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Abstract. In this thesis, we give two sufficient conditions on totally real fields
so that every elliptic curve over the field is modular. The first condition is for
a composite field of real quadratic fields, and the second one is that the base

field is abelian over the rationals and unramified at 3, 5, and 7.

1. Introduction

Let E be an elliptic curve over a totally real field K. We say that E is modular
if there exists a Hilbert cuspidal eigenform f over K of parallel weight 2 such
that L(E, s) = L(f, s). The classical Shimura-Taniyama conjecture asserts that all
elliptic curves over Q are modular. The case for semistable elliptic curves, which
was the crucial step in proving the Fermat’s Last Theorem, was proved by Wiles
[23] and Taylor-Wiles [20]. Later, the general case of the conjecture was completed
by Breuil-Conrad-Diamond-Taylor [2].

The Shimura-Taniyama conjecture has a natural generalization to totally real
fields:

Conjecture 1.1. Let K be a totally real number field. Then, any elliptic curve
over K is modular.

A number of developments of modularity lifting theorems enable us to prove
that elliptic curves with certain conditions are modular. Also, it is known that all
elliptic curves over any totally real fields are potentially modular, in the sense that
they become modular after a suitable totally real base change. This essentially
follows from Taylor’s potential automorphy argument in [19]. (The detailed proof
is given in the appendix of [12], and a survey on potential modularity of elliptic
curves is found in [3].) However, it has been difficult to prove the modularity of all
elliptic curves over a fixed field. Recently, a breakthrough on Conjecture 1.1 was
brought by Freitas-Le Hung-Siksek.

Theorem 1.2. ([6, Theorem 1]) Let K be a real quadratic number field. Then, any
elliptic curve over K is modular.

Also, using the results in [21] and in Iwasawa theory for elliptic curves, Thorne
recently proved the following theorem:

Theorem 1.3. ([22, Theorem 1]) Let p be a prime number and K be a totally real
field contained in a Zp-cyclotomic extension of Q. Then, any elliptic curve over K
is modular.

The aim of this thesis is to attack Conjecture 1.1 for some abelian totally real
fields. We give two results on this conjecture; the first result is concerned with some
composite fields of real quadratic fields, and the second one treats abelian totally
real fields unramified at 3,5, and 7.

Before stating the first result, we give the notations which we will use in the
statement. For an elliptic curve X over a field F , a Galois extension K/F , and a
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character s : Gal(K/F ) → {±1}, we write X(s) for the quadratic twist of X by s.
Also, we note that the modular curve X0(15) (resp. X0(21)) is an elliptic curve of
rank 0 with Cremona label 15A1 (resp. 21A1); for example, see [6] (Magma scripts
are available at http://arxiv.org/abs/1310.7088). Let us now state our first main
theorem.

Theorem 1.4. Let p = 5 or 7, and X be the modular curve X0(3p). Let K be
a composite field of finite number of real quadratic fields. We assume that K is
unramified at every prime dividing 2, 3, or p. We furthermore assume that, for
each character s : Gal(K/Q) → {±1} , the group X(s)(Q) is finite. Then, any
elliptic curve over K is modular.

For example, using the database LMFDB (at http://www.lmfdb.org/), one can

check that K = Q(
√
5,
√
17) satisfies the hypotheses of Theorem 1.4. Contrary to

the case of cyclic field extensions as considered in Theorem 1.3, we consider certain
extensions which are far from cyclic ones.

Our second main theorem is the following.

Theorem 1.5. Let K be a totally real number field which is abelian over Q. Suppose
that K is unramified at every prime above 3,5, and 7. Then, any elliptic curve over
K is modular.

In the rest of this introduction, let us describe the logical structure and the
organization of this thesis.

For our proof of Theorem 1.4 and Theorem 1.5, the following results will be a
crucial step.

Theorem 1.6. Let K be a totally real field in which 7 is unramified. If E is
an elliptic curve over K with ρ̄E,7 : GK = Gal(K̄/K) → GL2(F7) (absolutely)
irreducible, then E is modular.

Here, ρ̄E,p denotes the mod p Galois representation defined by the p-torsion
points of E. Note that, for p ̸= 2, ρ̄E,p is irreducible if and only if ρ̄E,p is absolutely
irreducible: This fact follows from the presence of the complex conjugates in GK .
So we will omit the term “absolutely” from now on. Theorem 1.6 is seen as a mod
7 variant of the following theorem due to Thorne:

Theorem 1.7. ([21, Theorem 7.6]) Let K be a totally real field with
√
5 /∈ K. If

E is an elliptic curve over K with ρ̄E,5 irreducible, then E is modular.

Section 2 and Section 3 are the preparation for proving Theorem 1.6. In fact,
Proposition 3.3 in Section 3 will reduce the proof of Theorem 1.6 to applying avail-
able modularity lifting theorems. In Section 2, we compute the projective images of
some local Galois representations, which will be used for proving Proposition 3.3.
Then, in Section 4, we prove Theorem 1.6.

With Theorem 1.6 and Theorem 1.7 in hand, we proceed to prove our main
theorems; Theorem 1.4 and Theorem 1.5.

