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Abbreviations

Symbol Unit Definition Remark

ABS µmol m−2 s−1 flux density of absorbed photons α×PFD

AEF — alternative electron flow

AL — actinic light

ANOVA — analysis of variance

AS — artificial sunlight

B — blue LED light

BR — blue and red LED light

Ca Pa ambient CO2 partial pressure

Ci Pa intercellurar CO2 partial pressure

CEF-PSI — cyclic electron flow around PSI

CEF-PSII — cyclic electron flow around PSII

chl — chlorophyll

EE µmol m−2 s−1 excitation energy

ETR µmol m−2 s−1 whole-chain electron transport rate

ETRI µmol m−2 s−1 electron transport rate through PSI EI ×YI

ETRII µmol m−2 s−1 electron transport rate through PSII EII ×YII

EI µmol m−2 s−1 excitation energy distributed to PSI

EII µmol m−2 s−1 excitation energy distributed to PSII

f dimensionless fraction of excitation energy distributed to PSII
EII

EI +EII

Fd — ferredoxin

FL — fluorescent lamps

FR — far-red LED light

F ′ V steady-state fluorescence in the light

Fm V maximum fluorescence in the dark

F ′
m V maximum fluorescence in the light

Fo V minimum fluorescence in the dark

F ′
o V minimum fluorescence in the light
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ii



(continued)

Symbol Unit Definition Remark

Fv V variable fluorescence in the dark Fm −Fo

F ′
v V variable fluorescence in the light F ′

m −F ′
o

GL — growth light

Gs mol m−2 s−1 stomatal conductance

LED — light-emitting diode

LEF — linear electron flow

LHC — light-harvesting complex

LMA g m−2 leaf mass per area

n — number of replications, sample size

NAD(P)H — nicotinamide adenine dinucleotide (phosphate)

NDH — chloroplast NAD(P)H dehydrogenase-like complex

NPQ — non-photochemical quenching

PAM — pulse amplitude modulation

PFD µmol m−2 s−1 photon flux density

PPFD µmol m−2 s−1 photosynthetic photon flux density (400–700 nm)

PQ — plastoquinone

PSI — photosystem I

PSII — photosystem II

PSS dimensionless photostationary state of phytochrome

PTOX — plastoquinone (or plastid) terminal oxidase

P ′ V steady-state P700 absorbance signal in the light

Pg µmol m−2 s−1 gross photosynthetic rate Pn +Rd

Pm V maximum P700 absorbance signal in the dark

P ′
m V maximum P700 absorbance signal in the light

Pn µmol m−2 s−1 net photosynthetic rate

Po V minimum P700 absorbance signal

R — red LED light
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(continued)

Symbol Unit Definition Remark

RC — reaction center complex

RSD — relative spectral distribution
SD∫

SDλdλ

Rd µmol m−2 s−1 dark respiration rate

SD — spectral distribution

YI dimensionless quantum yield of PSI
ETRI

EI
,

P ′
m −P ′

Pm −Po

YII dimensionless quantum yield of PSII
ETRII

EII
,

F ′
m −F ′

F ′
m

Ymax, I dimensionless maximum quantum yield of PSI

Ymax, II dimensionless maximum quantum yield of PSII

YNA dimensionless quantum yield of non-photochemical energy dissipation due

to acceptor side limitation of PSI

Pm −P ′
m

Pm −Po

YND dimensionless quantum yield of non-photochemical energy dissipation due

to donor side limitation of PSI

P ′ −Po

Pm −Po

W — white LED light

WWC — water-water cycle

α dimensionless leaf absorptance

∆Pn µmol m−2 s−1 difference in Pn

λ nm wavelength
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Chapter 4

4 Interaction between the spectral photon flux density distribu-

tions of light during growth and for measurements in net pho-

tosynthetic rates

4.1 Introduction

In plants, the amounts of photosynthetic electron transport components in leaves change according to the

relative spectral distribution (RSD) of photon flux density (PFD) of light during growth (Chow et al. 1990a,

1990b; Anderson et al. 1995; Matsuda et al. 2004, 2007, 2008). In particular, the stoichiometry between

photosystem II and I complexes (PSII and PSI, respectively) responds sensitively to the RSD of growth light

(GL) (Chow et al. 1990a, 1990b; Smith et al. 1993; Walters and Horton 1994, 1995a; Pfannschmidt et al. 1999;

Wagner et al. 2008; Hogewoning et al. 2012). Within the chlorophyll (chl) absorption band (approximately

350–750 nm), longer wavelengths of light (> 680–690 nm) are estimated to be preferentially absorbed by PSI,

and PSI is drastically overexcited (e.g. Evans 1986). Monochromatic light at shorter wavelengths (< 680–

690 nm) is estimated to be preferentially absorbed by PSII (especially in the wavebands near 470 and 650

nm corresponding to the absorption peaks of chl b), or evenly absorbed by both photosystems (e.g. Evans

1986). Thus, light with a given RSD can be categorized as either PSII- or PSI-light according to whether

the excitation energy (EE) is preferentially distributed to PSII or PSI, respectively. Because photosynthetic

electron transport reactions occur in series, the electron transport rate (ETR) is limited by the slowest step

(see also Chapter 3). In this respect, any imbalance in the distribution of EE between the two photosystems

results in decreased light-use efficiency of photosynthesis (Pfannschmidt 2005; Walters 2005; Hogewoning et

al. 2012). Moreover, such imbalances can harm leaves by generating reactive oxygen species, which cause

oxidative damage to chloroplast components (Asada 1999).

In the short term, the distribution of EE is adjusted by the dynamic allocation of the light-harvesting

antenna complex of PSII (LHCII) to PSI. When state transitions are insufficient to counterbalance the un-

even distribution of EE, a long-term acclimation response occurs (see also ??). Under PSII-light, the relative

amount of the reaction center complex of PSII (RCII) to that of PSI (RCI) (RCII/RCI ratio) in leaves decreases

to balance the distribution of EE between the two photosystems. Conversely, under PSI-light, the RCII/RCI

ratio increases to achieve a balance (Chow et al. 1990a, 1990b; Smith et al. 1993; Walters and Horton 1994,

