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Kelvin-Helmholtz Instability at the Magnetospheric Boundary' 
Dependence on the Magnetosheath Sonic Mach Number 

AKIRA MIURA 

Department of Earth and Planetary Physics, University of Tokyo, Japan 

It has recently been demonstrated, by means of a two-dimensional MHD simulation, that a finite 
thick velocity shear layer with super-Alfvrnic velocity jump at the magnetospheric boundary is 
unstable to the Kelvin-Helmholtz (K-H) instability no matter how large the magnetosheath sonic Mach 
number (Ms)' a result suggesting that the tail flank boundary of the magnetosphere is unstable to the 
K-H instability. In order to investigate this consequence further, the dependence of the development 
of the K-H instability on Ms is studied in detail. For all magnetosheath sonic Mach numbers a velocity 
boundary layer is formed by the instability inside of the magnetopause, and it becomes wider for a 
smaller magnetosheath sonic Mach number. A flow vortex is excited at the inner edge of the velocity 
boundary layer for all sonic Mach numbers, and the magnetopause boundary is more highly 
nonlinearly corrugated by the instability for a smaller sonic Mach number. The net energy and 
momentum flux densities into the magnetosphere are calculated just prior to the saturation stage' for 
1.0 < M s < 3.0 the energy flux density into the magnetosphere is approximated by O.054MsPoCs3/2 
= O.045VoPo (where P0 is the unperturbed magnetosheath plasma density, P0 is the unperturbed 
magnetosheath pressure, V0 is the unperturbed magnetosheath flow velocity, and Cs is the 
magnetosheath sound speed), and the momentum flux density into the magnetosphere or the tangential 
(shearing) stress at the boundary is approximated by 0.083p0. The anomalous viscosity by the 
instability decreases in the absolute magnitude with increasing Ms' this result suggests that the 
dayside (except the subsolar region) and the dawn-dusk magnetopauses, where the magnetosheath 
flow remains subsonic, are the most viscous parts of the boundary, although the tail flanks are also 
found to be viscous enough for the viscous interaction. The structure of the weak shock in the 
magnetosheath developed from the K-H instability and the asymptotic eigenmode structure of the 
instability are elucidated. The relevance of the simulation results to the viscous interaction and a ULF 
wave generation is finally discussed. 

1. INTRODUCTION 

It has long been suggested that the magnetospheric bound- 
ary between the solar wind and the stationary magneto- 
spheric plasma is unstable to the Kelvin-Helmholtz (K-H) 
instability (Dungey [1955]; see also, Chandrasekhar [1961], 
Gerwin [1968], and Southwood [1979]), which is driven by 
the velocity shear at the boundary. Boller and Stolov [1970] 
were the first to suggest that the K-H instability at the 
magnetospheric boundary could possibly be a viscous inter- 
action [Axford and Hines, 1961; Heikkila, 1990]. Since the 
nature of the viscous interaction by the K-H instability or the 
transport of momentum and energy by the instability is 
ultimately determined by its nonlinear process, the nonlinear 
treatment of the instability is essential in evaluating the 
nonlinear transport. It is only recently that the K-H insta- 
bility at the magnetospheric boundary has been studied by 
nonlinear MHD simulations [Miura, 1982, 1984, 1987; Wu, 
1986; La Belle-Hamer et al., 1988; Belmont and Chanteur, 
1989] and its importance in the viscous interaction has been 
quantitatively evaluated [Miura, 1984, 1987]. This instability 
has also been suggested as an important mechanism in 
exciting a ULF wave (Pc 5 (150-600 s) pulsation of a small 
azimuthal mode number (m < 10)) in the magnetosphere 
(e.g., Atkinson and Watanabe [1966]; see also recent re- 
views by Southwood and Hughes [1983] and Allan and 
Poulter [ 1984]). 

Axford and Hines [1961] have suggested that a viscous 
interaction along the magnetospheric boundary can permit 
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solar wind momentum to diffuse onto closed magnetospheric 
field lines. The resulting tailward convection flow would 
eventually be closed by an earthward return flow in the 
center of the tail, and a magnetospheric plasma convection 
(circulation) is formed inside the magnetosphere. The vis- 
cous contribution to the magnetospheric convection appears 
to be small in comparison with a reconnection-induced 
convection in the magnetosphere [Reiffet al., 1981; Wygant 
et a/.,1983; Doyle and Burke, 1983] (see also Cowley [1982]); 
nevertheless, the understanding of the nature of the viscous 
interaction at the magnetopause and the evaluation of its 
contribution to the magnetospheric convection are important 
for complete understanding of the solar wind-magneto- 
sphere interaction. Parker [1958] suggested that the Fermi 
acceleration of ions at the disordered magnetopause gives 
rise to a not insignificant effective viscosity. Axford [1964] 
suggested the sound wave refraction mechanism at the 
magnetopause as a likely mechanism of the viscous interac- 
tion at the magnetopause. Miura [1982, 1984, 1987] has 
demonstrated that the K-H instability at the magnetospheric 
boundary is indeed an efficient viscous interaction at the 
boundary. The direct evidence of the viscous interaction 
seems to be the presence of the low-latitude boundary layer 
(LLBL) inside of the magnetopause, wherein the plasma is 
flowing tailward. Since a substantial portion of the LLBL is 
on the closed field lines [e.g., Mitchell et al., 1987], the 
LLBL is connected to the ionosphere, and the flow energy in 
the LLBL is partly dissipated in the ionosphere as Joule heat 
[Lemaire, 1977; Sonnerup, 1980; Nishida, 1989]. Therefore, 
if there is no continuous replenishment of the antisunward 
flow momentum across the magnetopause, the antisunward 
flow in the LLBL should decay quickly with the distance 
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Fig. 1. Adapted from Figure 11 of Spreiter eta/. [1966]. The local magnetosheath sonic Mach number Ms is added 
to their original figure. 

along the magnetopause. Observations by Hones et al. 
[1972], however, show that a LLBL-Iike antisunward flow is 
present even within the tail flank boundaries, a fact suggest- 
ing that there is a continuous replenishment of the antisun- 
ward flow momentum across the tail flank boundary. 

Quite a few investigations of the linear stability of the K-H 
instability in the compressible plasma (or fluid) were con- 
cerned with the hydrodynamic and MHD stability of the 
discontinuous vortex sheet (the velocity shear layer of zero 
thickness) [Landau, 1944; Miles, 1958; Sen, 1964; Fejer, 
1964; Talwar, 1964; Lerche, 1966; Southwood, 1968; Pu and 
Kivelson, 1983a; Prialnik et al., 1986]. According to most of 
these studies [Landau, 1944; Miles, 1958; Sen, 1964; Fejer, 
1964; Talwar, 1964; Pu and Kivelson, 1983a; Prialnik eta!., 
1986] there is an upper critical value of the Mach number 
above which two-dimensional waves propagating in the 
direction of the shear flow are stable; this suggests that a 
substantial portion of the tail flanks, where the magneto- 
sheath flow is supersonic [Spreiter et al., 1966] (i.e., the total 
velocity jump across the magnetospheric boundary minus 
the wave phase velocity is supersonic with respect to the 
sound velocity in the magnetosheath), must be stable to the 
K-H instability [e.g., Sen, 1965]. However, Blumen et al. 
[1975] and Drazin and Davey [1977] (see also Lessen et al. 
[1966]) have shown in the ordinary compressible fluid that 
for a smoothly varying velocity shear layer (the velocity 
shear layer of finite thickness) there is no such upper critical 
sonic Mach number and the smoothly varying velocity shear 

layer becomes unstable no matter how large the sonic Mach 
number. 

By extending the previous simulation study of the sub- 
sonic K-H instability at the magnetospheric boundary [Mi- 
ura, 1987] to an unexplored parameter regime, i.e., the tail 
flank boundary, where the magnetosheath flow is super- 
sonic, it has recently been demonstrated [Miura, 1990; 
referred to hereinafter as M90] that the supersonic shear flow 
at the magnetospheric boundary with a smoothly varying 
velocity shear profile is unstable to the K-H instability no 
matter how large the magnetosheath sonic Mach number. 
This simulation result does suggest that the tail flank bound- 
ary is also unstable to the K-H instability. The purpose of the 
present study is to investigate this consequence further, in 
particular to investigate in detail the dependence of the K-H 
instability at the magnetospheric boundary on the magneto- 
sheath sonic Mach number or the local time (because the 
sonic Mach number changes with the local time; see Figure 
1) and to evaluate quantitatively the importance of the 
instability in the viscous interaction and in a ULF wave 
generation. An interesting consequence of the K-H instabil- 
ity for a high sonic Mach number shear flow, which we might 
well expect, is a shock formation [Miura, 1982, 1984; Lele, 
1989; Sandham and Reynolds, 1990] (see also, Norman et al. 
[1982]); the present simulation also demonstrates where and 
how the shock evolves in the magnetosheath from the 
instability and the developed shock structure is elucidated in 
detail. The present study, along with the previous simulation 
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study [Miura, 1987], showing the dependence of the nonlin- 
ear evolution of the K-H instability, in particular the viscous 
transport, on the magnetosheath Alfv•.n Mach number, 
completes a two-dimensional MHD simulation study of the 
K-H instability at the magnetospheric boundary. The 
present study would also be helpful for understanding the 
stability and the consequences of the K-H instability in the 
solar wind [e.g., Goldstein et al., 1990], at the Venus 
ionopause [e.g., Wolff et al., 1980; Thomas and Winske, 
1991], at the cometary ionopause [e.g., Ershkovich and 
Mendis, 1983], at the heliopause [e.g. Fahr et al., 1986; 
Baranov et al., 1991], and in the astrophysical applications 
such as the supersonic jets [e.g., Norman et al., 1982; 
Hardee, 1983; Norman and Hardee, 1988] and the disk 
accretion [e.g., Scharlemann, 1978; Ghosh and Lamb, 1979; 
Arons and Lea, 1980; Anzer and B6rner, 1980]. Although the 
work below is done for a special configuration of the 
terrestrial magnetospheric boundary, it does, however, have 
wider significance as a prototype of a number of similar 
problems in space physics and astrophysics. 

Section 2 explains a flowing MHD equilibrium model of 
the low-latitude magnetospheric boundary, which had been 
used in previous studies [Miura, 1987, 1990]. Asymptotic 
eigenmode equations for the total pressure perturbation are 
derived in section 3. Simulation results are presented and 
discussed in section 4. Section $ contains discussion of the 

implications of the simulation results in the solar wind- 
magnetosphere interaction and in a ULF wave generation. 
Section 6 gives a summary. 

