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1 Introduction 

1.1 Aqueous Vinyl Polymer-Isocyanate Adhesive for woods 

1.1.1 History 

Aqueous Vinyl Polymer-Isocyanate Adhesive for woods (API adhesive) has 

been defined as one adhesive prepared using aqueous polymer solution or water-

based emulsion as base resin and isocyanate component as cross-linker. [1, 2]  

 Before the appearance of API adhesive, the widely utilized adhesives for 

furniture and housing construction are formaldehyde-based products such as urea 

resin. As VOCs (Volatile Organic Compounds) pollution had been taken into 

account more and more, non-formaldehyde-containing adhesive was requested 

strongly by industry. In1970s, API adhesive was first developed by Kuraray Co., 

Ltd, Koyo Sango Co., Ltd and Asahi Plywood Co., Ltd and patented then in Japan. 

  API adhesive is also named as ‘WPI’, which is the abbreviation of ‘Water Based 

Polymer-Isocyanate Adhesive for Woods’, based on Japanese Industrial Standard. 

In Europe, this adhesive is abbreviated as ‘EPI’, based on the name of ‘Emulsion 

Polymer Isocyanate’.    

1.1.2 Advantage and Disadvantage 

API adhesive has the advantages: 

· Non-formaldehyde emission, environmentally friendly 

· High bond strength, durability and thermal resistance 

· Various operating conditions due to room temperature curing 

· Less damage to wood due to neutral pH 

It also has disadvantage: 
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· Higher price 

· Short pot life  

· A little bit of toxicity  

1.1.3 Components 

Normally, API adhesive is prepared from three components, base resin, cross-

linker and filler. Originally, Polyvinyl alcohol (PVA) aqueous solution was 

employed as base resin. Styrene-butadiene rubber (SBR) latex and ethyl vinyl 

acetate (EVAc) latex are also added to improve the performance of adhesive. 

Cross-linker consists of highly reactive NCO (isocyanate) group, and therefore 

can react with other components. Filler, such as CaCO3 and wheat flour, are used 

to reduce the price and improve gap filling property. 

· PVA (Scheme 1.1) 

PVA, one of water-soluble polymers, is used widely in adhesion industry in 

consideration of its low price and innocuity. PVA is produced by the 

saponification of polyvinyl acetate. Degree of saponification is one important 

factor that concerns physical properties. In API adhesive, PVA hydroxyl reacts 

with NCO, generating cross-linking structure. Further, PVA could be used to 

adjust the performance of API adhesive. 

 PVA with high degree of saponification has more hydroxyls attaching onto 

molecular chain, and could produce a better water resistant glue-line. On the 

other hand, PVA with low degree of saponification has more lipophilic acetyl 

groups attaching onto molecular chain, which could lead to a better compatibility 

of PVA with other components [2]. Therefore, most of PVAs used for API 

adhesives are partially saponified.  
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· SBR latex (Scheme 1.1) 

 In industry, SBR latex is synthesized by the emulsion copolymerization of 

styrene and butadiene. SBR latex can act as a softer, improve the elastic property 

of API adhesive, adjust initial bond strength and reduce cost. The lipophilicity 

of SBR allows it to promote the miscibility of base resin and cross-linker and 

further accelerate the formation of cross-linking structure.   

· EVAc latex (Scheme 1.1) 

 EVAc is copolymerized from ethylene and vinyl acetate. It also has excellent 

flexibility and bond strength and can improve initial bond strength more than 

SBR latex. However, considering the more CO2 releasing of API adhesive 

caused by EVAc, the usage of EVAc latex is limited [3].  

 

 

 

 

 

 

 

 

· NCO cross-linker 

 Cross-linker employed for API adhesive  has more than two NCOs on molecular 

chain, such as diphenylmethane diisocyanate (MDI) and Toluene diisocyanate 

(TDI), which can form cross-linking structure in glue-line. Normally, aromatic 

isocyanate has better bond strength and durability than aliphatic isocyanate. 

Widely used polyisocyanate, polymethylene polyphenyl polyisocyanate (pMDI, 

CH2 CH

OH
n CH2 CH

O
m

C O

CH3

CH2 CH2 CH2CH CH CH
m n

CH2 n CH CH2

O

m

C O

CH3

CH2 NCO NCO NCO

CH2CH2
n

PVA   SBR   

EVAc   

pMDI   

Scheme 1. 1 



4 

 

Scheme 1.1) [4], is the polymer of MDI, and contains MDI more than half of the 

weight [5].   

· Filler 

 Fillers, such as CaCO3 
[6], wheat flour and starch, are also added into adhesive 

to reduce cost, improve gap filling property, and inhibit over-permeation of API 

adhesive. 
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1.1.4 NCO Reactions  

NCO reacts with labile hydroxyl, producing cross-linking structure and 

generating bond strength. NCO reactions in API adhesive were shown in Scheme 

1.2.  Reaction between NCO and water is the rapidest one in API adhesive, 

forming carbamic acid at first. The formed instable carbamic acid soon 

decomposes, releases CO2 and generates amine. Then, amine will react with 

another NCO and form urea. NCO also can react with hydroxyls, generating 

urethane. Hydroxyls are not only from adhesive components, such as hydroxyl of 

PVA, but also from adherends. In adhesive-bonding-wood structure, hydroxyls of 

wood ingredients, for example, hydroxyl of cellulose, can react with NCO. Thus, 

urethane formations could also generate covalent bond between adhesive and 

adherend. Actually, NCO can further react with the produced urea and urethane 

and generate biuret and allophanate, as it was shown in Scheme 1. 2. However, 

those reactions were regarded as side reactions and barely occur at ambient 

temperature [7]. 

Also, self-reactions of NCO rise, producing dimer (uretdione) and trimer 

(isocyanurate) (Scheme 1. 2). It seems like that the self-reactions will wastefully 

consume NCO in API adhesive, but for the isocyanate compounds which has more 

than two NCO groups on molecular chain, such as MDI and pMDI, self-reactions 

could form cross-linking structure, too.  

1.1.5 Cross-Linking Attributed to NCO Reactions  

 After API adhesive was applied onto wood, initial bond strength relies on PVA 

and SBR performances. In the first 24h, evaporation and permeation of water as 

well as NCO reactions lead to the curing process of API adhesive and finally form 

a glue-line. NCO reactions still can continue for several days in glue-line, 

contributing to the increasing of physical property, which is called post-curing 

process.  
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Cross-links produced in glue-line could be summarized as following: 

· NCO-water: NCO reacts with water, release CO2 and forms urea linkage. Two 

NCOs are consumed in this process, so if the two NCOs are from two different 

molecules, then this reaction will generate one cross-linking.  

· NCO-hydroxyl of adhesive components: This reaction produces urethane 

linkage inside API adhesive, which contributes to the increasing of cohesion. 

· NCO-hydroxyl of wood: Wood consists of cellulose, hemicellulose, lignin, etc. 

that contain hydroxyl on molecular chain, so it can react with NCO. This reaction 

generates urethane linkage between NCO and wood, contributing to the increasing 

of adhesion.  

· Cross-linking attributed to others reactions: Other reactions of NCO, such as 

biuret and uretdione generating reactions, also can form cross-links. However, 

those reactions are very limited at ambient temperature [7].  

 

 

 

 

 

 

Glue-line structure was shown in Fig. 1.1. There are two kinds of primary 

strength existing in glue-line: the one inside adhesive is called cohesion that is 

due to the aggregation of adhesive, the other one between adhesive and wood is 

named as adhesion which is due to the interaction of adhesive and wood. [8, 9] 

Fig. 1.1. Glue-line. Ad: adhesion; Co: cohesion. 
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1.1.6 Curing and Post-Curing 

After adhesive was applied on adherend, it is commonly cured at room 

temperature for at least 12h. In curing process, cross-linking structure is formed 

to a certain extent. Post-curing is a subsequent process, in which one elevated 

temperature is normally performed on adhesive to accelerate cross-linking 

forming reactions. Post-curing process can improve mechanical properties of 

adhesive, such as bond strength and flexural strength. 

In this experiment, API adhesive was prepared from aqueous solution and 

emulsion of base polymers and cross-linker. Then, the prepared API adhesive was 

aged in thermostatic chamber (RH50%, 23˚C). At first, water in API adhesive 

evaporated, and the reactions of NCO carried on gradually. The first step, called 

as curing, lasted for 24h, after which API adhesive solidified into block. Here, the 

cured API adhesive was continuously aged for much longer time in thermostatic 

chamber, and this period was called post-curing. Even though no heating, NCO 

reactions still carried on in post-curing process, forming urethane, urea, etc., 

which aroused the motion of molecular chain as well as the increasing of 

mechanical property. 

1.1.7 Previous Researches 

 Initial studies on API adhesive mostly focused on production and performance. 

Afterwards, Taki [10] firstly started a research on chemical structure analysis, and 

then this subject was carried on gradually.  

· Components 

 Due to NCO reactions, specially, urea and urethan generating reactions, cross-

linking structure forms. According to Takis’ research, NCO reaction with water 

consists of three steps: first, NCO react with water, generating carbamic acid; 

second, generated carbamic acid soon decomposes, releases CO2 and forms amine; 
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third, amine reacts with another NCO and forms urea linkage [11]. NCO reacts with 

hydroxyl, generates urethane linkage and contributes to the increasing of water 

resistance. While, the generating rate of urethane is much lower than that of urea 

[ 12 ]. In order to investigate the reactivity between NCO and PVA hydroxyl, 

Yamada et al [13] used acetoacetylated PVA to react with NCO compound. They 

found out that lipophilic group, acetoacetyl, can accelerate the mixing and the 

reaction of NCO with hydroxyl.  

 Hori et al. [3] reported that the addition of EVAc can increase CO2 releasing in 

API adhesive. Maehara [14] investigated the effects of SBR and EVAc latexes on 

rheological property of initially cured API adhesive. 

 CaCO3 used as filler can reduce cost, increase solid content and improve gap 

filling property [15]. Donate-Robles et al. [16] studied the interaction between CaCO3 

and adhesive using ATR-IR. 

· Reaction Rate of NCO 

 According to previous studies [17], NCO can remain and react in glue-line for a 

long time in post-curing process. Taki et al. [18] reported that the amount of 

residual NCO in adhesive film after 1-3 weeks aging was 40% of the initial 

amount. Yamada et al. [19] heated cured API adhesive and confirmed the steep 

reaction of residual NCO. 

· Aging Condition of Post-curing 

 After API adhesive was coated onto wood, post-curing process continues for 

several days. In this period, aging conditions, such as temperature and humidity, 

can affect chemical structure as well as mechanical property of adhesive [5, 20]. 

Ling et al. [21] studied the effect of heat treatment on dynamic viscoelastic property 

and chemical structure. He et al. [22] used differential scanning calorimetry to 

investigate the effect of aging humidity on pMDI reaction. 

· The Analysis of Chemical Structure 
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 There were several methods used to analyze the chemical structure of API 

adhesive. Taki at al. confirmed NCO-cellulose reaction peak at ≈270˚C on DSC 

thermogram [23]. Frazier et al. labelled pMDI by using 15N and analyzed the 

product generated from the reaction of between 15N-pMDI and wood using 

CP/MAS NMR. Reaction rate increasing of NCO was confirmed by using 

differential scanning calorimetry by He et al. [22]. Gao et al. [24] used FT-IR to study 

the reactions of pMDI in protein-based API adhesive.  

 However, it is difficult to analyze the chemical structure of adhesive applied onto 

adherend. Omura et al. [25] used filter paper as adherend and in-situ detected the 

adhesive glue-line sandwiched between two pieces of filter paper by using FT-

NIR. 

1.2 Fourier Transform Near Infrared Spectroscopy 

1.2.1 Fourier Transform Infrared Spectroscopy 

Infrared spectrum (FT-IR) is generated from the fundamental infrared 

absorption of chemical bond, by which molecular structure can be discussed [26]. 

In ambient environment, all atoms are vibrating at a lowest energy level through 

chemical bonds, and the vibration can transform into a higher energy level by 

absorbing infrared light. Here, the infrared light absorbed by each chemical bond 

is quantized, i.e. wavenumber is specific. Therefore, the existence of each 

chemical bond can be designated, respectively.  

  

 

 

 

m2m1

Fig. 1.2. Vibration of diatomic molecule. Scheme. 1.3. Hooke’s law. 
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The simplest vibration model is stretching of diatomic molecule, which was 

shown in Fig. 1.2. Two atoms, with the masses of m1 and m2, respectively, were 

bonded by electrons and vibrated. Vibrational frequency ν can be calculated using 

Hooke’s law in Scheme 1. 3 where K is force constant of bond and μ is reduced 

mass. Atoms can vibrate at different energy levels, and the energy levels are 

discrete.  

 

 

 

 

 

 

Scheme 1. 4 indicated the calculations of vibrational energy, En, the energy of 

absorbable infrared light; ΔE, the wavenumber of infrared light; ν  , 

corresponding to fundamental absorption. Diatomic molecular at ground level has 

the energy of E0. After it absorbed infrared light energy, ΔE, atoms will vibrate at 

a higher energy level, E1. Absorbable energy for each chemical bond is specific, 

so is the wavenumber of infrared light. Thus, the information of each chemical 

bond can be confirmed on spectrum separately.  

  Infrared spectroscopy is widely used in industry, agriculture, etc., due to 

admirable capability to detect the molecular component and structure. Normally 

used FT-IR (Fourier Transform Infrared) spectroscopy tests the wavenumber 

range between 400 and 4000 cm-1, which is called mid-infrared (Fig. 1.3). 
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Scheme 1. 4. Fundamental absorption. h, Planck’s constant; 

 E, energy; ν   , wavenumber. 
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1.2.2 Fourier Transform Near Infrared Spectroscopy 

 Different from IR spectroscopy, NIR (Near Infrared) Spectroscopy tests the near-

infrared range of 4000-12000cm-1 (Fig. 1.3). Moreover, the mechanism of near-

infrared absorption is also distinct from the former. In other words, only overtone 

and combination tone could be observed on NIR spectrum.  

 

  

 

 

 

 

 

· Overtone 

 IR absorption (fundamental absorption) arises in the situation that atom vibration 

transmits over only one energy level, changing from E0 to E1. On the other hand, 

a few part of atom vibrations can transmit over more than one energy level, 

changing from E0 to E2, E3, or even higher energy level, and this action causes 

first, second, or higher overtone absorption (Fig. 1.4). In the case of overtone 

absorption, wavenumber of absorbed infrared light can be calculated using 

Scheme 1. 5 where νn is the wavenumber in overtone absorption, ν1 is the 

wavenumber of fundamental absorption, χ is the anharmonicity constant 

considering anharmonic vibration, and n is 2 for first overtone, 3 for second 

Far-infrared Mid-infrared Near-infrared

400 cm-110 cm-1 4000 cm-1 12000 cm-1

Fig. 1.3. Different infrared ranges. 

Fig. 1.4. Energy levels of vibration. 

m3m1 m2

Fig. 1.5. Vibration of triatomic molecule. 
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overtone, etc. However, the value of χ is too small to have a significant effect on 

the consequent wavenumber. χ values of some common chemical bonds are listed 

in Table 1.1. [27] 

 

νn =
ν1n − ν1χn(n + 1)

1 − 2χ
  

 

 

· Combination tone 

 Combination tone arises in polyatomic molecule on condition that more than two 

absorptions occurs at the same time. In other words, it is generated from the sum 

and difference of fundamental absorption [27]. Fig. 1.5 demonstrated the stretching 

vibration of triatomic molecule, which is the simplest model of combination tone. 

If the bond between m1 and m2 has the fundamental infrared absorption at 

wavenumber ν1, and the bond between m2 and m3 has the absorption at ν2, then 

combination absorption of these two bonds can give rise to a combination tone at 

around ν1+ν2. Combination tone is relevant to the molecular symmetry so it is 

more unique than overtone for the distinguishment of chemical bonds.  