The proof of Theorem 1.4 is given in Section 5. It is motivated from the proof of
[6, Lemma 1.1] and is outlined as follows: By [6, Theorem 2], an elliptic curve which
is not yet proved to be modular defines a point of a certain modular curve. The
modular curve we consider is actually an elliptic curve. Thus, using quadratic twists
of the curve, we are able to analyze the points which take values in a composite
field of some quadratic fields. As a result, we will check that the points of the
modular curve are actually rational points or a real quadratic points, both of which
are known to correspond to modular elliptic curves. In Section 6, we discuss how
often the hypotheses of Theorem 1.4 are expected to hold.
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Remark 1.8. After the author proved Theorem 1.4, Bao Le Hung pointed out that
there are infinitely many composite fields K of real quadratic fields such that any
elliptic curve over K is modular. This can be shown by the iterate use of Theorem
A in his thesis [11]. However, such fields are not obtained in an explicit way, due
to the use of the Faltings’ theorem of Mordell conjecture. On the other hand, our
result Theorem 1.4 gives explicit conditions on totally real fields over which any
elliptic curve is modular.

Finally, Section 7 proves Theorem 1.5. We see that, for an elliptic curve E which
is not yet known to be modular, a quadratic twist of E becomes semi-stable at all
primes dividing 3, in which case we already know its modularity by [5].

2. Local computations

First, we fix the notation of this section:

(1) p is a prime number.
(2) F is an absolutely unramified p-adic local field.
(3) v is the normalized p-adic discrete valuation of F .
(4) ω1 : I → µp−1(F̄ ) → F×

p denotes the fundamental character of level 1, and

ω2, ω
′
2 : I → µp2−1(F̄ ) → F×

p2 denote the fundamental characters of level 2.

Here, I is the inertia subgroup of GF .
(5) E is an elliptic curve over F having additive reduction.
(6) ρ̄E,p : GF → GL2(Fp) is the mod p Galois representation attached to p-

torsion points of E.

The aim of this section is to capture certain cyclic groups inside the projective
images of ρ̄E,p|I . The results obtained here will be used to prove Proposition 3.3
in the next section. In this section, we only consider elliptic curves having additive
reduction. More precisely, we treat the following three cases separately; additive
potential multiplicative reduction, additive potential good ordinary reduction, or
additive potential good supersingular reduction. In the following subsections, we
treat these three cases separately, and we heavily use the results of Kraus in [10].
We remark that, although Kraus proves his results for elliptic curves over Qp, the
proofs also work without change for those over any absolutely unramified p-adic
field.

Potential multiplicative reduction case.

Proposition 2.1. Let p ≥ 3 be a prime number, F an unramified extension of
Qp, and E an elliptic curve over F with additive potential multiplicative reduction.
Then, the restriction of ρ̄E,p to the inertia subgroup I is of the form

(1) ρ̄E,p|I ≃

(
ω

p+1
2

1 ∗
0 ω

p−1
2

1

)
.

Proof. See [10, PROPOSITION 10]. □

Since the projective image of (1) is of the form

(
ω1 ∗
0 1

)
, we obtain the following

corollary:

Corollary 2.2. In the setting of Proposition 2.1, the projective image Pρ̄E,p(GF )
contains a cyclic subgroup of order p− 1.
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Potential ordinary reduction case.

Proposition 2.3. Let p ≥ 5 be a prime number, F an unramified extension of Qp,
and E an elliptic curve over F with additive potential ordinary reduction. Denote
∆ for a minimal discriminant of E and v for the normalized discrete valuation of
F . Set α = (p − 1)v(∆)/12, which is an integer as noted just before 2.3.2 in [10].
Then, the restriction of ρ̄E,p to the inertia subgroup I is of the form

(2) ρ̄E,p|I ≃
(
ω1−α
1 ∗
0 ωα

1

)
.

Proof. See [10, PROPOSITION 1]. □

The projective image of (2) is of the form

(
ω1−2α
1 ∗
0 1

)
, and ω1−2α

1 is a character

of order m := p−1
(p−1,1−2α) . Thus, the projective image Pρ̄E,p(GF ) contains a cyclic

subgroup of order m. In the following, we compute the order m for certain p, which
we will take as 5 or 7 in Section 3

Suppose first that p is a prime number of the form p = 2a + 1 for an integer
a ≥ 2. Since 1− 2α is an odd integer, 1− 2α is prime to p− 1 = 2a so that we have
m = p− 1. Thus, we have the following corollary.

Corollary 2.4. Let p be a prime number of the form p = 2a + 1 with a ≥ 2 an
integer, F/Qp an unramified extension, and E an elliptic curve over F with additive
potential good ordinary reduction. Then, the projective image Pρ̄E,p(GF ) contains
a cyclic group of order p− 1.

Suppose next that p is a prime number of the form p = 3 · 2a + 1 with a ≥ 1
an integer. Since α = (p− 1)v(∆)/12 is an integer, 1− 2α = 1− 2a−1v(∆) is odd.
Thus, we have

m =

{
p−1
3 (v(∆) ≡ (−1)a−1 mod 3)

p− 1 (otherwise).

Therefore, we obtain the following corollary:

Corollary 2.5. Let p be a prime number of the form p = 3 · 2a + 1 for an integer
a ≥ 1, F/Qp an unramified extension, and E be an elliptic curve over F with
additive potential good ordinary reduction. Let also ∆ be a minimal discriminant of
E. Then, Pρ̄E,p(GF ) contains a cyclic group of order (p− 1)/3 or p− 1, depending
on whether v(∆) ≡ (−1)a−1 mod 3 or not, respectively.

Potential supersingular reduction case. As in the previous subsections, we
begin with Kraus’ result.

