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Canine gallbladder mucocele (GBM) is defined as an excess accumulation of 

abnormally gelatinous bile within the gallbladder (Mesich et al. 2009; Norwich 2011; 

Kesimer et al., 2015), and it has been reported that the frequency of diagnosis has increased 

during the last two decades (Besso et al., 2000; Pike et al., 2004; Aguirre et al., 2007). As 

the histopathologic findings of GBM, cystic mucinous hyperplasia of the gallbladder 

mucosa and excess secretion of gel-forming mucins, such as Muc5ac and Muc5b, have been 

reported (Kovatch et al., 1965; Pike et al., 2004; Worley et al., 2004; Kesimer et al., 2015). 

Moreover, it was revealed recently that the gallbladder epithelium acquires a 

well-differentiated, mucin-secretory phenotype during GBM formation (Kesimer et al., 

2015). Dogs with GBM show clinical signs, including vomiting, anorexia, abdominal pain, 

and icterus, when the over-accumulation of mucus bile causes gallbladder rupture or 

common bile duct obstruction (Besso et al. 2000; Pike et al. 2004). Although 

cholecystectomy results in a good prognosis for survival, perioperative mortality for 

affected dogs ranges from 21.7% to 40% (Smalle et al., 2015). Since there is little evidence 

for the effectiveness of drug therapy, elucidation of the mechanism of GBM formation is 

necessary for the development of therapy. However, the pathogenesis of GBM has remained 

unclear.  

On the contrary, several studies have identified the predisposing factors for GBM. 

It was reported that older small- to medium-breed dogs, such as Shetland Sheepdogs, 

Miniature Schnauzers, American Cocker Spaniels, Pomeranians, and Chihuahuas, are 

predisposed to the disease (Aguirre et al., 2007; Norwich 2011; Kutsunai et al., 2014). 

Certain endocrine diseases, including hypothyroidism and hyperadrenocorticism but not 

diabetes mellitus, abnormal lipid metabolism, and the use of imidacloprid-containing drugs 
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are also reported as risk factors for GBM (Mesich et al., 2009; Kutsunai et al., 2014; Gookin 

et al., 2015). Moreover, it was revealed that postprandial gallbladder hypomotility is 

observed in dogs with GBM (Tsukagoshi et al., 2012). It is assumed that these predisposing 

factors are useful for investigating the pathogenesis of GBM. 

Bile acids are physiological detergents that facilitate intestinal absorption and 

transport of dietary lipids and vitamins. Basically, bile acids are known to belong to 2 major 

bile acids groups, hydrophobic and hydrophilic, and it was also revealed that the 

hydrophobic bile acids have more cytotoxic effects than hydrophilic ones (Thomas et al., 

2008; Behar et al., 2013). Although species differences in bile acid composition were 

reported, the main canine hydrophobic bile acids are taurodeoxycholic acid and 

taurochenodeoxycholic acid (Washizu et al., 1991). Gallbladder mucus hypersecretion is 

described as one of the characteristic histopathological findings in GBM (Kesimer et al., 

2015). In a previous study, it was demonstrated that these two hydrophobic bile acids 

accelerate mucin secretion by dog gallbladder epithelial cells (Klinkspoor et al., 1995). 

Recently, it was also revealed that the hydrophobic bile acids have an inhibitory effect on 

gallbladder smooth muscle contraction by inducing formation of H2O2 (Xiao et al., 2002) or 

acting on G protein-coupled bile acid receptor (TGR5) (Lavoie et al., 2010). Since the 

aforementioned gallbladder hypomotility was observed in dogs with GBM, the hydrophobic 

bile acids might be associated with GBM formation. In canine models of 

hyperadrenocorticism, a shift in bile acid composition towards an increased concentration of 

hydrophobic, unconjugated bile acids was reported (Kook et al., 2011). Moreover, apart 

from the role of bile acids in dietary lipid absorption, it has been revealed that the 

hydrophobic bile acids play an important role in triglyceride and cholesterol homeostasis as 
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endogenous ligands for the farnesoid X receptor and TGR5 (Thomas et al., 2008). These 

descriptions also support the assumption that the hydrophobic bile acids are involved in the 

pathogenesis of GBM, because both hyperadrenocorticism and abnormal lipid metabolism 

were known as risk factors for GBM. Recently, it was found that the hydrophobic bile acids 

upregulate the function of the cystic fibrosis transmembrane conductance regulator (CFTR) 

by activating TGR5 (Keitel et al., 2009). Since abnormally jellied bile, which is one of the 

characteristic features of GBM, is also observed in cystic fibrosis patients (Kobelska-Dubie 

et al., 2014) and its animal model (Meyerholz et al., 2010; Sun et al., 2014), bile 

acid-induced malfunction of CFTR might also have an effect on the pathological processes. 

