 
bility is initiated. 

Regarding the anomalous momentum transport by the K-H 
instability, the present simulation results indicate that the 
anomalous viscosity by the K-H instability van o reaches 
•--0.01-0.2 x 2aVo, and the anomalous stress (anomalous mo- 
mentum flux) reaches •--0.006-0.03 x poVo 2, where V o is the 
total velocity jump and 2a is the thickness of the velocity 
shear layer. If we substitute a reasonable set of parameters on 
the dayside magnetopause, 2a •-- 1000 km [Berchem and Rus- 
sell, 1982], V o • 100 km/s, into the above viscosity formula we 
obtain van o •-- 10•3-2 x 10 TM cm2/s. This value of the anoma- 
lous viscosity, which is comparable to the Bohm diffusion rate 
at the magnetopause [Miura, 1984], is just the right mag- 
nitude for driving a magnetospheric convection (plasma circu- 
lation) in the terrestrial magnetosphere lAxford and Hines, 
1961; Hill, 1979]; in this context it is interesting to note that 
Paschmann et al. [1985] have found that a substantial dissi- 

pation, which is viscous in nature, is present in a rotational 
discontinuity and that viscosity is comparable to the Bohm 
diffusion rate. Although the present simulation of the K-H 
instability is performed for the tangential discontinuity, there 
is no reason why the K-H instability does not occur in the 
rotational discontinuity if there is a velocity shear in the rota- 
tional discontinuity. As we have seen, the K-H instability 
seems to provide a fundamental mechanism yielding required 
anomalous (eddy plus magnetic) viscosity for the "viscouslike 
interaction" hypothesis lAxford and Hines, 1961], which could 
explain an observed residual magnetospheric plasma convec- 
tion (circulation) not controlled by the north-south compo- 
nent of the interplanetary magnetic field [Reiff et al., 1981; 
Wygant et al., 1983; Doyle and Burke, 1983] (see also a review 
by Cowley [1982]). According to Hill [1979], the total number 
of solar wind ions per second traversing the cross-sectional 
area of earth's magnetosphere is •--1.6 x 1029 s -• On the 
other hand, the particle flux of ions in the low-latitude bound- 
ary layer which is transported tailward into the magnetotail is 
2-10 x 10 26 s -• [Eastman, 1984]. Therefore the particle flux 
that is necessary for constituting the low-latitude boundary 
layer is 0.1-0.6% of the total incident solar wind number flux. 
If we assume the momentum flux is just equal to the number 
flux multiplied by the proton mass and solar wind speed, the 
necessary momentum flux that constitutes the low-latitude 
boundary layer is 0.1-0.6% of the total incident solar wind 
momentum flux. As we have seen, this momentum flux is suf- 
ficiently provided by the anomalous momentum flux of the 
K-H instability, which reaches 0.6-3.0% of the incident solar 
wind momentum flux. 

We have seen in Figure 9 that the initial convection voltage 
drop is amplified more than 5 times by the K-H instability. 
Without instabilities the voltage drop across the mag- 
netopause is of the order of the typical ion thermal energy 
divided by the electronic charge. Therefore if we assume that 
there is a voltage drop of •--lkV across the magnetospheric 
boundary near the subsolar region, where the K-H instability 
is initiated, assuming the abundance of •--1 keV protons, this 
voltage drop (not necessarily electrostatic potential difference 
but the integral of the electric field) is amplified about 5 times 
by the K-H instability; therefore the total voltage drop includ- 
ing dawn and dusk contributions becomes •--10 kV. This 
value of the convection voltage drop by the K-H viscouslike 
interaction, when mapped over the polar cap, is consistent 
with observed value (5-30 kV) of the residual component of 
the magnetospheric convection which is not controlled by the 
north-south component of the interplanetary magnetic field 
[Reiff et al., 1981; Wygant et al., 1983; Doyle and Burke, 1983] 
(see also Williams et al. [1985] and Baumjohann and Haerendel 
[1985]). A more direct search for evidence on viscouslike in- 
teraction at the dusk magnetopause by Mozer [1984] shows 
that the voltage drop across the dusk magnetopause is at 
times extremely small (< 1 kV), and hence the viscouslike in- 
teraction is negligibly small at those times. According to the 
present picture of the K-H viscouslike interaction, such an 
observation may be explained by a speculation that at those 
times the magnetosheath flow velocity remains sub-Alfv•nic 

with respect to the magnetosheath magnetic field component 
parallel to the flow velocity, and thus the K-H instability is 
suppressed by the large magnetic tension force. 

By using a model of the magnetospheric boundary includ- 
ing gradients of plasma and magnetic field normal to the mag- 
netopause it has been demonstrated that a dayside low- 
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latitude magnetospheric boundary is a highly dynamic bound- 
ary under the presence of the K-H instability. The wavelength 
and the wave period of the K-H instability are in good agree- 
ment with observations of boundary oscillations at the mag- 
netopause. A wide velocity boundary layer is formed just 
inside the magnetopause current layer by the anomalous mo- 
mentum transport (anomalous viscosity) associated with the 
K-H instability, and the anomalous momentum flux into the 
magnetosphere is sufficient for accounting for the observed 
tailward momentum flux in the low-latitude boundary layer. 
The anomalous viscosity obtained is just the right magnitude 
for driving a magnetospheric convection in the terrestrial 
magnetosphere and the magnitude of the anomalous viscosity 
depends importantly on the magnetosheath Alfv•n Mach 
number, which is defined by using the magnetosheath mag- 
netic field component parallel to the magnetosheath flow ve- 
locity. 
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