博士論文 (要約)

 論文題目 Comprehensive Structure-Activity Relationship Study of Lysocin E (ライソシンEの網羅的構造活性相関研究)

氏 名 加治 拓哉

Introduction

Lysocin E^1 (1, Figure 1) is a 37-membered cyclic depsipeptide isolated from *Lysobacter* sp. Peptide 1 exhibits antimicrobial activity against methicillin-resistant *S. aureus* (MRSA) with a minimum inhibitory concentration (MIC) of 4 µg/mL. Therefore 1 is expected to be a promising seed for MRSA treatment.

The molecular target of **1** is distinct from that of any other reported antibiotics. A series of mutational analyses revealed that **1** directly binds to menaquinone (MK) within the bacterial membrane. MK is an essential factor for electron transfer in the bacterial respiratory chain. Formation of the **1**-MK complex is considered to disrupt the functional integrity of the bacterial membrane, resulting in rapid bacteriolysis. In contrast, no complexation occurs between **1** and ubiquinone (UQ), a coenzyme in the mammalian respiratory chain. The bacterial/mammalian cell selectivity of **1** is attributable to the selectivity of **1** toward MK over UQ. However, structural requirement of **1** for its potent biological activity remained to be elucidated. Herein, comprehensive structure-activity relationship (SAR) study of **1** was conducted 1) to investigate the side-chain functionalities relevant to the molecular mode of action and 2) to create more potent derivatives.

Total synthesis and functional evaluation of fourteen derivatives of lysocin E

To investigate the importance of side-chain functionalities of **1**, side-chain modified derivatives of **1** were to be designed and synthesized. Prior to the SAR study of **1**, the following three potential interactions among **1**, MK, and phospholipids were hypothesized: 1) an electrostatic interaction of the anionic carboxylate group or the cationic guanidine moieties with the polar head group of phospholipids or the carbonyl groups of MK; 2) an aromatic-aromatic interaction of the phenyl group or indole ring with the naphthoquinone ring of MK; and 3) a hydrophobic interaction of the acyl chain with the lipid chains of MK or phospholipids. To systematically investigate the significance of each of these interactions, fourteen analogues **2-15** were designed (Figure 1).

Syntheses of the natural 1, amine analogues 4, 16a, 16b, and 16c were envisioned to permit rapid access to analogues 2/3, 5-7, 8-13, 14, and 15 respectively, by applying chemoselective single-step reactions (Figure 2). Fmoc solid-phase peptide synthesis strategies enabled efficient construction of the main chain structure without purification of intermediates (Figure 2A and 2B).^{2,3} Compound 25 was used to incorporate acyl chain of 1 and 4 in SPPS (Figure 2A, $22 \rightarrow 34 \rightarrow 35 \rightarrow 1$ or 4). In contrast, compound 30 was employed to incorporate ester linkage and Boc-protected amine for post-SPPS modification of acyl chain (Figure 2B, $22 \rightarrow 37 \rightarrow 38 \rightarrow 16$). These synthetic strategies were applied to prepare 1, 4, 16a, 16b, and 16c in 8.0, 6.1, 26, 12, and 6.5% overall yields, respectively. Condensation of 1 with 34 and 35 in the presence of PyBOP afforded amide analogues 2 and 3 in 48 and 44% yields, respectively. Treatment of 4 with 36, 37, and 38 gave rise to the dimethylguanidine (5), urea (6), and acetyl (7) analogues in 46, 58, and 27% yields, respectively. Treatment of 16a-16c with activated carboxylic acids, which were prepared from 39-45 in the presence of isobutylchloroformate and *N*-methylmorpholine, afforded analogues 8, 9, 10, 11, 12, 13, 14, and 15 in 34, 51, 29, 33, 41, 25, 22, and 34% yields, respectively.