Proposition 2.6. Let p ≥ 5 be a prime number, F an unramified extension of Qp,
and E an elliptic curve over F with additive potential supersingular reduction. We
choose a minimal model

y2 = x3 +Ax+B

of E. Also, let ∆ denote a minimal discriminant of E.

(a) If (v(∆), v(A), v(B)) is one of the triples (2, 1, 1), (3, 1, 2), (4, 2, 2), (8, 3, 4),
(9, 3, 5), or (10, 4, 5), then ρ̄E,p is wildly ramified.

(b) If (v(∆), v(A), v(B)) is not any of the above triples, then the restriction of
ρ̄E,p to the inertia subgroup I is given by

(3) ρ̄E,p|I ⊗ Fp2 ≃
(
ωα
2 ω

′
2
p−α

0
0 ω′

2
α
ω2

p−α

)
.

Here, α = (p+1)v(∆)/12 is an integer as noted in [10, PROPOSITION 2].
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Proof. The part (a) is a consequence of LEMME 2 and PROPOSITION 4 in [10].
The part (b) follows directly from PROPOSITION 2 and LEMME 2 in [10]. □

From the case (a) in the above proposition, we immediately obtain the following
corollary:

Corollary 2.7. Let the notation be as in Proposition 2.6. If the condition of (a)
holds, then the projective image Pρ̄E,p(GF ) contains a p-group.

Next, we consider the case (b) in the Proposition 2.6. The image of (3) in

PGL2(Fp2) is of the form

(
ω
−(p−1)(2α+1)
2 0

0 1

)
. Since the character ω

−(p−1)(2α+1)
2

is of order n := p+1
(p+1,2α+1) , the projective image P(ρ̄E,p ⊗ Fp2)(GF ) (and hence

P(ρ̄E,p)(GF )) contains a cyclic subgroup of order n. In the rest of this subsection,
we make computations of the number n for certain p. We will apply them to the
case p = 5 or 7 in Section 3.

Suppose first that p is a prime number of the form p = 2a − 1 with a ≥ 3 an
integer. Since α is an integer, 2α + 1 is prime to p + 1 = 2a so that n = p + 1.
Thus, we have proved the following corollary:

Corollary 2.8. Let p be a prime number of the form p = 2a − 1 with a ≥ 3 an
integer, F/Qp an unramified extension, and E an elliptic curve over F with additive
potential good supersingular reduction. Assume the condition of (b) in Proposition
2.6 holds. Then, the projective image Pρ̄E,p(GF ) contains a cyclic group of order
p+ 1.

Suppose next that p is a prime number of the form p = 3 · 2a − 1 with a ≥ 1
an integer. Since α = (p+ 1)v(∆)/12 is an integer, 2α+ 1 = 2a−1v(∆) + 1 is odd.
Thus, we have

n =

{
p+1
3 (v(∆) ≡ (−1)a mod 3)

p+ 1 (otherwise).

Therefore, we obtain the following corollary:

Corollary 2.9. Let p be a prime number of the form p = 3 · 2a − 1 with a ≥ 1 an
integer, F/Qp an unramified extension, and E an elliptic curve over F with additive
potential good supersingular reduction. Let also ∆ be a minimal discriminant of E.
Assume the condition of (b) in Proposition 2.6 holds. Then, Pρ̄E,p(GF ) contains a
cyclic group of order (p+ 1)/3 or p+ 1, depending on whether v(∆) ≡ (−1)a mod
3 or not, respectively.

3. Irreducibility of mod 5 or 7 representations

As we will see in the next section (Theorem 4.1), for an elliptic curve E over a
totally real field K, it is an important condition that ρ̄E,p|GK(ζp)

is absolutely irre-

ducible. So, it is natural to ask when such irreducibility holds. The following result
will be useful for deducing absolute irreducibility of ρ̄E,p|GK(ζp)

from irreducibility

of ρ̄E,p.

Theorem 3.1. ([6, Proposition 9.1]) Let p = 5 or 7, and K be a totally real
field satisfying K ∩ Q(ζp) = Q. For an elliptic curve E over K such that ρ̄E,p is
irreducible but ρ̄E,p|GK(ζp)

is absolutely reducible, we have the following:

(1) If p = 5, then ρ̄E,5(GK) is a group of order 16, and its projective image
Pρ̄E,5(GK) is isomorphic to (Z/2Z)2.

(2) If p = 7, then Pρ̄E,7(GK) is isomorphic to S3 or D4.

Using this theorem, Freitas-Le Hung-Siksek obtain the following result.
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Proposition 3.2. [6, Theorem 7] Let p = 5 or 7. Let K be a totally real field
having some unramified prime p above p. Let E be an elliptic curve semistable at p
and suppose that ρ̄E,p is irreducible. Then, ρ̄E,p|G(K(ζp)) is absolutely irreducible.

In this section, we give a result complement to Proposition 3.2; that is, we prove
a similar proposition for elliptic curves with additive reduction at a prime dividing
p = 5 or 7, instead of semi-stable reduction. More precisely, we have the following
Proposition.

Proposition 3.3. Let p = 5 or 7. Let K be a totally real field, p a prime of K
dividing p, and vp the normalized discrete valuation of K at p. Also, let E be an
elliptic curve over K. Assume that K is unramified at p, that the j-invariant jE of
E is nonzero, and that E has additive reduction at p with ρ̄E,p irreducible. Then,
ρ̄E,p|G(K(ζp)) is absolutely irreducible, unless either of the following exceptional cases
holds:

(1) p = 5, vp(jE) ≡ 1 mod 3, and E has additive potential good (supersingular)
reduction at p, or

(2) p = 7, vp(jE) ≡ 2 mod 3, and E has additive potential good (ordinary)
reduction at p.