1995a; Pfannschmidt et al. 1999; Wagner et al. 2008; Hogewoning et al. 2012). In this study, the terms ‘PSII-

light’ and ‘PSI-light’ are used only in a relative context. That is, we state which should be more PSII-biased

when referring to two (or more) RSDs. In their study on Pisum sativum, Chow et al. (1990b) reported that

adjustments in photosystem stoichiometry allowed the plant to maintain a high quantum efficiency of photo-

synthesis. In that study, pea plants were grown under PSII- and PSI-light (PSII- and PSI-leaves, respectively)

and the photosynthetic quantum yield of O2 evolution was measured under PSII- and PSI-light. When mea-

sured under PSII-light, the yield was higher in PSII-leaves; when measured under PSI-light, the yield was

8



Chapter 4

higher in PSI-leaves. A similar trend was observed in other studies on Arabidopsis thaliana (Walters and Hor-

ton 1995b) and Cucumis sativus (Hogewoning et al. 2012). These studies indicated that comparisons of leaf

photosynthetic rates between plants grown under different RSDs of light can be biased depending on the RSD

of actinic light (AL), as Walters (2005) pointed out. In other words, there must be an interaction between the

RSDs of GL and AL in terms of the measured photosynthetic rate. Adjustments in photosystem stoichiometry

and the resulting changes in the distribution of EE in response to the RSD of GL appeared to explain these

observations. On the basis of this idea, supplemental far-red light (FR) was expected to trigger the interaction

because it drastically decreases the proportion of EE distributed to PSII (e.g. Evans 1986), and drastically

induces imbalanced excitation. However, it has not been experimentally validated whether supplemental FR

during growth—the simplest and clearest trigger—induces the interaction between GL and AL that affects

the measured photosynthetic rate.

Supplemental FR has attracted interest as a practical solution for controlling the R/FR ratio (i.e. the

ratio of the PFD in the red waveband to that in the far-red waveband) of light, which regulates plant growth,

development, and morphology (for a review, see Demotes-Mainard et al. 2016). Supplemental FR and/or a

lower R/FR ratio has been reported to increase the fresh and dry weight of lettuce (Li and Kubota 2009),

to enhance the water-use efficiency of cucumber seedlings (Shibuya et al. 2015), and to stimulate height

convergence in densely grown cucumber seedlings, thereby equalizing their height (Shibuya et al. 2013). These

potential advantages of supplemental FR have sometimes been contrasted with the low net photosynthetic

rate (Pn) of the leaves measured under mixture of blue and red light supplied by light-emitting diodes (LEDs)

(Shibuya et al. 2015). Because blue and red lights are typical PSII-biased lights, measuring Pn under that

light source could give higher readings for PSII-leaves than for PSI-leaves because of the way that EE is

distributed between the photosystems. If based on such a biased evaluation, the photosynthetic rates might

be overestimated for PSII-leaves and underestimated for PSI-leaves compared with the case of the evaluation

under PSI-light. Indeed, when Pn was measured under the broad waveband of FR-rich PSI-light provided

by halogen vapor lamps, there was no significant difference between Trifolium repens leaves grown with and

without supplemental FR (Heraut-Bron et al. 2000). However, the extent of the interaction has been poorly

examined, and it remains unclear whether the interaction should be taken into account when evaluating leaf

photosynthesis.

In this study, we examined the extent of the interaction between supplemental FR during growth and the

RSD of AL in terms of measured Pn values. We cultivated cucumber seedlings under white LED light with or

without supplemental FR and then measured Pn under each type of GL, light with sunlight-like RSD and blue

and red LED lights. We found a significant interaction, and therefore we further investigated the mechanisms

of the interaction by evaluating the changes in the distribution of EE under each light environment and

photosystem stoichiometry.
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4.2 Materials and methods

4.2.1 Plant material and growth conditions

Seeds of C. sativus (cv. Hokushin) were sown in rockwool (Grodan Multiblocks; Rockwool International A/S,

Hedehusene, Denmark). The seedlings were grown in a temperature-controlled growth chamber (MIR-553;

SANYO Electric Co. Ltd., Osaka, Japan) equipped with natural white fluorescent lamps (FPL55-EX-N;

IWASAKI Electric Co. Ltd., Tokyo, Japan; Fig. 4-1a). The conditions in the chamber were as follows: a

photosynthetic PFD (PPFD) of 300 µmol m−2 s−1 at the tops of plants, a 16-h light/8-h dark photoperiod, and

25/20◦C day/night air temperatures. The PPFD was measured using a quantum sensor (LI-190SA with LI-250;

LI-COR Inc., Lincoln, NE). Outside air was introduced into the chamber using an air pump at a flow rate of

4 L min−1 (air exchange rate: approximately 0.5 h−1) to keep CO2 concentrations close to atmospheric levels.

The relative air humidity and CO2 concentration inside the chamber were maintained at approximately 50%

and higher than 400 µmol mol−1, respectively. The rockwool was continuously subirrigated with tap water

until the seeds germinated (3–4 days after sowing) and subsequently with a commercial nutrient solution (Ot-

suka House A Prescription; Otsuka AgriTechno Co. Ltd., Tokyo, Japan) adjusted to an electrical conductivity

of 130 mS m−1. Plants were subjected to the treatments described in the following section from 8 days after

sowing, when the first true leaves had emerged. The rockwool was subirrigated with the nutrient solution for

30 min d−1 during the treatments.

4.2.2 Treatments

Two treatments were prepared in which plants were grown under white LED (NSPW310DS; Nichia Chemical

Industries Ltd., Tokushima, Japan; Fig. 4-1a) light (W) without or with supplemental FR provided by far-

red LEDs (L735–36AU; Epitex, Inc., Kyoto, Japan; Fig. 4-1a) (W- and WFR-treatment, respectively). W was

provided by custom-made printed wiring LED panels and FR was provided by laboratory-made line LED

modules arrayed on transparent acrylic bars and hung below the panel. In the treatment for chl fluorescence

and 830-nm absorbance measurements, FR was also provided by the LED panel. The white and far-red LEDs

were arranged in a checkerboard pattern on the panel. The PFDs at the top of plants during the treatments

are shown in Table 4-1. The PPFD of white LED light was measured with a quantum sensor and the PFD of FR

was calculated from the SD measured with a spectroradiometer (MS-720; EKO Instruments Co. Ltd., Tokyo,

Japan). The proportions of active phytochrome to total phytochrome (photostationary state) were calculated

from phytochrome photochemical cross sections (Sager et al. 1988) and the RSD of light. Environmental

settings other than SD were the same as those described above. Each treatment consisted of four plants, and

experiments were replicated at least three times.
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4.2.3 Gas exchange measurements

Gas exchange parameters of the first true leaves were measured using a portable gas exchange measure-

ment system (LI-6400XT; LI-COR Inc.) at 14 and 15 days after sowing in a dark growth chamber (MIR-554;

