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Abstract 

In this thesis data compression algorithms with fidelity criterion are proposed for a 

certain class of information sources. Properties of the data compression schemes are 

analyzed from a viewpoint of the rate-distortion theory. In the framework of the rate­

distortion theory, the rate-distortion function represents an achievable lower bound of 

compression efficiency for a class of stationary and ergodic sources. Though the source 

coding theorem guarantees the existence of an asymptotically optimal block code that 

achieves the rate-distortion bound with increasing the blocklength, little is known 

about construction of the asymptotically optimal encoding scheme. The algorithms 

proposed in this thesis are intended to realize the asymptotic optimal encoding scheme 

in a universal way. 

Chapter 1 is devoted to a general introduction for data compression with fidelity 

criterion . Three problems considered in the following chapters are briefly formulated 

so that readers can grasp outline of this thesis. 

In Chapter 2 a block coding algorithm for memory less gaussian sources is proposed 

under the squared-error criterion. Source blocks are treated as elements in the n­

dimensional Euclidean space. First, the algorithm is defined for the sources of known 

mean and variance. It consists of a scalar quantizer for encoding of block gain and 

a set of points on the n-dimensional unit hypersphere for encoding block shape. It is 

proved that there exists a set on the n-dimensional unit hypersphere that yields the 

asymptotic optimality of the algorithm . The most dominant term in the asymptotic 

performance only depends on parameters of the scalar quantizer. As a byproduct, the 

rate-distortion function is naturally deduced as an achievable bound of data compres­

sion efficiency. The algorithm is easily extended to a universal encoding scheme for 

memoryless gaussian sources of unknown mean or variance. In the algorithm, before 

encoding a source block the encoder estimates the unknown parameters by using the 

ma-ximum-likelihood method and transmits the estimated ones in a quantized form to 

the decoder. Though the method results in a slight loss of rate, it leads to the same 

asymptotic rate-distortion property even if the parameters are unknown. This property 

shows a robustness includeed in the encoding scheme. 

A data compression algorithm based on string matching is treated in Chapter 3. 



In the algorithm both an encoder and a decoder have a buffer whose contents are 

independently generated according to a probability distribution on a source alphabet. 

Given a source block of blocklength n, the encoder searches for the minimum index of 

the buffer with property that distortion between the source block and n consecutive 

symbols beginning from the index is within an acceptable level. It transmits the index 

in the fixed-length binary form to the decoder. The decoder reproduces the source block 

as n consecutive symbols from the transmitted index. Rate required for transmission 

of indices is analyzed in detail for discrete memory less sources with finite alphabet and 

memoryless gaussian sources. Under the assumption that probability distribution of 

such sources are known, a sufficient condition that the rate converges in probability to 

the rate-distortion function are deduced. In the case of discrete memoryless sources, 

for this convergence contents of the buffer must be generated according to another 

probability distribution that is originated from the test channel matrix. In the case 

of gaussian sources, however, any memoryless gaussian sequence of known mean and 

variance guarantees the convergence by modifying the way of matching. 

In Chapter 4 two universal estimation algorithms of the probability distribution 

that make the data compression scheme proposed in Chapter 3 asymptotically optimal 

in the case of discrete memoryless sources without any knowledge on the source. The 

two algorithms use output sequences of the source and an auxiliary memory less source 

putting out all symbols in the same alphabet. When contents of the buffer are drawn 

according to a probability distribution different from the optimal one, the divergence 

from the distribution to the optimal one means a cost in rate . Criterion of estimation 

imposed on one of the algorithms is similar to the PAC learning models in the com­

putational learning theory. For arbitrarily fixed E: > 0 and 6 E (0, 1) the algorithm 

outputs an estimate of the optimal probability distribution with probability at least 

1 - 6 that satisfies the divergence being not greater than E: . Lower bounds on length 

of the sequences required by the algorithm are obtained as a function of£ and 6. The 

other algorithm outputs a probability distribution arbitrarily close to the optimal one 

with high probability if appropriate parameters are chosen in the algorithm. Though 

an infinite auxiliary sequence is required by the algorithm , the algorithm turns out to 

stop with pmbability one. 
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Chapter 1 

Introduction 

1.1 What Is Data Compression with Fidelity Cri­

terion? 

Further development of data compression schemes for efficient transmission or storage 

of information is required as communicat ion networks spread out and become ma­

ture. There are a lot of data compression tools available on computers. For example, 

large and rarely used text files may be compressed for saving hard disks and can be 

qu ickly reproduced in the same form if necessary. Such kind of data compression is 

called lossless data compression since no information is lost through compression and 

reproduct ion. 

On the other hand, in compression of image or speech signals distortion between 

an original signal and its reproduced form can be permitted as far as the distortion 

is acceptable. Data compression that permits an acceptable distortion is called data 

compression with fidelity criter·ion or lossy data compression. It usually leads to high 

compression efficiency compared with the lossless case, though it becomes impossible 

to reproduce the original signal itself. This thesis is concerned with data compression 

schemes with fidelity criterion. 

The block diagram of a data transmission system assumed throughout the thesis is 

given in Fig. 1.1. The source generates a sequence of symbols according to a stochast ic 

rule . If all of the symbols belong to a finite alphabet A = { a1, a2 , ... , aJ} and are 



reproduced 
source outputs 

binary 
digits 

Figure 1.1 Block diagram of a transmission system 
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independently drawn according to an identical distribution , the source is cal led discrete 

memoryless source. If each symbol in the sequence is independently drawn accord ing 

to a normal distribution, the source is called memoryless gaussian source. In case of 

the memoryless gaussian sources, alphabet A is equal to the set of all real numbers. 

These two classes of source are subclasses of stationary ergodic sources that generate a 

stationary and ergodic sequences. Performance of source coding algorithms proposed in 

this thesis is mainly analyzed for discrete memory less sources and memory less gaussian 

sources in order to obtain deep insight into the algorithms. 

The encoder in Fig. 1.1 maps n-tuples from the source to an element of a finite 

and indexed set and transmits its index to the noiseless channel in fixed-length binary 

form. The number n is called blocklength. If the set consists of M elements, rate R 

required for the transmission is 

[bit/symbol]. (1.1) 

The decoder has the same set and reproduces source outputs by using the trans­

mitted indices through the noiseless channel. Distort ion between an original block 

x" = x1.1:2 · · · x, E A" and its reproduction y" = y1y2 · · · y, E A" is measured by 

1 n 

d,(x",y") =- l:::d(x ;,y;), 
11 i=l 

(1.2) 

where d is a single-lette1· fidelity crite1"ion that is defined on A x A and takes non­

negative values. The Hamming distance and the squared-error , i.e., d(.1:, y) = (x - y)2 

are candidates of d. Average distortion D is defined as 

jj = E[d,(X", Y")], (13) 

where E denotes expectation with respect to a random vector X" from the source and 

Y" means that a reproduction of X". Performance of data compression schemes with 

fidelity cri terion is characteri zed by a pair (R, D) defined by (l.l) and (1.3). The rate 

R and the average distortion D has a trade-off relationship, t hat is, a small average 

distortion is realized by a high rate while a low rate results in a large average distortion. 

For a class of the stationary ergodic sources the rate-distortion fun ct ion is a basic 

bound of compression efficiency for data compression schemes with fidelity criterion. 
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It describes an achievable bound of the schemes as a function of acceptable distort ion 

levels and plays the same role as the entropy rate plays in lossless data compression. In 

the case of discrete memory less source of alphabet A= { a1 , a2 , . .. , aJ} and probability 

distribu tion p = (p(aJ),p(a2 ), ... ,p(aJ)), for any D ;::>: 0 it is defined as follows: 

R(p, D) = min I (p; W) 
IVEW(p,D) 

where I (p ; W) is the mutual information defined by 

J J W(aklaJ) 
I (p; W) = I:; I:; p(a1)W(ak[a1) log2 -J,-----'-"-'--''-'---

k=li=l I:;p( a1)W (ai la1) 
1=1 

for any J x J stochast ic mat rix W, 

J J 

(1.4) 

(1.5) 

W (p , D)= { W is a J x J stochastic matrix I I:; I:; p(a1)W(akla1)d(a1, ak) :'> D }, 
j=l k=l 

(1.6) 

and d is a single-letter fidelity criterion . Definition of the rate-distortion function 

for memoryless gaussian sources is parallel to (1.4) though summation included are 

replaced by integral. The rate-d istortion function is convex and monotone decreasing 

function. For an arbitrary distortion level t:, the source coding theorem claims the 

following: 

Theorem 1.1 (The Source Coding Theorem: converse part) For any distortion 

level t:, > 0 and n > 0 there is no encoding scheme satisfying both 

R< R(p,6) (17) 

and 

(1.8) 

Theorem 1.2 (The Source Coding Theorem: direct part) For any distortion level 

t:, > 0, c ;::>: 0 and {j ;::>: 0 satisfying {j + c > 0 the,-e exists an encoding scheme that sat­

isfies 

JI.:S; R(p ,6)+6 (1.9) 
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and 

(1.10) 

if n is sufficiently large. 

T hough Theorem 1.1 and Theorem 1.2 are stated in a terminology for discrete 

memory less sources, these claims make sense for a class of stationary ergodic sources by 

replacing R(p, 6.) with the rate distortion function for the sources. The two theorems 

show that the rate-distortion fun ction is an essential bound for data compression with 

fidelity criterion. Existence of an asymptotically optimal code in a sense that the rate­

distortion function is achievable is guaranteed by the direct part. Since proofs of the 

source coding theorem can be found in textbooks on the information theory, it is not 

given here. (The proof for stationary ergodic sources can be found in [1, 2]. Only 

memory less sources are treated in [1, 2, 3, 4, 5].) Proving the converse part is easier 

than establishing the direct part . In proofs of the direct part a randomly generated 

code is always used for establishing achievablity of the rate-distortion function. 

However, constructing an encoding scheme with the asymptotic optimality that 

requires reasonable computational costs for execution is one of open problems in the 

Shannon theory originating from [6]. For instance, time and space complexity of the 

random code used in the proofs is of exponential order of n. The construction remains 

unsolved even for simple memoryless sources while many lossless data compression 

methods that asymptotically achieve the entropy rate have been developed for the class 

of stationary ergodic sources. Difficulty of finding the asymptotically optimal schemes 

consists in both a probabilistic structure of the sources and a geomet ric aspect included 

in distortion measures. Main objective of the thesis is throwing light on such difficulty 

by considering encoding algorithms for simple sources and obtaining deep insight into 

not only the asymptotic optimal encoding scheme but also improvement of practical 

data compression schemes such as image and speech coding. 
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1.2 Outline of the Thesis 

This section is devoted to a brief formulation of problems treated in this thesis so that 

readers can acquire a bird 's-eye view on the thesis . The following three topics on data 

compression with fidelity criterion are discussed: 

• an asymptotically optimal encoding scheme for memoryless gaussian sources, 

• conditions for the asymptotic optimality of encoding schemes based on string 

matching, 

• universal estimation algorithms of the optimal probability distribution for com­

pression of discrete memory less sources. 

The first topic is t reated in Chapter 2. It is motivated by a simple question that "what 

kind of data compression algorithm that asymptotically achieves the rate-distortion 

function for memoryless gaussian sources under the squared-error criterion?" It is 

well-known that the rate-distortion function for memoryless gaussian sources is an 

upper-bound of the rate-distortion functions for other continuous-alphabet memory­

less sources of the same variance. Therefore, finding an asymptotically optimal data 

compression algorithm for the memoryless gaussian sources means designing the best 

scheme for the least compressible sources subject to a power constraint. As is proved in 

Chapter 2, for memoryless gaussian sources of known mean and variance a data com­

pression algorithm essentially equal to the shape-gain vector quantization turns out to 

be asymptotically optimal under a certain condition. Another interesting aspect of the 

algorithm is unveiled when it is extended to a universal data compression method for 

the sources of unknown mean or variance. A robustness included in the algorithm and 

application of the algorithm to compression of other continuous memoryless sources 

are also discussed. 

Chapter 3 is devoted to the second topic. The Lempel-Ziv algorithm proposed 

in 1977 [7] is a famous universal lossless data compression scheme that asymptoti­

cally achieves the entropy rate for a class of stationary ergodic sources without any 

knowledge on the sources. In the chapter extension of the Lempel-Ziv algorithm to a 

data compression scheme with fidel ity criterion is discussed. A sufficient condition for 
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the scheme being asymptotically optimal is deduced for discrete memoryless sources 

and memoryless gaussian sources, which clarifies an essential difference between the 

asymptotically optimal encoding schemes in the two cases. That is, if another output 

sequence from the sources is available to both an encoder and a decoder, the asymp­

totically optimal encoding is realized in the case of gaussian sources, while it is quite 

difficult (probably impossible) in the case of discrete sources. 

Chapter 4 deals with the last topic. For a class of discrete memoryless sources 

conventional proofs of the source coding theorem include a random coding technique 

generating a random code according to the probability distribution 

J 

p·(ak) = L:;p(aj)w·(aklaj) for all k = 1, 2, ... , J (1.11) 
j=l 

in order to establish the existence of the asymptotically optimal code, where A = 
{a1,a2, . . . ,aJ} denotes alphabet of the sources, p = (p(a 1 ),p(a2 ), . . . ,p(aJ)) is prob­

ability distribution on A, w· denotes the J x J stochastic matrix achieving the min­

imum in (1.4) at D = D. and D. is an acceptable distortion level arbitrarily fixed. 

Hence, knowledge on p· leads to obtaining an intuition on encoding schemes with the 

asymptotic optimality. In the chapter two algorithm that universally estimates p· 

for an arbitrary D. are proposed. One of the algorithms is related to the encoding 

scheme proposed in Chapter 3. For any € > 0 and o E (0, 1) it outputs an estimate 

of p·, denoted by p·, satisfying D(p•llii•) ::; € with probability at least 1- o, where 

D(-11 ·) denotes the divergence. Since the divergence means a cost of the data com­

pression scheme, the estimate asymptotically enables to transmit source outputs in 

rate R(p, D.)+ € and average distortion close to D. per source symbol. The algorithm 

provides another view as a first attempt to apply the PAC learning models to data 

compression with fidelity criterion in an feasible way. The other universal estimation 

algorithm can estimate p· of arbitrary precision with high probability if appropriate 

parameters are chosen in the algorithm. Both of the two algorithms are analyzed in 

detail in Chapter 4. 

Readers can start to read these three chapters in any order since they are written 

as if they were independent topics . Notations are introduced in each chapter. Detailed 

description on background of each topics is also given at the beginning of each chapter. 
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Relations between the topics are stated in corresponding parts in case that cross­

reference between chapters is desirable. 
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Chapter 2 

Asymptotic Optimality of 

Modified Spherical Code with 

Scalar Quantizer of Gain for 

Memoryless Gaussian Sources 

2.1 Introduction 

Data compression for discrete-time analogue signals is important for the sake of prac­

tical applications. In many applications such as image coding and speech coding, it is 

desirable to encode signals efficiently within an acceptable distortion. The framework 

of rate-distortion theory, which originated from Shannon [8] and described in detail by 

Berger [2], provides a basis to develop efficient encoding methods. According to the 

rate-distortion theory, lower bound of compression efficiency becomes a function of dis­

tortion level called a rate-distortion function if sources are stationary and ergodic. The 

rate-distortion function is usually defined as the minimum of the mutual information 

subject to a constraint on expected single-letter distortion. The rate-distortion theory 

also guarantees the existence of an asymptotically optimal block code that achieves 

the rate-distortion bound with increasing the blocklength for an arbitrarily distortion 

level. This claim is known as the source coding theorem. 
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Though it has been an open problem to construct the asymptot ically optimal code 

guaranteed by the source coding theorem, little is known about construction of the 

asymptotically optimal code even for simple memoryless sources. There are two main 

reasons for the source coding theorem not being construct ively proved. One is that 

the rate-distortion function used to be only calculated by minimizing the mutual infor­

mation without constructing any codes. The other is that the source coding theorem 

is usually proved for a large class of sources such as stationary ergodic sources and 

memoryless sources. In 1968 Sakrison [9] proved the source coding theorem for mem­

oryless gaussian sources as a special case by using a geometrical approach. However, 

there still remain many basic problems to be unveiled about the construction of the 

asymptotically optimal code since his result is not so sharp. 

Recent studies of vector quantization [10, 11, 12], which has deep connection with 

the rate-distortion theory, usually treat vector quantizers for practical analogue sources 

with a finite number of parameters in a vector space of fixed dimension. Those concern 

optimization schemes of parameters and structures for the vector quant izers and hardly 

analyze asymptotic behaviors of the block quantizers theoretically with increasing the 

blocklength infinitely. 

In another aspect of vector quantization, rate-distort ion properties of block quan­

tizers in a fixed dimension are analyzed approximately in the case that the number of 

quantization levels is sufficient ly large [13, 14, 15, 16]. However, from the viewpoint of 

the rate-distortion theory, the analyses are valid only for sufficiently small distortion 

level and gives little intuition about the construct ion of the asymptotically optimal 

code in a sense of the source coding theo rem. 

This chapter is concerned with characterizing a class of optimal fixed-to-fixed length 

codes for memoryless gaussian sources under the squared-error criterion. This is the 

first attempt to prove the source coding theorem in a constructive way. In an encoding 

scheme defined in Section 2.2 source blocks of blocklength n are treated as elements of 

n-d imensional Euclidean space. T hey arc encoded by two steps: a set of point on t he 

n-dimensional unit hypersphere encodes block shapes and a scalar quantizer encodes 

block shapes. In Section 2.3 asymptotic behavior of rate and average distortion of the 

encoding scheme is e,·aluated in detail. It is proved that the method has the asymptotic 
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optimality in a sense of source coding theory; it achieves the rate-distortion function 

with increasing the blocklength. The asymptotic behavior of this encoding algorithm 

describes a trade-off relationship between the rate and the average distortion more 

clearly and tightly than Sakrison 's results. It is also surprising to note that the rate­

distortion function is naturally deduced as a lower bound of compression efficiency 

without considering the minimum of mutual information. 

The encoding scheme proposed in Section 2.2 is easily extended to a universal data 

compression scheme for memoryless gaussian sources with unknown mean or variance. 

The extension of the encoding scheme is treated in Section 2.4. There are two stages in 

the universal scheme for encoding of an n-tuples from the source. First, an encoder es­

timates the unknown parameters and transmits them to the decoder in their quantized 

form. After transmitting the unknown parameter, it encodes the source block by using 

the est imated and quantized parameters. A rate-distortion property of the universal 

scheme asymptot ically becomes t he same as the one obtained in non-universal case. 

This result clarifies that the encoding scheme has a robustness against perturbation of 

the transmitted parameters. 

Encoding of other memory less continuous sources is discussed in Section 2.5. Though 

the source coding theorem holds for a class of stationary ergodic sources with abstract 

alphabet, difficulty arises even for" simple memory less sources such as memory less Lapla­

cian sources with known parameters. Though the asymptotic optimal code is not char­

acterized for such sources, a geometrical interpretation of the Shannon lower bound 

is deduced by using the approach developed for compression of memoryless gaussian 

sources. A class of memory less cont inuous sources t hat this approach is meaningful is 

also given in Section 2.5. 

2.2 Encoding Schem e 

This sect ion is devoted to proposal of a block coding scheme for memoryless gaussian 

source with known mean and variance. Without loss of generality, the memory less gaus­

sian sources with zero mean and uni t variance is assumed. Let x = (x1, x2, · · ·, x,.JT 

be an n-tuple of source output and assume n ;::: 3. From the assumption of the source, 

11 



each element of x is drawn according to N(O, 1) and take real values. The probability 

density function of x is written as 

p(x) = (21rt~ exp [-~(xi+ x~ + · · · + x~)]. (2.1) 

For v ~ 1 the norm of x is defined as follows: 

(2.2) 

When v = 2, llxllv becomes a usual Euclidean norm. For any x = (x 1 , x2 ,. , Xn)T 

E R" and y = (y1 , Y2 •... , YnjT E R" define inner-product (x, y ) by 

" 
(x, y) = L x;y; . (2.3) 

i=l 

Let S"-1 be the n-dimensional unit hypersphere in the sense of v = 2, i.e., 

S"-1 = {x E R" lllxll2 = 1} . (2.4) 

For any X E R" - { 0} , the orthogonal projection of X to sn-l is defined as 

- X 

x = llxll2. (2.5) 

Note that X is uniformly distributed on sn-l if X is generated from the source. 

Next, three sets used in the block coding scheme are defined. Let A = { a 1, a2 ,. 

aL} and C = { c1 , c2 , .. , cL} be two arbitrary sets of L real numbers satisfying 

It is convenient to interpret aL+l as infinity. The two sets A and B describe a scalar 

quantizer for block gain llxlb. Elements of A and B define quantization intervals 

and quantization levels, respectively. Let Y = {y1, y 2 , ... , y M} be an arbitrary set of 

cardinality M satisfying Y m E S"- 1 for all m = 1, 2, ... , lvf. Elements of Yare used for 

quantizing block shape x. Encoding is defined as a mapping cp : R" -+ Y x C specified 

by two mappings cp1 : R " -+ Y and 'P2 R " -+ C. The mappings 'P1, 'P2 and <p are 

defined as follows: 

arg max (x, y) , 
Y EY 

Ct if at:<::::(x,cpl(x))<at+l• 

12 

(2.7) 

(2.8) 

(2 .9) 



where arg max (x, y) in (2. 7) means the element of Y maximizing the inner product 
YEY 

(x, y) and the right hand side of (2.9) denotes the multiplication of <p2(x) by <p 1(x). 

Firstly, for a source block x the encoder searches for the elements of y E Y maximizing 

the inner-product first. Ties in (2. 7) are arbitrarily broken. Secondly, the encoder 

searches for the quantization interval of the scalar quantizer that (x, <p 1(x)) belongs. 

Indices of <p1(x) and 'f'2(x) are transmitted to a decoder in a fixed-length binary form. 

The decoder reproduces x as <p(x) = <p2(x)<p 1(x). RateR required for transmitting 

the indices is written as 

1 1 1 
R = :;:; log2 LM = :;:; log2 L + :;:; log2 M. (2.10) 

In (2.8) assumption of non-negativity of (x, <p 1 ( x )) for all x E R" seems strange. 

However, in the case of 1\!f ~ 2 it is possible to make the inner-product non-negative 

by choosing an arbitrary point on S"- 1 as y 1 and its antipodal point as y 2 . Since suffi­

ciently large n is supposed in the following sections, assumption on the non-negativity 

does not cause any problems. Figure 2.1 gives an illustration of quantization regions 

of this encoding scheme. It indicates that blocks are encoded to the nearest point in 

the sense of Euclidean distance. 

Let d(x,y) be a single-letter fidelity criterion. Distortion between x and <p(x) is 

defined by 
1 n 

d,(x,<p(x)) =- l:d(x;,(<p(x));), 
n i=I 

(2.11) 

where x; and (<p(x)); denote the i-th component of x and cp(x), respectively. The 

squared-error criterion, i.e., d(x, y) = (:t - yj2 is assumed for encoding of gaussian 

sources. Then, d, can be expressed as 

1 
d,(x,<p(x)) = -llx- cp(x)ll~, 

n 
(2.12) 

which means the squared-error per source symbol. Average distortion D caused by the 

mapping 'f' is defined by 

jj r d,(x,<p(x))p(x)dx 
}R" 

~ r llx- <p(x)ll~p(x)dx. 
n iR" 

13 

(2.13) 



' ' 

Figure 2.1 Quantization Regions 

14 

' ' ' ' ' ' 



The rate-distortion function of the source with probability density function p(x) 

with respect to the distortion measure d is defined by 

R(D) = inf I(p·W) 
IVEW(p,D) ' 

inf j"" j"" p(x)W(yix) log2 W((Yi):r) dydx, 
IVEW(p,D) -oo -oo q y 

(2.14) 

where 

W(p, D)= { W(yix)is a conditional probability I /_: /_: p(x)W(yix)d(x, y)dydx ~ D} 

(2 .15) 

and 

q(y) = /_: p(x)W(yix)d.T . (2.16) 

It is well-known that the rate-distortion function of the memoryless gaussian source 

with unit variance under the squared-error criterion is written as 

DE (0, 1]. (2 .17) 

(See e.g., [2, 4, 5].) The rate-distortion function R(D) in (2.17) is positive for all 

DE (0, 1) and equal to zero forD= 1. For any distortion level/::, E (0, 1] the source 

coding theorem guarantees the existence of an asymptotically optimal block code that 

achieves the rate-distortion boUI~d R( /::,). In other words, for any 6 :;:: 0 and c :;:: 0 

sat isfying 6 + E: > 0 there exists a block code of sufficiently large blocklength with 

properties R(£::,) ~ R ~ R(t:,) + 6 in rateR and /::, ~ fJ ~ /::, + E: in average distortion 

D. However, it is trivial to describe an encoder and a decoder that make the average 

distortion equal to 1. While an encoder transmits nothing, a decoder always reproduces 

o = (0, 0, ... , Of for all source block x. In this case, the average distortion is equal to 

variance of the source and therefore the rate-distortion function is achievable. In the 

following sections characterization of the asymptotically optimal encoding scheme for 

an arbitrarily fixed distortion level £::, E (0, 1) as a non-triYial case. 