The basic strategy for the proof of Proposition 3.3 is the same as Proposition 3.2,
but because we treat the cases of additive reduction, we need to look at local mod
p Galois representations more carefully. Since all the local computations we need
has been carried out in the previous section, it is now easy to deduce Proposition
3.3.

Proof. Denote by ∆ a minimal discriminant of Ep := E⊗K Kp. We split the proof
into three cases according to reduction of E:

(i) If E has additive potential multiplicative reduction at p, then Corollary 2.2
for Ep implies that Pρ̄E,p(GK) has a cyclic subgroup of order p−1. Thus, Theorem
3.1 implies that ρ̄E,p|GK(ζp)

cannot be absolutely reducible.

(ii) Suppose next that E has additive potential good ordinary reduction at p.
If p = 5, then Corollary 2.4 for Ep shows that Pρ̄E,5(GK) contains a cyclic

subgroup of order 4. Thus, by Theorem 3.1 (1), ρ̄E,5|GK(ζ5)
is absolutely irreducible.

Also, if p = 7 and v(∆) ≡ 0, 2 mod 3, then Corollary 2.5 shows that Pρ̄E,7(GK)
has a cyclic subgroup of order 6. Hence, Theorem 3.1 (2) implies that ρ̄E,7|GK(ζ7)

is absolutely irreducible.
We consider the remaining case; that is, p = 7 and vp(∆) ≡ 1. These cases

are equivalent to the case vp(jE) ≡ 2 modulo 3; in fact, this follows by taking a
minimal model y2 = x3 +Ax+B of Ep and noting that jE = 1728A3/∆.

(iii) Finally, suppose that E has additive potential good supersingular reduction
at p.

If the condition (a) in Proposition 2.6 holds, then Corollary 2.7 and Theorem
3.1 show that ρ̄E,p|GK(ζp)

is absolutely irreducible.

Assume the condition (b) in Proposition 2.6 holds. Then we have the following
two cases:

• If p = 5 and v(∆) ≡ 0, 1 mod 3, then Pρ̄E,5(GK) contains a cyclic subgroup
of order 6 by Corollary 2.9. Hence, Theorem 3.1 (1) shows that ρ̄E,5|GK(ζ5)

is absolutely irreducible. The remaining case when p = 5 and vp(∆) ≡ 2
mod 3 can be rephrased as vp(jE) ≡ 1 modulo 3.
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• If p = 7, then ρ̄E,7|GK(ζ7)
is absolutely irreducible by Corollary 2.8 with

Theorem 3.1 (2).

In summary, combining (i), (ii), and (iii), we have seen that ρ̄E,p|GK(ζp)
is abso-

lutely irreducible unless the following conditions hold:

(1) p = 5, vp(jE) ≡ 1 mod 3, and E has additive potential good (supersingular)
reduction at p, or

(2) p = 7, vp(jE) ≡ 2 mod 3, and E has additive potential good (ordinary)
reduction at p.

This shows Proposition 3.3. □

4. Proof of Theorem 1.6

To prove Theorem 1.6, we first need the following modularity theorem for elliptic
curves, which is deduced from deep modularity lifting theorems due to many people.
Note that we do not have to care about residual modularity, thanks to the theorem
of Langlands-Tunnell and the modularity switching arguments.

Theorem 4.1. ([6, Theorem 2]) Let E be an elliptic curve over a totally real field
K. If p = 3, 5, or 7, and if ρ̄E,p|GK(ζp)

is absolutely irreducible, then E is modular.

We also employ another modularity lifting theorem for residually dihedral rep-
resentations due to Skinner-Wiles. Since there is a mistake in the original paper
[18], we will state the modified version as corrected in [16, Theorem 1].

As [16] has not been published, we begin with introducing some notation and
terminology from loc.cit.

First, let p be a prime number, K a totally real field, and ρ̄ : GK → GL2(F̄p) a
2-dimensional mod p Galois representation such that

ρ̄|Dp
≃

(
χ̄
(p)
1 ∗
0 χ̄

(p)
2

)
for each p|p. We say that ρ̄ is Dp-distinguished if χ̄

(p)
1 ̸= χ̄

(p)
2 , in which case

we fix the ordering of χ̄
(p)
1 and χ̄

(p)
2 . Write χ̄2 = (χ̄

(p)
2 )p|p. We say that a lift

ρ′ : GK → GL2(Q̄p) of ρ̄ is a χ̄2-good lift of ρ̄, if for each p|p,

ρ′|Dp
≃

(
χ
(p)
1 ∗
0 χ

(p)
2

)
and the reduction of χ

(p)
2 is χ̄

(p)
2 .

Next, let ρ : GK → GL2(Q̄p) be a 2-dimensional p-adic Galois representation.
Fix an isomorphism C ≃ Q̄p and consider the following properties of ρ:

(i) ρ is continuous and irreducible,
(ii) ρ is unramified at all finite places outside of some finite set Σ,
(iii) det ρ(τ) = −1 for all complex conjugations τ ,

(iv) det ρ = ψχw−1
p for some integer w ≥ 2 and ψ

(p)
2 |Ip has finite order, where

χp is the p-adic cyclotomic character, and
(v) for each prime p|p of K

ρ|Dp
≃

(
ψ
(p)
1 ∗
0 ψ

(p)
2

)
.