Panasonic Corp., Osaka, Japan) operated at 25◦C. On day 14, measurements were made under each plant’s

respective GL provided by a laboratory-made small LED panel and under artificial sunlight (AS; Fig. 4-1b)

provided by an LED-AS source system (Fujiwara et al. 2013) within a wavelength range of 380–950 nm. On

day 15, gas exchange parameters were measured under blue and red LED light (BR; Fig. 4-1b) provided by an

LED light source (6400-02B; LI-COR Inc.). A part of the leaf was sandwiched in a leaf cuvette and Pn, stomatal

conductance (Gs), and intercellular CO2 partial pressure (Ci) were measured. The measurements were made

under three different combinations of PPFD and CO2: (1) a PPFD of 300 µmol m−2 s−1 and an atmospheric

CO2 partial pressure (Ca) of 40 Pa; (2) a PPFD of 300 µmol m−2 s−1 and an Ci of 100 Pa; and (3) a PPFD

of 1200 µmol m−2 s−1 and an Ci of 20 Pa. The measurements under the second and third conditions were

made only under AS and BR. The leaf temperature was controlled at 25◦C and the leaf-to-air vapor pressure

deficit was controlled at < 1.0 kPa. The Ci was calculated according to von Caemmerer and Farquhar (1981).

Gas exchange parameters under combination (1) were obtained approximately 15 min after the start of mea-

surements, and then those under constant Ci conditions were obtained at 5- to 10-min intervals. To analyze

quantitatively the interaction between the SDs of GL and AL, we calculated the difference in Pn between W-

and WFR-leaves (∆Pn; Pn of W-leaves − Pn of WFR-leaves) from the rates measured under GL, AS and BR.

4.2.4 Chl fluorescence and 830-nm absorbance measurements

Chl fluorescence and changes in absorbance at 830 nm were measured simultaneously on the first true leaves

using a fiber-type P700 and chl fluorescence measuring system (DUAL-PAM/F; Heinz Walz GmbH, Effeltrich,

Germany) at 15 and 16 days after sowing in a dark room. A part of a dark-treated (> 60 min) leaf was

sandwiched in the leaf cuvette of the gas exchange measurement system equipped with a fiber optics adapter

(6400-06; LI-COR Inc.). The adapter was used to adjust the fiber optics in the cuvette to a defined angle and

to a fixed distance from the leaf. The cuvette was maintained at an Ca of 100 Pa, a leaf temperature of 25◦C

and a leaf-to-air vapor pressure deficit of < 1.2 kPa. We used AL with three different RSDs: W at a PPFD of

20 µmol m−2 s−1 without or with supplemental FR at a PFD of 8 µmol m−2 s−1 (W and WFR, respectively)

and BR at a PPFD of 5 µmol m−2 s−1. The PPFD and PFD were lowered to measure the reactions under light-

limited conditions. The laboratory-made small LED panel provided W and WFR, and BR was supplied by the

LED light source (6400-02B; LI-COR Inc.). The incident angle of AL was 45◦ to illuminate the leaf surface

uniformly. The Ci during measurement was approximately 100 Pa because the Pn was almost zero during the

measurement. The parameters in the light-treated state were measured 10 min after the light irradiation

commenced. The parameters (YII, YI, YNA, and YND) were calculated as described in ??.
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4.2.5 Leaf sampling and chl determination

On day 15, we sampled the first true leaves and measured their thickness, fresh weight and leaf area. An

adjustable measuring force digimatic micrometer (CLM1-15QM; Mitutoyo Co., Kanagawa, Japan) and an area

meter (AAM-9; Hayashi Denko Co. Ltd., Tokyo, Japan) were used for leaf thickness and leaf area measure-

ments, respectively. A leaf disk (approximately 10 mm in diameter) was punched out from the first leaf and

chl was extracted by incubating the disk in 3 ml of N,N-dimethylformamide for 1 day in the dark at 4◦C. The

absorbance of the solution was then determined with a spectrophotometer (V-530; JASCO Corp., Tokyo, Japan)

and the amounts of chl a and chl b were calculated from the absorbance values using the equations described

by Porra et al. (1989). Then, the sampled leaves were dried at 100◦C for 1 h, and subsequently at 80◦C for 72

h before measuring dry weight. Leaf mass per area (LMA: leaf dry weight per leaf area) was calculated.

4.2.6 Statistical analyses

All analyses were conducted for mean values of three or four plants in each replicate, i.e. we obtained data

using three or four plants in each treatment and the mean values were used as representative data from

that replicate (i.e. n = 1). Then, we replicated the experiment at least three times to obtain the independent

samples (i.e. n ≥ 3) to avoid ‘pseudoreplication’ (Hurlbert 1984). The effects of supplemental FR during growth

on gas exchange, chl fluorescence and 830-nm absorbance parameters, LMA, leaf thickness and chl contents

in leaves were analyzed by Welch’s t-test. The main effects of supplemental FR during growth, the RSD of

AL and the interaction between these two factors on gas exchange, chl fluorescence and 830-nm absorbance

parameters were analyzed using two-way ANOVA. The effect of the RSD of AL on ∆Pn was analyzed by Tukey’s

HSD test or Welch’s t-test. All analyses were conducted using the statistical software R (R Core Team 2016).

Table 4-1 Incident photon flux density (PFD) on the top of plants and calculated phytochrome photostationary

state (PSS) and R/FR ratio of light from fluorescent lamps (FL) and during the treatments (W and WFR). PSS

was calculated according to Sager et al. (1988). R/FR ratio was calculated as PFD of 600–700 nm/PFD of 700–800

nm.

Light source PFD (400–700 nm) PFD of FR PSS R/FR ratio[µmol m−2 s−1] [µmol m−2 s−1]

FL 300 – 0.82 5.5
W 300 – 0.83 6.7

WFR 300 70 0.67 1.0
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Fig. 4-1 Spectral distributions of photon flux density (PFD) of light provided by lamps used (a) until and (b)

during the measurements of photosynthetic rates. Spectral distributions of light were measured at a pho-

tosynthetic PFD (400–700 nm) of 300 µmol m−2 s−1, except for that of FR, which was measured at a PFD

of 70 µmol m−2 s−1. All spectral distributions were measured using an MS-720 spectroradiometer (EKO In-

struments Co. Ltd.), except for that of FL, which was measured using an HR-2000 spectroradiometer (Ocean

Optics Inc., Dunedin, FL) to detect its emission lines. Growth lights (W and W+FR) were also used for mea-

surements, but are not shown in the lower panel to avoid duplication.

