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Section	1.	Spinal	cord	injury	in	dogs	and	stem	cell	based	therapy	 	

1-1	Spinal	cord	injury	in	dogs	 	

	 	 	 	 Spinal	 cord	 injury	 (SCI)	 is	a	 relatively	common	neurological	disease.	The	

most	common	causes	of	SCI	 in	dogs	are	 intervertebral	disc	disease	(IVDD)	and	

trauma	 caused	 by	 motor	 vehicle	 accident	 [1,2].	 Ability	 of	 walk	 recovers	 by	

surgical	 or	 medical	 treatment	 in	 most	 dogs	 with	 mild	 to	 moderate	 SCI	 [3-5].	

However,	 in	 case	 of	 dogs	 with	 severe	 SCI	 accompanied	 by	 loss	 of	 nociceptive	

perception,	 the	recovery	percentage	of	neurological	 function	 is	only	up	to	50%	

by	conventional	treatments	[6].	Severe	SCI	is	usually	not	lethal,	but	it	may	impair	

the	 quality	 of	 life	 of	 the	 dogs	 and	 their	 owners	 seriously	 [7].	 Therefore,	 it	 is	

strongly	desired	to	develop	an	innovative	and	effective	treatment	for	dogs	with	

severe	SCI.	 	
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1-2	Pathophysiology	and	therapeutic	approach	of	spinal	cord	

injury	 	

	 	 	 	 It	is	important	to	understand	the	pathophysiology	of	SCI	to	develop	a	novel	

treatment.	 Spinal	 cord	 parenchyma	 is	 compressed	 by	 IVDD	 or	 trauma	 with	

various	 amounts	 of	 the	materials,	 velocity	 and	 duration.	 These	 forces	 damage	

spinal	 cord	 by	primary and secondary injury [8]. Primary injury is caused by 

physical force on the spinal cord and results in laceration, contusion, 

compression, and traction of the spinal cord tissue [9]. Subsequently a cascade 

of cellular, molecular and biochemical events occurs and results in progressive	

destruction	 of	 spinal	 cord	 tissue,	 termed	 as	 “secondary	 injury	 or	 damage”.	

Secondary	 injury	 induces	 disruption	 of	 spinal	 cord	 vasculature	 followed	 by	

ischemia	 and/or	 congestion,	 glutamatergic	 excitotoxicity,	 oxidative	 cell	 stress,	

lipid	 peroxidation,	 inflammation	 and	 induction	 of	 extrinsic	 and	 intrinsic	

apoptosis	 [10-12].	 Changes	 of	 microenvironment	 initiate	 the	 activation	 and	

proliferation	of	astrocytes	in	the	lesion	site	[13]	and	contribute	to	the	formation	

of	 glial	 scar.	 Although	 the	 role	 of	 glial	 scar	 remains	 controversial,	 it	 has	 been	

reported	that	glial	scar	secretes	inhibitory	extracellular	matrix	molecules	which	
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inhibits	 axonal	 regeneration	 [14]	 Therefore,	 the	 strategy	 for	 development	 of	 a	

novel	therapeutic	approach	for	severe	SCI	is	divided	into	two	large	ways.	One	of	

them	is	to	prevent	progression	of	secondary	injury	and	another	is	to	regenerate	

damaged	spinal	cord	tissue.	To	achieve	these	two	goals,	stem	cell	based	therapy	

is	expected	to	be	most	promising.	 	

	

1-3	Stem	cell	based	therapy	for	SCI	

	 	 	 	 Stem	cell	based	therapies	for	SCI	target	several	SCI	pathological	processes.	It	

has	been	reported	that	 transplantation	of	various	kinds	of	stem	cells	protected	

the	 host	 neurons,	 axons,	 and	 myelin	 by	 preventing	 apoptosis	 [15],	 promote	

axonal	or	myelin	regeneration	accompanied	with	synapse	formation	[16,17],	and	

replace	the	damaged	neurons	in	the	spinal	cord	[18].	A	variety	of	stem	cells	have	

been	 proposed	 as	 sources	 for	 cellular	 treatment	 of	 SCI	 on	 the	 basis	 of	 these	

therapeutic	strategies.	 	