Here, the condition (iv) can be generalized to treat the case of non-parallel weights,
but for our purpose it suffices to consider (iv) in the above form; indeed, when ρ
arises from an elliptic curve, ψ is trivial and w = 2.

Now we state the Skinner-Wiles’ modularity lifting theorem:
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Theorem 4.2. ([16, Theorem 1]) Suppose that ρ : GK → GL2(Q̄p) satisfies (i)-(v)
above. Suppose also that

(a) ρ̄ss is irreducible and Dp-distinguished for all p|p; .
(b) there exists a cuspidal representation π0 of GL2(AK) such that the p-adic

Galois representation ρπ0 associated to π0 is a χ̄2-good lift of ρ̄ss, whereχ̄
(p)
2

is the reduction of ψp
2 for p|p;

(c) if ρ̄ss|GK(ζp)
is reducible and the quadratic subfield K∗ of K(ζp)/K is a CM

extension, then not every prime p|p of K splits in K∗.

Then ρ is modular.

To ensure the conditions (a) and (b) in our situation, we use the following lemma.

Lemma 4.3. Let p > 2 be a prime number and ρ̄ : GK → GL2(F̄p) a mod p Galois
representation such that

ρ̄|Dp
≃

(
χ̄
(p)
1 ∗
0 χ̄

(p)
2

)
for each p|p. Assume that ρ̄ is irreducible and ρ̄|G(K(ζp)) is reducible.

(1) If K is unramified at p, then ρ̄ is Dp-distinguished for every p|p.
(2) ([1, Lemma 5.1.2]) There exists a regular cuspidal automorphic representa-

tion π0 which gives a χ̄2-good lift of ρ̄.

Proof. Since ρ̄ is irreducible and ρ̄|G(K(ζp)) is reducible, we obtain ρ̄ = IndGK

GL
χ̄,

where L is the quadratic subextension of K(ζp)/K and χ̄ : GL → F̄×
p is a character.

(1) Let p be any prime of K dividing p. Set D = Dp and D′ = D∩GL. We have

D ̸= D′ because K is unramified at p, and so ρ̄|D = IndDD′χ|D′ . Since ρ̄|D′ contains

χ̄|D′ and ρ̄|D is reducible as in the assumption, χ̄|D′ is extended to χ̄′ = χ̄
(p)
i for

i = 1 or 2. Hence we obtain ρ̄|D = χ̄′ ⊕ χ̄′ϵ, where ϵ : D → D/D′ ≃ {±1} is the
canonical quadratic character. This shows (1).

(2) Twisting ρ̄ by a character if necessary, we may assume that χ̄
(p)
2 is unramified

for every p|p, and we will construct an ordinary χ̄2-good lift of ρ̄.

Let χ : GL → Q̄×
p denote the Teichmuller lift of χ̄, and set ρ1 := IndGK

GL
χ. Then

ρ1 is a lift of ρ̄ with finite image.
We claim that ρ1 is ordinary. Let p, D, and D′ be as above. If D = D′,

then ρ1|D = χ|D ⊕ χ′|D with χ′ the conjugate character of χ by the generator of

Gal(L/K). Suppose that D ̸= D′. Then we have ρ1|D = IndDD′χ|D′ . A similar
argument to (1) shows that χ|D′ is extended to a character χ′ : D → Q̄×

p ; that is,

the Teichmuller lift of χ̄
(p)
i for i = 1 or 2. This implies that IndDD′χ|D′ = χ′ ⊕ χ′ϵ.

In both cases D = D′ and D ̸= D′, the characters appearing in ρ1|D have order

prime to p, and thus they are the Teichmuller lifts of χ̄
(p)
1 and χ̄

(p)
2 . This implies

that ρ1 is ordinary at p.
Since ρ1 is an induction from a character (of finite order), a classical construction

due to Hecke (for example, see [8, Theorem 7.11]) shows that ρ1 is modular of
parallel weight 1. Let f1 be the corresponding (ordinary) Hilbert modular form
of parallel weight 1. Then, a theorem of Wiles [24, Theorem 3] implies that, after
replacing f1 by its v-stabilization for each v, we can realize f1 as a member of an
ordinary p-adic analytic family. Specializing it at any weight k ≥ 2 produces a
desired automorphic lift, which proves (2). □

With the above preparations in hand, we are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Let K and E be as in Theorem 1.6. If E has semi-stable
reduction at some prime dividing 7, then the assertion follows from [6, Theorem 7].
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So suppose that E has additive reduction at every prime p|7. If jE = 0, then E has
complex multiplication. Thus, the Tate module of E is induced from a character,
which proves that E is modular by class field theory and the automorphic induction.
So we may moreover assume that jE ̸= 0. By Proposition 3.3 and Theorem 4.1,
we have only to consider the case when E has potential good ordinary reduction
at every prime p|7 and ρ̄E,7|G(K(ζ7)) is absolutely reducible. In this case, we will
apply Theorem 4.2 in order to prove the modularity of E.

