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In mammals, testis and ovary are critical organs producing gametes, which give life to the next 

generation by producing sperm or oocytes. Mammalian sex is determined based on sex 

chromosome constitution (i.e., XY or XX) at the time of fertilization. In most mammals, 

including humans and mice, both XY and XX embryos develop equally in a non-sexually 

dimorphic fashion until the early organogenic stage, leading to the formation of long and narrow 

gonadal primordia along the mesonephric region of the posterior trunk (Fig. 1A). Such 

bipotential gonads develop into either testes or ovaries in the presence or absence of Sry, Sex-

determining region Y gene, at the critical time window during 11.0 days post coitum (11.0 dpc) 

–11.5 dpc in mice (see reviews by Kashimada and Koopman 2010; Harikae et al. 2013a; Larney 

et al. 2014; Fig. 1B). After gonadal sex determination, the differentiating gonadal somatic cells 

produce various sex-dimorphic signaling factors for the maintenance of each sex of the 

supporting cells and simultaneously secrete testis- or ovary-specific hormones that affect the 

sexually dimorphic development of the intra- and extra-reproductive organs during the late fetal 

and peri- and postnatal stages. Such sexually dimorphic hormonal secretion from the gonads 

results in the sexual maturation of the adult male or female.  

Vertebrate sex determination is called “one tissue, two fate” (Brennan and Capel, 2004) 

because one of two organs, testis or ovary, develops from a bipotential gonad. Therefore, cell 

linages consisting of testis or ovary, such as germ cells, supporting cells, steroidogenic cells, 

and so on, have counterparts originated from the same precursors in undifferentiated gonads. 

Briefly, both mammalian testes and ovaries consist of the same cell linages, germ cells (i.e., 

spermatogenic cells and oocytes) and supporting cells (i.e., Sertoli cells and granulosa cells) 

inside a tubular or follicular structure, which is surrounded by steroidogenic cells (i.e., Leydig 

cells and internal theca cells) and myoid cells in the interstitial regions (Fig. 1C). In Sertoli cell 

differentiation of mouse XY gonads, SRY is transiently activated in only supporting cells and 
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upregulates SOX9 (SRY-related HMG-box 9), leading to male-specific gene expressions (e.g., 

Sox8, Fgf9 [fibroblast growth factor 9], Gdnf [glial cell-line derived neurotrophic factor], and 

Amh [anti-Müllerian hormone]). Differentiating pre-Sertoli cells play a central role in the male 

sex determination of the other cell lineages, such as germ cells, interstitial steroidogenic cells, 

and vascular patterns (Svingen and Koopman, 2013). Testis cords, tubular structures of germ 

and Sertoli cells packed within basal lamina, are formed in XY gonads at fetal stage (Harikae 

et al., 2013a). After birth, the testis cords develop into seminiferous tubules where 

spermatogenesis proceeds continuously. In the absence of SRY, most XX supporting cells lose 

SRY-dependent SOX9 inducibility (SDSI; Hiramatsu et al., 2009; Harikae et al., 2013b) and 

express Foxl2 (forkhead box L2), becoming pre-granulosa cells which cause female sex 

differentiation in the other cell lineages. However, a subpopulation of the pre-granulosa cells 

near the mesonephric tissue maintains SDSI throughout fetal and early postnatal stages, even 

after they come to be FOXL2-positive at fetal stage. In XX gonads, ovigerous cords consisting 

of germ cell cysts and pre-granulosa cells are formed at fetal stage (Pepling, 2006; Hummitzsch 

et al., 2013; Suzuki et al., 2015). After birth, these cysts break down into each primordial follicle 

consisting of an oocyte and a single layer of flat pre-granulosa cells. Some of these primordial 

follicles develop into AMH-positive primary, secondary, or antral follicles in the medullary 

region of ovaries, as initial round of folliculogenesis (Mork et al., 2012; Shinomura et al., 2014; 

Suzuki et al., 2015). The subpopulation of the pre-granulosa cells with SDSI contributes to the 

initial round of folliculogenesis by secondary follicle stage (Harikae et al., 2013b). In contrast, 

other dormant primordial follicles in the cortex region are recruited and activated in the cyclical 

and selective manners, which subsequently results in the consecutive waves of the cyclical 

follicular activation. Little is known about the biological significance of first wave of 
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folliculogenesis, partly because there are only a few models to analyze first wave follicles 

(Mork et al., 2012; Shinomura et al., 2014; Zheng et al., 2014). 