2. MODEL OF FLOWING EQUILIBRIUM 

In the present simulation study a flowing MHD equilib- 
rium model of the low-latitude magnetospheric boundary on 
the equatorial plane (see Figure 1 of M90) is used. Although 
the use of ideal MHD at the magnetopause is somewhat 
controversial by, for example, the finite ion Larmor radius 
effects, the anisotropic pressure effect [Rajaram et al., 
1991], and the invalidity of the frozen-in assumption [East- 
man, 1979; Lemaire and Roth, 1991; Fujimoto and Tera- 
sawa, 1991b], a MHD approach is a necessary first step 
toward complete understanding of the K-H instability at the 
magnetopause. Since the driving mechanism of the K-H 
instability at the magnetospheric boundary is essentially 
hydrodynamic in nature (the electromagnetic force or the 
kinetic effect is not responsible for the instability), a MHD 
treatment of the K-H instability seems to be sufficient for 
clarifying the physics of its linear growth, the nonlinear 
saturation, and the momentum and energy transport by the 
instability. As far as these features are concerned, results of 
the hybrid simulations of the K-H instability by Thomas and 
Winslie [1991] and Fujimoto and Terasawa [1991a] are 
similar to the results of the previous MHD simulations, 
although the plasma transport [Thomas and Winske, 1991] 
and the ion mixing [Fujimoto and Terasawa, 1991a] due to 
the nonideal MHD effects are new features demonstrated by 
those hybrid simulations. In MHD simulations of the K-H 
instability by Tajima and Lebouef [1980] and Wang and 
Robertson [1984] they assumed that the velocity shear layer 
has zero thickness. Such an initial value approach is known 
to be improperly posed [Richtmyer and Morton, 1967; 
Nepveu, 1980], and the linearly fastest growing mode is not 
accurately represented, although the nonlinear development 

of the unstable mode seems to be more or less correctly 
represented. Also Lister et al. [1988] emphasized the impor- 
tance of preservation of the Galilean invariance during the 
simulation of the K-H instability. 

In the present model of the finite thick magnetospheric 
boundary (Figure 1 of M90), both the flow velocity and the 
magnetic field are sheared across the magnetopause. For 
simplicity the thicknesses of the velocity shear layer and the 
magnetopause (magnetic shear layer) are assumed to be 
equal. The unperturbed flow velocity in the y direction and 
magnetic field are expressed as follows: 

•'Oy(X) -- (V0/2)[1 - tanh (x/a)] (•) 

Boy(X ) = (B0/2)[1 - tanh (x/a)] (2) 

Boz(X ) -- (B0/2)[(1 q- •sh)/(1 q- •sp)]l/2[1 q- tanh (x/a)] 
(3) 

where V0 is the total jump of the flow velocity across the 
magnetospheric boundary and •sh and/3sp are the plasma/3 
(13 = 2tXoPo/Bo 2) in the magnetosheath and in the magneto- 
sphere, respectively. The plasma pressure is taken to satisfy 
the total pressure balance. The plasma temperature is as- 
sumed to be uniform across the boundary. The magneto- 
spheric magnetic field is perpendicular to the magnetosheath 
flow, and the magnetosheath magnetic field is parallel to the 
magnetosheath flow. Notice that the nonuniform roy(X) 
requires a nonuniform electric field component Eox(X), but 
this satisfies the equilibrium condition OB/Ot - -curl E = 0. 
The magnetosheath flow is characterized by the Alfv6•n 
Mach number MA = Vo/VA, and the sound Mach number 
Ms = Vo/Cs, where VA and Cs are the Alfv6•n speed and 
the sound speed in the magnetosheath, respectively. •sh is 
given by (6/5)(MA /M s) 2 and /3sp is 0.2. In the present 
magnetosheath configuration, where the magnetic field is 
parallel to the flow, the sound Mach number is equal to the 
fast Mach number for lgsh > 1, because the fast mode speed 
parallel to the magnetic field is equal to the sound speed for 
•sh > 1. The unperturbed plasma pressure in the magneto- 
sheath Psh and that in the magnetosphere psp are related to 
each other by Psp/Psh -- Psp/Psh = (1 + 13• •)/(1 + lgf•l), 
where Psv and Psh are unperturbed plasma densities in the 
magnetosphere and in the magnetosheath, respectively. A 
periodic boundary condition is imposed at y = 0 and y = Ly. 
In the x direction we have placed boundaries at x - -+ 10a. 
The boundary condition in the x direction is such that there 
is no mass flow (vx = 0) across the boundaries at x = -+ 10a. 
It then follows from ideal MHD equations that B x and 
derivatives with respect to x of the remaining quantities (p, 
Vy, vz, By, Bz, p) must vanish at the boundaries (x = 
_+ 10a), where p, v, B, and p are the plasma mass density, 
bulk velocity of the plasma, magnetic field, and plasma 
pressure, respectively. The two-step Lax-Wendroff method 
[Richtmyer and Morton, 1967] with an artificial viscosity 
term [Lapidus, 1967] is used to solve MHD equations. Time 
is normalized by 2a/Vo. 

3. ASYMPTOTIC EIGENMODE EQUATION 

For the finite thick velocity shear layer shown in Figure 1 
of M90, the growth rate of the K-H instability is peaked at a 
wavelength comparable to 2rr multiplied by the thickness of 
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the velocity shear layer [Ong and Roderick, 1972; Walker, 
1981; Miura and Pritchett, 1982; Mishin and Morozov, 
1983]. For a realistic set of 2a (thickness of the velocity 
shear layer) and V0 at the magnetopause the fastest growing 
mode has a wave period of Pc 4 to Pc 5 range (45-600 s). This 
is the basis for considering the possibility of the K-H 
instability for the finite thick velocity shear layer as an 
excitation mechanism of the Pc 5 toroidal mode resonance in 

the magnetosphere. 
In considering the K-H instability at the magnetopause, it 

should be noted that the magnetosheath flow changes from 
subsonic in the dayside to supersonic at the flank [Spreiter et 
al., 1966] (Parker [1958] also pointed out this fact); this can 
be seen in Figure 1, which shows the local sonic Mach 
number Ms in the magnetosheath for different local time 
(Figure 1 was adapted from Figure 11 of Spreiter et al. 
[1966]). It is well known that the discontinuous vortex sheet 
(velocity shear layer of zero thickness) becomes unstable to 
the K-H instability only when V0 lies between two critical 
velocities. The lower critical velocity for the two-dimension- 
al wave propagating in the direction of the shear flow is 
determined by the Alfv6n speed defined by using the mag- 
netic field component parallel to the flow. Therefore, the 
total velocity jump must be super Alfv6nic with respect to 
the magnetic field component parallel to the flow. The upper 
critical velocity for the two-dimensional wave propagating in 
the direction of the shear flow is of the order of the sound 

speed [Landau, 1944] for the hydrodynamic case and the fast 
magnetosonic speed for the MHD case [e.g., Sen, 1964]. 
Whereas for the finite thick velocity shear layer, there is no 
such upper critical velocity and the shear layer becomes 
unstable no matter how large the sonic Mach number [Blu- 
men et al., 1975; Drazin and Davey, 1977]. In considering an 
unstable K-H wave at the magnetopause, which has a finite 
tailward phase velocity Vph, an important Mach number, 
which characterizes the intrinsic compressibility of the flow, 
is the convective Mach number Mc [Papamoshou and 
Roshko, 1988], which is the Mach number in a frame of 
reference convecting with the phase velocity of the unstable 
K-H wave. This convective Mach number is also important 
for discussing the shock formation by the K-H instability, 
because its value in the upstream is equal to the shock Mach 
number (see section 4.3). 

For the low latitude boundary model of Figure 1 of M90 
the asymptotic form of the linear eigenmode equation for the 
total pressure perturbation 8p* at x << -a in the magneto- 
sheath becomes [Miura and Pritchett, 1982] 

d28p * 
dx 2 

2 
t<shSP * = 0 (4) 

where 

2 2 

t< sh = ky - 
•2 

2 /•-•2 2 2 [1 -(ky2VA•h )]C S + VAa ' 

(•2 2 2 2 2 2 -/yCs)(ll - kyVA s 
(•2 2 2 2 2 2 -- ky VAa,)Cs -1- • VA sh 

(5) 

and 

1• = to- kyV o= to r + i'y - kyV o (6) 

ky being the wavenumber in the y direction. For the medium 
wavelength mode satisfying to,. = O (ky V0/2) >> l yl, 

-- my V01 >> is satisfied and therefore 

( •-•r 2 _ ky2 C s2 ) ( •-•r 2 _ 2 2 ky VAsh) 
Re(K•2 h)= (t12 2 2 2 2 2 (7) r -- kyVAsn)Cs + •rVAsn 

4 2 2 

•'•r(C S n t- VAst, ) 
Im (Ks2h)=--2Ttl {(tl•2 2 2 2 2 2 r -- kyVAsn)Cs 2 + •'•r VAsh) 

(8) 

where VAst, is the Alfv6n speed in the magnetosheath. 
Furthermore, if/•sh >> 1, one obtains 

Re (• 2 ) = ky2(1 _ mc 2 h) sh s (9) 

where the magnetosheath convective Mach number Mcs h is 
defined by 

Mcs n = -fir/(kyCs) = (V 0 - tor/ky)/Cs (10) 

This convective Mach number characterizes the nature of 

the magnetosheath disturbance as subsonic or supersonic. If 
13sh >> 1 and M A >> 1, one also has 

2 ): 'Y•r Im(•sh --2 C• (11) 
Therefore, for 13sh >> 1 and M A >> 1, one obtains 

2 = ky2(1 _ mc 2 n) _ 2i C• (12) Ksh s 

Notice that this expression is also valid for an unmagnetized 
plasma. 

From (4) and (12) it is obvious that Mcs h > 1 gives an 
oscillatory mode at x << -a with a wavelength AXsn in the x 
direction given by 

AXs h (Mc2sn_ 1)1/2 A tan Osh (13) 
where O sh is the magnetosheath Mach angle defined by 

sin 0 •h = 1/Mcsn (14) 

and A is the wavelength in the y direction parallel to the 
unperturbed flow. Equation (13) will be checked by using the 
simulation results for supersonic shear flows in section 4.1. 