In the following, we check that our ρE,7 : GK → GL2(Z7) satisfies (i)-(v) and
(a)-(c) in Theorem 4.2. First, the conditions (i)-(iv) are immediate. Also, ρE,7

satisfies (v) because we now assume that E has potential good ordinary reduction
at every p|7. As K is unramified at 7, Lemma 4.3 (1) for ρ̄E,7 implies (a). Also (b)
follows from Lemma 4.3 (2) for ρ̄E,7. Finally, the condition (c) is automatic under
our assumption that K is unramified at 7. Therefore, Theorem 4.2 shows that E
is modular. □

Remark 4.4. A similar argument does not reprove Theorem 1.7 even if K is just
unramified at 5; in fact, Proposition 3.3 implies that an elliptic curve E over K
with ρ̄E,5|G(K(ζ5)) absolutely reducible must have additive potential supersingular
reduction at every prime p|5. In such a case, the theorem of Skinner-Wiles [18] is
unavailable.

Remark 4.5. In his thesis [11], Le Hung essentially shows the following; if K is a
totally real field unramified at 5 and 7, and if E is an elliptic curve overK with both
ρ̄E,p (p = 5, 7) irreducible, then E is modular. This follows from [11, Proposition
6.1] combined with the modularity lifting theorem due to Skinner-Wiles [18].

Remark 4.6. Very recently, S. Kalyanswamy [9] announced to prove a version of
Theorem 1.6. He actually proves a new modularity theorem [9, Theorem 3.4] for
certain Galois representations, and applies it to elliptic curves in [9, Theorem 4.4].
For clarity, we describe the difference between Theorem 1.6 and [9, Theorem 4.4]:
Kalyanswamy considers elliptic curves over a totally real field F with F∩Q(ζ7) = Q,
which is weaker than the assumption that F is unramified at 7, while he also
imposes an additional condition on the mod 7 Galois representations. Therefore,
both Theorem 1.6 and [9, Theorem 4.4] have their own advantage.

5. Proof of the first main theorem: Theorem 1.4

For a group G, a Z[G]-module M , and a character s : G → {±1}, we write Ms

for the subgroup of M defined by

Ms = {m ∈M ;mσ = sσm for all σ ∈ G}.

The following lemma immediately follows from the definition of quadratic twists.

Lemma 5.1. Let K/F be a Galois extension. Let X be an elliptic curve over F .
Then, for each character s : Gal(K/F ) → {±1}, we have

X(K)s ≃ X(s)(F ).

Proof. By the definition of quadratic twists, we have an isomorphism f : X
≃−→ X(s)

over K which satisfies f(Pσ) = sσf(P )
σ for P ∈ X(K) and σ ∈ G = Gal(K/F ).

By the isomorphism f , the subgroup X(K)s ⊂ X(K) corresponds to the subgroup
X(s)(F ) ⊂ X(s)(K). □

For a group G isomorphic to (Z/(2))r with r a positive integer, let G∨ denote
the group Hom(G, {±1}) of characters.
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Lemma 5.2. If G is a group isomorphic to (Z/(2))r for a positive integer r and
M is a Z[G]-module, then we have 2rM ⊂

∑
s∈G∨ Ms.

Proof. This is clear by noting that, for m ∈M , 2rm is written as

2rm =
∑
s∈G∨

∑
σ∈G

sσm
σ,

and that the element
∑

σ∈G sσm
σ belongs to Ms. □

Lemma 5.3. For X = X0(15) or X0(21) and a prime number ℓ ≥ 3, the mod ℓ
Galois representation ρ̄X,ℓ is surjective.

Proof. Recall that X0(15) (resp. X0(21)) is the elliptic curve with Cremona label
15A1 (resp. 21A1). The j-invariant jX of X is given by

jX =

{
3−4 · 5−4 · 133 · 373 (ifX = X0(15))

3−4 · 7−2 · 1933 (ifX = X0(21)).

Thus, ℓ does not divide the exponents of 3 and 5 (resp. 3 and 7) in jX0(15) (resp.
jX0(21)). Also, by hand or by looking at the coefficients of the modular form cor-
responding to X, it is checked that |X0(15)(F7)| = |X0(21)(F5)| = 8; in particular,
these are not divisible by ℓ. Applying [13, Proposition 21] to our X and ℓ, we see
that ρ̄X,ℓ is surjective. □

Using the above two basic results, we prove the following proposition.

Proposition 5.4. Under the assumption of Theorem 1.4, we have X(K) = X(Q).

Proof. Let G denote the Galois group Gal(K/Q), which is by assumption isomor-
phic to (Z/(2))r for a positive integer r. By Lemma 5.3, ρ̄X,ℓ for every prime ℓ ≥ 3

is in particular irreducible, and thus X(s)(Q) for s ∈ G∨ has only 2-power torsion
points. Also, for each s ∈ G∨, X(s)(Q) is assumed to be of rank 0, and Lemma 5.1
implies that X(K)s ≃ X(s)(Q). It follows that all X(K)s for s ∈ G∨ are killed by
[2n] : X → X for some positive integer n. Then, since [2r]X(K) ⊂

∑
s∈G∨ X(K)s

by Lemma 5.2, we have [2n+r]X(K) = 0; that is, X(K) ⊂ X[2n+r](Q̄). This im-
plies that the G-module X(K) can be ramified only at primes dividing 6p. On
the other hand, by the assumption that K is unramified at primes dividing 6p, it
follows that X(K) is unramified everywhere. Therefore, we have X(K) = X(Q).
□

Before proceeding to the proof of Theorem 1.4, we also need to introduce certain
modular curves from [6, Section 3]. For a prime number p ̸= 3, let X(s3, bp) denote
the modular curve classifying elliptic curves such that Im ρ̄E,3 is contained in the
normalizer of a split Cartan subgroup of GL2(F3) and that ρ̄E,p is reducible. For
the details of such a modular curve, we refer the reader to [6]. For the proof of
Theorem 1.4, we only need the following properties of X(s3, b5) and X(s3, b7).