Another feature of mammalian sex determining process is that the sex 

determination/differentiation of the fetal gonads proceeds inside the mother’s womb (i.e., in an 

estrogen-rich environment) through the placenta. Such an estrogen-dominant environment may 

lead to the low sensitivity to estrogens in most parts of the sex-determination process, at least 

during the fetal stages of mammals. In fact, steroidogenic cell differentiation and hormone 

production occurred after birth in XX gonads (Honda et al., 2007; Young et al., 2010; Liu et al., 

2015; Miyabayashi et al., 2015). And estrogen receptor (Esr) 1/2 double-null females showed 

their phenotype of ovotestis formation only after birth (Couse et al., 1999; Dupont et al., 2003). 

In contrast, male hormones, such as AMHs and androgens, produced in embryonic testes have 

the dominant regulation in Müllerian duct degeneration and masculinization of brain and 

external reproductive organ in fetal stage (Behringer et al., 1994; Geissler et al., 1994; Hu et al., 

2002; Sato et al., 2004; O'Shaughnessy et al., 2011).  

DSD (disorders of sex-development) is defined as “congenital conditions in which the 

development of chromosomal, gonadal, or anatomical sex is atypical” (Hughes et al., 2006; 

Bashamboo and McElreavery, 2015). This definition includes errors of primary sex 

determination, such as 46,XY complete or partial gonadal dysgenesis (CGD, PGD), 46,XX 

testicular DSD, and 46,XX ovotesticular DSD. Some cases of 46,XX testicular/ovotesticular 

DSD could be explained by the translocation of SRY to the X chromosome or an autosome, 

overexpression of pro-tests genes including SOX family genes, or failure of pro-ovarian/anti-

testis genes (Grinspon and Rey, 2016), but other cases couldn’t be explained by the mechanism 

related with such genes. Some cases of the virilization of the XX fetus were the result of 

excessive androgen action during intrauterine development, resulting from virilizing tumors 
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and congenital adrenal hyperplasia in humans (Grinspon and Rey, 2016). Such fetal disorders 

involving excess androgen permit proper ovarian differentiation, but in some cases, lead to 

prevalent hyperandrogenic infertility of polycystic ovary syndrome accompanied by excess 

AMH (Abbotte and Bacha, 2013). Moreover, freemartin syndrome causes infertility in a female 

cattle twin born with a male twin (Marcum, 1974; Padula, 2005). Since the female bovine fetus 

shares a blood supply with the male fetus, some circulating factors derived from the male twin 

(e.g., testosterone and AMH) may cause masculinization of the genital organs of the female 

twin, including testis-like structures with SOX9-positive Sertoli-like cells in some severe cases 

(Harikae et al., 2012), but this molecular mechanism remains unknown. Similar to such 

freemartin ovaries, the fetal mouse ovarian grafts under the kidney capsule of adult male mice 

undergo a partial sex-reversal showing the ectopic formation of the testis cord-like structures, 

together with the follicular degeneration and subsequent ectopic appearance of SOX9-positive 

