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Abstract. Quantum unipotent subgroups and quantum unipotent cells are quantum
analogues of the coordinate algebras of unipotent subgroups and unipotent cells of Kac-
Moody groups, respectively. Here unipotent subgroups are affine algebraic groups and
unipotent cells are affine algebraic varieties. Those quantized coordinate algebras have
many interesting structures and reflect structures of other mathematical objects via cate-
gorifications. Typical examples are their dual canonical bases and quantum cluster algebra
structures.

In this thesis, we develop the theory of quantum analogues of twist maps on those
quantized coordinate algebras. In particular, we study their compatibility with specific
bases and quantum cluster algebra structures of those quantized coordinate algebras. Here
the twist maps indicate the Fomin-Zelevinsky twist maps (henceforth the FZ-twist maps)
between unipotent subgroups and the Berenstein-Fomin-Zelevinsky twist automorphisms
(henceforth the BFZ-twist automorphisms) on unipotent cells.

The quantum analogues of the FZ-twist maps were constructed by Lenagan-Yakimov.
We show that these quantum FZ-twist maps are restricted to bijections between the
dual canonical bases of quantum unipotent subgroups, and preserve quantum analogues
of certain unipotent generalized minors, in particular, specific determinantal identities,
called quantum T -systems.

The quantum analogues of the BFZ-twist automorphisms were obtained by Berenstein-
Rupel when the Weyl group elements corresponding to quantum unipotent cells are squares
of Coxeter elements. In this thesis, we construct the quantum analogues of the BFZ-twist
automorphisms on arbitrary quantum unipotent cells in a different method. Our ap-
proach relies on the relations between the structures of quantum unipotent subgroups,
quantum unipotent cells and non-unipotent quantized coordinate algebras. We define ap-
propriately the dual canonical bases of the quantum unipotent cells and show that these
quantum BFZ-twist automorphisms are restricted to permutations on the dual canonical
bases. Moreover we prove that the quantum BFZ-twist automorphisms are categorified
by representations of preprojective algebras following Geiß-Leclerc-Schröer’s theory when
the corresponding Lie algebra is symmetric. As a corollary, we show the compatibility
between quantum BFZ-twist automorphisms and quantum cluster monomials. At last,
the Chamber Ansatz formulae for quantum unipotent cells are obtained by means of the
quantum BFZ-twist automorphisms. These formulae tell that our quantum BFZ-twist
automorphisms are generalizations of Berenstein-Rupel’s ones.
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Introduction

Organization of the thesis

This thesis is divided into three chapters. In Chapter I, we fix our notations and review
known properties of our main targets, quantized enveloping algebras, quantized coordinate
algebras and canonical bases. The definition of quantum cluster algebras is also reviewed.
In Chapter II and III, we develop the theory of twist maps in the quantum settings from
the basis-theoretic viewpoint. In particular, we focus on their compatibility with dual
canonical bases and quantum cluster monomials. In Chapter II, we deal with quantum
analogues of Fomin-Zelevinsky twist maps, introduced by Lenagan-Yakimov. In Section
II.1, we show that quantum analogues of Fomin-Zelevinsky twist maps are restricted to
bijections between dual canonical bases of quantum unipotent subgroups. In Section II.2,
we treat quantum analogues of generalized minors on unipotent groups, called unipotent
quantum minors. They are typical example of dual canonical basis elements and some of
them are quantum cluster monomials of quantum unipotent subgroups. We prove that the
image of some unipotent quantum minors under quantum analogues of Fomin-Zelevinsky
twist maps are also unipotent quantum minors. In Chapter III, we deal with quantum ana-
logues of Berenstein-Fomin-Zelevinsky twist automorphisms. In Section III.1, we construct
quantum analogues of Berenstein-Fomin-Zelevinsky twist automorphisms and show that
they are restricted to permutations on dual canonical bases of quantum unipotent cells.
In Section III.2, we prove that quantum analogues of Berenstein-Fomin-Zelevinsky twist
automorphisms are categorified by representations of preprojective algebras following Geiß-
Leclerc-Schröer’s theory when the corresponding Lie algebra is symmetric. As a corollary,
we show the compatibility between quantum analogues of Berenstein-Fomin-Zelevinsky
twist automorphisms and quantum cluster monomials. In Section III.3, the “Chamber
Ansatz formulae” for quantum unipotent cells are established by means of quantum ana-
logues of Berenstein-Fomin-Zelevinsky twist automorphisms.

