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Introduction 
  Lysocin E1 (1, Figure 1) is a 37-membered cyclic depsipeptide isolated from Lysobacter sp.  Peptide 1 
exhibits antimicrobial activity against methicillin-resistant S. aureus (MRSA) with a minimum inhibitory 
concentration (MIC) of 4 µg/mL.  Therefore 1 is expected to be a promising seed for MRSA treatment. 

  The molecular target of 1 is distinct from that of any other reported antibiotics.  A series of mutational 
analyses revealed that 1 directly binds to menaquinone (MK) within the bacterial membrane.  MK is an 
essential factor for electron transfer in the bacterial respiratory chain.  Formation of the 1-MK complex is 
considered to disrupt the functional integrity of the bacterial membrane, resulting in rapid bacteriolysis.  In 
contrast, no complexation occurs between 1 and ubiquinone (UQ), a coenzyme in the mammalian respiratory 
chain.  The bacterial/mammalian cell selectivity of 1 is attributable to the selectivity of 1 toward MK over UQ.  
However, structural requirement of 1 for its potent biological activity remained to be elucidated.  Herein, 
comprehensive structure-activity relationship (SAR) study of 1 was conducted 1) to investigate the side-chain 
functionalities relevant to the molecular mode of action and 2) to create more potent derivatives. 
  
Total synthesis and functional evaluation of fourteen derivatives of lysocin E 
  To investigate the importance of side-chain functionalities of 1, side-chain modified derivatives of 1 were to 
be designed and synthesized.  Prior to the SAR study of 1, the following three potential interactions among 1, 
MK, and phospholipids were hypothesized: 1) an electrostatic interaction of the anionic carboxylate group or the 
cationic guanidine moieties with the polar head group of phospholipids or the carbonyl groups of MK; 2) an 
aromatic-aromatic interaction of the phenyl group or indole ring with the naphthoquinone ring of MK; and 3) a 
hydrophobic interaction of the acyl chain with the lipid chains of MK or phospholipids.  To systematically 
investigate the significance of each of these interactions, fourteen analogues 2-15 were designed (Figure 1). 
  Syntheses of the natural 1, amine analogues 4, 16a, 16b, and 16c were envisioned to permit rapid access to 
analogues 2/3, 5-7, 8-13, 14, and 15 respectively, by applying chemoselective single-step reactions (Figure 2).  
Fmoc solid-phase peptide synthesis strategies enabled efficient construction of the main chain structure without 
purification of intermediates (Figure 2A and 2B).2,3  Compound 25 was used to incorporate acyl chain of 1 and 
4 in SPPS (Figure 2A, 22→34→35→1 or 4).  In contrast, compound 30 was employed to incorporate ester 
linkage and Boc-protected amine for post-SPPS modification of acyl chain (Figure 2B, 22→37→38→16).  
These synthetic strategies were applied to prepare 1, 4, 16a, 16b, and 16c in 8.0, 6.1, 26, 12, and 6.5% overall 
yields, respectively.  Condensation of 1 with 34 and 35 in the presence of PyBOP afforded amide analogues 2 
and 3 in 48 and 44% yields, respectively.  Treatment of 4 with 36, 37, and 38 gave rise to the 
dimethylguanidine (5), urea (6), and acetyl (7) analogues in 46, 58, and 27% yields, respectively.  Treatment of 
16a-16c with activated carboxylic acids, which were prepared from 39-45 in the presence of 
isobutylchloroformate and N-methylmorpholine, afforded analogues 8, 9, 10, 11, 12, 13, 14, and 15 in 34, 51, 29, 
33, 41, 25, 22, and 34% yields, respectively.   



   

Figure 2. Solid-phase peptide syntheses of 1, 4, and 16a-c, synthesis of 2, 3, and 5-15, and component amino 
acids 19-33.  
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Figure 1. Structures of lysocin E (1), analogues 2-15, intermediates 16a-c, menaquinone-4 (17), and 
ubiquinone-10 (18). Membrane disrupting activities and antimicrobial activities of 1-15 are also displayed. 
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Biological functions of 1 and its analogues were systematically evaluated based on the MK-dependent 
membrane lysis of liposomes and antimicrobial activity against S. aureus.  To assess membrane lytic activity, 
large unilamellar vesicles (LUVs) comprising a 1:1 ratio of EYPC/EYPG were prepared in the presence of 1.25 
mol% of MK-4 (16) or UQ-10 (17).  Carboxyfluorescein (CF) was encapsulated as a fluorescent indicator in 
the LUVs.  Membrane disruption caused by 1-15 was evaluated by fluorescence from released CF molecules.  
  The selective membrane lysis toward LUVs containing 17 over 18 was consistently observed for 1-14.  The 