Sertoli-like cells (Taketo et al., 1984; Taketo and Merchant-Larios, 1986; Morais da Silva et 

al., 1996; Harikae et al., 2013b; Fig. 2). These findings suggest that a switch from a maternal-

to-paternal environment induces a partial masculinization of the fetal ovaries even in normal 

wild-type genotype. However, the contribution of paternal environment of host male mice to 

such masculinization of fetal ovaries hasn’t been examined in detail. With the ovarian grafting 

experiment into the male nude mice, Harikae (2013) showed the transition of sex determination-

related genes in such a partial masculinization of granulosa cells in the first wave of 

folliculogenesis. However, among these altered sex determination-related genes, it is still 

unclear what genes contribute to the follicular degeneration, tubular structure formation, and 

ectopic SOX9-positive Sertoli cell-like cell appearance in the partial masculinization in the 

ovarian grafts under the paternal environment. 
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In this study, I tried to reveal the mechanism of the differentiation and masculinization of 

XX supporting cells by analysis of XO mouse ovaries and mouse ovarian grafts into male nude 

mice. In chapter 1, I did histological analysis on XO postnatal ovaries to reveal the granulosa 

cell differentiation in the first wave of folliculogenesis. In chapter 2, in order to reveal to what 

extent the grafted ovaries re-acquire the sexual bipotency, I induced ectopic SRY in grafted 

ovaries in an Sry-inducible system and examined the upregulated genes. In chapter 3, in order 

to examine the contribution of male host environment to this masculinization including the 

ectopic appearance of SOX9-positive Sertoli-like cells, we transplanted fetal mouse ovaries into 

healthy male, healthy female, or castrated male host mice with or without silicon tubes 

containing testosterone. In chapter 4, I examined the temporal changes of Sertoli cell-specific 

transcription/nuclear factors in grafted fetal ovaries during the partial masculinizing process. I 

also identified the spatiotemporal expression patterns of Sox8 in the ovarian grafts and 

examined the roles of donor-derived Sox8 and Amh action in such masculinizing processes 

including follicle degeneration and ectopic appearance of SOX9-positive Sertoli cell-like cells. 

 

  



GENERAL INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

本貢の内容は、雑誌掲載の形で出版する計画があるため公表できない。 

5年以内に出版予定。 

 



GENERAL INTRODUCTION 

   8 

  

Figure 1 of General Introduction: Gonadal sex differentiation and its principle structure 

in mammals 

(A, B) Schematic representation showing mouse embryo with the genital ridges extended along 

the anteroposterior axis of the posterior trunk (A), and male and female gonads before and after 

sex determination at 10.5 dpc and 13.5 dpc (B). The dissecting microscopic images of the testis 

and ovary at 13.5 dpc are also shown in the right-hand side (note testis cords [in future 

seminiferous tubules] in the testis). (C) Schematic representation and HE-stained images 

showing the seminiferous tubule and ovarian follicle at the postnatal and adult stages. In both 

testis and ovary, gonadal supporting cells (i.e., Sertoli and granulosa cells) and germ cells are 

tightly packed within the basal lamina layer, which forms the seminiferous epithelium or 

ovarian follicle. Steroidogenic cells (i.e., Leydig cells and theca cells) and myoid cells are 

located in the interstitium. 
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Figure 2 of General Introduction: Sex differentiation and partial masculinization in 

mouse supporting cells  

In sex determination of mammalian XY supporting cells, during 11.0–12.0 dpc, SRY promotes 

SOX9 expression in a male-specific manner, leading to pre-Sertoli cell differentiation. In pre-

Sertoli cells, SOX9 induces various testis-specific factors, such as Fgf9, Gdnf, Amh, and Sox8, 

leading to Sertoli cell differentiation and testis formation. In XX supporting cell differentiation, 

pre-granulosa cells maintain SDSI until 11.5 dpc. After that stage, a subpopulation of most pre-

granulosa cells rapidly loses this ability by 12.0 dpc and comes to express Foxl2. However, 

another subpopulation of the pre-granulosa cells near the mesonephric tissue maintains SDSI 

throughout fetal and early postnatal stages, even after they come to be FOXL2-positive at fetal 

stage. After birth, both FOXL2-positive subpopulations contribute to the initial round of 

folliculogenesis together with AMH expression, but SDSI is lost in the later population by the 

secondary follicle stage. 