	 	 	 	 Pluripotent	stem	cells	such	as	embryonic	stem	cells	(ES	cells)	and	induced	

pluripotent	 cells	 (iPS	 cells)	 are	 well	 known	 to	 have	 a	 prominent	 ability	 to	

differentiate	into	almost	of	all	types	of	cells	including	neural	lineage	[19-21].	In	



	 5	

humans,	these	cells	have	been	recognized	as	the	most	promising	cells	for	tissue	

reconstruction	of	spinal	cord	after	injury.	However,	clinical	studies	of	ES	cells	are	

not	 currently	 in	 progress	 because	 of	 ethical	 issues	 and	 risk	 of	 malignant	

transformation	 [22].	 Although	 iPS	 cells	 have	 few	 ethical	 concerns,	 they	 have	 a	

risk	of	uncontrolled	proliferation	or	even	tumor	formation	due	to	the	use	of	viral	

vectors	 or	 transcription	 factors	 [23,24].	 Therefore,	 to	 date,	 clinical	 use	 of	 iPS	

cells	 is	 still	 challenging	 and	 careful	 screening	 of	 oncogenic	 capacity	 prior	 to	

transplantation	should	be	required	[25].	In	dogs,	several	researches	have	already	

reported	 the	establishment	of	 canine	 iPS	cells	 [26,27],	however,	 it	 seems	 to	be	

highly	 difficult	 to	 standardize	 and	 apply	 the	 generating	 method	 of	 canine	 iPS	

cells	for	the	clinical	settings.	

	 	 	 	 On	the	other	hand,	mesenchymal	stem	cells	(MSCs),	which	are	multipotent,	

have	been	known	as	an	alternative	stem	cell	source	for	treatment	for	SCI.	MSCs	

were	 first	 identified	 from	 bone	 marrow	 in	 1970	 [28],	 and	 then	 isolated	 from	

various	origins,	such	as	bone	marrow,	adipose	tissue,	and	umbilical	cord	matrix	

or	blood.	MSC	is	defined	as	a	rare	population	of	multipotent	progenitor	cell	with	

the	capacity	of	self-renewal	and	differentiation	into	a	mesenchymal	lineage	[29].	
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The	practical	advantages	of	MSCs	are	the	ease	of	isolation,	low	cost	of	expansion,	

low	immunogenicity	[30-33],	low	tumorigenic	risk	[34],	and	ability	to	migrate	to	

the	 site	 of	 injury	 or	 inflammation	 [35,36].	 Although	 MSCs	 are	 supposed	 to	

differentiate	 into	mesodermal	and	neural	 lineages,	 the	ability	of	differentiation	

into	 neurons	 remains	 controversial	 [37].	 However,	 evidence	 obtained	 in	

experimental	animals	suggest	that	transplanted	MSCs	are	most	likely	to	provide	

favorable	effects	for	tissue	repair	after	SCI	through	the	secretion	of	cytokines	or	

trophic	 factors	 [38].	 Due	 to	 the	 ease	 of	 application	 for	 clinical	 settings	 and	 its	

favorable	 effects	 expected,	 MSCs	 are	 currently	 considered	 to	 be	 the	 most	

promising	cell	source	of	treatment	for	SCI	in	dogs.	
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Section	2.	Canine	MSCs	for	the	treatment	of	SCI	in	dogs:	

therapeutic	mechanisms,	and	potential	and	limitation	for	

clinical	applications	 	

	 	

2-1	Characterization	of	canine	MSCs	 	

	 	 	 	 MSCs	are	somatic	stem	cells,	which	have	been	widely	studied	for	more	than	

40	years.	To	date,	canine	MSCs	have	been	isolated	from	various	tissues	such	as	

bone	 marrow,	 adipose	 tissue,	 umbilical	 cord,	 dental	 pulp,	 and	 amniotic	

membrane	 [39-43].	 In	 dogs,	 bone	marrow	mesenchymal	 stem	 cells	 (BMMSCs)	

and	 adipose-derived	 mesenchymal	 stem	 cells	 (ADMSCs)	 have	 been	 well	

characterized	 because	 of	 the	 ease	 of	 availability.	 Canine	 BMMSCs	 are	 usually	

isolated	 by	 adherent	 culture	 of	mononuclear	 cells	 from	bone	marrow	 [44-46].	

