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1 Introduction

In this paper we study the integral transforms for modules over sheaves of twisted differential

operators on partial flag varieties which is called intertwining functors or Radon transforms and

its relation to the representations of reductive Lie algebras over C. A sheaf of twisted differential

operators (TDO) on a smooth algebraic variety is a sheaf of rings which is locally isomorphic to

the sheaf of the differential operators. We call modules over a TDO twisted D-modules. Taking

global sections induces a functor from the category of twisted D-modules on partial flag varieties

G/P to a category of representations of Lie algebra g := Lie G. Beilinson and Bernstein [3]

established an equivalence of these categories. In [4] they defined intertwining functors for twisted

D-modules on full flag varieties G/B. Intertwining functors are defined as integral transforms

of twisted D-modules along the orbits of product of two flag varieties G/B × G/B and hence

parametrized by the elements of the Weyl group. Intertwining functors change the parameter of

TDO by an action of Weyl group. Beilinson and Bernstein proved that these intertwining functors

are equivalences of categories. Marastoni [26] considered the integral transform between a partial

flag variety G/P and its opposite partial flag variety G/P op of D-modules and proved that it is an

equivalence of derived categories. We extend the definition of intertwining functors to a certain

class of orbits of the product of two partial flag varieties G/P×G/P ′ where P and P ′ are associate

parabolic subgroups and prove that they give equivalences between derived categories of twisted

D-modules (Theorem 1). Miličić [28] studied the compatibility between intertwining functors and

global section functors and proved that intertwining functors in one direction are compatible with

global section functors. We extend his result to the intertwining functors defined in this paper

(Theorem 2).

Let us now explain the preceding results, related results and our results in more details.

Let G be a connected reductive algebraic group over C, B be its Borel subgroup and H be a

Cartan subgroup contained in B. We denote their Lie algebras by g, b and h. We denote by Π

the set of simple roots and by ρ the half sum of positive roots. We denote the enveloping algebra

of g by U(g). Let λ ∈ h∗. We define the Verma modules by M(λ) := U(g)⊗U(b) Cλ, where Cλ is

regarded as a b-module by b → h. We denote by I(λ) := AnnU(g)(M(λ)) the annihilator of the

Verma module.

The theorem of Beilinson and Bernstein relates representations of semisimple Lie algebras and

D-modules on flag varieties. To state their result in full generality and to explain the results
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of this paper, we need the notion of sheaves of twisted differential operators (TDO). For the

precise definition of the TDO, see Definition 3. The isomorphism classes of TDO’s on the flag

variety G/B are parametrized by the elements of h∗. For each λ ∈ h∗, there is a natural way to

construct a corresponding TDO DλG/B and a homomorphism ψλ : U(g) → Γ(G/B,DλG/B). We

denote by DλG/B-mod the category of quasi-coherent DλG/B-modules. The localization theorem of

Beilinson and Bernstein ([3]) states the following. The homomorphism of algebras ψλ : U(g) →
Γ(G/B,DλG/B) factors through an isomorphism U(g)/I(λ−2ρ) ∼= Γ(G/B,DλG/B) and if λ is regular

and dominant the functor Γ : DλG/B-mod→ U(g)/I(λ− 2ρ)-mod which assign to a DλG/B-module

M the space Γ(G/B,M) of all global sections is an equivalence of categories. For the definition of

regularity and dominance, see Definition 26. Note that our choice of positive roots is the opposite

to that of Beilinson and Bernstein. The inverse functor ∆λ (see §2.3.3) is called the localization

functor.

This theorem connects the representation theory of semisimple Lie algebras and the geometry

of the flag variety. For example, the results of Kazhdan and Lusztig [22] and Lusztig and Vogan

[24] on the perverse sheaves on flag varieties can be applied via the localization theorem and

the Riemann-Hilbert correspondence ([9, Chapter VIII]) to the representation theory and yield

a formula of multiplicities of standard modules, one of which is known as the Kazhdan-Lusztig

conjecture.

Beilinson and Bernstein in [4] studied the DλG/B-module for not necessarily antidominant λ.

In this case the functor Γ is not exact. But they proved that the localization theorem still holds

for regular λ if we consider derived categories [4, §13. Corollary].

Backelin and Kremnizer studied the case of non-regular λ and established a localization theorem

[2] using the relative enveloping algebra of Borho and Brylinski [11].

An analogue of the localization theorem still holds for the partial flag variety G/PI , where

PI is a parabolic subgroup of G which contains B corresponding to I ⊂ Π. Isomorphism

classes of TDO’s on the partial flag variety G/PI are parametrized by (h/hI)
∗, where hI is the

subalgebra generated by the coroots α̌, α ∈ I. For partial flag varieties the homomorphism

ψλI : U(g) → Γ(G/PI ,DλG/PI ) is not always a surjection. For a regular and antidominant weight

λ ∈ (h/hI)
∗ ⊂ h∗, the following result is known. The homomorphism ψλI is surjective and the

functor Γ : DλG/PI -mod → Γ(G/PI ,DλG/PI )-mod is an equivalence of categories. This theorem

is stated in [3] and a proof is found in [8, Theorem 6.3]. In Proposition 51 we show that this

theorem still holds for any regular weight λ ∈ (h/hI)
∗ if we consider derived categories. Bien used

the localization theorem for dominant weight on partial flag varieties to study discrete spectrum

of the semisimple symmetric space. Kitchen studied the relation of the global section functor on

G/B and that on G/PI under the pullback along the quotient map G/B → G/PI and proved that

the functor Γ commutes with the pullback [23, Theorem 5.1]. She used this result to study the

global sectons of standard twisted D-modules on partial flag varieties.

Beilinson and Bernstein defined an intertwining functor for full flag varieties G/B in [4, §11].

The intertwining functors are defined as integral transforms of twisted D-modules along the G-

orbit under the diagonal G-action on G/B×G/B. Thus intertwining functors are parametrized by

elements w ∈W of the Weyl group and changes λ by the action of the Weyl group w(λ−ρ)+ρ, in

a way that Γ(G/B,DλG/B) are unchanged. Beilinson and Bernstein proved that the intertwining
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functors are equivalences of derived categories. They used intertwining functors to prove the

Casselman’s submodule theorem [4, Theorem 1]. Miličić [28] studied the property of intertwining

functors and proved that an intertwining functor in one direction commutes with the derived

functor of the global section functor. In this paper we generalize this result to partial flag varieties

(Main Theorem 2). This is one of the main results of this paper. The result by Miličić is used

to give a classification of irreducible admissible (g,K)-modules. Kashiwara and Tanisaki [21]

studied the case of affine flag varieties. They showed that intertwining functors are equivalences

of categories and that an intertwining functor in one direction commutes with the derived functor

RΓ. They used these results to prove the Kazhdan-Lusztig conjecture for affine flag varieties.

Marastoni studied the Radon transform of (non-twisted) D-modules on Grassmannian varieties

[25, Theorem 1] and general partial flag varieties [26, Theorem 1.1] in the case intertwining functor

is given by the open orbit in G/P ×G/P op, where P op is the opposite of P in G. We generalize

his result to intertwining functors given by more general orbits (Main Theorem 1). This is also

one of the main results of this paper.

Intertwining functors are studied from different perspectives. We mention some of related

results. D’Agnolo and Schapira [15] established general theory of integral transform of D-modules

along a correspondence. In [16] they applied their theory for the n-dimensional projective space P
and the dual projective space P∗ with the correspondence given by the closed orbit of the product

P× P∗ under the diagonal action of the general linear group GL(n+ 1). Marastoni and Tanisaki

[27] treated the Radon transform for two partial flag varieties when the Radon transform is given

by the closed G-orbit. They studied how weakly equivariant D-modules behave under the Radon

transform.

Yun [30] studied integral transforms of perverse sheaves which are constructible along fixed

stratifications. If the stratifications on both sides satisfies some good properties with respect to

the correspondence, he proved that the Radon transform with respect to the correspondence is an

equivalence of derived categories and that the Radon transform sends tilting objects to projective

objects. The stratifications of G/P and G/P op with respect to B-orbits and the open G-orbit of

G/P ×G/P op satisfy the assumptions of Yun’s theorem and he obtained a category equivalence.

This equivalence is a special case of Marastoni’s result in the sense that the categories of sheaves

constructible along these strata are the category of D-modules that are smooth along B-orbits

by the Riemann-Hilbert correspondence. The method of Yun has an advantage that it allows to

calculate the weights of mixed perverse sheaves. Yun’s theorem is also applicable to the Radon

transform between an affine flag variety and its opposite thick flag variety.

Arkhipov and Gaitsgory [1] studied the intertwining operators for the category of twisted D-

modules on an affine flag variety and its opposite thick affine flag variety using D-modules on the

moduli stack of principal G-bundles on P1 with reductions to the Borel subgroup at 0 and ∞,

which can be regarded as the quotient stack G\(G/I ×G/Iop) for the algebraic loop group.

Cautis, Dodd and Kamnitzer [14] constructed categorical sl2 action on⊕
0≤i≤n

Db(DGr(i,n),h-mod),

the direct sum of derived categories of filtered D-modules on Grassmannian varieties. They showed
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that the resulting equivalence of category Db(DGr(i,n),h-mod) ∼= Db(DGr(n−i,n),h-mod) is given by

the Radon transform along the open GL(n)-orbit of the product.

Let us now explain the results in this paper.

