
GEOPHYSICAL RESEARCH LETTERS, VOL. 17, NO. 6, PAGES 749-752, MAY 1990 

KELVIN-•LMHOLTZ INSTABILrI• FOR SUPERSONIC SHE• FLOW AT THE 
MAGNETOSPHERIC BOUNDARY 

Geophysics Research Laboratory, University of Tokyo 

Abstract. It is demonstrated by means of a MHD 
simulation that a finite thick velocity shear layer with super- 
Alfv•nic velocity jump is unstable to the Kelvin-Helmholtz 
• instability no matter how large the sonic Mach number, a 
result suggesting that the tail flank boundary is unstable to the 
KI-I instability. For supersonic shear flow the unstable mode 
becomes damped-oscillatory in the magnetosheath. For both 
subsonic and supersonic shear flows, the energy flux density 
into the magnetosphere by the KH instability is large enough to 
replenish the plasma in the low latitude boundary layer with the 
tailward flow kinetic energy of observed intensity. A 
significant fraction of the energy flux density can reach deeper 
into the magnetosphere and its intensity is comparable to an 
energy flux density required for excitation of a ULF wave in 
the magnetosphere. 

Introduction 

It has long been suggested that the magnetopause boundary 
is unstable to the KH instability [Dungey, 1955]. The 
importance of the KH instability in the viscous interaction has 
recently been emphasized [Miura, 1984, 1987]. This instability 
has also been suggested as an important mechanism in exciting 
a ULF wave (Pc 5 pulsation of small azimuthal mode number 
(m < 10)) in the magnetosphere (see recent reviews by 
Southwood and Hughes [1983]; Allan and Poulter [1984]). 

A measure of the energy flux required for the viscous 
interaction is the kinetic energy flux associated with. the 
tailward flow in the low latitude boundary layer (LLBL). 
According to Eastman [1984], this energy flux is about 7 to 33 
0W, which is about 0.06 % to 0.3 % of 4>; here, ß is the 
total kinetic energy flux of the solar wind flow incident on the 
magnetospheric cross section, which is nearly equal to 1.2 x 
104 GW. The ionospheric Joule dissipation associated with the 
Pc 5 toroida/mode resonance is about 6 GW [Greenwald and 
Walker, 1980], which is about 0.05 % of •. 

A substantial portion of the LLBL is on the closed field 
lines [e.g., Mitchell etal., 1987]; therefore, if there is no 
replenishment of the tailward flow momentum across the 
magnetopause, the tailward flow in the LLBL should slow 
down rapidly, with increasing distance, by the ionospheric 
Joule dissipation [Lemaire, 1977; Sonnerup, 1980; Nishida, 
1989]. Observation by Hones et ai. [1972], however, shows 
that a !.,LBL-like tailward flow is present even inside the tail 
flaruk boundaries, a fact suggesting that there is a continuous 
replenishment of the tailward flow momentum across the tail 
flank boundary. 

Since the transport of momentum and energy by the KH 
instability. is ultimately determined by its nonlinear process, the 
nonlinear treatment of the instability [Miura, 1984, 1987; Wu, 
I986; LaBelle-Harner etal., 1988; Belmont and Chantcur, 
1989] is essential in evaluating the nonlinear transport. The 
pro'pose of this letter is to extend the previous simulation study 
of the KH instability [Miura, 1987] to an unexplored parameter 
regime, i.e., the tail flank boundary, where the magnetosheath 
flow is supersonic [Spreiter etal., 1966], and to evaluate 
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q.uantitatively the importance of the KH instability in the 
wscous interaction and in the ULF wave generation. 

Model and Eigenmode Structure 

Figure 1 shows a MIlD model of the finite thick tangential 
discontinuity representing the magnetospheric boundary on the 
equatorial plane. Both flow velocity and magnetic field are 
sheared across the boundary. Thicknesses of the velocity shear 
layer and the magnetopause are equal and represented by 2a, 
and the sound speed C s is uniform across the boundary. The 
magnetosheath flow is characterized by M s = V0/C s and M A = 
V0/VAs/, where V 0 is the total jump of the flow velocity across 
the boundary and VAs h is the Alfv•n speed in the 
magnetosheath. M A is fixed to 10. The plasma fl in the 
magnetosheath ]3sh is given by (6/5)(MA•s)2 and that in the 
magnetosphere ]•sv is taken equal to 0.2. A periodic boundary 
condition is imp6sed at y = 0 and y = Ly. We imposed a 
boundary condition, such as there being no mass flow (v x = 0) 
across boundaries at x = +10a. It then follows that B x and 
derivatives, with respect to x of the remaining MHD quantifies 
(p, vy, v z, By, B z, p), must vanish at the boundaries (x = +_ 
10a).-Time is'normalized by 2a/V0. 