2.3 Analysis of Asymptotic Behavior 

This section is devoted to characterization of the asymptotically optimal code with 

increasing the blocklength. For guaranteeing the asymptotic optimality of the map-
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ping defined in (2. 7), (2.8) and (2 .9), certain conditions are imposed on .A and C in 

Section 2.3.1. In Section 2.3.2 three basic lemmata based on properties of Euclidean 

space are shown in order to facilitate the proof of theorems given in the subsequent 

section. In Section 2.3.3 the source coding theorem for memoryless gaussian sources 

under the squared-error criterion is directly proved. As a result, a structure that the 

asymptotically optimal code should have is obtained. 

2.3.1 Conditions for the Scalar Quantizer 

From the probability density funct ion (2.1) fo r x E R ", it is easy to see that the 

probability density function of llxll 2 is dependent on n. Therefore, it is necessary to 

choose .A and C as a function of n in order to keep the average distortion small. The 

following three conditions are imposed on the scalar quantizer described by .A and C: 

C1) For each blocklength n, the elements of .A satisfy 0 = a 1 < a2 < · · · < a£, and 

a£= C£ = nt+<>, where a> 0 is an arbitrary, but fixed, constant. 

C2) The maximal quantization error ( = max max{ c1 -a~, ai+I - ci} caused by 
l$/~L-1 

the scalar quantizer for inputs not greater than aL satisfies 

e lim -= 0, 
n-oon 

where max{x,y} = y if x ~ y and x otherwise. 

C3) The number of quantization levels L is of polynomial order of n . That is , L 

satisfies 
log2 L 

lim -- =0. 
n 

There are many choices of .A and C. For example, if L, .A and C are chosen such as 

l- 1 
L = n2 + 1, a1 = c1 = -- for all l = 1, 2, ... , L, .;n (2.18) 

it is easy to check that these parameters satisfy C1), C2), C3) and (2 .6) . 

Of course, L, .A and C should be optimized to minimize the average distortion for 

encoding of finite blocklength. However, it is shown that .A and C satisfyin g C1) ~ 

C3) and (2.6) can be arbitrarily chosen so as to establish the asymptot ic optimality of 

the block coding scheme. 
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2.3.2 Basic Lemmata 

Let !J. E (0, 1) be a distortion level arbitrarily fixed and choose A and C sat isfying C1) 

~ C3) and (2.6) arbitrarily. Before proving the asymptotic optimality of the encoding 

scheme defined in Section 2.2, three lemmata are given so as to faci li tate the proof. 

These lemmata characterize properties of n-dimensional Euclidean space. 

Define quantization regions D1m by 

Dtm = {x E R" I cp(x) = Ct Ym} (2 .19) 

for all l = 1, 2, ... , L and m = 1, 2, ... , M. The following lemma indicates that the 

distortion between an arbitrary x E R" - { o} and cp( x) can be divided into two parts. 

Lemma 2.1 Let Y = { y 1, y 2 , . .. , y M} be an arbitmry set whose all elements belong to 

sn- l . For any X E R"- { 0} ' if X E D,, fo1· some l = 1, 2, . . . 'L and m = 1, 2, . .. 'M, 

the squared-error between x and cp( x) is divided into two parts as follows: 

llx- cp( x ) ll ~ = llxll~ll:i:- (:i:,y,) ymll~ + ((x , y ,) - Ct) 2
, (2 .20) 

where x = x /l lx ll 2 . 

Proof: If x E D1m, xis mapped to cp( x ) = c1y , from the definition of Dtm· Then, 

the left hand side of (2.20) is calculated in the following manner: 

llx- cp(x ) ll~ llx- CtYmll~ 

llx - (x , y, ) Ym + (x , Ym) Y.,- Ct Y.,II ~ 

llx - (x , Ym) Y.,ll~ + ll(x, Y, ) Ym- Ct Ym II~ 

llx@lx- (:i:, Ym) Y,ll~ + ((x, Y,)- ct)2
, (2.21) 

where the th ird equality in (2.21) follows since x- (x, y.,) y , is orthogonal to Y m· 0 

Note that ll:i:- (:i:, y ,) y .,ll~ in (2.20) only depends on clements on s n- l Its 

multiplication by llxll~ corresponds to the first term in (2.20). Hereafter, the term is 

cal led distortion in shape. On the other hand, the second term in (2.21) corresponds 

to the squared-error caused by the scalar quantizer and is called distortion in gain. 

17 



For the fixed distortion level !:; E (0, 1) define M by 

(2.22) 

which , according to (2.17), means * log2 M = R(!:;). Since M denotes the cardinality 

of Y, Min (2.22) is interpreted as L(±) ~ J, where LxJ denotes the greatest integer not 

greater than x . Though this notation seems rude, it makes an essential part of the 

following two lemmata clear. In fact, it is unnecessary to consider the rounding error 

when asymptotic properties with increasing n is of interest. 

The following two lemmata show an interesting property of the rate-distortion func­

tion (2.17). For any t,. E (0, 1) and z E sn-l they indicate that, if M elements are 

chosen randomly and independently from sn-J, there exists at least one element y E Y 

satisfying (z, y) is nearly equal to vT=""K with probability arbitrarily close to 1 for 

sufficiently large n. 

Lemma 2.2 Let !:; E (0, 1) be arbitrarily fixed and define M by (2.22). Fix any 17 

satisfying 0 < '7 < 1 - !:; . If Y = {y 1, y 2, . .. , y u} is generated by choosing all of the 

elements of Y randomly with uniform distribution and independently from the points 

on S"- 1 , then for any 0 < >. < 1 and z E S"- 1 there exists an intege1· no = no(TJ, >.) 

satisfying 

Pr (max (z,y,) < )1- (!:; +17)) < >. 
I:Sm:SM 

(2.23) 

for all n > n0 , where Pr(-) denotes the probability with 1·espect to the choice of Y. 

Proof: Fix z E sn - l arbitrarily and consider the probability of the event that 

max (z, y,) < )1- (!:; + 17) with respect to the choice of Y. For any z' E sn - J and 
l:Sm:SM 
p E (0, 1) define T,(z', p) by 

T,.(z' , p) = {y E S"-1
1 (z',y):::: Jl=P}. (2.24) 

Notice that the left hand side of (2.23) means the probability that all elements of Y 

belong to S"- 1 - T,.(z,t; + 17). Therefore it is calculated as follows: 

( J ) [ IT,. (z , !:;+TJ)I]M 
Pr max (z , y,)< 1-(!:;+17) = 1- IS"- 11 ' 

l :5m :5 M 
(2.25) 
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where I · I denotes its surface area. Symmetry on sn-l enables to choose z = z0 = 

(1, 0, .. . , Of. By transforming the rectangular coordinates (x1, x2 , . . . , x,f into the 

polar coordinates (r, l11, . .. , 11,_1), IT,,(z0, 6. + 7J)I is lower-bounded in the following 

manner: 

IT,(zo, 6. + 7J)I IS"-21 Jo' sin"-2111dl11 

> IS"-21 h7 

sin"-2111 cos l11 d/11 

l
sn-21 ,_, 
--(6. + 1))--,--, 
n-1 

(2.26) 

where 1 = cos-1 )1- (6. + 7J). The inequality (1- t)"' < exp[-tm] for 0 < t < 1 and 

m > 0 and (2 .26) imply that the right hand side of (2.23) is evaluated in the following 

way: 

Pr ( max (z, Ym) < )1 - (6. + 1J)) 
1:5m:5M 

[ ( 
1 )~ IS"-21 "-=-'] 

< exp - t;" (n-1)IS"-11(6. + 1)) ' 

[ 
IS"-

2
1 [n ( 77)]] 

=exp J6.+ 1)(n- 1)IS"-IIexp 2 1n 1+t; . (2 .27) 

The remaining work is to evaluate IS"-21/IS"-11. By using a well-known fact that 

IS"- 11 = 1l7r~ /f(~ + 1), it is easy to verify 

!
1 (2m-2)!! 

IS"-21 _ ; (2m-3)!!' 
IS"-! I - ~ (2m-1)!! 

2 (2m-2)!!' 

if n =2m, 

if n =2m+ 1, 

~·~· J 
where m = 1, 2, ... and kll = Ji (k- 2j) . Equation (2.28) implies that 

j=O 

1 IS"-21 1l 
-<--<-
7r- ISn-!1- 2 

for aJln. Inequalities (2.27) and (2.29) yield 

Pr(max (z,y,)<V1-(6.+77)) 
l:$m:5M 

(2 .28) 

(2.29) 

< exp [-1r~(n _ 1) exp [¥In ( 1 + ~) l] , (2.30) 
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which converges to 0 of double-exponential order of n. Consequently, (2.30) guarantees 

the existence of no that satisfies the right hand side of (2.30) being less than A for all 

n >no. D 

Lemma 2.3 Let 6. E (0, 1) be arbitrarily fixed and define M by (2.22). Fix 1) satisfying 

0 < 1) < 6. m·bitrarily. lfY = {y 1,y2, ... ,yM} is generated by choosing all of the 

elements of Y randomly and independently from the points on sn-I, then for any 

0 <A< 1 and z E sn-I there exists an integer n0 = n0(ry , A) satisfying 

Pr ( max (z, Ym) < V1- (6.- 17)) > 1- A 
l$m$M 

(2.31) 

for all n > n0 , where Pr(-) denotes the probability with respect to the choice of Y. 

Proof: This lemma is proved by the same argument used in the proof of Lemma 2.2. 

As is shown in (2.25), the probability of the event that max (z, Ym) < )1- (6. -1)) 
l$m$M 

can be written as 

( V ( l) [ ]T,(zo, 6. -ry)]] M Pr ma.,x (z,ym)< 1- 6.-1) = 1- ]5 I] ' 
I$m$M n-

(2.32) 

where zo = (1, 0, .. , Of. To find a lower-bound of this probability, the inequality 

(1 - t)"' > exp[- ;~',] for 0 < t < 1 and m > 0 is applied to the right hand side of 

(2 .32). Terms corresponding tot and mt in the right hand side of (2.32) are evaluated 

in the following manner: 

]T,(zo,6. -17)] 
]Sn-1] 
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where 1' = cos- 1 j 1 - (t>.- ry), and (2 .29) is used to obtain (2.33) and (2.34). Then, 

(2.33) and (2.34) imply that 

Pr ( max (z, Ym) < }1 -(fl.- T7)) 
l$m$.M 

> exp [- Cni'n exp [-'-= ln (1- !l)J] 
2(t>.- ry) 2 fl. , 

(2 .35) 

where { Cn}::'=1 is a sequence satisfying Cn > 1 for all n = 1, 2, ... , and Cn --> 1 as 

n --> oo. Since the right hand side of (2.35) converges to 1 as n --> oo, the claim of this 

lemma follows. D 

2.3.3 Asymptotic Optima lit y of the Encoding S ch e m e 

The following theorem claims the asymptotic opt imality of the mapping cp defined by 

(2.7), (2.8) and (2 .9) for memory less gaussian sources under the squared-error criterion. 

The theorem also provides a simple proof for the direct part of the source coding 

theorem for memoryless gaussian sources under the squared-error criterion. 

T heor em 2.1 Let fl. E (0, 1) be a distortion level arbitrarily fixed. Let A and C be 

arbitrary sets satisfying C1) ~ C3) and (2.6). If all of elements of Y are chosen 

randomly and independently from the points on sn-J, then for any 6 > 0 there exists 

an integer n0 = n 0 (A, C, 6) such that the rateR of the code satisfies 

R(t>.) < R < R(t>.) + 6 (2.36) 

and the average distortion D satisfies 

E[D] < t> (2.37) 

for all blocklength n > n0 , where E[D] denotes the expectation of D with respect to the 

choice of Y . 

P roof: Choose A and C satisfying C1) ~ C3) and (2.6) arbitrarily and fix any 6 > 0. 

If R satisfies (2.36), monotone decrease of the rate-distortion function with respect to 

D leads to the existence of 7) > 0 satisfying 

R(t>.) < R(t>.- 217) < R(t>) + 6. (2.38) 
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Define M by 

M = ( t.. ~ 
2

7J) ~ , (2 .39) 

where M is interpreted as the greatest integer not greater than the right hand side of 

(2 .39) . Then, rate R required for this encoding scheme becomes 

1 
R = R(t..- 2ry) + -log2 L. 

n 
(2.40) 

Condition C3) and definition of 1) guarantees the existence of an integer n1 satisfying 

the rate of code satisfies (2.38) for all n > 11 1• 

By applying Lemma 2.1 to the average distortion defined in (2.13), the expectation 

of the average distortion can be divided into two parts as follows: 

E[D] 

where 

+ E [~ ,~1 ~ /o,m ((x, Ym)- c1)
2
p(x)dx] 

~ h+h (2.41) 

(2.42) 

(2.43) 

Roughly speaking, 11 and 12 correspond to the average distortion in shape and in gain, 

respectively. 

Firstly, it is shown that there exists an integer 112 satisfying 11 < t.. - ¥ for all 

n > 112 . Since the expectation operator and the integral in (2.42) are commutable, 11 

can be writ ten as 

!1 = ~ ( lfxii~E [1- ( max (:i:,y"'))
2

] p(x)dx. n }Rn I~m$/11 
(2.44) 

By subst ituting t.. in (2.23) into t..- 217, for any .\ E (0, 1) and x E S"-1 Lemma 2.2 

guarantees the existence of an in teger nz satisfying 

( max (:i:, y, ))
2 

< 1- (t..- 17) with probability at most.\ 
l~m~M 
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for all n > nz. Then, by setting>.=~, the expec tation in (2.44) is upper-bounded by 

E [1 -( ma:x (x, ym) )
2

] < (l:. -ry) + 1· ~ 
l~m~M 2 

l:.- ~ 
2' (2.46) 

for all n > n2 . Combining (2.44) with (2.46) yields 

(2 .47) 

for all n > n 2 . 

Secondly, it is shown that there exists an integer n3 satisfying ]z < ¥ for all n > n3 . 

It is convenient to write ]z as follows: 

Iz = E [~f:~~Jo,.,((x, ym)-c1 ) 2p(x)dx] 

+ E [~ ,~1 JDL ... ((x, Ym)- adp(x)dx], (2.48) 

where C£ = a L from the condition C1). Since the definitions of D1m and (imply that 

(2.49) 

for al l I= 1, 2, . .. , L- 1 and m = 1, 2, . .. , !11, the first term in the right hand side of 

(2.48) is upper-bounded in the following manner: 

n 
(2 .50) 

and therefore from the condition C2) there exists an integer n3 such that the right hand 

side of (2.50) becomes less than ~ for all n > n3 . The second term in (2.48) converges 

to 0 of exponential order of n as is shown in Appendix A, and accordingly there exists 

an integer n4 such that it becomes less than ~· Then for all n > max{n3 , n 4 }, 

(2.51) 



Inequalities (2.47) and (2.51) immediately yield 

- ( "~) T/ E[D] < t:,. - 2 + 2 = t:,. (2 .52) 

for all n > max{ n2, n3, n 4}. By setting n0 = max{ n 1, n 2, n 3, n 4}, the claim of this 

theorem follows . D 

In the proof of Theorem 2.1, it is easy to see that the most dominant term tending 

to zero are * log2 L in rate and ~ in average distortion. Moreover, (2.37) guarantees 

the existence of y· that satisfies D < t:,. instead of (2 .37). For any distortion level 

CJ. E (0, 1) if such y· is selected, performance of the rate and the average distortion is 

written in the following form: 

R < R(CJ.) + log2 L + 0 (log2 L) , 
n n 

(2.53) 

D
- (2 ((2) 

< L':.+-;+o -; . (2 .54) 

It is remarkable that a trade-off relationship between the rate and the average distortion 

in (2.53) and (2.54) is concentrated only on the choice of the scalar quantizer of block 

gain . If A and C defined in (2.18) are used, Rand D converge of order less than 0( ¥l 
and 0(;!, ), respectively. Sakrison [9] obtained upper-bounds of order 0( ¥) in the 

rate and 0(*) in the average distortion. Results in (2.53) and (2.54) are not only 

tighter upper-bounds than the ones Sakrison obtained but also describe the trade-off 

relationship more generally. 

Theorem 2.1 also gives an intuition for constructing block codes of finite blocklength 

for memoryless gaussian sources. As is shown in (2.46) and (2.47), if ry is chosen 

sufficiently small, the contribution of x satisfying ( ma.'c (x, y,) )2 < 1- (L':. -17) to the 
ISm 'S AI 

average distortion can be arbitrarily small for sufficiently large n from the property of 

Lemma 2.2. Hence, for constructing Y of finite block length for an arbitrarily distortion 

level L':. E (0, 1) it is desirable to choose a setS = { s1, s2, ... , s 1.-l of minimal cardinality 

satisfying llskJI2 = 1 for all k = 1, 2, ... ,!(and 

(2.55) 
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for any z E S"-1
. However, by using the reciprocal form of (2.33), the rate of S is 

lower-bounded in the following way: 

1 
;:; log2 I< > 1 [ [s"-

1
1 ] -log2 n [T,(zo, to.- 7J)[ 

1 [2·'1' ·-'] > ;:; log2 -;;:(to.- 1))-.,.--

R( to. - 1J) + 0 co~ n) , (2.56) 

where z 0 = (1, 0, ... , Of and -y' = cos-1 )1 -(to.- 17). Inequality (2.56) means that, 

even if S of minimal cardinality sat isfying (2.55) could be constructed explicitly, it 

is impossible to make the rate of the code less than the rate-d istortion bound in an 

asymptotic sense. 

It is also interesting to consider the distortion between an arbitrary x E R " and 

cp(x). The following theorem suggests that, for any given distortion level to. and suf­

ficiently large n, the distortion of source outputs of blocklength n is nearly equal to 

to.[[xll~/n in the proposed block coding scheme . 

T heorem 2.2 Let to. E (0, 1) be a distortion level m·bitmrily given. Choose A and C 

satisfying C1) ~ C3) and (2.6). If all of the elements of Y are chosen randomly and 

independently from the points on 5"-l 1 then for any C: > Q and X satisfying llxll2 :0:: aL 

there exists an integer· n 0 = n 0(A, C, c:) such that the rate of the code satisfies (2.36) 

and 

~~E [llx- cp( x)ll~]- !:,.11:11~ I< c: (2.57) 

for all n > n 0, where E[·] denotes the expectation with respect to the choice of Y. 

Proof: From the definition of R there exists a positive number 'I satisfying (2.38). 

Define M by (2.39) and fix any x satisfying llxl[2 ::; aL. Let 'PI (x) = Ym and 'P2(x) =Ct. 

Note that x satisfies ( (x, Ym) - c1J2 ::; ( 2 since (x, Ym) :S llxll2 :S a£. By using 

Lemma 2.1, the left hand side of (2.57) is evaluated as follows: 

2_E[IIx- cp( x)II~J = 2.11xii~E [1- ( max (x, Ym)) 2
] + 2.((x, y,)- ct) 2 (2.58) 

n n I~mSM n 
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It is necessary to evaluate lower and upper bounds of E[1 - (
1 
~~\1 (x, Ym) )2] for 

the proof of this theorem. The upper one can be found in (2 . 46)~ ;hich implies the 

existence of an integer n 1 satisfying 

E [1- ( ma..x (x, y"'))
2

] <fl.-'!. 
l~m$M 2 

(2.59) 

for all n > n 1 . 

Now, the lower one is evaluated. By subst ituting fl. in (2.31) into fl.- 27], for any 

>.' E (0, 1) and x E 5"- 1 , Lemma 2.3 guarantees the existence of integer n2 such that 

( max (x,ym))
2 

< 1- (fl.- 377) with probability at least 1- )..' 
1$m$M 

(2.60) 

for all n > n2. By setting >.' = A the left hand side of (2.59) is lower-bounded as 

E [1- ( ma..x (x, Ym))
2

] > (fl.- 377)(1- >.') 
l:Sm~M 

8.-1] (2.61) 

for all n > n2. Inequalities (2.59) and (2.61) yield 

fl.- 1] < E [1- ( ma..x (x, Ym))
2

] < tJ.- '!. 
1SmSM 2 

(2 .62) 

for all n > ma..x{n1,n2}. 

By using (2.58) and (2.62), the left hand side of (2.57) is evaluated in the following 

form: 

I ~E [llx- cp(x)[l~]- ll.llxll~ I< llxll~7) + .t. 
n n n n 

(2.63) 

Since ~ becomes arbitrarily small and 1) can be chosen of order o(n-2") there exists an 

integer n3 such that (C + [[xl[~77)/n < c: for all n > n 3. Setting n0 = ma..x{n1,n2,n3 } 

completes the proof of the theorem. 0 

2.4 A Universal D at a Compress ion Algorithm 

The asymptotic optimality of the block coding scheme proposed in Section 2.2 is proved 

in the preceding section for memoryless gaussian sources with known mean and vru·i­

ance. In case of zero mean and unit variance, source blocks of blocklength n are 

26 



encoded in gain by a scalar quantizer and in shape by a set of randomly and indepen­

dently chosen points on S"- 1• The expectation of the average distortion caused by this 

encoding scheme is proved to be less than !::,. for any fixed !::,. E (0, 1) . In this section 

extension of this algorithm to encoding of memoryless gaussian sources of unknown 

mean or variance is discussed. 

It is assumed that the unknown parameters belong to a known and closed set . • 

An encoder described in this section consists of two stages. For a source block x E R" 

it estimates the unknown parameters fi rst by the maximum-likelihood estimation and 

transmits the estimated parameters in a quantized form to a decoder. Secondly, it 

determines codewords for the source block by using the estimated and quantized pa­

rameters. In this two-stage encoding strategy precision of the transmitted parameters 

should be determined in order to make effects caused by a gap between true parameters 

and the transmitted ones negligible subject to a constraint on rate. 

In Section 2.4.1 the encoding scheme proposed in Section 2.2 is slightly modified for 

encoding of memory less gaussian sources with known mean J.l and variance CJ 2 Another· 

aspect of asymptotic properties of the scheme is deduced from a viewpoint to evaluate 

the probability that source blocks are not encoded within an acceptable distortion . 

Extension of the encoding scheme for memoryless gaussian sources with unknown pa­

rameters is discussed in Section 2.4.2. Asymptotic properties of the universal data 

compression scheme are competitive with the one for the sources with known mean 

and variance, though extra~ log2 n + Const. bits are required per unknown parameter 

for encoding a source block of blocklength n. 

2.4.1 Modified Encoding Algorithm for the Sources with 

Known Paramet ers 

The mapping defined in (2.7), (2.8) and (2.9) is intended to encode outputs of the 

memory less gaussian source of zero mean and unit variance. They should be modified 

·As far as encoding of memory less gaussian sources is considered, there arc at most two unknown 

parameters. Since there is only one unknown parameter in the case that only mean or variance 

is unknown , expression such as "unknown parameter(sr' should be used. For simplicity, however, 

terminology of "unknown parametcrs 11 is used fo r sources with one unknown parameter. 

27 



in a form applicable to the memory less gaussian sources of mean IL and variance a 2 

The rate-distortion function for the source is written as 

1 (J2 

R(D) = 21og2 D' (2.64) 

[2 , 4, 5). Fix any distortion level 6, E (0, a 2 ). Since the probability that source 

blocks are encoded within the distortion level is of interest, another form of asymptotic 

optimality of the proposed scheme is claimed in this section. 

Let A = { a 1 , a2 , . .. , aL} and C = { c1 , c2 , ... , cL} be two sets of non-negative num­

bers satisfying the following two conditions: 

C4) The elements of A and C satisfy 

(2.65) 

C5) The element a1- satisfies aL 2: nt+<> for a fixed and positive constant cr. 