compound	le	R ¹	R²	R ³	R ⁴	R⁵	membrane disruption [%]			5] M	IIC [µg/mL]	compounds	R1	R ²	R ³	R4	P ⁵
compound	13						2.5 µM	10 µM	2.5 µM 10) μM				··	ĸ		
lysocin E (1)		∕ OH ∕	Ph	3-indolyl	guanidyl	ОН	62		1.0		4	16a	H•TFA	Ph	3-indolyl	guanidyl	ОН
2	Y	₩ OH	Ph	3-indolyl	guanidyl	NHBn BocHN	64		0		4	16b	H•TFA	н	3-indolyl	guanidyl	OH
3	Ý	₩ OH	Ph	3-indolyl	guanidyl	н К	93		0		2	16c	H•TFA	Ph	Н	guanidyl	ОН
4	Ý	∕ OH ∕	Ph	3-indolyl	NH ₂	OH	62		2.2		4	L-Glu-8	H₂N [-GIn	-9 D-Trp	-10	
5	Y	Ύ OH Ύ	Ph	3-indolyl	XN YN -	OH	55		5.1		4	R⁵∛	ν ν HN·			····· L-lle-	-11
6	Ý	₩ OH	Ph	3-indolyl		ОН	7.4		0.9		8	-Arg-7 ⁰	NH O	õ		=0 0H	
7	Ý	∕ OH ∕	Ph	3-indolyl	Ň	ОН	0	9.3	0	0	16		NH Jeo		0=		1r-12
8		×	Ph	3-indolyl	guanidyl	ОН	51		0		16	0=	NH ≼		O HN		1 7-1
9	×		Ph	3-indolyl	guanidyl	ОН	48		0		4	R ²	N	но- ни-	NH	O D-Arg-2	
10	X	$\sim \sim$	Ph	3-indolyl	guanidyl	OH	65		0		2	N-Me-D-Ph	e-5 Gly-	4	L-Ser-3	R ⁴	
11	X	$\sim \gamma$	Ph	3-indolyl	guanidyl	OH	62		0		4	∏ NH		Ĵ	ph	\sim	
12	J	\downarrow_{4}	Ph	3-indolyl	guanidyl	OH	42		0.7		4	\sim	ĺ	\downarrow	menar	n-1 Nuinone (M	K)
13) J	$\frac{1}{6}$	Ph	3-indolyl	guanidyl	OH	20		0		32	3-indolyl		Ö	n = 4:	MK-4 (17)	
14	X	CH	н	3-indolyl	guanidyl	ОН	0.8	65	0	0	8	$\times^{N} \Upsilon^{NH_2}$	MeO	Ĺ		n-1	
15	Ŷ	Ύ OH Ύ	Ph	Н	guanidyl	OH	0	0	0	0	> 128	NH guanidyl	MeO	Â	ubiquir n = 10:	none (UQ) UQ-10 (1 8	8)

Figure 1. Structures of lysocin E (1), analogues 2-15, intermediates 16a-c, menaquinone-4 (17), and ubiquinone-10 (18). Membrane disrupting activities and antimicrobial activities of 1-15 are also displayed.

Figure 2. Solid-phase peptide syntheses of 1, 4, and 16a-c, synthesis of 2, 3, and 5-15, and component amino acids 19-33.

Biological functions of **1** and its analogues were systematically evaluated based on the MK-dependent membrane lysis of liposomes and antimicrobial activity against *S. aureus*. To assess membrane lytic activity, large unilamellar vesicles (LUVs) comprising a 1:1 ratio of EYPC/EYPG were prepared in the presence of 1.25 mol% of MK-4 (**16**) or UQ-10 (**17**). Carboxyfluorescein (CF) was encapsulated as a fluorescent indicator in the LUVs. Membrane disruption caused by **1-15** was evaluated by fluorescence from released CF molecules.