· Characteristic of FT-NIR 

 NIR absorption has a lower probability of occurrence than IR absorption, due to 

which the applied sample amount for FT-NIR spectroscopy is more than that for 

FT-IR spectroscopy. In addition, NIR light has an admirable penetration ability 

that allows it to be performed on un-pretreated sample. Compering to other 

analysis methods, e.g., DSC and NMR, FT-NIR has a shorter test time. However, 

on FT-NIR spectrum the overlapping of bands occurs significantly, which 

χν(CH) 1.9×10-2 

χν(CD) 1.5×10-2 

χν(CF) 4×10-3 

χν(CCl) 6×10-3 

χν(C=O) 6.5×10-3 

Scheme 1. 5. Overtone absorption.  

Table 1. 1. Anharmonicity constants.  
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complicates the assignment of chemical bond, so, normally, some treatment 

methods are applied, such as derivatization. 

 

1.2.3 Derivatization  

𝑥𝑖𝑘 = 𝑎𝑖𝑥𝑘̅̅ ̅ + 𝑏𝑖 + 𝑒𝑖𝑘 

 

Original spectrum consists of several components, which was shown in Scheme 

1. 6 where 𝑥𝑖𝑘  is original spectrum, 𝑥𝑘̅̅ ̅  is average spectrum, 𝑎𝑖  is multiplied 

fluctuation, 𝑏𝑖  is additive fluctuation, and 𝑒𝑖𝑘  is error. By 1st derivatization the 

effects of 𝑏𝑖 and 𝑒𝑖𝑘 can be eliminated, and by 2nd derivatization the effect of 𝑎𝑖 

can also be dissolved. In NIR test the obtained spectrum is frequently influenced 

by physical differences, for example, particle size and thickness of sample. 

Derivatization can reduce the effect of physical difference and clarify the 

chemical difference between spectra, which is particularly useful in in-situ 

analysis [27].  

 

 

 

 

 

 

 

 Fig. 1.6 illustrated the bands on raw, 1st derivative and 2nd derivative spectra, 

respectively. 1st derivatization calculates the gradient of raw spectrum, therefore 

Scheme 1. 6. Components of spectrum.  

Fig. 1.6. Derivatizations of spectrum. Solid and 

dot lines represent two different spectra. 
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the upward peak on raw spectrum turns into vertical-axis origin point on 1st 

derivative spectrum. 2nd derivative spectrum is obtained by performing another 

derivatization on 1st derivative spectrum, on which a downward peak shows up at 

the same wavenumber as that of raw spectrum peak [28]. On the other hand, the 

change of band intensity can also be confirmed using derivative spectra. When 

some variations arise on molecular structure, caused by physical or chemical 

factor, the band intensity will vary accordingly. On raw spectrum (Fig. 1.6), band 

intensity increases from dot line to solid line. The increasing will arouse a 

variation of derivative spectra, also from dot to solid line. Based on this 

phenomenon, the variation of chemical structure could be discussed by using 2nd 

derivative spectrum. 

1.2.4 Two-Dimensional Correlation Spectroscopy 

 

 

 

 

 

 2D (two-dimensional) correlation spectroscopy for IR was started by Noda in 

1990s [29], which could be utilized to study the molecular interaction. After an 

external perturbation, e.g., varying temperature, is applied to the sample, some 

dynamic variations will demonstrate on IR spectra, due to intra and intermolecular 

interaction. 2D correlation spectrum is obtained by spreading dynamic IR spectra 

over two dimension and protruding the correlation (Fig. 1.7). 2D correlation 

spectroscopy can also be applied on NIR spectra, by which resolution is enhanced 

and, hence, overlapping band can be distinguished. The cross-correlation function 

of 2D correlation spectroscopy was demonstrated in Scheme 1. 7 where 𝑌1̃(𝜔) 

and 𝑌1̃(𝜔)  are generated from the Fourier transforming of absorbance, T is 

excitation time, and 𝛷(𝜐1, 𝜐2) and 𝜓(𝜐1, 𝜐2) are the intensities of synchronous 

SmpleIR or NIR

External 
perturbation

Dynamic 
spectra

2D correlation 
spectrum

Fig. 1.7. Process of 2D correlation spectrum. 
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and asynchronous spectrum, respectively. The calculation generates synchronous 

and asynchronous spectrum (Fig. 1.8) by which the degree of coherence of 

dynamic spectra can be studied. 

 

  

 

 

 

 

 

 

 

 

 

 On synchronous spectrum, there are two kinds of peaks: one is auto-peak, 

showing up on diagonal, generated from the same band variation; the other one is 

cross-peak, locating off the diagonal, generated from the correlation between 

different bands. Auto-peak sign is always positive (white), and, on other hand, 

cross-peak signs are symmetrical about diagonal, positive (white) or negative 

(grey) (Fig. 1.8 left). On asynchronous spectrum, just cross-peaks occur and their 

signs are antisymmetical about diagonal (Fig. 1.8 right). Synchronous spectrum 

demonstrates the synchronicity of bands. On the contrary, asynchronous spectrum 

research the asychronicity. For example, there are two bands on dynamic spectra 

at the wavenumber of 𝜐1 and 𝜐2 (𝜐1>𝜐2), respectively, and their band intensities 

are varying with external perturbation. Two bands synchronicity can be confirmed 

Scheme 1. 7. Calculation of 2D correlation spectra.  

 + i =


∫



Y1 ( )·Y2( )~ ~

Fig. 1.8. 2D correlation spectra. Left, synchronous; Right, asynchronous. 
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using the cross-peak on synchronous spectrum. Positive cross-peak means that 

their band intensities change in the same direction, both increasing or both 

deceasing. Negative peak suggests that their band intensities change in the 

opposite direction, one increasing and the other one decreasing. Further, the 

variation rate of the two band intensities can also be compared: if synchronous 

cross-peak and asynchronous cross-peak have the same sign, both positive or both 

negative, it implies that band 𝜐1  has a higher variation rate than band 𝜐2 ; if 

synchronous cross-peak and asynchronous cross-peak have different signs, one 

positive and the other one negative, it suggests that band 𝜐1 has a lower variation 

rate than band 𝜐2 [30, 31]. 

1.3 Purpose 

  Residual NCOs in API adhesive glue-line can react with hydroxyl and moisture 

during post-curing process, contributing to the variations of both chemical and 

physical properties. However, NCO reactions in API adhesive glue-line 

sandwiched between two adherends are difficult to be studied by using normal 

methods (such as FT-IR and NMR). In this study, chemical and physical 

properties of cured API adhesive film were studied by using FT-IR and DMA first 

to confirm the formation of cross-linking structure.  Then, the absorption bands 

of urethane and urea, two main products of NCO reactions, were assigned on FT-

NIR spectrum. After that, the chemical structure variation of API adhesive glue-

line sandwiched between two adherends was studied by using FT-NIR. In order 

to obtain a stronger post-cured glue-line, the influences of aging condition and 

adhesive components on chemical structure as well as physical property were also 

studied. Finally, to better understand the bonding mechanism of API adhesive to 

wood component, the product of NCO-cellulose reaction was studied by using 

FT-IR. 
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2 Post-Curing Process of API Adhesive 

2.1 Introduction 

 API adhesive is prepared from water-based resin and cross-linker. After API 

adhesive was applied onto wood, water permeates into wood and evaporates into 

ambient environment. In the meanwhile, NCO reactions proceed. This process 

was called ‘curing’ of adhesive and normally took one day. After water 

evaporation, adhesive turns into solid state and glue-line finally forms. However, 

NCO reactions still can continue for several other days, leading to the variations 

of chemical structure and physical property of glue-line, and this process is called 

‘post-curing’. The purpose of this chapter is to confirm NCO reaction in post-

curing process and the physical property change of glue-line.  

 Ordinarily used test methods for chemical structure analysis are NMR and FT-IR 

spectroscopy. However, as it had been mentioned, molecular structure is highly 

cross-linked in post-cured API adhesive, contributing to an un-dissolvable block, 

so the liquid-state NMR test is impossible to be carried out. Solid-state NMR was 

also considered at first. Nevertheless, the abundance bands were overlapped 

significantly due to its poor resolution.  FT-IR test can be applied on solid-state 

sample and it has a good resolution, but its sample preparation process needs to 

be deliberated. As long as the sample amount for FT-IR test is just several mg, 

adhesive glue-line with adherend is unsuitable to be tested immediately. For this 

reason, an API thin film prepared from API adhesive was applied. 

 In this chapter, three materials, PVA, SBR, and pMDI, were used to prepare API 

adhesive. TGA (thermogravimetric analysis), DSC (differential scanning 

calorimetry) and DMA (dynamic thermomechanical analysis) were also used to 

study the physical property of post-cured API adhesive. TGA was applied to 

observe the thermal degradations of adhesive component that included formed 

chemical linkages. DMA detects the rheological property of material which is a 
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material’s response to oscillating force, i.e., elastic and viscous behaviors [32]. 

Besides, the tangent of phase angle can be used to discuss Tg of polymer (glass 

transition temperature). Previous studies [20, 21] reported that NCO can remain in 

adhesive block for several days and acutely react under heat treatment. 

  In this chapter, chemical and physical properties of post-cured API adhesive 

were evaluated by using FT-IR and DMA test, respectively. In previous study [7, 

33], NCO reactions in adhesive film were tracked by using FT-IR spectroscopy, 

where not only urea and urethane formations but also hydrogen bonds generated 

from phase mixing were discussed. In addition, several spectra of the same sample 

corresponding to different ambient environments were collected together and 

compared with each other to investigate the influence of post-curing conditions, 

such as humidity and temperature, on NCO reactions. DMA was widely used to 

test the Tg of polymer material which is one important factor in practical 

application. For the material that has cross-linking structure, cross-linking density 

can be calculated from the value of storage module on rubbery plateau [34]. As a 

preliminary work for the following in-situ analysis of bonding structure, this 

chapter confirm the consumption of NCO, the generation of chemical linkages, 

and the formation of cross-linking structure. 

2.2 Experimental 

2.2.1 Materials 

Base resin: Two base resins were used in this experiment: one was 15wt% PVA 

(polyvinyl alcohol) aqueous solution and the other one was SBR (styrene 

butadiene-rubber) latex. PVA powder product purchased from Wako Pure 

Chemical industries, Ltd. (Japan) had the degree of saponification of 99.1% and 

Mn of 6.8×104 g/mol. SBR latex supplied by NIPPON A & L Inc. (Japan), used as 

softener, had the solid content of 51.7% and the styrene/butadiene mass ratio of 

7/3. 
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Cross-linker: pMDI (polymethylene polyphenyl polyisocyanate) (MR-200), 

supplied by Nippon Polyurethane Industry Co., Ltd. (Japan), had the NCO content 

of 29.4% (measured by titration).  

Plastic container (volume 50 ml), Teflon sheet (thickness 2 mm), and vinyl tape 

(thickness 0.2 mm) were also utilized.  

2.2.2 Sample Preparation 

 15wt% PVA aqueous solution: 7.5 g PVA powder and 42.5 g distilled water were 

added into a four-neck flask. The mixture was stirred at 80˚C for 8h and then 

stirred at room temperature for one night. Distilled water used for aqueous 

solution was purified by Elix UV 3/5/10 (Millipore, Japan). 

 API adhesive: 3 g PVA aqueous solution and 3 g SBR latex were poured into the 

plastic container, mixed for 1 min and degassed for 30 s by using Hybrid Mixer 

HM-500 (Keyence, Japan). Thereafter, 1.5 g pMDI was added. The mixture was 

mixed for 2.5 min and degassed for 30s. 

 API thin film: API adhesive was used soon after it was prepared. API thin film 

was made by thinly casting API adhesive onto Teflon sheet and aging in 

thermostatic chamber (23˚C, RH 50%) for one day. API thin film was peeled off 

from the Teflon sheet after aging and it had the thickness of 0.03 mm (Fig. 2.1). 

 

 

 

 

 

Glass 
stick
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sheet

API 
adhesive

Casting Storage Peeling off

Fig. 2.2.1. Preparation of API thin film. 
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 API film: A mould was made of Teflon sheet and vinyl tape first. Then, API 

adhesive was casted into the mould, and aged in thermostatic chamber for one day. 

Then, API film was peeled off. API film had the thickness of 0.2 mm (Fig. 2.2).  

 

 

 

 

API thin film and API film were aged in thermostatic chamber. 

 

 

 

 

 

 

 

Cross-lap: API adhesive was also used to prepare cross-lap samples. Wood 

pieces in the size of 1.5cm×2.5cm×6cm were cut from birch. Priority to usage, 

wood pieces were aged in thermostatic chamber, and it had the density of 0.7g/cm3 

and the moisture content of 9.58wt%. ≈14mg/cm2 glue-spread and 6kg/cm2 

pressure were employed for cross-lap preparation. Cross-laps were 24h pressed 

and then aged in thermostatic chamber.   

Vinyl
tape

Teflon 
sheet

API 
adhesive

Glass 
stick

Preparing 
mould

Casting Storage Peeling off

Fig. 2.2.2. Preparation of API film. 

Fig. 2.2.2. Preparation of cross-lap. 
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2.2.3 Characterizations 

As it had been mentioned above, TGA, DSC, DMA and FT-IR were applied to 

analyze chemical and physical property variations of API adhesive in post-curing 

process. 

TGA: Thermogravimetric analysis was carried out with STA 6000 (PerkinElmer, 

Japan). 5-8mg sample was used and the temperature was elevated from 30˚C to 

600˚C at 10˚C/min in dry nitrogen gas flow of 20ml/min 

DSC: The instrument was DSC-8500 (PerkinElmer, Japan). 2-3mg sample was 

heated at 10˚C/min in dry nitrogen gas flow of 20ml/min. 

DMA: Rheologic curves were acquired on DVA-200s (ITK, Japan). Sample was 

cut into the size of 20×5mm2 (length×width) for tensile mode. Frequency was 

10Hz, and temperature range was -50-250˚C at 10˚C/min in dry nitrogen gas flow 

of 0.5L/min. 

FT-IR: NICOLET-6700 (Thermo Fisher Scientific K.K., Japan) (KBr beam 

splitter, resolution 4 cm-1, 128 scans, 400-4000cm-1) was used to test sample in 

dry air flow. 

Bond strength: TENSILON UCT-5T (A&D Co., Ltd, Japan) was used. 

Crosshead speed was 10mm/min.  

 

2.3 Results and Discussion 

2.3.1 TGA 

PVA powder was 100˚C vacuum dried for over 4 hours. SBR latex was dried at 

room temperature to make SBR block, and then the SBR block was ground into 

powder form. Prior to TGA test, SBR powder were 100˚C vacuum dried for over 

4 hours.   
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TGA and DTG curve of PVA powder were displayed in Fig. 2.3.1 (left). The 

thermal degradation of PVA powder involved two steps, which showed the fastest 

degradation rates at 276˚C and 373˚C, respectively. Thermal degradation of PVA 

generally involves the dissociation of hydroxyl group, the transition between 

olefinic alcohol and ketene, the formation of alkynyl group terminated 

compounds. According to the reports of Holland [ 35 ] and Yoshio [ 36 ], the 

dissociation of hydroxyl group occurs below 300˚C, generating water, 

acetaldehyde, ketone, etc. As thermal degradation carried on, a rapid mass loss 

arose at 373˚C. Acetyl group on PVA molecular chain, due to the uncomplete 

saponification in manufacture process, could accelerate the degradation process.  

TGA and DTG curve of SBR powder were showed in Fig. 2.3.1 (right). The 

thermal decomposition reaction of SBR started with the breakup of molecule 

chain generating butadiene, styrene and hydrogen gas. Then,0 the addition 

reaction of styrene carried on in gas phase forming benzene derivatives such as 

xylene, trimethyl benzene and triethyl benzene [37]. The fastest degradation rate 

was detected at 422˚C. In this experiment, SBR powder was prepared from SBR 

latex, thus containing additives such as emulsifier and inorganic acid salt. 

However, the thermal stability of SBR powder was barely affected, and it 

corresponded to the literature result of styrene-butadiene rubber. 