Therefore, in the present thesis, I investigated the involvement of bile acids in the 

pathogenesis of GBM. 

This thesis consists of three chapters. In Chapter 1, I have described the effects of 

dietary lipid overload on gallbladder bile acid composition and gallbladder motility in 

healthy dogs to estimate the changes of bile acid metabolism and gallbladder motility in 

dogs with abnormal lipid metabolism. In Chapter 2, I have detailed the actual bile acid 

composition of gallbladder contents in dogs with GBM. In Chapter 3-1, I presented the 

examination of mRNA and protein expression levels of TGR5 and CFTR based on the 

results described in Chapter 2. Moreover, in Chapter 3-2, I have detailed a preliminary 

study conducted on the development of a functional CFTR assay by using canine 

hepatobiliary organoids. 
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Canine gallbladder mucocele (GBM) is currently one of the most common canine 

hepatobiliary diseases; however, the precise pathogenic mechanism of GBM has not been 

elucidated. Gallbladder is a unique organ for the storage of bile and constantly contains bile 

acids, which have various effects on the gallbladder. To date, it has been demonstrated that 

the bile acids, in particular hydrophobic ones, have effects on gallbladder, causing mucin 

hypersecretion, smooth muscle dysfunction, and water secretion (Klinkspoor et al., 1995; 

Xiao et al., 2002; Keitel et al., 2009). Interestingly, these effects of hydrophobic bile acids 

are also the characteristic features of GBM (Tsukagoshi et al., 2012; Kobelska-Dubie et al., 

2014; Kesimer et al., 2015). However, the association of bile acids with the pathogenesis of 

GBM was poorly understood. Therefore, in the present thesis, I addressed the pathogenic 

mechanism of GBM from the viewpoint of the involvement of bile acids. 

Abnormal lipid metabolism was previously identified as one of the risk factors for 

GBM, although its role in the pathogenesis of GBM was unclear (Kutsunai et al., 2014). Since 

bile acids are widely known to play a critical role in lipid metabolism, I hypothesized that the 

abnormal lipid metabolism causes GBM by changing the gallbladder bile acid compositions. 

Thus, in Chapter 1, I described the effect of dietary lipid overload on bile acid compositions 

in six healthy dogs by feeding them a high-fat/high-cholesterol diet (HFCD) for 2 weeks. I 

found that the 2 weeks of HFCD feeding significantly increased both the concentration and 

compositional ratio of taurochenodeoxycholic acid and taurolithocholic acid, which are types 

of hydrophobic bile acids, in bile. On the contrary, HFCD feeding caused a significant 

decrease in both the concentration and compositional ratio of taurocholic acid and 

tauroursodeoxycholic acid, which are types of hydrophilic bile acids. Moreover, I found that 

the HFCD feeding causes gallbladder hypomotility through a decrease in gallbladder 
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cholecystokinin sensitivity. However, these results have to be clarified by further 

investigations because the sample size was small and these HFCD-fed dogs did not develop 

GBM. In Chapter 2, I have detailed the bile acid compositions of gallbladder contents in 18 

actual GBM cases. On the basis of the results presented in Chapter 1, I hypothesized that the 

fraction of the hydrophobic bile acids in GBM dogs is higher than those of control dogs. 

Interestingly, the results showed that the concentrations of most bile acids in the GBM group 

were significantly lower than those in the control group. Moreover, the compositional ratios 

of taurodeoxycholic acid and taurolithocholic acid, which are hydrophobic bile acids, were 

significantly lower in the GBM cases, regardless of plasma triglyceride and total cholesterol 

levels. These results presented in Chapter 2 were quite different from my hypothesis and were 

not consistent with the results presented in Chapter 1. 