natural 1 exhibited 62% membrane disruption at 2.5 µM and MIC of 4 µg/mL.  Exchange of the anionic 

carboxylate with the neutral amides of 2 and 3 did not decrease membrane lytic activity (64% for 2, 93% for 3) 

and antimicrobial activity (MIC 4 µg/mL for 2 and 2 µg/mL for 3).  When the cationic guanidine moieties were 

exchanged to cationic amine (4) or dimethylguanidine (5), the potency of membrane disruption (62% for 4 and 

55% for 5) and antimicrobial activities (MIC 4 µg/mL for 4 and 5) was retained.  In contrast, incorporation of 

neutral urea (6) and amide (7) analogues decreased both membrane lytic activity (7.4% for 6 and 0% for 7) and 

antimicrobial activity (MIC 8 µg/mL for 6 and 16 µg/mL for 7), emphasizing the significance of the cationic 

functionalities.  C2- (8), C4- (9), C6- (10), C7- (11), and C9- (12) acyl chain-modified analogues exhibited 

similar membrane lytic activities (51, 48, 65, 62, and 42%, respectively).  C11-acyl chain modified analogue 13 

showed lower membrane lytic activity (20%).  Despite their relative unimportance in the liposome experiments, 

the lengths of the acyl chains influenced the MIC (2-4 µg/mL for 9-12, 16 µg/mL for 8, and 32 µg/mL for 13), 

indicating the importance of the appropriate hydrophobicity of this moiety for the bioactivity.  Although 

des-phenyl analogue 14 exhibited weak membrane lytic activity (65% at 10 µM) and antimicrobial activity (MIC 

8 µg/mL), deletion of indole ring (15) totally abolished both membrane lytic activity (0% at 10 µM) and 

antimicrobial activity (MIC >128 µg/mL).  The indole ring appeared to be the most essential part of 1 for the 

MK-selective membrane disruption and antimicrobial activity.4 

 

Comprehensive Structure-Activity Relationship study of lysocin E 
   More comprehensive SAR experiment was conducted expanding the number of analogues to be 

evaluated by using one-bead-one-compound (OBOC) strategy5.  Resin-bound 2,401 lysocin analogues 
were synthesized through split-pool 
synthesis by randomizing four 
amino-acid residues (L-Ser-3, L-Leu-6, 
D-Gln-9, and L-Ile-11) into seven amino 
acids (Val, Orn, Asp, Asn, Ser, Tyr, 
Ala).  Method to evaluate MK-binding 
property of on-resin analogues was 
established by quantification of the 
resin-adsorbed MK.  In addition, 
methods to evaluate the antimicrobial 
activity of the analogues derived from a 
single bead were established under 
carefully optimized conditions.  
Furthermore, structural determination of 
the analogues was accomplished by 
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tandem mass spectrometry.  Screening of 2,401 analogues is currently underway.  
 

Summary  
   Fourteen side-chain analogues of 1 were 

synthesized by using the solid-phase strategy 
and chemoselective single-step modification.  
The key functional groups for the potent 
activity of 1 were found to be cationic groups, 
hydrophobic acyl group, and the indole ring.  
These results offered a clearer picture of the 
mode of action of 1.  The cationic guanidine 
moieties and the hydrophobic acyl chain help 
1 bind through the anionic polar heads and 
hydrophobic lipid tails of the bacterial 
membrane, respectively.  On the membrane 
surface, the electron-rich indole and the electron-deficient naphthoquinone of MK bind as a result of the 
aromatic-aromatic interaction, leading to the formation of the 1-MK complex.  Finally, the complexation causes 
membrane damage and eventual cell death (Figure 4).  Sequential analyses of on-bead and solution-phase assay 
were applied to the OBOC library composed of 2,401 analogues.  Comprehensive structure-activity relationship 
study is currently underway.  Furthermore, this new hypothetical mechanism of action and comprehensive 
structure-activity relationship study of OBOC library will provide us with valuable information for designing 
more active derivatives of 1. 
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Figure 4. Hypothetical mechanism of action of 1. 
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