Backgrounds and Main results

Let g be a complex semisimple Lie algebra and g = n−⊕ h⊕ n+ its triangular decom-
position, G the connected simply-connected complex algebraic group with the Lie algebra
g, and N±, H the closed subgroups of G with the Lie algebras n±, h, respectively. Set
B− := N−H, B+ := HN+, which are called Borel subgroups. The Weyl group NG(H)/H
is denoted by W . (Here we take g as a semisimple Lie algebra for simplicity, however all
results are valid in arbitrary symmetrizable Kac-Moody settings unless otherwise specified.)
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BACKGROUNDS AND MAIN RESULTS 2

For w ∈ W , the algebraic subgroup N−(w) := N− ∩ ẇN+ẇ
−1 is called a unipotent

subgroup, and the affine algebraic variety Nw
− := N− ∩ B+ẇB+ is called a unipotent cell.

Here ẇ denotes an arbitrary lift of w to NG(H). We deal with the quantum analogues
Aq[N−(w)] and Aq[N

w
− ] of the coordinate algebras C[N−(w)] and C[Nw

− ], respectively.
These algebras Aq[N−(w)] and Aq[N

w
− ] are introduced by De Concini, Kac and Procesi

[10], [11]. The algebras Aq[N−(w)] and Aq[N
w
− ] are called the quantum unipotent subgroup

and the quantum unipotent cell, respectively.
An important research topic concerning those quantized coordinate algebras is the

theory of their specific bases. Our main interests are dual canonical bases(= upper global
bases) in the sense of Lusztig [40, 41, 44] and Kashiwara [29]. A guiding principle of
algebraic and combinatorial research on such remarkable bases is a quantum cluster algebra
structure. It provides the special elements, called quantum cluster monomials, in the given
algebra which are constructed by the successive procedure, called mutation. See Section
I.2 for the precise definition of the quantum cluster algebras.

The dual canonical bases and the quantum cluster algebra structures reflect structures
of other mathematical objects; In [40] (and his subsequent work [41, 44]), Lusztig has
originally constructed the canonical bases by using perverse sheaves on affine spaces arising
from the representation theory of quivers. In his construction, the canonical basis elements
correspond to simple perverse sheaves. The multiplication structure of the dual canonical
basis elements is a shadow of the images of those simple perverse sheaves under “the
restriction functor”. In [29], Kashiwara has independently constructed the canonical bases
(more precisely, he called them global crystal bases, and subsequently their coincidence
with canonical bases is proved), and shown that they have some combinatorial structures,
called Kashiwara crystals. When g is symmetric, the algebra Aq[N−] is isomorphic to the
deformed Grothendieck ring of an appropriate monoidal subcategory of finite dimensional
representations of quantum affine algebras, and the dual canonical basis corresponds to
the basis coming from simple objects [23]. The quantum cluster algebra structures on
Aq[N−(w)] and Aq[N

w
− ] are categorified by representations of the preprojective algebras

[20], and we deal with this kind of categorification in this thesis. There is also a monoidal
categorification of quantum cluster algebra structures on Aq[N−(w)] and Aq[N

w
− ] through

quiver Hecke algebras [27], [28].
In this thesis, we develop the theory of quantum analogues of “twist maps” from the

basis-theoretic viewpoint. Ideally (and, in consequence, actually), they should be nontrivial
(anti-)algebra isomorphisms of the quantized coordinate algebras. Hence they preserve
multiplication structure. If these quantum twist maps preserve specific bases, especially
dual canonical bases, then such results may suggest the new “symmetries” of various
mathematical objects. The main aim of this paper is to establish the foundation of this
direction: (1) to show the compatibility between dual canonical bases and the “known”
quantum twist maps (2) to construct quantum analogues of twist maps and show their
compatibility with dual canonical bases and quantum cluster monomials. Moreover, as an
application of (2), we deduce quantum analogues of the Chamber Ansatz formulae, which
we will explain below. The results in Chapter II correspond to (1) and the results in
Chapter III correspond to (2).
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Here we present explicit forms of (non-quantum) twist maps whose quantum analogues
are discussed in this thesis. Set G0 := N−HN+ and let g = [g]−[g]0[g]+ be the correspond-
ing (unique) decomposition for g ∈ G0.