Ovarian transplants into male mice show a partial masculinization. Granulosa cells in grafted 

ovaries re-acquire SDSI by day 10 post-transplantation. In the masculinizing process, Sox9 

expression is detected in the grafted ovaries by day 20 post-transplantation. 
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In sex determination of mammalian XY supporting cells, SRY promotes SOX9 expression 

during 11.0–12.0 dpc, leading to pre-Sertoli cell differentiation. Around the same stage, 

expressions of potential SRY target genes, such as Zfp532, Lmo4, and Mamld1, are upregulated 

in a male-specific manner (chapter 2). In pre-Sertoli cells, SOX9 induces various testis-specific 

factors, such as Fgf9, Gdnf, and Amh, leading to Sertoli cell differentiation and testis formation. 

Egr1/2, Nr4a1/2, Zc3h12c, and other transcription factors also show Sertoli cell-specific 

upregulation during 12.5 dpc (chpter 4).  

In XX supporting cell differentiation, pre-granulosa cells are divided into two subpopulations. 

Almost all pre-granulosa cells maintain SDSI until 11.5 dpc (Hiramatsu et al., 2009; Harikae et 

al., 2013b). After that stage, a first subpopulation of most pre-granulosa cells rapidly loses this 

ability by 12.0 dpc and comes to express Foxl2. However, a second subpopulation of the pre-

granulosa cells near the mesonephric tissue maintains SDSI throughout fetal and early postnatal 

stages, after they come to be FOXL2-positive at fetal stage (Harikae et al., 2013b). After birth, 

both FOXL2-positive subpopulations contribute to the initial round of folliculogenesis together 

with AMH expression, but SDSI in the second subpopulation is lost by the secondary follicle 

stage. In chapter 1, by means of XO mice, I show the SDSI is maintained in first wave granulosa 

cells in an oocyte-independent manner but AMH expression may be regulated in oocyte growth-

dependent mechanism. 

Ovarian transplants into male mice show a partial masculinization. Granulosa cells in grafted 

ovaries re-acquire sexual bipotency, not only SDSI but also SRY-dependent inducibility of Fgf9, 

Gdnf, and potential SRY target genes, by day 10 post-transplantation (chapter 2). Harikae et al. 

(2013b) showed a considerable number of ovarian granulosa cells in not only the ovarian 

medullary region but also throughout the ovarian parenchyma gradually re-acquire the SDSI on 

days 7 and 10 post-transplantation. Therefore, these data indicate that during the partial 
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masculinization, almost all granulosa cells in the first and second subpopulations can require or 

maintain the sexual bipotency evaluated by monitoring SDSI and the inducibilitiy of other 

testicular genes. 

I show that Sox8 and Amh are positively involved in the survival of follicles in the ovarian 

grafts in the male mice in chapter 4. Throughout the ovarian parenchyma, the both signals of 

Sox8 and Amh are detected in follicles in wild-type grafted ovaries and degenerating follicle are 

observed in Sox8-null and Amh-null transplants. Therefore, during the partial masculinizing 

process, Sox8 and Amh modulate follicular degeneration and tubular structure formation in 

granulosa cells in both first and second subpopulations.  

In chapter 3, I reveal that testosterone derived from male host may be involved in the 

appearance of SOX9-positive Sertoli cell-like cells in the ovarian explants grafted into male 

host mice. However, the number of SOX9-positive cells is relatively small compared with 

SDSI-positive granulosa cells (Harikae et al., 2013b), and they are detected in the medullary 

region in grafted ovaries into healthy male and castrated male mice with testosterone. So, these 

results indicate that although granulosa cell in the first subpopulation in the whole ovarian 

parenchyma could re-acquire sexual bipotency during the partial masculinization but they don’t 

become SOX9-positive cell, sexually bipotential granulosa cells in the second subpopulation in 

the medullary region become SOX9-positive Sertoli cell-like cells. These sexually bipotential 

granulosa cells may be involved in the ovotestis formation in the ovarian centromedullary 

region in some transgenic mouse lines (Couse et al., 1999; Dupont et al., 2003, Schmidt et al., 