For the finite thick velocity shear layer, the growth rate of 
the KH instability is peaked at a wavelength comparable to 2to 
x 2a long and Roderick, 1972; Walker, 1981; Miura and 
Pritchett, 1982; Mishin and Morozov, 1983]. For a realistic set 
of 2a and V 0 at the magnetopause the fastest growing mode 
has a wave period in the Pc 4 to Pc 5 range (45 - 600 sec). 
This is the basis for considering the KH instability for the 
finite thick velocity shear layer as an excitation mechanism of 
the Pc 5 toroidal mode resonance. We should note that the 
magnetosheath flow changes from subsonic in the subsolar 
region to supersonic at the flank [Spreit•r etal., 1966]. The 
discontinuous vortex sheet becomes unstable to the KH 
instability only when V 0 lies between two critical velocities. 
The upper critical velocity for the two dimensional wave 
propagating in the direction of the shear flow is of the order of 
the sound speed [Landau, 1944] for the hydrodynamic case, 
and the fast magnetosonic speed for the MHD case. Whereas, 
for the finite thick velocity shear layer, there is no such upper 
critical velocity and the shear layer becomes unstable no matter 
how large the sonic Mach number [Bturnen etal., 1975]. 

The asymptotic form of the linear eigenmode equation for 
the total pressure perturbation 8p* at x <-a in the 
magnetosheath becomes [Miura and Pritchett, 1982], 

magnetosheath magnetosphere 

= 2a Bo,(x) 

V•y(x) / ...... F low Velocity 

y • Magnetic Field 
Low Latitude Boundary 

Fig. 1. A model of the finite thick tangential discontinuity 
representing the low latitude magnetospheric boundary. 
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d28p,/dx2- r,•/•2 8p* = 0 (1) 

where 

rsh 2 = ky 2 - a2/[(1 -ky2VAsh2/C/2)Cs 2 + VAsh 2 ] 

= _ ( •2_ ky2 CS 2 )( •22 _ ky2 VAxh 2) 

x[( •2_ ky2 VAsh 2 ) CS2 + if/2 VAsh 2 ]-1 (2) 

and /'2 = (o -k V0 = Cør + iT-kyV0. ky being the Y . 
wavenumber in the y d•xection. For the medium wavelength 
mode satisfying (o r >> I 7 l, we can neglect the imaginary part 
of rsh 2. If Ksh 2 > O, $p* becomes evanescent in the 
magnetosheath; for rsh2 <0, $p* becomes osci!latory. Since 
Q2_ ky2 VAsh 2 is positive for M A = 10, whether the 
eigenmtde is evanescent or oscillatory depends on the sign of 
Q2_ ky2 CS2 ' If we define the magnetosheath convective 
Mach number Mcs h , which characterizes the nature of a 
disturbance as subsonic or supersonic [Papamoshou and 
Roshko, 1988], by MCs h = - Qr/(kyCs) = (V0 - Cør/ky)/Cs, 
MCs h < 1 gives an evanescent eigenmode and Mcs h > 1 gives 
an oscillatory mode. If the non-zero growth rate is taken into 
account in equation (2), the asymptotic behaviour of the 
eigenmode is damped-oscillatory for the supersonic case. 

The eigenmode equation at x > a in the magnetosphere 
becomes [Miura and Pritchett, 1982] 

aeap*/cZx2- = o (3) 

where rsp2 = ky2(! - Mcsp2). Here, Mcs p is the 
magnetospheric convective Mach number defined by MCsp = 
(or/(ky CFsp), where CFs p is the fast magnetosonic speed in 
the magnetosphere defined by CFsp = (CS2 + VAsp2) 1/2, V^sp 
being the Alf-vtn speed in the magnetosphere. 

Simulation Results 

simulation for M s > M A = 10 ( •sh < 1 ) and have found that 
the initial perturbation grows and saturates. This result is 
consistent with the linear analysis of Blumen et al. [1975]. 
Saturation levels for the supersonic cases are smaller than 
those for the subsonic ones. This is due to the fact that, 
together with the vortex formation, standing compressional 
waves are a/so excited in the magnetosheath for the supersonic 
cases (see Figure 5). 

Figure 3 shows M½s h and M½s p calculated from the 
tailward phase velocity Vph (=c0 r /ky) as a function of M s. 
Both convective Math numbers increase with increasing M s. 
M½sh is less than unity for M s < 2.3, but it exceeds unity for 
M s > 2.3. Therefore, it is expected that the KH eigenmode in 
the magnetosheath becomes oscillatory for M s > 2.3. On the 
other hand, Mcs p remains less than unity for M s = 1.0-5.0. 
Therefore, the KH eigenmode in the magnetosphere should be 
an evanescent form. Since Mcs p increases and approaches to 
unity with increasing MS, we expect that the e-folding distance 
of the evanescent eigenmode increases as MS increases. 