Canine	ADMSCs	are	isolated	by	adherent	culture	of	the	stromal	vascular	fraction,	

which	can	be	obtained	by	centrifugation	of	 collagenase-digested	adipose	 tissue	

[47,48].	These	cells	generally	show	fibroblast-like	morphology	in	vitro	which	is	

same	as	human	MSCs.	The	minimal	criteria	required	to	define	the	cells	obtained	

as	 MSCs	 in	 human	 have	 been	 documented	 by	 the	 International	 Society	 for	
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Cellular	 Therapy	 (ISCT)	 as	 follows:	 (1)	 plastic-adherent	 property	 when	

maintained	 in	 standard	 culture	 conditions,	 (2)	 positive	 expression	 of	 CD105,	

CD73	 and	 CD90,	 and	 absence	 of	 expression	 of	 CD45,	 CD34,	 CD14	 or	 CD11b,	

CD79α	 or	 CD19	 and	 HLA-DR	 surface	 antigen,	 and	 (3)	 capacity	 of	 trilineage	

(osteocytes,	 chondrocytes	 and	 adipocytes)	 differentiation	 in	 vitro	 [29,49].	

However,	so	 far,	 there	have	been	no	uniform	characterization	criteria	available	

for	 canine	 origin	 regarding	 to	 the	 expression	 of	 cell	 surface	 antigens.	 The	 cell	

surface	marker	 profile	 of	 canine	MSCs	 is	 variously	 reported	 depending	 on	 the	

source	 of	 the	 cell	 and	 there	 remain	 absolute	 disagreements	 among	 the	

researchers.	As	the	definitive	cell	markers	of	canine	MSCs	remain	unknown,	their	

properties	as	MSCs	are	exclusively	validated	by	self-renewal	and	differentiation	

ability.	 Therefore,	 specific	 antibodies	 absolutely	 detect	 the	 canine	 cell	 surface	

antigens	 should	 be	 developed	 for	 more	 accurate	 definitive	 characterization	 of	

canine	MSCs.	 	
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2-2	 Potential	 and	 limitation	 of	 clinical	 application	 of	 canine	

MSCs	for	SCI	in	dogs	

	

2-2-1	Therapeutic	mechanisms	of	MSC	transplantation	for	SCI	

	 	 	 	 Canine	MSCs	have	already	been	applied	for	experimental	studies	or	clinical	

trials	of	canine	SCI	which	successfully	promoted	 lesion	repair	and	 improve	 the	

neurological	 function	 in	 transplanted	 dogs	 [50-53].	 However,	 the	 details	 of	 its	

therapeutic	 mechanism	 of	 MSC	 transplantation	 remain	 unclear	 and	 cellular	

therapy	 for	 SCI	 using	 canine	MSCs	 have	 not	 yet	 been	 accepted	 as	 a	 treatment	

based	 on	 scientific	 evidence.	 Therefore,	 it	 is	 important	 to	 understand	 the	

therapeutic	 mechanisms	 of	 canine	 MSCs	 transplantation	 and	 to	 establish	 a	

therapeutic	strategy	based	on	the	scientifically	verified	mechanism.	 	

	 	 	 	 The	mechanism	of	MSCs	transplantation	for	the	treatment	of	SCI	have	been	

investigated	 in	 many	 studies	 [54].	 The	 possible	 mechanisms	 of	 improvement	

reported	in	these	studies	include	immunomodulation,	scar	reduction,	cell	rescue,	

promotion	 of	 directed	 progenitor/precursor	 cell	migration,	 differentiation	 and	

remyelination,	 angiogenesis	 and	 trophic	 effect.	 These	 reports	 also	 suggest	 that	
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tissue	repair	and	functional	recovery	is	mainly	due	to	the	trophic	and	protective	

properties	 of	 the	 canine	 MSCs	 but	 not	 to	 differentiation	 and	 regeneration	 by	

transplanted	cells	[55].	 	