Definition (Twist maps [4], [6], [14]). Let w ∈ W . There exists a biregular auto-
morphism ηw : Nw

− → Nw
− given by

y 7→ [yT ẇ]−,

here yT is a transpose of y in G and ẇ is an arbitrary lift of w to NG(H). This is called the
BFZ-twist automorphism. Moreover, there exists a biregular isomorphism τw : N−(w−1)→
N−(w) given by

y 7→ w(y∨)−1w−1,

here ∨ is a involutive group automorphisms of G which interchanges positive and negative
Chevalley generators (cf. Definition I.1.5), and w is a specific lift of w to NG(H). This is
called the FZ-twist map (with respect to the y-coordinate in the sense of [14]).

These are introduced in order to solve the “factorization problems” which arose from
research on totally positive elements in G. Indeed, we consider the quantum analogue of
factorization problems for unipotent cells in Section III.3 and explain them below. These
twist maps induce the C-algebra isomorphisms η∗w : C[Nw

− ]→ C[Nw
− ] and τ ∗w : C[N−(w)]→

C[N−(w−1)] respectively. It is known that these isomorphisms are compatible with some
specific basis elements of C[N−(w)] and C[Nw

− ], for instance, [14, Lemma 2.25], [19, The-
orem 6]. We pursue such phenomena in quantum settings, focusing on especially dual
canonical bases. Note that dual canonical bases are originally defined in quantum settings.
Chapter II discusses quantum analogues of FZ-twist maps, and Chapter III deals with
quantum analogues of BFZ-twist automorphisms.

Before explaining the details of our main results, we briefly confirm our setup and
prepare notations from representation theory. The quantized coordinate algebras above are
defined from the Drinfeld-Jimbo quantized enveloping algebra Uq := Uq(g) associated with
g, which is an algebra over the rational function field Q(q) in one variable q. The algebra
Uq is a Hopf algebra which is a quantum analogue of the universal enveloping algebra
U(g) of g. The coordinate algebra C[N−] is isomorphic to the graded dual (U(n−))∗gr of
the enveloping algebra of n−. Note that the algebra structure of (U(n−))∗gr comes from
the coalgebra structure of U(n−). Hence Aq[N−] is defined as a graded dual (U−q )∗gr of the
negative half U−q of Uq. Here the algebra structure of (U−q )∗gr is defined as a dual of the
twisted coalgebra structure of U−q . In quantum settings, Aq[N−] is actually isomorphic
to U−q as Q(q)-algebras by the existence of an appropriate nondegenerate pairing. The
quantum unipotent subgroups Aq[N−(w)] are defined as certain subalgebras of Aq[N−],
and the quantum unipotent cells Aq[N

w
− ] are defined as some localizations of quotient

algebras of Aq[N−].
Let P+ be the set of dominant integral weights. For λ ∈ P+, V (λ) denotes the integrable

highest weight Uq-module with highest weight λ. Fix a highest weight vector uλ and let
uwλ ∈ V (λ) be the (unique) canonical basis element of weight wλ. Then there exists a
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Q(q)-bilinear form ( , )ϕλ : V (λ) × V (λ) → Q(q) such that (uλ, uλ)
ϕ
λ = 1 and (x.u, u′)ϕλ =

(u, ϕ(x).u′)ϕλ for x ∈ Uq, u, u
′ ∈ V (λ). Here ϕ is the Q(q)-anti-algebra involution which is a

quantum analogue of the transpose inG (see Definition I.1.5). Now two vectors u, u′ ∈ V (λ)
determine the element Du,u′ of (U−q )∗gr = Aq[N−] ' U−q given by n 7→ (u, n.u′)ϕλ for n ∈ U−q .
We write Duwλ,uw′λ

as Dwλ,w′λ for w,w′ ∈ W and λ ∈ P+. The elements of this form are
called unipotent quantum minors, which are quantum analogues of generalized minors on
the unipotent group N−. The unipotent quantum minors are important and manageable
examples of the dual canonical basis elements.