We show, in Figure 4, profiles along x of the perturbations 
of the plasma pressure, the magnetic pressure, and the flow 
kinetic energy, which are normalized by the unperturbed 
plasma pressure in the magnetosheath and are averaged in the y 
direction over one wavelength for subsonic (Mcsh < 1) 

3.0 

•1.o 

o 

o.o 

Mcs h = (V o - Vph ) / C s 

1.0 2.0 3.0 4.0 5.0 
Ms 

A MHD simulation is initiated by adding a small seed of 
unstable perturbation, which has a wavelength equal to L•, to 
the flowing equilibrium shown in Figure 1; the KH instability 
is, therefore, treated as an absolute instability. For all 
simulation runs, we used the same wavenumber kv, which 
satisfies 2kya = 0.8; this wavenumber is nearly equal to that of 
the fastest growing mode. 

Figure 2 shows temporal evolution of the peak of ivxl 
normalized by V 0 for M s = 0.5 ~ 5.0. For each sonic Mach 
number the peak of IvxI grows linearly in an early phase and 
tends to saturate in a later phase. We have also performed 

lO ...... . .... ', 

Ms= 0.5 

l vx I / '" "\ 2.5 

•.o 
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Fig. 2. Temporal evolution of the peak of Ivxl normalized by 
V 0 for different sonic Mach numbers M s and a fixed A!fv•n 
Mach number (MA TM 10). 

Fig. 3. Convective Mach numbers Mcsh and Mop as a 
function of the sordc Mach number M s. 
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Fig. 4. Profiles along x of the perturbations of the pressure 
(solid line), the magnetic pressure (dotted line), and the flow 
kinetic energy (dot-dash line), which are normalized by the 
unperturbed plasma pressure in the magnetosheath and are 
averaged in the y direction over one wavelength, for Mc. sh < 1 
(upper panel) and MCs h > 1 (lower panel) at their saturation 
stages. 
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(upper panel) and supersonic (Mcsh > 1) (lower panel) cases 
at their saturation stages; here, the perturbation b-'F(0 is defined 
by $F(t)= F(r)- F(t = 0). The eigenmode is damped- 
0scillatory in the magnetosheath for MC• h > 1 (lower panel), 
although it is an evanescent form in the magnetosheath for 
MCsh < 1 (upper panel). The eigenmode in the magnetosphere 
is evanescent for both supersonic and subsonic cases, as is 
expected from Mcs p < 1 (Figure 3). For both cases the 
pressure pert•bation (solid line) near the magnetopause is out 
of phase with the magnetic pressure perturbation (dotted line) 
and, hence, the perturbation is a slow-mode type near the 
magneto.pause. In the magnetosphere, however, both 
pmurbauons are in phase and the perturbation is a fast-mode 
type. The flow kinetic energy increased inside the 
magnetopause and decreased outside of it in both cases. This is 
due to the fact that the tailward flow momentum is transported 
from th6 magnetosheath into the magnetosphere by the 
instability and a velocity boundary layer (VBL), with a 
tailward flow, is formed inside the magnetopause. 

Shown in Figure 5 are three dimensional views of the top 
surfaces of the magnetic pressure distributions for Mcsh < 1 
(upper panel) and Mes h > 1 (lower panel) at their saturation 
stages. It can be clearly seen that the standing, compressional 
oscillations are excited in the magnetosheath for the supersonic 
case (lower panel). 

As we might well expect, we have found from a simulation 
run with MS = 2.5 (Mesh > 1) and M A = 10 that a leading 
edge of the magnetosheath compressional wave (propagating 
in the positive y direction), generated by the KH instability at 
the magnetopause, steepens nonlinearly and finally develops 
into a shock discontinuity, whose shock front is nearly parallel 
to the x axis. 

By taking a spatial average over one wavelength of the 
energy conservation equation c? s/c) t =- V.Q [Miura, 1984], 
where s is the energy density and Q is the energy flux density, 
we obtain a spatially averaged energy conservation equation 
• (0/c• t = - c? (Qx)/C? x, where the brackets represent the 
spatial average over one wavelength and (Qx) is expressed by 

(Qx) = ((pv2/2 + rp/(r- + (E x mx/0) (4) 

Fbeing the ratio of the specific he•ts. Shown in Figure 6 are 
profiles of each energy flux density averaged over one 

Magnetic Pressure ( M A = 10: J•sP = 0.2 ) 

=•.o • 

_•e '•, •,y M s =4.0 

.5 

Fig. 5. Three-dimensional views of top surfaces of the 
magnetic pressure distributions for Mcsh < 1 (upper panel) 
and Mes h > ! (lower panel) at their saturation stages. 
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Fig. 6. Profiles along x of the kinetic energy flux density 
(dotted line), the enthalpy flux density (dot-dash line), the 
Poynting flux density (double dots-dash line), and the total 
energy flux density (solid line), which are averaged over one 
wavelength and normalized by the magnetosheath kinetic 
energy flux density @0V03/2, for MCs h < 1 (upper panel) and 
Mcsh > 1 (lower panel). 