Fig. 2.3.1. Thermal degradations of PVA powder (left) and SBR powder (right). 
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Fig. 2.3.2 (left) demonstrated the result of pMDI. Thermal degradation of pMDI 

had two steps, at 266˚C and 510˚C. Thermal degradation of pMDI carried on with 

the formation of carbodiimide, releasing carbon dioxide. Trimerization of 

isocyanate could also take place and generate thermally stable isocyanurate. The 

degradation of isocyanurate normally occurs at ≈350 ˚C [38]. The second step at 

510 ˚C was attributed to the degradation of char generated in the first step [39]. The 

finally residual mass at 600 ˚C was about 34%.  

Thermal degradation mechanism of polyurethane product had been studied in 

other papers. Petrovic et al. [40] reported that the ruptures of urethane linkage (hard 

segment) occurred at lower temperature, and that of polyol (soft segment) took 

place at higher temperature. Chattopadhyay et al. [38] suggested that the breakup 

of urethane linkage took place at ≈200˚C, followed by the decomposition of urea 

linkage at ≈250˚C. The thermal degradation of urethane linkage mainly involves 

three reactions that were displayed in Scheme 3.2.1, generating isocyanate, polyol, 

amine, olefin, carbon dioxide and secondary amine (Scheme 2.3.1 b). The 

generated isocyanate could trimerize, forming isocyanurate [41]. Urea degradation 

normally forms volatile product and carbonaceous char [42].  
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Fig. 2.3.2. Thermal degradations of pMDI (left) and 6 days aged API film (right). 
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Thermal degradation of API film (Fig. 2.3.2 right) had two steps, at 321˚C and 

415˚C. Urethane and urea degradations occurred first during heating but the mass 

loss in this range was unobvious. The first step, at 321˚C, corresponded to the 

decompositions of PVA hydroxyl and pMDI isocyanate. Carbon-carbon and 

carbon-nitrogen combinations had better thermal stability, so they degraded at the 

second step, 415˚C.  

The thermal degradation temperatures (T5%) of three raw materials and API film 

were summarized in Table 2.3.1. PVA powder and pMDI had two similar T5%s at 

231˚C and 236˚C, respectively. SBR powder showed a higher T5% at 357˚C. Thus, 

API film had a T5% at 279˚C which was between the T5%s of raw materials. 

 

 PVA film SBR film pMDI API film 

T5% 231˚C 357˚C 214˚C 279˚C 

2.3.2 DSC 

The samples for differential scanning calorimetry were the same ones that were 

used in 2.3.1. PVA powder, SBR powder and API film were in solid state, so the 

DSC tests of them were performed by using aluminum pan (PerkinElmer) as 

Table 2.3.1. Thermal degradation temperatures, corresponding to 5% mass loss. 
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Scheme 2.3.1. Thermal degradation reactions of urethane linkage. 
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container. For liquid-state pMDI, the container was stainless steel capsule 

(PerkinElmer). Furthermore, in order to avoid the over pressure of stainless steel 

capsule, which could be aroused by the gaseous products generated from thermal 

degradation reaction, DSC test of pMDI was carried on below 200˚C. Before DSC 

scanning, PVA powder and SBR powder were heated to 200˚C and kept for 1min 

to remove the effect of thermal history. pMDI and API film contained highly 

reactive NCOs, so there was no pretreatment performed on them. 

 SBR latex is manufactured by the emulsion polymerization of styrene and 

butadiene. The Tg of polystyrene is 100˚C, and that of 1,4-tans-polybutadiene is -

102˚C. SBR latex used in this experiment had the styrene/butadiene mass ratio of 

7/3, so Tg of styrene-butadiene copolymer should be at around 2˚C, according to 

Tg calculation formula (Equation 2.3.1) [43]. However, SBR latex consists of not 

only styrene-butadiene copolymer but also additives (such as emulsifier), un-

polymerized monomer, etc. Thus, the physical property of SBR powder, prepared 

from SBR latex, was different from that of styrene-butadiene copolymer.  

1

𝑇𝑔𝑐
=

𝑊𝑎

𝑇𝑔𝑎
+

𝑊𝑏

𝑇𝑔𝑏
 

 

 

In Fig. 2.3.3, Tg of SBR powder was, even though un-obviously, detected at 

14˚C, which was higher than the estimated value. No Tm was detected for SBR 

powder. 

PVA powder had both amorphous and semi-crystalline phase, so the DSC curve 

showed Tg at 69˚C and Tm at 203˚C. The obvious inclination of PVA curve 

occurred at around 300˚C due to thermal degradation. 

 

Equation 2.3.1. Tg calculation formula of copolymer. Tgc, Tga and Tgb: 
Kelvin Tgs of copolymer, polymer a and polymer b; Wa and Wb: mass 

percentages of polymer a and polymer b.  
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On DSC curve of pMDI, exothermal peak showed up at 143˚C, attributing to the 

self-reactions of isocyanate. Self-reactions of isocyanate generate dimer and 

trimer, uretdione and isocynurate (Scheme 1. 2). Watanabe et al. [44] crystallized 

uretdione from the pyridine solution of phenyl isocyanate at room temperature, 

and obtained isocyanurate from the pyridine solution of phenyl isocyanate at 

100˚C by using triethylene diamine as catalyst. 143˚C peak was mainly due to 

uretdione generation, because the formation of dimer occurs more easily than that 

of trimer.  

 DSC thermogram API film was performed between -50˚C and 350˚C. Tg of un-

cross-linked PVA and SBR mixture showed up at 35˚C, but unclearly. During 

post-curing, cross-linking structure was generated significantly due to NCO 

reactions in API film. Thus, the formed cross-linking structure restricted the 

movement of molecular and, further, the appearance of Tg
 [45]. The unobviousness 

of Tg was attributed to the insensitiveness of DSC to molecular chain movement. 

The broad exothermal peak at 141˚C was attributed to the reactions of NCO, 

forming NCO dimer, etc. There was another exothermal peak occurring at 285˚C, 

which was thought of as due to the complicated thermal degradation reactions of 

NCO. 

Fig. 2.3.3. DSC thermograms of three materials and API film. 
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2.3.3 DMA 

DMA (Dynamic Mechanical Analysis), which could also be called as DMTA 

(Dynamic Mechanical Thermal Analysis), is commonly utilized to analyze the 

rheological and thermal properties of material. DMA measures the response of 

sample to an oscillatory force, and this response is separated into one viscos 

component (loss modulus) and one elastic component (storage modulus) [46]. For 

DMA test, PVA film (thickness 0.09mm) and SBR film (thickness 0.5mm) was 

made by casting PVA aqueous solution and SBR latex onto Teflon sheet and aging 

for one week in thermostatic chamber. It was impossible for liquid-state pMDI to 

be tested by tensile mode DMA. API film used here was the same as that for 

previous tests.  

 

  

 

 

 

 

 

The profile of PVA storage modulus (Fig. 2.3.4 left) included several sections: -

50-20˚C, 20-75˚C, 75-110˚C, 110-180˚C and 180-250˚C. -50-20˚C: Molecular 

chains tightly aggregated in this temperature range, but amorphous side chain 

movement took place and cased a slight descent of modulus. Furthermore, the 

decreasing modulus in low temperature range could also be associated with water; 

20-75˚C: Modulus decreased rapidly in this range and Tg peak showed up at 46˚C 

on tanδ curve, due to the significant movement of PVA amorphous part; 75-110˚C: 

Here, amorphous phase was in flow-state but crystalline phase was still 

Fig. 2.3.4. DMA thermograms of PVA film (left) and SBR film (right). 
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compacted, contributing to a changeless modulus. 110-180˚C: Menard et al. [32] 

stated that a slippage past each other of semi-crystalline structure occurred in this 

range. A vague peak appeared on tanδ curve might correspond to their theory. 

180-250˚C: crystalline structure totally melted and the thermal degradation of 

molecular chain also occurred, resulting into a rapid decreasing of modulus value. 

 SBR thermograms were shown in Fig. 2.3.4 right. The side molecular chain 

motion led to a slight decreasing of storage modulus in -50-10˚C; 10-70˚C: 

modulus decreased significantly, and Tg peak arose at 48˚C on tanδ curve.  

In Fig. 2.3.5, DMA thermograms of API film aged for 1, 3 and 6 days in 

themostatic chamber were demonstrated. There were two position-unchanged 

peaks occurred at 28˚C and 203˚C, respectively, in Fig. 2.3.5 left. Peak at 28˚C 

was assigned to the Tg of API film, related to the mixture of SBR and uncross-

linked PVA. From 1 day to 6 days, API film was post-cured in thermostatic 

chamber (RH 50%, 23 ˚C), during which time NCO continuously reacted with 

water and hydroxyl of PVA forming cross-linking. The decreasing of peak 

intensity at 28˚C with aging days implied that the amount of flowable component 

decreased. During post-curing, cross-linking were formed between the molecular 

chains of PVA and pMDI. Thus, the generated cross-linking restrained the 

movements of molecular chains at 28˚C.  

 

 

 

 

 

 

 Fig. 2.3.5. DMA thermograms of API film, aged for 1, 3 and 6 days. 
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Peak at 203˚C was relevant to several reasons: (1) The slippage past each other 

of PVA semi-crystalline structure; (2) Strong interaction between molecular 

chains, caused by the acute reactions of NCO at high temperature. Menard et al. 

[32] summarized that the tanδ peak originating in acute reactions would shift to 

higher temperature and the peak intensity would be weaker with post-curing time, 

since the longer the post-curing process was, the less the reactive group left, and 

the worse the molecular mobility became. They also demonstrated that Tg peak 

on tanδ curve would move to higher temperature with post-curing time increasing, 

because the scale of molecular chain was increasing in post-curing process. Thus, 

in this experiment, the slippage of PVA semi-crystal must make a great 

contribution to the constant peak location, because the melting point of crystal 

were changeless. Peak intensity increasing at 203˚C with post-curing time could 

be attributed to the ascendant molecular friction promoted by gradual cross-

linking formation.  

On tanδ curves of 3 days and 6 days films, two peaks showed up at 88˚C and 

130˚C, respectively. These two peaks were regarded as corresponding to the Tgs 

of small scale molecular chains generated from pMDI reactions. From 3 days to 

6 days, this Tg shifted to higher temperature, implying that the molecular  scale 

were increasing in post-curing process [11]. 

The storage modulus curves of API films were showed in Fig. 2.3.5 right. Three 

films showed almost the same value at low temperature. Then, the molecular 

chain of 1 day aged film started to flow at about -10˚C, resulting in modulus 

decreasing. The modulus descents of 3 days and 6 days films started at about 5˚C. 

A flat plateau occurred in the area of around 100˚C, where modulus decreased just 

on a small scale, similar to the DMA result of PVA, and longer-time-post-cured 

film had higher modulus. The result of modulus demonstrated that post-curing 

process gave rise to a fully cured API film with better resistant ability to impact.  
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Rubbery plateau showed up at 210-250˚C, where modulus was changeless. In 

this area all amorphous phase was in flow-state, and the crystalline phase of PVA 

melted. At this moment, cross-linking was the only bonding between molecular 

chains, resisting oscillatory force. Thus, the modulus in this area could be used to 

calculate the cross-linking density in API film, based on kinetic theory of rubber 

elasticity. Here, cross-linking densities at 210˚C were calculated by using 

Equation 2.3.2 [34, 47], and the result was listed in Table 2.3.2. Cross-linking density 

ascended continuously with post-curing time. 

 

 

 

  

 

 

 

2.3.4 FT-IR 

 

 

 

 

 

 

 

 

E’=3νRT 

Equation 2.3.2. Calculation of cross-linking density. E’: storage modulus; ν: cross-

linking density; T: the absolute temperature of rubber plateau; R: the gas constant.  

Table 2.3.2. The Cross-linking densities of API films. 

Fig. 2.3.6. FT-IR spectra of pMDI, SBR and PVA. 
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Table 2.3.4. Band assignment of SBR powder. 

str: stretching; ben: bending; def: deformation 

str: stretching; ben: bending; roc: rocking; bonded: hydrogen bonded; free: non-

hydrogen-bonded 

Table 2.3.3. Band assignment of PVA. 
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2mg PVA powder was vacuum dried and then mixed with 200mg KBr powder 

to prepare a disk (Φ 13mm). Vacuum dried 2mg SBR powder (same as the one 

used in 2.3.1) and 200mg KBr powder were mixed and made into disk (Φ 13mm). 

pMDI was in liquid state at room temperature so it was cast onto CaF2 disk (δ 

1mm, Φ 25mm, Pier Optics, Japan). FT-IR tests were performed on these three 

disks. CaF2 has significant absorption in the range of below 1000cm-1, so only the 

spectrum of over 1000cm-1 of pMDI was used. The band assignment of three 

material were summarized in Table 2.3.3, Table 2.3.4 and Table 2.3.5 [28, 48, 49]. 

 

 

 

 

 

 

 

 

 

PVA is manufactured by saponifying polyvinyl acetate. PVA powder used in 

this experiment had the degree of saponification of 99.1%, so there was still 0.9% 

acetyl group on molecular chain. The C=O stretching band in Table 2.3.3 verified 

the existence of acetyl. SBR powder was prepared from SBR latex. Thus, the O-

H stretching band in Table 2.3.4 was attributed to some additives added in the 

manufacture process of latex. Even though pMDI was carefully stored, a little bit 

of NCOs still reacted with water from external forming urea. Self-reaction of 

NCO could also occur, forming dimer and trimer (Scheme 1.2). Stabilizer was 

Table 2.3.5. Band assignment of pMDI. 

str: stretching; ben: bending; def: deformation 
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added in the manufacture process of pMDI. Therefore, N-H stretching and C=O 

stretching bands were detected on pMDI spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FT-IR spectroscopy was performed on API thin film prepared in 2.2.2. The FT-

IR spectra of API thin films aged for 1 day, 3days and 6 days were displayed in 

Fig. 2.3.7 (normalized by using C-H band at 2919cm-1), and band assignments 

wer summarized in Table 2.3.6. During post-curing, NCO reactions were carrying 

on, and two primary reactions generated urea and urethane linkages, as it had been 

stated in 1.1.4. In the meanwhile, water and PVA hydroxyl were consumed. To 

study the variation of chemical structure in more detail, 2D correlation 

spectroscopy (1.2.4) was calculated. The FT-IR spectra of API film from 1 day to 

6 days were utilized to obtain 2D correlation spectra, by which resolution was 

Table 2.3.6. Band assignment of API thin film. 

str: stretching; def: deformation 
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enhanced and variation trend of band was discussed. Software, 2D shige, used 

here was made by Morita [50]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On diagonal of synchronous spectrum (Fig. 2.3.8 left) four auto-peaks appeared 

at 3450 and 3320, implying that the FT-IR bands at these two locations changed 

on band intensity during post-curing. Moreover, cross-peaks showed up at 3450-

3320 on synchronous and asynchronous spectra.  
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Fig. 2.3.7. FT-IR spectra of API thin film aged for 1 day, 3 days and 6 days. 

Fig. 2.3.8. Synchronous (left) and asynchronous (right) 2D correlation 

spectra, generated from Fig. 2.3.7. 
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The broad band at 3320cm-1 (Fig. 2.3.7) had increasing band intensity with aging 

time, so its corresponding auto-peak at 3320 was attributed to N-H stretching 

vibration. Then, 3450 auto-peak was assigned, based on its relationship with 3320 

auto-peak. Negative sign of 3450-3320 synchronous cross-peak suggested that 

3450cm-1 FT-IR band had opposite variation trend with 3320cm-1 FT-IR band. 

Namely, band intensity of 3320cm-1 increased with post-curing time, and that of 

3450cm-1 decreased. Thus, 3450 auto-peak was assigned to O-H stretching of 

hydroxyl. Asynchronous cross-peak at 3450-3320 also had a negative sign, 

demonstrating that 3450cm-1 band changed faster than 3320cm-1 band. In other 

words, the break of O-H happened before the formation of N-H.  