Quantum FZ-twist maps: The quantum analogue τw,q of the FZ-twist map τ ∗w is intro-
duced by Lenagan-Yakimov [39]. This quantum FZ-twist map τw,q is constructed as a com-
position of well-known algebra automorphisms and anti-automorphisms on the quantized
enveloping algebras, more precisely, τw,q := ∗◦Tw−1 ◦S ◦∨◦∗ : Aq[N−(w)]→ Aq[N−(w−1)];
here let Tw be Lusztig’s braid group symmetry, S the antipode, ∗ the ∗-involution and by ∨
the involution analogous to the one in the definition of twist maps (see Definition I.1.5 and
I.1.28). Note that Aq[N−] = (U−q )∗gr is isomorphic to U−q as Q(q)-algebras In particular,
τw,q is a Q(q)-anti-algebra involution. (We use the ∗-involution for the technical reason.)
We first show the following:

Theorem (Theorem II.1.10). The quantum FZ-twist map τw,q is restricted to a bijec-
tion from the dual canonical basis of Aq[N−(w)] to that of Aq[N−(w−1)].

The quantum unipotent subgroup Aq[N−(w)] has another specific basis called the
(dual) Poincaré-Birkhoff-Witt type basis. It is known that the transition matrices between
the dual canonical basis and the dual Poincaré-Birkhoff-Witt type basis are unitriangular
with respect to “the left lexicographic order”. As a corollary of the theorem above, we
proved that this unitriangularity also holds under “the right lexicographic order” (Corollary
II.1.11). If g is not of finite type, this reverse unitriangularity is a new symmetry.

Next we show the compatibility between quantum FZ-twist maps and unipotent quan-
tum minors. The following statement is a quantum analogue of [14, Lemma 2.25] and a
slight refinement of [39, The equality (6.7)].

Theorem (Theorem II.2.8, Corollary II.2.14). Let w1, w2 ∈ W . Suppose that w1 and
w2 are less than or equal to w with respect to the weak right Bruhat order (see Proposition
II.2.7). Then we have Dw2λ,w1λ ∈ Aq[N−(w)], Dw−1w1λ,w−1w2λ ∈ Aq[N−(w−1)], and

τw,q(Dw2λ,w1λ) = Dw−1w1λ,w−1w2λ.

In particular, τw,q maps the quantum analogues of specific determinantal identities, called
the quantum T -system, in Aq[N−(w)] to those in Aq[N−(w−1)].

Note that the quantum T -systems are specific mutation sequences consisting of unipo-
tent quantum minors from the viewpoint of quantum cluster algebras.

Quantum BFZ-twist automorphisms: Berenstein-Rupel constructed a quantum ana-
logue of the BFZ-twist automorphism on Aq[N

w
− ] in the case that w is a square of Coxeter

elements, by using quantum cluster algebra structures [5, Theorem 2.10]. In this thesis,
we construct a quantum analogue ηw,q of the BFZ-twist automorphism η∗w on an arbitrary
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quantum unipotent cell Aq[N
w
− ] without referring quantum cluster algebra structures. Our

construction depends on the relations between the structure of quantum unipotent sub-
groups, quantum unipotent cells and a quantum analogue of the coordinate algebra of
G. We present the explicit form of our quantum BFZ-twist automorphisms here. Since
Aq[N

w
− ] is some localization of a quotient algebra of Aq[N−], there exists the element

[Du,u′ ] ∈ Aq[N
w
− ] derived from Du,u′ ∈ Aq[N−] for every u, u′ ∈ V (λ), λ ∈ P+:

Theorem (Theorem III.1.42). Let w ∈ W . There exists a Q(q)-algebra automorphism
ηw,q : Aq[N

w
− ]→ Aq[N

w
− ] given by

[Du,uλ ] 7→ q−(λ,wtu−λ)[Dwλ,λ]
−1[Duwλ,u], [Dwλ,λ]

−1 7→ q(λ,wλ−λ)[Dwλ,λ]

for a weight vector u ∈ V (λ) and λ ∈ P+. Here wtu denotes the weight of u and ( , ) is
the standard bilinear form on h∗.

We call ηw,q the quantum BFZ-twist automorphism on Aq[N
w
− ]. Actually, it is shown in

[37, Corollary 5.5] that this automorphism ηw,q coincides with the BFZ-twist automorphism
η∗w : C[Nw

− ]→ C[Nw
− ] when we consider an appropriate specialization to q = 1. Our aim is

to study the compatibility between quantum BFZ-twist automorphisms and dual canonical

bases. We define naturally the dual canonical basis B̃up,w of Aq[N
w
− ] (Definition III.1.35)

and prove the following.