Let I and J be subsets of the set of simple roots Π of G. We have corresponding parabolic

subgroups PI and PJ of G. The G-orbits of G/PJ × G/PI are parametrized by double cosets in

WI\W/WJ of the Weyl group by the parabolic subgroups WI and WJ . We denote by Ow the orbit

corresponding to w. It is possible to define an integral transform for any G-orbit on the product,

but to consider twisted D-modules we restrict to the case of w for which the projections from Ow
to G/PI and G/PJ are affine space fibrations, i.e., w for which wJ = I holds (Condition (∗)).

We define the intertwining functors Rw,µ+ and Rw,µ! for w ∈W and µ ∈ X∗(PI) by first pulling

back the twisted D-modules fromG/PI to Ow, then tensoring by the invertible sheaf Lµ⊗det(Θpw1
),

and then pushing it forward to G/PJ (Definition 41). Here det Θpw1
is the determinant invertible

sheaf of relative tangent sheaf of the projection pw1 : Ow → G/PJ and Lµ the G-equivariant

invertible sheaf associated to µ. The intertwining functors Rw,µ+ and Rw,µ! send Db(DλG/PI -mod)

toDb(Dw
−1(λ−ρ)+ρ+w−1µ

G/PJ
-mod). The first main result of this paper is that the intertwining functors

for these w give equivalences of derived categories.

Theorem 1 (Theorem 45).

The functors Rw,µ+ and Rw
−1,−w−1µ

! are mutually inverse equivalences.

If we set λ = 0, µ = ρ − wρ and w to be the minimal coset representative of longest element

of W , this theorem specializes to the result of Marastoni [26, Theorem 1.1].

Next we consider the compatibility of the intertwining functor for µ = 0 and the global section

functors. We denote by Rw+ and Rw! the intertwining functors for µ = 0.

We denote by RΓλI the composition of the derived functor of taking global section and the

pullback along Uλ
I := U(g)/Ker(ψλI ) → Γ(G/PI ,DλG/PI ). We have natural morphisms of functors

Iw+ : RΓλI → RΓw
−1∗λ

J ◦ Rw+ and Iw! : RΓλI ◦ Rw! → RΓw
−1∗λ

J (Proposition 52). We give a sufficient

condition for Iw+ , Iw! to be isomorphisms. We need some notation. We define v[α, I] ∈ W for

α ∈ Π \ I by v[α, I] = w
I∪{α}
0 wI0 , where wI0 is the longest element of WI . Take α1, . . . , αr in

Proposition 25 and let I0 = I = v[α1, I1]I1, I1 = v[α2, I2]I2, . . . , Ir−1 = v[αr, Ir]Ir, Ir = J . We

define the (scalar) generalized Verma module by Mg
pI (µ) := U(g) ⊗U(pI) Cµ for a character µ of

pI . For K1 ⊂ K2 ⊂ Π, we denote by lK1 the Levi subalgebra of g corresponding to K1 containing

h and by pK2

K1
the parabolic subalgebra lK2

∩ pK1
of lK2

.

The second main result of this paper is the following.

Theorem 2 (Theorem 54). Let λ0 = λ ∈ (h/hI)
∗ and λi := v[αi, Ii]

−1 ∗ λi−1. Assume that

λ is regular and for each i the generalized Verma module M
lIi∪{αi}

p
Ii∪{αi}
Ii

(v[αi, Ii]
−1λi−1) of the Levi

subalgebra is irreducible. Then the morphisms Iw+ : RΓλI → RΓw
−1∗λ

J ◦ Rw+ and Iw! : RΓλI ◦ Rw! →
RΓw

−1∗λ
J are isomorphisms of functors.

The generalized Verma modules appearing in this theorem are tensor products of generalized

Verma modules induced from a maximal parabolic subalgebra and a one dimensional representa-

tion. It is irreducible if v[αi, Ii]
−1λi−1 is antidominant. A criterion of the irreducibility of is given
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by Jantzen [18]. He, Kubo and Zierau gave a complete list of reducible parameters for scalar gen-

eralized Verma modules associated to maximal parabolic subalgebras of simple Lie algebras [17].

For complete flag varieties G/B, this theorem coincides with the result of Miličić [28, Theorem

L.3.23]

Let us briefly describe the outline of this paper. In subsection 2.2 we recall the general prop-

erties of sheaves of twisted differential operators on smooth algebraic varieties. In subsection 2.3

we recall basic facts on partial flag varieties and representations of semisimple Lie algebras which

are needed in this paper. In section 3 we define intertwining functors (Radon transforms) for a

class of orbits in product of partial flag varieties and prove that they are equivalences of derived

categories (Theorem 45). In section 4 we study the compatibility of global section functors and

intertwining functors. We prove a localization theorem (Proposition 51) and use this to prove the

compatibility of global section functors and intertwining functors from dominant to antidominant

direction (Theorem 54).

The author wishes to express his gratitude to his advisor Hisayosi Matumoto for introducing

this subject to the author. The author also thank him for his encouragement and advice and

indicating the proof of Lemma 48. The author thank Syu Kato and Yoichi Mieda for reading the

draft and pointing out many typos and mistakes. This work is partially supported by Grant-in-Aid

for JSPS Fellows (No. 12J09386).

2 Preliminary

2.1 Notation

We always work over the field C of complex numbers.

For a ring A, we denote by A-mod the category of left A-modules. For a morphism of rings

f : A→ B, we denote by f∗ the pullback functor B-mod→ A-mod.

For algebraic groups G, B, PI , . . . , we denote their Lie algebras by g, b, pI , . . . . We denote

by Rep(G) the category of rational representations of G. We denote by X∗(G) the group of

characters of G. For a character λ of G or g, we denote by Cλ the corresponding one dimensional

representation.

We always denote by id the identity functor on a category. For an abelian category C, we

denote by Db(C) the bounded derived category of C and by D−(C) the derived category consisting

of bounded above complexes.

Let f be a continuous map between topological spaces. We denote by f−1 the pullback of

sheaves and by f∗ the pushforward of sheaves. We denote by f! the proper pushforward. For a

sheaf F on a topological space X, we denote by Γ(F) the set of all sections of F on X instead of

Γ(X,F).

Let f : X → Y be a morphism of algebraic varieties X and Y . We denote by f∗ the pull-

back which is defined by f∗(M) = OX ⊗f−1(OY ) f
−1(M) for an OY -module M and by f∗ the

pushforward.

We denote by {?} the reduced algebraic variety consisting of only one point and by ? its point.

For an algebraic variety X, we denote by aX the unique morphism from X to {?}. For a locally
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free OX -modules V, we denote by det(V) the determinant invertible sheaf. For a smooth algebraic

variety X, ΘX is its tangent sheaf, ΩX is its cotangent sheaf and T ∗X is the cotangent bundle.

Let f : X → Y be a morphism of smooth algebraic varieties. Then we denote by ωf the relative

canonical sheaf of f . Let f : X → Y be a smooth surjective morphism of smooth algebraic varieties

X and Y . We denote by Θf the relative tangent sheaf and by Ωf the relative cotangent sheaf.

2.2 Sheaves of twisted differential operators

In this subsection we recall the definition and properties of sheaves of twisted differential operators

following Kashiwara and Tanisaki [20, 21]. Note that in [21] they use right modules while we use

left modules and our notation is different from theirs.

2.2.1 Definition of sheaves of twisted differential operators

Let X be a smooth algebraic variety. We denote by OX the sheaf of regular functions on X and

by DX the sheaf of differential operators on X.

Definition 3. A sheaf of rings A on X with a homomorphism ι : OX → A and an increasing

filtration (FmA)m∈N of A by coherent OX -submodules are called a sheaf of twisted differential

operators (TDO) on X if following properties hold.

1) The homomorphism ι induces an isomorphism OX ∼= F 0A.

2) Fm1A · Fm2A ⊂ Fm1+m2A
3) [Fm1A, Fm2A] ⊂ Fm1+m2−1A

The property 3) allows us to define a homomorphism of OX -modules σ : gr1
F A → ΘX by defining

gr1
FA 3 ā 7→ (f 7→ [a, f ]) ∈ ΘX .

4) σ is an isomorphism.

5) Sym•ΘX → gr•F A induced by σ−1 is an isomorphism.

For a coherent A-module, we define its characteristic variety Ch(M) which is a closed conic

subset of the cotangent space T ∗X using good filtrations in the same way for D-modules. A

coherent A-module is called holonomic if its characteristic variety is a Lagrangian subvariety of

T ∗X. We denote by A-mod the category of quasi-coherent A-modules, by Db(A-mod) its bounded

derived category and by Db
hol(A-mod) full subcategory consisting of complexes whose cohomology

in each degree is holonomic.

There is a natural bijection between the set of the isomorphism classes of TDO’s and the vector

space H2(X,σ≥1Ω•X) [20, Theorem 2.6.1], where Ω•X is the de Rham complex of X and σ≥1 is the

brutal truncation, i.e. replacing the degree ≤ 0 term of the complex by 0. Denote the cohomology

class corresponding to A under this bijection by c(A) ∈ H2(X,σ≥1Ω•X).