  

 

 

 

 

 

 

 In Fig. 2.3.9 left, two auto-peaks at 1715 and 1639 were detected on diagonal of 

synchronous spectrum, corresponding to the bands of urethane and urea, 

respectively. Moreover, positive synchronous cross-peak at 1715-1639 implied 

the same variation trend of those two band intensities. On the other hand, a 

negative asynchronous cross-peak occurred at 1715-1639 (Fig. 2.3.9 right). 2D 

correlation calculation suggested that urethane band and urea band had the same 

trend, both increasing in post-curing process, but urea band changed faster than 

urethane band. This might be due to the faster generation rate of urea [12]. It should 

be noticed that even though the band at 1715cm-1 (Fig. 2.3.7) had a significant 

Fig. 2.3.9. Synchronous (left) and asynchronous (right) 2D correlation spectra. 
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band intensity, it consisted of the absorptions of several chemical compounds, 

urethane, NCO trimer, acetyl of PVA, etc. But the increasing of band intensity 

was mainly attributed to urethane generation, since NCO reactions could just 

generate urethane and NCO trimer, and NCO trimerization barely occurred at 

ambient temperature.  

2.3.5 Bond strength  

  

 

 

 

  

 

It could be confirmed that bond strength increased with aging time. During aging 

process, post-curing of glue-line in cross-lap contributed to the increasing of both 

bond strength and wood failure. This could be due to the gradual generations of 

urethane and urea linkages inside glue-line and between glue-line and wood. 

2.4 Conclusions 

In this chapter API adhesive was prepared, and the physical and chemical 

properties of post-cured API film/thin film were characterized by traditional 

methods, TGA, DSC, DMA and FT-IR. In addition, three raw materials were also 

characterized to compare with the result of API adhesive. 

TGA: In the testing process, PVA powder and pMDI showed T5% at around 230 

˚C. SBR powder had the best stability and showed T5% at around 357˚C. As a 

result, T5% of 6 days aged API film appeared at 279˚C. Normally, the thermal 

Fig. 2.3.10. Bond strength of cross-laps aged for several 
days, error bars represent ±1 standard deviation, n=7. 
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degradations of urethane and urea take place at 200˚C and 250˚C, respectively. 

However, the unremarkable mass loss of API film in 200-250˚C could not be used 

to observe urea and urethane degradations.  

DSC: Tg of SBR powder, Tg and Tm of PVA powder were detected at 14˚C, 

69˚C and 203˚C, respectively. One sharp exothermal peak showed up at 143˚C on 

pMDI curve, which was regarded as related to NCO self-reactions (Scheme 1.2). 

Tg appeared on API film curve at around 35˚C. Two exothermal peaks at 141˚C 

and 285˚C on API film curve were attributed to NCO reactions and NCO thermal 

degradation reactions. 

DMA: By using DMA test, Tgs of SBR and PVA films were detected at 48˚C 

and 46˚C. Tg at 28˚C on API film loss factor curve was assigned to the mixture 

of SBR and un-reacted PVA, and peak at 203˚C was due to the reactions of NCO 

and the slippage of PVA semi-crystal. Rubbery plateau was observed on storage 

modulus curve, by which cross-linking density was calculated. Result showed that 

density of cross-linking increased with post-curing time. 

FT-IR: Three materials were tested first, and then the chemical structure 

variation of API thin film with post-curing time was confirmed: Most of generated 

amide linkages were hydrogen bonded; C=O stretching bands of urethane and 

urea appeared at 1715cm-1 and 1639cm-1, and urea band intensity increased faster 

than urethane band intensity.  

Bond strength: API adhesive cross-laps were tested to confirm that urethane and 

urea generations in post-curing process led to the increasing of bond strength. 

In practical application, API adhesive is used to bond two adhesrends together 

and post-cured as glue-line between two adhesrends. However, in this chapter 

only API adhesive film was chemically analyzed and no adherend was involved, 

which could not be regarded as an actual glue-line. In the following study, FT-
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NIR was employed to evaluate the chemical structure of API adhesive sandwiched 

between two adherends. 
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3 In-situ Analysis of API Adhesive glue-line by using FT-NIR 

3.1 Introduction 

 The chemical and physical properties of post-cured API adhesive film was 

studied in chapter 2. However, API adhesive is normally used to bond and cured 

between two adherends. Thus, the in-situ analysis of API adhesive glue-line is 

very important for practical application. In this chapter, API adhesive was 

sandwiched by two adherends, and the chemical structure analysis of post-cured 

API adhesive glue-line was carried on by using FT-NIR (Fourier Transform Near 

Infrared) spectroscopy.  

 NIR energy was first discovered by William Herschel in 1880 [27]. Before World 

war II, NIR technic was barely used by chemists, because of its narrow region, 

800-2500nm (approx. 4000-12000cm-1). Furthermore, only overtone and 

combination tone of fundamental vibrations occur in NIR region. These two tones 

have lower intensity than fundamental band so they are difficult to be detected 

and analyzed. In 1960s, Karl Norris found out the intrinsic value of NIR for 

measuring agriculture products, and the U.S. Department of agriculture applied 

NIR for rapid measurement. Then, with the increasing of instrument resolution, 

NIR has been used more and more extensively. Today, NIR spectroscopy is 

widely used in cosmetic, food and agricultural industries, considering that it is 

one faster and more simply technic than NMR, GPC, etc. Compared with infrared 

light, near infrared light has higher energy and less diffracts, which can be 

performed on untreated samples. In agriculture, NIR can be employed to quantify 

protein, moisture and oil in soybean; For food products NIR was utilized to 

qualify wine, cheeses, fruits, etc.; For polymer, NIR can be used to determine the 

degree of curing without destroying sample. 

As it has been mentioned above, NIR spectroscopy collects the overtone and 

combination tone information of chemical bond vibrations. Therefore, the 
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assignment for the band in NIR region is not as easy as that for the band in IR 

region. In this chapter, two model compound were synthesized to assign the 

particular NIR absorptions of NCO products, amides, first. After that, FT-NIR test 

was performed on the actual adhesive-bonding-adhered structure. Hydrogen bond 

plays an important role in both IR and NIR absorption, due to its effect on 

chemical bond vibration, contributing to the variations of band intensity and band 

location. In this experiment, temperature dependent FT-IR and FT-NIR was used, 

since hydrogen bond is very sensitive to temperature. 

3.2 Experimental 

3.2.1 Materials 

Synthesis of model compounds: Phenyl isocyanate (Wako Pure Chemical 

industries, Ltd., Japan), 2-butanol (Wako Pure Chemical industries, Ltd., Japan), 

4, 4’-diphenylmethane diisocyanate (Wako Pure Chemical industries, Ltd., Japan) 

and distilled water (Elix UV 3/5/10 Millipore, Japan) were used for the 

preparation of model compounds. N, N-dimethyl formamide (Wako Pure 

Chemical industries, Ltd., Japan) and n-hexane (Wako Pure Chemical industries, 

Ltd., Japan) were use as solvent. 

 Preparation of API adhesive: Raw materials were the same ones as those used in 

2.2.1. 

 Preparations of API paper: filter paper (100% cellulose, thickness 0.2mm, 

Whatman 6) were used. 

3.2.2 Sample Preparation 

 Synthesis of model compounds: Two model compounds, DPU (1, 3-

Diphenylurea) and MUT (Di-2-butyl 4, 4’-diphenylmethane dicarbamate), were 

synthesized. 1) DPU: 2g phenyl isocyanate was dissolved into 20mL N, N-
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dimethyl formamide in 50mL flask, and the solution was stirred at ambient 

temperature. Then, 3g distilled water was added. The flask was equipped with 

cold water condenser and heated to 100˚C in oil bath. The reaction was carried on 

for 1h and DPU was precipitated by distilled water. 2) 12 g 2-butanol and 4g 4, 

4’-diphenylmethane diisocyanate were added into 50mL flask, and the mixture 

were stirred at 100˚C for 1h with cold water condenser. MUT was precipitated by 

n-hexane.  

Preparation of API adhesive: The process was the same one as 2.2.2. 

Preparations of and API paper: Prior to the preparation of API paper, filter paper 

was cut into small piece (1.5×1.5cm2). Prepared API adhesive was soon spreaded 

on one piece of filter paper (glue-spread ≈12 mg/cm2), and another piece of filter 

paper was overlapped (Fig. 3.2.1). Prepared API paper were aged in thermostatic 

chamber (23˚C, RH 50%). 

 

 

 

 

 

3.2.3 Characterizations  

DSC: The instrument was DSC-8500 (PerkinElmer, Japan). 2-3mg sample was 

heated at 10˚C/min in dry nitrogen gas flow of 20ml/min. 

FT-IR: NICOLET-6700 (Thermo Fisher Scientific K.K., Japan) (KBr beam 

splitter, resolution 4 cm-1, 128 scans, 400-4000cm-1) in dry air flow. 

Fig. 3.2.1. Preparation of API paper. 
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FT-NIR: The instrument for FT-NIR spectroscopy was also NICOLET-6700, 

but beam splitter was changed to CaF2. Spectrum was collected in the region of 

4000-12000cm-1 after 512 scans.  

Temperature dependent FT-IR and FT-NIR: A temperature controlling 

accessory, HT-32 Heated Demountable Cell, was used to heat samples during FT-

IR and FT-NIR testing. 

 

3.3 Results and Discussion 

3.3.1 DSC Thermograms of model Compounds 

 

 

 

 

 

 

 

 

 On DSC thermograms, the Tm peak of MUT appeared at 110˚C. That of DPU 

appeared at 242˚C, soon followed by thermal degradation. 

 

3.3.2 FT-IR Spectra of Model Compounds 

 During aging process, NCOs in API adhesive mainly reacted with PVA hydroxyl 

and water, generating urethane and urea linkages. To study urethane and urea, 

respectively, the synthesized MUT had only urethane linkage on molecular chain, 

Fig. 3.3.1. DSC thermograms of MUT and DPU. 
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and DPU just had urea linkage. KBr disk for FT-IR test was made from 2mg DPU 

or MUT and 200mg 100˚C dried KBr powder (Wako Pure Chemical industries, 

Ltd., Japan). The spectra of MUT and DPU at room temperature were displayed 

in Fig. 3.3.2. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
Amide II consists of more N-H bending; Amide III consists of more C-N stretching. 

Table 3.3.1. FT-IR band assignments of MUT and DPU. 

Fig. 3.3.2. FT-IR spectra of MUT and DPU. 
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Band assignments corresponding to urethane and urea linkages of MUT and 

DPU were listed in Table 3.3.1. In addition, the strong C-H stretching bands of 

MUT methyl and methylene showed up in the region of 2800-3000cm-1, and the 

weak C-H stretching bands of DPU aromatic ring showed up in the region of 

3000-3100cm-1. As it has been demonstrated in Table 3.3.1, almost all band 

locations of urethane and urea were quite close to each other, but two amide I 

bands, at 1700cm-1 and 1648cm-1, had 52cm-1 distance. So, amide I bands were 

used to distinguish between urethane and urea. 

At room temperature, H of N-H was easily hydrogen bonded to O of C=O in both 

API adhesive and model compounds. During FT-IR test, hydrogen bond has the 

same effect as increasing the mass of H atom. Based on Scheme. 1.4, the 

increasing of atom mass can lead to a low-wavenumber shift of stretching 

vibration absorption and a high-wavenumber shift of bending vibration absorption. 

Namely, on FT-IR spectrum, the band of hydrogen bonded stretching vibration 

occur at a lower wavenumber than that of non-hydrogen bonded stretching 

vibration [27], and the band of hydrogen bonded bending vibration occur at a higher 

wavenumber than that of non-hydrogen bonded one. 

    

 

 

 

 

 

 Fig. 3.3.3. Temperature dependent FT-IR spectra of MUT (left) and DPU (right). 
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 Fig. 3.3.3 left and right showed the temperature dependent spectra of MUT and 

DPU in the region of above 3200cm-1. The hydrogen bonded N-H stretching band 

of MUT showed a sharp peak at 3325cm-1 at 30˚C. Band intensity at 3325cm-1 

descended with elevated temperature, demonstrating that increasing temperate led 

to a gradual breakup of hydrogen bands and, as a result, a decreasing of band 

intensity. At 120˚C, a band appeared at 3395cm-1, which was attributed to non-

hydrogen-bonded N-H stretching vibration. On DPU spectra, two bands showed 

up at 3284cm-1 and 3326cm-1, respectively. These two bands were considered to 

be due to the hydrogen bonded N-H stretching vibrations of cis- and trans-

conformation amide. The band intensities of 3284cm-1 and 3326cm-1 decreased 

with temperature, and band peaks shifted slightly to high wavenumber, indicating 

the dissociation of hydrogen bands. However, there was no separate non-

hydrogen-banded N-H stretching band occurred at a higher wavenumbe. 

In addition, C-H stretching bands at around 2900 cm-1 also had variations on 

band intensities but no wavenumber shift. Based on the studies of Han S at al. [51] 

and Macphail RA et al. [52], these band variations came from the conformational 

changes of methyl and methylene.  

 

 

 

 

 

 

 

 Hydrogen bonded C=O stretching bands of urethane and urea were detected at 

1700cm-1 and 1648cm-1 at 30˚C in Fig. 3.3.4. The band intensity of urethane C=O 

Fig. 3.3.4. Temperature dependent FT-IR spectra of MUT (left) and DPU (right). 
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stretching decreased gradually with temperature, attributed to hydrogen bond 

dissociation. One obvious shoulder peak arose at 1730cm-1, corresponding to non-

hydrogen-bonded C=O stretching of urethane. Urea C=O stretching band at 

1648cm-1 also showed a decreasing on band intensity, but no separate non-

hydrogen-banded C=O stretching was detected.  

Bands at 1529cm-1 and 1556cm-1 were attributed to amide IIs of urethane and 

urea. Amide II consists of both C-N stretching and N-H bending vibration, but N-

H bending occupies more proportion than the other one [28]. The band of hydrogen 

bonded bending vibration normally appears at a higher wavenumber than that of 

non-hydrogen bonded one. Those two bands showed decreasing band intensity 

and shifted to lower wavenumber with elevated temperature, which verified their 

origins. 

3.3.2 FT-NIR Spectra of Model Compounds 

 

 

 

 

 

 

 

 

 

 Stretching and bending vibration are the two primary vibration models of 

chemical bond in molecule. The former one arises along the axis of bond, and the 
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Fig. 3.3.5. FT-NIR spectra of MUT and DPU. 
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latter occurs on the molecule with more than three atoms. The fundamental 

absorption of stretching vibration occurs in the region of 1000-5000cm-1, and that 

of bending vibration occurs in 400-1000cm-1. Overtone can be calculated by using 

Scheme 1.5. However, anharmonicity constant of chemical bond is an extremely 

small value that has little effect on overtone wavenumber, so the wavenumber of 

first overtone is approximately double of fundamental wavenumber, and the 

wavenumber of second overtone is approximate triple. Therefore, the calculated 

first overtone of stretching vibration is mainly in the region of 2000-10000cm-1 

[53], the first overtone of bending vibration is in 800-2000cm-1, and the second 

overtone of bending vibration is in 1200-3000cm-1. The band intensity of the first 

overtone is one order of magnitude less than that of fundamental absorption, and 

the band intensity of the second overtone is two order of magnitude less. 

Combination tone is the overlapping of two fundamental absorption bands. For 

example, the combination tone of one stretching and one bending vibration should 

occur in 1400-6000cm-1. 
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Near infrared spectroscopy detects overtone and combination tone of chemical 

bond vibrations (overtone: multiple of fundamental vibration; combination tone: 

sum of two fundamental vibration). Overtone and combination tone have much 

lower probabilities of occurrence than fundamental vibration. Thus, much more 

sample mass is needed for FT-NIR. Samples for FT-NIR test were pure MUT and 

DPU disks (100˚C vacuum dried), each with the mass of 100mg. FT-NIR spectra 

of MUT and DPU were displayed in Fig. 3.3.5, and the approximate band 

assignments were summarized in Table 3.3.2 and Table 3.3.3. Normally, it is 

difficult to assign NIR band precisely because of significant band overlapping in 

fir: first overtone; sec: second overtone; com: combination tone; str: stretching; def: deformation; 

ben: bending. 