A scalar quantizer of the block gain is characterized by A and C. It is easy to see that 

conditions C4) and C5) are weaker than (2.6) and C1) , respectively. Define (by 

(2.66) 

where max{ x, y} = y if x :S y and x otherwise. Conditions such as C2) and C3) are 

not imposed here since they are rather artificial conditions to guarantee the asymptotic 

optimality in a sense of the source coding theorem. 

The shape of source blocks is quantized by y· 

following three conditions: 

o ))Yml)2 = 1 for all m = 1, 2, ... , M. 

o The cardinality of y· is 

i.e ., ~ log2 M = R(t,) , 
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o For any z E S"-1 and 6 E (O,u2 - 6) define x(z,Y") by 

") { 0, if there exists y E y · satisfying 
x(z,Y = 

1, otherwise. 

(x,y) ~ ,j1- ~, 
(2.68) 

Then, there exists (3 = (3( 6) > 0 satisfying 

1 { • 
[S"-1[ ls·-• x(z,Y )dz ~ exp[-exp(nfJ)], (2.69) 

where the integral in the left hand side of (2.69) denotes the surface integral on 

sn-1. 

Existence of y· with all of these three properties is established by the same way used 

for obtaining (2.30) in Lemma 2.2. Inequality (2.69) means that the ratio of the surface 

area on S"- 1 not satisfying ma.x (z, Ym) ~ ,j1 - ~ to the total surface area [S"- 1[ 
l$.m'5M c 

converges to 0 of double-exponential order of n. 

Now, the mappings (2. 7),(2.8) and (2.9) are modified to the sources with mean J1. 

and variance u 2 as follows: 

<p 1(x) = arg max (x -J-L, y), 
Y EY· 

(
X- jJ. ) 'P2(x) = c, such that a,~ -

17
-,<p1(x) <at+!, 

<p(x) = 1-' + "'P2(x)<pJ(x), 

(2.70) 

(2.71) 

(2.72) 

where J-L = (Jl., Jl., .. . , Jl.f, aL+I is interpreted as infinity and arg max in (2.70) means 

the argument y E y · maximizing the inner-product (x- J-L , y ). Encoding is described 

by three mappings <p1 : R " -+ y·, 'P2 : R " -+ C and <p : R " -+ C x y·. 

Rate required for transmitting a source block x E R " is 

n <72 
R, = 2 log2 6 

+ log2 L . (2.73) 

The first term and the second term in (2. 73) are the rate for transmitting indices of 

<p1(x) and <p2 (x), respectively. Distortion between x ru1d <p(x) is defined by 

D,(x,<p(x)) = [[x- <p(x)[[~. (2.74) 

Notice that both (2.73) and (2.74) are defined not per symbol but per source block, 

while in the preceding sections rate and distortion per source symbol are discussed. 
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As in the same manner used in the proof of Lemma 2.1, D,(x, cp(x )) is represented 

in the following form: 

where 

and 

D,(x,cp(x)) = Jlx- cp(x)ll~ 

= Jlx- f-L - <7'P2(x)<pt(x)JI~ 

= Jlx- f-L - (x- f-L ,<p1(x))cp1(x) + (x- f-L ,<pt(x))cpl(x)- <7'P2(x)cp 1 (x)JI~ 

= Jlx- !-' - (x - f-L ,<p 1 (x))cp 1 (x)JI~ 

+ Jl(x- f-L ,<p1(x))cp1(x)- "'P2(x )cpt(x)ll~ 

= Jlx- I-' ll~ [1 - ( 
11
; _=- ;

11 2
, 'PI( x ) / ] + u2

1 ( x: ~-' ,'PI (x)) - 'P2(x )r 
~ D!Jhape + Dgain, (2.75) 

(2.76) 

(2 .77) 

The following theorem characterizes another aspect of asymptotic property of the map­

ping defined in (2.70), (2.71) and (2.72). 

Theore m 2.3 Let f::o. E (0, u2
) be a distortion level arbitrarily fixed. Choose A and C 

satisfying C4) and C5) arbitrarily. Then, for any 8 > 0 and 1': E (0, 1) there exists an 

integer no = no( 8, 1':) satisfying 

Pr(D,ha1,. :S: n(!:J. + 8)) > 1- E (2.78) 

and 

(2.79) 

for all n >no. 

P roof: Fix 8 > 0 and E E (0, 4) arbitrari ly. For 81 > 0 and 82 E (0, u2 - !:J.) define 

events E 1, E2 and E3 as follows: 

(2.80) 
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(2.81) 

(2 .82) 

where X = (X1, X 2 , ... , X,)r E R " denotes a random vector that satisfies X; ~ 

N(p, a 2 ) for all i = 1, 2, .. . , n. Denote by Ef, i = 1, 2, 3 the complement of the events 

E, . Note that Ej and E2 imply 

and 

[ ( 
X - 11- )

2
] 6. + 82 

1 - IIX- 11-l l2' cp1(x ) :::; ~· 
respectively. Hence, D,haJ>e is evaluated under the events Ef n E2 as follows: 

2 6. + 82 
D ,hape :S: n(a + 81)--2 -, 

a 

(2.83) 

(2 .84) 

(2.85) 

which becomes less than n(6. + 8) by choosing 81 and 82 that sat isfy ~81 + 82 + ~ :::; 
6. On the other hand, event E3 means that Dgain becomes less than a 2 ( 2 from the 

definition of(. 

Therefore, it is important to evaluate the probability of the events E 1 , E 2 and E3 . 

By the weak law of large numbers, for any 61 > 0 there exists an integer n 1 satisfying 

Pr(E1) <~for all n > n1 . Moreover, there exists an integer n2 t hat sat isfies E3 C E 1 

for all n > n2 since a is a fixed and positive constant. By setting n3 = max{ n 1, n2}, 

Pr(E3) < ~ < E for all n > n3. 

Now, Pr(E2) is evaluated. The property (2.69) plays an important role. Probability 

Pr(E2 ) is evaluated in the following manner: 

(27ra2 t~ roo exp [-~] cb·. r x(z, Y")dz 
Jo 2a2 Jz ES"-' 

:S: exp[- exp(n,6)], (2.86) 
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where (2.69) is used to obtain the last inequality in (2 .86) . Equation (2.86) implies 

the existence of an integer n4 satisfying Pr( E 2 ) < ~ for all n > n4 . Hence, the union 

bound leads to 

(2.87) 

for all n > max{n1, n4 }. The proof of this theorem is completed by setting n0 = 
n1ax{ n 1, n3, n4}. D 

2.4.2 Universal Encoding Algorithm for the Sources with 

Unknown Parameters 

In this section a universal data compression algorithm for memory less gaussian sources 

with unknown mean or variance is discussed. There are three cases as follows: 

(a) only 'Lis unknown, 

(b) only u 2 is unknown, 

(c) both 'L and u 2 are unknown. 

In each case one of the following,assumpt ions are imposed on the unknown parameters: 

Al) the unknown parameters lie in a known and closed domainS, 

A2) for any £ > 0 there exists an integer n0 satisfying that the probability that the 

unknown parameters belong to a known and closed domain S is greater than 1-£ 

for all n > n0 . 

Hereafter, Al) is assumed. However, all of t he results can be eas ily extended to the 

case of A2) being assumed. 

An encoder proposed here estimates them by using the ma..ximum- likelihood esti­

mators. The ma..ximum likelihood estimators of JL and u2 are denoted by p.,~~ L and 

; 2ML, respectively. In case of (a),(b) and (c), the ma..ximum-likelihood estimators are 

written in the following form: 

32 



(a) 

(b) 

(c) 

1 n 

fi.ML =-LX;, 
n i=l 

1 n 

fi.ML =-I:; X;, 
n i=l 

•2 - 1 n . - • 2 
a ML-- L(X, f.i.ML) , 

n i=1 

where X= (X1,X2 , ... ,X,.JT denotes ann-dimensional random vector from the 

source. It is well-known that the ma..ximum-likelihood estimator has asymptotic nor­

mality, i.e ., the probability density function of fi.u L and ; 2 ~!L converges in distribution 

to a normal distribution as the sample size n tends to infinity. For example, 

(2.88) 

in case (a), and 

(2.89) 

in case (b) for sufficiently large n . 

However, the encoder cannot transmit the estimated parameters obtained from the 

maximum-likelihood estimators since they generally take real values and infinitely large 

number of bits are required for transmitting them. The encoder can only transmit a 

quantized value of the estimated parameters. For going through this difficulty, a net 

that covers the known domain S is introduced. Denote by [1. and ; 2 the estimated 

and quantized parameters. Figure 2.2 shows how the net covers the two-dimensional 

parameter space S in case of (c). Crosses of the net correspond to the candidates of 

the pair ([1., ;2). 

Asymptotic normality of the ma..ximum-Jikelihood estimators is crucial to determine 

a mesh of the net. Consider case (a), for instance. From the asymptotic normality of 

the maximum-likelihood estimators, for any c: E (0, 1) there exists J( > 0 satisfying 

(2.90) 
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for sufficient large n. Let the mesh be equal to 2K -J,; and choose j1 which is the 

nearest to ilM L among the candidate of jl. It is obvious from the choice of j1 that 

lil- ilM Ll < 2K -J,; is satisfied. Since the triangle inequality implies that 

(2 .91) 

(2.90) leads to 

(2.92) 

Since there are 0( fo) candidates of the estimated parameters, ( 41og2 n +Canst .) bits 

are required for transmission of jl. 

In cases of (b) and (c), unknown parameters are estimated by the maximum­

likelihood estimator and quantized in the same way. However, O"~,ax ~ max 0"
2 is 

a 2 ES 

used instead of 0"
2 since 0"

2 itself is unknown. From the assumption on S, O"~ax will 

be finite. The number of bits required for transmission of the estimated parameters 

are (4log2 n +Canst .) bits and (log2 n +Canst.) bits in case (b) and in case (c), 

respectively. Figure 2.2 shows sizes of mesh in case of (c) . 

• Case (a): Only J.l is unknown 

In this case, jl = (P,, jl, . . . , p,f replaces J..L = (J.l, 1', ... , ,.,y in the mappings (2.70), 

(2. 71) and (2. 72) that define encoding. For a given source block x E R ", rate Rn 

required for transmitting x is written as 

n 0"2 1 
R, = 2log2 !::,. + log2 L + 2log2 n +Canst ., (2.93) 

where the third and the forth terms in (2.93) correspond to a cost for transmitting 

jl. As in the same manner that yields (2. 75), D( x, cp( x)) is evaluated in the following 

form: 

Dn(x ,cp(x)) 

~f D shape + Dgain 1 
(2 .94) 
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where 

and 

D,h.,. = 11x - JLII~ [1 -(
11

; ~ f
1
b.¥?r(x)rJ 

D gain=a
2l(x:jL, ¥?1(x))- ¥?2(xf 

(2 .95) 

(2.96) 

The following theorem indicates an asymptotic property of D,hape and Dgain· The 

asymptotic property described in Theorem 2.3 and Theorem 2.4 are of the same form 

though extra ~ log2 n +Canst. bits are required in the latter case. 

Theorem 2.4 Let 6. E (0, a 2) be a distortion level arbitrarily fixed and choose A and 

C satisfying C4) and C5). Then, for any 6 > 0 and c: E (0, 1) there exists an integer 

no = no( 6, c:) satisfying 

Pr(D,/wpe :S n(6. + 6)) ~ 1- C: 

Pr(Dgain :S a 2
(

2
) ~ 1- C: 

for all n >no. 

(2.97) 

(2.98) 

Proof: Fix 6 > 0 and c: E (0, 1) arbitrarily and let c:' E (O,c:) be a real number 

satisfying 0 < c:' < E: . For 61 > 0 and 62 E (0, a2 - 6.) define four events as follows: 

EI ~~II_;- iLII ~- a
2[ > 61, (2.99) 

E2 ( X - jL ) v 6. + 62 
IIX - iLII2'¥?r(X) < 1 - ~· (2.100) 

E3 IIX- iLII ~ > a2n 1+2"", (2.101) 

E, I"- i<l > 3K fo' (2 .102) 

where X denotes an n-dimensional random vector from the source. The definition of 

[( leads to the existence of an integer n 1 satisfying Pr(E~) < c' for all n > n1 . Under 

the event E~, Il l-' - JLI I~ is upper-bounded as 

- 2 (3J(a)2 .· 2 Ill-'- 11-ll2 :S n .jn = 91\a, (2. 103) 

which implies that Il l-' - JL II~ and Il l-' - iLib are of constant order. For proving this 

theorem, existence of integers n2 and n3 satisfying Pr(EdE~) < t:' for all n > n 2 and 
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Pr(E2 fE~) < c:' for all 11 > 113 should be established. The proof on the existence of such 

113 is lengthy and given in Appendix B. 

Now, Pr(E1 IE~) is evaluated. Note that the triangle inequality yields 

(2.104) 

If for any fixed o; E (0, cr2 - 6) 

(2 .105) 

is satisfied, under the event E~ (2.103) and (2.105) guarantee the existence of 61 satis­

fying 

(2.106) 

and 0 < 61 < o; for sufficiently large 11. Notice that (2.106) is equivalent to the event 

E 1. Since the weak law of large numbers guarantees the existence of an integer 112 

satisfying that the probability of the event (2.105) is less than c:', Pr(E1) < c:' follows 

for all integers 11 > 112 . 

Under the event Ef n E2 n E~, D,hape is evaluated in the following manner: 

D.shape 
2 6 + 0? < 11(cr + 6!)--

2
-­

cr 

< 11(6+6), (2.107) 

where the last inequality follows by choosing 61 and 62 satisfying ~61 + 62 + ~ ::; 6. 

The probability of this event is lower-bounded in the following way: 

Pr(EI n E2 n E~) Pr(E~) Pr(Ef n E21E~) 

2 Pr(E~)( 1 - Pr(EdE~)- Pr(E2IE~)) 

> (1- r')(l- 2r') 

where the last inequality follows for all 11 > ma._x{ 11 1 ,112 , 113 }. 

(2.108) 

On the other hand, Dgain is not greater than cr2( 2 under the event E!J n E~. The 

definition of cr leads to the existence of an integer 114 satisfying E3 C E 1 for all 11 > 114, 

and hence Pr(E3 fE1) < Pr(EdE~) < c. Probability of the event E!J n E~ is evaluated 
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in the following way: 

Pr(E3 n E~) Pr(E~) Pr(E31E~) 

> Pr(En(1 - Pr(E3IE~)) 

> (1-c'?. (2.109) 

By choosing E:
1 satisfying max{3c'- 2c'2 , 2c'- c'2 } < E:, (2.108) and (2.109) imply the 

claim of this theorem. 0 

• Case (b): Only a 2 is unknown 

In this case, ;;;;. is used in the mapping (2 .70), (2.71) and (2 .72) instead of a. For 

any E: > 0 the mesh ]( of a net in the parameter space satisfying 

Pr (1a2- ;zl > 3I?nax) < E: (2.110) 

is chosen. Define the cardinality of y· by 

(2.lll) 

and use y· = {y1, y 2 , . .. , y M} for quantizing a source output x. Then, rate required 

for transmitting x is written as 

n a2 1 
Rn = 2log2 6 

+ log2 L + 21og2 n +Canst., (2.112) 

which is upper-bounded by 

n 02 3]( a?nax c 1 
R < 2logz 

6 
+ 2Tvn + log2 L + 21og2 n +Canst. (2.113) 

with probability 1- E:, i.e., whenever la2
- ; 21 > 3 /{J.i" is satisfied. Inequality (2.113) 

clarifies the fact that extra cost of 0( .jn) bits is required by the unknown variance. 

Distortion between x and cp( x) is divided in order to represent distortion in shape 

and in gain as follows: 

D,(x,cp(x)) llx- J.LII~ [1- (
11

: ~ :llz''PI(x)/] 

+ ;21\ x;i, 'PI(x))- cpz(x)l2 
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where 

and 

D,hape = [[x- ~~~~ [1- ( [[: ~ ~~ 2 , \Ot(x) /] 

D 9a;, = ~2 [( x/1, \Ol(x))- 102(x)l

2 

(2 .11 5) 

(2 .116) 

The following theorem characterizes an asymptotic property of this encoding scheme 

with respect to the distortion, which is of the same form as Theorem 2.3. 

Theorem 2.5 Choose A and C satisfying C4) and C5) arbitrarily. For any fixed dis­

tortion level!:,. E (O,a2),8 > 0 and c: E (0, 1) there exists an integer n0 = n0(A,C,8,c:) 

that satisfies 

Pr(D,hape :S n(!:,. + 8)) > 1- C: (2.117) 

and 

(2.118) 

for all integers n > n0 . 

Proof: This theorem is proved by using the same manner that has already developed 

in the proof of Theorem 2.3 and Theorem 2.4. Fix 8 > 0 and E: E (0, 1) arbitrarily and 

for 81 > 0 and 82 E (0, a 2 - !:,.) define four events as follows: 

(2. 119) 

(2. 120) 

(2.121) 

(2 .122) 

For any c' > 0 it is clear that there exist in tegers n 1 and n 2 that satisfy Pr(E2) < c' 

for all n > n 1 and Pr(E4 ) < c' for all n > n2 by virtue of y· and the choice of K, 

respectively. 

Since E3 C E 1 for sufficiently large n and the gap between a 2 and ~2 is of order 

0( t, ), the weak law of large numbers guarantees the existence of an integer n3 satis­

fying Pr(E3[E.j) < Pr(E1[E4) < c' for all n > n3. Under the event Ef n E2 n E4, D,hape 
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is evaluated in the following manner: 

(2 .123) 

by the appropriate choice of 61 and 62 . Probability of the event E]nE2nE4 is evaluated 

in the following way: 

Pr(Ef n E2 n E~) Pr(E2) Pr(E~)(1 - Pr(EfiE~)) 

> (1- E')3, (2.124) 

where independence of events E2 is used to deduce (2.124), which becomes greater than 

1 - E by choosing E
1 appropriately. 

Evaluation on Dgain in (2.118) is essentially the same as already discussed in the 

proof of Theorem 2.4 and therefore omitted. D 

o Case (c): Both J.L and a 2 are unknown 

Now, a universal data compression scheme for memoryless gaussian sources with 

unknown mean and variance is discussed. In this case, jJ. and {;;;. is used in the 

mappings (2.70), (2.71) and (2.72) instead of'' and a, respectively. Let B denote the 

pair (J.L,a2 ) and {JML denote the pair (fi.ML,d2M£). Then, the asymptotic normality 

of the maximum-likelihood estimators guarantees that fo(B- BAn)~ N(O,J(B)- 1), 

where 

(2 .125) 

is the Fisher information matrix. The form of I(B) in (2.125) implies that iJ.M Land d2 M L 

are independently distributed in an asymptotic sense. Therefore, for any E E (0, 1) J(~ 

and I<u with the following property can be chosen: 

( 
_ K~a"'"' 2 - Kua~'"') Pr IJ.L-''Md> Vn or Ia -a2MLI> Vn <E. (2.126) 

By introducing a net with mesh K,, on the mean and Ku on the variance, the estimated 

parameters it and d2 satisfying the following property is obtained: 

Pr (iJ.L- itl > 3!{/,a,ox or ia2- ;2MLI > 3Kua;nox) <E. 

Vn Vn 
(2.127) 
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Since there are two parameters to be transmitted, rate of the code can be written 

as 
n ;2 

Rn = - log2 - + log2 L + log2 n +Canst., 
2 /::,. (2.128) 

which is upper-bounded by 

n CJ 2 3KCJ2 1 
R, = -log2 - + ~2 ax ,fii + log2 L + - log2 n +Canst. 

2 /::,. 2CJ 2 (2.129) 

with probability 1 - ~;from the property of (2 .127). Notice that the coefficient of log
2 

n 

in (2.128) becomes double compared with the one in (2.112). 

For a given source block x, D(x, <p(x )) can be separated in the following manner: 

Dn(x, <p(x)) = llx- it II~ [1 -(II:_=-:lh, 'Pl(x) /] 

+ ; 2 1( x;;t ,<p1(x))- <p2(x{ 
c!£1" D.shape + Dgain, (2.130) 

where 

(2.131) 

and 

(2 .132) 

The following theorem shows an asymptotic property of D,;wpe and D
9
a;, with 

respect to the increasing blocklength, which is also in the same form as Theorem 2.3 

Theorem 2.6 For any fixed distortion level/::,. E (0, CJ 2
), 8 > 0 and~; E (0, 1) there 

exists an intege1· n0 = n 0( 8, <) that satisfies 

Pr(D,hape :": n(!::,. + 8)) > 1- < (2.133) 

and 

(2.134) 

joT all integeTs n > n0 . 
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Proof: This theorem is proved by using the same method that establishes Theorem 2.4 

and Theorem 2.5. Therefore, only outline is given here. Fix 6 > 0 and c E (0, 1) 

arbitrarily and for 61 > 0 and 62 E (0, CJ- .6.) define four events as follows: 

I 2 .21 _3_J(__::"c.,(J~~"-''a"'-x (J -(J > ..;n 

(2.135) 

(2 .1 36) 

(2 .137) 

(2. 138) 

For proving this t heorem, it is necessary to show the existence of an integer n 1 

satisfying Pr(E~) < t', Pr(E1 IE~) < c', Pr(E2 IE~) < c1 and Pr(EJIE~) < E:
1 for all 

integers n > n 1. Then, under the event Ef n E2 n E4 D,hape does not become greater 

than n(.6. + 6) and the probability of this event is greater than 1 - c if 61,62 and c' 

are appropriately chosen. On the other hand, D9a;n becomes less than CJ 2 ( 2 under the 

event E!J n E4 . The probability of this event is also greater than 1 - E: by choosing E:
1 

judiciously. This completes the proof of this theorem. 0 

2.5 Encoding of Other Continuous Sources 

Theorem 2.1 proved in Section 2.3.3 shows that the encoding scheme proposed in 

Section 2.2 has the asymptotic optimality in the sense of the source coding theorem 

for memoryless gaussian sou rces of known mean and variance under the squared-error 

criterion. Though the rate-distortion fun ct ion defined by (2.14) is an infimum of the 

mutual information subject to a constraint, its form naturally appears in the analysis of 

(2.56) as a limi t of covering bound. In th is section encoding of other continuous sources 

is discussed. The rate-distortion function for the sources are also defined by (2.14) . The 

source coding theorem guarantees the existence of an asymptotically optimal block code 

that achieves the rate-distortion bound for an arbitrari ly distortion level. However, few 

codes are proved to achieve the bound. One of reasons why such codes are unknown is 

that the rate-distortion function is rarely expressed as an explicit function of distortion 

levels. 
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Memoryless Laplacian sources is one of the sources that the rate-distortion func­

tion is expressed as an explicit function of distortion levels. In Section 2.5.1 encoding 

for memoryless Laplacian sources is considered from a viewpoint of n-dimensional Eu­

clidean geometry. A geometrical interpretation of the Shannon lower bound is given in 

Section 2.5.2, which is obtained as a byproduct from such geometrical approach. 

2 .5.1 Encoding of M emoryless Laplacian Sources 

The memoryless Laplacian source with probability density function 

>. 
p(x) = 2 exp[->.[x[), 

1 
E[x[ = >: 

is a source that the rate-distortion function is expressed explicitly as 

1 
R(D) = log2 >.D' DE (0, ±J 

under the magnitude-error criterion, that is, d(x, y) = [x- y[. 

(2.139) 

(2.140) 

Let X= (X1,X2 , ... ,X,.JT be a random vector from the memoryless Laplacian 

source with probability distribution (2.139). It is easy to verify that 

,\ 
(2.141) 

and 

[ 
1 " ] 1 V - L [X;[ = -2 . 
n k=l >. n 

(2.142) 

Equations (2 .141) and (2.142) suggest that source blocks of blocklength n will concen­

trate on neighborhood of the hypersphere 5 1 ( n, V, where for all v ~ 1 and r ~ 0 

Sv(n,7·) = {x E R" [l[x[[v = r) (2 .143) 

and [[x[[v denote the norm defined in (2.2). Therefore, it is quite natural to use a code 

whose all elements belong to 5 1 (I). There are many vector quantizers with a code book 

based on such idea. [17, 18, 19, 20, 21]. In particular, Fischer's treatment [20] includes 

a discussion of the asymptotic optimality with increasing the blocklength. For any 

distortion level!;,. E (0,±) he shows that a codebook of size(;~)", i.e., ~log2 M = 

R(6), generated by choosing randomly and independently points on 5 1 (n, I) has the 
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asymptotic optimality with respect to the blocklength . However, his analysis includes 

a mistake as is shown in Appendix C. Therefore, finding an asymptotically optimal 

encoding scheme for memoryless Laplacian sources is still an open problem. 