AS: artificial sunlight provided by an LED artificial sunlight source system (Fujiwara et al. 2013); BR:

blue+red LED light provided by 6400-02B (LI-COR Inc.); FL: light from fluorescent tubes (FPL55-EX-N;

IWASAKI Electric Co. Ltd.); FR: light from far-red LED (L735-36AU; Epitex Inc.); W: light from white LED

(NSPW310DS; Nichia Chemical Industries Ltd.)
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4.3 Results

When measured under BR, the Pn of WFR-leaves was lower than that of W-leaves (Fig. 4-2a). However, there

was no significant difference in Pn between W- and WFR-leaves when measured under GL and AS (Fig. 4-

2a). In terms of measured Pn values, there was a statistically significant interaction between supplemental

FR during growth and the RSD of AL, while their main effects were not significant (Table 4-2). The ∆Pn

calculated from the rates measured under BR was significantly greater than those calculated from the rates

measured under GL and AS (Fig. 4-2b). There were no significant main effects or interaction effects on Gs

although Ci was affected by the RSD of AL and tended to be lower when measured under BR (Table 4-2, 4-3).

In addition to the ∆Pn measured under moderate PPFD and CO2 conditions, the ∆Pn measured under BR was

greater than that measured under AS in high PPFD and low Ci conditions (Fig. 4-3a), and tended to be greater

under moderate light and a high Ci conditions (Fig. 4-3b). The YII/YI ratios tended to be lower in WFR-leaves

than in W-leaves (Fig. 4-4c), irrespective of the RSD of AL. The differences in the YII/YI ratio between W- and

WFR-leaves were mainly because of the lower YI of W-leaves (Fig. 4-4b). The lower YI of W-leaves resulted

from a limitation at the acceptor-side (YNA) rather than the donor-side of PSI (YND) (Fig. 4-5). The YII/YI

ratios tended to be higher under WFR followed by BR and then W, irrespective of the GL (Fig. 4-4c). This

trend resulted from the lower YII under W and the lower YI under WFR (Fig. 4-4a, b). The amounts of chl a

and chl b was tended to be lower in WFR-leaves than in W-leaves, although the chl a/b ratio was comparable

between W-leaves and WFR-leaves (Fig. 4-6). The fractions of the photons absorbed by WFR-leaves under

AS and BR tended to be smaller than those by W-leaves, respectively (Fig. 4-7). There was no significant

difference in LMA between W- and WFR-leaves, while W-leaves were thicker than WFR-leaves (Table 4-4),

indicating that WFR-leaves had a greater volumetric density. Compared with plants in the W treatment, the

plants in the WFR treatment were significantly taller and had paler leaves (Fig. 4-8).
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Fig. 4-2 (a) Net photosynthetic rates (Pn) of cucumber leaves grown under white LED light without and with

supplemental far-red LED light (W- and WFR-leaves, respectively) and (b) calculated differences in Pn (∆Pn)

from the rates measured under their respective growth light (GL), artificial sunlight (AS) and blue and red

LED light (BR; 6400–02B; LI-COR Inc., Lincoln, NE, USA). The measurements were made at a photosynthetic

photon flux density of 300 µmol m−2 s−1 and an atmospheric CO2 partial pressure of 40 Pa. * in (a) indicates

significant difference between the rates of W- and WFR-leaves (Welch’s t-test, P < 0.05). Different small letters

above the bars in (b) represent significant differences among treatments (Tukey’s HSD test, P < 0.05). Means

± standard errors are shown (n = 3).
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Fig. 4-3 Calculated differences in net photosynthetic rates (∆Pn) of cucumber leaves grown under white LED

light without and with supplemental far-red LED light (W- and WFR-leaves, respectively) measured under

artificial sunlight (AS) and blue and red LED light (BR; 6400–02B; LI-COR Inc., Lincoln, NE, USA) at (a) a

photosynthetic photon flux density (PPFD) of 1200 µmol m−2 s−1 and an intercellular CO2 partial pressure

(Ci) of 20 Pa and (b) a PPFD of 300 µmol m−2 s−1 and an Ci of 100 Pa. * indicates significant difference between

the AL (Welch’s t-test, P < 0.05). Means ± standard errors are shown (n = 3).

16



Chapter 4

(a)     Y II

GL: 0.48
AL: 0.0012
GL×AL: 0.81

(b)     Y I

GL: 0.011
AL: 0.27
GL×AL: 0.93

     *

(c)     Y II/Y I

GL: 0.039
AL: 0.30
GL×AL: 0.92

    *

0.6

0.7

0.8

0.9

1.0

W−leavesWFR−leaves W−leavesWFR−leaves W−leavesWFR−leaves

Y I
I, 
Y I

, Y
I/Y

I

BR

W

WFR

Fig. 4-4 Photochemical yield of (a) PSII (YII), (b) PSI (YI) and (c) the ratio (YII/YI) of cucumber leaves grown

under white LED without and with supplemental FR light (W- and WFR-leaves, respectively) measured under

W, WFR and blue and red LED light (BR; 6400–02B; LI-COR Inc., Lincoln, NE, USA). The measurements were

made at an intercellular CO2 partial pressure of approximately 100 Pa. The P-values obtained from two-way

ANOVA with growth light (GL) and actinic light (AL) as independent variables and their interaction (GL×AL)

for each dependent variable are shown in each panel. * indicates significant difference between the values of

W- and WFR-leaves (Welch’s t-test, P < 0.05). Means ± standard errors are shown (n = 4).
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Fig. 4-5 (a) Acceptor-side (YNA) and (b) donor-side limitations (YND) of photochemical reaction of PSI of cu-

cumber leaves grown under white LED light without and with supplemental far-red LED light (W- and WFR-

leaves, respectively) measured under W, WFR and blue and red LED light (BR; 6400–02B; LI-COR Inc., Lin-

coln, NE, USA). The measurements were made at an intercellular CO2 partial pressure of approximately 100