The eigenmode equation at x >> a in the magnetosphere 
becomes [Miura and Pritchett, 1982] 

d28p * 
dx 2 • s58p* = 0 (15) 

where 

2 =k 1- 2 2 (16) 
sp kyCF 

and CF is the fast magnetosonic speed in the magnetosphere 
defined by Ce (Cs 2 + VA2st,) 1/2 being the Alfv6n -- , VAst , 
velocity in the magnetosphere. For the medium wavelength 
mode satisfying to,. >> 171 one obtains 
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Fig. 2. Temporal evolution of the peak of normalized by V 0 
for three different sonic Mach numbers Ms and a fixed Alfv6n Mach 
number (MA = 2.5). 

2 = ky2(1 2 Ks, - Mc, p) - 2i Cr 2 (17) 
where the magnetospheric convective Mach number M%, is 
defined by 

M•.,,, = tOr/(kyCF) (18) 
This convective Mach number characterizes the nature of 

the magnetospheric disturbance as subfast or superfast. If 
we express the e-folding distance of 8p* in the magneto- 

sphere by lx• •, this is expressed by 

/x. = (]9) 

Therefore, in the incompressible limit (Cr --> • and M•.• --> 
0) the evanescent eigenmode has an e-folding distance 
in the magnetosphere. Equation (19) will be checked by 
using the simulation results in section 4.1. 

4. SIMULATION RESULTS 

4.1. Growth of Perturbations for Supersonic Shear Flows 

A MHD simulation is initiated by adding a small seed of 
unstable perturbation to the flowing equilibrium described 
by equations (1)-(3). The small seed of unstable perturbation 
is so chosen that it has a peak velocity Vxl equal to 0.005V 0 
and a wavelength equal to Ly. For all simulation runs 
performed in the present study, the same wavenumber ky of 
the unstable K-H mode, which satisfies 2kya = 0.8, is used. 
This wavenumber is nearly equal to the wavenumber of the 
fastest growing (dominant) unstable mode. Using this ky, the 
periodicity length Ly is expressed by Ly = 2rr/ky = 15.7a. 

Figure 2 shows temporal evolutions of the peak of the x 
component of the flow velocity v xl normalized by V0 for 
three different magnetosheath sonic Mach numbers M s = 
1.0, 2.5, and 4.0 and for M A = 2.5./3sh in the magnetosheath 
are 7.5, 1.2, and 0.47, respectively, and pst•/Psh are 0.19, 
0.31, and 0.52, respectively. The same temporal evolutions 
for eight different magnetosheath sonic Mach numbers M s 
(0.5 - 5.0) and for MA -- 10 are shown in Figure 2 of M90. 

In that case, 13sh in the magnetosheath changes from 480 to 
4.8 for M s = 0.5 --• 5.0 and Psh/Psh changes from 0.17 to 
0.20. Figure 2 shows that for each sonic Mach number from 
1.0 to --•4.0 the peak of the velocity perturbation Ixl 
normalized by V 0 grows linearly in the early phase and tends 
to saturate in a later period. The simulation for each sonic 
Mach number is terminated in the early phase of the nonlin- 
ear saturation for two reasons. One reason is that if the 

nonlinear development for the later phase is followed, nu- 
merical artifacts appear and the ideal MHD development of 
the K-H instability is affected by this numerical effect. A 
second reason is that in a real situation a nonlinear coales- 

cence of the vortices, which is not allowed in the present 
simulation, arises after the saturation of the fastest growing 
mode. Hence further nonlinear development of the fastest 
growing mode after its nonlinear saturation does not seem to 
be realized in a real situation. Such a coalescence of vortices 

and resulting "inverse cascade" is demonstrated in a two- 
dimensional MHD simulation by Belmont and Chanteur 
[1989], which used a system size much longer than the 
wavelength of the fastest growing mode. The nonlinear 
coalescence of vortices excited by the K-H instability is also 
demonstrated by a two-dimensional hydrodynamic simula- 
tion of Lele [1989], a two-dimensional MHD particle simu- 
lation of Tajima et al. [1991], and two-dimensional electro- 
static particle simulations of Pritchett and Coroniti [1984] 
and Cai [1991]. 

In the present case, shown in Figure 2, the magnetosheath 
magnetic field parallel to the magnetosheath flow is stronger 
than the case shown in Figure 2 of M90, and the unstable 
mode is more stabilized by the stronger tension force of the 
magnetic field lines. Therefore, for each sonic Mach number 
the amplitude of ]Vxl grows more slowly than the cases 
shown in Figure 2 of M90 for M• = 10. 

From the above observations it is evident that for fixed 

magnetosheath Alfv6n Mach numbers Ma (=2.5 and 10.0), 
which are large enough so that the magnetic field is too weak 
to suppress the K-H instability, the model magnetospheric 
boundary shown in Figure 1 of M90 is unstable to the K-H 
instability no matter how large the magnetosheath sonic 
Mach number Ms. This result appears to be contradictory to 
the stability criterion for the discontinuous vortex sheet 
[Landau, 1944; Miles, 1958; Sen, 1964; Fejer, 1964; Talwar, 
1964; Pu and Kivelson, 1983a; Prialnik et al., 1986], which 
predicts that in the compressible plasma (or fluid) there is an 
upper critical Mach number above which the vortex sheet is 
stable to the two-dimensional perturbation propagating in 
the direction of the shear flow. The above result, however, is 
consistent with the linear analyses of Blumen et al. [1975], 
Drazin and Davey [1977], and Choudhury and Lovelace 
[1984] (see also Lessen et al. [1966]) showing that the 
smoothly varying shear layer is unstable for each value of 
the sonic Mach number. According to Papamoshou and 
Roshko [1988] this striking distinction between the stability 
of a vortex sheet and the stability of a finite thick velocity 
shear layer is quite elementary. Figure 3 is a diagram based 
on Figure 18 of Papamoshou and Roshko [1988], where 
distributions of the flow velocity (solid line) and the speed of 
the sound wave (dotted line) are drawn in stationary (or 
magnetospheric inertial) (left) and convective (right) frames 
of reference. Papamoshou and Roshko's [1988] explanation 
is as follows: Perhaps the most elementary feature that 
distinguishes a supersonic flow from a subsonic one is that in 
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Fig. 3. A diagram based on Figure 18 of Papamoshou and 
Roshko [1988], where distributions of the flow velocity (solid line) 
and the sound velocity (dotted line) are drawn in stationary (mag- 
netospheric inertial; left) and convective (with the phase velocity of 
the wave; right) frames of reference. 

the supersonic case a disturbance does not propagate up- 
stream and remains confined within a Mach cone, while in 
the subsonic case a disturbance is felt throughout the flow 
field. Given the limited region of influence of a supersonic 
disturbance, we might expect that a supersonic shear layer is 
more stable than a subsonic one. For supersonic shear flow 
with a finite thick shear layer as shown in Figure 3, however, 
there is a portion of the flow near the center of the shear 
layer where the local velocity, relative to the wave phase 
velocity, is subsonic. it is evident that the extent of this 
subsonic sublayer will decrease with increasing Mach num- 
ber but will never vanish; this fact that in the compressible 
finite thickness shear layer there is always an imbedded 
subsonic region, thus a regio n potentially dominated by 
subsonic-type instabilities, is significant and is responsible 
for the fact that the shear layer of finite thickness remains 
unstable no matter how large the sonic Mach number. 

The linear growth rates obtained from the slopes of the 
linear growth curves for Ms = 0.5 --• 2.5 and MA = 10 
(Figure 2 of M90) are plotted in Figure 4 as a function of the 
sonic Mach number Ms. The linear growth rate is normal- 
ized by Vo/2a. It is obvious that the normalized linear 
growth rate decreases with increasing sonic Mach number 
for 0.5 < Ms < 2.5 owing to the increase of the compress- 
ibility. This is consistent with the linear analysis of Miura 
and Pritchett [ 1982] and simulation results of Lele [ 1989] and 
Sandham and Reynolds [1990]. For M s = 3.0 --• 5.0 and MA 
= 10, however, the normalized linear growth rates calcu- 
lated from the average slopes of the linear growth curves in 
Figure 2 of M90 are nearly equal. Notice that Gropengiesser 
[1970] found that the linear growth rate tends to be nearly 
constant at high sonic Mach numbers in his calculation of the 
spatial amplification rate of the K-H instability for a finite 
thick velocity shear layer. 

Figure 5 shows profiles along x of the total pressure 
perturbation 8p*, which are normalized by the unperturbed 
plasma pressure in the magnetosheath and averaged in the y 
direction over one wavelength for four different sonic Mach 
numbers (Ms) at their linearly growing stages; here, the 
perturbation 8F(t) is defined by 8F(t) = F(t) - F(t = 0). 
For all cases, 8p* in the magnetosphere are monotonous as 
is required from (15) and (17) and Figure 3 of M90 showing 

Mc,• < 1.0. For Ms = 1.0 and Mc• h < 1.0 (see Figure 3 of 
M90). 8p* in the magnetosheath is monotonous as is ex- 

pected from (4) and (12). Figure 3 of M90 shows that Mc• n > 
1.0 for Ms = 2.5. Therefore (4) and (12) predict that 8p* in 
the magnetosheath is oscillatory. However, in this case, 

Mcs h is very close to 1.0, and hence the wavelength Ax•h in 
the x direction of the magnetosheath oscillation of 8p* 
predicted by (13) is very large and longer than the distance 
from x = 0 to the boundary (x = -10a) in the magneto- 
sheath side. Therefore, owing to the existence of the numer- 
ical boundary at x = - 10a the oscillation of 8p* can not be 
realized in the magnetosheath. For Ms = 4.0 and 5.0, Figure 
3 of M90 shows Mcs h -' 2.2 and 2.8, respectively, and 
therefore (13) predicts that Ax•h in the magnetosheath are 
8.0a and 5.97a, respectively. Figures 5b and 5d show that 
8p* is indeed oscillatory in the magnetosheath, although 
only one cylce of the oscillation is allowed in the magneto- 
sheath owing to the presence of the numerical boundary and 
the wavelength in the x direction is about 6.0a for both 
Figures 5b and 5d. This result agrees well with the predicted 

values of Axsh. For all cases the total pressure perturbation 
8p* shown in Figure 5 becomes zero near the magnetopause. 
This means that the unstable wave near the magnetopause is 

a slow-mode type. For M s = 4.0, Figure 3 of M90 gives Mc• 
• 0.7. Therefore Ix• given by (19) is 3.5a. This predicted 
e-folding distance •s nearly equal to the magnetospheric 
e-folding distance of 8p* for Figure 5b. 