wavelength for Mcsh < 1 (upper panel)and Mcsh > ! (lower 
panel). Each energy flux density is calculated in the rest frame 
of the magnetosphere and normalized by the unperturbed 
magnetosheath kinetic energy flux density P0V03/2. The 
energy flux density is defined to be positive, if it is directed 
from the magnetosheath into the magnetosphere. For both 
cases, the Poynting flux, shown by the double dots-dash 
curve, is directed to the magnetosheath near the magnetopause, 
but it is cancelled by a part of the enthalpy flux, which is 
shown by the dot-dash curve and directed into the 
magnetosphere. Therefore, the total energy flux density (Qx), 
which is shown by the solid curve, is directed from the 
magnetosheath into the magnetosphere, for both cases, near 
the magnetopause. As is expected from •'sp 2 = ky2(1-Mcs p 2) 
the total energy flux density decays more slowly to zero with 
increasing x in the magnetosphere for MS=2.5 than MS=I.0. 

The peak of the total energy flux density, which occurs 
near the magnetopause, is a measure of the net energy 
transported from the magnetosheath into the magnetosphere by 
the KH instability. We have found for M A = 10 that the peak 
of the energy flux density normalized by P0V03/2 decreases 
with increasing M s and approaches a constant value 0.4 % of 
p0V03/2 for large M s ( > 4 ), which occurs at the tail flank. 

Discussion 

In order to explain the plasma entry from the 
magnetosheath onto the closed field lines in the LLBL, several 
mechanisms [Eviatar and Wolf, 1968; Lemaire, 1977; 
Heikkila, !982; Tsurutani and Thorne, 1982; Nishida, 1989], 
which cause or require breaking down of the ideal MHD, have 
been proposed. Whatever the mechanism of the plasma 
penetration is, a penetrated plasma with a tailward flow 
momentum is quickly slowed down with increasing distance. 
At the tail flank the energy flux density by the KH instability 
into the magnetosphere is larger than 0.4 % of P0V03/2. This 
means that 0.4 % of ß is transported into the magnetosphere, 
as the solar wind flow incident on the magnetospheric cross 
section steps aside from the magnetosphere and becomes a 
flow tangent to the flank boundary in the magnetosheath. 
Therefore, the energy flux density into the magnetosphere by 



7 5 2 Miura: Supersonic Kelvin-He!rnho!tz Instability 

the KH instability is large enough to replenish the plasma in 
the LLBL with the tailward flow kinetic energy of observed 
intensity (see Introduction). We expect, therefore, that a 
LLBL-like tailward flow exists even inside the tail flank, this 
being consistent with the observation by Hones et al. [1972]. 

We have seen in Figure 4 that the energy •ransported into 
the magnetosphere by the KH instability at the magnetopause 
is deposited in the magnetosphere in two different ways. First, 
the transported energy contributes to an increase in the flow 
kinetic energy in VBL produced inside the magnetopause. By 
this viscous interaction the tailward flow energy in the LLBL 
would be replenished when the flow kinetic energy in the 
LLBL is dissipated as Joule heat in the ionosphere. Second, a 
significant fraction of the energy flux density can reach deeper 
into the magnetosphere than VBL, and contributes to 
compression of magnetic field lines (dotted lines at x > 4a in 
Figure 4) and plasma in the form of a fast magnetosonic wave. 
This fast mode energy would be responsible for an excitation 
of a Pc 5 pulsation in the magnetosphere by the mechanism of 
field line resonance [ Southwood, 1974; Chen and Hctsegawa, 
1974]. The fast mode energy can reach deeper into the 
magnetosphere as M s increases, since •Csp decreases with 
increasing MCs p . SinCe the present simulation is performed 
for an energy-conserving system without ionospheric 
coupling, above speculations on the energetics of the KH 
instability should be tested more realist/cally in future by taking 
account of the fact that the magnetic field lines in the 
magnetosphere are tied to the ionosphere. 

The lower panel of Figure 6 shows that the total energy 
flux density directed into the magnetosphere at x~6a, which is 
located deeper in the magnetosphere than VBL, is dominated 
by the Poynting flux and is about 1/5 of the peak energy flux 
density at x---0. Therefore, the energy flux density by the KH 
instability which can reach deep into the magnetosphere seems 
to be large enough to provide energy for the Pc 5 toroidal 
mode resonance (see Introduction). The simulation results 
further suggest that the KH instability at the tail flank, where 
the magnetosheath flow is supersonic, is an important source 
of compressional, oscillatory disturbances including shocks, in 
the magnetosheath. 
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