	 	 	 	 Trophic	 effects	 of	 MSCs	 depend	 on	 the	 local	 environment	 and	 may	 be	

modulated	 by	 dynamic	 extracellular	 matrix–cytoskeletal	 interactions,	 cell–cell	

contacts,	 and	 soluble	 and	 transcription	 factor	 signaling	 [56].	 The	 secretion	 of	

trophic	 factors	 from	MSCs	may	be	modified	by	 various	 factors.	 Several	 studies	

have	documented	that	MSCs	exposed	to	pro-inflammatory	cytokines,	even	for	as	

short	as	a	few	hours,	change	their	gene	and	protein	expression	for	days	later	[57].	

MSCs	 have	 been	 reported	 to	 be	 able	 to	 secrete	 growth	 factors	 and	 cytokines,	

such	 as	 nerve	 growth	 factor	 (NGF),	 brain-derived	 neurotrophic	 factor	 (BDNF),	

vascular	 endothelial	 growth	 factor	(VEGF),	 insulin-like	 growth	 factor	 (IGF),	

transforming	 growth	 factor-beta	 (TGF-β)	 and	 hepatocyte	 growth	 factor	 (HGF).	

Recently,	 Nakano	 et	 al.	 demonstrated	 that	 conditioned	 medium	 for	 BMMSCs	

included	 IGF-1,	 HGF,	 VEGF,	 and	 TGF-β	 resulted	 in	 higher	 levels	 of	 neuronal	

survival	and	neurite	outgrowth	in	vitro	study	[58].	In	addition,	other	studies	also	



	 11	

showed	 that	 the	 conditioned	medium	of	BMMSCs	promoted	neuronal	 and	glial	

survival	in	vitro	[59,60].	 	 	

	

2-2-2	Hepatocyte	growth	factor	(HGF)	

	 	 	 	 Among	the	trophic	factors	secreted	from	MSCs	described	above,	hepatocyte	

growth	 factor	(HGF)	 is	one	of	 the	most	potent	 factors	 for	 tissue	repairing	 [61].	

HGF	 is	 a	 paracrine	 growth	 factor	 of	 which	 primary	 function	 is	 tissue	 repair.	

Phosphorylation	 of	 c-Met,	 which	 is	 a	 HGF	 receptor	 tyrosine	 kinase	 induces	

growth,	proliferation,	morphogenesis	and	migration	of	epithelial	and	endothelial	

cells	 [61].	 In	nervous	system,	HGF	stimulates	proliferation	of	glial	cells	such	as	

Schwann	 cells	 and	 oligodendrocyte	 progenitor	 cells	 and	 improves	 neuronal	

survival	 [62-64].	HGF	has	also	been	shown	 to	 reduce	astrocytic	 scar	 formation	

and	 promote	 axonal	 growth	 beyond	 glial	 scar	 after	 SCI.	 Exogenous	

administration	of	HGF	has	also	been	reported	to	preserve	axons	and	myelinated	

area	 and	 promote	 functional	 recovery	 in	 rodent	 and	 primate	 models	 of	 SCI	

[65,66].	According	to	these	results,	phase	I/II	clinical	trials	of	administration	of	
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human	 recombinant	 HGF	 has	 already	 started	 in	 human	 medicine	 in	 2014.	

However,	the	effect	of	recombinant	HGF	was	limited	due	to	its	short	half-life	of	

elimination	in	vivo,	difficulty	of	continuous	supply	of	HGF	to	the	target	area,	and	

excessive	cost.	