Table 3.3.2. FT-NIR band assignments of MUT. 
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the region, so urethane and urea band were confirmed again by using temperature 

dependent FT-NIR.  

   

 

 

 

 

 

 

 

 

 

 

 Pure DPU disk melted at above 110˚C, so the temperature dependent FT-NIR of 

DPU was collected below Tg. The test temperature for DPU was also below 110˚C 

in accordance with MUT. Based on Table 3.3.2 and 3.3.3, amide bands mainly 

occurred at round 6500cm-1 and 5000cm-1, so these two regions were discussed. 

Furthermore, 2nd derivative calculation was performed on FT-NIR spectrum to 

enhance resolution and separate overlapping bands. 2nd derivative spectrum 

demonstrated the variation of gradient of raw FT-NIR spectrum. On the obtained 

2nd derivative spectra, absorption band of chemical bond occurs as downward 

peak. In addition, the variation of band intensity on raw FT-NIR spectrum could 

also be estimated by using 2nd derivative spectrum as it had been stated in 1.2.3. 

 

Table 3.3.3. FT-NIR band assignments of MUT. 

fir: first overtone; sec: second overtone; com: combination tone; str: stretching; def: deformation. 
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 Fig. 3.3.6 showed the 2nd derivative spectra of MUT and DPU in the region of 

around 6500cm-1. According to the study of Wheeler et al. [53], this region was 

assigned to the first over tone of N-H stretching vibration. In Fig. 3.3.6 left, a peak 

at 6533cm-1 occurred, and a peak at 6503cm-1 occurred as a shoulder. However, 

some unknown noises affected this region, causing a lot of fluctuating peaks, so 

the peak variation was difficult to confirm. In Fig. 3.3.6 right, the N-H stretching 

first overtone caused a clear peak at 6506cm-1. This peak showed decreasing peak 

intensity and high-wavenumber shift, which was attributed to the dissociation of 

hydrogen bond under elevated temperature.  
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Fig. 3.3.6. 2nd derivative spectra of MUT (left) and DPU (right). 

For vertical axis value, aE-b was equal to a×10-b. 
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Fig. 3.3.6. 2nd derivative spectra of MUT (left) and DPU (right). 

For vertical axis value, aE-b was equal to a×10-b. 
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 The other main absorption band of amide is at around 5000cm-1. Burns DA et al. 

[27] summarized that the combination tone of asymmetric N-H stretching/amide II 

occurs at 5050cm-1, the combination tone of N-H stretching/N-H bending occurs 

at 5025cm-1, the second overtone of C=O stretching occurs at 4926cm-1, the 

combination tone of N-H/amide II occurs at 4878cm-1, and the combination tone 

of symmetric N-H stretching/amide I occurs at 4866cm-1. Thus, in Fig. 3.3.6 left 

(MUT), the peak at 5050cm-1 was assigned to N-H stretching/amide II 

combination tone, the peak at 4932cm-1 was attributed to C=O stretching second 

over tone, and the peak at 4867cm-1 was assigned to N-H stretching/amide I 

combination tone. Hydrogen bonds was broken up gradually by elevated 

temperature, which led to three decreasing peak intensities. In addition, 5050cm-

1 and 4932cm-1 peak shifted a little to high wavenumber, the same behavior as FT-

IR bands did (in Fig. 3.3.4). However, the peak of non-hydrogen-bonded chemical 

bond did not occur. On synchronous 2D correlation spectrum of MUT (Fig. 3.3.7), 

auto-peak appeared significantly at 4867. Even though no auto-peak at 5050 or 

4932 occurred, the positive cross-peaks at 5050-4867 and 4932-4867 were 

detected, suggesting that 5050cm-1 and 4932cm-1 peak also varied as 4867cm-1 

peak did. 

Fig. 3.3.7. Synchronous 2D correlation spectra of MUT (left) and DPU 

(right), generated from Fig. 3.3.6. 
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In Fig. 3.3.6 right (DPU), 5019cm-1, 4984cm-1, 4935cm-1 and 4880cm-1 peaks 

decreased on peak intensity with elevated temperature. 5019cm-1 and 4984cm-1 

were assigned to N-H stretching/amide II combination tone or N-H stretching/N-

H bending combination tone. 4935cm-1 peak was assigned to C=O stretching 

second overtone, and 4880cm-1 was due to N-H stretching/amide I combination 

tone. On synchronous 2D correlation spectrum, 4935 and 4880 auto-peaks and 

5019-4935 and 4984-4935 cross-peaks occurred, due to the peak intensity 

variations of them.  

3.3.3 FT-NIR Spectra of API paper 

 

 

 

 

 

 

 

 

 Prior to API paper, FT-NIR spectroscopy was performed on three raw materials. 

PVA film and SBR film were prepared by casting 15wt% PVA aqueous solution 

and SBR latex on Teflon sheet and aging in thermostatic chamber for 1 week. 

pMDI block was prepared by casting pMDI on Teflon sheet and aging in 

thermostatic chamber for 1month.  

 

 

Fig. 3.3.8. FT-NIR spectra of three raw materials. 
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Table 3.3.4. FT-NIR band assignments of PVA film. 

fir: first overtone; sec: second overtone; com: combination tone; str: stretching; def: deformation; 

ben: bending. 

Table 3.3.5. FT-NIR band assignments of SBR film. 

fir: first overtone; sec: second overtone; com: combination tone; str: stretching; def: deformation; 

ben: bending. 



54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

API paper was prepared by sandwiching API adhesive between two pieces of 

filter paper, and the in-situ chemical structure analysis of API adhesive glue-line 

was carried out by using FT-NIR (Fig. 3.3.9). Background for API paper was 

overlapped two pieces of filter paper, by which the NIR absorption of filter paper 

was deducted automatically when API paper was tested. Actually, liquid-state 

NMR is a more precise method for chemical analysis, but API paper used in this 

experiment could not be dissolved in any solvent. API paper could also be grinded 

into powder form, for FT-IR spectrum testing. However, the grind process 

destroyed API paper and was considered to accelerate NCO reactions since NCO 

is highly reactive. FT-NIR test is one damage-less method, so after FT-NIR test 

Table 3.3.6. FT-NIR band assignments of pMDI block. 

fir: first overtone; sec: second overtone; com: combination tone; str: stretching; def: deformation; 

ben: bending. 
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it was possible to age API paper continuously in thermostatic chamber. FT-NIR 

spectra of API paper were collected, 1 day, 3 days, 6 days, 10 days, 15 days and 

20 days after API paper was prepared. Spectrum of 20 days aged API paper was 

showed in Fig. 3.3.10. Band assignments were summarized in Table 3.3.7. 
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Fig. 3.3.10. FT-NIR spectrum of 20 days aged API paper. 

Fig. 3.3.9. FT-NIR test for API paper. 
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Fig. 3.3.11. 2nd derivative spectra of API paper. 

Table 3.3.7. FT-NIR band assignments of API paper. 

fir: first overtone; sec: second overtone; com: combination tone; str: stretching; def: deformation. 
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After NIR spectra were collected, 2nd derivative calculation was applied to 

enhance resolution (Fig. 3.3.11). All 2nd derivative spectra were normalized by 

using C-H stretching first overtone peak as a standard. However, in Fig. 3.3.11 

(left), no obvious peak was detected in the range of N-H stretching first overtone, 

which might be related to noise and sample condition. In the region of 4800-

5100cm-1, four peaks appeared at 5065cm-1, 5005cm-1, 4918cm-1 and 4840 cm-1. 

According to model compounds results, 5065cm-1 and 5005cm-1 were attributed 

to the N-H stretching/amide II combination tones of urethane and urea, 

respectively. 4918cm-1 was attributed C=O stretching overtone, consisting of the 

information of both urethane and urea. Those three peak intensities increased 

gradually with aging time, implying the generations of urethane and urea. On the 

other hand, 4840cm-1 peak did not have variation on peak intensity. 

 

 

 

 

 

 

 

 On synchronous spectrum, 5005 auto-peak and 4918 auto-peak occurred 

obviously. 5065 auto-peak did not show up but a positive cross-peak appeared at 

5065-5005. The negative asynchronous peak at 5065-5005 in Fig. 3.3.12 (right) 

suggested that 5005cm-1 peak (urea) varied faster than 5065cm-1 peak (urethane). 

4840 cm-1 peak did not increase on peak intensity as other peaks did, and neither 

auto-peak nor cross-peak at 4840 was detected in Fig. 3.3.12. Based on model 

compounds results, 4840 cm-1 peak might be due to N-H stretching/amide II 

Fig. 3.3.12. Synchronous (left) and asynchronous (right) spectra, generated 

from Fig. 3.3.11 (right). 
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combination tone. Burns DA et al. [27] also reported that O-H combination 

absorption shows up in this region, which could be PVA hydroxyl in this 

experiment, so the assignment of 4840cm-1 peak was still unclear. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Further, peak intensity on 2nd derivative was calculated to track the formations 

of urethane and urea [54, 55]. As it was demonstrated in Fig. 3.3.13, downward peak 

of chemical bond, p, was clamped by two upward peaks, a and b. Thus, peak 

intensity, hp, was calculated based on those three peak locations. Calculation 

formulas were displayed in Scheme 3.3.1, where w was wavenumber and y 

corresponded to vertical axis value of each peak. Urethane and urea peak 

Fig. 3.3.13. Diagram of peak intensities. 
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Scheme 3.3.1. calculations of peak 

intensities.  

h𝑝 = [𝑦𝑎 +
Wa−Wp

Wa−𝑊𝑏
 (𝑦𝑏 − 𝑦𝑎)] − 𝑦𝑝 

Fig. 3.3.14. Generations of urethane (left) and urea (right) in API paper, 

error bars represent ±1 standard deviation, n=3. 
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intensities were obtained first and then divided by the peak intensity at 5665cm-1 

(C-H first overtone of methylene) for normalization. 

 Generations of urea and urethane in API paper during post-curing process were 

showed in Fig. 3.3.14, calculated from 2nd derivative spectra in Fig. 3.3.11. In this 

experiment API papers were prepared in triplicate, and average value and ±1 

standard deviation were employed. It seemed like that urea had more generation 

amount than urethane. Hori et al. [12] already reported that urea generates much 

faster than urethane, so the difference between urethane and urea generation 

amounts in Fig. 3.3.14 could be attributed to the discrepant reactivities of between 

PVA hydroxyl and water. 

3.4 Conclusions 

 In this chapter, the chemical structure of API glue-line sandwiched between two 

pieces of filter paper was analyzed by using FT-NIR spectroscopy. Prior to the 

FT-NIR test on API paper, two model compounds (MUT and DPU) were 

synthesized to assign the NIR absorption locations of urethane and urea, two 

primary products of NCO reactions. Temperature dependent FT-IR and FT-NIR 

spectroscopy were employed for band assignment, since hydrogen bonded amide 

is sensitive to temperature. Band assignments of amides in model compounds and 

API paper were listed below. 

MUT: 3325cm-1: N-H stretching; 1700cm-1: C=O stretching (amide I); 1529cm-

1: C-N stretching+N-H bending (amide II); 6533cm-1, 6503cm-1: N-H stretching 

first overtone; 5050cm-1: N-H stretching/amide II combination tone; 4932cm-1: 

C=O stretching second overtone; 4867cm-1: N-H stretching/amide I combination 

tone.  

DPU: 3326cm-1, 3284cm-1: N-H stretching; 1648cm-1: C=O stretching (amide I); 

1556cm-1: C-N stretching+N-H bending (amide II); 6506cm-1: N-H stretching first 

overtone; 5019cm-1, 4984cm-1: N-H stretching/amide II combination tone or N-H 
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stretching/N-H bending combination tone; 4935cm-1: C=O stretching second 

overtone; 4880cm-1: N-H stretching/amide I combination tone. 

 API thin film: 3320cm-1: N-H stretching; 1723cm-1: C=O stretching (urethane); 

1639cm-1: C=O stretching (urea). 

API paper: 5065cm-1: N-H stretching/amide II combination tone of urethane; 

5005cm-1: N-H stretching/amide II combination tone of urea; 4918cm-1: C=O 

stretching overtone; 4840cm-1: N-H stretching/amide II combination tone or O-H 

combination tone. 

 After band assignment, the generations of urethane and urea in API paper during 

post-curing were tracked by using FT-NIR spectroscopy. From 1 day to 20 days, 

urethane and urea was generated continuously.  
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4 Influence of Adhesive Components and Aging Conditions on The 

Chemical Structure of API Adhesive Glue-Line 

4.1 Introduction 

During aging time, urethane linkages were generated from the reactions of 

between NCOs and hydroxyls (Scheme 1.2). In API paper, there could be two 

types of formed urethanes, one from NCO and PVA hydroxyl and the other one 

from NCO and cellulose hydroxyl. Thus, urethane formations contributed to the 

ascents of both cohesion strength (due to the reaction of between NCO and PVA 

hydroxyl) and adhesion strength (due to the reaction of between NCO and 

cellulose hydroxyl). In the meanwhile, urea was generated from NCO-H2O 

reaction, leading to the formation of cross-linking and the increasing of bond 

strength. Even though there are several factors that affect the bonging strength of 

API adhesive, such as viscosity, penetration and surface roughness, chemical 

bond is regarded as a quite important one.  

The research on chemical structure of API adhesive, instead of just on bond 

strength, was started by Taki et al. They confirmed the reaction of between 

isocyanate cross-linker and polyvinyl alcohol by FT-IR spectroscopy and water 

solubility test [56]. Then, the emission amount of carbon dioxide, due to NCO 

reaction with water, was measured, and the effect of NCO-H2O reaction products 

on the storage modulus of adhesive film was studied [57]. They also investigated 

the reactions of NCOs with cellulose and wood by using DSC [58]. However, the 

chemical structure analysis of API glue-line was not carried out, because a 

suitable analysis method was difficult to find.  

 Chemical structure of API glue-line in API paper was analyzed by using FT-NIR 

spectroscopy in chapter 3. In this chapter, FT-NIR was further used to investigate 
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the influences of adhesive components and aging conditions on urethane and urea 

generations. PVA: Yamada et al. [59, 60] reported that acetoacetylated PVA and 

pMDI produced a higher cross-linking density than normal PVA and pMDI. 

Thereby, the influence of PVA on NCO reactions was investigated by using 

different PVAs as base resin; Mass ratio of SBR latex: The copolymer of styrene 

and butadiene dose not react at all with NCO. However, SBR micelle in latex has 

hydroxyls on surface, which could participate in NCO reactions. In addition, SBR 

micelle has both hydrophilicity and hydrophobicity so that it could accelerate the 

mixing of PVA and pMDI; Aging humidity: During post-curing process, API 

glue-line could absorb moisture from ambience. Urea was generated from NCO-

H2O reaction so the aging humidity was considered to have influence on it; Heat 

treatment: High temperature could accelerate chemical reaction, so the effect of 

heat treatment on glue-line chemical structure was studied.  

4.2 Experimental  

4.2.1 Materials 

SBR latex, pMDI and filter paper were the same ones as those used in 3.2.1. 

Three types of 15wt% PVA aqueous solutions were used. 

4.2.2 Adhesive Preparation 

 API adhesives were prepared in the same process as 2.2.2 described. In addition, 

three different PVAs (Table 4.2.1, Wako Pure Chemical industries, Ltd., Japan) 

were used to prepare API adhesives, and the mass ratio of SBR latex was also 

changed. Prepared API adhesives were showed in Table 4.2.2, corresponding to 

different PVAs and SBR latex mass ratios.  
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4.2.3 Sample Preparation 

 API adhesives were used to prepare API papers in the same process as 3.2.2. 

After preparation, API papers were aged in thermostatic chamber (23˚C, RH50%). 

API adhesives were also used to prepare API films in the process of 2.2.2. Cross-

laps for bonding test was prepare in the process of 2.2.2. 