2.5.2 Geom etrical Interpretation of the Shannon Lower Bound 

The rate-distortion funct ion for memoryless continuous sources is defined as an infi­

mum of the mutual information subject to a constraint on expectation of single- letter 

distortion. However , it is rare to represent the infimum as an explicit function of 

the distortion levels even for simple memoryless sources and fidelity criterion . The 

Shannon lower bound, denoted by RL(D.), appears when the Lagrange multipl iers are 

introduced for finding the infimum in (2.14)[2]. The Shannon lower bound is one of 

lower bounds of the rate-distortion function that is useful when a single-letter distor­

tion measure d(x, y) is a function of x- y. Though achievablity of them by block codes 

is not guaranteed, they are explicitly represented as a function of the distortion levels 

for a certain class of memoryless continuous sources. The Shannon lower bound for 

Laplacian memory less sources of zero mean and the first-order absolute moment ± and 

memoryless gaussian sources of zero mean and variance CJ2 are listed in the fo llowing 

table: 

magnitude-error criterion squared-error criterion 

Laplacian 
1 

log2 .\D.· 
1 2e 
2log2 .>,27rD. 

Gaussian 
1 7r(J2 
2log2 2eD.2 

1 (J2 

2log2 D.. 

where d(x, y) = lx- Yl and d(x, y) = (:t- yf under the magnitude-error criterion and 

the squared-error criterion, respectively. The Shannon lower bounds with an asterisk 

are coincident with the rate-distortion functions; they are asymptotically achievable by 

a block code. 

Surprisingly, these four bounds are also obtained by computing the ratio of volume 

of n-dimensional hyperspheres. Fix any distortion level D. > 0 and let Vv(n, 1") be the 
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n-dimensional volume inside of Sv(n,r). By a simple calculation, V1(n,r) and V2(n,r) 

are written as follows: 

(2.144) 

where f(·) denotes the gamma function. In case of the Laplacian sources, (2.141) and 

(2 .142) suggests the importance of considering 51(n, ~) and V1(n, ~). In case of the 

gaussian sources, if X = (X1 ,X2, ... ,Xnf is a random vector from the source, it is 

easy to verify 

(2 .145) 

which imply the significance of 52(n, ~) and V2(n, ~). For any y E R " the 

n-dimensional volume of the region { x E R " I dn( x, y ) :<::; 6} is equal to V1 ( n, n6) if 

d(x, y) = lx- Yl and V2(n, Ji16) if d(x, y) = (x- y)2 How many Ym, m = 1, 2, ... M 

satisfying that {x E R "ldn( x , y m) :<::; 6} does not overlap for all rn = 1,2, ... M 

can be chosen in S 1(n, ~)or S2(n, ~)? The following theorem indicates another 

interpretation of the Shannon lower bound from the viewpoint of evaluating an upper­

bound of M. 

Theorem 2. 7 Let 6 E (0, ±) be a distortion level arbitmrily fixed . Then, the Shannon 

lower bounds fo1· the memoryless Laplacian source of zero mean and first-order absolute 

moment ± are obtained by the following calculation: 

1 
log2 ,\6

, 

1 2e o(log2n) 
2log2 ,\27f6 + -~-1- . 

(2.146) 

(2. 147) 

For mem01·yless gaussian sources of zero mean and vcwiance CJ
2 , the Shannon lower 

bounds m·e deduced by the following calculation: 

(2.148) 

(2.149) 
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Proof: Both (2 .146) and (2.149) immediately follow from (2.144). For establishing 

(2.147) and (2.148), the Stirling formula is used to evaluate the ratio of n-dimensional 

hyperspheres. However, the evaluation is not difficult and omitted. D 

Note that n-dimensional hyperspheres are similar in the case of (2.146) and (2.147). 

By using the similarity, results in Theorem 2. 7 are extended to the memory less source 

with probability density function 

(2.150) 

under the single-letter fidelity criterion d(x, y) = (x- y)", where 

(2.151) 

and v is an arbitrary constant satisfying v ?. 1. The two constants C1 and C2 are chosen 

so that (2.150) becomes the probability density function satisfying EIXI" = Mv· The 

Shannon lower bound for the source with probability density function (2.150) can be 

computed as 

( ) 
1 Mv 

RL D = -log2 -, 
v /::,. 

DE (O,Mv] (2.152) 

by a. conventional way using the Lagrange multipliers, while it is obvious that 

1 I 1fv(n, \lnMv) (A) - og2 = RL u 
n Vv( n, Y"i1.6) 

(2 .153) 

for all !::. E (0, Mv) from the similarity of Vv(n, \lnMv) and Vv(n, Y"i1.6). Equations 

(2. 146) and (2. 149) directly follow by setting v = 1 and v = 2 in (2.153) though 

a.chieva.blity of the bound (2.152) is not guaranteed. 

2.6 Conclusion 

In this chapter rate-distortion behaviors of a. block coding algorithm for compression of 

memoryless gaussian sources are analyzed in detail under the squared-error criterion. 

Geometric properties of the n-dimensional Euclidean space play an important role in 

the analysis. 
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First, the block encoding algorithm is proposed in Section 2.2 for memoryless gaus­

sian sources with known mean and variance. Source blocks of blocklength n are treated 

as elements in n-dimensional Euclidean space and encoded by a scalar quantizer and 

a point of set on the n-dimensional unit hypersphere. In the case of zero mean and 

unit variance, for any source block x the scalar quantizer encodes ll:z:ll2 and the set of 

points encodes :z:/llxll2, where llxll2 denotes the Euclidean norm. 

Rate-distortion properties of the algorithm are analyzed in Section 2.3. Given any 

distortion level, it is shown that the scheme achieves the rate-distortion bound with 

increasing the blocklength. Upper bounds for asymptotic behavior of rate and average 

distortion are given, which describe the trade-off relationship between the rate and 

the average distortion more tightly and clearly than Sakrison 's results. The most 

dominant terms in the asymptotic behavior only depends on the scalar quantizer. The 

rate-distortion function is naturally deduced as an essential limit of data compression 

though it is originally defined as an infimum of the mutual information subject to a 

constraint on expected single-letter distortion. 

In Section 2.4 the algorithm is extended to a form that is applicable to the mem­

oryless gaussian sources with unknown mean or variance. Given an n-tuple of source 

block, encoding consists of two steps in the extended algorithm. Firstly, an encoder 

estimates the unknown parameters by using the maximum-likelihood estimators and 

transmits them to a decoder in a quantized form. Secondly, by using the quantized 

parameters it encodes the source block as if the parameters were known and transmits 

the codeword to the decoder. The extra cost on rate for transmitting the unknown 

parameters is ! log2 n +Canst. per unknown parameter. The asymptotic normality 

of the maximum likelihood estimators leads to the cost, which means an application 

of the MDL( Minimum Description Length) criterion to data compression with fidelity 

criterion. It is shown that with probability arbitrarily close to 1 the source block of 

blocklength n is encoded within an acceptable distortion for sufficiently large block­

length whether or not parameters are known. 

Applications of the proposed analyses to other continuous memoryless sources are 

discussed in Section 2.5. As a byproduct of the proposed analysis, a geometrical inter­

pretation of the Shannon lower bound is clarified for memory less gaussian sources and 
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memoryless Laplacian sources under the magnitude-error criterion and the squared­

error criterion. In such cases a ratio between n-dimensional volumes yields the Shan­

non lower bounds. A class of memoryless sources that the Shannon lower bound can 

be obtained in the same way is also obtained . 
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Chapter 3 

Asymptotic Properties of Data 

Compression Algorithms with 

Fidelity Criterion Based on String 

Matching 

3.1 Introduction 

Development of data compression schemes with fidelity criterion is important for the 

sake of practical applications such as image and speech encodings. A theoretical ba­

sis for the data compression methods with fidelity criterion is described in detail by 

Berger [2). Given any stationary and ergodic data sequences, it is shown that the 

rate-distortion bound is asymptotically achievable by a block code with increasing the 

blocklength under fidelity criterion. However, explicit construction of the asymptoti­

cally optimal block code remains unsolved even for simple memoryless sources. 

On the other hand, many lossless data compression schemes, such as compress 

command in U IX operating system, are now in use. In the case of lossless data com­

pression if sources are stationary and ergodic, achievable compression efficiency is the 

entropy rate . In particular, the Lempel-Ziv codes [7, 22) are well-known as asymp­

totically optimal uni,·ersal codes in a sense that the entropy rate is asymptotically 
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achievable without prior knowledge of the sources. The encoding scheme described in 

[7] is based on string matching. A theoretical basis of the scheme from the viewpoint 

of evaluating a recurrence time of sequences is proposed by Willems [23] and Wyner 

and Ziv [24] and completed by Ornstein and Weiss [25]. Let X = {Xt}~-oo be a 

sequence of random variable from a stationary and ergodic source with finite alphabet 

A. Denote by x = {xt}~-oo a realization of X and define 

M,.(x) = min{A•I;::: 0 : X1X2 · · · x,. = X-M-(n-l)·"LM-(n-2) · · · x_M }. (3.1) 

Convergence in probability of ~ log2 M,.(X) to the entropy rate is shown in [24] and 

convergence of~ log2 M,.(X) with probability one is proved in [25]. 

Recent studies on data compression schemes with fidelity criterion [26, 27, 28, 29] 

attempt to realize the asymptotically optimal encoding scheme in a universal way while 

classical results on universal data compression with fidelity criterion [30, 31, 32] only 

formulate an achievable rates subject to a constraint on distortion. In particular, an 

extension of the Lempel-Ziv encoding scheme is discussed by Steinberg and Gutman 

[26]. For a stat ionary and ergodic sequence x = {xt}~_00 , x1 E A and appropriately 

given distortion level !:;. > 0 define 

(3.2) 

where x{ denotes Xi Xi+ I · · · Xj for any i :S j and d,. is a distortion measure defined on 

A" x A" satisfying certain properties. It means a recurrence time with fidelity criterion. 

Reference [26] shows that for any t: > 0 

J!_:1JoP{~log2 M,.(X,!J.)>R(%)+ c: }=o (3.3) 

for a class of totally ergodic sources, where R(-) is the rate-distortion function of the 

source and P denotes a probability measure on random variables X = {Xt}~-oo from 

the source. Quite recently Kanaya and Muramatsu [33] shows that for any t: > 0 

~ log2 R,. ( x , tJ.) :S R (%) + t: with probability one (3.4) 

for a class of stationary ergodic sources, where 

(3.5) 
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Though (3.3) and (3.5) shows that R(%) becomes an upper-bound in probability of 

* log2 Mn(X, 6) and an upper-bound of* log2 R,,(X, 6) with probability one, they are 

not equal to the rate-distortion bound at distortion level 6. Therefore, these result does 

not directly imply the asymptotically optimal data compression scheme with fidelity 

criterion while results in [24, 25] are exactly bases of a lossless data compression scheme. 

In this chapter tighter bounds of* log2 Mn(X , 6) are deduced in the following two 

cases: (i) discrete memoryless sources with finite alphabet under single-letter fidelity 

criterion, and (ii) memoryless gaussian sources under the squared-error criterion. Case 

(i) is discussed in Section 3.2. First, an upper-bound in probability of* log2 Mn(X, 6) 

is deduced. For the source with probability distribution p it is shown that for any 

c: > 0 the probability *log2 M,(X,6) being greater than R(p,6) + D(p*[[p) + c: 

goes to zero as n tends to infinity, where R(p, 6) denotes the rate-distortion bound 

at distortion level 6 , p· denotes output probability distribution of the test channel 

and D(p*[Jp) denotes the divergence from p top·. The result leads to a sufficient 

condition that * log2 M,(X, 6) is upper-bounded in probability by the rate-distortion 

bound itself when pis known. In fact, it converges in probability to R(p, 6) under the 

probability measure P(:_oo,OJ x P[I,ool• where P and p· denotes the probability measure 

on X = {Xt}~-oo induced by p and p· , respectively and Pli.il and P1;JI denotes their 

restriction to X;X;+I ···Xi. The result not only shows the sufficient condition but also 

provide a simple proof of the source coding theorem. Behaviors of * log2 M,(X, 6) 

under another probability measure are also discussed. 

Section 3.3 is devoted to analysis of asymptotic behavior of *log2 Mn(X,6) in 

case (ii ). As is discussed in Chapter 2, the angle between a source block and a re­

produced block closely relates with distortion levels when the two blocks are treated 

as elements of Euclidean space. If mean and ,·ariance of the sources are known, by 

introducing another way of matching based on the angle * log2 i\II,( X , 6) converges 

in probability to the rate-distortion bound under the probability measure induced by 

the sources. Comparison case (i) and case (ii) leads to an essential difference between 

the asymptotically optimal encoding schemes for the discrete memoryless sources and 

memoryless gaussian sources. That is, the asymptotically optimal encoding is realized 

by using an output sequence of the same source of known mean and variance while it 
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is quite difficult in case (ii) even if probabil ity distribution of the sources are known . 

Results obtained in the two sections are easily extended to a data compression 

algorithm with fidelity criterion. In the algorithm both an encoder and a decoder 

have a buffer of finite length whose contents are the same i.i.d . sequence. Given 

a source block of blocklength n, the encoder searches for the best-matched block in 

the buffer and transmits its index. The decoder reproduces the source block from 

the transmitted index. The obtained results are used for determining the length of the 

buffers or evaluating average distortion from a fixed buffer length. Results by computer 

simulation of the algorithm of finite n are also given in Section 3.3. 

3.2 D ata Compression for Discre t e M e moryless 

Sources 

This section is devoted to a data compression scheme with fidelity criterion for dis­

crete memory less sources of finite alphabet. In Section 3.2.1 a principle of encoding 

and decoding is given with in troducing several notations. Main results are stated in 

Section 3.2.2. A practical implementation of the data compression scheme is discussed 

in Section 3.2.3. 

3.2 .1 D efinit ions 

Let n > 0 be an arbitrary integer and A = { a.1 , a2 , . . . , a.J} a source alphabet. The 

cardinality J is assumed to be finite. Denote by p a probability distribution on A 

and by p(ai) the probability that symbol ai is generated. Let X = {Xd~-oo be a 

sequence of random variables from the source and x = {.7:k}~-oo a realization of X. 

For any i ~ j define .7:{ as a string x;x;+ 1 ... Xj. The probability measure on X induced 

by p is denoted by P. 

Let d: A x A --> [0, oo) be a single-letter fidelity criterion satisfying 

= 0, 

> 0, 
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for all j, k = 1, 2, . . . , J. Symmetry on d, i.e., d(aj , ak) = d(ak. aj ) for all j, k = 
1, 2, ... , J is not assumed . Distortion between u = u}' E A" and v = v)' E A is defined 

by 
1 n 

d,.(u,v) =- Ld(u; ,v;). 
n i =:I 

(3.7) 

The rate-distortion function is defined as 

R(p,D) = 

(3 .8) 

where I (p ; W) denotes the mutual informat ion and 

J J 

W (p , D)= { W is a J x J stochast ic matrix I L L p(a,)W(adai)d(aj, ak) s; D }. 
j=l k=l 

(3.9) 

The rate-distortion function R(p, ~) is the achievable lower bound in rate of data 

compression codes with fidelity criterion. It is positive for all ~ E [0, Dmax), where 

(3.1 0) 

Now, the problem temporally considered is described. For any realization x and 

distortion level~ E (0, Dmax) define M,.(x, ~)by 

M,.(x,~) = min{M ~ 0: x::~t:I+I)+I E B,(x;',~)}, (3.11) 

where for any u E A " 

B,.(u ,~) = {v E A" ld,.(u ,v) s; ~}. (3.12) 

Roughly speaking, ~ log2 M,(x, ~) bits per source symbol are required for transmis­

sion of the index M,(x, ~). How does ~ log2 M,.(x, ~) behave asymptotically? If 

~ log2 M,.(x, ~)converges in pmbability to R(p, ~),i.e., if for any 8 > 0 

lim P { l.!. log2 M,(X , ~)- R(p, ~)1 ~ ii} = 0, 
n-oo n 

(3.13) 
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is satisfied, then the following encoding scheme makes sense. 

Let an arbitrarily double-infinite sequence x from the source and distortion level 

6. E (0, Dmax) be given. Suppose that both an encoder and a decoder have a buffer 

of length L = n · 2n[R(p,Ll.)HJ containing x~L+I. For encoding xj' the encoder searches 

for Mn(x,6.) and transmit fn[R (p ,6.) + 6Jl bits to the decoder. For any 6 > 0 if n is 

sufficiently large, such Mn(x, 6.) can be found in the buffer with probability arbitrarily 

close to 1. The block x;• is reproduced as ·•=~~~(~!,~~!) While rate required for 

transmission of xj is R(p, 6.) + 6 bits per source symbol, and distortion between the 

original block and the reproduced block is at most 6. with probability close to 1. 

From the viewpoint of evaluating an upper-bound of buffer length, convergence in 

probability of* log2 M.,(X, 6.) seems redundant since only the upper-bound in prob­

ability of* log2 Nin( X , 6.) is essential to the buffer length . However , lower-bounds of 

* log2 Mn(X, 6.) means the minimum length of the buffer and therefore leads to non­

compressibility of data in rate less than t he rate-distortion bound. Hence, it is also 

significant to find conditions for convergence in probability of * log2 M.,(X, 6.) if it has 

such a property. 

3.2 .2 Analysis 

In the case that a single-letter fidelity criterion d is the Hamming distance, that is, 

d(ai , ak) = 0 (j = k) , d(ai , ak) = 1 (j-/- k), Steinberg and Gutman [26] shows that for 

any 6 > 0 

lim P {~ log2 M.,(X, 6.) ~ \f(p, 6.) + 6} = 0, 
n-oo n 

(3.14) 

where 

V(p, 6.) = H(p)- tp(ai)h (
1 

6.( ·) )- 6.log2 (J - 1), 
i=l p (!} 

(3.15) 

J 

H(p ) =- LP(ai) Iog2 p(ai) (3.16) 
j=l 

and h(.•) = -x log2 .1:- (1- x) log2(1- x) . Though V(p, 6.) is coincident with R(p, 6.) 

when p = (~, ~ • ... , ~ ), there is a gap between V(p , 6.) and R(p, 6.) for non-uniform 

sources that cannot be neglected. 
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The following theorem proposes a new upper-bound in probability of~ log2 M.,(X, .C:.) 

substitutable for V(p, .C:.) under an arbitrarily single-letter fidelity criterion satisfying 

(3.6). 

Theorem 3.1 Let a single-letter fidelity crite1·ion d satisfying (3.6) and a distortion 

level.C:. E (0, Dmax) be arbitrarily given. Then, for any 6 > 0 and c: E (0, 1) there exists 

an integer n0 = n0 ( 6, c:) satisfying 

for all n > n0 , where D(p"IIP) denotes the divergence defined by 

D( "I I ) ~ "( )1 p"(a1) 
p p = ~ p ai og2 p( ai) ' (3.18) 

p· means the probability dist1-ibution on A defined by 

J 

p"(ak) = LP(aJ)W"(adaJ), k = 1, 2, .. . , J (3 .19) 
j=l 

and w· implies the stochastic matrix satisfying l (p ; w-) = R(p, .C:.) and w· E W (p , .t:.) . 

Proof: This theorem is proved by a techn ique similar to the one first introduced by 

Wyner and Ziv [24]. Fix 6 > 0 and c: E (0, 1) arbitrarily. First, t he left hand side of 

(3.1 7) is evaluated in the following way: 

P { ~ log2 M.,(X,.t:.) ~ R (p , .t:.) + D(p"I IP) + 6} 

= P { ~ log2 Mn(X, .t:.) ~ R(p,.C:.) + D(p"IIP) + 61 X{' E r1;:1} · P{X{' E T~l} 

+ P { ~ log2 M.,(X,.t:.) ~ R(p, .t:.) + D(p"[[p) + 61 X{'~ 7[;:1} P{X;' ~ T~1 } 
< P { ~ log2 M.,(X ,.t:.) ~ R(p, .t:.) + D(p" [[p) + 61 X{' E T1;1} 

+ P{X{' ~ r 1;1}, (3.20) 

where r 1; 1 denotes the set of strongly typical sequences of blocklength n. Accord ing to 

Lemma 1.2.12 in [3], there exists an integer n 1(c: ) satisfying P{X}' ~ T~1 } <~ for all 

n > n 1. 
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Now, the first term in the right hand side of (3.20) is evaluated. Assume that 

P(B,(x~, t.)) ::0: 2-nJR(p ,C>)+D(P "IIP lJ-o(nl (3.21) 

for any x}' E T~1 . Then, the first term in the right hand side of (3.20) is upper-bounded 

in the following manner: 

P { ~ log2 M, (X, C.) ::0: R(p, t.) + D(p"IIP) + 61 X~= xj' } 

= P{M,(X , C.) ::0: 2n[R(p,C>)+D(P"JIP)H] I X~ = x?} 

~ Ep[M,(X' L':.) I x;' = x~]· 2-nJR(p ,C>)+D(P" IIPlHI 

~ [P(B,(x~' L':.))tl . 2-nJR(p ,C>)+D(P" JIP )HJ 

3) 
~ 2"JR(p,C>)+D(P"l1Pli+o(n) . TnJR(p,C>)+D(P"JIP)H] 

(3.22) 

where Ep denote the expectation with respect to the probability measure P, o(n) 

denotes terms of order less than 1 whose coefficient of the highest term is positive, the 

Markov inequality implies inequality 1) in (3.22), t he property that 2:~ 1 1(1- p) 1- 1p = 

1/p for any p E (0, 1) to obtain equality 2), and inequality 3) follows from (3.21). Since 

6 is fixed and positive, there exists an integer 112 = n2 ( 6, E) such t hat (3.22) is less than 

~for all n > 112 . Therefore, setting n0 = ma..x{11 1,n2 } yields the claim of this theorem 

under the assumption of (3 .21 ). 

For completing the proof (3.21 ) shou ld be established. Inequality (3.21) is proved 

by using an argument of types. (See [3] for definition of the type, the joint type and the 

conditional type.) For any u , v E A " denote the type of u by qu and the joint type 

of t he pair (u , v) by Quv, respectively. For given u , let Wvju denote the conditional 

type of v, and T~lu a set specified by the conditional type Wv 1u, respectively. By 

setting u = xj', P (B,( u , L':.)) can be written in the following form: 

P(B,(u , L':.)) P{v} 

IVv 1uEW(qu,C>) 

where I · I denotes the cardinality of the set and 

P { v} IT-i;lu J, 

W(qu,L':.) = {IVvJ u is a J x J conditional type I 
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J J 

LLQu(aj)Wv ju(aklai)d(aj,ak) :s; 6}. (3.24) 
k=I i~I 

Note that P{ v} and ITii;ul are evaluated as follows [3, 5): 

P{v} = 2-n[ II (Qv )+D(Qv iiPll, (3.25) 

(3.26) 

where H (Wip) denotes the conditional entropy of base 2. Since (3.23) is a sum with 

respect to conditional types, it becomes smaller by picking a conditional type Wv
1
u 

satisfying Wv [u ;:;;, w· and discarding other conditional types. Note that Qu -> p and 

Qv-> p· as n tends to infinity since u E T~;1 . Then , (3.23), (3.25) and (3.26) yield 

P (B,(u , 6)) ::=: Tn[//(Qv)+D(Qv11P)J2n//(1Vvlu1Qu )-o(n) 

Tn[H(P' )+D(P' IIP )J, 2nH(IV ' [P )-o(n) 

which establishes (3.21). 0 

2-nj!(p;IV')+D(p'jjp )j-o(n) 

T"[R(p ,t>)+D(p• jjp )J-o(n), (3.27) 

Note that D (p"IIP) = 0 if pis uniform and symmetric single- letter fidelity criterion 

are used. Comparison of three bounds R(p,6), V(p,6) and R(p ,6 ) + D(p"IIP) for 

non-uniform binary memory less source of alphabet A = {0, 1} with probability dis­

tribution p = (0.9, 0.1) is given in Fig. 3.1. Figure 3.2 shows the comparison for the 

source with probability distribution p = (0. 7, 0.3). The Hamming distance is used as 

a single-letter fidelity criterion, otherwise V(p, 6) is meaningless. In the two figures 

the solid line, the broken line and the dotted line correspond to R(p , 6 ), V(p, 6) and 

R(p, 6) + D (p" II P ), respectively. In these cases, probability distribution p· is cal­

culated as p"(O) = (p(O) - 6)/(1 - 26) and p"(1) = (p(1) - 6)/(1 - 26) for each 

distortion level [5). Generally speaking, p· is approximately the same as p for small 

6 and accordingly D(p'IIP) becomes negligible for any discrete memoryless sources 

as 6 -> 0. In fact, in the settings of Fig. 3. 1 and Fig. 3.2 D(p'IIP) = 0(6) while 

V(p, 6)-R(p , 6) = 0(6logd) as 6 _, 0. In Fig. 3.1 and Fig. 3.2 R(p, 6)+D(p"IIP) 
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Figure 3.1 Comparison of Three Bounds for p = (0.9, 0.1) 

gives a tighter upper-bound in probability of * log2 Mn(X, 6) than V(p, 6) for all 

6 E (0, 0.082) and 6 E (0, 0.135). However, these figures indicate that the divergence 

term becomes large as 6 -> D,.a., respectively. 