4.2. Dependence on the Magnetosheath 
Sonic Mach Number 

The consequences of the K-H instability depend on the 
magnetosheath sonic Mach number Ms. Figure 6a shows 
the flow velocity vectors and Figure 6b shows the magnetic 
field vectors at quasi-saturation stages of the K-H instability 
for three different values of Ms and for M A = 10. As Ms 
increases, the stabilizing effect of the compressibility in- 
creases and the normalized growth rate of the instability 
decreases (see Figure 4). Figure 6a(top) shows that the 
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0.0 I I 0 I I I I , I I 0.0 t. 0 2.00 3.00 4.00 5.00 

Ms 

Fig. 4. Linear growth rates calculated from the slopes of the 
linear growth curves in Figure 2 of M90 as a function of the sonic 
Mach number Ms for Ms = 0.5 --• 2.5 and M A = 10. The growth 
rate is normalized by Vo/2a. 



MIURA.' KELVIN-HELMHOLTZ INSTABILITY AT THE MAGNETOPAUSE 10,661 

0.05 

o.o 

-0.05 

M•gneiosh•ath' ' Mag•et(•sphere 

0.05 

Ms = 1.0 
MA = 10 (•P* 
T = 30 

-10.0 

M•gneiosh•atl• 

0.0 

-0.05 

I 

0.0 
x/a 

10.0 

Magnetosphere 

-lO.O -. 

MA = 10 (•p, 
T = 50 c 

' ' o•.o lO.O 
x/a 

t Ms = 4.0 (•p* MA = 10 b 
-o.1 T=50 -10.0 010 10.0 

x/a 

Magnetosheath Magnetosphere 

Ms = 5.0 (•p* 
MA= 10 
T = 60 

0.0 .... 0'.0 
x/a 

10.0 

Fig. 5. Profiles along x of the total pressure perturbation &p*, which are normalized by the unperturbed plasma 
pressure in the magnetosheath and averaged in the y direction over one wavelength for four different sonic Mach 
numbers Ms and for a fixed magnetosheath Alfv•n Mach number MA = 10 at their linearly growing stages. 

initial flow velocity gradients are diffused quite markedly by 
the K-H instability at T = 40 for Ms = 1. However, for 
higher values of Ms, i.e., for Ms = 2.5 and 4.0, the flow 
velocity gradient is only slightly diffused (see Figure 6a, 
middle and bottom). Figure 6b(top) shows that for Ms - 1.0 
the magnetopause boundary, characterized by a large gradi- 
ent of the magnetic field strength, is corrugated highly 
nonlinearly. But this corrugation of the magnetopause 
boundary becomes less noticeable for higher values of Ms 
(see Figure 6b, middle and bottom). In Figure 6b(top and 
middle) the magnetic field just outside the magnetopause is 
intensified periodically by the flow pressing the magnetic flux 
and this process seems to be similar to the depletion process 
formulated by Zwan and Wolf[1976]. As will be shown later 
in Figure 8, such a periodic magnetic pressure increase 
seems to be associated with an antiphase plasma pressure 
change. Therefore this oscillation structure seems to be a 
slow mode type in nature. Although this structure seems to 
be related to the depletion process [Zwan and Wolf, 1976], 
the nature of this compressional oscillation is not clear at the 
present stage, and further study is necessary to clarify the 
origin of this oscillation. 

Figure 7 shows streamlines for the same three cases as 
shown in Figure 6. The vortices are seen in all parts. For 
Ms = 4.0 (Figure 7c) the instability is weakest and the 
vortex is located at the inner edge of the velocity boundary 
layer, which is almost overlapped with the original magne- 
topause current layer near x -- 0. However, as the sonic 
Mach number decreases, the instability becomes stronger, 
more plasma flow momentum in the magnetosheath is trans- 

ported into the magnetosphere by the K-H instability, and a 
wider velocity boundary layer (VBL) is formed inside the 
magnetopause current layer (see Figure 7a). Therefore, as 
the sonic Mach number decreases, the vortex, which is 
located at the inner edge of the velocity boundary layer, 
tends to exist at the location of the larger positive x or at the 
location of the inner magnetosphere. 

Figure 8 shows three-dimensional views of top surfaces of 
the plasma pressure distributions (Figure 8a) and magnetic 
pressure distributions (Figure 8b) at their quasi-saturation 
stages for three different values of Ms and M•t = 10. In this 
plot the height of the three-dimensional surface is propor- 
tional to the plasma or the magnetic pressure. As is required 
from the zeroth-order equilbrium the magnetic pressure is 
dominant in the magnetosphere, whereas in the magneto- 
sheath the plasma pressure is dominant. For Ms = 1 the 
corrugation of the magnetopause boundary characterized by 
a large pressure gradient is quite distinct (see Figures 8a and 
8b, top). For Ms = 2.5 and 4.0, however, the magnetopause 
boundaries are only slightly corrugated (see Figures 8a and 
8b, middle and bottom). Instead, however, the magneto- 
sheath plasma is more highly perturbed by compressional 
perturbations for higher values of the sonic Mach number 
Ms. As was seen in Figure 6, the magnetic pressure in the 
magnetosheath is oscillatory, particularly in Figure 8b (mid- 
dle and bottom), and this oscillation seems to be associated 
with the corresponding antiphase oscillation of the plasma 
pressure shown in Figure 8a. Whether or not this oscillation 
in the magnetic pressure in the magnetosheath is a physical 
phenomenon is not certain, and further careful study seems 
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Fig. 6. (a) Flow velocity vectors and (b) magnetic field vectors at quasi-saturation stages of the K-H instability for 
three different values of Ms, i.e., M s = 1.0, 2.5, and 4.0 from the top panels, and for MA = 10. 

to be necessary to identify the origin of this oscillation. 
Notice that this oscillation in the magnetosheath is different 
from the oscillation of 5p* in the magnetosheath shown in 
Figures 5b and 5d, which is predicted by (13) for the 
supersonic shear flow; Figure 5b gives Ax, h --• 6.0a for Ms = 
4, but the wavelengths in the x direction of the oscillation 
shown in Figure 8b(middle and bottom) are much shorter 
than this. 

Figure 9 shows three-dimensional views of top surfaces of 
the plasma pressure distributions (Figure 9a) and plasma 
density distributions (Figure 9b) at their quasi-stationary 
stages for three different values of Ms and M• = 10. The 
corrugation of the magnetopause boundary characterized by 
a large density gradient near x --• 0 is quite distinct for Ms = 
1.0 (see Figures 9a and 9b, top); however, it is less clear for 
higher Mach number shear flows (see Figure 9a and 9b, 
middle and bottom). The compressional oscillations in the 
magnetosheath density distributions are seen for all cases. In 
Figure 9b(top) the amplitude of this oscillation is decreasing 
toward the numerical boundary at x = -10a, but in Figure 
9b(middle) this oscillation seems to form a standing oscilla- 
tion due to the existence of the wave reflected at the 

boundary (x = -10a). Therefore this oscillation appears to 
be a radiationlike structure radiated from the magnetopause, 

but again whether or not this oscillation in the density is a 
real physical phenomenon is not certain at the present stage. 
Further careful study is necessary to clarify the origin of this 
compressional oscillation in the magnetosheath, which was 
also seen in Figure 8. It should be pointed out here that such 
an oscillation in the magnetosheath was also found in Chan~ 
tour's simulation of the K-H instability using a different 
numerical scheme [Chanteur and Porteneuve, 1989; G. 
Chanteur, private communication, 1991]. 

4.3. Shock Formation 

Figure 10 shows three-dimensional views of top surfaces 
of the plasma pressures at four different times (T = 40, 50, 
60, and 75) of the K-H instability for Ms = 2.5 and M• = 10. 
Initially, the plasma pressure was uniform in the magneto- 
sheath. At T = 40, however, the plasma pressure in the 
magnetosheath is undulated sinusoidally in the y direction. 
As time goes on, this pressure wave in the magnetosheath 
grows, and its leading edge becomes steeper and steeper 
(notice that in the frame of the magnetosheath flow the 
pressure perturbation is propagating in the negative y direc- 
tion) because of the periodic deceleration and acceleration of 
the magnetosheath flow which cause the overtaking of the 
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Fig. 7. Streamlines for the same three cases as shown in Figure 6. 

decelerated flow by the accelerated flow. This nonlinear 
steepening of the leading edge continues until about T = 60, 
but after T = 60 this steepened structure seems to become 
steady. Since the plasma is compressed in the downstream, 
this steepened structure is shocklike in nature. In the present 
simulation a periodic boundary condition is used in the y 
direction. Therefore, in Figure 10 the upstream of the 
shocklike structure is connected to its downstream by the 
periodic boundary condition. In this sense the setting of the 
present simulation is not suitable for the study of shocks, 
because the upstream and the downstream of the shock must 
be completely separated by the entropy jump. However, the 
localized region near the shocklike structure in Figure 10 
resembles a shock. Therefore, in the following, the Rankine- 
Hugoniot (R-H) relation is checked for the shocklike struc- 
ture shown in Figure 10 in order to determine whether the 
shocklike structure is a real shock. Figure 10 shows that the 
normal to the shocklike structure is almost parallel to the y 
axis and is parallel to the flow direction. Since the magnetic 
field at the shocklike structure (see Figure 6b, middle) is 

parallel to the flow in the magnetosheath, the normal to the 
shocklike structure is parallel to the magnetic field. There- 
fore this shocklike structure resembles a parallel shock 
[Hoffmann and Teller, 1950]. Since C s > VA is satisfied in 
the magnetosheath, for the present case, with Ms = 2.5 and 
MA - 10, this parallel shocklike structure is gasdynamical in 
nature [Bazer and Erickson, 1959]. Therefore, in the follow- 
ing, the R-H relation of the gasdynamical shock is checked. 
In order to check the R-H relation the shock Mach number 