Pa. The P-values obtained from two-way ANOVA with growth light (GL) and actinic light (AL) as independent

variables and their interaction (GL × AL) for each dependent variable are shown in each panel. * indicates

significant difference between the values of W- and WFR-leaves (Welch’s t-test, P < 0.05). Means ± standard

errors are shown (n = 4).
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Fig. 4-6 (a) The amounts of chlorophyll a and chl b, and (b) chlorophyll a/b ratios of cucumber leaves grown un-

der white LED without and with supplemental far-red light (W- and WFR-leaves, respectively). No significant

difference was detected between the values of W- and WFR-leaves (Welch’s t-test, P < 0.05). Means ± standard

errors are shown (n = 3).
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Fig. 4-7 Absorption spectrum of cucumber leaves grown under white LED light without and with supplemental

far-red LED light (W- and WFR-leaves, respectively). The ranges between mean − standard error and mean +

standard error are shown (n = 3). The inset shows estimated absorbed photons by W- and WFR-leaves under

artificial sunlight (AS) and blue and red light (BR). Mean ± standard errors are shown (n = 3). Absorptance at

a given wavelength was calculated from reflectance and transmittance measured with integral spheres (ISP-

REF and FOIS-1; Ocean Optics Inc., Dunedin, FL, USA) connected to a spectroradiometer (HR-2000, Ocean

Optics).
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Fig. 4-8 Cucumber plants grown under white LED light without and with supplemental far-red LED light (W

and WFR, respectively).
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Table 4-2 Results of ANOVA to test the main effects of and the interaction between the spectral distribution of

growth light (GL) and actinic light (AL) in net photosynthetic rate (Pn), stomatal conductance (Gs) and intercel-

lular CO2 partial pressure (Ci) of leaves. Means ± standard errors are shown (n = 3). ** indicates significant

difference between the treatments at P < 0.01.

Factor d f Pn Gs Ci
F P F P F P

GL 1 3.30 0.09 0.55 0.47 3.93 0.07
AL 2 2.63 0.11 2.66 0.11 7.32 0.008**

GL×AL 1 7.66 0.007** 0.07 0.93 0.68 0.52

Table 4-3 Stomatal conductance (Gs) and intercellular CO2 partial pressure (Ci) of cucumber leaves grown under

white LED light without and with supplemental far-red LED light (W and WFR, respectively) measured under

their respective growth light (GL), artificial sunlight (AS) and blue and red LED light (BR; 6400-02B; LI-COR

Inc., Lincoln, NE, USA). Means ± standard errors are shown (n = 3). No significant difference was detected

between the values of W- and WFR-leaves.

Growth light Actinic light Gs Ci
[mol m−2 s−1] [Pa]

W GL 0.34 ± 0.10 32.6 ± 1.9
WFR 0.30 ± 0.12 30.1 ± 3.3

W AS 0.33 ± 0.09 33.3 ± 1.8
WFR 0.30 ± 0.11 31.3 ± 2.9

W BR 0.18 ± 0.03 27.6 ± 1.3
WFR 0.09 ± 0.02 20.7 ± 2.3

Table 4-4 Leaf mass per area (LMA) and thickness of cucumber leaves grown under white LED without and with

supplemental far-red light (W and WFR, respectively). Means ± standard errors are shown (n = 4–7). * indicates

significant difference between the treatments (Welch s t-test, P < 0.05).

Growth light LMA Leaf thickness
[g m−2] [µm]

W 39.6 ± 2.9 450 ± 14*
WFR 40.6 ± 2.4 368 ± 14
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4.4 Discussion

In this study, there was a significant interaction between supplemental FR during growth and the RSD of AL

in terms of Pn (Fig. 4-2b, Table 4-2). In other words, we demonstrated that the effect of supplemental FR

during growth on Pn was biased depending on the RSD of AL. In the following two sections, we discuss these

results from the viewpoints of evaluating the photosynthetic characteristics of a leaf and the mechanisms of

the interaction.

4.4.1 Biased evaluation of leaf photosynthesis

The greater ∆Pn under BR than under GL and AS (Fig. 4-2b) suggested that measurements under BR un-

derestimate the Pn of WFR-leaves under certain growth conditions (i.e. in situ photosynthetic rate) and in

sunlight. A similar trend was observed in an additional experiment using blue and red light with or without

supplemental FR as the GL (Fig. 4-9). These results, therefore, strongly suggest that Pn should be measured

under the same SD as those of the GL when evaluating photosynthesis in situ. In contrast to this simple

method, it appears to be more complex to evaluate the photosynthetic characteristics (i.e. the responses of Pn

to changes in PFD and/or Ci). Several studies have reported that the RSD of the AL affected the Pn of leaves

(McCree 1972; Inada 1976; Hogewoning et al. 2012; Murakami et al. 2013). To eliminate this direct effect,

measurements of photosynthetic parameters should be made under identical RSD conditions, irrespective of

the RSD of GL. However, even when the direct effect was removed, the comparisons of Pn were indirectly

biased depending on the RSD of AL because of the interaction (Fig. 4-2b). The evaluation of Pn not only under

moderate PPFD + moderate CO2 conditions but also under high PPFD + low Ci and moderate PPFD + high

Ci conditions was biased in comparisons between BR and AS (Fig. 4-3). Therefore, the Pn and photosynthetic

characteristics of leaves must be discussed in connection with the RSD of AL. The RSD of AL must always be

considered when evaluating leaf and whole-plant photosynthesis.

If researchers aim to describe the photosynthetic characteristics or the SD of light the leaves receive is

not predetermined, then Pn should be measured under both PSII- and PSI-light and the interaction should

be evaluated to detect any biases. Such biases can result in spurious estimates of photosynthetic parameters

(e.g. initial slopes and compensation points of CO2 and PFD–photosynthetic rate curves) calculated from the

measured Pn values using model-fitting methods (e.g. Sharkey et al. 2007). Biases in quantum yields of

photosynthetic O2 evolution and CO2 fixation rates were reported in pioneering papers (Chow et al. 1990b;

Walters and Horton 1995b; Hogewoning et al. 2012). When comparing values for such parameters among

reports (i.e. in reviews and meta-analyses), particular care should be taken to consider the SD of AL. If the

SD of light the leaves receive is predetermined, then measurements should be made under the same light con-

ditions. For instance, commercial transplants are sometimes raised in a closed system with artificial lighting

(e.g. Kozai 2007), and subsequently transferred to a greenhouse and cultivated under sunlight. Therefore, in

comparisons of light sources with different RSDs for transplant production, Pn measurements should be made

under sunlight to eliminate the need to consider the interaction. A basis for selecting the RSD of light for
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evaluating leaf photosynthetic rates is also discussed in our recent letter (Murakami et al. 2017).
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Fig. 4-9 (a) Spectral distributions of photon flux density (PFD) of light used for BR- and BRFR-treatment

and (b) net photosynthetic rates of BR- and BRFR-leaves measured under their respective growth light (GL),

artificial sunlight (AS), and blue and red LED light (BR; 6400–02B; LI-COR Inc., Lincoln, NE, USA). Measure-

ments were made at a PPFD of 300 µmol m−2 s−1 and an atmospheric CO2 partial pressure of 40 Pa. Means

± standard deviations of the rates for four plants are shown.