For each x ∈ X, we have anA-moduleA⊗OXCx, where Cx is the skyscraper sheaf supported on

x with 1-dimensional fiber, which has a canonical structure of an OX -module. This is a holonomic

A-module. We denote this A-module by A(x).
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2.2.2 Operations on sheaves of twisted differential operators and on their modules

Let X and Y be a smooth algebraic variety, f : X → Y a morphism, A, A1, A2 be TDO’s on

Y , and L be an invertible sheaf on Y . We denote by c1(L) ∈ H2(Y ;C) the first Chern class

of L defined below. We have a homomorphism of abelian groups dlog : O∗X → Ω1
X define by

f → f−1df . The homomorphism dlog induces a homomorphism H1(X,O∗X) → H1(X,Ω1
X). We

define c1(L) as the image of the class of L in H1(X,O∗X) under the composition of dlog with

H1(X,Ω1
X)→ H2(X,σ≥1Ω•X)

First we recall operations on TDO’s.

Definition 4. We denote by Aop the opposite ring of A.

We have c(Aop) = −c(A) + c1(ΩY ) ([20, §2.7.1]).

Definition 5 (after the first Remark 2.6.5 [20]).

Let a be a complex number. There is a TDO ALa with the property c(ALa) = c(A) + ac1(L)

When a is an integer, then DLa is the sheaf of differential operators Endfin
C (La) acting on La

defined below.

Let R be a sheaf of rings on Y and M be a left OY - right R-module. We define a sheaf of

filtered rings Endfin
R (M) as follows. First we define F 0Endfin

R (M) to be the image of homomorphism

OX → EndR(M). We define FnEndfin
R (M) for n ∈ N recursively by FnEndfin

R (M) := {r ∈
FnEndfin

R (M) | [OX , r] ⊂ Fn−1EndfinR (M)}. Finally we define a sheaf of rings Endfin
R (M) by⋃

i∈N F
iEndfin

R (M).

Definition 6. We define a TDO A1#A2 by Endfin
A1⊗CA2

(A1 ⊗OY A2), where the tensor product

is taken using left OX -module structures of A1 and A2.

We have c(A1#A2) = c(A1) + c(A2) ([21, Lemma 1.1.1]).

Definition 7. We define a TDO A−# by (Aop)Ω−1
Y .

We have an isomorphism of TDO’s A#A−# ∼= DX .

Definition 8. We define a TDO f#A on X by Endfin
f−1(A)(f

∗(A))

Proposition 9 ([21, Lemma 1.1.5]). We have following isomorphisms of TDO’s on X.

1. f#DY ∼= DX

2. f#(A1#A2) ∼= f#A1#f#A2

3. f#ALa ∼= (f#A)(f∗L)a

Next we recall operations on modules over TDO’s.

Definition 10.

(1) Let N1 ∈ Db
hol(A1-mod) and N2 ∈ Db

hol(A2-mod). We say that N1 and N2 are non-

characteristic if Ch(N1) ∩ Ch(N2) ⊂ T ∗Y Y .

(2) Let N ∈ Db(A-mod). We say that N is non-characteristic with respect to f if the inclusion

(X ×Y Ch(N )) ∩ T ∗XY ⊂ X ×Y T ∗Y Y holds, where T ∗XY := Ker(X ×Y T ∗Y → T ∗X).
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Proposition 11. The tensor product ⊗OY induces a functor

#
⊗ : Db(A1-mod)×Db(A2-mod)→ Db(A1#A2-mod).

This functor sends complexes with holonomic cohomologies to that with with holonomic cohomolo-

gies.

Definition 12. We define the duality functor D : Db
hol(A-mod) → Db

hol(A−#-mod) by assigning

M 7→ RHomA(M,A)⊗ ω−1
Y [dimY ].

The following propositions state basic properties of the duality functor.

Proposition 13 ([21, Proposition 1.2.1]).

We have an isomorphism of functors D ◦ D ∼= id on Db
hol(A-mod).

Proposition 14 ([21, Proposition 1.2.2]).

Assume that N1 ∈ Db
hol(A1-mod) and N2 ∈ Db

hol(A2-mod) are non-characteristic. Then we have

an isomorphism

D(N1)
#
⊗D(N2) ∼= D(N1

#
⊗N2).

Definition 15. (Pullback)

We define the functor f ! : Db(A-mod)→ Db(f#A-mod) by

M 7→ f !M := f∗(A)⊗L
f−1(A) f

−1(M).

This functor preserves holonomicity.

We define the functor f+ : Db
hol(A-mod)→ Db

hol(f
#A-mod) by f+ := D ◦ f ! ◦ D.

Note that we have a canonical isomorphism f !M∼= f∗M of OX -modules.

Definition 16. (Pushforward)

We define the functor f+ : Db(f#A-mod)→ Db(A-mod) by

M 7→ Rf∗((f !(Aop)
#
⊗ ωf )⊗L

f−1A f
−1(M)).

This functor preserves holonomicity.

We define the functor f+ : Db
hol(f

#A-mod)→ Db
hol(A-mod) by f+ := D ◦ f! ◦ D.

Proposition 17 ([21, Proposition 1.2.4]).

(i) Let N ∈ Db(A-mod) be non-characteristic with respect to f . Then we have f+N ∼= f !N .

The non-characteristic assumption holds automatically if f is smooth.

(ii) There is a morphism of functors f! → f+.

For M ∈ Db
hol(f

#A) such that Supp(M) → Y is projective, the morphism of functor induces

an isomorphism f!(M) ∼= f+(M).

If f is projective then the assumption holds automatically.

8



Proposition 18 (Monoidal property and projection formula [21, Proposition 1.2.5]).

(i) For N1 ∈ Db
hol(A1-mod),N2 ∈ Db

hol(A2-mod), we have an isomorphism f !(N1

#
⊗N2) ∼=

f !(N1)
#
⊗ f !(N2).

(ii) ForM∈ Db
hol(f

#A1-mod) and N ∈ Db
hol(A2-mod), we have f+(M

#
⊗ f !(N )) ∼= (f+(M)

#
⊗N ).

Proposition 19 (Base change isomorphism [21, Proposition 1.2.6]).

Let

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

be a cartesian diagram of smooth varieties. Then forM∈ Db
hol(g

#A-mod), we have isomorphisms

g′!(f
′+(M)) ∼= f+(g!(M)), g′+(f ′!(M)) ∼= f !(g+(M)).

2.2.3 Sheaves of twisted differential operators on homogeneous spaces

Let G be an algebraic group and X be a smooth G-variety. We denote by µ the action G×X → X

and by p the projection G × X → X. Recall that a quasi-coherent OX -module F with an

isomorphism β : µ∗F → p∗F is called G-equivariant if β satisfies the compatibility conditions

(4.4.2) and (4.4.3) of [20]. We denote by QCohG(X) the category of G-equivariant quasi-coherent

OX -modules. A TDO A with an isomorphism of TDO α : µ#A → p#A is called G-equivariant

TDO if the compatibility conditions (4.6.1) and (4.6.2) of [20] are satisfied. Let A be a G-

equivariant TDO. An A-moduleM which is a G-equivariant quasi-coherent OX -module with β is

weakly G-equivariant if β is a homomorphism of p∗A-modules.

Now let X be a homogeneous G-variety. The action gives rise to a homomorphism of Lie

algebras g → Γ(ΘX). Fix a point x ∈ X. Let Gx be the stabilizer of x in G and gx be its Lie

algebra. For a quasi-coherent sheaf F on X, F(x) denotes its fiber over x. We have the following

equivalence of categories.

Proposition 20 ([20, Theorem 4.8.1]). The functor QCohG(X) → Rep(Gx) which sends F ∈
QCohG(X) to F(x) is an equivalence of abelian categories.

We denote the inverse of this equivalence by (•)X . The invertible sheaf on X associated to a

character λ of Gx by this equivalence is denoted by LλX .

The morphism of Lie algebras g → Γ(ThetaX) given by the action of G on X induces gX a

structure of a Lie algebroid (for the definition of Lie algebroids, see [5, §1.2]). We denote by U(gX)

the enveloping algebra of the Lie algebroid gX . The kernel of the structure map gX → Γ(ΘX) is

denoted by IX . We have an isomorphism IX ∼= (gx)X as Lie algebroids. Let λ ∈ (g∗x)Gx be a Gx-

invariant functional. We note that if Gx is connected then (g∗x)Gx is isomorphic to (gx/[gx, gx])∗,

the set of all characters of the Lie algebra gx. The character λ induces a character λX : IX → OX .

Definition 21. We define a sheaf of rings by DλX := U(gX)/〈A− λX(A) | A ∈ IX〉.
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This is a G-equivariant TDO. We call DλX a G-equivariant TDO associated to λ. If λ comes

from a character λ of Gx, then we have an identity c(DλX) = c1(LλX) and hence an isomorphism

of TDO’s DλX ∼= D
LλX
X .

This construction is compatible with the pullback along a morphism of homogeneous spaces.

Proposition 22 ([20, Proposition 4.14.1]). Let ι : H1 ↪→ H2 be closed subgroups of G. Let

p : G/H1 → G/H2 be the quotient morphism and λ ∈ (h∗2)H2 . Then we have an isomorphism of

G-equivariant TDO’s p#DλG/H2

∼= Ddι
∗λ

G/H1
.

In the following we suppress dι∗ from notation and write like DλG/H1

∼= p#DλG/H2
.

Fix λ ∈ (g∗x)Gx . A twisted (g, Gx)-module M with the twist λ is a g-module with a Gx-module

structure on Cλ ⊗M satisfying (4.10.1) and (4.10.2) of [20]. We have the following equivalence of

categories.