M l must be first calculated. In order to do this the speed of 
the wave frame (or the shock frame) in the y direction is 
calculated by plotting the position (trajectory) of the peak of 
the pressure perturbation at x - -9.6a as a function of time 
in Figure 11 and by calculating the slope of the trajectory. 
Except in the initial phase (0 < T < 20), during which the 
initial unstable seed perturbation is adjusted to become an 
unstable eigenfunction of the K-H instability for the present 
parameter set, the pressure peak moves with almost con- 
stant speed, which is interpreted as the phase speed of the 
unstable perturbation. In Figure 10 a small undulation can be 
seen at T = 50 in the upstream of the shocklike structure and 
this undulation becomes much larger at T - 60 and 75. This 
undulation seems to be an unphysical numerical artifact, 
because the K-H instability is nondispersive. Consequently, 
the shock condition should be checked before this numerical 

artifact appears to become important. Therefore, in the 
following, the R-H relation is checked at T - 50, when the 
nonlinear steepening of the shocklike structure does not 
have a large unphysical oscillation in the upstream. From the 
slope of the y versus T curve in Figure 11 the phase speed 

Vph = 0.625V0 is obtained at T = 50. 
Figure 12 shows the y component of the plasma flow 

velocity in the wave (shock) frame u - Vy - Vvh and the 
sound speed Cs = ([,p/p)l/2 normalized by V0, where 
F (=5/3) is the ratio of the specific heats, at x = -9.6a and 
T = 50 as a function of y for Ms = 2.5 and M,4 = 10 (notice 
that for Cs > VA the phase speed of the fast magnetosonic 
wave in the direction parallel to the magnetic field is Cs). 
From Figure 12 it is evident that the flow in the shock frame 
is supersonic in the upstream (y < 5.2a) and subsonic in the 
downstream (y > 5.2a) and is consistent with the presence 
of a gasdynamical shock. The minimum of sound speed 
occurs in the upstream at y = 4.3 la. At this point the flow 
velocity is peaked and the Mach number (shock Mach 
number M1) is 1.29. Figure 13 shows profiles as a function of 
y of the pressure p, the density p, the temperature T, the y 
component of the flow velocity Vy, and the y component of 
the magnetic field By at x - -9.6a and T = 50. In the 
downstream of the shocklike structure, the pressure, the 
density, and the temperature are all increased, whereas the 
flow velocity is decreased; this is consistent with the pres- 
ence of a gasdynamical shock. The magnetic field compo- 

nent By is almost constant across the shock layer as is 
required for the parallel shock. Although By is slightly 
undulated in the upstream region, this change of By is 
perhaps due to a mechanism, which is independent of the 
mechanism of the shock formation. Using the observed 
shock Mach number M l , the ratios P2/Pl, P2/Pl, and u2/u•, 
where the subscripts 1 and 2 represent the upstream and the 
downstream, respectively, are calculated from the R-H 
relation: 
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P2 (I" -'F l)g• 
p• 2 + (F - 1)m• (20) 

P2 2rm• 2 - (r - 1) 
-- = (21) 
•1 F+I 

/l 2 2 + (r- 1)M[ 
U l (F + 1)M• (22) 

Table 1 summarizes those ratios obtained from the R-H 

relation using Mi. The observed values of p2/Pl, p2/pl, 
u2/u • calculated using the MHD quantities at y = 4.31a 
(upstream) and y = 7.85a (downstream), where P2 and P2 
are peaked, in Figure 13 are also shown in Table 1. Table 1 
shows that the R-H relationship is very well satisfied with 
errors of less than 5%. From this it is obvious that the 

localized shocklike structure shown in Figure 10 is a real 
shock discontinuity (weak shock). Notice that in the present 
ideal MHD scheme the dissipation mechanism necessary for 
the formation of the shock discontinuity is provided by the 
artificial viscosity introduced following Lapidus [1967]. 

4.4. Energy and Momentum Transport by the Instability 

By taking a spatial average over one wavelength of the 
energy conservation equation [e.g., Miura, 1984] 

os/at= -V.Q (23) 

where s is the energy density defined by 

1 p 
s = 21-pv 2 + B 2 + 

2/x 0 F- I 
(24) 

and Q is the energy flux density defined by 

« rp ) 1 Q= pv2+ v+• 
F-1 tz 0 

E x B (25) 

one obtains a spatially averaged energy conservation equa- 
tion 

O(s) O(Qx) 
ot ox 

(26) 

where (Qx) is expressed by 

(Qx): «p•2 + F- 1 vx + (E X (27) 

Here the angle brackets represent the spatial average over 
one wavelength in the y direction. By taking a spatial 
average of the y component of the momentum conservation 
equation 

Ot pv=-V. pvv BB -V p+•B 2 (28) /x0 2/x0 
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one obtains, for the two-dimensional case (O/Oz -- 0) using 
the periodicity of perturbations in the y direction, 

-- BxBy (29) Ot (pVy)=-•xx pVxVy 

This means that the instability can exert a finite tangential 
stress -(pVxVy - BxBy/lXo) on plasmas. 

The energy flux density is calculated in the rest frame of 
the magnetosphere when the perturbation is still slightly 
growing just prior to the saturation and normalized by the 
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Fig. 10. Three-dimensional views of top surfaces of the plasma pressures at four different times of the K-H instability 

for Ms = 2.5 and MA = 10. 
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magnetosheath kinetic energy flux density P0 V03/2, where P0 
is the unperturbed magnetosheath plasma density. Figure 6 
of M90 shows profiles of each energy flux density (defined 
positive for the energy flux density into the magnetosphere) 
averaged over one wavelength for subsonic (Mcsh < 1) and 
supersonic (Mcs h > 1) shear flows. It was found that the peak 
of the total energy flux density, which is directed from the 
magnetosheath into the magnetosphere, occurs near x - 0, 
which is the initial boundary between the magnetosheath and 
the magnetosphere. Therefore the peak of the total energy 
flux density is a measure of the net energy transported from 
the magnetosheath into the magnetosphere by the K-H 
instability. Figure 14 shows the peak of the energy flux 
density into the magnetosphere normalized by the magneto- 
sheath kinetic energy flux density Po Vo 3/2 as a function of 
M s for M A = 10. The normalized peak energy flux density 
decreases with increasing M s and approaches a constant 
value, 0.4%, for higher M s (>4), which occurs at the tail 
flank. For 1.0 < Ms < 3.0 the normalized peak energy flux 
density is approximated by 0.054M• -2 (the dashed line in 
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the y component of the magnetic field By at x -- -9.6a and T = 50 
for M s = 2.5 and M A -- 10. All quantities are normalized by their 
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Figure 14), and therefore the absolute peak energy flux 
density q is approximated by 

q = O.054M;2poVo3/2 = O.054MsPoC•/2 = 0.045V0P0 (30) 

where P0 is the unperturbed magnetosheath pressure, for 
1.0 < Ms < 3.0. The fact that the normalized peak energy 
flux density tends to be constant for high Ms (>4) may be 
due to the fact that the saturation amplitudes of the instabil- 
ity are almost equal for high Ms (see Figure 2 of M90). 

Figure 15 shows (from top) profiles in the x direction of 
spatial averages over one wavelength of the Reynolds stress 
--PVxVy (solid line), the Maxwell stress BxBy/l• o (dashed 
line), the x component of the electric field Ex (solid line), the 
plasma momentum in the y direction pry (solid line), and the 
y component of the flow velocity V y (solid line) at the 
quasi-saturation stage for Ms = 2.5 and MA = 10. The stress 
(momentum flux density) is normalized by the magneto- 
sheath flow momentum flux density P0 V02 and defined posi- 
tive for the momentum flux density into the magnetosphere. 
Other quantities are so normalized that only relative scales 
are meaningful. The dashed lines in the profiles of Ex, pry, 
and V y show initial profiles of those quantities. The Reynolds 
stress reaches 0.8% of P0 V02 near the magnetopause, and the 
plasma momentum pry in the magnetosheath is diffused 
from the magnetosheath into the magnetosphere (hatched 
region), where the large Reynolds stress is observed. There- 
fore the Reynolds stress is responsible for the momentum 
transport as (29) predicts. The Maxwell stress is much 

TABLE 1. Observed Ratios of Densities, Pressures, and 
Velocities in the Shock Frame, The Ratios Calculated From the 
Rankine-Hugoniot Relation by Using the Shock Mach Number 

M• -- 1.29, and the Relative Errors 

Observed R-H Relation Error, % 

P2/P• 1.45 1.43 1.4 
P2/P• 1.93 1.84 4.7 
u2/u • 0.677 0.699 3.3 

Subscripts 1 and 2 represent upstream and downstream, respec- 
tively. 
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function of Ms for M A = !0. The dashed line is a power law fit 0.05 
M• -2 for 1.0 < Ms < 3.0. 

smaller than the Reynolds stress because MA >> 1.0 [Miura, 
1987]. Also the magnitude of the electric field IExl increases 
from the dashed line to the solid line where the large 
Reynolds stress is observed. Therefore the flow momentum 
flux in the y direction (antisunward direction) by E x x B z 
flow increases in the velocity boundary layer formed inside 
the magnetopause current layer. In order to evaluate the 
contribution of the K-H instability to the magnetospheric 
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Fig. !5. Profiles in the x direction of spatial averages over one 
wavelength of the Reynolds stress p7Vx7Vy (solid line), the Maxwell 
stress BxBy/lZ o (dashed line), the x component of the electric field 
Ex (solid line), the plasma momentum in the y direction p7Vy (solid 
line), and the y component of the flow velocity Vy (solid line) in the 
quasi-stationary stage for Ms = 2.5 and M A = 10. The stress is 
normalized by the magnetosheath flow momentum flux P0 V•, and 
other quantities are so normalized that only relative scales are 
meaningful. The dashed lines in the profiles ofEx, pry, and Vy show 
initial profiles of those quantities. The hatched region in the profile 
of pry represents the net flow momentum transported from the 
magnetosheath into the magnetosphere by the K-H instability. 

convection the spatial average over one wavelength of the 
convection potential difference (not necessarily electrostatic 
potential but just an integral of the electric field) across the 
boundary layer defined by f(Ex) dx was calculated. The 
ratio of this integral of the electric field to its initial value was 
found to be 3.23; thus the antisunward convection voltage 
drop (strength) is amplified several times by the momentum 
transport associated with the K-H instability. Notice that for 
subsonic Mach numbers this ratio was found to be much 

larger [see Miura, 1987, Figure 9]. 
Figure 16 shows the peak momentum flux density (tangen- 

tial stress) calculated in the rest frame of the magneto sphere 
where the perturbation is still slightly growing just prior to 
the saturation and normalized by P0 V• as a function of Ms 
for M A = 10. The normalized peak momentum flux density 
decreases with increasing M s and approaches a constant 
value of 0.4% for higher M s (>4), which occurs at the tail 
flank. For 1.0 < Ms < 3.0 the normalized peak momentum 
flux density is approximated by 0.05M• -2 (the dashed line in 
Figure 16) and hence the absolute momentum flux density 
into the magnetosphere or the tangential (shearing) stress at 
the boundary r is given by 