The upper-bound given in Theorem 3.1 is not coincident with the rate-distortion 

function itself. How can the divergence term be eliminated? This problem can be 

solved by introducing a new probability measure P defined by 

(3.28) 

where p· denotes the probability measure on X induced by p· and P[i,j) and P[i.J) 

denote the restriction of P and p· to the string X;X;+ 1 · · • Xj, respectively. If P is 

replaced by P, not only the divergence term is eliminated but also the convergence in 

probability of* log2 Mn(X, 6) to the rate-distortion bound is obtained. 

Theorem 3.2 Let a single-letter fidelity criterion d satisfying (3.6) and a distortion 

level 6 E (0, Dmax) is arbitrarily given. Then, for any 6 > 0, f E (0, 1) and probability 
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Figure 3.2 Comparison of Three Bounds for p = (0.7, 0.3) 

distribution q = (q(a 1),q(a2 ), . .. ,q(aJ)) satisfying q(a1) > 0 for all j 

there exists an integer n0 = no( 6, c:) that satisfies 

1, 2, ... ' J 

(3.29) 

for all integers n > no, where Q denotes the probability measure induced by q. 

In particular, if q is equal to p·, then ~ log2 lvf, (X , 6) converges in probability to 

R(p, 6) under the probability measure P = Pc"-oo,OJ x P]r ,oo), that is, joT any 6 > 0 and 

c: E (0, 1) there exists an integer· n~ = n~( 6, c:) satisfying 

(3.30) 

joT all n > n~, wher·e p· denotes the probability measure induced by p·. 

Remark: Though in Theorem 3.2 q satisfying q( a1) > 0 for all j = 1, 2, ... , J is 

assumed, the assumption can be weakened as q(aJ) > 0 for all j satisfying p· (ai) > 0. 

However, q satisfying q(a1) > 0 for all j = 1, 2, ... , J is more natural for the universal 
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encoding scheme described in Section 3.2.3. Without any knowledge on the probability 

distribution on the sources it is quite hard to find all symbols ai E A satisfying p"(aj) > 
0. 

Proof of Theorem 3.2: For proving the first claim of Theorem 3.2 the inequality 

Q(B.,(:t~, 6)) :2: 2-n[R(p,6)+D(p' [[q)[-o(n) (3.31) 

should be proved for all xj' E T~1 . Nevertheless, (3 .31) is deduced by a parallel argument 

that yields (3.21). Notice that a conditional type Wv1u satisfying Wv[u ---> w· as 

n ---> oo can be chosen from the assumption on q. By using the same argument that 

establishes (3.27), (3.31) is easily proved. Then, the left hand side of (3.29) is evaluated 

in the following manner: 

Q(-oo,o] x P11,oo) { ~ log2 M,(X, 6) :2: R(p, 6) + D(p'[[q) + 8} 

:::; Q(-oo,O] X P[1,oo) { M,(X, 6) :2: 2n[R(p,6 )+D(P'I[q)+6i[X1' E T~1 } 
+ Q(-oo,O[ X P[1,oo) {Xj' ~ T[;[} 

1) 

:::; EQxP[M,(X,6)[.-17 E T 1;j] · 2-n[R(p,6 )+D(p'[lq)+6] + Q(-oo,OJ x P[!,oo) {X~~ T~1 } 
~ [Q(B,(u, 6))t1 . rnfR(p,6)+D(P'IIq)+6] + p { x;• ~ r

1
;;,} 

3) 
< 2-n6+o(n) + p {X'" d T," } 
- -' 1 ~ ~ I (3.32) 

where u = x;• E T~1 , EQxP denotes the expectation with respect to the probability 

measure Q(-oo,OJ x P[l,oo)• the Markov inequality is used to deduce inequality 1) in 

(3.32), I:/::: 1 1(1 - p)1
-

1p = 1/p for any p E (0, 1) and definition of Q(-oo,OJ X P[l,oo) 

imply equality 2), (3.31) leads to inequality 3). Since li is fixed and positive, the first 

term in the left hand side of (3.32) tends to 0 as n tends to infinity. From the property of 

T~1 , the second term in (3.32) also tends to 0 as n tend to infinity. This guarantees the 

existence of an integer n0 = n0(8,c:) satisfying (3.29) for all n > n0 , which establishes 

the first claim of the theorem. 

Now, convergence in pmbability of~ log2 M,(X, 6) under the probability measure 

Pis proved. For obtaining the convergence, the existence of an integer n~ = n~(b,c:) 
satisfying the following two inequalities for all n > n~: 

(3.33) 
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P { ~ log2 M,.(X, t.) :::; R(p, t.)- 8} < c:. (3.34) 

Existence of an integer n 1 satisfying (3.33) for all n > n 1 is guaranteed by the first 

claim of the theorem by setting q = p*. Therefore, for completing the proof it is 

sufficient to show the existence of an integer n2 satisfying (3.34) for all n > n2 and set 

Before establishing the existence of n 2 , the inequality 

P"(B,(u,t.)):::; rnR(p,6)+o(n) (3.35) 

for any u E T~1 should be proved. The right hand side of (3.35) is evaluated in the 

following way: 

P"(B,(u, t.)) 

4) 
:::; 

L P"{v}!TiJ;ul 
wv

1
uew(qu,6) 

Wv
1
uew(qu,6) 

S) -n[ m;n {I(qu;Wv
1
uJ+D(qv[iP•))j 

:::; (n + 1)J'2 wV(UOV(qU·"l 

6) < 2-nR(p,6)+o(n), 
(3.36) 

where (3.25) and (3.26) yield inequality 4), inequality 5) follows from the fact that the 

number of conditional types is at most ( n + 1 )J', and non-negativity of the divergence 

and qu--> p (n--> oo) implies inequality 6). 

Then, the left hand side of (3.34) is evaluated in the following manner: 

p { ~ log2 M,(X, t.) :::; R(p, t.)- 8} 

< P"{M,(X, t.) < 2"1a(p,c-J-•JI x;· E 7[;
1
} + P{x;· ~ r~:1 } 

12 .. (n(p,aJ-•lj 

~ L [1-P"(B,.(u,t.))]k-Ip-(B,(u,t.))+P{-\";' ~T~1 } 
k=l 

= 1- [1- P"(B,.(u,t.))jl2
"

1
"

1P"l-'IJ + P{X~ ~ 1[;:
1

} 

(3.37) 

where u = Xt E T~1 , equality 7) in (3.37) follows from the definition of P, inequality 

8) follows from (3.35) and inequality [1- t]m 2: exp[- {':.',]for any t E (0, 1) and m > 0. 
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Since 8 is fixed and posit ive, (3.37) means the existence of an integer n 2 = n2 ( 8, c) 

satisfying (3.34) for all n > n2. Setting n~ = max{ n 1, n 2} completes the proof of the 

second claim of the theorem. D 

Theorem 3.1 and the first statement of T heorem 3.2 claim that convergence in 

probability of~ log2 Mn( X , 6) in the form of (3.13) dose not generally hold for discrete 

memory less sources; a gap between a "typical" sequence emitted from the source and 

an "optimal" sequence suitable for data compression with fidelity criterion prevents 

~ log2 Mn( X , 6) from converging in probability on its intrinsic probabi lity measure. 

Find ing the optimal sequences in a universal way is discussed in t he subsequent chapter. 

3.2.3 Encoding Scheme 

A practical implementation of a data compression scheme with fidelity criterion is 

discussed in this section. Suppose that an arbitrary double-infinite sequence x = 
{ xd~-oo is given. If both an encoder and a decoder have a buffer of length L satisfying 

L > n. 2"1R(p ,LI)+D(p· llp )J whose contents are .'t~L+l, then with probability close to 1 

x[ is transmitted within distortion 6 by transmitting Mn(x, 6). Blocks x;;~~-t;t) for 

k = 1, 2, ... can be transmitted in t he same way. After transmitt ing each block, there 

is no need to substitute the oldest n symbols in the two buffers for the latest block since 

the decoder cannot know xj' exact ly. In this point, t his encoding scheme is different 

from the Lempel-Ziv algorithm [7] in lossless data compression. The buffers of the 

encoder and the decoder should be the same at any time instants. Not only for xj' 

but also x~~~"; 1 ) for k = 1, 2, .. Theorem 3.1 st ill makes sense as long as the source is 

stationary and memoryless. 

If another i.i.d sequence y = {yk} f=t of probability distribution q satisfying q( ai) > 

0 for all j = 1, 2, ... , J is available to both the encoder and the decoder, it can substitute 

fo r x~L+t· In the case that such a finite sequence y is used, the encoder transmits 

M:,(x, y, 6) to the decoder in a fixed-length binary form, where 

u:,(x, y,6) = min{i\1!;::: 0 v::~·;~-t;t> E B,.(.7:j',6)}, (3 .38) 

if such y;;~~~-t;t) exists. Otherwise, M:,(x, y , 6) is defined as a pre-specified default 

value less than Lfn. The encoder sends flog 2(L/n)l bits for transmitting x~~~-t;t) If 
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q = p·, Theorem 3.2 indicates that the length L "" n . 2nR(p,L!.) of the buffer is enough 

for sufficiently large n. Hence, for any o > 0 rate R to transmit x] satisfies 

R < R(p,!::.)+ o (3.39) 

bits per source symbol if n is sufficiently large. On the other hands, for any c: > 0 

average distortion iS. of this encoding scheme is evaluated in the following manner: 

iS.<!::.· Pr g log2 M~(X, Y , !::.) < R(p, !::.) + o} 
+ dmax · Pr { ~ log2 M~(X, Y, !::.) 2': R(p, !::.) + 0} 

<!::.+c:, (3.40) 

where dmax ~ ma..x d(a,,ak) < oo and Theorem 3.2 guarantees the last inequality 
I:'OJ,k:O;J 

for sufficiently large n. Since o and c: are arbitrary, (3.39) and (3.40) claim that this 

encoding scheme achieves asymptotically the rate-distortion bound. This argument 

provides a simple proof on the direct part of the source coding theorem. 

For any probability distribution p and q on .A satisfying q( a1) > 0 for all j 

1, 2, ... , J and 0 > 0, Theorem 3.2 claims that Mn(X , !::.) satisfies 

,}i_n;;, Q(-oo,oj X Pp,oo) { ~ logz Mn(X, !::.) > R(p, !::.) + D(p"jj q ) + o} = 0, (3.41) 

where Q denotes the probability measure induced by q. In this case, L satisfying 

~ log2 ~ > R(p,!::.) + D(p"[[q) should be chosen in order to make the average distort ion 

close to !::.. 

If y = {yk} f~ 1 is used instead of x~L+I, both the encoder and the decoder need 

not have physical buffers. This property is one of the merits of the encoding scheme 

proposed here, though exhaust search for M;,(x, y, !::.) is still inevitable. The encoder 

and the decoder only need to share a generation algorithm of {yk} f~ 1 . In practice, 

Yk, k = 1, 2, ... , L, are obtained deterministically from pseudo-random numbers uni­

formly distributed in the unit interval [0, 1] generated by, for example, a linear congru­

ential method or sampling of ma..ximum-length linearly recurring sequences. They use 

the same algorithm of pseudo-random generation with the same initial paran1eters and 

transformation for obtain Yk in order to share the same {yk} f~ 1 . 
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3.3 D ata Compression for M e moryle ss Gaussian 

So urces 

In this section a sufficient condition for satisfying (3.13) is given for memoryless gaus­

sian sources under the squared-error criterion. As is seen in the preceding section, 

(3. 13) does not hold for discrete memoryless sources. In Section 3.3. 1, however, con­

vergence in the form of (3.13) is shown by modifying the way of matching, that is, 

the definition of Mn(x, 6.). T his property leads to an asymptotically optimal encoding 

scheme. Rate-distortion performance of the encoding scheme of finite blocklength is 

evaluated by computer simulation in Section 3.3.2. 

3.3.1 D efinition s and Analysis 

Let X = { Xk});';_ 00 be a sequence of random variables satisfying Xk ~ N(JJ., a 2 ) for 

all k from a memoryless gaussian sources, where ft and a 2 denote the mean and the 

variance of the source, respectively. Let x = {xk});';_
00 

be a realization of X . Since 

Xk takes real values, sou rce alphabet A is equal to R , the set of real numbers. The 

squared-error criterion is assumed here, so distortion between u E A and v E A is 

defined as d( u, v) = ( u - v )2 Distortion between u = ui' E A and v = vi' is defined 

by (3.7). The rate-distortion function for the source is denoted by R(p, 6.), which can 

be writ ten as 

1 (a2
) R(p, 6.) = 2 log2 6 (3.42) 

for 6. E (0, a 2] [2], where 

1 [ (x- p,j2] p(:r)= ~exp ---0 -
v 27ra2 2a-

(3.43) 

denotes the probability density function of the source. Let M,.(x, 6.) be an integer 

defined by (3.11). For memoryless gaussian sources of p, = 0, Steinberg and Gutman 

[26] shows that for any 8 > 0 

lim P {2_ log lvf,.(X, 6.) > G(6., a)+ 8} = 0, (3.44) 
n-oo n 

where 

(3.45) 
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Since conditions for convergence in a form of (3.13) are of interest, only memoryless 

gaussian sources of known mean and variance are considered. Without loss of generality, 

the memory less gaussian source of zero-mean and unit-variance can be assumed. For 

any u E A define B;,(u,6.) as 

'( ) { A"l (u,v) ~} 
B,. u , 

6 
= v E llullzllvllz ::?: v 1 - 6 (3.46) 

and modify M,.(x, 6.) as 

M,.(x,6.) = min{M::?: 0 x::~(Jt+l)+l E B~(xj',6.)}, (3.47) 

where (u, v) ~~ 2:?= 1 u;v; for any u = u~ E A" and v = v;• E A" and llulb d~ j(u, u). 
Convergence in probability in the form of (3.13) is guaranteed by the following theorem. 

Theorem 3.3 For any o > 0, E E (0, 1) and distortion level 6. E (0, 1) there exists an 

integer no = no( o, E) satisfying 

(3.48) 

for all n >no, where P denotes the probability measure on X induced by the probability 

density function of the memoryless gaussian source of zero-mean and unit-variance. D 

P roof: This theorem is proved by using similar argument already seen in the proof 

of Theorem 3.2. For proving the existence of an integer n0 , it is sufficient to show the 

existence of integers n 1 and nz satisfying 

for all n > n 1 and 

P { * Iog2 M,.(X, 6.) :'0 R(p,6.)- o} < c 

for all n > n2 . For any u E A" if P(B;.(u, 6.)) is evaluated as 

P(B;,(u,6.)) ::": T"R(p.~)-o(n) 

and 
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then (3.49) and (3.50) are proved by applying (3.51) and (3.52) in the same way as in 

obtaining (3.32) and (3 .37), respectively. 

Define u = u/Jiull2 for u E R"- {o} . Since u is uniformly distributed on the 

n-dimensional unit hypersphere, P(B;,(u, 6.)) can be written in the following form: 

P(B;,(u,L".)) = J, p"(v)dv 
VEB,(U,t>) 

(3.53) 

where 

p"(v) = (27r)-'i exp [-~(v? +vi+ · ··+ v~)J (3.54) 

is the probability density function for v = v;' E A", IS"-11 and IS"-21 denote the 

surface area of n-dimensional and (n- 1)-dimensional unit hypersphere, respect ively 

and equal ity 1) follows by transforming the rectangular coordinates to the polar coor­

dinates . 

Since IS"-1
1 = n1r'i /f(~ + 1) for any natural number n, it is easy to verify that 

IS"-'1 j 
IS"-1

1 = 

and 

1 (2m- 2)11 
if 

1r(2m- 3)!1' 
1(2m-1)!1 

if 
2 (2m- 2)! 1' 

1 IS"-21 n 
-<--<-
71'- IS»-11 - 2 

n =2m, 

n =2m+ 1, 

for all n. Hence, (3.53) and (3 .56) imply that 

and 

P(B~( u , 6.)) :S :!: cos- 1 ~ · 6. "2' 
2 
2-nR(p,C>)+o(n) 

P(B;,(u,L".)) 
1 locos-l .JI"=X 

2: - sin"- 1 0cos0d0 
71' 0 

1 . L':,. ':} = 2-nR(p,C>)-o(n), 

which establish (3.51) and (3.52). 

66 

(3 .55) 

(3 .56) 

(3.57) 

(3.58) 



The left hands of (3.49) and (3.50) are evaluated directly without considering 

whether X!' is typical or not. Except for th is point the remainder of the proof is 

parallel to the proof of Theorem 3.2 and therefore omitted. D 

3.3.2 Simulation Results 

The encoding scheme discussed in Sect ion 3.2.3 also makes sense for memory less gaus­

sian sources. Theorem 3.3 proved in the preceding sect ion implies that the buffer length 

L should satisfy L ~ n · 2"R(p,£>) for sufficiently large n. In this section, rate-distortion 

performance of this encoding is evaluated by computer simulation. 

Two i.i.d. gaussian sequences x = {xdZ!1 and y = {yk}f=1 of zero-mean and unit­

variance are generated by transforming pseudo-random numbers uniformly distributed 

in the unit interval. Sequence { xk} r!1 is used as a data sequence. Both the encoder 

and the decoder are assumed to have buffers of length L containing {yk} f=J· After 

setting /:;. = 0.9 and L = n · 2"R(p,£>), J( = 10, 000 source blocks are encoded for 

each n = 60, 80, 100, 120, 140,160. Since rate-distortion performance of this encoding 

scheme is of interest, encoding strategy is slight ly changed; the encoder finds an integer 

for x~~"t-~ 1 ), k = 0,1, . . . ,K- 1, defined by 

M ( .n(k+l) ) _ . . ( .n(k+l) n(M+l)) 
n xnk+l l y - aig nla.x xnk+I l YntH+l 1 

OSfti<Lfn 
(3.59) 

I ( n(k+i) n(M+ll) d I . . . I . d w 1ere arg o•:iJi:Zi;, x,k+l , YnM+l enotes t 1e argument ma.xumzmg t 1e mner-pro uct. 

Rate required for transmission of M, ( x::~"t-~ 1 
l, y) is r nR(p, /:;.) l bits per source block. 

The encoder includes a uniform scalar quant izer to encode the gain of source blocks. 

The range of the scalar quantizer is the interval [0, n°·55 ), which means to choose a= 

0.05 in Section 2.3 .1. The number of quantization levels is r vnl Quantization level 

c; in the ith interval is the midpoint in the interval. For all k = 1, 2, . . . ,1(, the 

I . I . . I. I ( n(k+l) n(M "+l)) I I I M* sea ar quantiZer searc 1es an u1teger 1. tow 11c 1 x,J..·+l , YnM,~"-t 1 )e ongs, w 1ere n = 

M,(x:~"t-~ 1 l, y ). It t ransmit i with rater~ log2 nl bits . 

In total, r nR(p, t:;.)l + r~ log2 nl bits arc required to transmit <~"t-~ 1 ) for k = 

0, 1, .. . , J( - 1. Block <~"+.~!) is reproduced as c;y~~~;·~~ 1 ), where c; denotes the i­

th quantization level. By using orthogonality, it is shown that the distortion between 
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Table 3.1 Performance of the Encoding Scheme 

n D,hape V[D,hape) Dgain V[D9a;n) 

60 9.34 X 10- 1 2.60 X 10-3 2.52 X 10-3 2.12 X 10-5 

80 9.30 X 10-1 1.03 X 10-3 1.67 X 10-3 2.06 X 10-5 

100 9.26 X 10-1 1.29 X 10-3 1.57 X 10-3 1.67 X 10-5 

120 9.23 X 10-1 9.31 X 10-4 1.69 X 10-3 9.31 X 10-6 

140 9.21 X 10- 1 9.86 X 10-4 9.07 X 10-4 9.13 X 10-6 

160 9.19 X 10-1 8.20 X 10-4 6.65 X 10-4 9.06 X 10-6 

x~~:-t;IJ and its reproduced form can be separated as follows: 

(3.60) 

This kind of encoding scheme achieves asymptotically the rate distortion bounds if 

y~~7+-t; 1 l, M = 0, 1, ... , Lfn -1 are judiciously chosen as is shown [34] or in Section 2.2 

of this thesis. 

Denote by D,hape and D9a;,. the first and the second terms in the right hand side 

of (3.60), respectively. Ten different pairs of x = { xk}J:~1 andy = {yk} f~ 1 are used to 

evaluate asymptotic behaviors of Dshape and D9a;,. The average and the variance of 

them are listed in Table 3.3.2. It is obvious that D9a;, is much smaller than D,hape for 

each n. Asymptotic performance of Dshape with respect to the blocklength is seen in 

Fig. 3.3. Figure 3.3 indicates that Dshape monotonously decreases as n increases. The 

term D,hape would converge to /:;. = 0.9 as n tends to infinity. Nevertheless, Fig. 3.3 

also indicates that n greater than 160 should be chosen in order to make D,hape less 

than 0.919. 

3.4 Conclusion 

In this chapter a data compression scheme with fidelity criterion is proposed. The 

scheme is based on string matching, which is originated from Ziv and Lempel [7) in 
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Figure 3.3 Asymptotic Rate-Distortion Performance 

lossless case, and Steinberg and Gutman [26] in lossy case. In the proposed scheme 

both an encoder and a decoder have buffers of finite-length containing the same se­

quence. For each source block the encoder searches for a content in the buffer within a 

distortion level and transmits its index. The decoder reproduces the source blocks by 

the transmitted indices. 

Theoretical basis of the algorithm is probabilistic behavior of the indices with in­

creasing the blocklength. Upper-bounds in probability of the rate required for trans­

mission of the indices is established in the following two cases: (i) discrete memoryless 

sources under a single-letter fidelity criterion and (ii ) memoryless gaussian sources 

under the squared-error criterion. 

In case (i) for the source of probability dist ribution p redundancy in rate is equal 

to D(p"llq) when the two buffers contain an i.i.d. sequence of probability distribution 

q whose all elements are positive, where D(·ll·) denotes the divergence and p· is the 

output probability distribution of the test channel. A sufficient condition that the 

redundancy goes to zero is deduced. The sufficient condition also provides a simple 

proof of the source coding theorem. 
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In case (ii) for memory less gaussian sources of known mean and variance it is shown 

that the scheme achieves the rate-distortion bound by slight modification of index 

searching if the buffers contain the same i.i.d. gaussian sequence of known mean and 

variance. Rate-distortion performance of finite blocklength of the scheme is evaluated 

by computer simulation . 

In both cases the probability distribution of sources is assumed to be known. How 

is the data compression scheme extended to unknown sources? If the two-stage encod­

ing strategy is supposed, the answer for discrete memoryless sources and memoryless 

gaussian sources is found in this thesis. In the case of discrete memoryless sources 

extension of the scheme to compression of unknown sources is discussed in Chapter 4. 