Theorem (Theorem III.1.42). The quantum BFZ-twist automorphism ηw,q is restricted

to a permutation on B̃up,w.

Since this is a permutation, we can consider the iterated application of quantum BFZ-
twist automorphisms, and the “orbit” of dual canonical basis elements. In fact, we prove
that, if w is a longest element w0 of W , then ηw0,q has “6-periodicity” (Theorem III.1.45).
The necessary and sufficient condition for such periodicity is unclear. When g is symmetric,
the periodicity is categorified as the “periodicity” of (relative) syzygy functors on represen-
tations of preprojective algebras via Geiß-Leclerc-Schröer’s additive categorification, which
is our next topic. In fact, “6-periodicity” is a well-known property in such context.

We next show an additive categorification of quantum BFZ-twist automorphisms in the
sense of Geiß-Leclerc-Schröer. Here we assume that g is symmetric. In particular, we show
that quantum BFZ-twist automorphisms preserve quantum cluster monomials.

Geiß-Leclerc-Schröer have categorified the (non-quantum) BFZ-twist automorphisms
[19] and quantum cluster algebra structures on quantum unipotent subgroups (and quan-
tum unipotent cells) [20] by using representations of the preprojective algebra Π associated
with g. They used specific full subcategories Cw, w ∈ W of Π-modules which are intro-
duced by Buan-Iyama-Reiten-Scott [8] and independently by Geiß-Leclerc-Schröer [17] for
specific w. Lusztig’s construction [43] of C[N−] = (U(n−))∗gr associates each X ∈ Cw
with a regular function [ϕX ] ∈ C[Nw

− ]. There exists a quantum analogue YR ∈ Aq[N
w
− ]

of [ϕR] ∈ C[Nw
− ] if R ∈ Cw is a reachable Π-module in the sense of [18, 20]. In terms of

quantum cluster algebras, the elements YR correspond to the quantum cluster monomials.
If R is projective-injective in Cw (in fect, Cw is a Frobenius category), then YR is invertible
in Aq[N

w
− ]. For X ∈ Cw, I(X) denotes the injective hull of X in Cw and Ω−1

w (X) denotes
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the cokernel of the corresponding embedding X → I(X). Then we prove the following
theorem:

Theorem (Theorem III.2.20). Let w ∈ W . Then for every reachable Π-module R ∈ Cw,
we have

ηw,q(YR) ' Y −1
I(R)YΩ−1

w (R).

Here ' stands for the coincidence up to some powers of q.

This result is a quantum analogue of Geiß-Leclerc-Schröer’s result in [19, Theorem 6]
(Proposition III.2.19) and we actually use their result essentially in our proof. This is
regarded as an additive categorification of the quantum BFZ-twist automorphisms. An
important corollary is the following (Corollary III.2.21): for a reachable Π-module R ∈ Cw,
YR is a dual canonical basis element if and only if YΩ−1

w (R) is so. Therefore the property that
a quantum cluster monomial belongs to dual canonical basis is preserved in an “orbit” of
syzygy functors. Actually, Kang-Kashiwara-Kim-Oh have shown that all quantum cluster
monomials belong to the dual canonical bases by using a categorification via representations
of quiver Hecke algebras [27], [28]. Hence we have already known that every YR is a dual
canonical basis element. However, the understanding of the orbits of syzygy functors may
provide another approach to this strong result. Indeed, there is now no proof of it through
the additive categorification. It would be interesting to determine the dual canonical basis
elements obtained from the corollary above and, for example, quantum T -systems.

At last, we consider quantum analogues of the “factorization problems” for unipotent
cells as mentioned above. These problems are considered by Berenstein, Fomin and Zelevin-
sky in [4], [6] in order to study the totally positive elements in Schubert cells. Here we
explain them in non-quantum settings. Let {αi (resp. hi) | i ∈ I} be the set of simple roots
(resp. simple coroots), {si | i ∈ I} ⊂ W the set of simple reflections, {$i | i ∈ I} ⊂ P+

the set of fundamental weights, that is, 〈hi, $j〉 = δij for i, j ∈ I. Denote by fi a root
vector of g corresponding to −αi, by yi : C→ N−, t 7→ exp(tfi) the 1-parameter subgroup
corresponding to fi. For w ∈ W , denote by `(w) the length of w and by I(w) ⊂ I`(w) the
set of the reduced words of w. For w ∈ W and i = (i1, . . . , i`) ∈ I(w), there exists a map
yi : (C×)` → Nw

− given by

(t1, . . . , t`) 7→ exp(t1fi1) · · · exp(t`fi`).