•. = O.05M]2poV• = 0.05p0C • = 0.083p0 (31) 

In order to see the dependence of the momentum transport 
on the magnetosheath sonic Mach number Ms more quan- 
titatively the anomalous viscosity is defined according to the 
definition of the eddy viscosity in ordinary hydrodynamics 
[e.g., Lamb, 1945] as follows: 

(pVxVy- pc•-lBxBy) 
Van o = (32) 

d(pvY)/dx 

The part of Van o by the Reynolds stress -pVxVy is the eddy 
viscosity in ordinary hydrodynamics, and the part by the 
Maxwell (magnetic) stress BxBy/tXo is the magnetic viscosity 
[e.g., Eardley and Lightman, 1975]. Figure 17 shows the 
dependence of the maximum anomalous viscosity at x = 0 
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Fig. 17. Maximum normalized anomalous viscosity at x = 0 attained 
during the instability growth as a function of M s for MA = 10. 

attained during the instability growth normalized by 2a V0 on 
the sonic Mach number Ms in the magnetosheath for M A = 
10. For M s --• 1, the anomalous viscosity takes a value of 
•-•0.2 x 2aVo. However, as Ms increases the normalized 
anomalous viscosity decreases considerably and for Ms > 3 
it approaches a constant value 0.005. 

5. DIscussioN 

In this section the simulation results in section 4 are 

discussed in the light of observational results in the solar 
wind-magnetosphere interaction and in a ULF wave gener- 
ation. 

5.1. Growth of Perturbations for Supersonic Shear Flows 

Norman et al. [1982] have shown that the K-H instability 
occurs in their supersonic jet simulations. However, in their 
simulations the subsonic shear flow at the contact surface 

behind the bow shock seems to be responsible for the K-H 
instability. Therefore their simulations do not seem to have 
demonstrated that the supersonic shear flow is unstable to 
the K-H instability. Simulations of supersonic jets by Nor- 
man and Hardee [1988] have shown that the supersonic jet is 
unstable to the K-H instability. But according to linear 
analyses of the supersonic jet by Gill [1965] and Hardee and 
Norman [1988] the supersonic jet is unstable to the K-H 
instability even when the jet is separated from the surround- 
ing medium by a vortex sheet owing to the fact that sound 
waves inside the jet are reflected back and forth. Therefore, 
as far as the linear stability is concerned, the stability of the 
supersonic jet does not seem to be relevant to the present 
simulation results showing that the finite thick velocity shear 
layer is unstable to the supersonic shear flow, although some 
of the nonlinear features of the supersonic jet simulation 
such as a shock formation are similar to the present simula- 
tion results. ' 

The present study investigates further the results of M90 
showing that the tail flank boundary of the magnetosphere, 
where the magnetosheath flow is supersonic, is unstable to 
the K-H instability. If we express the normalized growth rate 

by •/, the actual growth rate •, is expressed in the denormal- 
ized form as •, =q/(Ms)Vo/2a = q/(Ms)MsCs/2a. If Cs and 
2a are constant along the magnetopause from the dayside to 
the tail flank, the growth rate •, decreases in the absolute 
magnitude with increasing Ms for Ms < 2.0, because as 
shown in Figure 4, q/(M s) decreases with increasing M s 
much faster than M] 1 for Ms < 2.0. Hence the growth rate 
of the instability at the tail flank becomes smaller than that in 
the dayside magnetopause owing to the compressibility. 
According to the present simulation results the dayside 
magnetopause boundary, where the convective sonic Mach 
number is less than 1.0, is highly nonlinearly corrugated by 
the K-H instability, whereas the magnetopause boundary at 
the tail flanks, where the convective sonic Mach number 

exceeds 1.0, is much less corrugated. Since Mcs h "' 1.0 
Occurs for M s = 2.5 (see Figure 3 of M90), Figure 1 shows 
that this subsonic to supersonic transition of the K-H insta- 
bility occurs at the magnetopauses of---30 ø behind the 
0600-1800 LT meridian. Therefore, at the dayside and the 
dawn-dusk magnetopauses, a well-developed undulation and 
corrugation of the magnetopause boundary, as shown in the 
top panels of Figures 8 and 9, are expected to appear. This 
expectation is consistent with observations of Lepping and 
Burlaga [1979] (see also Schardt et al. [1984] for observation 
of the surface wave at Saturn's frontside magnetopause), 
although Sckopke et al. [1981] suggested that in their obser- 
vation the magnetopause itself was stable to the K-H insta- 
bility but the inner edge of the LLBL was unstable. 

In the present simulation, only two-dimensional perturba- 
tions propagating in the direction of the shear flow have been 
considered. However, one should note that with three- 
dimensional disturbances, which propagate oblique to the 
shear flow, subsonic-type disturbances exist even at a very 
high Mach number [Fejer and Miles, 1963; Lessen et al., 
1965]. Sandham and Reynolds [1990] found in their three- 
dimensional linear analysis of the compressible mixing layer 
that oblique waves have a larger growth rate than the 
two-dimensional compressible mode above a convective 
Mach number of 0.6; namely, above a convective Mach 
number of 0.6, the mixing layer will have a strongly three- 
dimensional structure. In the case of the magnetopause, the 
magnetic field lines inside the magnetopause are tied to the 
conducting ionospheres. Owing to this coupling to the dissi- 
pative ionosphere the energy is not conserved during the 
growth of the K-H instability and the growth rate of the 
three-dimensional K-H instability is reduced. Therefore, 
whether the oblique three-dimensional mode has a larger 
growth rate than the two-dimensional compressible mode 
depends not only on the flow Mach number but also on the 
ionospheric Pedersen conductivity. Whether or not the 
three-dimensional development of the K-H instability at the 
magnetopause, including the line-tying effect of the iono- 
sphere, is similar to the development of the three-dimension- 
al mode in the fluid mixing layer [Sandham and Reynolds, 
1991] is not certain at the present stage, and further study of 
the three-dimensional K-H instability, including the iono- 
spheric line-tying effect, is necessary. 

5.2. Shock Formation 

An interesting and important finding of the present simu- 
lation of the supersonic shear flow is the spontaneous 
formation of shocks in the magnetosheath by the nonlinear 
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steepening of the leading edge of the unstable wave. Such a 
shock formation by the K-H instability may be relevant to 
the shock formation in the supersonic jet [Norman et al., 
1982]. For the present model configuration of the magneto- 
spheric boundary (Figure 1 of M90), Cs > V A is satisfied in 
the magnetosheath, where the magnetic field is parallel to the 
magnetosheath flow. Therefore the present shock (Figures 
10 and 13) formed in the magnetosheath by the K-H insta- 
bility is a gasdynamical shock. If the magnetosheath mag- 
netic field is perpendicular to the magnetosheath flow, then 
the K-H instability would lead to a formation of a fast 
perpendicular shock for a sufficiently high Mach number. 
Such a possibility has already been demonstrated in the case 
of uniform plasma for a subfast (more correctly, a subfast 
convective Mach number) shear flow [Miura, 1982, 1984]. In 
that case, a shock was formed from the subfast shear flow, 
because the flow was accelerated by the instability and the 
initial subfast shear flow became superfast in the develop- 
ment of the K-H instability. In an earlier brief discussion, 
Miura [1984]'showed that the minimum subfast convective 
Mach number necessary for the appearance of the shock is 
about 0.65. It is interesting to note here that Lele [1989] and 
Sandham and Reynolds [1990] report in their simulations of 
the compressible K-H instability in the neutral fluid, that 
above M c = 0.7 the flow develops shock waves (eddy 
"shocklets") embedded around the large-scale vortical 
structures. Therefore, for a high Mach number shear flow 
(Mc > 0.7) the formation of shocks seems to be an inevitable 
feature of the instability. These results of a shock formation 
by the K-H instability suggest that there are a series of 
"shocklets" formed in the magnetosheath adjacent to the 
magnetopause boundary at the tail flanks. 

5.3. Energy and Momentum Transport: 
A Viscous Interaction and Formation 

of a Velocity Boundary Layer 

The LLBL inside the magnetopause current layer is 
characterized by an antisunward flow on the closed field 
lines, the flow speed of which is smaller than the adjacent 
magnetosheath flow [Eastman and Hones, 1979]. Several 
mechanisms, which cause or require breaking down of the 
ideal MHD, have been proposed in order to explain the 
plasma penetration from the magnetosheath onto the closed 
field lines in the LLBL (e.g., impulsive penetration of the 
solar wind irregularities [Lemaire, 1977; Heikkila, 1982; 
Lemaire and Roth, 1991], anomalous particle diffusion by 
wave-particle interactions [Eviatar and Wolf, 1968; Gary 
and Eastman, 1979; Tsurutani and Thorne, 1982; Gendrin, 
1983; Berchem and Okuda, 1990; Treumann et al., 1991] and 
rereconnection of the open field lines with the closed field 
lines [Nishida, 1989], see also recent reviews by Baumjo- 
hann and Paschmann [ 1987], Lundin [1987] and LaBelle and 
Treumann [1988]). Whatever the mechanism of the plasma 
penetration is, a penetrated plasma with a tailward flow 
momentum is slowed down quickly with increasing distance 
along the magnetopause by the ionospheric Joule dissipation 
[Lemaire, 1977; Sonnerup, 1980; Nishida, 1989]. Observa- 
tion by Hones et al. [1972], however, shows that a LLBL- 
like tailward flow is present even inside the tail flank 
boundaries, a fact suggesting that there must be a continuous 
replenishment of the tailward flow momentum across the tail 
flank boundary. The necessity of viscous stress imposed at 

the tail flank boundaries is also suggested by observation of 
the slowly tailward motion of the closed flux tubes in the 
distant geomagnetic tail [Richardson et al., 1989]. Owen and 
Slavin [1991] have shown that the hypothetical viscous 
stress by the K-H instability at the deep tail boundary is 1 
order of magnitude smaller than that required to explain the 
observed viscously driven plasma flows in the deep geomag- 
netic tail. This is a serious challenge to the K-H viscous 
interaction hypothesis. If we take into account the coales- 
cence of the vortices which would cause much larger viscous 
stress by the instability, this problem may be resolved. 