Blue (HBL3-3S55-LE; Toricon Co., Shimane, Japan), red (SRK3-3A80-LE; Toricon Co.), and far-red LEDs

(L735-36AU; Epitex, Inc., Kyoto, Japan) were used for providing GL.
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4.4.2 Origin of the interaction between spectral distributions of growth light and actinic light in

terms of leaf photosynthesis measurements

The ∆Pn was smaller under GL than under BR (Fig. 4-2b). The gas exchange measurements under GL were

made using W for W-leaves and W+FR for WFR-leaves. Because the FR contains a little PPFD (Fig. 4-1a)

and the LHCII can slightly absorb shorter wavelengths of FR (approximately < 710 nm), the FR might drive

both photosystems and decrease the ∆Pn, at least partly, when calculated from Pn measured under GL. Thus,

based only on the results obtained under GL and BR, the interaction can be explained simply, i.e. the larger

difference in ∆Pn under BR resulted from the lower photosynthetic rate of WFR-leaves and the increased PFD

in the FR waveband and slightly increased PPFD under GL compensated for the gap. Also, the relatively lower

amounts of chl (Fig. 4-6) and decreased thickness (Table 4-4) of WFR-leaves would have resulted in slightly

lower light absorption (Fig. 4-7), and may partly explain their lower photosynthetic rate.

In the comparison of Pn measured under AS and BR, on the other hand, the evaluation was biased de-

pending only on the RSD of AL (Fig. 4-2, 4-3). The absence of the significant interaction in Ci under ambient

conditions (Table 4-2) and the difference in ∆Pn calculated from values measured under the constant Ci con-

ditions (Fig. 4-3) suggest that the interaction in Pn originated from light-dependent reactions (i.e. electron

transport) rather than CO2-dependent photosynthetic processes (i.e. Calvin cycle). One of the most plausible

explanations for these phenomena was that there were adjustments in photosystem stoichiometry and the dis-

tribution of EE (see also 4.1). According to this idea, these results can be explained as follows: the RCII/RCI

ratio increased in WFR-leaves during acclimation to PSI-light to maintain the excitation balance between the

photosystems. Because of this change, the WFR-leaves were able to achieve a higher Pn under PSI-light at

the expense of that under PSII-light. The opposite responses would occur in W-leaves, i.e. the RCII/RCI ratio

decreased, and so they became capable of achieving higher Pn under PSII-light and lower Pn under PSI-light.

Therefore, the ∆Pn under BR, which contained little FR and served as PSII-biased-light, was greater than that

under AS, which contained much more FR and served as PSI-biased light. It appeared reasonable to explain

the interaction in Pn based on these adaptive adjustments. Accordingly, we tested whether these changes in

EE distribution and photosystem stoichiometry occurred under our experimental conditions. The change in

the distribution of EE between the photosystems was evaluated by simultaneous measurements of the quan-

tum yields of photochemical reactions at PSII and PSI, obtained by measuring chl fluorescence and absorbance

at 830 nm. As long as the ETRs through PSII and PSI are equal, YII/YI is in proportion to EI/EII (i.e. the ra-

tio of EE distributed to PSI and that distributed to PSII), as discussed in Chapter 2. The low PPFD (< 20

µmol m−2 s−1) on the leaves during measurements may ensure the ETR balance in the present measurements

(Fig. 4-4, 4-5).

The proportion of EE distributed to PSII was estimated to be highest under blue light, high under red

light and low under FR in a relative context (e.g. Evans 1986). On the basis of these reports and the RSD of

AL (Fig. 4-1), the ratio should be highest under W (which contains a large proportion of blue light), followed by

BR and then WFR. Although not clear, the predicted trend was observed in the measured YII/YI values (Fig.
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4-4c). The YND under WFR was markedly higher than those under W and BR (Fig. 4-5b), suggesting that

there was stronger PSI-donor-side limitation under WFR. This may have resulted from the shortage in EE

distribution to PSII (i.e. EII). This result also suggested that there was relatively smaller energy distribution

to PSII under WFR than under W. We confirmed that supplemental FR made white light relatively PSI-biased.

The relatively lower YII/YI ratios of WFR-leaves than those of W-leaves irrespective of the RSD of AL

(Fig. 4-4c) suggested that more EE was distributed to PSII than to PSI. This PSII-biased distribution prop-

erty of WFR-leaves might enhance their light-use efficiency under PSI-light and explain why their Pn was

comparable to that of W-leaves under AS (Fig. 4-2a). Under PSII-light, however, PSII-biased distribution will

result in overexcitation of PSII and wasted light energy (Pfannschmidt 2005; Walters 2005; Hogewoning et

al. 2012). The PSII-biased distribution property of WFR-leaves resulted in lower light-use efficiency and Pn

(Fig. 4-2a) and greater ∆Pn under BR (Fig. 4-2b). These results support the idea that adjustments in the

distribution of EE between photosystems caused the interaction in Pn. Notably, in the comparison between W-

and WFR-leaves, the difference in YII/YI resulted mainly from the difference in YI because the values of YII

were similar in both leaves (Fig. 4-4). Although it is unclear whether the photochemical reactions in PSI were

regulated actively or passively, our data suggest that the regulation of YI is important for maintaining higher

photosynthetic light-use efficiency.