2004; Uda et al., 2004; Ottolenghi et al., 2007, Chassot et al., 2008; Maatouk et al., 2013). In 

addition, upregulated Sertoli cell-specific transcription/nuclear factors, including Egr1/2, 

Nr4a1/2, and Zc3h12c, in the ovarian transplants and other SOX/TGF-beta family genes may 
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be involved in the follicular degeneration and tubular structure formation in the two 

subpopulations, or the upregulation of Sox9 in the second subpopulation. 

Sex determination mechanism has high variety in the animal kingdom, and in fact, Sry is 

found only in mammals, with the exception of monotremes, the Ryukyu spiny rat, etc. (Wallis 

et al., 2007; Kuroiwa et al., 2010; Cortez et al., 2014; Graves, 2016). In mammalian testis 

determination, SRY on Y chromosome activates SOX9 in supporting cells, leading to Sertoli 

cell differentiation at fetal stage in mother’s womb, estrogen-rich environment. In contrast, 

many other vertebrates without SRY determine their sex at fetal stages in their eggs, self-

produced hormone-rich environment. Gonadal differentiation to testis occurs in Ar-null male 

mice, even though they show spermatogenic arrest and developmental failure of adult Leydig 

cells (O’Shaughnessy et al., 2002; De Gendt et al., 2004). Therefore, the mammalian-specific 

SRY-dependent and male hormone-independent testis determination mechanism may have 

been acquired evolutionally to enable testis formation in estrogen-rich maternal environment. 

Among other vertebrates including frog and chicken, hormone sex determination is conserved 

mechanism and many cases of hormone-dependent sex reversal are reported (Villalpando and 

Merchant-Larios, 1990; Crews et al., 1991; Elbrecht and Smith, 1992; Shibata et al., 2002; 

Ohtani et al., 2003; Leet et al, 2011; Piprek et al., 2012). Therefore, the SRY-independent and 

testosterone/paternal environment-dependent partial masculinization in the grafted mouse 

ovaries may use male hormone-dependent testis determination pathways conserved among 

other vertebrates.  

The present study indicated that oocyte growth induces AMH expression in granulosa cell 

differentiation (chapter 1) and AMH serves as a survival factor for follicle growth (Visser et al., 

2007; chapter 4), possibly in a positive-feedback manner. This is consistent with the findings 

that the ovarian mouse grafts show AMH-positive follicular degeneration, oocyte loss, and 



GENERAL DISCUSSION 

   119 

  

subsequent tubular structure formation with loss of AMH expression in the partial 

masculinization (Harikae et al., 2013b; chapter 3, 4). In medaka, germ cells are required for the 

ovarian formation and granulosa cell maintenance, and germ cell-deficient medaka develops as 

male irrespective of genetic sex (Kurokawa et al., 2007; Nishimura and Tanaka, 2014). 

Therefore, it is indicated that the germ cell-dependent sex determination mechanism of other 

vertebrates is potentially conserved even in mammals, and oocyte loss contributes to tubular 

structure formation and Sertoli cell-like cell appearance in the partial masculinization of grafted 

mouse ovaries into male mice. 