Two universal estimation algorithm of p" is proposed in order to make the scheme 

universally asymptotically optimal. In the case of memory less gaussian sources of un­

known mean and variance, additional task imposed on an encoder is estimating the 

unknown parameters and transmitting them to a decoder in a quantized form. Asymp­

totic properties of two-stage encoding of the unknown sources have already discussed in 

Section 2.4. However, the method that makes the data compression scheme universally 

asymptotically optimal in a single stage is still an open problem. 
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Chapter 4 

Universal Estimation of the 

Optimal probability distribution 

for compression of Discrete 

Memoryless Source with Fidelity 

Criterion 

4.1 Introduction 

The rate-distortion function describes a basic bound of compression efficiency asymp­

totically achievable by data compression schemes with fidelity criterion. For discrete 

memory less sources of finite alphabet .A = { a1, a.2 , . . . , O.J} it is defined as a minimum 

of the mutual information as follows: 

R(p,D) min J(p; IV) 
IVEYV(p,D) 



where p = (p(a!),p(a2 ), ... ,p(aJ)) denotes probability distribution of the sources, 

I(p; W) denotes the mutual information, 

J J 

W(p, D)= {w is a J x J stochastic matrix I L LP(ai)W(adai)d(ai, ak) :<::: D }. 
j=lk=l 

(4.2) 

and d is a single-letter fidelity criterion satisfying d(ai, ak) = 0 if j = k and 0 < 

d(aj, ak) < oo otherwise. The rate-distortion function is positive for all DE [0, Dmaz), 
dcl J -

where Dmax = min L: p(ai)d(aj, ak) . Denote by R rate of a block code and D average 
l$k9 j=l 

distortion caused by the scheme. For arbitrarily distortion level 6. E (0, Dmax) converse 

part of the source coding theorem claims that there is no code satisfying R < R(p, 6.) 

and fJ < 6. and direct part of it guarantees the existence of a block code of sufficiently 

large blocklength satisfying R :<::: R(p, 6.) + o and fJ < 6. + E: for any o 2: 0 and E: 2: 0 

satisfying 0 + E: > 0. Proving the direct part is more complicated than showing the 

converse part. Though there are several ways to establish the direct part [1, 2, 3, 4, 5], 

using a random code drawn according to the probability distribution 

J 

p"(ak)=Lp(ai)W"(akiai) forall k=1,2, ... ,J ( 4.3) 

seems the most popular [2, 5], where w· is a stochastic matrix achieving the mini­

mum in (4.1). Therefore, knowledge on p· enables to obtain deeper insight into the 

asymptotically optimal data compression schemes with fidelity criterion. 

In this chapter two universal estimation algorithms of p· are proposed. If a prob­

ability distribution p of discrete memoryless sources and d~R(p,D)iv=t. are known, 

Blahut's iteration algorithm [35] for calculating the rate-distortion functions, which has 

dual relationship to Arimoto's method [36] for computing the capacity of memoryless 

channels, yields p· as a byproduct. However, this algorithm is not appropriate for 

computing p· in the following two points: (i) the assumption that d~R(p,D)[D=<'> is 

given is not realistic since R(p, D) is rarely expressed as an explicit function of D and 

(ii) the algorithm accumulates numerical errors caused by its iterative steps . The two 

universal estimation algorithms not only cause no numerical error but also require no 

knowledge of the source. They require two kinds of training sequences and output an 

estimate of p· meeting a certain criterion of estimation. 



The criterion of estimation discussed in Sect ion 4.2 is deeply related to the data 

compression scheme proposed in Chapter 3. Let X = {X,}~-oo be a sequence of 

random variables from the source and for a realization x = { :r .} ~-oo of X define 

( 4.4 ) 

where for any i :::; j x{ = x;x;+ 1 · · · x1 and dn denotes the distortion measure between n­

tuples defined by a single-let ter fidelity criterion d. Then, Theorem 3.2 in Section 3.2.2 

guarantees that for any ( > 0 J\!I, (X , 6) satisfies 

Ji_n;;, P(-oo,ol x P11,oo) { ~ logz M,(X, 6) 2': R(p, 6) + D (p" II P' ) + ( } = 0, (4 .5) 

where P denotes the probability measure on X induced by p , P' denotes the probabil­

ity measure on X induced by a probability distribution p' = (p'(ai),p'(a2 ), ... ,p'(aJ )) 

satisfying p'(a1) > 0 for all j = 1, 2, ... , J , for any i:::; j P[i,jJ and P{i,jJ means their re­

striction to X;X;+J · · ·X1 and D (- 11 ·) denotes t he divergence. Equation (4 .5) is directly 

connected to a data compression scheme with fidelity criterion based on the data-base 

drawn according top'. It implies that rate required by the scheme for making average 

distortion close to 6 is upper-bounded by R(p, 6) + D(p"IIP') per source symbol if n 

is sufficiently large. That is, the divergence term means a cost in rate of the scheme as 

n -> oo. From the viewpoint to mal'e the cost small , a good est imate of p· should be 

used for generation of the data-base. 

The criterion on p· introduced in Section 4.2 is as follows: let e > 0 and 6 E (0, 1) 

be given arbitrarily and suppose that two kinds of training sequences are available . 

One of the training sequences is drawn from the source to be compressed and the 

other is drawn from another sou rce that puts out all of symbols in the same alphabet. 

Universal estimation algorithms must output a n estimate of p· , denoted by p·, that 

satisfies 

P1ob(D(p"lliJ·) >e)< 6, (4 .6) 

for all in tegers n > n0 , where Prob denotes the probability with respect to the two 

training sequences and n0 is an integer dependent on t: and 6. The criterion ( 4.6) implies 

that with probability at least 1- 6 the algorithm outputs p· satisfying D(p"lliJ·) :::; £ . 
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Then, for any ( > 1: M,. (X, to.) satisfies 

where f· denotes the probability measure on X induced by p·. Section 4.2 is devoted 

to proposal of a universal estimation algorithm of p· and evaluation of size of the two 

training sequences as a func tion of 1: and 8 required for meeting the criterion ( 4 .6). 

The criterion ( 4.6) is similar to the PAC (Probably Approximately Correct) learning 

models that often appear in the field of the computational learning theory. The PAC 

learning model first introduced by Valiant [37] is a criterion for learning of deterministic 

objects such as Boolean functions. Its extensions to learning of stochastic objects are 

discussed in [38][39][40]. Their theories, however, are not directly applicable to works 

in Shannon theoretic field. They are only concerned with identification problems of 

deterministic or stochastic targets in a fixed dimensional space while many results in 

the Shannon theory make sense with increasing the dimension. The algorithm proposed 

in Section 4.2 not only proposes a universal estimator of p· under a feasible criterion 

but also the first attempt to throw a light on an area in the Shannon theory from a 

viewpoint of the PAC learning model. 

The algorithm proposed in Section 4.2 aggressively permits estimation error in a 

sense of divergence in order to make sizes of required training sequences small. On the 

other hand, the criterion introduced in Section 4.3 measures a gap between p· and p· 
by 11-norm. The universal estimation algorithm proposed in the section also requires 

two kinds of training sequences. One of them is of finite size and drawn from a discrete 

memoryless source to be compressed. The other is an infinite sequence from another 

discrete memory less source putting out all of symbols in the same alphabet. It is shown 

that the algorithm outputs p· arbitrarily close to p· with high probability and stops 

with probability one if appropriate parameters are chosen in the algorithm. 

4.2 A Universal Estimation Algorithm 

In Section 4.2.1 a universal estimation algorithm of p· is proposed after strict formu­

lation of the estimation problem. Section 4.2.2 is deYoted to comparison of this work 
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with two conventional PAC learning models. Sizes of training sequences that are re­

quired by the algorithm for meeting the criterion (4.6) is evaluated in Section 4.2.3. 

If two kinds of training sequences of sufficient length are given, it is proved that the 

algorithm outputs p· satisfying D(p"llp") :::; c: with probability at least 1 - 6. 

4.2 .1 D efinit ion of t he Algorithm 

Throughout this chapter, only discrete memoryless sources with finite alphabet A = 

{ a1, a2, . .. . aJ} are considered. Probability distribution of the source is denoted by 

p = (p(ai),p(a2), ... ,p(aJ )). Wi thout loss of generality, p(ai) > 0 for all j = 1, 2, ... , J 

can be assumed. A single-letter fidelity criterion d is defined on A x A satisfying the 

following conditions: 

1) d(ai,ak) ~ 0 for allj, k = 1,2 , ... , 1, 

2) For all ai E A there exists ak E A satisfying d( a1, ak) = 0, 

3) max d(ai, ak) < oo. 
15j,k9 

Symmetry on d, i. e., d(a1, ak) = d( ak, a1 ), is not assumed here. Let n be a positive 

in teger arbitrarily fixed. Distortion between x = x 1x2 · · · .'!:,. E A" andy= y1y2 · · · Yn E 

A" is defined by 
1 n 

d,(x,y) = - 'E.d(x;,y;) 
n i=l 

(4.8) 

The type of x E A" is denoted by t (x ), which is the empirical distribution on A defined 

by frequency of symbols in x. 

The rate-distortion func tion for the discrete memoryless sources with probability 

dist ribution pis defined by (4.1). It takes posit ive values for all DE [D,Dmax), where 

(4.9) 

[2, 4, 5]. For an arbitrarily fixed 6 E (0, Dmnx) denote by w· the J X J stochastic 

matrix that achieves the minimum in (4.1) and define p· = (p"(a 1),p"(a2 ), ... ,p"(aJ)) 

by 
J 

p"(ak) = 'E.P(ai)W"(adai ) (4 .10) 
j= l 



r Source 1 - X1, X2, ... ,XL} -X { 

Estimation 
Algorithm 

Auxiliary 
Source Y= 1, 2, ... ' M {y y y } 

Figure 4.1 Block Diagram of the Universal Estimation System I 

for all k = 1, 2, ... , J. It is assumed that p' is unique. 

1\ 
p* 

Main objective of this sect ion is developing a universal es timation algorithm of p·. 

An output of the algorithm is denoted by p·. Suppose that another discrete memoryless 

source with the same alphabet and probability distribution q = (q(a 1), q(a2), ... , q(a1 )) 

is available to the estimation algorithm. It is assumed that q(ak) > 0 for all k = 

1,2, ... ,1. This source is called an auxiliary souTce. Let X= {x 1,x2, ... , x L} are 

L n-tuples drawn independently from the source and Y = {y1, y 2 , ... , y M} are M 

n-tuples drawn from the auxiliary source. Two sets X and Y are two kinds of training 

sequences available to the estimat ion algorithm. Figure 4.1 shows a block diagram of 

the estimation system. 

It is assumed that the estimation algorithm can use an estimate of p , denoted by 

P., satisfying JJ p - p,JJ 1 = O(n-il•), where 

J 

JJ p - Pelh = L Jp(aj)- p,(aJ)J, (4.11) 
j=l 

(J, E (0, ~] is a constant arbitrarily fixed and O(n-/3,) is interpreted in a sense that 

,!~llJo JJp- p,JJ 1/n-il• is finite. This assumpt ion is not so strong. Type t (xt) can be 

used instead of p , since, roughly speaking, it is of precision of O(n-t); expectat ion of 
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each element of the type is equal top and its variance is O(n-t) . 

The algorithm estimates p· in the following manner: 

Algorithm 4.1 1} Choose Ct > 0 and {3 E (0, {3.) arbitr·arily. Draw X= { x 1 , x 2 , . . . , 

xL} from the source andY= {y1, y 2 , . . . , y M} from the auxiliary source . Fix an 

integer m 0 arbitrary satisfying 1 :S::: m 0 :S::: M. 

2} For all m = 1, 2, ... , M define N(y,, 6.) by 

N(ym,6.) = {x EX] dn(x, Y,) :S::: 6. and IIPe- t (x)lll :S::: n-/J}. ( 4.12) 

Search for the integer m· maximizing ]N( y ,, 6.)], where ]N( y,, 6.)] denotes 

the cardinality of N(ym,6.). If there exist more than one integers maximizing 

]N(ym, 6.)1, choose one of them arbitr·arily and define it as m·. Define 

( 4.13) 

3) If Nmax:;:: n"', output t(Ym•l· Otherwise, output t (Ym,)· D 

1otice that this algorithm does not use any knowledge on p as well as q. For each 

m = 1, 2, ... , M the algorithm counts the number of typical elements of X satisfying 

dn(x 1, Ym) :S::: 6.. After that, it searches for y , . E Y that has elements of X within 

distortion 6. as many as possible. For a chosen a > 0 if Nmax :;:: n"', then the algorithm 

outputs the type of y , . as an estimate of p· . Otherwise, it does not recognize the type 

of y, . as an estimate of p· and outputs a default type specified in Step 1). 

The criterion imposed on this algorithm is meeting 

Pr·ob [D(p*llp·) > E] < 8 (4.14) 

for sufficient ly large n, where Pr·ob in (4.14) denotes probability with respect to the 

joint probability distribution on X x Y. A gap between p· and p· is measured in a form 

of the divergence. Appropriateness of introducing the divergence in ( 4.14) has already 

seen in the preceding section; it means redundancy of a data compression scheme 

with fidelity criterion. In the following section comparison the criterion (4.14) with 

the conventional PAC learning models is discussed. In Section 4.2.3 it is proved that 

Algorithm 4.1 actually outputs p· satisfying (4.14) under proper choices of L,M and 

n . Readers who have knowledge on the PAC learning models can skip Section 4.2.2. 
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4.2.2 Comparison with the PAC Learning Models 

Though the criterion (4.14) in the form of divergence originated from the cost of a 

data compression scheme, it is similar to the PAC learning models that often appear 

in the computational learning theory. This section is devoted to brief survey of two 

PAC learning models for making difference between the PAC learning models and the 

criterion ( 4.6) clear. 

The PAC learning model first proposed by Valiant [37) is summarized as follows: Let 

F be a class of functions from R = Tif= 1 R.; to S, where R.;, i = 1, 2, ... , k are discrete 

and·finite sets . Denote by EN a set of random samples (r 1,si),(r 2,s2), ... ,(1' N,sN) 

satisfying (r;,s;) E R x S and f"(r;) = s; for unknown function f" for all i = 
1, 2, ... , N. Samples r ;, i = 1, 2, ... , N are independently drawn according to an iden­

tical probability distribution Q(R). An algorithm estimates f" by using a partial order 

defined in a class F and outputs jiE"'l· For arbit rarily fixed e E (0, 1) and fJ E (0, 1) 

and any f" E F and Q(R) the size of random samples N required for meeting the 

criterion 

P1·ob[Q{r E R)J"(r) # jiE"'l} >e)< fJ, (4.15) 

is evaluated, where PTob in (4.15) denotes the probability with respect to the joint 

probability distribution on r 1, r 2 , ... , 1' N· Usually, the sample size N required for 

meeting the criterion ( 4.15) is expressed as a function of~. k and k. 

Note that in Valiant's models; is uniquely determined by r; while 7'; is stochastically 

generated according to the probability distribution Q(R). There are several extensions 

of the PAC model to learning of stochastic objects [38)[39)[40). In particular , Yan1anishi 

[40) extends the model to learning of conditional probability distributions. A class P of 

the conditional probability distribution P(S)R) is the one to be learned by algorithms, 

where S E S, R E R = Tif=1 R.; and both S and R arc discrete and finite sets. 

Given random samples EN = (r 1, si), ( 7'2 , s 2), ... , (1· N, SN) generated independently 

according to a probability distribution Q(R)P'(S)R), for any unknown Q(R ) and 

P'(S)R) E P, arbitrarily fixed c > 0 and fJ E (0, 1), by using aJl MOL-like strategy an 

algorithm outputs a conditional probability P1E.vl meeting the criterion 

(4.16) 
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where Prob in (4.16) denotes the probability with respec t to samples EN and dis a non­

negative function satisfying d(P", P[EN[) = 0 if and only if p· = P[EN[· The conditional 

divergence and the conditional Hellinger distance are candidates of d. Resemblance of 

p· to P[ENJ is measured by d. Sample sizes required for meeting the criterion ( 4.16) is 

also evaluated as a function of~. i and k. 

The criterion ( 4.14) resembles ( 4.16) in a sense that a gap between a target to be 

learned and an output of algorithms is measured by a non-negative function satisfying 

the refl exive property. The divergence used in ( 4.14), however, means a cost in rate 

as is seen in (4.5). F inding p· that sat isfies D(p"IIP") :<::; c: asymptotically enables to 

encode a data sequence in rate R(p, 6) +c: per source symbol. This property clarifies a 

difference between ( 4.14) and ( 4.16) since din ( 4.16) is only a measure of resemblance 

of conditional probability distributions. 

Under both learn ing criteria ( 4.15) and ( 4. 16) required sample sizes are evaluated 

as a function of ~, i and k, where k denotes the dimension of R that is usually fixed 

and finite. On the other hand , in the est imat ion problem of p" defined in the previous 

section random samples belong to A". From the Shannon theoretical viewpoint, esti­

mation of p· should be treated with increasing n since many interesting results in the 

Shannon theory such as the channel coding theorem and the source coding theorem 

make sense for sufficiently large n. This property motivates to in troduce another way 

to evaluate the number of random samples as a function of c: and 6 defined in the 

following section. 

4. 2 .3 Analysis of t he A lgorithm 

After drawing two kinds of random samples X= { x 1, x 2, ... , xL} from the source and 

Y = { y 1, y 2 , ... , y AI} from the auxiliary source, Algorithm 4.1 outputs an estimate of 

p" . Lower bounds on L and M required by the algorithm for meeting the criterion 

(4 .14 ) are deduced in this sect ion. Define Rx and Ry as follows: 

1 
Rx = - log2 L, 

n 
1 

Ry = :;:; log2 i\1. 
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In the following theorem lower bounds of Rx and Ry that guarantee Algorithm 4.1 

meeting the criterion ( 4.14) are expressed in a fo rm of the mutual information and the 

divergence, respectively. 

Theor em 4.1 Fix p and q satisfying q(ak) > 0 for all k = 1, 2, ... , I< arbitrarily. Let 

X= {xJ,x2,···, x L} andY= { y 1, y 2, ... , y M} be sets ofn -tuples drawn indepen­

dently from the source and the auxiliary source, respectively and define Rx and Ry by 

(4.17) and (4. 18) . Denote by p· an output of Algorithm 4.1. Under the assumption of 

uniqueness of p ·, for any fixed 6 E (0, Dmax) if the two inequalities 

min min J( q';V) < Rx < R(p ,6) 
Q'•D(P'II Q')~< vev(p ,q'.~) 

(4 .19) 

and 

Ry > D( q,llq) (4.20) 

are satisfied, then there exists an integer n0 satisfying that Algorithm 4.1 outputs p· 
meeting the c1-iterion (4.14) for all n > n 0 , where p· is the probability distribution on 

A defined by (4.3), I (q'; V) denotes the mutual information, 

J J 

V (p , q' , 6) = { Vis a J x J stochastic matrix ILL q'(ak)V(ailak)d(ai, ak) :-::; 6, 
j=l k=l 

J 

L q'(ak)V(ailak) = p(ai) for allj = 1, 2, . . . . J } , 
k=l 

( 4.21) 

and q, is a probability distribution on A that achieves the minimum in ( 4.19) with a 

stochastic matrix V E V( p , q,, 6). 

Note that the lower bound of R;o,· expressed in ( 4.19) is non-increasing function of c: . 

Before proving Theorem 4.1, th ree lemmata are shown in order to make the essential 

part of the proof of the theorem clear. Though Algorithm 4.1 does not know p itself, 

it knows Pe as its estimate. The following lemma suggests that a gap between p and 

p, is negligib le for suffic iently large n. 

Le mma 4.1 Let pe be an estimate ofp satisfying IIP- Pell 1 = O(n-f3') joT an arbi­

trary f3e E (0, ~]. Fix {3 E (0, f3e) m·bitrat-ily and define 

(4.22) 
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Then, for any fJ1 and fJ2 satisfying 0 < /31 ::::; f3 < /32 < f3e there exists an integer 

no = no(/31, /32 ) that satisfies 

(4.23) 

for all integers n >no, where ,C(p) is a subset of A" defined by 

Kv(P) = {x E A" I liP- t(x)lh = O(n-")}. (4.24) 

Proof: Fix /31 and /32 arbitrarily satisfying 0 < /31 ::::; f3 < {32 < f3e· For proving this 

lemma, it is sufficient to show the existence of integers n 1 and n2 satisfying Uf3( Pe) C 

K13, (p) for all n > n1 and K!J, (p) C U13 (pe ) for all n > n2, respectively. Existence of 

the integer n 1 is established first . 

If X E U!J(Pe), IIPe- t(x)ll1 ::::; n-/J Then, the assumption on Pe and the triangle 

inequality yield 

liP- t(x)lh ::::; liP- Pelh + IIPe- t(x)lh 
::::; O(n-13•) + n-13 = O(n-13 ). 

Since /31 ::::; /3, i.e., n-/3::::; n-/3,, (4.25) guarantees the existence of integer n 1 . 

(4.25) 

Next, existence of the integer n2 is shown. If x E K13, (p ), then liP- t ( x ) lh 
O(n-13'). The triangle inequality implies that 

IIPe- t(x)lll ::::; IIPe- Pll1 +liP- t(x)ll1 
O(n-13•) + O(n-!J,) = O(n-!J,). (4 .26) 

From the assumption on {32 , t he term of O(n-!J,) becomes less than n-/3 for all x E 

K!J, (p) if n is sufficiently large. This establishes the existence of in teger n2. 0 

The following lemma characterizes an interesting property of a random variable N 

drawn accord ing to a binomial distribution B(L, 0), that is, for a l11· = 1, 2, . .. , L 

(4 .27) 

If L = 2"RL and 0 = 2-nn, for positive numbers RL and R 0, expectat ion of N is equal 

to 2"(RL-Re) _ It diverges to infinity of exponential order of n as n -> oo if RL > Ro 
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and converges to zero of the same order if RL < f4J. The following lemma claims on 

a relation the behavior of expectat ion to the probability of N satisfying N < n" or 

N ~ n" for arbitrarily chosen a > 0. 

Lemma 4.2 Suppose a random variable N drawn according to the binomial distribu­

tion B(L, B) , where L = 2"RL and B = 2-nR, for any fixed positive numbers RL and 

Ro. Fix a > 0 arbitrarily. 

If RL > J4J , then there exists an integer n0 satisfying 

(4.28) 

for all n > n0 , where exp2[x] = 2• and o(n) denotes terms of order less than 1. 

On the other hand, if RL < Ro, then there exists an integer no satisfying 

(4.29) 

f01· all n > no , where ln denotes the natural logarithm. 

Proof: Fix a > 0 arbitrarily and define 

(4.30) 

for all T = 0, 1, ... , L. By calculating h, it is easy to verify that Cr takes the 

maximum value when 1· is equal to 1·· = LB(L + 1)J. Notice that T. --+ oo as n --+ oo 

of exponential order of n if RL > Ro and T" --+ 0 as n --+ oo if RL < R0 . Hence, there 

exists an integer no satisfying n" :':: T. for all n > no. For all n > no the left hand side 

of ( 4.28) is evaluated in the following way: 

Pr(N < n") ~ (~)or(1- w-r 
~ (T+1)(~)BT(l-B)L-T 
2) 
:::: (T + 1)£1'(1 - B)L- T 
3) 

:':: exp[ln(T + 1) + Tln£- (L - T)B] 
4) 

< exp [ln(n" + 1) + n"+1 RL ln2- (2"RL- n")T"R'] 

exp [- exp2[n(RL- !4J) + o(n)Jl , (4.31) 
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where T = l no J, the property of 1·· leads to the inequality 1) in ( 4.31 ), inequality 2) 

follows from trivial inequalities (n _<::; LT and er _<::; 1, inequality ln(1- B) < -e for 

e E (0, 1) implies inequality 3) and the definitions ofT, RL and Ro yield inequality 4). 

This establishes the first claim of this lemma. 

In the case that R0 > RL it is obvious that there exists an integer n~ satisfying 

1· · < n° for all n > n~. For all n > n~ the left hand side of ( 4.29) is upper-bounded in 

the following manner: 

Pr(N 2 11°) rt' (~)er (1- O)L-r 

~ (L -T'+1) (~,)er'(l-0)L-T' 

~ LT'+Ior' 

:!1 exp [( fnol + l )nRL In 2 - fn°l nRo In 2] 

exp[-n°+1(Ro- RL) ·In 2 + nRL In 2 + o(n)], (4.32) 

where T' = f n° l , the property of 1· · implies inequality 5) in ( 4.32), inequali ty 6) follows 

from (l- O)L-T' _<::; l and the definitions ofT', RL and R0 yield inequality 7), which 

establishes the second claim of this lemma. D 

For any given y E A" and/:,. E (0, Dma•) it is important to evaluate the probability 

that x satisfying d,. ( x , y ) _<::; /:,. is generated from the source. In the following lemma 

this probability is evaluated with increasing n. The lemma shows that the probabili ty 

converges to 0 of exponential order of nand describes its exponent in a form of minimum 

of the mutual information subject to a constraint. 