We further analyzed the mechanism of the lower YII/YI in WFR-leaves, which suggested that a greater

proportion of EE was distributed to PSII. A likely explanation was the change in photosystem stoichiometry

resulting in a higher RCII/RCI ratio in PSI-leaves (i.e. WFR-leaves) than in PSII-leaves (i.e. W-leaves). Pre-

vious reports on interactions affecting Pn showed that the RCII/RCI ratios were higher in PSI-leaves than in

PSII-leaves (Chow et al. 1990b; Walters and Horton 1995b; Hogewoning et al. 2012). Because a large fraction

of chl b is bound to LHCII (Hogewoning et al. 2012; Laisk et al. 2014), a higher RCII/RCI ratio accompanies

a lower chl a/b ratio (Fig. 4-10). We found that the chl a/b ratio of WFR-leaves was comparable to, or higher

than, that of W-leaves (Fig. 4-6), suggesting that there was no increase in the RCII/RCI ratio. Note that in

previous studies, emental FR induced a slight (Chow et al. 1990a) or no increase (Walters and Horton 1995a)

in RCII/RCI ratios. Considering these results reported in the literature, the interaction in Pn observed in

this study might not be caused by changes in the RCII/RCI ratio. The distribution of EE may be adjusted by

other mechanisms besides a simple change in the RCII/RCI ratio. Walters and Horton (1995b) suggested that

changes in the LHCII/RCII ratio might be involved in RSD-dependent light acclimation. Recent studies have

demonstrated that LHCII can serve as an efficient antenna for PSI (Galka et al. 2012; Wientjes et al. 2013)

and that LHCII can mediate energy spillover from PSII to PSI (Yokono et al. 2015). emental FR might act as

a stimulus to trigger a change in the LHCII/RCII ratio, ultimately balancing the distribution of EE. Because

of the dynamics of the LHCII allocation, the LHCII/RCII ratio obtained by dissolving the complexes may not

always reflect the in vivo distribution of EE between the complexes. More detailed research on the composi-

tions and functions of in vivo photosystems using non-destructive methods, such as the oxygen electrode and

the fluorescence lifetime analyses, will elucidate details of the mechanisms of long-term light acclimation in

27



Chapter 4

plants.
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Fig. 4-10 Estimated chlorophyll a/b ratio from the photosynthetic membrane compositions.

RC: Reaction center; LHC: light-harvesting complex.
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4.5 Conclusion

The results of this study showed that the effect of emental FR during growth on Pn was biased depending on

the RSD of AL. Therefore, it is important to pay particular attention to the RSD of AL when evaluating the

photosynthetic characteristics of leaves, especially when comparing plants grown under different PFDs of FR.

In prospective studies focusing on plant growth after measurements, the evaluations should be made under

the SD of light to which the plant will be subjected. In retrospective studies that aim to explain differences in

growth brought about by the different growth conditions, the measurements should be made under the SDs

of light that the plants received during the treatments. The origin of the interaction appears to be explained

by the adjustments in the distribution of EE between the photosystems, as earlier reports proposed (Chow

et al. 1990b; Walters and Horton 1995b; Hogewoning et al. 2012). However, the mechanisms discussed in

these papers could not fully explain the adjustment in EE distribution that we observed in our experiments.

Our results might suggest that other mechanisms may also be involved in adjusting the distribution of EE,

e.g. changes in the composition of PSII. The interactions detected in this study suggest that it is necessary

to conduct further detailed and circumspect research on photosynthesis. We can easily detect interactions

between factors by using a two-way ANOVA. This fundamental but powerful technique will help to improve

our understanding of leaf photosynthesis.
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Abstract

Abstract

Analysis of light spectrum effects on photosynthetic electron transport

based on excitation energy distribution between photosystem I and II

( I II )

Chapter 1. General introduction

The spectral distribution (SD) of light is a determinant of the light-dependent photosynthetic reaction

rate, or electron transport rate (ETR). Even though the amount of absorbed photons is the same and under a

strictly light-limited condition, the ETR depends on the SD (e.g. Emerson and Lewis 1943). That is, the relative

SD (RSD) of light affects the intrinsic ETR. This RSD-dependency of the ETR is found to originate from the

distribution of excitation energy (EE) between two photosystems (PSII and PSI) and the serial photosynthetic

electron transport through these photosystems (e.g. Evans 1986).

Previous studies have provided qualitative knowledge on the distribution of EE and electron transport in

response to the RSD of light. It is believed that a leaf maintains a higher ETR by functioning multiple systems

in response to the RSD of light thereby adjusting the distribution of EE (e.g. Dietzel et al. 2008). However, little

is known about the quantitative contributions of respective systems to the adjustments of the EE distribution.

To elucidate the light acclimation of photosynthesis in response to the RSD of light, quantitative analyses of

the adjustments of the distribution of EE in connection with their influence on the ETR are necessary.

The effects of the RSD of artificial lighting on plant growth and leaf photosynthesis for enhancing produc-

tivity of horticultural facilities have been intensively investigated. Owing to the acclimation response, leaves

grown under different RSDs of light are expected to represent a different RSD-dependency of the ETR and,

thus, photosynthetic characteristics. Therefore, evaluating photosynthesis of leaves grown under different

RSDs of light using an identical RSD of light might result in a biased evaluation. Although this possible bias

was pointed out (e.g. Walters 2005), its significance on photosynthetic evaluation has not yet been experimen-

tally demonstrated considering the horticultural situations.

Therefore, quantitative analyses of the RSD-dependency of the ETR are essential for a comprehensive

understanding of the light acclimation responses of a leaf and the evaluation of leaf photosynthesis toward

efficient light use in horticultural plant production systems. The objective of this dissertation was to analyze

the adjustments of the distribution of EE between the photosystems in response to the RSD of light and its

influence on the ETR. In chapter 2, a novel method for estimating the EE distributed to PSII is proposed. In

chapter 3, the electron transport based on the distribution of EE is illustrated as a mathematical model. Chap-

ter 4 demonstrates that the acclimation response under different RSDs of growth light biased the evaluation
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of the net photosynthetic rate (Pn) in a practical horticultural situation.

Chapter 2. Quantification of excitation energy distribution between photosystems based on a

mechanistic model of photosynthetic electron transport

The fraction of the EE distributed to PSII (f ) depends on the wavelength of light (e.g. Evans 1986).

The SD of f appears to be adjusted by at least two mechanisms in response to the RSD of light on different

timescales (e.g. Dietzel et al. 2008); the adjustment of the photosystem stoichiometry (long-term response)

and reversible reallocation of the light-harvesting complex between the photosystems (state transitions; short-

term response). A quantitative evaluation of the EE distributed to the photosystems is required to comprehend

the functioning and physiological roles of these mechanisms in the acclimation of the photosynthesis to the

light environment.