	 	 	 	 After	 the	 injury,	 pro-inflammatory	 cytokines	 such	 as	TNF-α	 and	 IL-1β	 are	

upregulated	 at	 the	 lesion	 site	 during	 acute	 to	 subacute	phase.	As	 these	 factors	

are	 known	 to	 induce	 HGF	 secretion	 by	 MSCs	 [67],	 therapeutic	 effects	 of	

transplanted	 canine	MSCs	 could	 be	 evaluated	 by	 the	 secretion	 of	 HGF	with	 or	

without	pro-inflammatory	cytokines	such	as	TNF-α	and	IL-1β.	In	addition,	MSCs	

originally	 possess	 the	 ability	 to	 migrate	 to	 the	 site	 of	 injury	 or	 inflammation	

[35,36].	 Therefore,	 acute	 to	 subacute	 phase	 after	 SCI	 is	 considered	 as	 the	

appropriate	period	to	induce	HGF	secretion	from	MSCs.	In	case	the	ability	of	HGF	

secretion	 from	 canine	 MSCs	 is	 verified,	 it	 is	 indicated	 that	 MSCs	 which	 are	

successfully	delivered	and	survived	at	lesion	site	under	inflammation	contribute	

to	continuous	supply	of	HGF	to	the	injured	tissue.	 	

	



	 13	

2-2-3	 Limitation	 of	 existing	 canine	MSCs	 in	 clinical	 application	 for	 SCI	 in	

dogs	

	 	 	 	 Both	 canine	 BMMSCs	 and	 ADMSCs	 can	 be	 harvested	 readily,	 and	

transplantation	of	 these	cells	was	safe	and	effective	 for	 locomotion	recovery	 in	

experimental	models	and	clinical	cases	of	canine	SCI	[50,52,53,68-71].	However,	

clinical	 application	 of	 these	 cells	 has	 some	 limitations.	 Some	 experimental	

studies	 reported	 that	 allogenic	 canine	 BMMSCs	 showed	 limited	 tissue	

preservation	 and	 functional	 recovery	 as	 compared	 with	 autologous	 cells	 [51],	

hence	 autologous	 transplantation	 seems	 to	 be	 superior	 in	 clinical	 use.	 When	

considering	 the	 best	 period	 to	 induce	 HGF	 secretion	 from	 MSCs	 is	 acute	 to	

subacute	 phase	 after	 SCI,	 transplantation	 of	 autologous	 MSCs	 should	 be	

performed	 as	 fast	 as	 possible	 after	 SCI.	 However	 the	 proportion	 of	 canine	

BMMSCs	among	mononuclear	cells	in	bone	marrow	is	very	low	[72,73],	therefore	

a	longer	expansion	time	is	needed	to	prepare	sufficient	numbers	of	BMMSCs	for	

clinical	application	and	the	proper	period	for	transplantation	may	be	missed.	On	

the	 other	 hand,	 ADMSCs	 generally	 consist	 of	 a	 heterogeneous	 cell	 population	

contaminated	by	endothelial	cells,	smooth	muscle	cells,	pericytes,	and	blood	cells	
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such	as	monocytes	and	lymphocytes	even	though	proliferation	ability	is	superior	

to	BMMSCs	[48,74,75].	The	heterogeneous	property	of	canine	ADMSCs	can	lead	

instable	 ratio	of	MSCs	 in	 transplanted	 cells	 and	may	 lead	 to	decreased	 success	

rate	 of	 treatment.	 Thus,	 it	 is	 favorable	 to	 develop	 a	 novel	 method	 to	 obtain	

purified	MSCs	with	a	high	proliferative	capacity	 for	higher	success	rate	of	stem	

cell	based	therapy	using	canine	MSCs.	

	 	 	 	 Recently,	 some	 researchers	 have	 shown	 that	 mature	 adipocytes	 derived	

from	 subcutaneous	 or	 omental	 adipose	 tissues	 of	 humans,	mice,	 pigs,	 and	 cats	

dedifferentiate	 into	 fibroblast-like	 cells	 called	 dedifferentiated	 fat	 (DFAT)	 cells	

when	 cultured	 with	 the	 ceiling	 culture	 method	 [74,76-78].	 DFAT	 cells	 exhibit	

high	 proliferation	 capacity	 and	 multipotency,	 with	 higher	 homogeneity	 and	

colony-forming	 efficiency	 than	ADMSCs.	 Since	DFAT	 cells	 are	 considered	 to	 be	

composed	of	purer	multipotent	cells	than	ADMSCs,	they	are	one	of	the	promising	

candidates	for	stem	cell	therapies	for	various	tissues	[74,76,79].	 	