Lemma 4.3 Let/:,. E (0, Dma.) be an m·bitmry distortion level and fix types p and q 
of A" arbitrarily. Then, fo r any y E A" of type q 

{ 

Pr(d,.(X",y) _<::; t:,.it(X") = p) 2 2-nm;"vevcp.q."ll(q;\i)-o(n), 

Pr(d,. (X", y ) _<::;/:,.I t (X") = p) _<::; 2-nm;"vevcP.Q."l l (Q;V)+o(n)' 
(4.33) 

J J 

V(p, q, !:,.) = {Vis a J x J conditional type [:; {; q(ak)V(ai!ak)d(aj, ak) _<::; /:,., 
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J 

L q(ak)V(ailak) = p(a1), j = 1, 2, . .. , J }· 
k=l 

(4.34) 

Moreover, for any v E (0, 41 andy E A" of type ij 

where p" denotes the probability measure on A" induced by p, Kv(P) is the set defined 

by (4 .24) and 

J J 

V(p, ij, .6.) = {Vis a J x J stochastic matrix ILL q(ak)V(ailak)d(aJ, ak)::; .6. 
j=l k=l 

J 

L q(ak)V(ailak) = p(aJ), j = 1, 2, ... , J }· (4.36) 
k=l 

Proof: Fix v E (0, 4), types p, ij and y E A" satisfying t (y) 

Inequalities( 4.33) is proved first . Since d, is context-free, 

ij arbitrarily. 

P (d( X"" )<.6- lt( )=-)=l{xEA"It(x)=panddn(x,y)<-6.}1 
r n-' ,y- y q l{xEA"It(x)=iJ}I ' (4.37) 

where I · I denotes the cardinality of the set. It is well-known that 

l{x E A"lt(x) = iJ}I = 2"/!(fJ)-o(n), (4 .38) 

where H(-) is the entropy function of base 2. (See e.g., [3, 5).) The numerator in the 

right hand side of ( 4.37) can be written as 

){xEA"]t(x)=pandd, (x , y)::;-6.})= L )Tv(Y)), (4.39) 

where Tv(Y) is a subset of A" defined as 

Tv(Y) = {x E A") the conditional type from y to xis equal to V} (4.40) 

and )Tv(Y)) means its cardinality. It is also well-known that 

( 4.41) 

where H(-)·) denotes the cond itional entropy function of base 2 [3, 5) . Note that the 

number of conditional types belonging to V(p, ij , .6.) is not greater than (n + l)J'. 
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Combining (4.39) and (4.41) yields 

{ 

l{x E A" lt (x) = p and d,.(x,y)::; 6}12': 2maxV EV(p ,ij ,A) H(VIQ)-o{n) 

I{ X E A" I t (x) = p and dn(X, y) ::; 6} 1 ::; (n + l )J '2maxVEVtP .q ."l H(VIQ), (
4

.4
2

) 

where the lower-bound is deduced by a choice of V E V(p, q, 6) achieving the maximum 

of H(VI q). Two inequalities in ( 4.42) directly imply 

{ 

I{ X E A" I t (x) = p and d,.(x, y ) ::; 6 }I 2': 2maxV EV(p .ij,A) // (VI Q)-o{n) 
- - (4 .43 ) 

I{ X E A" I t(x) = p and d,.(x, y) ::; 6} 1 ::; 2maxVEVtP .q ."l //(VIq)+o{n). 

Substituting (4.38) and (4.43) into (4.37) yields both of two inequalities in (4.33). 

Secondly, (4.35) is established . Fix y E A" of type q, v E (0, ~] and type p 
satisfying liP- Pll1 = O(n-") arbitrarily. Then , 

p"{x E A" I dn( x , y )::; 6 and t (x ) = p} (4.44) 

= Pr(t (X") = p) · Pr(dn(X", y )::; 61 t (X") = p) 
::; rnD(PIIP)+o(n) 2-nminvEv(p.q."l I(Q;V)+o(n)' ( 4.45) 

where Pr(t(X") = p) ::; 2-nD(P IIP)+o(n) for any type p [3, 5] and (4.33) imply the 

inequality. Note that D(PIIP) converges to 0 for all p satisfying liP- Pll 1 = O(n-"). 

Moreover, 

n __ m_in_ I (q; V) = n min_ I (q; 11 ) + o(n) 
VEV(p,q,t>) VEV(p,q,t>) 

( 4.46) 

for such p since the two sets V(p, q, 6) and V(p , q, 6) asymptotically become the same 

as n _, oo . Hence, 

p "{ X E A" I d,. (x , y ) ::; 6 and t (x ) = p} ::; 2-n minVEV(p.ij,A) I(Q;V)+o(n) (4.47) 

for all p satisfying liP- Plh = O(n-"). Notice that the right hand side of (4.47) does 

not depend on p. Inequality (4 .35) is obtained by adding the both hand side of (4.47) 

with respect to p and usi ng the fact that the number of such types is not greater than 

(n+l)J 0 

Now, it is ready to prove Theorem 4.1. It is shown that with probability close to 

one the algorithm selects y E Y that has a type in a neighborhood of q,. The a lgorithm 
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causes two kinds of errors similar to the type-I error and the type-II error in statistical 

tests. By virtue of Lemma 4.2 and Lemma 4.3 both of the two errors goes to zero as 

n--+ oo . 

Proof of Theorem 4.1: Choose /:;. E (0, Dmax) arbitr<ll'ily and define q, as the 

probability distribution on A achieving the minimum of ( 4.19) with a stochastic matrix 

V E V(p, q., b.). Continuity of the divergence and the mutual information leads to the 

existence of ( > 0 satisfying 

and 

Rx > max min I(q'; V) 
Q'EQ,(Q,) VEV(p,q',L!.) 

Ry > max D(q'llq), 
q'eQ,(q,) 

( 4.48) 

(4.49) 

where 

Q{(q,) = {q' is a probability distribution on A I D(p"llq')::; c and llq,- q'lh::; (}. 

(4.50) 

Note that there exists an integer n 1 that satisfies t(y) E Q{(q,) for some y E A" for 

all integers n > n1. The left hand side of ( 4.14) is evaluated in the following manner: 

p,·ob[D(p"IIP')>c]= L Pr(Y={y1 ,y2, ... ,y~.r}) 
YEA'"" 

x Pr(D(p'llp•) > cl Y = {Y1,y2, · · · ,y~.r}) 

L Pr(Y= {Y 1,Y2, ... ,y,~~})Pr(D(p"IIP•) >elY= {Yt,Y2 , ... ,y,~~}) 
Y~IA""I 

+ L Pr(Y={Y 1,Y2, .. ·,Yu})Pr(D(p'IIP")>ciY={yJ,Y2,····Yu}) 
YEIA""I 

::; L Pr(Y={Yt,Y2, ... ,y,~~})+ L Pr(Y={YJ , Y2 , ... ,yM}) 
Yi' IA""I YEIA""J 

X Pr(D(p"llp·) > E I Y = {y 1, y 2, ... , YM} ), (4.51) 

where IA"M] is a set of Y defined by 

[A'"11
] = {Y = {y 1 , y 2, ... , Yu} I there exists y E Y satisfying t(y) E Q{(q,)}. 

(4 .52) 
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The first term in ( 4.51) means the probability that Y does not contain any elements 

belonging to Q~(q,). Hence, for all n > n 1 it is upper-bounded in the following manner: 

L Pr(Y={y1,y2,···,YM})= 1- L L q"( y ) 
[ ]

M 

Y~IA"MJ q' EQ<( q .)nT;_ Y EA"( q ') 

;\ [1 - L TnD(q'((q)+o(n)] M 

q 'EQ1(q .)nT;_ 

~ [ 1 _ 2-nm;nq'eQ,<q.> D(q'llq)+o(n)l M 

~ exp [- exp2 [n(Ry - , min D(q'llq)) + o(n)]] , (4 .53) 
q EQ,(q .) 

where T}..' denotes the set of all types of A" , A"(q' ) is a subset of A " whose all elements 

have type q', q" is the probability measure on A" induced by q, a property on type is 

used for obtaining equality 1) in (4.53), ITJI < (n + 1)1 and extension of the domain 

imply inequality 2) and inequality 3) follows from the definition of Ry and inequality 

(1 - t)"' ::; exp[-mt] fort E (0, 1) and m > 0. Since ( 4.49) guarantees 

Ry- min D(q'llq)) 2: Ry- max D(q'llq)) > 0, (4.54) 
q 'EQ,(q .) q 'EQ,(q .) 

the first term in ( 4.51) converges to 0 of double-exponential order of n . 

Hereaft er, the second term in ( 4.51) is evaluated . Note that there are two cases 

t hat D(p"IIP")::; c: is not satisfied as follows: 

Case1 

Case 2 

Nmax < n"' for Ymo satisfying D(p"llt(y,,)) > c, 

N,ax 2: n"' for Ym· satisfying D(p"ll t (Ym· )) > C: . 

Therefore, the second term in (4.51) is upper-bounded in the following mrumer: 

Pr(D(p"IIP") > c:IY = {Y1 ,Y2··· ·YM}, Y E [A"M]) 

= Pr(Nmax < n"' and D(p"llt(y,,)) > c I Y = {y 1, y 2 , ... YM}, Y E [A"M]) 

+ Pr(N,"" 2: n"' and D(p"llt(y, . )) > c:I Y = {y 1, y 2 , . .. yM}, Y E [A"M]) 

::; Pr(N,ax < n"' I Y = {y 1, Y2, .. YM }, Y E [A"M]) 

+Pr(N,ax 2: n"' and D(p'llt(y , . )) > c: IY = {y 1, y2,. ·· Yu}, Y E [A"M])(4.55) 
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It is shown that two probabilities in (4.55) converges to 0 as n tends to infinity as far 

as Rx satisfies (4.19). 

Since Nmax = IN(ym.,.6.)1 = max IN(ym,.6.)1 from its definition, for given Y the 
l:Sm:SM 

probability of Nmax < n" is less than the one that IN(ym,L'l.)l < n" for any specified 

Ym• E Y . This property leads to 

Pr(Nmax < n"IY = {yi,Y2•···YM}, Y E [A"M]) 

~ Pr(IN(ym'• .6.)1 < n" I Y = {YI, Y2, ... YM }, Y E [A"M]) . (4.56) 

Notice that IN(Ym•, .6.)1 is governed by the binomial distribution B(L, 0), where 

(4.57) 

and p" denotes the probability measure on A" induced by p. Fix {32 satisfying {3 < 

fJ2 < !3. and define a new random variable INL(Ym•,.6.)1 by 

where Kp,(p) is a set defined by (4.24). Lemma 4.1 guarantees the existence of an 

integer n2 satisfying A"nKp,(p) C A"nU.e(P.) for all n > n2. Notice that INL(Ym•• .6.)1 

is also governed by the binomial distribution B(L, OL), where 

(4.59) 

For n > ma.x{ n 1, n 2 } Lemma 4.3 shows that OL can be expressed in the following form: 

(4.60) 

for any Ym• E A"(q), where q = t(Ym•)- From the assumption that Ym• E Q{(q,) , 

min_ I(q;V):S: max min I(q';V)<Rx, (4.61) 
\I EV(p,q,t:.) q'EQ,(q,) VEV(p ,q' ,C.) 

where (4.48) is used to establish the last inequality. Consequently, Lemma 4.2 implies 

that 

Pr(IN(Ym•• .6.)1 < n" I Y = {YI, Y2, ... YM }, Y E [A"M]) 

:S: Pr(INL(Ym•,L'l.)l < n" IY = {yJ,Y2,· . ·YM}, Y E [A"M]) 

:::; exp[- exp2[n(Rx- Ro) + o(n)]) 
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where f4J denotes the middle term in (4.61) and the first inequality follows from the def­

inition of INL(Ym•,i:>)l. Inequality (4.62) shows that the first term in (4.55) converges 

to 0 of double-exponential order of n by virtue of ( 4.61). 

Now, the second term in ( 4.55) is evaluated by the similar way that establishes 

(4.62). First, choose {31 satisfying 0 < {31 < {3 arbitrarily and define a new random 

variable INu(Ym•,i:>)l as follows: 

fNu(Ym'> i:>)l = l{x E A" n KtdP) I d.,(x, Ym• l ~ i:>}l (4.63) 

Note that INu(Ym•• i:>)l is governed by the binomial distribution B(L, fJu ), where 

fJu p"{x E A" n K{J,(P) I d.,(x, Ym•) ~ i:>} 

2-n m;nvevcp.q.o) I (Q;V )+o(n)' 
(4.64) 

where q = t (Ym•) and Lemma4.3 yields the last equality. For Ym• satisfying D(p"llt(Ym• )) 

> c: (4 .64) is evaluated as follows: 

min J(q; V) > min min J(q'; V). (4.65) 
VEV(p,Q,t>.) - Q';D(P ' IIQ')>< VEV( p ,q' ,t>.) 

Notice that the right hand side of ( 4.65) is greater than the rate-distort ion function 

R(p, i:>), and hence, it is greater than Rx. The second term in (4.55) is evaluated in 

the following way: 

Pr(Nmox ~ n" and D(p"llt(Ym·)) > c:IY = {y1,Y2, ... ykt}, Y E [A"M]) 

~ Pr(IN(y,.,i:>)l ~ n° for any Ym E Y satisfying D(p"llt(ym)) > c: I 

Y={y1,Y2··· YM},YE[A'"' 1
]) 

~ Pr(INu(Y,, i:>)l ~ n° for any Ym E Y satisfying D(p"llt(y,J) > c: I 

Y = {Y1, Y2, ... y,,t}, Y E [A"M]) 

~ exp[-n"+ 1 (R~- R:r) ·ln2 + nR~ In 2 + o(n)], (4.66) 

where R~ denotes the right hand side of ( 4.65) and Lemma 4.2 is used to deduce the 

last inequality. 

Finally, the second term in (4.51) is evaluated. Notice that both (4 .62) and (4.66) 

do not depend on Y. Therefore, 

L Pr(Y = {y1,Y2, .. ·, YM} ) Pr(D(p"IIP") > C: I Y = {y1, Y2, · · · ,YM}) 
YE[A"MJ 
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::; (exp[- exp2 [n(Rx- Ro) + o(n)]] + exp[-n<>+ 1 (R~- Rx) ·In 2 + nRx In 2 + o(n)J) 

x L Pr(Y = {yi,Y2, ... ,YM}) 
YE[A"M[ 

::; exp[- exp2 [n(Rx- Ro) + o(n)]] 

+ exp[-n"+ 1 (R~- Rx) ·ln2 + nRdn2 + o(n)], (4.57) 

which becomes less than 8 for sufficiently large n. This completes the proof of this 

theorem . 0 

Judging from (4.51), (4.53) and (4.67) in the proof of Theorem 4.1), the most 

dominant term is the second term in ( 4.67). For making the probability of error caused 

by the algorithm less than 8, n of O(log2 i) should be chosen for sufficiently large n. 

4.3 Another Universal Estimation Algorithm 

4 .3.1 D efinit ion and P roperties of the A lgorithm 

In Section 4.2 a universal estimation algorithm of p· defined by ( 4.3) is proposed. The 

algorithm requires two kinds of training sequences and for arbitrarily chosen t: > 0 and 

8 E (0, 1) outputs p· satisfying D(p•llp·) ::; t: with probability at least 1 - 8. Sizes of 

n and the training sequences requ ired by the algorithm is evaluated as functions oft: 

and 8. In other words, it permits an estimation error up to t: in order to make length 

of the required training sequences small . In this section another universal estimation 

algorithm of p· that outputs a probability distribution arbitrarily close top· with high 

probability is proposed in this section. 

The same notations introduced in Section 4.2.1 is also used here. A class of discrete 

memory less sources of finite alphabet A = { a 1, a2, ... , aJ} is of interest . Assume that 

the probability distribution on A, denoted by p = (p(ai),p(a2 ), . . ,p(aJ)), satisfies 

p(ai) > 0 for all j = 1, 2, . . . , J. Denote by d a single-letter fidelity criterion satisfying 

three conditions 1), 2) and 3) given in Section 4.2.1 and defined, by (4.8). For any fixed 

distortion level 6 E (0, Dmax) define p· by ( 4.10). Uniqueness of p· is also assumed. 

The uniqueness of p · implies uniqueness of the stochastic matrix w· achieving the 

90 



X { } 
[source j - X1 ,X2, ... ,XL -

Estimation 
Algorithm 

Auxiliary 
Source Y={Ym}~= 1 

Figure 4.2 Block Diagram of the Universal Estimation System II 

minimum in (4. 1). It is calculated as 

p"(ak) exp[sd(a1, a,)] 
W • ( ak[ a 1 ) = -'

1
,..__,.-"-'----'--'-----'---'.:.......::'-'-'--

l::>· cat) exp[sd(a1, a1)] 

1= 1 

for all j, k = 1, 2, . .. , J [2]. • 

(4.68) 

A block diagram of the universal est imation system considered in this section is 

given in Fig. 4.2. Suppose that an auxiliary source with probability distribution q = 

(q(aJ),q(a2), ... ,q(aJ)) satisfying q(a1) > 0 for all j = 1,2, ... ,1 is available to the 

est imation algorithm. Denote by X= {x 1,x2 , ... ,xL} L n-tuples drawn from the 

source and Y = {y,}~=l an infinite sequence of n-tuples drawn from the auxiliary 

source. Though the cardinality of Y is finite in Section4.2, Yin a form of Y = {y,}~=I 

is required by the algorithm proposed in this sect ion. Define 

1 
Rx =-; log2 L (4.69) 

·rnstead of assuming the uniqueness of p·, p· (aj) > 0 for all j = 1, 2, .. , J and regularity of the 

matrix A= (e-•d(a;.a.l) for s = iJ,R(p,D)Io=A can be assumed 121. In each case uniqueness of JV • 

plays an important role in the following sections. 
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Assume that an estimate of p, denoted by p., satisfying lfp- P.lh = O(n-!3•) is also 

available to the algorithm, where (J. is a constant satisfying (J. E (0, !J and 11·11 1 is the 

norm defined in (4.11). 

The algorithm estimates p· in the following way: 

Algorithm 4.2 1} Choose a. > 0 and (J E (0, (J.) arbitrarily. Draw X = { x1, x 2 , .. . , x L} 

from the source. Set m = 1 and select sufficiently small{ > 0. 

2) Draw Ym from the auxiliary source. Define 

N(ym, 6. + 1) = {x EX I d,(x, y):::; 6. +I and IIPe- t(x)ll1:::; n-13 }, (4.70) 

where t(x) denotes the type of x. Count IN(yn,t::. + 1)!, the canlinality of 

N(ym,6.+{). 

3} If IN(ym, 6. + 1)1 2': n", then output t(ym). Otherwise, increment m and go to 

2}. 0 

Choices of L and 1 are crucial in Algorithm 4.2. The following theorem guarantees 

that the algorithm outputs p· arbitrarily close to p· under appropriate choices of 

Rx = ~ log2 L and 1 and stops with probability one when n is sufficiently large. 

Theorem 4 .2 Let 6. E (0, Dmax) be a distortion level arbitrarily fixed and assume that 

p· defined by ( 4.3) is unique. If Rx is equal to R(p, 6.) , then for any fixed 7) > 0 there 

exists /o = 1o(17) satisfying the following properties for all{ E (0, lo): 

(I) there exist a constant ( = ((1), 1) > 0 and an integer no= n0 (17, 1) that satisfies 

(4.71) 

for all integers n > n0 andy E A" satisfying liP.- t(y)lh > 7) , 

(II) there exists an integer n0 that guarantees the existence of a type ij satisfying the 

following properties: 

(a) gap between p· and q in 11 sense satisfies 

(4.72) 
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(b) there exists a positive number ( = ((17, 1, ij ) that satisfies 

Pr(jN(y , tJ. + 1)1 < n"') < exp[- exp2[n(- o(n)]] (4.73) 

for all integers n > n0 and y of type ij 

where Pr(·) means the probability with respect to X. 

Moreover, Algorithm 4.2 stops with probability one. 

Since arbitrary a > 0 is chosen in Algorithm 4.2, property (I) implies that the 

algorithm outputs types of A" not satisfying jjp·- iilh < f) with probability tending 

to 0 of exponential order of n. On the other hand, property (II) guarantees the existence 

of types that the algorithm puts out with probability going to 1 of double-exponential 

order of n. 

Theorem 4.2 seems to treat only the case that Rx is equal to the rate-distortion 

bound R(p, tJ.) though any knowledge on R(p, tJ.) is not assumed. Nevertheless, ( 4.71) 

holds for any y E A" if Rx < R(p, tJ.) and otherwise ( 4. 73) holds for a type not 

satisfying (4.72). Consequently, by varying Rx from zero to H(p) Algorithm 4.2 can 

estimate not only p· but also R(p, tJ.). 

For establishing property (I) an arbitrarily 1 E [0, lo] can be chosen. However, it is 

hard to guarantee the existence of a type sat isfying property (II) when 1 = 0. On the 

other hand, for establishing only property (II) simple definition of N(y, tJ. + 1) such as 

N(y ,tJ.+1) = {x E Xjdn(x,y) :S !J.+1} (4.74) 

can be used, though property (I) is not guaranteed. 

4 .3 .2 Analysis of the Algorithm 

This section is devoted to a proof of Theorem 4.2. Three lemmata shown in Sec­

tion 4.2.3 are also keys to the proof. 

Proof of T h eorem 4.2 : Fix tJ. E (0, Dmax), 7) > 0 andy E A" satisfying jjp•- t(y)Jh > 

17 arbitrarily. Define Rx = R(p, tJ.). First ly, property (I) is established under an ap­

propriate choice of 1 > 0. 
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Fix any /31 satisfying 0 < {31 < f3 and define 

Nu(Y, !':;+I)= {x EX n Kp, (p) I dn (x, y ) :0: 6. +I} (4.75) 

where Kp, (p) is a set defined by ( 4.24). Notice that INu (y , 6.+1ll as well as IJV(y, 6.+ 

1)1 is a binomial random variable . By considering the fact described in Lemma 4.1, 

there exists an integer n 1 satisfying 

(4.76) 

for all n > n 1 . Therefore, if the existence of ( > 0 that satisfi es EINu(y, 6. + 1ll < 
2-n~+o(n) is established, Lemma 4.2 and (4.76) yield (4.71), where E denotes the prob­

ability with respect to X. 

Since element of X are independently drawn from the source, INu(Y, 6. + 1ll is 

evaluated as follows: 

EINu(y, 6. + 1)1 L. p"{x E A" n Kp,(p) I dn(X, y ) :0:6. +I} 
< 2-n[m;"vev(p,q,"+') I(Q;I')-R(p,C.)J+o(n) (4.77) 

where q = t (y ) and the definition of L and Lemma 4.3 deduce the last inequality. 

From the uniqueness of p· it is clear that 

min_ I(q;V) > R(p,6.) 
VEV(p,q,c.) 

(478) 

for all q satisfying liP" - iilh > 7). Since p· is unique and the mutual information 

I (q; V) is continuous with respect to V, there exists a real number 1 1 sat isfying 

mi_n I (q;V ) > R(p ,!'::.) 
VEV(p,q,C.+>) 

(4 . 79) 

for all 1 E [0, 1d and accordingly, there exists ( = (( 17, 1) > 0 that satisfies 

mi11 I (q;V )- R(p, 6.) :2: ( 
VEV(p,q,c.+>) 

(4.80) 

Combining ( 4. 77) and ( 4.80) yields 

EINu(Y , 6. + 1)1 < T"~+o(n) (4.81) 
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and hence, Lemma 4.2 implies (4 .71). 

Secondly, property (II) is proved. Since the rate-distortion function R(p, D) 1s 

strictly monotone decreasing function with respect to D, for any fixed 1 > 0 

I(p; W") = R(p, t:.) > R(p, l:. + 1 ) = I(p, wt), (4.82) 

where Wf is the J x J stochastic matrix achieving the minimum in (4.1) at D = l:.+1. 

Define pf by 
J 

p1(ak) = LP(aj)Wf(ak[aj) (4.83) 
j=l 

for all k = 1, 2, . . . , J. Existence of 12 = 12(17) satisfying liP"- P% < 'f/ for all 

1 E (0, 12] is guaranteed by the uniqueness of w· . Nonexistence of such 12 conflicts to 

the uniqueness of 1v· originated from the uniqueness of p· . 