One of the reasons for the conflicting results between Chapter 1 and 2 might be the 

difference of the time of sampling. I thought that the results presented in Chapter 1 were 

reasonable and it was acceptable to speculate that an increase in the hydrophobic bile acids is 

involved in the initial pathogenesis of GBM. Mucinous metaplasia of the gallbladder 

epithelium, which indicates excessive mucin secretion, was reported as one of the 

characteristic histopathologic findings of GBM (Kesimer et al., 2015). This histopathologic 

finding supports the above-mentioned speculation because the hydrophobic bile acids are 

known to have an effect on gallbladder, causing mucin hypersecretion (Englert et al., 1977; 

Klinkspoor et al., 1995). Moreover, I found that the 2 weeks of HFCD feeding caused 

gallbladder hypomotility through a decrease in gallbladder cholecystokinin sensitivity. This 

result was also consistent with that observed in a previous report, which showed that 

gallbladder motility decreased in dogs with GBM (Tsukagoshi et al., 2012). It was known that 
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the hydrophobic bile acids inhibit smooth muscle contraction by generating oxidative stress 

(H2O2) and causing lipid peroxidation, and by their aggressive effects on tissues because of 

their high detergency (Xiao et al., 2001; Lavoie et al., 2010; Behar et al., 2013). This result 

suggested that the increases in hydrophobic bile acids are involved in the gallbladder 

hypomotility. In a previous study on dogs, it was reported that the iatrogenic 

hypercortisolemic state causes a reversible shift in bile acid composition toward an increased 

concentration of cytotoxic, hydrophobic, unconjugated bile acids (Kook et al., 2011). Since 

both hyperlipidemia and hyperadrenocorticism were previously identified as risk factors for 

GBM, and the increases in the hydrophobic bile acids were consistently observed in both 

exogenous steroid-administrated dogs and dietary lipid-overloaded dogs, it was assumed that 

the increases in hydrophobic bile acids play a role in initial GBM formation. On the contrary, 

taurodeoxycholic acid and taurolithocholic acid, which decrease in GBM cases, are secondary 

bile acids. The secondary bile acids are produced by intestinal microbiota and return to the 

liver through the enterohepatic circulation. In mice cholestasis models, it was shown that 

gallbladder dysmotility causes a decrease in the fractions of the secondary bile acids owing to 

a disorder of bile acid enterohepatic circulation (Debray et al., 2012). As mentioned in 

Chapter 1, I found that the HFCD feeding causes gallbladder hypomotility. This result 

suggested that the increases in hydrophobic bile acids trigger the gallbladder dysmotility. 

Moreover, it was also revealed that more severe gallbladder hypomotility is observed in dogs 

with GBM. Therefore, I assumed that the change of bile acid compositions in GBM cases is 

the secondary event of gallbladder hypomotility accompanying GBM progression. Taken 

together, from the results presented in Chapters 1 and 2, I speculated that there are two 

patterns of bile acid compositions depending on the stage of dyslipidemia-associated GBM 
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progression. That is, hyperlipidemia causes the increase in hydrophobic bile acids and this 

increase induces gallbladder hypomotility and mucin hypersecretion as an initial pathogenic 

mechanism of GBM. Subsequently, when the bile acid enterohepatic circulation begins to be 

affected by the gallbladder hypomotility accompanying GBM progression, the secondary bile 

acids might be decreased. 

Additionally, I thought that the low levels of the secondary bile acids, in particular 

taurodeoxycholic acid, also contribute to the progression of GBM. Taurodeoxycholic acid is 

known as one of the potent endogenous agonists of TGR5. In the epithelium of the 

gallbladder of humans, it was reported that activated TGR5 induces activation of CFTR that 

contributes to fluid and chloride secretion into the gallbladder lumen (Keitel et al., 2009). 

More interestingly, it was demonstrated that accumulation of abnormally mucinous bile 

within the gallbladder and cystic hyperplasia of gallbladder epithelium, which are 

characteristic histopathologic findings in GBM, are also observed in cystic fibrosis patients 

and its animal model (Meyerholz et al., 2010; Kobelska-Dubie et al., 2014; Sun et al., 2014). 

Therefore, I speculated that fluid secretion insufficiency caused by low taurodeoxycholic acid 

fractions is involved in canine GBM formation. Additional studies are necessary to clarify the 

effects of the compositional changes of gallbladder bile acids on GBM in dogs. 

I showed that the fraction of taurodeoxycholic acid decreases in the gallbladder 

bile of dogs with GBM as presented in Chapter 2. Taurodeoxycholic acid is known to 

upregulate TGR5 protein expression (Zhou et al., 2015) Moreover, similar to dogs with 

GBM, abnormally jellied bile has also been observed in human patients with cystic fibrosis 

(Kobelska-Dubie et al., 2014) and animals experimentally treated to suppress the expression 

of functional CFTR protein (Meyerholz et al., 2010; Sun et al., 2014). As mentioned in 
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Chapter 3-1, I evaluated the difference in mRNA and protein expression levels of TGR5 

and CFTR between the gallbladder tissues of normal dogs and those of dogs with GBM. I 

hypothesized that low expression levels of TGR5 and CFTR are observed in GBM. The 

results of these analyses revealed that levels of TGR5 mRNA significantly decreased in 

dogs with GBM. However, there was no significant difference in TGR5 protein expression 

levels between control and GBM samples. In contrast, no difference in CFTR expression at 

either the mRNA or the protein level could be detected between control and GBM samples. 