Then it is known that yi is a birational map. The problem on finding an explicit description
of the inverse birational map y−1

i is called the factorization problem. By the way, if n ∈ Nw
−

is in the image of yi and y−1
i (n) ∈ R`

>0, then n is called a totally positive element in Nw
− .

This problem is also formulated in terms of coordinate algebras: the map yi induces an
embedding of algebras

y∗i : C[Nw
− ]→ C[t±1

1 , . . . , t±1
` ].

The problem is to describe explicitly each tk (k = 1, . . . , `) as a rational function on Nw
− .

Berenstein, Fomin and Zelevinsky solved this problem by using generalized minors and
the BFZ-twist automorphisms [4], [6]. Indeed, this problem is the original motivation
for the BFZ-twist automorphisms. The resulting formulae are called the Chamber Ansatz
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formulae [4, Theorem 1.4], [6, Theorem 1.4]. We present the exact quantum analogue of
them below. We already have the quantum analogues of the coordinate algebra C[Nw

− ],
generalized minors and the BFZ-twist automorphism η∗w. Actually, there also exists a
quantum analogue of the embedding y∗i : C[Nw

− ] → C[t±1
1 , . . . , t±1

` ], which is known as a
Feigin homomorphism. This is an injective Q(q)-algebra homomorphism Φi : Aq[N

w
− ] →

Li, where Li is a “non-commutative” Laurent polynomial algebra(=a quantum torus) in
`-variables t1, · · · t`. By using these materials, we obtain the following exact quantum
analogues of the Chamber Ansatz formulae.

Theorem (Theorem III.3.6, Corollary III.3.9). Let w ∈ W and i = (i1, . . . , i`) ∈ I(w).
For j = 1, . . . , `, set w≤j = si1 · · · sij . Then, for k = 1, . . . , `, we have

(Φi ◦ η−1
w,q)([Dw≤k$ik ,$ik

])(=: D′ (i)w≤k$ik ,$ik
) ' t−d1

1 t−d2
2 · · · t−dkk ,

where dj := 〈w≤jhij , w≤k$ik〉, j = 1, . . . , k. Here ' stands for the coincidence up to some
powers of q. These formulae are equivalent to the following:

tk ' (D′ (i)w≤k−1$ik ,$ik
)−1(D′ (i)w≤k$ik ,$ik

)−1
∏

j∈I\{ik}

(D′ (i)w≤k$j ,$j
)−aj,ik ,

here aij := 〈hi, αj〉 for i, j ∈ I. Note that the right-hand side is determined up to powers
of q.

This is a generalization of Berenstein-Rupel’s result [5, Corollary 1.2]. By this the-
orem, we can say that the quantum BFZ-automorhisms in this thesis are generalization
of Berenstein-Rupel’s quantum twist automorphisms [5, Theorem 2.10], which has been
constructed in the case that w is a square of a Coxeter element. Hence the quantum
BFZ-automorhisms ηw,q are the ones predicted in [5, Conjecture 2.12 (c)]. Moreover,
their compatibility with dual canonical bases corresponds to [5, Conjecture 2.17 (a)]. We
should remark that they treat quantum unipotent cells as subalgebras of quantum Lau-
rent polynomial algebras via Feigin homomorphisms and construct quantum BFZ-twist
automorphisms by using quantum cluster algebra structures defined in quantum Laurent
polynomial algebras. We hope that this result provides the new interesting tools for the
study of quantum cluster algebra structure of quantum unipotent subgroups and quan-
tum unipotent cells. For example, by Feigin homomorphisms and the Chamber Ansatz
formulae, we can obtain an expression of an element of Aq[N

w
− ] as a Laurent polynomial

in variables {η−1
w,q([Dw≤k$ik ,$ik

]) | k = 1, . . . , `}.