Proposition 23 ([20, Theorem 4.10.2 (1)]). The functor in Proposition 20 induces an equivalence

between the category of weakly equivariant DλX-modules and the category of twisted (g, Gx)-modules

with the twist λ.

2.3 Partial flag varieties and TDO’s on partial flag varieties

The notation in this section is used throughout this paper.

2.3.1 Partial flag varieties

Let G be a connected reductive algebraic group over C, B be its Borel subgroup, U the unipotent

radical of B and H be a maximal torus in B. We denote by W the Weyl group NG(H)/H, by ∆

the set of roots of g := Lie G, by ∆+ the set of positive roots determined by B and by Π the set

of simple roots. We denote by ` the length function of W .

To each subset I ⊂ Π, one associates a parabolic subgroup PI of G in the way that P∅ = B

holds, its Levi subgroup LI containing H, the unipotent radical UI of PI , HI the subgroup of

H generated by the image of α : Gm → H for all α ∈ I, ∆I the set of roots in lI and the

parabolic subgroup WI of W . We denote by wI0 the longest element of WI . We denote by P̄I the

opposite parabolic of PI and by ŪI its unipotent radical. Let I ⊂ J ⊂ Π. We denote by P JI the

parabolic subgroup of LJ defined by LJ ∩PI . For α ∈ Π we denote by $α the fundamental weight

corresponding to α.

We always identify (h/hI)
∗ with a subspace of h∗ via the natural inclusion and identifyX∗(B) ∼=

X∗(H) with a subgroup of h∗ and X∗(PI) ∼= X∗(H/HI) with a subgroup of (h/hI)
∗ via the

differential.

The partial flag variety G/PI decomposes into the finite union of B-orbits (Bruhat decomposi-

tion): we have G/PI =
∐
w∈W/WI

BwPI . We denote the Bruhat cell BwPI by Cw. Each cell Cw
is an affine space with dimension the length of the minimal coset representative of w. We denote

by iw the inclusion Cw ↪→ G/PI . Since G/PI is projective and has the Bruhat decomposition, by

the Hodge theory we have following isomorphisms [7, Theorem 5.5]

H2(G/PI , σ
≥1Ω•G/PI )

∼= H2(G/PI ;C) ∼= (pI/[pI , pI ])
∗ ∼= (h/hI)

∗.
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In the following we identify (h/hI)
∗ with (pI/[pI , pI ])

∗. Note that the equality c(DλG/PI ) =

c1(LλG/PI ) holds for any λ ∈ X∗(PI).

Remark 24 ([12, Theorem V]). TheG-module Γ(G/PI ,Lλ) is isomorphic to the finite dimensional

irreducible G-module of lowest weight λ or zero.

Let I, J be subsets of Π. The G-orbits of G/PJ×G/PI are parametrized by the set WI\W/WJ .

The correspondence is given by assigning to w ∈ WI\W/WJ the orbit Ow := G(w, e) ⊂ G/PJ ×
G/PI . Let pw1 : Ow → G/PJ and pw2 : Ow → G/PI be restrictions of the first and the second

projections from G/PJ ×G/PI and jw : Ow → G/PJ ×G/PI be the inclusion. The G-orbit Ow is

isomorphic to G/(PI∩wPJw−1) as a G-variety. Under this isomorphism, pw1 : G/(PI∩wPJw−1)→
G/PI is the quotient morphism and pw2 : G/(PI ∩ wPJw−1)→ G/PJ is given by g 7→ gw.

In this paper we always consider w ∈W satisfying the following condition (∗).

There exist I, J ⊂ Π such that wJ = I holds. (∗)

For such w we have wLJw
−1 = LI and the morphism pw1 and pw2 are affine space fibrations

with the fibers over identity cosets isomorphic to PJ/(w
−1PIw ∩ PJ) ∼= UJ/(w

−1UIw ∩ UJ) and

PI/(PI ∩wPJw−1) ∼= UI/(UI ∩wUJw−1) which are of dimension `(w). From this fact we see that

there is an isomorphism det(Θpw1
) ∼= pw∗2 L

wρ−ρ
G/PI

.

Let w ∈W satisfy Condition (∗). For such w we have a “reduced expression” in the following

sense. To each α ∈ Π \ I one associates v[α, I] = w
I∪{α}
0 wI0 ∈W .

Proposition 25 ([13, Proposition 2.3]). Let I, J ⊂ Π and w ∈ W satisfy I = wJ . Then there

exist α1, . . . αr ∈ Π satisfying following conditions.

1. I = v[α1, I1]I1, I1 = v[α2, I2]I2, . . . , Ir−1 = v[αr, Ir]Ir, Ir = J

2. αi /∈ Ii

3. w = v[α1, I1] · · · v[αr, Ir]

4. `(w) =
∑

1≤i≤r

`(v[αi, Ii])

The element v[α, I] ∈W may be thought of as a simple reflection in the parabolic case.

2.3.2 Representations of semisimple Lie algebras

Let I ⊂ Π. We denote by ρ the half sum of positive roots of g, by ρI the ρ for lI , by ρnI the

difference ρ− ρI .

Definition 26. A weight λ ∈ h∗ is called regular if 〈λ − ρ, α̌〉 6= 0 holds for any root α ∈ ∆. A

weight λ ∈ h∗ is called antidominant if 〈λ− ρ, α̌〉 /∈ Z≥1 for all α ∈ ∆+.

Note that the definition of regularity is different from usual one because we use ∗-action defined

in Definition 39.
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We define the (scalar) generalized Verma module of highest weight λ ∈ (h/hI)
∗ by Mg

pI (λ) :=

U(g) ⊗U(pI) Cλ. We denote by IpI (λ) the annihilator of the generalized Verma module Mg
pI (λ).

We denote by Uλ
I the quotient U(g)/IpI (λ − 2ρnI ). If I is empty, we denote by Uλ the quotient

U(g)/Ib(λ− 2ρ). We use the following result of Jantzen.

Proposition 27 ([19, Corollar 15.27]). Assume that J = w−1I ⊂ Π holds. For any λ ∈ (h/hI)
∗,

the ideals IpI (λ) and IpJ (w−1(λ+ ρ)− ρ) coincide.

Let V1, V2 be g-modules. We define a g-bimodule L(V1, V2) to be the g-subbimodule of

HomC(V1, V2) consisting of all g-finite elements under the diagonal g-action.

The homomorphism U(g)→ EndC(Mg
pI (λ− 2ρnI )) factors through an homomorphism U(g)→

L(Mg
pI (λ − 2ρnI ),M

g
pI (λ − 2ρnI )). This homomorphism factors through an injection aλ : Uλ

I →
L(Mg

pI (λ− 2ρnI ),M
g
pI (λ− 2ρnI )). In general aλ is not surjective. An example of nonsurjectivity

is given in [29, §8.2]. For an “antidominant regular” weight λ, it is known that aλ is surjective.

Proposition 28 ([19, Corollar 15.23]). If λ ∈ (h/hI)
∗ satisfies 〈λ+ρ, β̌〉 /∈ Z≥1 for all β ∈ ∆+\∆I ,

then the homomorphism aλ is surjective.

2.3.3 Sheaves of twisted differential operators on partial flag varieties

By the isomorphism H2(G/PI , σ
≥1Ω•G/PI )

∼= (pI/[pI , pI ])
∗, we see that every TDO on partial flag

varieties is a G-equivariant TDO.

We have a homomorphism of Lie algebras g → Γ(DλG/PI ) and an induced homomorphism of

algebras ψλ : U(g)→ Γ(DλG/PI ).
We first recall the fundamental result of Beilinson and Bernstein. Let λ ∈ h∗ be antidominant.

Proposition 29 ([3, Lemme]). The homomorphism ψλ induces an isomorphism Uλ → Γ(DλG/B).

Theorem 30 ([3, Théorème principal]). Assume furthermore that λ is regular. The functor

Γ : DλG/B-mod→ Uλ-mod which associates to a DλG/B-module its global sections is an equivalence

of categories.

This is the famous Beilinson-Bernstein localization theorem. An inverse to the functor Γ is

described as follows. Let M be a Uλ-module. To each open subset V of G/B, we associate

Γ(V,DλG/B)⊗Uλ M . The sheafification of this presheaf is a DλG/B-module ∆λ(M). This construc-

tion gives a functor ∆λ : Uλ-mod→ DλG/B-mod.

If λ is not antidominant, the exactness of the functor Γ fails. In this case for regular λ we have

the following equivalence between derived categories due to Beilinson and Bernstein.

Theorem 31 ([4, §13. Corollary]). Assume that λ ∈ h∗ is regular. The functor of taking global

sections RΓ : Db(DλG/B-mod)→ Db(Uλ-mod) is an equivalence of categories. Its inverse is given

by L∆λ.

We now turn to the case of partial flag varieties. Let I be a subset of Π and λ ∈ (h/hI)
∗. We first

consider the general property of the global section functor. Taking global sections induces a functor

Γ : DλG/PI -mod→ Γ(DλG/PI )-mod. Let ∆I be the localization functor defined by DλG/PI ⊗Γ(Dλ
G/PI

)
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(•). The localization functor ∆I is left adjoint to Γ, i.e. we have a functorial isomorphism

HomDλ
G/PI

(∆I(N),M) ∼= HomΓ(Dλ
G/PI

)(N,Γ(M)) for N ∈ Γ(DλG/PI )-mod and M ∈ DλG/PI -mod.