Table 4.2.2. API adhesives. 

Table 4.2.1. PVAs. 

DS: degree of saponification 

Mn: g/mol; measured by GPC; 20mmol/L LiCl/DMAC flow; PEO standard 

η: measured by HAAKE Rheostress 600; 100 (1/s); 25 ˚C  

Table 4.2.3. API papers aged in three conditions. 
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4.2.4 Aging Humidity 

 Some of API II-3 papers were also aged in dry and moist conditions. Dry (23˚C, 

RH 0%): a desiccator with P2O5; Moist (23˚C, RH 98%): a desiccator with 

saturated K2SO4 aqueous solution. (Table 4.2.3) 

4.3.5 Heat Treatment 

 API paper, API film and cross-laps prepared from API II-3 adhesive were aged 

in thermostatic chamber for 4 days and then heated at 80˚C for 2h, 4h and 6h. 

After that, all samples were continually aged in thermostatic chamber.  

4.2.6 Characterizations 

 FT-NIR spectroscopy was the same process as 3.2.3 described. FT-NIR spectra 

of 1 day, 3 days, 6 days, 10 days, 15 days and 20 days aged API paper were 

collected. 

 DMA and cross-lap test were carried out as 2.2.3 described. 

4.3 Results and Discussion 

4.3.1 Different PVAs 
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Fig. 4.3.1. Generations of urethane (left) and urea (right) in API papers prepared 

from three PVAs, error bars represent ±1 standard deviation, n=3. 
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 Three PVAs were employed to prepare adhesives, API I-3, API II-3 and API III-

3. High DS (degree of saponification) PVA had more hydroxyl groups on 

molecular chain, due to which the reaction of between NCO and hydroxyl could 

take place more in chemical stoichiometry. However, low DS PVA carried more 

hydrophobic acetyl groups that could lead to a better mixing of PVA and pMDI. 

Besides, Yamada et al. already found out that acetoacetylated PVA reacted better 

with pMDI than ordinary PVA in either water emulsion or organic solution [59]. 

Urethane and urea generating results of different API papers were illustrated in 

Fig. 4.3.1. Three urethane generations showed almost the same amount, but API 

II-3 paper seemed like having a bit more amount than the other two on 20 days. 

For urea, three API papers also had similar amounts.  

The storage modulus of API II-3 and API III-3 films (Fig. 4.3.2) increased 

obviously after 200˚C, due to NCO reactions caused by elevated temperature, but 

that of API I-3 film decreased. The storage modulus decreasing of API I-3 film 

could be explained as that high DS PVA was not miscible with other two 

components, so the effect of phase separation surpassed the effect of NCO 

reactions at over 200˚C. Tan δ curves of API II-3 and API III-3 films both had 

three peaks: 28˚C, Tg of the mixture of SBR and uncross-linked PVA; 117˚C, Tg 

of small scale molecular chain generated from NCO reactions; 205˚C, due to NCO 

reactions and the slippage of PVA semi-crystal. 28˚C and 205˚C peaks of API I-

3 film curve were attributed to the same reasons as it was stated above. Different 

from API II-3 and API III-3 film, API I-3 film did not show 117˚C peak but had 

99˚C and 155˚C peaks. This phenomenon might correspond to two different scale 

molecules that were generated separately in the uneven phase of API I-3 film. 
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 Cross-lap results of API I-3, API II-3 and API III-3 were demonstrated in Fig. 

4.3.3. Significant difference in urethane and urea generation among three 

adhesives were not found by FT-NIR result. DMA curves indicated that high DS 

PVA I was not mixed well in adhesive. API I-3 cross-laps aged 1 day showed 

lower strength than other two adhesive, which might be due to the uneven phase 

in API I-3 glue-line. However, 6 days aged cross-laps indicated that the adhesives 

prepared from PVA I and III had higher bond strength than the adhesive from 

PVA II. This was attributed to the much higher molecular weights of PVA I and 

III (Table 4.2.1) [61]. In addition, 6 days aged API III-3 cross-laps had a little bit 
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Fig. 4.3.2. DMA thermograms of API films prepared from three PVAs 

and aged for 6 days. 
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stronger bond strength than API I-3 cross-laps, which could be attributed to the 

better dispersion of low DS PVA in adhesive, but the effect was not remarkable. 

4.3.2 Different SBR latex Mass Ratios 

 In previous study, 2nd derivative FT-NIR spectra were normalized by using C-H 

first overtone band of methylene bonded to benzene ring at 5665cm-1. This band 

involved the information of both SBR latex and pMDI. However, SBR latex  mass 

ratio of API adhesive was changed in the section, which contributed to a 

fluctuating ratio of pMDI to SBR latex. Thus, instead of 5665cm-1 band, the band 

at 5786cm-1 due to C-H first overtone of HC=CH was used as standard. 

Furthermore, calculated urethane and urea generations (as 3.3.3) were multiplied 

by the mass ratio of SBR block (dried SBR latex) (Table 4.2.4) in API glue-line 

to normalize the results of three API papers. 

 

 

 

 

 

 

Urethane and urea generations in API II-2, API II-3 and API II-4 paper were 

summarized in Fig. 4.3.4. It was quite obvious that API II-2 paper generated more 

urethane and urea than other two API papers, because API II-2 glue-line had 

higher pMDI ratio. The difference between urethane and urea was observed on 1 

day, when three urethanes showed similar but three ureas showed dissimilar 

amount. Moisture contents in prepared API adhesives increased in the order of 

API II-4 paper (52.7wt%), API II-3 paper (53.3wt%) API II-2 paper (54.1wt%). 

Table 4.2.4. Component mass ratios in three API glue-lines. 

API II-2 glue-line: 3g×15% PVA, 2g×51.7% SBR block and 1.5g pMDI; 

API II-3 glue-line: 3g×15% PVA, 3g×51.7% SBR block and 1.5g pMDI; 

API II-4 glue-line: 3g×15% PVA, 4g×51.7% SBR block and 1.5g pMDI. 
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Hence, API II-2 adhesive with higher moisture content produced more urea. On 

the other hand, urethane generations on 1 day was very little due to the low 

reaction rate of between PVA and pMDI. 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Loss factor curves of 1 day aged API films were displayed in Fig. 4.3.5 (left). Tg 

of the mixture of SBR and un-cross-linked PVA was detected at 23˚C. Two small 

peaks related to un-reacted pMDI appeared at -28˚C and -17˚C of API II-2 and 

API II-3 film, but that of API II-4 film only occurred as a shoulder peak. This was 

due to more pMDI contents in API II-2 and API II-3 film. In addition, API II-3 

and API II-4 film had a peak at 200˚C, but API II-2 film did not show this peak. 

Fig. 4.3.4. Generations of urethane (left) and urea (right) in API papers with 

different SBR latex ratios, error bars represent ±1 standard deviation, n=3. 
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200˚C peak was attributed to acute NCO reactions at higher temperature. 

Increasing of loss factor before 200˚C was attributed to ascendant phase friction 

arose by the interactions of between NCO and other chemical groups (NCO and/or 

PVA hydroxyl). After 200˚C, reactions of NCO were gradually accomplished and 

chemical linkages between molecules were abundantly bridged, so the molecular 

stiffness overwhelmed the effect of phase friction, which led to a loss factor 

decreasing. Loss modulus on 1 day was displayed in Fig. 4.3.6, where all three 

films showed ascent from 200˚C. Thus, the disappearance of 200˚C peak of 1 day 

aged API II-2 film was explained that there was more un-cross-linked pMDI in 

adhesive film, phase separating effect overcame phase friction effect at 200˚C, 

and therefore loss factor peak did not occur. 

 

 

 

 

 

 

 

 

  Loss factor curves of 6 days aged API films were demonstrated in Fig. 4.3.5 

(right). The large peak at 117˚C was Tg of small scale molecule generated in post-

curing period. Differing from 1 day loss factor curve, 6 days aged API II-2 film 

also had a peak at 205˚C as other two films did. In Fig. 4.3.6 (right), loss modulus 

of three film increased significantly from about 180˚C. After 6 days post-curing, 

more pMDI reacted and formed a large amount of cross-linking structure in 
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Fig. 4.3.6. Loss modulus curves of API films with different SBR latex 

mass ratios, aged for 1 day (left) and 6 days (right). 
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adhesive films. As a result, cross-linking network intensified molecular friction, 

contributing to an obvious loss factor peak. 

Bond strength result of cross-laps was concluded in Fig. 4.3.7. Cross-linking 

structure was not fully formed after 1 day aging. On the other hand, water 

evaporation contributed to dense aggregation of SBR particles, and emulsifier and 

inorganic salt aqueous solution in the gap between SBR particles led to strong 

bond strength [5]. After 6 days aging, too much water evaporation reduced SBR 

particle adsorption, but cross-linking was significantly formed. API adhesive was 

prepared from PVA aqueous solution and SBR latex so contained more than 50wt% 

water. In the glue-line of 1 day aged cross-lap, there was still same moisture left 

in glue-line. Thereby, high SBR latex mass ratio contributed to a high initial bond 

strength. In 1 day aged glue-line, pMDI did not form enough cross-linking 

structure but acted as a phase lubricant. Low bond strength of API II-2 cross-laps 

on 1 day were due to too much unreacted pMDI. NCOs of pMDI fully reacted 

after 6 days and generated enough cross-linking network in glue-line. On the other 

hand, fully dried SBR block produced a brittle structure. The bond strength 

increasing of API II-2 and API II-3 cross-laps with aging time were attributed to 

the formation of cross-linking structure. For API II-4 cross-laps, the decreasing 

of bond strength was relevant to the brittle SBR block. 

 

 

 

 

 

 

Fig. 4.3.7. Bond strength of cross-laps prepared from API adhesives with 

different SBR latex mass ratios, error bars represent ±1 standard deviation, n=7. 
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4.3.3 Different Humidity conditions 

 

 

 

 

 

 

 

 

 

API papers prepared form API II-3 were aged in three humidity conditions, dry, 

normal (thermostatic chamber) and moist. During aging period, adhesive glue-

line could absorb moisture from ambience [62, 63, 64]. 2nd derivative spectra of API 

papers were showed in Fig. 4.3.8. Three 2nd derivative spectra were normalized 

by using aromatic C-H stretching first overtone peak at 5665cm-1 as standard. 

Burns et al. [27] reported that O-H stretching first overtone of hydroxyl occurred at 

5241cm-1 and O-H bending second overtone of H2O occurred at 5154cm-1. Hence, 

the peak at 5250 cm-1 in Fig. 4.3.8 consisted of the chemical bond information of 

both hydroxyl and H2O. From dry to moist spectrum, peak intensity at 5250cm-1 

increased significantly, implying that moisture content in API glue-line increased 

with ambient humidity. Furthermore, the difference in peak intensity at 5065cm-1 

(urethane), 5005cm-1 (urea) and 4918cm-1 (urethane and urea) could also be 

observed. Peak intensities at 5065cm-1 and 5005cm-1 of all spectra were calculated 

to confirm the generations of urethane and urea in more detail. 
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Fig. 4.3.8. 2nd derivative spectra of API papers aged for 15 days in 

three humidity conditions. 
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 Urea was generated from the reaction of NCO with water, so it was affected 

obviously by humidity (Fig. 4.3.9 right). API II-3-dry paper was still aged in RH 

0% desiccator and just taken out every time for FT-NIR test. Thus, almost all urea 

in API II-3-dry paper was generated before 1 day, during the 24h after API paper 

was prepared, and the amount barely changed from 1 day to 20days due to the 

lack of moisture. Normal (RH 50%) and moist (RH 98%) conditions aged API II-

3 and API II-3-moist papers had much more urea generation amounts than API 

II-3-dry paper, and API II-3-moist paper showed the most. The result of urea 

indicated that high humidity accelerated urea generation during post-curing 

process. Even though the generating reaction of urethane was not related 

immediately to H2O, urethane result was also affected by humidity (Fig. 4.3.9 left). 

Urethane in API II-3-dry paper had extremely limited amount, and, on the other 

hand, API II-3-moist paper generated much more urethane, even than API II-3 

paper. This phenomenon could be explained as that the molecular chain in moist 

condition aged glue-line was more bendable, so both urethane and urea generating 

reaction carried out smoothly [65]. 

DMA results of 6 days aged API films were demonstrated in Fig. 4.3.10. Tan δ 

peaks at 28˚C were attributed to Tg of adhesive, and 205˚C peak was attributed to 
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Fig. 4.3.9. Generations of urethane (left) and urea (right) in API papers aged in 

three humidity conditions, error bars represent ±1 standard deviation, n=3. 
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NCO reactions and the slippage of PVA semi-crystal, (2.3.3). The peak at -17˚C 

on tan δ curve was related to the large amount of uncross-linkeded pMDI in API 

II-3-dry film, but this peak was not detected for API II-3 film and API II-3-moist 

film. It was quite obvious that API II-3-dry film was broken by DMA clamps at 

85˚C but the other two films were still stiff. The break of API II-3-dry film at 

85˚C could be credited with less cross-linking structure and brittleness caused by 

low moisture content. In a word, DMA result implied that dry condition limited 

NCO reactions remarkably, which verified the results of FT-NIR above. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Fig. 4.3.11. Bond strength of cross-laps aged in three humidity 

conditions for 6 days, error bars represent ±1 standard deviation, n=7. 
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Fig. 4.3.10. DMA thermograms of API films aged in three humidity 

conditions for 6 days. 

0.0

0.4

-50 100 250
Temperature(℃)

API II-3-dry film

API II-3 film

API II-3-moist film
T

a
n
 δ

-17˚C

28˚C

205˚C

85˚C

117˚C



74 

 

 Bond strength of cross-laps were showed in Fig. 4.3.11. Cross-laps prepared from 

API II-3 adhesive were 24h pressed in thermostatic chamber (23˚C, 0RH%), and 

then aged in dry (23˚C, 0RH%), normal (23˚C, 50RH%) and moist (23˚C, 98RH%) 

conditions. It was very clear that the bond strength and wood failure of dry cross-

laps were lower than those of normal and moist cross-laps. FT-NIR result already 

proved that urethane and urea generations in API II-3-dry paper were very much 

restricted. DMA result indicated that API II-3-dry film contained more un-cross-

linked pMDI than other two films and it was more brittle at high temperature. The 

result of bond strength was in accordance with the former two results. All cross-

laps were prepared in the same process so there was no difference in adhesive 

penetration. Thus, low damage rate of dry cross-laps was attributed to the weak 

interaction between wood and adhesive. 

4.3.4 Heat Treatment 

 Heat treatment was applied to accelerate NCO cross-linking reactions, and the 

improvement of bond strength was also respected. Prepared API paper, API film 

and cross-laps were first aged in thermostatic chamber (23˚C, RH50%) for 4 days. 

Then, samples were heat treated at 80˚C for 2h, 4h and 6h. After that, sample were 

taken back into thermostatic chamber and aged continuously. The used 

temperature,80˚C, was lower than water boiling point that permitted moisture to 

leave in glue-line and react. Wood thermal degradation normally occurs at over 

100˚C, so no degradation was arose by heat treatment. 

 Urethane and urea generations in API paper, before and after heat treatment, were 

showed in Fig. 4.3.12. Heat treatment promoted NCO reactions significantly. 

However, urea and urethane generation rates decreased after treatment, and the 

longer treatment was, the more rate decreased. On 35 days, urethane and urea 

amounts of four API papers became almost the same. Namely, heat treatment 

accelerated NCO reactions temporarily, but this effect could be offsetted by time. 
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During post-curing, the more NCOs reacted, the more imprisoned molecule was, 

and then the slower NCO reactions became. Heat treatment speeded up NCO 

reaction and, at the same time, reduced molecular mobility. Thus, the longest 

treatment time resulted in the lowest possibility for NCO to further react. 

  

 

 

 

 

 

 

 

API films heated for different time were DMA tested. All storage modulus 

curves (Fig. 4.3.13 left) showed increasing from 180 to 210˚C, due to acute 

reactions of residual NCO at high temperature. Cross-linking restricted molecular 

movement in glue-line and limited the accelerating effect of heat treatment. 