	 	 	 	 In	 another	 study,	 Shigematsu	 et	 al.	 showed	 that	 adipocytes	 in	 calf	 bone	

marrow	 could	 dedifferentiate	 into	 fibroblast-like	 cells	 after	 ceiling	 culture	 and	

showed	 proliferation	 ability	 and	 spontaneous	 re-differentiation	 into	 an	
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adipogenic	 lineage	 after	 confluence	 [80].	Although	 the	multipotent	 property	 of	

these	 cells	 is	 unknown,	 adipocytes	 in	 bone	marrow	may	 generate	multipotent	

cells	like	DFAT	cells	and	provide	enough	number	of	MSCs	in	a	shorter	period.	
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Section	3.	Objective	of	the	study	 	 	
	 	 	 	 Therefore,	 the	 objective	 of	 this	 study	 was	 to	 explore	 a	 new	 novel	

mesenchymal	stem	cell	in	canine	bone	marrow	using	ceiling	culture	method	and	

compare	 its	 MSC	 potential	 with	 that	 of	 conventional	 BMMSCs	 (Chapter	 1).	 In	

chapter	 1,	 small	 cells	 adhering	 to	 adipocytes	 in	 canine	 bone	 marrow,	 which	

proliferated	 quickly	 and	 showed	 multipotency	 were	 explored.	 I	 named	 these	

cells	 as	 “bone	 marrow	 peri-adipocyte	 cells”	 (BM-PACs)	 and	 evaluated	 the	

potential	of	HGF	secretion	with	or	without	the	stimulation	of	pro-inflammation	

cytokines,	TNF-α	and	IL-1β in	order	to	investigate	whether	BM-PACs	would	be	a	

novel	 source	 for	 cell	 transplantation	 therapy	 for	 SCI	 (Chapter	 2).	 Finally,	 I	

transplanted	 BM-PACs,	 which	were	 labeled	with	 red	 fluorescence	 to	 trace	 the	

distribution,	 into	 an	mouse	 severe	 SCI	model	 in	 acute	 phase	 intralesionally	 or	

intravenously	 to	 estimate	 the	 clinical	 efficacy	 and	 safety	 of	 BM-PACs	

transplantation	for	SCI	in	dogs	(Chapter	3).	 	
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Chapter	1	

Exploration	of	a	novel	mesenchymal	stem	

cell	derived	from	peri-adipocyte	cells	in	

canine	bone	marrow	/	Comparison	of	

mesenchymal	stem	cell	potential	with	

BMMSCs	
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Introduction	

	 	 	 	 Stem	cell	based	therapy	is	one	of	the	most	promising	therapies	for	various	

refractory	 diseases	 including	 spinal	 cord	 injury	 (SCI).	Mesenchymal	 stem	 cells	

(MSCs)	are	thought	to	be	more	suitable	than	ES	cells	and	iPS	cells	in	veterinary	

medicine	 because	 of	 their	 safety,	 less	 ethical	 problems	 and	 low	 cost.	 BMMSCs	

and	ADMSCs	are	common	MSC	sources,	but	have	some	limitation	for	clinical	use.	 	

They	 need	 long	 time	 to	 obtain	 enough	 number	 of	 stem	 cells	 for	 clinical	

application	because	of	 their	 low	proliferation	or	heterogeneous	characteristics.	

Dedifferentiated	 fat	 (DFAT)	 cells	 obtained	 from	mature	 adipocytes	 in	 adipose	

tissue	 by	 ceiling	 culture	 method	 have	 favorable	 characteristics	 as	 stem	 cells	

compared	 with	 adipose	 tissue-derived	 mesenchymal	 stem	 cells	 (ADMSCs)	

because	 of	much	 higher	 homogeneity,	 proliferation	 ability	 and	 colony-forming	

efficiency	[74,76,79].	