We denote its counit and unit by ε : ∆I ◦Γ→ id and η : id→ Γ ◦∆I . We use the same symbols ε

and η for unit and counit for derived functors.

The following theorem is stated in [3]. A proof is explained in [8, Theorem 6.3].

Proposition 32. Assume that λ is regular and antidominant. Then the functor Γ : DλG/PI -mod→
Γ(DλG/PI )-mod is an equivalence of categories.

Next we recall properties of TDO DλG/PI . The higher cohomology of TDO itself vanishes.

Proposition 33 ([10, Lemma 1.4]). For any λ ∈ (h/hI)
∗ and for any i > 0, we have an isomor-

phism Hi(G/PI ,DλG/PI )
∼= Hi(T ∗G/PI ,OT∗G/PI ) ∼= 0.

The identity coset ePI ∈ G/PI is the unique closed B-orbit. The fiber of DλG/PI at ePI is an

irreducible DλG/PI -module supported on the point ePI . The vector space of sections of DλG/PI (ePI)
has a structure of a g-module through the homomorphism ψλ : U(g)→ Γ(DλG/PI ). This g-module

is isomorphic to a generalized Verma module.

Proposition 34 ([29, Proposition 4]). The g-module Γ(DλG/PI (ePI)) is isomorphic to the gener-

alized Verma module Mg
pI (λ− 2ρnI ).

Note that DλG/PI (ePI) is irreducible as a DλG/PI -module, but it is not necessarily irreducible

as a g-module, even if ψλ is surjective. Using this proposition, the kernel of ψλ is described as

follows.

Proposition 35 ([29, Proposition 14]). The kernel of ψλ coincides with IpI (λ− 2ρnI ).

We denote the induced homomorphism Uλ
I → Γ(DλG/PI ) also by ψλ. We have a natural

homomorphism of algebras Γ(DλG/PI ) → EndCΓ(DλG/PI (ePI)). By Proposition 34 we obtain a

homomorphism of algebras Γ(DλG/PI )→ EndC(Mg
pI (λ−2ρnI )), which is g-equivariant with respect

to the adjoint g-action on both sides. Since the adjoint g-action on Γ(DλG/PI ) is locally finite, this

homomorphism factors through the αλ : Γ(DλG/PI )→ L(Mg
pI (λ− 2ρnI ),M

g
pI (λ− 2ρnI )).

Soergel proved that this homomorphism is always an isomorphism.

Proposition 36 ([29, Corollar 7]). The homomorphism αλ is an isomorphism.

By the construction we have aλ = ψλ ◦ αλ. This equality and the above proposition indicate

that aλ is an isomorphism if and only if ψλ is an isomorphism. Thus for λ ∈ (h/hI)
∗ satisfying

the assumption of Proposition 28, ψλ is an isomorphism. For some good parabolic subgroups, a

stronger statement holds.

Proposition 37 ([10]). If the moment map T ∗G/PI → g∗ is birational onto the image and the

image is normal, then αλ is an isomorphsim.
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As a special case of this proposition, we have that ψλ is isomorphism for full flag varieties. In

Lemma 48, we prove that if λ ∈ (h/hI)
∗ is regular the morphism ψλ is an isomorphism.

Finally we state a result due to Kitchen, which states that taking pullbacks to flag variety

is compatible with global sections. We denote by pI the quotient morphism G/B → G/PI . We

have a pullback functor p!
I : Db(DλG/B-mod)→ Db(DλG/PI -mod). Since αλ : Uλ → Γ(DλG/B) is an

isomorphism, the homomorphism ψλ induces a homomorphism qI : Γ(DλG/B)→ Γ(DλG/PI ).

Proposition 38 ([23, Corollary 5.2]). We have an isomorphism of functors RΓ(G/B,−) ◦ p!
I
∼=

q∗I ◦ RΓ(G/PI ,−) : Db(DλG/PI -mod)→ Db(Γ(DλG/B)-mod).

Db(DλG/PI -mod)
RΓ(G/PI ,−) //

p!I
��

�

Db(Γ(DλG/PI )-mod)

q∗I

��
Db(DλG/B-mod)

RΓ(G/B,−)
// Db(Γ(DλG/B)-mod)

3 Radon transforms for partial flag varieties

We define an affine action of the Weyl group on h∗, which appears many times in this paper.

Definition 39. For w ∈W and λ ∈ h∗, we define w ∗ λ by w ∗ λ := w(λ− ρ) + ρ.

Note that this action differs from the dot action which is defined in [19, §2.3].

Let I ⊂ Π. In this paper we consider only w ∈ W satisfying I = wJ for some J ⊂ Π. In this

case pw1 and pw2 are affine space fibrations. This assumption has a following drawback.

Lemma 40. Let I, J ⊂ Π and w ∈W satisfy wJ = I.

1. The pullback pw∗1 : H∗(G/PJ ,C) → H∗(Ow,C) and pw∗2 : H∗(G/PI ,C) → H∗(Ow,C) are

isomorphisms.

2. Under the identification H2(G/PI ,C) ∼= (h/hI)
∗ and H2(G/PJ ,C) ∼= (h/hJ)∗, the linear

map (pw∗1 )−1 ◦ pw∗2 coincides with w−1.

Proof. 1. This follows from the fact that pw1 and pw2 are affine space fibration and hence have

contractible fibers.

2. Pick λ ∈ X∗(PJ) ⊂ (h/hJ)∗. Then we have an isomorphism pw∗1 LλG/PJ
∼= LwλOw

∼= pw∗2 LwλG/PI .
Since (h/hJ)∗ is generated by X∗(PJ) as a C-vector space, we have an equality (pw∗1 )−1 ◦ pw∗2 =

w−1.

We consider integral transforms arising from G-orbits Ow of G/PJ × G/PI for w satisfying

Condition (∗).
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Definition 41. (Intertwining functor or Radon transform)

For each w ∈ W satisfying wJ = I and each µ ∈ X∗(PI), we define the intertwining functor or

the Radon transform Rw,µ? for ? =! or + associated to w and µ by

Rw,µ? (−) := pw1?(det Θpw1

#
⊗LµOw

#
⊗ pw!

2 (−)) : Db
hol(DλG/PI -mod)→ Db

hol(D
w−1∗λ+w−1µ
G/PJ

-mod).

The functor Rw,µ! is also defined on the category Db(DλG/PI -mod). If µ = 0, we omit µ and

denote by Rw? .

The previous lemma and the isomorphism det Θpw1
∼= L−ρ+wρOw explain the twist in the codomain

of the intertwining functor.

Intertwining functors are given by kernels on the product G/PJ × G/PI . Let jw : Ow ↪→
G/PJ × G/PI be the inclusion. We have the following description of the intertwining functor

using a kernel.

Lemma 42. Let M∈ Db(DλG/PI -mod). We have the following isomorphism for ? =!, ∗.

Rw? (M) ∼= p1+(jw?(det Θp1

#
⊗LµOw)

#
⊗ p!

2(M))

Proof. This follows immediately from the projection formula (Proposition 18 (ii)).

Rw? (M) ∼= pw1?(det Θpw1

#
⊗LµOw

#
⊗ pw!

2 (M))

∼= p1+(jw?(det Θpw1

#
⊗LµOw)

#
⊗ p!

2(M))

Here jw? is a functor Db(D−ρ+wρ+µOw -mod)→ Db(p#
1 Dw

−1λ
G/PJ

#p#
2 D
−λ−ρ+wρ+µ
G/PI

-mod). Note that the

both of p1 and p2 are smooth and proper morphisms.

Definition 43. Let w ∈W and λ ∈ (h/hI)
∗. We define the kernel of the intertwining functor by

Kw,µ
? := jw?(det Θpw1

#
⊗LµOw) ∈ Db(p#

1 Dw
−1λ

G/PJ
#p#

2 D
−λ−ρ+wρ+µ
G/PI

-mod)

for ? =!, ∗.

For the composition of intertwining functors, the following holds.

Proposition 44.

Let I, J,K ⊂ Π, µ1 ∈ X∗(PI), µ2 ∈ X∗(PJ) and w1, w2 ∈ W satisfy w2K = J , w1J = I and

`(w1w2) = `(w1) + `(w2). Then for ? = + and ? =!, we have

Rw1w2,µ1+w1µ2

?
∼= Rw2,µ2

? ◦Rw1,µ1

? .
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Proof. Let q1 : Ow1w2 → Ow2 and q2 : Ow1w2 → Ow1 be natural morphisms. We have the following

diagram.

Ow1w2

q1{{
q2 ##

p
w1w2
1





p
w1w2
2

��

�Ow2

p
w2
1

{{

p
w2
2

##

Ow1

p
w1
1

{{

p
w1
2

##
G/PK G/PJ G/PI

The square is cartesian because of the equality `(w1w2) = `(w1) + `(w2).

We have det Θp
w1
1

∼= L−ρ+w1ρ
Ow1

and det Θp
w2
1

∼= L−ρ+w2ρ
Ow2

. From this we obtain

q∗1(det Θp
w2
1
⊗ Lµ2

Ow2
)⊗ q∗2(det Θp

w1
1
⊗ Lµ1

Ow1
) ∼= L−ρ+w1w2ρ+w1µ2+µ1

Ow1w2

∼= det Θp
w1w2
1

⊗ Lw1µ2+µ1

Ow1w2
,

which by base change gives an isomorphism Kw2,µ2

? ∗Kw1,µ1

?
∼= Kw1w2,µ1+w1µ2

? . This isomorphism

gives Rw1w2,µ1+w1µ2

?
∼= Rw2,µ2

? ◦Rw1,µ1

? . Here we denote by p12, p23, p13 the projection from G/PK×
G/PJ ×G/PI to the product of two of the three factors and define the convolution of kernels by

Kw2,µ2

? ∗Kw1,µ1

? := p13+(p!
12(Kw2,µ2

? )
#
⊗ p!