In this chapter, a non-destructive, quantitative, and mechanistic method for estimating the in vivo f

values of a leaf was developed and validated. To estimate the f values, a mechanistic model, which illustrates

the ratio of photochemical quantum yields of PSII and PSI (YII and YI) from the f values and photon flux

densities (PFDs) of the two simultaneously provided RSDs of actinic lights (ALs), was developed. This model

assumes that the EE from individual ALs is distributed additively to the respective photosystems and that

the ETRs through PSII and PSI are equal. By fitting values of YII and YI, obtained by monitoring chlorophyll

fluorescence and leaf reflectance, under ALs provided at several PFD combinations into the model using the

least-squares (i.e. curve-fitting) method, f values for the ALs can be estimated. This method was tested by

comparing f values for red and far-red LED lights (R and FR, respectively) of cucumber leaves presumably

giving different f values owing to the long- and short-term responses. The leaves were grown under white

LED light (W; 300 µmol m−2 s−1) with and without supplemental FR (100 µmol m−2 s−1) for about 1 week

to induce the long-term response. They were then pre-irradiated with R with and without supplemental FR

for about 10 min to induce the short-term response, and then subjected to the f estimation. Irrespective of

conditions of the long- and short-term responses, the quantified f values for R were clearly greater than those

for FR. The values of the leaves subjected to 1-week supplemental FR (i.e. grown under W+FR) tended to be

greater than those of the control (i.e. grown under W), presumably due to the long-term response. The values

of the leaves subjected to 10-min of supplemental FR (i.e. pre-irradiated with R+FR) tended to be greater than

those of the control (i.e. pre-irradiated with R), presumably due to the short-term response. These trends are

consistent with those of earlier studies on the wavelength dependency of the f (e.g. Evans 1986), long-term

response (e.g. Chow et al. 1990), and short-term response (e.g. Allen 1983). Furthermore, the fitted curve

generated by the model was in agreement with the actual values in all experiments, supporting the validity of

the model.

Chapter 3. A mathematical model of photosynthetic electron transport based on excitation energy

distributed to photosystems for estimation of the electron transport rate



Abstract

Simultaneously provided PSII- and PSI-light (light under which the whole-chain ETR is limited by pho-

tochemical reactions in PSII and PSI, respectively) produce a greater gross photosynthetic rate (Pg) than the

sum of Pg under PSII-light and that under PSI-light (e.g. Emerson et al. 1957). This phenomenon, called the

‘enhancement effect’, led to the idea that electron transport occurs in series through the photosystems (Hill

and Bendall 1960). It is generally accepted that the distribution of EE between the photosystems determines

the photosynthetic quantum yield (e.g. Evans 1986). However, the electron transport in response to the EE

distribution has not yet been illustrated as a mathematical model. Several available methods estimate the EE

distribution from the SD of light (e.g. Evans 1986 and Chapter 2); therefore, developing a model may enable

the estimation of the ETR in response to the SD of light.

In this chapter, a mathematical model, which illustrates the photosynthetic electron transport based on

the EE distributed to the photosystems, was developed. This model assumes that 1) the whole-chain ETR is

given as the minimum of potential ETR at either PSII or PSI, 2) the rate-limiting photosystem represents

potential ETR by maintaining its maximum photochemical quantum yield, and 3) the photochemical quantum

yield of the non-rate-limiting photosystem is passively down-regulated to equalize the actual ETRs through

the two photosystems. To test the proposed model, YII, YI, and ETR of cucumber leaves under simultaneously

provided R and FR were estimated from the EE distributed to the photosystems, which was calculated as

described in Chapter 2, and compared to the actual values. Because the actual ETR could not be assessed

directly, the estimated ETR was converted into Pg and compared to the actual Pg. The estimated values of YII,

YI and Pg based on the model were in agreement with the actual values. The model explained the mechanisms

determining the quantum yield of photosynthetic electron transport under light-limited conditions reasonably

well.

Chapter 4. Interaction between the spectral photon flux density distributions of light during

growth and for measurements in net photosynthetic rates

The Pn is often measured, compared, and evaluated among leaves of plants grown under different RSDs

of light. Leaves adjust the distribution of EE in response to the RSD of growth light (GL) (e.g. Anderson

1986). Therefore, even when evaluated under light with the same RSD, the EE distributed to the respective

photosystems will be modified depending on the RSD of GL. That is, the RSDs of GL and AL interact on the

ETR and thus Pn through the EE distribution. When the effect of the interaction is considerable, the Pn of

leaves compared using a single RSD of AL does not always reflect their relationship under other RSDs of light.

Although some earlier physiological studies have already demonstrated the significance of this interaction

(Chow et al. 1990, Walters and Horton 1995, Hogewoning et al. 2012), it has not yet been clarified that the

interaction should be considered even in practical situations.

This chapter describes how the significance of the interaction was examined in a practical situation

imitating seedling production. The effects of the RSD on seedling growth and photosynthetic characteristics

have been intensively investigated (e.g. Shibuya et al. 2015). As the seedlings are grown under artificial light
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sources and then under sunlight, the photosynthesis under both conditions should be discussed. However,

most of recent measurements of Pn were made using blue and red LED light (BR) preinstalled in widely-

used instruments. Pn of leaves of cucumber seedlings grown under W (300 µmol m−2 s−1) with and without

supplemental FR (70 µmol m−2 s−1) were measured and compared under three different RSDs of ALs: their

respective GL, BR, and light with a RSD approximate to that of sunlight (artificial sunlight; AS). The Pn

of W+FR-grown-leaves was lower than that of W-grown-leaves under BR, moderate PFD (300 µmol m−2 s−1

within 400–700 nm), and ambient CO2 (40 Pa) conditions, whereas no significant difference was found between

the leaves under GL and AS under the same PFD and CO2 conditions. In short, the RSDs of GL and AL

interacted on the Pn. Analyses of the photochemical yields of photosystems showed that the interactions in Pn

were related, at least partly, to the distribution of EE. It was demonstrated that the evaluation of Pn of leaves

grown under different RSDs of light could be biased depending on the RSD of AL even in practical situations.

Pn should be discussed in connection to the RSD of AL especially when leaves of plants grown under different

RSDs of GL are compared.

Chapter 5. Conclusions

This dissertation focused on the distribution of EE between PSII and PSI in response to the RSD of

light and its influence on photosynthetic electron transport. A non-destructive and quantitative method for

estimating in vivo distribution of EE was developed. The f estimation was performed based on a mechanistic

model of electron transport, in which the EE distributed to respective photosystems are additive and the

ETRs through PSII and PSI are equal. The contributions of mechanisms adjusting the distribution were

compared based on an identical quantitative measure, i.e. the fraction of EE distributed to PSII or the f value.

In addition, by assuming that the rate-limiting photosystem represents its maximum efficiency, the electron

transport under light-limited conditions was illustrated as a mathematical model based on the distribution of

EE. The interaction between the RSDs of light for measurement and during growth on leaf Pn was shown to

be significant even in practical situations. The necessity of a circumspect consideration of the distribution of

EE between the photosystems in evaluating leaf photosynthesis was emphasized.
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