Lemma 5.5. The following are true:

(1) The modular curve X(s3, b5) is an elliptic curve over Q and X(s3, b5) is
isogeneous to X0(15) by an isogeny of degree 2.

(2) The modular curve X(s3, b7) is isomorphic to X0(63)/⟨w9⟩, and the curve
X0(63)/⟨w7, w9⟩ is isomorphic to X0(21), where w7 and w9 are the Atkin-
Lehner involutions on X0(63). In particular, X(s3, b7) admits a morphism
to X0(21) of degree 2.

Proof. See [22, Proposition 4] for (1), and see [6, Proof of Lemma 1.1] for (2). □
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We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let p, X = X0(3p), and K be as in the statement of
Theorem 1.4.

Suppose we are given an elliptic curve E over K. We show that E is modular.
Because of Theorem 1.6 and Theorem 1.7, we only have to consider the case where
ρ̄E,3|Gal(K̄/K(ζ3)) is absolutely reducible and ρ̄E,p is reducible. In such a case, E

defines a K-point of X or X(s3, bp) by [6, Proposition 4.1, Corollary 10.1].
Suppose first that E defines a K-point of X. Proposition 5.4 implies that the

j-invariant of E is a rational number, and so there exists a solvable Galois extension
of K over which E becomes isomorphic to an elliptic curve defined over Q (For this,
see the proof of [15, III, Proposition 1.4. (b)].) Hence E is modular by [2, Theorem
A] and the solvable base change theorem.

Next we consider the case where E defines a K-point P = PE of X(s3, bp). By
Lemma 5.5, we have a morphism fp : X(s3, bp) → X of degree 2. By Proposition
5.4, Gal(K/Q) acts on the fiber f−1

p (fp(P )). Since f
−1
p (fp(P )) consists of 2 points,

the kernel of this action is a subgroup in Gal(K/Q) of index at most 2. It follows
that P must be a rational point or a real quadratic point of X. Similarly to the
previous paragraph, [2, Theorem A], [6, Theorem 1], and the base change theorem
show that E is modular. This completes the proof. □

6. On the hypotheses of Theorem 1.4

Let the notation be as in Theorem 1.4. We discuss here how many totally real
fields K are expected to satisfy the hypotheses of Theorem 1.4; We heuristically
expect that, for each positive integer r, there are infinitely many K with [K : Q] =
2r satisfying the condition of Theorem 1.4.

To explain this, we first note the following theorem on the description of local
root numbers of an elliptic curve. For an elliptic curve E over a local or global field
K, we write w(E/K) for the root number of E.

Theorem 6.1. [4, Theorem 3.1] Let E be an elliptic curve over a local field Kv.
Then,

(1) w(E/Kv) = −1 if v|∞ or E has split multiplicative reduction.
(2) w(E/Kv) = 1 if E has either good or nonsplit multiplicative reduction.
(3) w(E/Kv) = (−1

k ) if E has additive potentially multiplicative reduction, and

the residue field k of Kv has characteristic p ≥ 3. Here, (−1
k ) = 1 (resp.

−1) if −1 ∈ (k×)2 (resp. otherwise).
(4) w(E/Kv) = (−1)⌊ordv(∆)|k|/12⌋, if E has potentially good reduction, and

the residue field k of Kv has characteristic p ≥ 5. Here, ∆ is the minimal
discriminant of E, and ⌊x⌋ is the greatest integer n ≤ x.

Using Theorem 6.1, we calculate the global root numbers of quadratic twists of
an elliptic curve that we are interested in. Although such a result must be known
under a more general assumption, the proof in our simpler setting should be more
elementary and straightforward.

Corollary 6.2. Let E be a semi-stable elliptic curve over Q with the odd conductor
N , and d ≡ 1 mod 4 be a square-free positive integer prime to N . Then, we have
w(E(d)/Q) =

(
d
N

)
w(E/Q), where E(d) denotes the quadratic twist of E by d and( ·

N

)
is the Jacobi symbol.

Proof. Note that E(d) has the conductor d2N because d ≡ 1 mod 4. Let p be a
prime number.
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• If p ∤ dN , then both E(d) and E have good reduction at p and thus
w(E/Qp) = w(E(d)/Qp) = 1 by Theorem 6.1 (2).

• If p|d, then E(d) has additive potentially good reduction at p and it ac-

quires good reduction over the quadratic extension Qp(
√
d) of Qp. Thus,

by Theorem 6.1 (4), w(E(d)/Qp) = (−1)⌊p/2⌋, which is equal to 1 (resp.
−1) for p ≡ 1 mod 4 (resp. p ≡ 3 mod 4).

• Suppose here that p|N . Thus, E and E(d) have multiplicative reduction at
p. Take a minimal Weierstrass equation

y2 = f(x)

of E over Qp, where f(x) ∈ Zp[x] is a monic polynomial of degree 3. Write
Fp as the union of the subsets

S0 = {x ∈ Fp; f(x) = 0}

S+ = {x ∈ Fp;
(f(x)

p

)
= 1}

S− = {x ∈ Fp;
(f(x)

p

)
= −1}.