Therefore, a lot of NCO groups still remained in API film. 24˚C and 185˚C peak 

occurred on loss factor curve (Fig. 4.3.13 right), due to Tg and NCO reactions. 

Differing from heat treated API films, API film without heat treatment had 

another peak at 124˚C that was from Tg of small scale molecule formed during 

post-curing. After heat treatment, chemical groups (NCO and hydroxyl) on small 

scale molecule further reacted and formed cross-linking. Thus, Tg at 124˚C 

disappeared. 

 

 

Fig. 4.3.12. Generations of urethane (left) and urea (right) in API papers, before 

and after heating treatment, error bars represent ±1 standard deviation, n=3. 
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Bond strength of cross-laps were tested (Fig. 4.3.14). Those cross laps were aged 

in thermostatic chamber for 4 days first before heating treatment. After heating 

treatment cross-laps were aged in thermostatic chamber for 2 days. During heating, 

moisture content in wood was reduced, contributing to a strength decreasing of 

wood interior. The purpose of continuous aging in thermostatic chamber was to 

reinstate moisture content of wood. From non-heated to 4h heated cross-laps, both 

bond strength and damage rate increased. Heating treatment accelerated NCO 

reactions and generated more cross-linking structure in glue-line. However, 6h 

treated cross-laps showed lower bond strength but higher wood failure than 4h 
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Fig. 4.3.14. Bond strength of cross-laps 80˚C heated for different hours 

and aged for 6 days, error bars represent ±1 standard deviation, n=7. 

Fig. 4.3.13. DMA thermograms of API films 80˚C heated for different hours 

and aged for 6 days. 
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treated cross-laps. 6h treated cross-laps lost more moisture content and this loss 

could not be compensated by 2 days aging, which led to a brittle bonding structure.  

4.4 Conclusions 

 NIR absorption bands of urethane and urea in API adhesive glue-line were 

assigned in chapter 3. In this chapter, in order to investigate the practicability of 

FT-NIR test on glue-line, FT-NIR was used to study the influences of adhesive 

components and aging conditions on urethane and urea generating reactions. In 

addition, DMA and bonding test were used as supplementary explanations for FT-

NIR result.  

 Three PVAs were employed seperately to prepare API adhesives. At first, PVA 

with low DS (degree of saponification) was expected to mix and react better with 

pMDI. However, there was almost no disparity on glue-line chemical structures 

of three adhesives. DMA result indicated that adhesive prepared from high DS 

PVA might generate uneven phase in glue-line. High bond strength was obtained 

on the adhesive with high molecular weight PVA. 

 SBR latex mass ratio in adhesive was also adjusted. Since the application 

amounts of adhesive for all tests was the same, the higher SBR latex mass ratio it 

was, the lower PVA and pMDI mass ratios they would be. FT-NIR result 

demonstrated that the adhesive with less SBR latex produced more urethane and 

urea, due to high pMDI and PVA contents. DMA showed that after 1 day aging, 

the API film with low SBR latex content had more unreacted pMDI. Cross-laps 

with higher SBR latex content showed higher bond strength after 1 day aging. 

After 6 days, cross-laps with more pMDI had been fully post-cured and thus 

displayed high bond strength. On the other hand, cross-laps with high SRB latex 

content had a lower bond strength after fully aging. 

Aging humidity was found out to have significant influence on both chemical 

structure and physical property of glue-line. API paper aged in dry condition had 



78 

 

much less urethane and urea generating amounts than those aged in other 

conditions. Dry condition aged API film was broken at 85˚C during DMA test, 

due to less cross-linking structure and brittleness. Similar to the former two results, 

dry condition aged cross-laps had worse bonding performance. 

Heat treatment was applied to speed up urethane and urea generations. After 

heating, two linkages generating amounts were increased but just temporary. The 

effect of heat treatment became more and more unconspicuous after long time 

aging, because the mobility of molecule in glue-line dominated NCO reactions. 

DMA result showed that heat treatment speeded up the formation of cross-

structure. Cross-lap test proved that heat treatment increased bond strength. 

However, too long time heating generated strength decreasing, due to 

embrittlement of wood interior.  
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5 Further Studies on NCO self-reactions and Urethane Generating 

Reactions  

5.1 Introduction 

At room temperature, the main reactions of NCO in API adhesive generated 

urethane and urea linkages, which were discussed in previous chapters. At room 

temperature, aromatic isocyanate can slowly dimerize and generate uretdione due 

to its high reactivity. Trimerizations of most of isocyanate compounds can occur 

in the presence of catalyst (Scheme 1.2) [66]. Therefore, there was a possibility that 

uretdione and isocyanurate could form, even though in a small amount, in API 

adhesive. In industry, uretdione is used as blocked isocyanate, because it can 

decompose to isocyanate monomer and then react with other components [67]. 

Similarly, uretdione in API adhesive might decompose, react during post-curing 

process and further affect urethane and urea generating reactions.  Watanabe et al. 

synthesized uretdione and isocyanurate, and found that out that these two 

compounds had different reactivities with amines [68]. In this chapter, in order to 

study uretdione and isocyanurate in API adhesive, phenyl isocyanate was used to 

synthesize dimer and trimer model compounds first. Then, the specific and FT-IR 

bands of uretdione and isocyanurate were assigned. At last, uretdiones and 

isocyanurates in pMDI and API adhesive were confirmed. 

 One advantage of API adhesive is that NCO may react with hydroxyls of wood 

component, forming urethane linkage between glue-line and wood. In the 

meanwhile, the reaction of between NCO and PVA hydroxyl inside API glue-line 

generates another type of urethane linkage. Namely, there are two types of 

urethanes formed in API adhesive-bonding-wood structure. The urethane linkage 

between glue-line and wood surface contributes to adhesion bond strength, and 

the urethane linkage inside glue-line contributes to cohesion bond strength (Fig. 

1.1). In chapter 2, the urethane generated from NCO-PVA reaction was confirmed 
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by using FT-IR spectra of API thin film (Fig. 2.3.7). In chapter 3 and 4, urethane 

generation in API paper was detected by using FT-NIR spectroscopy. Actually, 

the urethane band on FT-NIR spectrum involved the information of both PVA 

urethane and cellulose urethane, but it had not been carried out to analyze these 

two types of urethanes, respectively. Wood consists of several components, 

cellulose, hemi-cellulose, lignin, etc., and the most one is cellulose (≈40wt%), so 

the reaction of NCO with cellulose hydroxyl, were also studied in this chapter.  

5.2 Experimental 

5.2.1 Materials 

 Phenyl isocyanate (Wako Pure Chemical industries, Ltd., Japan), pMDI (Nippon 

Polyurethane, Japan), hydrated pyridine (Wako Pure Chemical industries, Ltd., 

Japan) and hydrated DMF (N, N-dimethylformamide) (Wako Pure Chemical 

industries, Ltd., Japan) were used for synthesizing uretdione and isocyanurate. 2-

butanol (Wako Pure Chemical industries, Ltd., Japan) was used to block NCO of 

pMDI. Phenyl isocyanate (Wako Pure Chemical industries, Ltd., Japan), PVA 

(degrees of saponification 99.1%, Mw 6.8×104g/mol, Wako Pure Chemical 

industries, Ltd., Japan), fibrous cellulose powder (CF-1, Whatman), hydrated 

DMSO (dimethyl sulphoxide) (Wako Pure Chemical industries, Ltd., Japan) and 

acetone (Wako Pure Chemical industries, Ltd., Japan) were used for synthesizing 

PVA-carbamate and cellulose-carbamate. Dehydrated DMAC (N, N-

dimethylacetamide, Wako Pure Chemical industries, Ltd., Japan) was also used. 

5.2.2 Synthesis 

 ph-uretdione: 1g phenyl isocyanate was dissolved into 10ml hydrated pyridine 

and settled for 4 days at room temperature. Then, the white ph-uretdione crystal 

precipitation was vacuum dried. 
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 ph-isocyanurate: 1g phenyl isocyanate and 1ml hydrated DMF were dissolved 

into 10ml pyridine and settled at 100˚C for 15h. Then, the organic solvent was 

evaporated to obtain ph-isocyanurate. 

pMDI-uretdione: 1g pMDI was dissolved into 10 ml hydrated pyridine and 

settled at room temperature for 4days. After that the solvent was evaporated to 

obtain pMDI-uretdione. 

pMDI-isocyanurate: 1g pMDI and 1ml hydrated DMF were dissolved into 10 ml 

hydrated pyridine and settled at 100˚C for 15h. pMDI-isocyanurate was collected 

by evaporating solvent.  

PVA-carbamate: 300mg PVA were dissolved into 20ml hydrated DMSO at 80˚C. 

Then, 1500mg phenyl isocyanate was added. The reaction was carried out at 80˚C 

for 15h. Ph-carbamate was precipitated out by using water and washed by using 

methanol. 

 Cellulose-carbamate: 1500mg phenyl isocyanate was dissolved into 20ml 

hydrated DMSO. Then, 300mg cellulose powder was added in and stirred at 80˚C 

for 2 days. Cellulose-carbamate was precipitated out by using water and washed 

by using methanol. 

 PVA-pMDI: 300mg PVA was put into 15ml dehydrated DMAC and dissolved at 

90˚C. 1g pMDI was dissolved into 5ml dehydrated DMAC. Then, pMDI/DMAC 

solution was added into PVA/DMAC solution at 90˚C. 5min later, PVA-pMDI 

gel was obtained. The gel was vacuumed dried and ground into powder. Finally, 

PVA-pMDI was washed by using acetone. 

 Cellulose-pMDI: 900mg cellulose powder and 2g pMDI was put into 20ml 

hydrated DMSO and reacted for two weeks. Then, cellulose-pMDI was filtered 

out and washed by using acetone. 

 pMDI-PVA-cellulose film: 3g 15wt% PVA aqueous solution, 1.5g pMDI and 

450mg cellulose were mixed for 5min and degassed for 30s. Then, this mixture 
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was cast onto Teflon sheet to make pMDI-PVA-cellulose film (thickness 

≈0.02mm). The obtained film was aged in thermostatic chamber. 

pMDI-PVA film: 3g 15wt% PVA aqueous solution and 1.5g pMDI were stirred 

for 5min and degassed for 30s. A thin film (thickness ≈0.02mm) was obtained by 

casting the mixture on Teflon sheet. pMDI-PVA film was aged in thermostatic 

chamber. 

 pMDI-cellulose mixture: 100mg pMDI and 100mg cellulose powder were mixed 

and aged in thermostatic chamber. 

5.2.3 Characterizations 

1H-NMR: Nuclear magnetic resonance spectrum was obtained by using JEOL 

JNM-A 500 FT-NMR (500MHz). Solvent was D6-DMSO, and tetramethylsilane 

(TMS) was used as internal standard. Solution concentration was approximately 

10mg/ml. 

 TGA and FT-IR were the same instruments as 2.2.2 and 2.2.3 described. 

 

5.3 Results and Discussion 

5.3.1 Uretdione and Isocyanurate 

The FT-IR spectra of phenyl isocyanate and synthesized ph-uretdione and ph-

isocyanurate were demonstrated in Fig. 5.3.1. For FT-IR test, ph-uretdione disk 

and ph-isocyanurate disk were prepared by mixing 2mg sample with 200mg KBr 

powder and pressing for 5min. Phenyl isocyanate liquid was casted onto CaF2 

board and then FT-IR spectrum was collected, so the region was just 1000-

4000cm-1. Specific absorption bands of phenyl isocyanate, ph-uretdione and ph-

isocyanurate appeared at 2270cm-1 (N=C=O asymmetric stretching), 1775cm-1 
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(C=O stretching) and 1720cm-1 (C=O stretching). In addition, two slight bands of 

uretdione and isocyanurate were also detected at 1775cm-1 and 1720cm-1 on 

phenyl isocyanate spectrum, suggesting that phenyl isocyanate was easy to 

dimerize and trimerize at room temperature. The solubility of phenyl isocyanate, 

ph-uretdione, ph-isocyanurate and DPU (diphenyl urea, Table 3.3.1) in organic 

solvents were checked and summarized in Table 5.3.1. 

 

 

 

 

 

 

 

  

 

pMDI, cross-linker for API adhesive, was also utilized to synthesize uretdione 

and isocyanurate (Fig. 5.3.2). Uretdione band (C=O stretching) of pMDI-

uretdione was also showed up at 1775cm-1, the same position as ph-uretdion. 

However, isocyanurate band (C=O stretching) of pMDI-isocyanurate appeared at 

1705cm-1, which was 15cm-1 lower than ph-isocyanurate. This difference in 

wavenumber was attributed to the disparity of molecular structures. pMDI had 

more than two NCO groups on molecular chain, so cross-linking structure was 

easily formed during synthesizing process. Generated cross-linking linkage 

restricted the movement of molecular chains and NCO reactions. Thus, a 

significant amount of NCO remained in pMDI-uretdione and pMDI-isocyanurate, 

and urea linkage was generated during sample preparation. Synthesized pMDI-

Fig. 5.3.1. FT-IR spectra of phenyl isocyanate, ph-uretdione and ph-

isocyanurate, R: phenyl. 
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uretdione and pMDI-isocyanurate were insoluble in any organic solvent, because 

of the existence of cross-linking. Besides, pMDI also showed two bands at 

1778cm-1 and 1721cm-1. 1778cm-1 was attributed to uretdione [45] generated in 

manufacture and storage processes of pMDI. 1721cm-1 was considered as from 

isocyanurate. 

 

 

 

 

 

 

 

 

 

5.3.2 Difference on Band Location Between Urethane and Isocyanurate 

 

 

 

 

 

 

 

 
Fig. 5.3.3. FT-IR spectra of PVA-pMDI and cellulose-pMDI. 
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Fig. 5.3.2. FT-IR spectra of pMDI, pMDI-uretdione and pMDI-isocyanurate. 
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FT-IR absorption bands of urethane and isocyanurate are very close to each other 

(all at 1710-1730cm-1), so it is difficult to separate them on FT-IR spectrum. API 

adhesive cross-linker, pMDI, was also used to react with PVA and cellulose in 

organic solvent. FT-IR test was performed on KBr disk with 2mg sample and 

200mg KBr. FT-IR spectra of synthesized PVA-pMDI and cellulose-pMDI were 

displayed in Fig. 5.3.3. Urethane N-H stretching bands showed up at 3377cm-1 

and 3344cm-1, and 1705cm-1 and 1721cm-1 band consisted of urethane C=O 

stretching absorption. To enhance resolution, 2nd derivative calculation was 

employed. 2nd derivative spectrum of pMDI (Fig. 5.3.4) was calculated from the 

spectrum in Fig. 5.3.2. Downward peaks of uretdione and isocyanurate occurred 

at 1779cm-1 and 1721cm-1. 1666cm-1 was attributed to non-hydrogen-bonded urea, 

and 1639cm-1 was attributed to hydrogen bonded urea. In Fig. 5.3.5, 1784cm-1 and 

1781cm-1 peaks were assigned to uretdione. Peaks at 1661cm-1, 1658cm-1 and 

1641cm-1 were assigned to urea, since NCO was easy to react with water. In 

organic solvent, NCO reacted with PVA and cellulose hydroxyls, forming 

urethane linkages. Thus, 1712cm-1 and 1706cm-1 peaks were due to hydrogen 

bonded urethane, and 1731cm-1 and 1732cm-1 peaks were due to non-hydrogen-

bonded urethane. Of course, 1721cm-1 peak may also exist on the 2nd derivative 

spectra in Fig. 5.3.5, but it was covered by urethane absorption. So, the absorption 

wavenumbers of urethane and isocyanurate were in the order of non-hydrogen-

bonded urethane (≈1730cm-1) > isocyanurate (≈1720cm-1) > hydrogen bonded 

urethane(≈1710cm-1). 
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Fig. 5.3.4. 2nd derivative spectrum of pMDI.  