23(Kw1,µ1

? ))

This proposition and Proposition 25 due to Brink and Howlett allow to study the intertwining

functor by the reduction to the maximal parabolic cases.

Intertwining functors for w satisfying wJ = I is an equivalence of categories. This is one of

the main result in this paper.

Theorem 45. The intertwining functors Rw,µ+ and Rw
−1,−w−1µ

! are mutually inverse equivalences.

This theorem is a generalization of the result of Marastoni [26, Theorem 1.1].

We prove this theorem in two steps. First we prove this theorem for maximal parabolic case,

i.e., the case when set Π \ I consists of the unique element α. In this case, w satisfying Condition

(∗) is the identity of W or w = wI0w
Π
0 . We set v := wI0w

Π
0 and J := v−1I ⊂ Π. The G-orbit Ov is

open in G/PJ ×G/PI .

Lemma 46. Assume that G is a simple algebraic group and Π \ I = {α}. Let v := wI0w
Π
0 and

J := v−1I. Let λ ∈ (h/hI)
∗ and µ ∈ X∗(PI)

Then the intertwining functors Rv,µ+ and Rv
−1,−v−1µ

! are mutually inverse equivalences.

Proof. We shall prove the isomorphism of functors Rv
−1,−v−1µ

! ◦ Rv,µ+
∼= id. The isomorphism

Rv,µ+ ◦Rv
−1,−v−1µ

!
∼= id is proved similarly.

We consider following diagram. We denote by p1 and p2 (resp. p′1 and p′2, p′′1 and p′′2) the first

and second projection from G/PJ × G/PI (resp. G/PI × G/PJ , G/PI × G/PI). We denote by

p12, p23, p13 the projection from G/PI ×G/PJ ×G/PI to the product of two of three the factors.

These morphisms are all smooth and proper morphisms.
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G/PI ×G/PI

p
′′
1

��

p
′′
2

��

G/PI ×G/PJ ×G/PI

p13

OO

p12

uu

p23

))
G/PI ×G/PJ

p′1

xx

p′2

))

G/PJ ×G/PI
p1

uu

p2

&&
G/PI Ov−1

pv
−1

1oo pv
−1

2 //

jv−1

OO

G/PJ Ov
pv1oo pv2 //

jv

OO

G/PI

Using Lemma 42 the kernel which gives Rv
−1,−v−1µ

! ◦ Rv,µ+ is calculated using base change as

follows.

Rv
−1,−v−1µ

! ◦Rv,µ+ (M) ∼= p′1!(K
v−1,−v−1µ
!

#
⊗ p′!2 ◦ p1+(Kv,µ

+

#
⊗ p!

2(M))) (1)

∼= p′1!(K
v−1,−v−1µ
!

#
⊗ p12+ ◦ p!

23(Kv,µ
+

#
⊗(p2 ◦ p23)!(M))) (2)

∼= (p′1 ◦ p12)!(p
!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )

#
⊗(p2 ◦ p23)+(M)) (3)

∼= p′′1+(p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ ))

#
⊗ p′′!2 (M)) (4)

The isomorphism (2) follows from the base change isomorphism (19). The isomorphism (3) and

(4) follows from the projection formula (Proposition 18, (ii)). We interchanged ∗ and ! for smooth

and proper morphisms.

Thus we see that the composition of intertwining functors are given by the convolution

Kv−1,−v−1µ
! ∗Kv,µ

+ := p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )).

Let ∆ : G/PI → G/PI ×G/PI be the diagonal immersion. It is enough to show that there there is

an isomorphism Kv−1,−v−1µ
! ∗Kv,µ

+
∼= ∆+(OG/PI×G/PI ), since the latter kernel gives the identity

functor. To construct this isomorphism it is enough to prove the following two isomorphisms.

(Kv−1,−v−1µ
! ∗Kv,µ

+ )
∣∣∣
G/PI×G/PI\∆(G/PI)

∼= 0 (5)

∆!(Kv−1,−v−1µ
! ∗Kv,µ

+ ) ∼= OG/PI [dimG/PI ] (6)

Proof of (5)

Let x1, x2 be two distinct points of G/PI . We define two open subsets of G/PJ by U1 :=

p1(p−1
2 (x1) ∩ Ov) and U2 := p′2(p′−1

1 (x2) ∩ Ov−1) == p1(p−1
2 (x2) ∩ Ov). We denote by s1 and s2
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the closed immersion of U1 and U2 into Ov and Ov−1 , compatible with p23 ◦ x̃ and p12 ◦ x̃ and by

i1 and i2 the open immersion of U1 and U2 into G/PJ .

We consider following diagrams. We denote by x the morphism {?} → G/PI × G/PI which

sends ? to (x1, x2) and by x̃ the morphism G/PJ → G/PI ×G/PJ ×G/PI which sends y ∈ G/PJ
to (x1, y, x2).

y
_

��

G/PJ∈
aG/PJ //

x̃

��

{?} 3

x

��

?
_

��
(x1, y, x2) G/PI ×G/PJ ×G/PI∈

p13 // G/PI ×G/PI 3 (x1, x2)

U2
s2 //

i2

��

Ov−1

jv−1

��

Ov

jv

��

U1

i1

��

s1oo

G/PJ
p12◦x̃ // G/PI ×G/PJ G/PJ ×G/PI G/PJ

p23◦x̃oo

We denote by j1 and j2 the open immersion of U1 ∩ U2 into U1 and U2.

U1 ∩ U2
j1 //

j2

��

U1

i1

��
U2

i2
// G/PJ

It is enough to show the isomorphism x!(Kw−1

! ∗Kw
+) ∼= 0.

x!(Kv−1,−v−1µ
! ∗Kv,µ

+ ) ∼= x! ◦ p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )) (7)

∼= aG/PJ+ ◦ x̃!(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )) (8)

∼= aG/PJ+((p12 ◦ x̃)!(Kv−1,−v−1µ
! )

#
⊗(p23 ◦ x̃)!(Kv,µ

+ )) (9)

∼= aG/PJ+(i2! ◦ s!
2(det Θp′1

#
⊗L−v

−1µ
Ov−1

)
#
⊗ i1+ ◦ s!

1(det Θp1

#
⊗LµOv )) (10)

∼= aG/PJ+(i2!(OU2
)

#
⊗ i1+(OU1

)) (11)

∼= aG/PJ+ ◦ i1+ ◦ i!1 ◦ i2!(OU2
) (12)

∼= aU1+(j1!(OU1∩U2
)) (13)

The isomorphism (8) follows from the base change, (9) follows from the fact that x̃ is a monoidal

functor (Proposition 18 (i)) and (10) follows from the base change. The isomorphism (11) is

a consequence of the fact that the locally free sheaves Θp′1
, Θp1 and invertible sheaves L−v

−1µ
Ov−1

and LµOv are trivial on affine spaces U1 and U2. The isomorphism (12) follows from the projection

formula. The isomorphism (13) follows from that we have i!1
∼= i+1 because i1 is an open immersion,

and that by the base change theorem we have i+1 ◦ i2!
∼= j1! ◦ j+

2 .
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The last term is a (non-twisted) regular holonomic D-module. We use the compatibility of six

operations of D-modules on smooth algebraic varieties and six operations of constructible sheaves

on associated complex manifolds under the de Rham functor DR(−) := RHomDX (OX ,−) (known

as the Riemann-Hilbert correspondence).

By the compatibility of the direct image functor and the de Rham functor [9, §14.5.(1)], we

have

aU1+j1!OU1∩U2
∼= RΓ DR(j1!OU1∩U2

) ∼= RΓj1!(CU1∩U2
).

Here for an algebraic variety X, we denote by CX the constant sheaf on associated complex

manifold Xan. Let Z := U1 \ (U1 ∩ U2) be a closed subset of U1 and iZ : Z ↪→ U1 be the closed

immersion.

We have the following distinguished triangle of complexes of vector spaces.

RΓ(j1!CU1∩U2)→ RΓ(CU1)→ RΓ(iZ∗CZ)
+1→

Since U1 is an affine space the second term in this distinguished triangle is isomorphic to C
concentrated in degree 0. By the lemma below, the third term in this distinguished triangle is

isomorphic to C concentrated in degree 0 and the morphism is nonzero. From this we obtain

RΓ(j1!CU1∩U2
) ∼= 0.

Lemma 47. Let G be a semisimple algebraic group over C and P be a parabolic subgroup con-

taining a Borel subgroup B. Let C be the unique open B-orbit in G/P and Y be its complement.

Then for any g ∈ G, the closed subvariety C ∩ gY of C is contractible.

Proof. Since C and Y are B-stable, it is enough to consider the case when g is a representative

of some Weyl group element w. The subvariety wY of G/PJ is T -stable. Since C contracts to

a point by Gm-action induced by a dominant regular coweight of T , the closed T -stable subset

C ∩ wY also contracts to a point.

Proof of (6)

We consider following diagrams.