In particular, we have |E(Fp)| = |S0|+2|S+|+1. Note that, for an elliptic
curve X over Qp with bad reduction,

p+ 1− |X(Fp)| =


0 if X has additive reduction.

1 if X has split multiplicative reduction.

−1 if X has non-split multiplicative reduction.

If
(
d
p

)
= 1, then we have |E(d)(Fp)| = |S0|+2|S+|+1 = |E(Fp)|, and hence

E has (non-)split multiplicative reduction if and only if so does E(d). If(
d
p

)
= −1, then we have |E(d)(Fp)| = |S0|+ 2|S−|+ 1 = 2p + 2 − |E(Fp)|,

and hence E has split (resp. non-split) multiplicative reduction if and only if
E(d) has non-split (resp. split) multiplicative reduction. Summarizing these
arguments and Theorem 6.1 (1), (2), we obtain w(E(d)/Qp) =

(
d
p

)
w(E/Qp)

for every p|N .
• Also, w(E/R) = w(E(d)/R) = −1 by Theorem 6.1 (1).

Taking the products of the local root numbers over all places of Q, we obtain the
desired formula. □

Let r ≥ 2 be an integer and d1,...,dr be square-free positive integers satisfying
the following conditions:

• (d1, ..., dr, 3p) = 1,
• di ≡ 1 mod 4 for i = 1, ..., r, and
•
(
di

3p

)
= 1 for i = 1, ..., r.

Here, recall that 3p is the conductor of X, and note that there are infinitely many
choices of such r-tuples (d1, ..., dr). The field K := Q(

√
d1, ...,

√
dr) is unramified

at every prime dividing 6p. Also, Corollary 6.2 shows that w(X(s)/Q) = w(X/Q)
for any s : Gal(K/Q) → {±1}. Since rankX = 0, the parity conjecture for our
X therefore predicts that rankX(s) for any s is even. The Goldfeld conjecture
[7] suggests that, for an elliptic curve over Q, most of its quadratic twists of even
(resp. odd) rank would be of rank 0 (resp. 1). Thus, it seems reasonable to expect
that the fields K = Q(

√
d1, ...,

√
dr) for most (d1, ..., dr) satisfy the hypotheses in

Theorem 1.4, although the two conjectures do not imply that this is actually true.
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7. Proof of the second main theorem: Theorem 1.5

For the proof of Theorem 1.5, we need another modularity theorem due to Freitas
[5]. This theorem essentially follows from [17], [18], and Theorem 4.1.

Theorem 7.1. [5, Theorem 6.3] Let K be an abelian totally real field where 3 is
unramified. Let E be an elliptic curve over K semistable at all primes p|3. Then,
E is modular.

Also, we note a well-known result on a torsion version of Neron-Ogg-Shafarevich
criterion of good reduction.

Lemma 7.2. [14, Corollary 2 of Theorem 2] Let F be a local field, E an elliptic
curve over F with potential good reduction, and m ≥ 3 an integer relatively prime
to the residual characteristic of F .

(a) The inertia group of F (E[m])/F is independent of m.
(b) The extension F (E[m])/F is unramified if and only if E has good reduction.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let K be as in Theorem 1.5 and E an elliptic curve over
K. Our goal is to prove that E is modular. By Theorem 1.6 and Theorem 1.7, we
may assume that both ρ̄E,5 and ρ̄E,7 are reducible; that is, ρ̄E,p for p = 5, 7 factors
through a Borel subgroup B(Fp). Note that B(F5) (resp. B(F7)) is of order 4

2 · 5
(resp. 62 · 7).

In this situation, we claim that a suitable quadratic twist of E becomes semi-
stable at every prime p|3 of K. So let p be a prime of K dividing 3.

If Ep = E⊗Kp is semi-stable, then its quadratic twist E
(a)
p by any unit a ∈ O∗

Kp

is also semi-stable, because Ep and E
(a)
p become isomorphic over an unramified

extension Kp(
√
a) of Kp.

Suppose next that Ep has additive potential good reduction. Then, by Lemma
7.2, the actions of the inertia subgroup Ip ⊂ GKp

on E[5] and E[7] factor through

the same nontrivial quotient I ′p. This implies that |I ′p| divides gcd(42 · 5, 62 · 7) = 4,
and hence I ′p is tame (and so cyclic) of order dividing 4. Since the 2-Sylow subgroups
of B(F7) are of order 4 and not cyclic, I ′p must be of order 2. Because det ρ̄E,p is
trivial on Ip if p ̸= 3, we see that I ′p acts on E[p] (p = 5, 7) via ±1. It follows that
the quadratic twist of Ep by any uniformizer of Kp has good reduction by Lemma
7.2 (b).

Finally, suppose that Ep has additive potential multiplicative reduction. In this
case, using [15, C, Theorem 14.1], we see that the quadratic twist of Ep by any
uniformizer of Kp has multiplicative reduction.

By the Chinese remainder theorem, we find an element d ∈ K such that, for
each prime p|3 of K,

vp(d) =

{
0 (if E is semi-stable at p)

1 (if E has additive reduction at p).

For such a d, the above argument shows that the quadratic twist E(d) of E by d is
semi-stable at every prime p|3 of K, and hence the claim follows. Now Theorem 7.1
implies that E(d) is modular. Since modularity of elliptic curves is invariant under
quadratic twists, it follows that E is modular. □
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