As hypothesized, I observed a decrease in TGR5 mRNA expression levels in dogs with 

GBM. Although the difference in protein levels of TGR5 was not detected, the 

semi-quantitative nature of western blot analysis might have contributed to the results. 

However, since no differences in the expression levels of CFTR mRNA and protein were 

observed between the control and GBM, I thought that I should focus on the functional 

abnormality rather than the expression levels of CFTR to elucidate its pathophysiological 

role in GBM. Further studies that investigate the association between TGR5 expression 

level and CFTR function might provide more insight into the pathogenesis of GBM. 

 As mentioned in Chapter 3-2, I attempted to develop a method for quantification 

of TGR5–CFTR signaling pathway function using canine hepatobiliary cells. Recently, 

Dekkers et al. (2013) demonstrated an organoid swelling assay, which is a novel and rapid 

quantitative assay for CFTR function using three-dimensional human intestinal stem cell 

cultures, so-called intestinal organoids. Fortunately, it was reported more recently that 

hepatic organoids have been established from canine hepatic progenitor cells (Nantasanti et 

al., 2015). I thought that if canine gallbladder organoids can be developed, the effect of 

TGR5 expression levels on CFTR function might be determined using the organoid 
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swelling assay. Therefore, the first aim of this study was to generate canine gallbladder 

organoids and to examine the expression levels of TGR5 mRNA in these organoids. The 

second aim was to investigate the utility of canine gallbladder organoids in the organoid 

swelling assay. I have successfully developed canine gallbladder organoids from a canine 

gallbladder tissue, and the canine gallbladder organoids showed significantly higher 

expression levels of TGR5 mRNA than those of hepatic and cholangiocyte-like organoids. 

Moreover, canine gallbladder organoids tended to expand more than hepatic organoids upon 

forskolin stimulation. The swelling of both of these organoids decreased with CFTR 

inhibition. These results suggest that canine gallbladder organoids are applicable in an assay 

of TGR5–CFTR signaling pathway function. However, as preliminary supplementary data, 

I found that neither canine hepatic nor gallbladder organoids swell in response to TGR5 

stimulation. I speculate that the localization of TGR5 is responsible for this unfortunate 

consequence, because TGR5 is reported to be localized in the apical membranes of 

gallbladder epithelial cells, but not in the basolateral membranes (Keitel et al., 2009). This 

means that there is a possibility that the TGR5 activator does not reach the luminal surface 

of organoids. Further studies, which attempt to reverse the polarity (inside-out, with the 

basal surface facing the central lumen) of organoids, might ensure canine gallbladder 

organoids are applicable to a functional assay of TGR5–CFTR signaling. 

From the results obtained a series of studies, I illustrated the novel hypothetical 

concepts of the pathogenic mechanism of canine hyperlipidemia-associated GBM, which 

are as follows. First, hyperlipidemia induces an increase in hydrophobic bile acids, such as 

taurochenodeoxycholic acid and taurolithocholic acid, in gallbladder bile. Subsequently, an 

increase in the hydrophobic bile acids causes gallbladder hypomotility and excess mucin 
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secretion. Additionally, as gallbladder motility decreases, the fraction of the secondary bile 

acid, taurodeoxycholic acid, also decreases owing to the disorder of bile acid enterohepatic 

circulation. As the next step, TGR5 expression is downregulated by the low levels of the 

taurodeoxycholic acid fraction. Finally, when the malfunction of CFTR is caused by the low 

expression of TGR5, abnormal highly viscous bile formation and accumulation within the 

gallbladder lead to the development of mucocele. However, the causal relationship between 

the changes of bile acid composition and GBM is not fully understood in these studies. 

Since there is no useful animal model for GBM, it seems difficult to investigate causality. 

The use of canine gallbladder organoids has the potential to address this issue, because it is 

known that organoids mimic some of the structure and function of real organs (Willyard, 

2015). Future studies that investigate the effects of bile acids on canine gallbladder 

organoids will provide knowledge for further understanding of the pathogenic mechanism 

of canine GBM. 
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