According to Eastman [1984] the kinetic energy flux 
associated with the tailward flow in the LLBL is about 

70-400 GW, which is about 0.6-3.3% of •; here, ß is the 
total kinetic energy flux of the solar wind flow incident on the 
magnetospheric cross section and is nearly equal to 1.2 x 
10 4 GW. Although such an energy flux is small compared 
with a typical energy flux of--•800 GW required for substorm 
activities [Baumjohann and Paschmann, 1987], this energy 
flux is important for maintaining magnetospheric activities in 
the quiet condition. Figure 14 shows that the energy flux 
density by the K-H instability into the magnetosphere is 
-15% of poVo3/2 for M s = 0.5 and 0.4% of it in the 
supersonic case. Although the normalized energy flux den- 
sity into the magnetosphere by the K-H instability at the tail 
flank, where the flow is supersonic, appears to be smaller 
than that required for the viscous interaction, the normalized 
energy flux density at the dayside magnetosphere, where the 
flow is subsonic, is much larger than the required value. 
Therefore, on average, it seems that the normalized energy 
flux density into the magnetosphere by the K-H instability is 
large enough to replenish the plasma in the LLBL with the 
tailward flow kinetic energy of observed intensity. 

Substitution of the Newtonian pressure formula given by 
PO = Pst cOS2 ½ [Spreiter et al., 1966], where Pst is the 
unperturbed magnetosheath pressure at the subsolar point 
and ½ represents the angle between the directions of the 
free-stream velocity vector and the normal to the magneto- 
sphere boundary, into (31) yields 

r = 0.083pst cos2 ½ 
for 1.0 < Ms < 3.0. Therefore the tangential (shearing) 
stress by the K-H instability at the boundary, where 1.0 < 
Ms < 3.0, is decreasing with the distance from the stagna- 
tion point along the magnetospheric boundary. It is interest- 
ing to notice that the linear relationship between the tangen- 
tial (shearing) stress (r) and the pressure (P0) given by (31) is 
a standard assumption for the tangential (shearing) stress in 
the accretion disks ("a disks") [Shakura and Sunyaev, 
1973], although the nature of the tangential stress or the 
viscosity is not well known. The present simulation result 
suggests that the shear (K-H) instability associated with the 
differential rotation in the accretion disks may give a re- 
quired tangential stress, which is proportional to the pres- 
sure as shown by (31). 

Figure 17 shows that the anomalous viscosity •'ano normal- 
ized by 2a V0 decreases with increasing Ms much faster than 
M• -• . Therefore •'ano decreases with increasing Ms in the 
absolute magnitude. This result suggests that the K-H insta- 
bility is more efficient as a viscous interaction at the dayside 
(except the subsolar region) and the dawn-dusk low-latitude 
boundary, where the convective sonic Mach number re- 
mains less than 1.0, than at the tail flank boundaries. If we 
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take 2a = 1000 km and V0 = 500 km/s as a typical parameter 
set at the tail flank, however, the anomalous viscosity Pano 
even at the tail flank becomes 2.5 x 109 m2/s, which is 
comparable to that required for driving a magnteospheric 
convection in the magnetosphere lAxford and Hines, 1961]. 
The kinematic viscosity of the above order of magnitude is 
essential in the viscous LLBL-ionosphere coupling model of 
Sonnerup [1980], Lotko et al. [1987], and Phan et al. [1989], 
and in the high-latitude, low-latitude boundary layer model 
of the convective current system [Siscoe et al., 1991]. 

Since the magnetic field component parallel to the flow is 
stabilizing the K-H instability by its tension force, the 
growth rate of the K-H instability at the magnetopause 
should depend on the dipole tilt angle X, which is defined by 
the geomagnetic latitude of the subsolar point. With this 
notion, Boller and Stolov [ 1970] have suggested that the K-H 
instability is responsible for the observed semiannual varia- 
tion of geomagnetic activity. Maezawa and Murayama 
[1986] have shown that the dependence of AL on the solar 
wind velocity V sw varies with X and its dependence is 
steeper when IXI is small (see their Figure 9); the manner in 
which X influences the effect of V sw is consistent with the 
view that the K-H instability is responsible for the X depen- 
dence of the geomagnetic activity, and hence the K-H 
instability at the magnetopause is a viscous interaction. 

In the present model of the magnetospheric boundary the 
magnetic field component in the magnetosheath parallel to 
the magnetosheath flow gives a stabilizing contribution to 
the K-H instability. Therefore, when M A, defined using the 
magnetic field component parallel to the magnetosheath 
flow, is less than ---2, the K-H instability is suppressed by the 
strong tension force of the magnetic field lines [Miura and 
Pritchett, 1982]. But if M A exceeds ---2, the K-H instability 
occurs, the anomalous viscosity arises, and it tends to 
become a constant value for high M A [Miura, 1987]. This 
suggests that there is a IBxl control of the K-H viscous 
interaction; namely, when the IMF IBxl is large, the K-H 
viscous interaction is suppressed, but for a small IB•I the 
K-H viscous interaction arises and the critical value of IB•I, 
controlling the onset of the K-H viscous interaction, is 

determined approximately from Vo/VA•ht t -- Vo/IB•I/ 
(p•htX0) 1/2 •, 2.0 (notice that in a uniform plasma the critical 
Alfv6n Mach number defined by using the magnetic field 
component parallel to the flow is exactly equal to 2.0 [Miura 
and Pritchett, 1982], but in a nonuniform plasma the critical 
Mach number is---2.0[Miura, 1987]). For n•h - 107 m -3 and 
V 0 --- 200 km/s, IBxlcr becomes ---15 nT. Using the results of 
extensive measurements of the viscous potential difference 
near local dusk [Mozer, 1984], Reiff and Luhmann [1986] 
calculated the average viscous potential difference as a 
function of the angle ©•h = cos-J (Bz/IB•hl), where Bsh is 
the magnetic field component in the magnetosheath. They 
found a significant trend, from an average of 7.5 kV for 
angles less than 45 ø, to a nearly constant 1.5 kV for the other 
angles. This result, showing the IB•I control of the viscous 
interaction, is compatible with the K-H viscous interaction 
hypothesis', although the presence of the critical IBxl is not 
obvious in their analysis. The ground state of the magneto- 

sphere under the IMF condition By = B z = 0 and its 
dependence on B x are currently investigated by Nakagawa 
et al. [1991]. 

5.4. Penetration of the Poynting Flux Deep 
Into the Magnetosphere 

In both subsonic and supersonic cases the energy flux 
density, which penetrates deep into the magnetosphere, is 
dominated by the Poynting flux (see Figure 6 of M90). 
Therefore the Poynting flux is responsible for carrying the 
energy deep into the magnetosphere. Equation (19) suggests 
that the energy can reach deeper into the magnetosphere as 

Ms increases, because lxs, increases with increasing Mcs, 
(<1.0; see Figure 3 of M90). A significant fraction of the 
energy flux density, which can reach deeper into the mag- 
netosphere than the velocity boundary layer, contributes to 
compression of magnetic field lines and plasma in the form of 
a fast magnetosonic wave. The present simulation is per- 
formed for a two-dimensional system (O/Oz = 0), and there is 
no resonant field line in the magnetosphere. If a resonant 
field line exists in the magnetosphere, the fast mode, which 
penetrates deep into the magnetosphere, will be responsible 
for an excitation of a ULF pulsation in the magnetosphere by 
the mechanism of the field line resonance [Southwood, 1974; 
Chen and Hasegawa, 1974]. 

The ionospheric Joule dissipation associated with the Pc 5 
toroidal mode resonance is about 6 GW [Greenwald and 
Walker, 1980], which is about 1.5-8.6% of the energy flux 
required for the viscous interaction. The total energy flux 
density directed into the magnetosphere at x --- 5a, which is 
located deeper in the magnetosphere than the VBL, is 
dominated by the Poynting flux and is about 1/5 of the peak 
energy flux density at x --- 0 (see Figure 6 of M90). Therefore 
the energy flux density by the K-H instability which can 
reach deep into the magnetosphere seems to be large enough 
to provide energy for the Pc 5 toroidal mode resonance, 
although the actual energy required for the field line oscilla- 
tions depends on the position of the resonant field line in the 
magnetosphere. 

The azimuthally polarized transverse Pc 5 waves, which 
occur predominantly on the morning side of the magneto- 
sphere [Kokubun, 1981, 1985; Takahashi and McPherron, 
1984; Anderson et al., 1990], show a good correlation with 
ground Pc events [Kokubun, 1981]. These waves appear to 
be fundamental mode resonances and are present almost 
continuously [Anderson et al., 1990]. Wolfe et al. [1980] 
found a good correlation between the solar wind bulk 
velocity and the pulsation energy measured on the ground, 
and Junginger and Baumjohann [1988] found a good corre- 
lation between Pc 5 power measured at geostationary orbit 
and the solar wind velocity. These observations suggest that 
the azimuthally polarized Pc 5 waves with the azimuthal 
mode number m < 10 are fundamental mode toroidal mag- 
netospheric pulsations and are likely to be excited by the 
field line resonance mechanism, the energy of which is 
continuously supplied by the K-H instability at the magne- 
topause. The presence of the substantial Pc 5 activity in the 
early morning [Anderson et al., 1990] suggests that some of 
the energy comes from the K-H instability at the tail flank 
where the magnetosheath flow is supersonic (see Figure 1). 
Observations by Junginger and Baumjohann [1988] showing 
the saturation of the pulsation amplitude for fast solar wind 
flows are consistent with the present simulation results (see 
Figure 2 of M90), which show that for supersonic shear flows 
the saturation amplitudes of the K-H instability are almost 
constant for different flow Mach numbers. 
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For the K-H instability to develop to a finite amplitude a 
seed perturbation is necessary, and it is perhaps provided by 
the perturbations in the downstream of the bow shock. Since 
the dawnside of the magnetosheath flow, which is the 
downstream of the quasi-parallel shock, is known to be more 
turbulent than the duskside of the magnetosheath, much 
larger seed perturbation is expected in the dawnside than in 
the duskside [Greenstadt et al., 1981]. This may cause an 
observed dawn-dusk asymmetry of the azimuthally polar- 
ized transverse Pc 5 waves. 