	 	 	 	 As	described	before,	Shigematsu	et	al.	showed	that	adipocytes	 in	calf	bone	

marrow	 could	 dedifferentiate	 into	 fibroblast-like	 cells	 after	 ceiling	 culture	 and	

showed	 proliferation	 and	 spontaneous	 re-differentiation	 into	 an	 adipogenic	

lineage	after	confluence	[80].	These	results	 indicated	MSCs	obtained	from	bone	
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marrow-derived	 adipocytes	may	 generate	multipotent	 cells	 like	 or	 superior	 to	

DFAT	cells.	 	 	

	 Therefore,	the	purpose	of	this	study	was	to	culture	adipocytes	derived	from	

canine	 bone	 marrow	 to	 explore	 a	 novel	 mesenchymal	 stem	 cell	 superior	 to	

conventional	MSCs.	 	
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本章の以降の内容は、学術論文として出版す

る計画かあるため公表てきない。2年以内に

公表予定。  
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Chapter	2	

Secretion	of	hepatocyte	growth	factor	(HGF)	

by	BM-PACs	and	its	bioactivity	
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本章の以降の内容は、学術論文として出版す

る計画かあるため公表てきない。2年以内に

公表予定。	
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Chapter	3	

Evaluation	of	transplantation	of	BM-PACs	for	

acute	spinal	cord	injury	in	a	mouse	model	
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本章の以降の内容は、学術論文として出版す

る計画かあるため公表てきない。2年以内に

公表予定。	
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Conclusion	
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	 	 	 	 Spinal	cord	injury	(SCI)	is	a	common	cause	of	neurological	diseases	in	dogs	

[1,2].	In	case	of	severe	SCI,	the	conventional	therapies	such	as	surgical	or	medical	

treatments	 have	 failed	 to	 lead	 sufficient	 recovery.	 To	date,	 no	 therapies	which	

are	 scientifically	 proven	 to	 be	 effective	 for	 severe	 SCI	 in	 dogs	 have	 been	

established.	Stem	cell	based	therapy	has	recently	been	recognized	as	one	of	the	

promising	therapeutic	approach	for	severe	SCI.	Mesenchymal	stem	cells	(MSCs)	

are	 attractive	 candidates	 for	 cell	 based	 therapy	 in	 veterinary	medicine	 due	 to	

their	availability.	Several	studies	have	been	documented	transplanted	MSCs	are	

most	likely	to	provide	therapeutic	effects	through	secreted	trophic	factors	[38].	

However,	 the	details	of	 their	 trophic	effect	 remain	unclear	and	 there	are	 some	

problems	 for	 application	 of	 existing	 canine	MSCs	 for	 clinical	 use.	 Therefore,	 in	

this	 study,	 a	 novel	 canine	 MSC	 was	 explored	 to	 resolve	 the	 limitations	 of	

conventional	 canine	 MSCs	 and	 its	 trophic	 effect	 was	 investigated.	 Finally,	 its	

therapeutic	 effect	 was	 evaluated	 using	 mice severe	 SCI	 model	 to	 establish	

effective	therapy	based	on	the	scientific	evidences	for	severe	SCI	in	dogs.	

	 	 	 	 In	chapter	1,	isolation	and	characteristics	of	novel	MSCs,	named	as	BM-PACs	

were	 demonstrated.	 BM-PACs	 can	 be	 easily	 obtained	 by	 ceiling	 culture	 of	
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adipocytes	in	canine	bone	marrow	and	showed	superior	MSC	properties	such	as	

proliferation	 and	 multilineage	 differentiation	 ability	 compared	 with	

conventional	 canine	BMMSCs.	Significant	differences	of	 the	expression	of	CD73	

were	detected	in	between	the	two	types	of	cells.	It	was	suggested	that	CD73	is	an	

important	cell	surface	marker	to	identify	canine	MSCs	in	bone	marrow.	 	