For vertical axis value, aE-b was equal to a×10-b. 
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5.3.3 Uretdione and Isocyanurate in API thin Film 

During aging in thermostatic chamber, post-curing reactions of NCO occurred. 

The generations of urethane and urea had been particularly discussed in previous 

chapter. Here, the self-reactions of NCO in API adhesive were studied. In Fig. 

2.3.7, generated uretdione in API thin film was detected at 1779cm-1, and the 

strong band detected at 1715cm-1 was attributed to overlapping urethane (C=O 

stretching) and isocyanurate absorption. The API thin film used for Fig. 2.3.7 was 

further aged until 20 days, and 2D correlation spectra were calculated in Fig 5.3.6. 

Auto-peak at 2274 represented NCO consumption during post-curing. A broad 

auto-peaks at from 1600 to 1740, corresponding to overlapping urethane, 

isocyanurate and urea peaks. On synchronous spectrum, a mall negative cross-

peak appeared at 2274-1776, suggesting that uretdione band had an opposite 

variation direction to NCO band. Namely, uretdione was gradually generated, but 

the amount was very limited. Cross-peaks of NCO-urethane, NCO-isocyanurate 

and NCO-urea overlapped into a broad negative cross-peaks, so it was difficult to 

distinguish isocyanurate band individually. On asynchronous spectrum, peak 

overlapping also occurred significantly.  
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Fig. 5.3.5. 2nd derivative spectra of cellulose-pMDI (left) and PVA-pMDI (right). 

For vertical axis value, aE-b was equal to a×10-b. 
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5.3.4 Thermal degradation of urethane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phenyl isocyanate reacted with polyvinyl alcohol and cellulose in organic 

solvent, forming PVA-carbamate and cellulose-carbamate. During synthesis 

process, little amount of DPU, uretdione and isocyanurate were also generated, 

but these by-products were removed by using methanol [69]. To confirm the degree 

of substitution of hydroxyl on PVA and cellulose chain, 1H-NMR test was carried 

Fig. 5.3.7. 1H-NMR spectra of PVA-carbamate (upper) and cellulose-

carbamate (lower). 
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Fig. 5.3.6. Synchronous (left) and asynchronous (right) 2D correlation 

spectrum of API thin film, generated from 1 day-20 days FT-IR spectra. 
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out (Fig. 5.3.7). Degree of substitution was calculated, based on the integral area 

ratio of aromatic resonance to cellulose backbone resonance. Result indicated that 

PVA hydroxyls were 100% substituted and cellulose hydroxyls were 97% 

substituted. 

FT-IR spectra of PVA-carbamate and cellulose-carbamate were also collected 

(Fig. 5.3.8). 27mg cellulose-carbamate (or PVA-carbamate) was dissolved into 

1ml acetone. After that, one drop of the acetone solution was cast onto CaF2 disk 

(δ 1mm, Φ 25mm, Pier Optics, Japan) and acetone was evaporated. Urethane bond 

(C=O stretching) of PVA-carbamate appeared at 1720cm-1 and that of cellulose-

carbamate appeared at 1715cm-1. Other bands, such as N-H stretching, Amide II 

and Amide II, were almost detected at the same wavenumbers for these two 

carbamates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3.8. FT-IR spectra of phenyl isocyanate and carbamates. 
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TGA and DTG curves of carbamates were showed in Fig. 5.3.9. Thermal 

degradation of PVA-carbamate separated into two steps, at 278˚C and 351˚C, and 

that of cellulose-carbamate had three steps, at 210˚C, 313˚C and 349˚C. For 

comparison, thermal degradation curves of PVA and cellulose were demonstrated 

in Fig. 5.3.10. Beginning, end and mass loss of each DTG peak were summarized 

in Fig. 5.3.11. Thermal degradation of urethane was reported to have three routes 

(Scheme 2.3.1) [38]. Products of carbamate degradation were studied by using 

TGA and temperature dependent FT-IR spectroscopy. 
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Fig. 5.3.9. Thermal degradation curves of PVA-carbamate (left) and 

cellulose-carbamate (right). 
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Mass ratios of substituent on carbamate molecular chains, 73.62% and 69.63%, 

were listed in Table 5.3.1. PVA-carbamate had 79.68% mass loss at the end of 

first step, and cellulose-carbamate showed 71.36% mass losse at the end of second 

step. Thus, it was considered that the thermal degradations of two carbamates 

mainly advanced in the first and second route of Scheme 2.3.1. FT-IR spectra at 

290˚C were showed in Fig. 5.3.12. Even though there were still some urethane 

linkages left, the bands at 3475cm-1 and 3503cm-1 (containing O-H stretching 

absorption) implied that urethane degradations formed hydroxyls and phenyl 

Table. 5.3.1. Mass ratios of substituent in carbamates. 

Fig. 5.3.11. Beginning, end and mass loss of each DTG peak. 
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isocyanate (evaporated). The weak bands at 1650cm-1 suggested that a little bit of 

alkene was generated due to hydroxyl degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KBr disks of PVA-pMDI and cellulose-pMDI were heated to 290˚C (Fig. 5.3.13). 

Most of urethane linkages degraded at 290˚C. It had been verified that urethane 

degradation mainly formed NCO and hydroxyl. Formed phenyl isocyanate soon 

evaporated, but formed pMDI here could not volatilize so further decomposed. 

Fig. 5.3.12. FT-IR spectra of carbamates at 290˚C. 
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Fig. 5.3.13. FT-IR spectra of PVA-pMDI and cellulose-pMDI at 290˚C. 
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Two NCOs generated carbodiimide first at high temperature and then 

carbodiimide reacted with hydroxyl forming substituted urea (Scheme 5.3.1). 

Therefore, 1629cm-1 and 1636cm-1 bands were attributed to urea and substituted 

urea [38, 70]. 

 

 

 

 

 

 

 

 

 

 

5.3.5 Urethane formation in ambient condition 
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Scheme 5.3.1.  Thermal decomposition of urethane. 
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pMDI-PVA-cellulose film, pMDI-cellulose mixture and pMDI-PVA film were 

prepared and aged in ambient condition. Thus, NCO reactions in those three 

samples were quite similar with the reactions in API adhesive glue-line. FT-IR 

test was performed on pMDI-PVA-cellulose film, pMDI-PVA film and pMDI-

cellulose mixture disk (made of 2mg sample and 200mg KBr powder). FT-IR 

spectra at room temperature were summarized in Fig. 5.3.14. O-H stretching and 

N-H stretching overlapped at 3318cm-1, 3304cm-1 and 3320cm-1. 2269cm-1, 

2278cm-1 and 2275cm-1 bands were attributed to N=C=O asymmetric stretching 

of residual NCO, and 1639cm-1 and 1657cm-1 bands were attributed to urea. As it 

had been discussed above, 1713cm-1 and 1712cm-1 bands consisted of the 

absorptions of urethane, isocyanurate and/or additives. 

 

 

 

 

 

 

 

 To separate overlapped bands, temperature dependent FT-IR spectra were 

collected and 2nd derivative calculation was performed. Result of pMDI-PVA-

cellulose film was showed in Fig. 5.3.15. During heating, hydrogen band 

dissociated, so the bands of hydrogen bonded urethane and urea at 1706cm-1 and 

1639cm-1 decreased. Non-hydrogen-bonded urethane band at 1736cm-1 also 

descended, because of urethane thermal degradation. Non-hydrogen-bonded urea 

as well as isocyanurate band increased with temperature, because substituted urea 

and trimer were generated during urethane thermal decomposition (Scheme. 
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Fig. 5.3.15. Temperature dependent 2nd derivative 

spectra of pMDI-PVA-cellulose film. 
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5.3.1). Uretdione decomposition led to band intensity descent at 1777cm-1. Here, 

urethane formed in NCO-hydroxyl reaction in ambient condition was confirmed. 

Nevertheless, it was impossible to distinguish between the urethane from PVA 

and the urethane form cellulose. 

 

 

 

 

 

 

 

 

Temperature dependent 2nd derivative spectra of pMDI-PVA film and pMDI-

cellulose mixture were shown in Fig. 3.5.16. At 30˚C, 1641cm-1 and 1642cm-1 

were assigned to hydrogen bonded C=O stretching bands of urea, and non-

hydrogen-bonded C=O stretching bands of urea appeared at 1661 cm-1 and 1660 

cm-1. Based on the results of Fig. 5.3.4 and Fig. 5.3.5, 1735cm-1 and 1730cm-1 

were attributed to non-hydrogen-bonded C=O stretching absorption bands of 

urethane, and 1709cm-1 and 1712cm-1 were assigned to hydrogen bonded urethane 

C=O stretching. Isocyanurate C=O stretching bands at ≈1720 cm-1 were covered 

by urethane bands. Uretdione band appeared at 1776cm-1. After heating, thermal 

degradation of urethane contributed obvious band decreasing at 1735cm-1 and 

1730cm-1. Band decreasing at 1641cm-1 and 1642cm-1 was attributed to hydrogen 

bond dissociation of urea. Bands decreasing at 1776cm-1 was related to uretdione 

decomposition. On the other hand, band increasing at 1665cm-1 and 1660cm-1 was 

due to the generations of non-hydrogen-bonded urea and substituted urea. 

Fig. 5.3.16. Temperature dependent 2nd derivative spectra of pMDI-PVA 

film (left) and pMDI-cellulose (right). 
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Isocyanurate bands at 1709cm-1 and 1712cm-1 had increasing, attributed to NCO 

trimerization at high temperature. In this part, urethane from NCO-PVA reaction 

and urethane from NCO-cellulose reaction were confirmed, respectively. 

However, those two types of urethanes had quite similar FT-IR absorptions, so it 

was difficult to distinguish between them. 

5.4 conclusions 

 Dimerization and trimerization of NCO, even though limited, could not be 

ignored, especially for aromatic isocyanate which has high reactivity. Dimer and 

trimer of NCO, uretdione and isocyanurate, were synthesized first to assign their 

specific absorption bands. Then, the generated uretdione in API thin film were 

confirmed. Result indicated that self-reaction of NCO carried on slowly in API 

thin film during aging period.  

 Several carbamates were synthesized to study PVA-NCO reaction and cellulose-

NCO reaction, respectively. TGA results of the carbamates synthesized from 

phenyl isocyanate implied that thermal degradation of urethane linkage mainly 

formed NCO and hydroxyl. FT-IR results of the carbamates synthesized from 

pMDI suggested that NCO decomposition formed substituted urea. At last, 

temperature dependent FT-IR was performed on pMDI-PVA film and pMDI-

cellulose mixture to confirm NCO reactions with PVA hydroxyl and cellulose 

hydroxyl in ambient condition. 
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6 Summary 

In this research, chemical structure as well as physical property of cured glue-

line of aqueous vinyl polymer-isocyanate adhesive for wood were studied. In 

order to in-situ detect the chemical structure of glue-line sandwiched between two 

adherends, Fourier transform near infrared spectroscopy, which has high 

penetration ability, was utilized. In addition, dynamic thermomechanical analysis 

and cross-lap bonding test were employed to analyzed the physical properties of 

glue-line. 

In chapter 2, the variations of chemical structure and physical property of API 

films during post-curing were studied. T5% of 6 days aged API film occurred at 

279˚C, but the thermal degradations of urethane and urea linkage could not be 

observed on TGA curve. Tg peak did not show up clearly on DSC curve due to 

the restricting effect of cross-linking on molecular movement. Two exothermal 

peaks at 141˚C and 285˚C on DSC curve were attributed to NCO self-reactions 

and NCO thermal degradation reactions, respectively. Tg of API film at 28˚C was 

confirmed by DMA test. PVA semi-crystal slippage as well as acute NCO 

reactions contributed to a significant peak at 203˚C on loss factor curve. Rubbery 

plateau was observed on storage modulus curve, by which cross-linking density 

was calculated. Chemical structure variation of API thin film during post-curing 

was confirmed by FT-IR spectroscopy. C=O stretching bands of urethane and urea 

appeared at 1715cm-1 and 1639cm-1, respectively, and urea band intensity 

increased faster than urethane band intensity. Cross-laps test indicated that 

urethane and urea generation in post-curing process led to an increasing of bond 

strength. 

In chapter 3, two model compounds (MUT and DPU) were synthesized first to 

assign the NIR absorptions of urethane and urea, two primary products of NCO 

reactions. Temperature dependent FT-IR and FT-NIR spectroscopy were 
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employed for band assignment, since hydrogen bonded amide is sensitive to 

temperature. By using model compounds, the specific NIR absorptions of 

urethane were detected at 6533cm-1, 6503cm-1 (N-H stretching first overtone), 

5050cm-1 (N-H stretching/amide II combination tone), 4932cm-1 (C=O stretching 

second overtone) and 4867cm-1 (N-H stretching/amide I combination tone), and 

the specific bands of urea were detected at 6506cm-1 (N-H stretching first 

overtone), 5019cm-1, 4984cm-1 (N-H stretching/amide II combination tone or N-

H stretching/N-H bending combination tone), 4935cm-1 (C=O stretching second 

overtone) and 4880cm-1 (N-H stretching/amide I combination tone). 

Then, the chemical structure of API glue-line sandwiched between two pieces of 

filter papers was analyzed by using FT-NIR spectroscopy. NIR absorption bands 

of API paper occurred at 5065cm-1 (N-H stretching/amide II combination tone of 

urethane), 5005cm-1 (N-H stretching/amide II combination tone of urea), 4918cm-

1 (C=O stretching overtone) and 4840cm-1 (N-H stretching/amide II combination 

tone or O-H combination tone). After that, the generations of urethane and urea 

in API paper during post-curing were tracked. From 1 day to 20 days, urethane 

and urea generated continuously.  

In chapter 4, in order to investigate the practicability of FT-NIR test on glue-line, 

FT-NIR was used to study the influences of adhesive components and aging 

conditions on chemical structure. PVA with low DS (degree of saponification) 

was expected to mix and react better with pMDI. However, there was almost no 

disparity in glue-line chemical structures based on different PVAs. High bond 

strength was obtained on the adhesive with high molecular weight PVA. FT-NIR 

result demonstrated that the adhesive with less SBR latex produced more urethane 

and urea, due to high pMDI and PVA content. DMA showed that after 1 day aging 

the API film with low SBR latex content had more unreacted pMDI. Cross-laps 

with high SBR latex content showed high initial bond strength, and its strength 
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decreased after 6 days aging. Cross-laps with more pMDI had been fully post-

cured after 6 days aging and thus displayed increasing bond strength.  

Dry aging condition contributed to much less urethane and urea generation 

amount than other humidity conditions. Dry condition aged API film was broken 

at 85˚C during DMA test, due to brittleness and less cross-linking structure. Dry 

condition also led to worse bonding performance of cross-lap. The accelerating 

effect of heating treatment was just temporary and it became more and more 

unconspicuous with aging time, because the mobility of molecule in glue-line 

dominated NCO reactions. DMA test verified that heating treatment speed up the 

formation of cross-linking. Bond strength was also promoted by heating. 

In chapter 5, uretdione and isocyanurate, dimer and trimer of NCO, in API thin 

film were confirmed. Self-reactions of NCO carried on slowly in API thin film 

during aging period. The difference between two urethanes, one from PVA-NCO 

reaction and the other one from cellulose-NCO reaction, was studied. TGA and 

FT-IR result implied that thermal degradation of urethane linkage mainly 

generated NCO and hydroxyl. FT-IR result suggested that NCO decomposition 

of pMDI formed substituted urea. Finally, NCO-PVA and NCO-cellulose 

reactions in ambient condition were confirmed by temperature dependent FT-IR 

spectroscopy. 

Conclusions: Residual NCO in cured API adhesive glue-line still can react with 

hydroxyls, forming chemical linkages and contributing to bond strength 

increasing. In the experiment, FT-NIR spectroscopy was employed for the in-situ 

chemical structure analyzing of glue-line. Further, the relationship between 

chemical structure and physical property of glue-line was studied. For better 

understanding the bonding mechanism of API adhesive to wood, the reaction 

between cross-linker and cellulose (one wood component) were confirmed.   
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