Note that an arbitrary approximation of pf is realized by a rational number of 

denominator n with increasing n . Hence, there exists a type q1 satisfying liP"- qf/1 1 < 
17 if n is sufficiently large. Moreover, continuity of the mutual information leads to qf 
that also satisfies 

R(p,l:.)- m!l/ I(q1;V) 2: ( 
VEV(p,q ,<'>+>) 

(4.84) 

for a constant ~ >' 0 by choosing smaller 12 if necessary. It is shown that any y of 

type qf satisfies (4.73). 

Fix y E A" of type qf and a real number fh satisfying fJ < fl2 < fl. arbitrarily, 

where fl2 is a parameter that determines precise of Pe· Define 

(4.85) 

and notice again that IN(y, l:. +!)I and INL(Y, l:. +!)I are binomial random variables. 

Since Lemma 4.1 guarantees the existence of an integer n2 satisfying 

(4.86) 

for all n > n2 . it is sufficient to show that the right hand side of ( 4.86) converges to 

zero of double-exponential order of n . If expectation of INL(y, l:. +!)I with respect to 

X turns out to grow of exponential order of n, Lemma 4.2 implies the convergence. It 
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is evaluated in the following manner: 

L · p"{x E Klh(P) I d,(x, y ) :<::: /',. + 1} 

njR(p ,L'.)-m ;n pq· 1 I(q 1;V)i-o(n) 
> 2 VEV( • ·"+'} , ( 4.87) 

where L = 2"/l{p,L'.) and a property of binomial random valuables yield the equality, 

Lemma 4.3 implies the first inequality and ( 4.84) is used for obtaining the inequality. 

Hence, Lemma 4.2 and ( 4.86) deduce 

Pr(IN(y, /',. + 1)1 < n") < exp[- exp2[n( - o(n)Jl. (4.88) 

Choosing /o = min{l1 , 12 } completes the proof of the properties (I) and (II) of the 

theorem. 

Finally, it is shown that Algorithm 4.2 stops with probability 1 if Rx is equal 

to R(p, 6) and an arbitrarily 1 E (0, lo] and an appropriate n are chosen. For all 

m = 1, 2, ... define Em as the event that the algorithm does not stop by m-th iteration, 

i.e, by the time when Ym is drawn and tested. Then, for all integers m > 1 

and hence, 

Pr(Em) 

Pr(Em-l) 
Pr(IN(ym ,t,. + 1)1 < n") 

< Pr ( t(}~;;) = qf ) Pr(IN(}~;;,t,. +!)I< n° It(}~;;)= qt) 

(4.89) 

(4 .90) 

+ Pr(t(Y~;) f. q1) Pr(IN(Y,~, /',. + 1)1 < n" It(}~~) f. q1), ( 4.91) 

where q t is a type used for establishing property (II ) and }~~ is a m- th random vector 

from the auxiliary source. Since q( ai) > 0 for all j = 1, 2, ... , J from the assumption 

of the auxiliary source, Pr(t(y) = qt) "" 2-nD(Q
1

11 q' ) and D(qtllq) < oo. By using 

property (I) and property (II ) Pr(Em)/ Pr(E,_>) is evaluated in the following manner: 

Pr(E,) < T"D(Q' II q )+o(n) exp[-na+ I( In 2 + nRx In 2 + o(n)J 
Pr(E,_>) 

+ (1- T "D(q'llq )+o(n)) exp[- exp2[n(- o(n)jj, (4.92) 

where n satisfying n 2: ma..x{ n0, n0} is chosen. The right hand side of ( 4.92) guarantees 

the existence of an integer n0 = n0(,\) that satisfies Pr(E,)/ Pr(E,_ 1 ) < 1 -.A for all 
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n > n0 and m > 1, where>. E (0, 1) is an arbitrarily fixed constant. If n satisfying n ~ 

max{ no, n~, n0} is chosen, Pr(E,.) __, 0 of exponential order of m and I::= I Pr(Em) < 
oo. Therefore, the Borel-Cantelli lemma guarantees that Algorithm 4.2 stops with 

probability one. 0 

4.4 Conclusion 

Two universal estimation algorithms of a probability distribution p" on a source al­

phabet A that is the output probability distribution of the test channel for discrete 

memoryless sources are proposed. The algorithm requires two kinds of training se­

quences and outputs an estimate of p". One of the sequence is drawn from the source 

to be compressed and the other is drawn from an auxiliary memoryless source that 

puts out all of symbols in the same alphabet. 

One of the two algorithm requires X = { x 1, x 2 , ... , x L}, Xi E A" for all l = 

1,2, ... , £ from the source andY= {y1,y2 , .. . , yu}Ym E B" for all m = 1,2, ... ,M 

from the auxiliary source. It outputs an estimate of p" , denoted by p·, satisfying 

D(p"jjp· ) :":: E with probability at least 1-6 for any fixed E > 0 and 6 E (0, 1). Lower 

bounds of Rx = ~ log2 L, Ry . = ~ log2 M and n required for meet ing the criterion 

are evaluated as a funct ion of E and 6. A property of binomial random variables and 

conventional techniques of the Shannon theory such as the type are used in order to 

justify the algorithm . If the algorithm is applied to the data compression scheme with 

fidelity criterion proposed in Chapter 3, data compression of rate R(p, t.) + E and 

average distortion close to t. per source symbol becomes possible in an asymptotic 

sense. The imposed criterion on estimation resembles to the PAC learning models that 

often appears in the field of the computational learning theory. The algorithm not only 

is a construct ion of estimator of p· but also throws light on the Shannon theoretic fi eld 

from a viewpoint of the computational complexi ty. 

The other algorithm requires X = { x 1, x 2 , ... , xL} , Xi E A" for all l = 1, 2, ... , L 

from the source andY= {y,., }:=I, y, E A" for all m = 1, 2, ... , from the auxiliary 

source. It can output an estimate of p· arbitrarily close to the true distribution with 

high probability if appropriate parameters are chosen in the algorithm. Though an 
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infinite sequence from the auxiliary source is required, the algorithm is guaranteed to 

stop with probability one. 

However, there remains several problems to be solved. Is it possible to obtain a 

lower bound of Rx that dose not depend on p in the first formulation of estimation 

problem? This problem is essential for the sake of universal encoding. Development 

of an algorithm without use the estimate of probability distribution of the sources and 

establishing required size of training sequence should be further considered . 
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Chapter 5 

Conclusion 

In this thesis asymptotic properties of data compression schemes with fidelity criterion 

are discussed . The rate-distortion function R(D), which is defined as a minimum of 

the mutual information, describes achievable rate of data compression schemes when 

average distortion up to D is permitted. Existence of an asymptotically optimal block 

code that achieves the rate-distortion function is guaranteed by the source coding 

theorem. For readers' convenience, Chapter 1 is devoted to introduction of such basic 

properties on data compression schemes with fidelity criterion. 

In Chapter 2 encoding of memoryless gaussian sources is considered under the 

squared-error criterion. For the sources of known mean and variance it is shown that 

an encoding scheme similar to the shape-gain vector quantization is asymptot ically 

optimal under certain conditions. In the scheme source blocks of blocklength n are 

encoded by using a scalar quantizer and a set of point on n-dimensional unit hyper­

sphere. If the set of points is appropriately chosen, asymptotic behavior of rate and 

average distortion is characterized by the scalar quantizer. The encoding method is 

easily extended to the sources of unknown mean or variance by taking the two-pass 

encoding strategy. Given a data block of blocklength n, the encoder transmits an es­

timate of unknown parameters with error 0( -f,;) to the decoder first and encodes the 

block as if the parameters are known. The probability that distortion between source 

blocks and their reproduced form is not greater than an acceptable level is analyzed. 

Under the assumption that the unknown parameters lie in a known and bounded set, 
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it is proved that the probability tends to one as n _, oo with a slight loss of rate even 

if mean or variance are unknown. The extra rate required for transmission of the block 

is CiH log2 n + c1 when only mean is unknown, (ii) ~ log2 n + c2 ,;n + c3 when only 

variance is unknown and (iii) log2 n + C4 fo + C5 when both mean and variance are 

unknown, where C;, i = 1, 2, ... , 5 are constants. 

A data compression algorithm based on string matching is treated in Chapter 3. 

In the algorithm both an encoder and a decoder are supposed to share a data-base 

sequence of sufficient length in each buffer. Given a source block of blocklength n, 

the encoder searches for the minimum index of the buffer with property that distor­

tion between the source block and n consecutive symbols beginning from the index is 

within an acceptable level. It transmits the index in the fixed-length binary form to 

the decoder. The decoder reproduces the source block as n consecutive symbols from 

the transmitted index. Rate required by the scheme is analyzed for discrete memo­

ryless sources and memoryless gaussian sources. In case of the discrete memoryless 

source of alphabet A = { a 1, a2 , . . , aJ} and probability distribution p if the data-base 

sequence is drawn according to probability distribution q satisfying q( a1) > 0 for all 

j = 1, 2, ... , J, it is shown that D(qiiP") expresses redundancy of the scheme, where 

p" is the output probability distribution of the test channel and D(-11·) denotes the 

divergence. The result directly implies a sufficient condition for making the redun­

dancy asymptotically go to zero. In case of memoryless gaussian sources, however, 

any i.i.d. gaussian sequence of known mean and variance can make the redundancy 

in rate asymptotically equal to zero by modifying the way of matching. These results 

unveils an essential difference between compression of discrete memory less sources and 

compression of memoryless gaussian sources. 

Chapter 4 is devoted to development of algorithms estimating p" universally, the 

output probability distribution of the test channel. Two universal estimating algo­

rithm are proposed and analyzed. Only discrete memoryless sources of alphabet 

A = { a 1, a2, ... , aJ} and probability distribution p is of interest. The first algo­

rithm requires data sequence X= {x 1,x2, . . ,xL}, Xt E A" from the source and 

Y = {y 1, y2, ... , y M}, y,. E A" from another discrete memory less source of proba­

bility distribution q satisfying q(ak) > 0 for all k = 1, 2, ... , J. It outputs p· as an 
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estimate of p". The criterion imposed on the algorithm resembles the PAC (Probably 

Approximately Correct) learning models that often appear in the field of computa­

tional learning theory. For arbitrarily fixed E: > 0 and b E (0, 1) the algorithm must 

output p· satisfying D(p•jjp") ::; E: with probability at least 1 - b. Lower bounds of 

Rx ~ ~ log2 L, Ry ~~ ~ log2 M, and n that enable the algorithm to meet the criterion 

of estimation are deduced as a function of E: and b. As a byproduct of the algorithm, 

redundancy of the encoding algorithm proposed in Chapter 3 becomes not greater than 

c for any discrete memoryless sources when data-base used in the encoding algorithm 

is drawn accord ing to the probability distribution that the estimation algorithm out­

puts. The other algorithm requires X = { x 1, x 2 , . .. , x L}, Xt E A" from the source and 

Y = {Ym}~=l> Ym E A" from another discrete memoryless source. The algorithm only 

requires memory for storage of one element of Y, which is different from the previous 

algorithm. It is shown that the algorithm outputs p· that is arbitrarily close to p" 

with high probability and stops with probability one when parameters in the algorithm 

are appropriately chosen, 
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Appendix A 

For Section 2.3 

This appendix gives a proof about the convergence of the second term in (2.48). Since 

the volume of DLm is infinite for all m = 1, 2, ... , lvf , there are blocks x E DLm encoded 

with large distortion. For completing the proof of Theorem 2.1 it should be shown that 

(A.1) 

has an upper-bound that decays of exponential order of n under the condition C1 ). 

If x E D Lm for some m = 1, 2, ... , !vi, x satisfies (x, y,) ~ aL from the definition 

of 'h By applying ( (x, Y m) - "a£)2 
:<::: (Jixlb - a£)2 for such x, Q,. is upper-bounded 

as follows: 

(A.2) 

where r = llxJ12 and u = aL. Since (1·- u)2 :<::: r2 - u2 for any 0 :<::: u :<::: r, the formula 

of partial integral implies that 

Q,. < ,.n+l exp -- d7· 1 1"" ( ,.2] 
2~f(%+1) u 2 

- r"- 1 exp -- ch· 1!2 1"" ( ,.2] 
2~f(% + 1) u 2 
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2rf(;" + 1) exp [ -~] 
- 2~;:¥: 1) [~ rn-I exp [-~] d1·, (A.3) 

The second term in (A.3) is positive since u2 = n 1+2" > n for some fixed a> 0 as is 

found in C1) and the integrand is non-negative. Then, (A.3) is evaluated as follows: 

nCt+o)n . [ n I+2o] 
Qn < 2!Fr(I + 1) exp --2- . (A.4) 

To show the exponential decay of (A .4), the Stirling formula 

In f( s) ::::< ~ In 21r + ( s - ~) In s - s (A .5) 

is used. Taking the logarithm of (A.4) yields 

JnQn < (
1 ) n 1 - + a n Inn - - In 2 - - In 21r 
2 2 2 

- --In - + 1 - - - 1 - -n n + 1 (n ) n 1 I+2o 
2 2 2 2 

1 - 2n 1+2
" + O(nln n), (A.6) 

where o( n 1+
2
") denotes terms of order lower than 1 + 2a. Consequently, Qn has an 

upper-bound in a form 

Q, < exp [-~ni+2" + O(nln n)J, (A.7) 

which decays of exponential order of n . 
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Appendix B 

For Section 2.4 

For completing the proof of Theorem 2.4 the existence of the integer n3 satisfying 

Pr(E2IE.j) < c for all n > n3 should be established. The probability is expressed as 

follows: 

( I c) ( ( X - jJ_ ·) 2 -"- [ llx - t-tll~] Pr ~ E4 = }Rn X llx- P-112, Y (21ra ) 'exp - 2a2 dx, (B.l) 

where X is defined in (2.68). Fix an arbitrary~ satisfying~ E (0, a 2 ) and define S~ by 

s~ = {X E R " I Jn(a2- 0..,: llx- t-t ll2..,: Jn(a2 + 0}. (B.2) 

Then, Pr(E2IE4) in (B.l) is written as 

Pr(E2IE~) = h, X ( II:~ ~~2 , y·) (27ra2)-!f exp [ _llx ~;'~~~] dx 

( ( X - jJ_ · ) 2 -"- [ llx - t-t ll~] + Js{ X llx- P- 112, Y (21ra ) 'exp 2a2 dx 

_.,: h, X (II:~ ~~2, Y*) (21ra2)-~ exp [ _llx ~;'~~~] dx 

+ f (Z1ra2)-!f exp [ llx- t-tll~] dx, (B.3) 
is( 2a2 

where S( denotes the complement of S~ and 0 _.,: x ..,; 1 is used to obtain the last 

inequality. The weak law of large numbers guarantees the existence of an integer n5 

that satisfies the second term in (B.3) being Jess than ~ for all n > n5 . Therefore, it is 

sufficient to show that the first term in (B.3) becomes less than ~ for sufficiently large 

n. 
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It is convenient to represent an upper bound of llx- J.LII ~ as a function of llx- ftlk 
First, the triangle inequality is used as follows: 

(B.4) 

Notice that the right hand side of (B.4) becomes positive for any x E S{. Under the 

event E:; llx - J.LII ~ is evaluated in the following way: 

llx - J.LII ~ 2:: llx- it ll~- 2llx- it ll2llft- J.L II2 +lift- J.LII ~ 

2:: llx- itll ~ - 6vKallx- it lb-

Hence, the first term in (B.3) is upper-bounded by 

where T{ is a subset of R" defii1ed as 

(B .5) 

and ( is an arbitrary number satisfying 0 < ( < ~- Note that there exists an integer 

n6 satisfying T{ C S{' for all n > n6 under the event E:;. 

By transforming the rectangular coordinate system into the polar one, the right 

hand side of (B.G) is evaluated in the following way: 
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where (2 .69) yields the last inequality. The integral in (B.8) is upper-bounded as 

(27ra2t' exp ,-"-1d1· j v'n{u'H') ., [ r 2 - 6vK ar] 
Jn(u'-(') 2a2 

:S: Jn(a2 + ~')(27ra2t% 

[ 
n(a

2
- n- 6vKaJ11(a2

- n] 2 1 "-=.!. 
xexp 

2
a 2 (11(a+~))' 

=exp[11log2 n+0(11)]. (B.9) 

Since {3 in (B.8) is positive, equations (B.8) and (B.9) imply that the right hand 

side of (B.6) converges to 0 as 11 tends to infinity. Therefore, there exists an integer 

117 that guarantees the first term in (B.3) being less than ~ for all 11 > 117. Choosing 

113 = ma..x{115, n6, n7} completes the proof of Pr(E2 [E~) < c: for all n > n3. 
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Appendix C 

For Section 2.5 

In Section 2.3 a randomly and independently generated points on S"-1 lead to the 

asymptotic optimality for memoryless gaussian sources with known mean and vari­

ance. However, this approach does not make sense in case of memoryless Laplacian 

sources though Fischer [20] establishes the asymptotic optimality by using a random 

coding argument restricted to ann-dimensional hyperspheres in the sense of 11·11 1 . This 

appendix intends to clarify the reason why such approach fail s. 

In the case of gaussian, Lemma 2.2 formulates the probability that an arbitrary 

points on sn- 1 does not belong to the region that guarantees the point to be encoded 

within an acceptable distortion 6. Such approach is written in a form of (2.25) if a 

codebook is randomly and independently chosen from points on S"-1 . For evaluating 

the right hand side of (2.25), the ratio of (n- 1)-dimensional volumes must be lower­

bounded. If the logarithm of the lower bound divided by n converges to the form of 

rare-distortion function as n --+ oo, the asymptotic optimality of the code follows. 

Can the same idea be applied to analysis of an encoding scheme for memoryless 

Laplacian sources of known mean and first-order absolute moment? The answer is no. 

Vlithout loss of generality, the memoryless Laplacian source of zero meru1 unit first 

order absolute moment is assumed. Define S 1(n, r) by (2.143) and choose an arbitrary 

y E S1(n, 1). Notice that S1(n, 1) has 2n vertices, n(n + 1) edges and 2" surfaces. 

Choose 6 > 0 appropriately small , and defin e Tn(Y, 6) as follows: 

Tn(Y, 6) = {z E St(n, 1) I liz- Yilt ::0 6}. (C.1) 
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The (n -I)-dimensional volume of T,(y, t.) and S 1(n, 1) are written as IT,(y, t.)l and 

IS1(n, 1)1, respectively. Assume that T,,(y, t.) does not intersect any edges of S
1
(n, 1) 

according to [20]. 

A lower-bound of the ratio IT,(y , t.)l to IS1(n, 1)1 should be obtained to apply the 

same approach in the case of gaussian sources. If n is even, a complicated calculation 

yields the following lower-bound: 

IT,(y, t.)l > (2m)! . t,2m-I 
IS1 (n, 1)1 - (m- 1)! 23m-!' (C.2) 

where n = 2m. By taking the logarithm of the both hand sides of (C .2), (C.2) is 

evaluated in the following manner: 

1 I IT, (y, t.)l 
- og2 
2m ISI(n,l)l 

2m (2m) ! 1 t,2m-I 
----+- log.-­
log2(m- 1)! 2m 2 23m-! 

_2_ log2(m + l)(m+l) + (1 - _2_) log2 t.- ~ + _2_ 
2m 2m 2 2m 
oo (m--> oo), (C.3) 

which shows that the approach used in the case of gaussian breaks down. The failure 

of this approach results from the assumption that T,(y, t.) has no in tersection with 

S1 (n, 1 ). This approach only clarify the importance to consider effect of edges of 

S1 ( n, t.) for encoding of memory less Lap lacian sources. 

The remaining of this appendix is devoted to establishment of the lower bound 

given in (C.2). It is obvious that IT,,(y, t.)l is equal to the (n -I)-dimensional volume 

of the intersection of 

(C.4) 

with 

XJ + X2 +· ··+ X,= 0. (C.5) 

Note that the set satisfying (C.4) is a convex set enclosed by 2" hyperplanes, and 

2"- 2 out of 2" hyperplanes intersect (C.5) . Since hyperplan e (C.5) is convex, the 

intersection is also convex. Let {3 = %· There are n(n- 1) points of in tersection 

between edges of (C.4) and (C.5) whose com ponent consist of one {3, one -/3 and n- 2 

zeros. Hence, the intersection between (C.4) and (C.5) is a convex-hull including all of 

these n(n- 1) points. 
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To evaluate a lower-bound of the (n- 1)-dimensional volume of the convex-hull, 

the case n = 6 is considered as an example. When n = 6, (C.4) is written as 

(C.6) 

and (C.5) is written as 

(C .7) 

The set given in (C .6) is enclosed by 26 = 64 hyperplanes, and 62 out of 64 hyperplanes 

intersect with (C. 7). Since only lower-bound of the five-dimensional volume of the 

intersection is needed, hyperplanes with three non-negative components and another 

three non-positive components such as 

are considered. There are (~) choices for hyperplanes. Intersection between (C.7) and 

(C.8) includes nine points represented by the following vectors: 

a1,1 (,0, 0, 0, -,0, 0, 0) 

£1;1,2 (,0, 0, 0, 0, -,0, 0) 

al,3 (,0, 0, 0, 0, 0, -.0) 

a2,1 (0, ,0, 0, -,0, 0, 0) 

a2,2 (0, ,0, 0, 0, -,0, 0) 

a2,3 (0, ,0, 0, 0, 0, -.0) 

a3,1 (0, 0, ,0, -,0, 0, 0) 

a3,2 (0, 0, ,0, 0, -,0, 0) 

a3,3 (0, 0, ,0, 0, 0, -,0) . 

The five-dimensional volume of the convex-hull including above nine points and the 

origin should be evaluated. If five linearly independent vector out of nine are picked, 

a simplex is defined by the five vectors <U1d the origin. Sum of the five-dimensional 

volume of all such simplexes is equal to the five-dimensional volume of the convex-hull. 
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The following procedure is used for picking up five linearly independent vectors. First, 

pick up all of three orthogonal vectors. There are totally 31 choices as follows: 

Next, choose one vector arbitrarily out of three as a standard vector, and find equidis­

tant vectors from the standard vector and another vectors. There are always two such 

equidistant vectors. In the case of { a 1,1, a 2,2 , a 3,3}, suppose the case that a 3,3 is chosen 

as the standard vector. Two vectors a 1,3 and a3,1 are equidistant from a 1,1 and a3,3 , 

and a2,J and a3 ,2 is equidistant from a2 ,2 and a3,J· By selecting one vector out of two 

for each case, the following 22 = 4 sets of five linearly independent vectors are obtained: 

(C.9) 

Note that all of them define distinct simplexes. 

The five-dimensional volui11e of the simplex defined by { a 1,1, a2,2, a3,3, a1,3, a2,3} 

can be evaluated by calculating Gram matrix as follows: 

2/32 0 0 !32 0 

0 2/32 0 0 !32 

= 16 !35 = 16 ( ~ r 
5! 

det 0 0 2/32 /32 /32 (C.10) 
5! 5! 2 

/32 0 !32 2/32 !32 

0 !32 !32 !32 2/32 

where definition of (3 is used to obtain the last equality. Another simplexes have the 

same volume since their Gram matrices can be made identical to the one shown in 

(C.10) by appropriate permutations of rows and columns of those matrices. Then, the 

five-dimensional volume of the intersection (C.6) with (C.7) is lower-bounded by 

(C.ll) 
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In the case that n is even . evaluation of the ( n - 1 )-dimensional volume of the 

intersection between (C .4) and (C .5) is the same. Let n =2m. There are (:;•) choices 

of hyperplanes, m! choices for m orthogonal vectors, rn choices for a standard vector, 

and 2"- 1 choices for equidistant vectors. All of Gram matrices are congruent to the 

following matrix: 

(C.l2) 

where lm_1 is the (m - 1)-th unit matrix and Km is the rn x rn matrix whose all 

diagonal components are equal to 2 and all non-diagonal components are equal to 1. 

It is easy to check that verify 

[ 

2/m-1 
det 

lm -1 

lm-1 ] 
J{m 

=2m. (C.l3) 

Hence, the (2m- I)-dimensional volume of the intersect ion of (C.4) with (C.5) is 

lower-bounded as follows: 

(
2m) I m I J2ffi . ( -t:,.)2m-1 IT2m(Y, !::,.)1 ~ m . rn .. m. 2 - . (2m- 1)! 2 (C.l4) 

which implies (C.2). 
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