Further questions

In this thesis, we consider quantum analogues of Chamber Ansatz formulae only for
unipotent cells. There are the Chamber Ansatz formulae for double Bruhat cells [14],
and they are the original motivation for FZ-twist maps. The quantum analogue of their
Chamber Ansatz formulae may be interesting for the theory of quantum cluster algebra
structures on quantum double Bruhat cells. By the way, the quantum cluster algebra
structures on quantum double Bruhat cells are obtained in [22] and they consider quantum
analogues of FZ-twist maps for double Bruhat cells.
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It would be also interesting to explain the existence of the quantum FZ-twist maps via
categorifications.

Since the quantum BFZ-twist automorphism ηw,q is an automorphism, we can apply
ηw,q on Aq[N

w
− ] repeatedly. Moreover we should remark that the image of a unipotent

quantum minor under the quantum BFZ-twist automorphism is not necessarily a unipotent
quantum minor. Hence, roughly speaking, we can obtain the “difficult” dual canonical
basis elements from the “easy” dual canonical basis elements by iterated application of
quantum BFZ-twist automorphisms. Therefore it would be interesting to investigate how
“many” dual canonical basis elements are obtained from unipotent quantum minors and
their appropriate monomials by this procedure. Theorem III.1.45 is considered as a result
related with this investigation.

It is also unclear whether quantum BFZ-twist automorphisms are categorified by using
finite dimensional representations of quantum affine algebras or quiver Hecke algebras.
In particular, it is unknown that quantum BFZ-twist automorphisms preserve the basis
coming from the simple modules of quiver Hecke algebras.

The Chamber Ansatz formulae for quantum unipotent cells state the monomiality of
(Φi ◦ η−1

q,w)([Dw≤k$ik ,$ik
]). This is a non-trivial point, and it would be interesting to un-

derstand this phenomenon via categorifications. Actually, in non-quantum settings, Geiß-
Leclerc-Schröer have obtained an explanation by using their additive categorification [19].



CHAPTER I

Preliminaries

In this chapter, we fix our basic notations and summarize known properties of quantized
enveloping algebras, quantized coordinate algebras, canonical bases and quantum cluster
algebras. In Section I.1, we review the several objects related with quantized enveloping
algebras, which are our main subjects. In Section I.2, we prepare the fundamental notions
concerning quantum cluster algebras, which are algebraic and combinatorial frameworks
for the study of canonical bases.

General notation

The following are general notations in this thesis.

(1) For a vector space V over a field k, set V ∗ := Homk(V, k). Denote by 〈 , 〉 : V ∗ ×
V → k, (f, u) 7→ 〈f, u〉 the canonical pairing.

(2) For a k-algebra A , we set [a1, a2] := a1a2− a2a1 for a1, a2 ∈ A . An Ore set M of
A stands for a left and right Ore set consisting of non-zero divisors. Denote by
A [M−1] the algebra of fractions with respect to the Ore set M . In this case, A
is naturally a subalgebra of A [M−1]. See [21, Chapter 6] for more details.

(3) An A -module V means a left A -module. The action of A on V is denoted by
a.v for a ∈ A and v ∈ V . In this case, V ∗ is regarded as a right A -module by
〈f.a, v〉 = 〈f, a.v〉 for f ∈ V ∗, a ∈ A and v ∈ V .

(4) For two letters i, j, the symbol δij stands for the Kronecker delta.

I.1. Quantized enveloping algebras

Quantum analogues of Fomin-Zelevinsky twist maps, which will be treated in Chapter
II, are the Q(q)-anti-algebra isomorphisms between quantum unipotent subgroups. In
subsection I.1.8, we present the definition of quantum unipotent subgroups. Quantum
analogues of Berenstein-Fomin-Zelevinsky twist maps, which will be dealt with in Chapter
III, are Q(q)-algebra automorphisms on quantum unipotent cells. In subsection I.1.9,
we present the definition of “closed version” of quantum unipotent cells. To obtain the
“non-closed version”, we consider localizations of these objects, which will be presented in
Chapter III.

I.1.1. Lie theoretic setups.