The selective membrane lysis toward LUVs containing 17 over 18 was consistently observed for 1-14. The natural 1 exhibited 62% membrane disruption at 2.5 μ M and MIC of 4 μ g/mL. Exchange of the anionic carboxylate with the neutral amides of 2 and 3 did not decrease membrane lytic activity (64% for 2, 93% for 3) and antimicrobial activity (MIC 4 μ g/mL for 2 and 2 μ g/mL for 3). When the cationic guanidine moieties were exchanged to cationic amine (4) or dimethylguanidine (5), the potency of membrane disruption (62% for 4 and 55% for 5) and antimicrobial activities (MIC 4 µg/mL for 4 and 5) was retained. In contrast, incorporation of neutral urea (6) and amide (7) analogues decreased both membrane lytic activity (7.4% for 6 and 0% for 7) and antimicrobial activity (MIC 8 μ g/mL for 6 and 16 μ g/mL for 7), emphasizing the significance of the cationic functionalities. C2- (8), C4- (9), C6- (10), C7- (11), and C9- (12) acyl chain-modified analogues exhibited similar membrane lytic activities (51, 48, 65, 62, and 42%, respectively). C11-acyl chain modified analogue 13 showed lower membrane lytic activity (20%). Despite their relative unimportance in the liposome experiments, the lengths of the acyl chains influenced the MIC (2-4 μ g/mL for 9-12, 16 μ g/mL for 8, and 32 μ g/mL for 13), indicating the importance of the appropriate hydrophobicity of this moiety for the bioactivity. Although des-phenyl analogue 14 exhibited weak membrane lytic activity (65% at 10 µM) and antimicrobial activity (MIC 8 μ g/mL), deletion of indole ring (15) totally abolished both membrane lytic activity (0% at 10 μ M) and antimicrobial activity (MIC >128 μ g/mL). The indole ring appeared to be the most essential part of 1 for the MK-selective membrane disruption and antimicrobial activity.⁴

Comprehensive Structure-Activity Relationship study of lysocin E

More comprehensive SAR experiment was conducted expanding the number of analogues to be evaluated by using one-bead-one-compound (OBOC) strategy⁵. Resin-bound 2,401 lysocin analogues

were synthesized through split-pool synthesis by randomizing four amino-acid residues (L-Ser-3, L-Leu-6, D-Gln-9, and L-Ile-11) into seven amino acids (Val, Orn, Asp, Asn, Ser, Tyr, Ala). Method to evaluate MK-binding property of on-resin analogues was established by quantification of the resin-adsorbed MK. In addition, methods to evaluate the antimicrobial activity of the analogues derived from a single bead were established under carefully optimized conditions. Furthermore, structural determination of the analogues was accomplished by

Figure 3. On-bead MK-adsorption assay of OBOC library of 1.

tandem mass spectrometry. Screening of 2,401 analogues is currently underway.

Summary

Fourteen side-chain analogues of 1 were synthesized by using the solid-phase strategy and chemoselective single-step modification. The key functional groups for the potent activity of 1 were found to be cationic groups, hydrophobic acyl group, and the indole ring. These results offered a clearer picture of the mode of action of 1. The cationic guanidine moieties and the hydrophobic acyl chain help 1 bind through the anionic polar heads and hydrophobic lipid tails of the bacterial membrane, respectively. On the membrane

Figure 4. Hypothetical mechanism of action of 1.

surface, the electron-rich indole and the electron-deficient naphthoquinone of MK bind as a result of the aromatic-aromatic interaction, leading to the formation of the 1-MK complex. Finally, the complexation causes membrane damage and eventual cell death (Figure 4). Sequential analyses of on-bead and solution-phase assay were applied to the OBOC library composed of 2,401 analogues. Comprehensive structure-activity relationship study is currently underway. Furthermore, this new hypothetical mechanism of action and comprehensive structure-activity relationship study of OBOC library will provide us with valuable information for designing more active derivatives of 1.

References

1) Hamamoto, H.; Urai, M.; Ishii, K.; Yasukawa, J.; Paudel, A.; Murai, M.; Kaji, T.; Kuranaga, T.; Hamase, K.; Katsu, T.; Sue, J.; Adachi, T.; Uchida, R.; Tomoda, H.; Yamada, M.; Souma, M.; Kurihara, H.; Inoue, M.; Sekimizu, K. *Nat. Chem. Biol.* **2015**, *11*, 127.

2) Murai, M.; Kaji, T.; Kuranaga, T.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Angew. Chem. Int. Ed. 2015, 54, 1556.

3) (a) Murai, M. Ph.D. thesis, 2014. (b) Kaji, T. Master thesis, 2014.

4) Kaji, T.; Murai, M.; Itoh, H.; Yasukawa, J.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Chem. Eur. J. 2016, 22, 16912.

5) Lam, K. S.; Lebl, M.; Krchňák, V. Chem. Rev. 1997, 97, 411.