	 	 	 	 Hepatocyte	growth	factor	(HGF),	which	is	one	of	the	most	powerful	trophic	

factors	 for	tissue	repair	have	been	recently	attracted	attention	as	a	therapeutic	

agent	 for	 SCI.	 Therefore,	 in	 chapter	 2,	 trophic	 effect	 of	 BM-PACs	 through	HGF	

secretion	 was	 investigated.	 BM-PACs	 showed	 significant	 higher	 expression	 of	

HGF	mRNA	than	BMMSCs	and	secretion	of	HGF	protein	from	BM-PACs	extremely	

increased	in	response	to	pro-inflammatory	cytokines,	TNF-α	and	IL-1β.	Although	

BM-PACs	were	 likely	 to	 release	 not	 only	HGF	 but	 also	 various	 trophic	 factors,	

supernatant	 of	 BM-PACs	 stimulated	 by	 inflammatory	 cytokines	 induced	

bioactivities	 on	MDCK	 cells	 similar	 to	 recombinant	HGF	 protein.	 These	 results	

indicated	 that	 transplantation	of	BM-PACs	 into	 the	 lesion	of	 spinal	 cord	where	

inflammation	 occurred	 was	 expected	 to	 supply	 sufficient	 amount	 of	 HGF	 and	

provide	therapeutic	effects.	 	
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	 	 	 	 In	chapter	3,	the	feasibility	and	the	safety	of	transplantation	of	BM-PACs	to	

mice	 severe	 SCI	 model	 was	 investigated	 to	 estimate	 the	 impact	 of	 BM-PACs	

transplantation	 on	 clinical	 application	 for	 SCI	 in	 dogs.	 BM-PACs	 were	

intralesionally	 or	 intravenously	 transplanted	 in	 acute	 phase	 when	 the	 highest	

expression	 of	 pro-inflammatory	 cytokine	 was	 expected.	 Intralesional	

transplantation	 of	 BM-PACs	 successfully exhibited	 significant	 functional	

recovery	 and	 preservation	 of	 myelin	 was	 likely	 to	 be	 an	 underlying	 cause	 of	

functional	 recovery.	 Although	 it	 remains	 unclear	 whether	 HGF	 secreted	 from	

BM-PACs	 contributed	 to	 these	 favorable	 effects,	 it	 was	 suggested	 that	 trophic	

effect	 of	 BM-PACs	 played	 an	 important	 role	 in	 healing	 effect	 on	 SCI	 in	 acute	

phase.	 It	was	 a	 novel	 discovery	 that	 intravenous	 transplantation	 could	 deliver	

BM-PACs	to	the	injured	spinal	cord,	even	though	most	of	cells	were	entrapped	in	

the	 lung	 immediately	 after	 transplantation.	 However,	 intravenous	

transplantation	 failed	 to	 induce	 functional	 recovery.	 Therefore,	 the	 number	 of	

cells	 delivered	 to	 the	 lesion	 was	 considered	 to	 be	 important	 to	 exert	 healing	

effects.	 	

	 	 	 	 In	 conclusion,	 this	 study	 revealed	 that	 novel	 canine	MSCs,	 BM-PACs	were	
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easily	harvested	from	canine	bone	marrow	and	had	therapeutic	effects	for	acute	

phase	of	severe	SCI	by	intralesionally	transplantation.	When	considering	clinical	

application	of	BM-PACs	to	severe	SCI	in	dogs,	their	superior	proliferation	ability	

is	helpful	to	prepare	sufficient	number	of	cells	as	quickly	as	possible.	Although	it	

remains	unclear	how	HGF	secreted	 from	BM-PACs	contribute	 to	 functional	and	

histological	 repair	after	SCI,	 trophic	effect	 through	HGF	secretion	can	be	useful	

for	 other	 diseases	 with	 inflammation	 such	 as	 osteoarthritis	 and	 inflammatory	

bowel	 disease	 in	 dogs.	 Further	 studies	 should	 be	 needed	 to	 optimize	 the	

transplantation	strategy	of	BM-PACs	in	clinical	settings.	
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