We denote by τ : G/PI × G/PI → G/PI × G/PI and by τ̃ : G/PI × G/PJ → G/PJ × G/PI
the permutation and by ∆̃ and by ∆̃′ the product of identity and ∆.

G/PI

∆

��
G/PI ×G/PI

τ OO

G/PI ×G/PJ ×G/PI

p13

OO

G/PI ×G/PJ

∆̃′
55

p′1

@@

τ̃ // G/PJ ×G/PI

∆̃

ii

p2

^^
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Ov

jv

��

Ov−1
τ̃ |O

v−1

∼oo

jv−1

��
G/PJ ×G/PI G/PI ×G/PJ

τ̃

∼oo

We have

∆!(Kv−1,−v−1µ
! ∗Kv,µ

+ ) ∼= ∆! ◦ p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )) (14)

∼= p′1+ ◦ ∆̃′!(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )) (15)

∼= p′1+(∆̃′! ◦ p!
12(Kv−1,−v−1µ

! )
#
⊗ ∆̃′! ◦ p!

23(Kv,µ
+ )) (16)

∼= p′1+(Kv−1,−v−1µ
!

#
⊗ τ̃ !(Kv,µ

+ )) (17)

∼= p′1+ ◦ jv−1+(det Θ
pv
−1

1

#
⊗L−v

−1µ

O−1
v

#
⊗(τ̃ |Ov−1 )∗ det Θpv1

#
⊗Lv

−1µ

O−1
v

) (18)

∼= OG/PI [dimG/PI ] (19)

The isomorphism (15) follows from the base change. The isomorphism (16) follows from the

fact that !-pullback is monoidal. The isomorphism (18) follows from the projection formula. The

isomorphism (19) follows from the fact that det Θ
pv
−1

1
and (τ̃ |Ov−1 )∗ det Θpv1

are mutually inverse

invertible sheaves, that L−v
−1µ

O−1
v

and Lv
−1µ

O−1
v

are mutually inverse and the fact that pv
−1

1 = p′1 ◦ jv−1

is an affine space fibration.

Proof of Theorem 45

We shall prove the isomorphism Rw
−1,−w−1µ

! ◦Rw,µ+
∼= id. The isomorphism Rw,µ+ ◦Rw

−1,−w−1µ
!

∼= id

is proved similarly.

By Proposition 25 and Proposition 44, it is enough to prove the theorem for w = v[α, J ] :=

w
J∪{α}
0 wJ0 for some α ∈ Π and I = v[α, J ]J . We assume this.

We denote by α′ the element of Π such that I∪{α′} = J∪{α}. We have the following diagram.

G/PJ
pw1← Ow

pw2→ G/PI

We consider the P̄J∪{α}-orbit of ePI and ePJ . These orbits are isomorphic to LI∪{α′}/P
I∪{α′}
I ×

ŪI∪{α′} and LJ∪{α}/P
J∪{α}
J × ŪJ∪{α} as algebraic varieties respectively. The pullback of these

orbits coincide and isomorphic to OLI∪{α′}w × ŪI∪{α′}, where OLI∪{α′}w is Ow for LI∪{α′}.

By Lemma 46, we have an isomorphism Rw
−1,−w−1µ

! ◦ Rw,µ+ (M) ∼= M on LI∪{α′}/P
I∪{α′}
I ×

ŪI∪{α′}. Take any x ∈ G/PI . Take the parabolic subgroup of G corresponding to x and take

B, Π,. . . compatibly. Then we have an isomorphism Rw
−1,−w−1µ

! ◦ Rw,µ+ (M) ∼= M near x. This

completes the proof of the theorem.
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4 Intertwining functors and global sections

4.1 Global sections

In this subsection we prove general properties of the global section functor RΓ : D−(DλG/PI -mod)→
D−(Γ(DλG/PI )-mod) and L∆I : D−(Γ(DλG/PI )-mod)→ D−(DλG/PI -mod) in the case of partial flag

varieties and for not necessarily antidominant λ using results cited in §2.3.3. In this section we

consider bounded above complexes because we do not know whether the algebra Γ(DλG/PI ) is of

finite global dimension.

Lemma 48. Assume that λ is regular. Then ψλ : Uλ
I := U(g)/IpI (λ − 2ρnI ) → Γ(DλG/PI ) is an

isomorphism.

Proof. When λ is antidominant, this is proved by Bien [8, Proposition I.5.6]. This is also proved

by combining Proposition 28 and Proposition 36.

By Proposition 33, we have an isomorphism Γ(DλG/PI )
∼= Γ(grDλG/PI )

∼= Γ(OT∗G/PI ) as G-

module for any λ. Hence the multiplicity of each finite dimensional G-module in Γ(DλG/PI ) is

finite and independent of λ.

For general regular λ, pick w ∈ W such that I = wJ and w−1 ∗ λ is antidominant. Since ψλ

is injective, it is enough to show that both sides have the same finite multiplicity. By the result

of Jantzen (Proposition 27) and the equality ρ − wρ =
∑
α∈∆+,w−1α<0 α = ρnI − wρnJ , we see

that equality IpI (λ− 2ρnI ) = IpJ (w−1 ∗ λ− 2ρnJ ) holds. Since w−1 ∗ λ is dominant, this implies

U(g)/IpI (λ− 2ρnI )
∼= U(g)/IpJ (w−1 ∗ λ− 2ρnJ ) ∼= Γ(OT∗G/P ) as G-modules and hence they have

the same finite multiplicity for any finite dimensional representation of G. Hence we see that

U(g)/IpI (λ− 2ρnI ) and Γ(DλG/PI ) have the same finite multiplicity.

To prove a localization theorem for partial flag varieties, we need following two lemmas.

Lemma 49. The counit η : RΓ ◦ L∆I → id is an isomorphism.

Proof. Let M ∈ D−(Γ(DλG/PI )-mod). Take a free resolution L of M . By Proposition 33 we have

RΓ ◦ L∆I(M) ∼= RΓ ◦ ∆I(L)
η(L)−→ L ∼= M . It is enough to show that Γ ◦ ∆I(L)

η(L)−→ L ∼= M is

an isomorphism. Since L is a complex consisting of free Γ(DλG/PI )-modules ∆I(L) consists of free

DλG/PI -modules. From this we deduce that η(L) is an isomorphism.

Lemma 50. Assume that λ is regular. Then the functor RΓ is faithful.

Proof. We use the result of Kitchen (Proposition 38). The functor RΓ(G/B,−) is an equivalence

(Theorem 30). We can prove that the functor pI+ ◦ p!
I has id as a direct summand in the same

way as in [6, Lemma 3.5.4]. This implies that the functor p!
I is faithful. Since the composition

functors RΓ(G/B,−) ◦ p!
I
∼= q∗I ◦ RΓ are faithful, we conclude that RΓ : D−(DλG/PI -mod) →

D−(Γ(DλG/PI )-mod) is faithful.

We now prove a localization theorem for DλG/PI -modules for not necessarily antidominant λ.
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Proposition 51. Assume that λ is regular. Then the functor RΓ is an equivalence of categories.

An inverse functor is given by L∆I .

Proof. By Lemma 49, η is an isomorphism. We prove that ε is an isomorphism.

Let M∈ Db(DλG/P -mod). Consider the distinguished triangle

M ε(M)−→ L∆I ◦ RΓ(M)→ Cε(M)
+1−→,

where Cε(M) is the mapping cone of the morphism ε(M).

Apply RΓ to this triangle. We then obtain a distinguished triangle

RΓ(M)
RΓ(ε(M))−→ RΓ ◦ L∆I ◦ RΓ(M)→ RΓ(Cε(M))

+1−→ .

Since L∆I is a left adjoint of RΓ, we have RΓ(ε(M)) = η(RΓ(M)). Since η is an isomorphism,

we have RΓ(Cε(M)) = 0. By Lemma 50, we have Cε(M) = 0, which is equivalent to the statement

that ε(M) is an isomorphism.

By Lemma 48, this proposition yields an equivalence D−(DλG/P -mod) ∼= D−(Uλ
I -mod).

4.2 Global sections and intertwining functors

In this subsection we study how the space of global sections behaves under intertwining functors.

In this section we treat only Rw? , i.e., set µ = 0.

Let λ ∈ (h/hI)
∗. We have functors Γ : DλG/PI -mod → Γ(DλG/PI )-mod and Γ : Dw−1∗λ

G/PJ
-mod →

Γ(Dw−1∗λ
G/PJ

)-mod. The algebras Γ(DλG/PI ) and Γ(Dw−1∗λ
G/PJ

) are a priori not comparable. Here we

consider their restriction to the quotient of enveloping algebra using ψλ and ψw
−1∗λ in §2.3.3. We

denote by ΓλI : DλG/PI -mod → Uλ
I -mod the composite ψλ∗ ◦ Γ. As we have seen in the proof of

Lemma 48, the codomains of functors RΓλI and RΓw
−1∗λ

J ◦Rw+ coincide. The subject of this section

is comparison of the functors RΓw
−1∗λ

J ◦Rw+, RΓw
−1∗λ

J ◦Rw! and RΓλI .

We construct a morphism of functors RΓλI → RΓw
−1∗λ

J ◦Rw+.

Let M∈ Db
hol(DλG/PI -mod).

Rw+(M) = pw1+

(
det(Θpw1

)
#
⊗ pw!

2 (M)
)

= Rpw1∗
((
pw∗1 D

w−1∗λ,op
G/PJ

#
⊗det(Ωpw1 )

)
⊗L
Dλ−ρ+wρOw

(
det(Θpw1

)
#
⊗ pw!