In addition, the partial masculinization in mice, as well as testis determination in some other 

vertebrates, shows the onsets of Amh expression prior to Sox9 expression (Westerm et al., 1999; 

Oréal et al., 2002; Yao and Capel, 2005; Klüver et al., 2007), but in contrast, SOX9 upregulates 

Sox8 and Amh in mammalian testis determination (De Santa Barbara et al., 1998; Schepers et 

al., 2003). Therefore, the partial masculinization including the follicular degeneration and 

tubular structure formation relative with Sox8 and Amh and the subsequent testosterone-

dependent ectopic appearance of SOX9-positive Sertoli cell-like cells in mouse grafted ovaries 

might use the common and conserved molecular pathway among the male sex determination 

process of other vertebrates. Further studies about other Sox genes, TGF-family members, 

and Sertoli cell-specific genes encoding transcription/nuclear factors upregulated in ovarian 

grafts, including Egr1/2, Nr4a1/2, and Zc3h12c (Table 4-4), will reveal the critical gene for the 

partial masculinization including the ectopic appearance of SOX9-positive Sertoli cells in 

mammals, and the genes playing a role in sex determination in other vertebrates.  

In humans, fetal disorders involving excess androgen lead to prevalent hyperandrogenic 

infertility of polycystic ovary syndrome in some cases but their mechanism hasn’t understood 

completely (Abbotte and Bacha, 2013). Also in cattle, “freemartin” syndrome female cattle 
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born twin to a male shows infertility and the disease causes a severe impact on the livestock 

industry. The present studies give the knowledge about the maintenance of sexual bipotency 

and the differentiation in granulosa cell in first wave of folliculogensis in XO mice, and reveal 

the molecular mechanisms of the partial masculinization including sexual bipotency re-

acquisition, follicular degeneration, tubular structure formation, and ectopic SOX9-positive 

Sertoli-like cell appearance in ovarian grafts in male nude mice. These data with the both mouse 

models may help elucidate the infertility and masculinization of mammalian fetal ovaries 

caused by in utero exposure to inadequate hormonal conditions, as in the case of human 

polycystic ovary syndrome and freemartin syndrome in mixed-sex cattle twins. 
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Figure of General Discussion

In sex determination of mammalian XY supporting cells (blue bar in “Sertoli cells”), during 

11.0–12.0 dpc, SRY promotes SOX9 expression, together with expressions of potential SRY 

target genes such as Zfp532, Lmo4, and Mamld1, in a male-specific manner, leading to pre-

Sertoli cell differentiation (chapter 2). In pre-Sertoli cells, SOX9 induces various testis-specific 

factors, such as Fgf9, Gdnf, and Amh, leading to Sertoli cell differentiation and testis formation. 

Egr1/2, Nr4a1/2, Zc3h12c, and other transcription factors show Sertoli cell-specific 

upregulation during 12.5 dpc (chapter 4). In XX supporting cell differentiation, pre-granulosa 

cells maintain SDSI until 11.5 dpc. After that stage, a subpopulation of most pre-granulosa cells 

rapidly loses this ability by 12.0 dpc and comes to express Foxl2 (upper red bar in “Granulosa 

cells”). However, another subpopulation of the pre-granulosa cells near the mesonephric tissue 

maintains SDSI throughout fetal and early postnatal stages, after they come to be FOXL2-

positive at fetal stage (lower orange bar in “Granulosa cells”). After birth, both FOXL2-positive 

subpopulations contribute to the initial round of folliculogenesis together with oocyte-

dependent AMH expression (chapter 1), but SDSI in the latter subpopulation is lost by the 

secondary follicle stage. 

Ovarian transplants into male mice show a partial masculinization (bars in “Sertoli-like 

cells”). Granulosa cells in both subpopulations in grafted ovaries re-acquire sexual bipotency, 

not only SDSI but also SRY-dependent inducibility of Fgf9, Gdnf, and potential SRY target 

genes, by day 10 post-transplantation (chapter 2). Together with expression of Sox8, Amh, and 

other transcription factors, grafted ovaries show follicular degeneration and tubular structure 

formation (chapter 4). In the masculinizing process, host-derived testosterone-dependent Sox9 

and Gdnf expression are detected in the medullary region by day 20 post-transplantation 

(chapter 3), indicating that sexually bipotential pre-granulosa cells in the medullary region in 
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fetal XX gonads transdifferentiate into Sertoli cell-like cells (lower blue bar in “Sertoli-like 

cells”). 
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