The original idea of the field line resonance [Southwood, 
1974; Chen and Hasegawa, 1974] assumes a field line reso- 
nance driven by a monochromatic source. However, the ob- 
servational results of Rostoker and Samson [1972], Takahashi 
and McPherron [ 1984], Anderson et al. [1989], and Mitchell et 
al. [1990] suggest local resonances in response to a broadband 
driving source [Hasegawa et al., 1983]. Furthermore, Taka- 
hashi et al. [1991] found magnetic Pc 4-5 pulsations in the 
magnetosphere with azimuthal perturbations and position de- 
pendent frequency, and they have suggested that these ULF 
waves are toroidal mode standing Alfv6n waves excited by the 
field line resonance mechanism with a broadband source, 
which is excited by the K-H instability in the LLBL or at the 
magnetopause. In the present simulation in which the finite 
thickness of the velocity shear layer is assumed and the 
periodicity length in the flow direction is taken equal to the 
wavelength of the fastest growing mode, only the linearly 
fastest growing mode is excited in the linear stage (see Figure 
2 of Miura [1984]). However, in a real situation, all linearly 
unstable modes with 2kya < 2.0 and Aky/ky --- 1 and 
1 [see Miura and Pritchett, 1982, Figures 3 and 4] (this is 
because wr is proportional to ky for the K-H instability) seem to 
be excited by the K-H instability. Therefore the actual situation 
of the field line resonance in the magnetosphere seems to be 
close to a local resonance in response to a broadband driving 
source. 

Pu and Kivelson [1983a, b] (see also Kivelson and Pu 
[1984]) calculated the energy flux associated with the linear 
K-H instability for a zero thickness magnetopause (vortex 
sheet). Since their calculation was based on the linear 
analysis, however, they had to assume an amplitude of the 
developed wave for calculating the energy flux. Further- 
more, they did not use a single frame (e.g., the rest frame of 
the magnetosphere) for calculation of the energy flux, which 
is frame dependent, and therefore they could not determine 
the direction of the net energy transfer. Their calculation 
shows the existence of the net energy transport only when 
the magnetosheath flow is subfast, because the vortex sheet 
is stable for the super fast velocity jump. Mishin and 
Matyukhin [1986] also calculated the energy flux associated 
with the linear K-H instability for a finite thick velocity shear 
layer and assumed a wave amplitude. Since they were using 
a finite thick velocity shear layer, their energy flux exists for 
a supersonic shear flow. However, their calculation of the 
energy flux also does not seem to be done in a single frame. 
Owing to the difference of the frames for calculation of the 
energy flux, comparison of the present results, which were 
done using the rest frame of the magnetosphere, with their 
calculations does not seem to be possible. 

5.5. Stability of the Magnetopause and Vortices 

Watanabe and Sato [1990] reported that in their global 
MHD simulation the K-H instability did not occur at the 

magnetopause. Since the velocity shear at the magnetopause 
occurs only in a few spatial meshes in their simulation, the 
K-H instability does not seem to be realized in their simu- 
lation. It should be stressed that if a higher precision code is 
used in the MHD simulation, the velocity shear transition at 
the magnetopause occurs in fewer meshes, a dilemma asso- 
ciated with the MHD simulation, which does not include any 
characteristic plasma length. A fully kinetic, global particle 
simulation [Buneman, 1991] and a global hybrid simulation 
[Korzhenevskiy and Cherepenin, 1991], which can determine 
the thickness of the velocity shear layer at the magnetopause 
self-consistently, by kinetic effects, may resolve the above 
numerical difficulty in the future. 

By means of a statistical study of ISEE 1 and 2 multiple 
crossings, Song et al. [1988] have concluded that the K-H 
instability plays a very minor role in causing the magneto- 
pause oscillations. Belmont and Chanteur [1989] argue, 
however, that their statistical analysis cannot be conclusive, 
because it did not distinguish between the multiple crossings 
with short periods (1-10 min) [Aubry et al., 1971], which are 
considered to be due to the K-H instability, and the more 
separated crossings (10 min to 1 hour), which are, perhaps, 
due to the solar wind dynamic pressure fluctuations. From 
the good correlation between the number of ISEE 3 magne- 
totail magnetopause crossings and the solar wind/ 
magnetosheath velocities, Sibeck et al. [1987] have sug- 
gested that the K-H instability drives substantial magneto- 
pause motion in the distant magnetotail. " 

By checking the linear instability criterion of the incom- 
pressible K-H instability for a vortex sheet (zero thickness 
shear layer), Ogilvie and Fitzenreiter [ 1989] have found that 
the magnetopause is usually stable but the inner edge of the 
boundary layer satisfies the linear instability criterion. Con- 
sequently, they favored the K-H instability at the inner edge 
of the boundary layer [Lee et al., 1981] instead of the K-H 
instability at the magnetopause. Their conclusion does not 
seem to be conclusive, however, because in addition to the 
fact that the magnetosheath flow near the dawn-dusk mag- 
netopause is compressible and the velocity shear layer is 
finite thick, the plasma and magnetic field parameters used in 
their evaluation may actually represent those at the nonlin- 
ear saturation stage of the K-H instability. 

McHenry et al. [1990a, b] found steady, traveling iono- 
spheric convection vortices at the ionospheric convection 
reversal boundary. During quiet times these periodic vorti- 
ces consist of a continuous series of vortices moving gener- 
ally antisunward for several hours at a time. These vortices 
are on the field lines which map to the inner edge of the 
low-latitude boundary layer. By studying their relationship 
with solar wind parameters, McHenry et al. [1990b] suggest 
that these vortices are ionospheric signatures of the K-H 
instability excited at the inner edge of the magnetospheric 
boundary layer. The fact that a vortex is located at the inner 
edge of the LLBL, however, does not necessarily mean that 
the K-H instability is excited there. The present simulation 
shows that although the velocity shear layer and the magne- 
topause are overlapped initially, the velocity shear layer 
diffuses into the magnetosphere by the momentum transport 
by the K-H instability (see Figure 7). Therefore the vortex 
ends up at the inner edge of the VBL, although the K-H 
instability was excited at the initial velocity shear layer at the 
magnetopause in the present simulation (notice that the VBL 
is similar to the LLBL as far as the flow momentum is 
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concerned); this consequence is consistent with their obser- 
vations. Also the tailward streaming velocity of their ob- 
served vortices mapped onto the equatorial plane is compa- 
rable to the phase velocity of the K-H wave. In some of their 
events, the wavelength of the periodic vortices was much 
longer than the boundary layer thickness [McHenry et al., 
1990b]. If we remember that the wavelength of the fastest 
growing mode of the K-H instability is 2•r multiplied by the 
thickness of the velocity shear layer, their observational 
results do not seem to be in contradiction with the K-H 

generated vortices. In addition, a fact that the finite com- 
pressibility makes the wavelength of the fastest growing 
mode of the K-H instability longer than the incompressible 
mode [Miura and Pritchett, 1982] favors the K-H interpre- 
tation. Furthermore, the nonlinear coalesence of the fastest 
growing vortices in the nonlinear stage [Belmont and Chan- 
teur, 1989], which occurs after the saturation of the fastest 
growing mode, may explain the observed longer wavelength 
of the periodic vortices. 

As was seen in Figure 7, the vortex is found to be located 
at the inner edge of the VBL and the streamlines of E x B 
velocity presents a wavy pattern inside the inner edge of the 
VBL. Such a modulation of the inner edge of the VBL may 
be responsible for the modulations of the energetic particle 
flux observed by ISEE satellites [Couzens et al., 1985]. 

6. SUMMARY 

For a simple but realistic model of the low-latitude mag- 
netospheric boundary characterized by a velocity shear and 
gradients of the plasma density and the magnetic field 
strength normal to the boundary, MHD simulations of the 
K-H instability have been carried out for different values of 
the magnetosheath sonic Mach number (Ms). The present 
work, along with the simulation runs for different magneto- 
sheath Alfv6n Mach numbers [Miura, 1987], completes a 
two-dimensional MHD simulation study of the K-H instabil- 
ity for different parameter sets at the low-latitude magneto- 
spheric boundary. Important results obtained by the present 
simulation study are summarized as follows: 

1. For all sonic Mach numbers a velocity boundary layer 
(VBL) is formed inside the magnetopause owing to the 
momentum transport by the K-H instability, and it becomes 
wider for a smaller sonic Mach number. A flow vortex is 

excited at the inner edge of the VBL for all sonic Mach 
numbers, and the magnetopause boundary is more highly 
nonlinearly corrugated by the instability for a smaller sonic 
Mach number. 

2. The energy and momentum flux densities by the 
instability into the magnetosphere are calculated in the rest 
frame of the magnetosphere just prior to the saturation of the 
instability; for 1.0 < M s < 3.0 the energy flux density into 
the magnetosphere is approximated by 0.054 M sPoC•/2 = 
0.045V0P0, where p0 is the unperturbed magnetosheath 
pressure, and the momentum flux density into the magneto- 
sphere or the tangential (shearing) stress at the boundary is 
approximated by 0.083 P0. The anomalous viscosity by the 
Reynolds stress associated with the instability decreases in 
the absolute magnitude with increasing Ms; this suggests 
that except the subsolar regions where the instability is 
suppressed by the magnetic tension force, the dayside and 
the dawn-dusk magnetopauses, where the magnetosheath 
flow remains subsonic, are the most viscous parts of the 

boundary, although the tail flank boundaries were also found 
to be viscous enough for the viscous interaction. The energy 
flux density into the magnetosphere is large enough to 
replenish the LLBL with the tailward flow kinetic energy of 
the observed intensity and the substantial amount of the 
energy flux density in the form of the Poynting flux pene- 
trates deeper into the magnetosphere than the VBL to excite 
a ULF wave. 

3. For the supersonic magnetosheath convective Mach 
number the total pressure perturbation •p* in the magneto- 
sheath becomes oscillatory in the x direction, while in the 
magnetosphere it is evanescent because the magnetospheric 
convective Mach number remains less than 1.0. 

4. For a sufficiently high sonic Mach number the leading 
edge of the unstable pressure wave in the magnetosheath 
steepens nonlinearly and finally develops into a shock, 
which is a parallel shock in the present magnetosheath 
configuration where the flow is parallel to the magnetic field. 
The shock satisfies well the Rankine-Hugoniot relationship 
for the gasdynamical shock because of Cs > VA. 
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