2 (M)
))

∼= Rpw1∗
(
pw∗1 D

w−1∗λ,op
G/PJ

⊗L
DλOw

pw!
2 (M)

)
Since Dw−1∗λ,op is a sheaf of rings, it has the section 1. Its pullback pw!

1 D
w−1∗λ,op
G/PJ

also has a

section induced from 1. This section induces a morphism pw!
2 M→ pw!

1 (Dw−1∗λ,op)⊗L
DλOw

pw!
2 M.

We have the following sequence of morphisms of complex of vector spaces.

RΓ(M) := RΓ(G/PI ,M)→ RΓ(Ow, pw∗2 M) = RΓ(Ow, pw!
2 M) ∼= RΓ(G/PJ , p

w
1∗ ◦ pw!

2 M)

→ RΓ
(
G/PJ , p

w
1∗((p

w!
1 Dw

−1∗λ,op)⊗L
DλOw

pw!
2 M)

) ∼= RΓ(Rw+M)
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We denote by Iw+(M) the homomorphism given by the composition of these homomorphisms.

Each of these maps is compatible with g-action. Thus we obtain a morphism of functors Iw+ :

RΓλI → RΓw
−1∗λ

J ◦Rw+. Since the functor Rw
−1

! is inverse to Rw+, we have RΓλI ◦Rw
−1

! → RΓw
−1∗λ

J ◦
Rw+ ◦Rw

−1

!
∼= RΓw

−1∗λ
J .

Summarizing the above argument, we obtain the following proposition.

Proposition 52. We have natural morphism of functors Iw+ : RΓλI → RΓw
−1∗λ

J ◦ Rw+ and Iw! :

RΓλI ◦Rw
−1

! → RΓw
−1∗λ

J .

In the following we study when the morphism Iw+ is an isomorphism.

We first study the case where pI is a maximal parabolic subalgebra of g. The set Π\ I consists

of the unique element α and (h/hI)
∗ is a vector space of dimension one spanned by the fundamental

weight $α. In this case, w is either identity of W or w = wI0w
Π
0 . We set v := wI0w

Π
0 and J := v−1I.

The G-orbit Ov is open in G/PJ ×G/PI . We have ρ− vρ = 2ρnI .

Lemma 53. Assume that G is a simple algebraic group and Π \ I consists of one element. Let

v := wI0w
Π
0 and J := v−1I.

If Mg
pJ (v−1λ) is irreducible, then we have an isomorphism Dv−1∗λ

G/PJ
∼= Rv+(DλG/PI ).

Proof. Since both are weakly G-equivariant Dv−1∗λ
G/PJ

-modules, by Proposition 23 it is enough to

check that their fibers are isomorphic to each other at the point ePJ .

By Proposition 34, we have an isomorphism Dv−1∗λ
PJ

(ePJ) ∼= Mg
pJ (v−1∗λ−2ρnJ ) = Mg

pJ (v−1λ).

We consider the following diagram.

ePJ

ie

��

ePJ × Cv−1

iev−1

��

poo

G/PJ Ov
pv1

oo
pv2

// G/PI

Taking a fiber at ePJ is equivalent to applying i!e. We have

Rv+DλG/PI (ePJ) ∼= i!ep
v+
1 (det Θpv!

#
⊗ pv!

2 DλG/PI ) (20)

∼= p+i
!
ev−1(det Θpv!

#
⊗ pv!

2 DλG/PI ) (21)

∼= p+(det ΘCv−1

#
⊗ i!v−1DλG/PI ) (22)

= p∗(det ΩCv−1 ⊗L
i#
v−1D

λ−ρ+vρ
G/PI

(det ΘCv−1

#
⊗ i!v−1DλG/PI )) (23)

∼= Γ(Cv−1 ,OCv−1 ). (24)

The isomorphism (21) follows from the base change and the isomorphism (22) follows from

monoidal property of pullback. The isomorphism (24) follows from the fact that det ΩCv−1 and

det ΘCv−1 are mutually dual invertible sheaves.
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In the last term, the action of g on OCv−1 is via i#v−1DλG/PI . This g-module is pJ -finite. The

section 1 is of weight v−1wI0(λ − ρ) − ρ = v−1λ and the character of this module coincide with

that of Mg
pJ (v−1λ). By the assumption Mg

pJ (v−1λ) is irreducible and thus it is isomorphic to

Mg
pJ (v−1λ).

Now we consider general G and I ⊂ Π.

Let I, J ⊂ Π and w ∈ W satisfy I = wJ . We fix α1, . . . , αr in Proposition 25 and let

I0 = I = v[α1, I1]I1, I1 = v[α2, I2]I2, . . . , Ir−1 = v[αr, Ir]Ir, Ir = J . By Proposition 44 we have an

isomorphisms of functors Rw+
∼= R

v[αr,Ir]
+ ◦ · · · ◦Rv[α1,I1]

+ .

Theorem 54. Let λ ∈ (h/hI)
∗. Let λ0 := λ and λi := v[αi, Ii]

−1 ∗ λi−1. Assume that λ is

regular and for each i the generalized Verma module M
lIi∪{αi}

p
Ii∪{αi}
Ii

(v[αi, Ii]
−1λi−1) is irreducible, then

the morphism Iw+ : RΓλI → RΓw
−1∗λ

J ◦ Rw+ and Iw! : RΓλI ◦ Rw! → RΓw
−1∗λ

J are isomorphisms of

functors.

Note that the each of the generalized Verma modules in the theorem is a tensor product

of a generalize Verma module for some simple Lie algebra induced from a maximal parabolic

subalgebra and a one dimensional representation. He, Kubo and Zierau give in [17] a complete

list of reducible parameters for such generalized Verma modules. Thus given λ ∈ (h/hI)
∗, we can

determine whether λ satisfies the assumption of the theorem by explicit computation.

Proof. Since the functor Rw
−1

! is an inverse of Rw+, it is enough to show that Iw+ : RΓλI → RΓw
−1∗λ

J ◦
Rw+ is an isomorphism.

We first prove that Rw+DλG/PI is isomorphic to Dw−1∗λ
G/PJ

.

We use an argument similar to the one in Theorem 45.

Let i be an integer satisfying 1 ≤ i ≤ r. Over the open subvariety LIi∪{αi}/P
Ii∪{αi}
Ii

× ŪIi∪{αi}
of G/PIi , the diagram of the Radon transform R

v[αi,Ii]
+ is isomorphic to

LIi∪{αi}/P
Ii∪{αi}
Ii

× ŪIi∪{αi} ← (p
v[αi,Ii]
1 )−1(LIi∪{αi}/P

Ii∪{αi}
Ii

× ŪIi∪{αi}) =

(p
v[αi,Ii]
2 )−1(LIi−1∪{α′i}/P

Ii−1∪{α′i}

Ii−1
× ŪIi−1∪{α′i})→ LIi−1∪{α′i}/P

Ii−1∪{α′i}

Ii−1
× ŪIi−1∪{α′i}.

Here α′i is the simple root such that {α′i} = (Ii ∪ {αi}) \ Ii−1 holds.

We have the following isomorphism of TDO’s.

Dλi−1

G/PIi−1
|
LIi−1∪{α′i}

/P
Ii−1∪{α′i}
Ii−1

×ŪIi−1∪{α′i}

∼= D
〈λi−1,α̌

′
i〉$α′

i

LIi−1∪{α′i}
/P

Ii−1∪{α′i}
Ii−1

�DŪIi−1∪{α′i}

DλiG/PIi |LIi∪{αi}/P
Ii∪{αi}
Ii

×ŪIi∪{αi}
∼= D〈λi,α̌i〉$αi

LIi∪{αi}/P
Ii∪{αi}
Ii

�DŪIi∪{αi}

Applying the intertwining functor, we obtain

R
v[αi,Ii]
+ Dλi−1

G/PIi−1
|
LIi−1∪{α′i}

/P
Ii−1∪{α′i}
Ii−1

×ŪIi−1∪{α′i}

∼= R
v[αi,Ii]
+ D

〈λi−1,α̌
′
i〉$α′

i

LIi−1∪{α′i}
/P

Ii−1∪{α′i}
Ii−1

�DŪIi−1∪{α′i}
.
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By Lemma 53, we have an isomorphism R
v[αi,Ii]
+ Dλi−1

G/PIi−1

∼= DλiG/PIi on the open subset of G/PIi .

By the weak equivariance of both sides and Proposition 23, we see that they are isomorphic to

each other on whole G/PIi .

Let M ∈ Db(DλG/PI -mod). Take a free resolution M of RΓ(M) in D−(Γ(DλG/PI )-mod). Then

by Proposition 51, we have an isomorphism ∆I(M) ∼= M in D−(DλG/PI -mod). The morphism

Iw+(DλG/PI ) : RΓλIDλG/PI → RΓw
−1∗λ

J ◦ Rw+DλG/PI
∼= RΓw

−1∗λ
J Dw−1∗λ

G/PJ
is an isomorphism by Propo-

sition 33, Lemma 48 and Proposition 27. This implies that Iw+(∆I(M)) is an isomorphism. We

conclude that Iw+(M) : RΓλIM ∼= RΓλI ◦∆I(M)→ RΓw
−1∗λ

J ◦ Rw+ ◦∆I(M) ∼= RΓw
−1∗λ

J ◦ Rw+M is

an isomorphism.
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