Definition I.1.1. A root datum consists of the following data;

(1) I : a finite index set,
(2) h : a finite dimensional Q-vector space,

9
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(3) P ⊂ h∗ : a lattice, called weight lattice,
(4) P ∗ = {h ∈ h | 〈h, P 〉 ⊂ Z} with the canonical pairing 〈 , 〉 : P ∗ × P → Z, called

the coweight lattice,
(5) {αi}i∈I ⊂ P : a subset, called the set of simple roots,
(6) {hi}i∈I ⊂ P ∗ : a subset, called the set of simple coroots,
(7) ( , ) : P × P → Q : a Q-valued symmetric Z-bilinear form on P .

satisfying the following conditions:

(a) (αi, αi) ∈ 2Z>0 for i ∈ I,
(b) 〈hi, λ〉 = 2 (αi, λ) / (αi, αi) for λ ∈ P and i ∈ I,
(c) A = (aij)i,j∈I := (〈hi, αj〉)i,j∈I is a symmetrizable generalized Cartan matrix,

that is 〈hi, αi〉 = 2, 〈hi, αj〉 ∈ Z≤0 for i 6= j and, 〈hi, αj〉 = 0 is equivalent to
〈hj, αi〉 = 0,

(d) {αi}i∈I ⊂ h∗, {hi}i∈I ⊂ h are linearly independent subsets.

The Z-submodule Q =
∑

i∈I Zαi ⊂ P is called the root lattice, Q∨ =
∑

i∈I Zhi ⊂ P ∗

is called the coroot lattice. We set Q+ =
∑

Z≥0αi ⊂ Q and Q− = −Q+. For α =∑
i∈I miαi ∈ Q, we set ht (α) =

∑
i∈I mi ∈ Z.

Let P+ := {λ ∈ P | 〈hi, λ〉 ∈ Z≥0 for all i ∈ I} and we assume that there exists {$i}i∈I ⊂
P+ such that 〈hi, $j〉 = δij. An element of P+ is called a dominant integral weight. Set
ρ :=

∑
i∈I $i ∈ P+. Then 〈hi, ρ〉 = 1 and (αi, ρ) = (αi, αi)/2 for all i ∈ I.

Fix elements {$∨i }i∈I ⊂ h such that 〈$∨i , αj〉 = δij for i, j ∈ I. We do not assume that
{$∨i }i∈I ⊂ P ∗.

Definition I.1.2. Let W be the Weyl group associated with the above root datum,
that is, the group generated by {si}i∈I with the defining relations s2

i = e for i ∈ I and
(sisj)

mij = e for i, j ∈ I, i 6= j. Here e is the unit of W , mij = 2 (resp. 3, 4, 6,∞)
if aijaji = 0 (resp. 1, 2, 3,≥ 4), and w∞ := e for any w ∈ W . We have the group
homomorphisms W → Aut h and W → Aut h∗ given by

si (h) = h− 〈h, αi〉hi si (µ) = µ− 〈hi, µ〉αi
for h ∈ h and µ ∈ h∗. For an element w of W , `(w) denotes the length of w, that is, the
smallest integer ` such that there exist i1, . . . , i` ∈ I with w = si1 · · · si` . For w ∈ W , set

I(w) := {i = (i1, . . . , i`(w)) ∈ I`(w) | w = si1 · · · si`(w)
}.

Here we set I(e) := {∅}. An element of I(w) is called a reduced word of w.

I.1.2. Notations for non-quantum objects. In this thesis, we do not deal with
specializations of quantum objects to non-quantum objects. Nevertheless, when describ-
ing quantum objects, we use notations of non-quantum objects to clarify non-quantum
counterparts. Hence we explain them here. However, since we do not need those objects
logically, we drop their precise definitions. See, for example, [37] for precise definitions
and specializations of quantum objects.

Let g := g(A) be the Kac-Moody Lie algebra associate with the symmetrizable gen-
eralized Cartan matrix A, and G a corresponding Kac-Moody group. Denote by Φ+ the
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set of positive roots of g and set n± :=
⊕

β∈Φ+
g±β, n̂± :=

∏
β∈Φ+

g±β. Here g±β denotes

the root space of ±β. Let N±(⊂ G) be the pro-unipotent pro-group whose pro-nilpotent
pro-Lie algebra is n̂±. Let H(⊂ G) the algebraic torus whose character lattice is P . Write
B± := HN±. Set

G0 := N−HN+

N−(w) := N− ∩ ẇN+ẇ
−1

Nw
− := N− ∩B+ẇB+

X(w) :=
⋃

w′∈W ;w′≤w

B+ẇ
′B+/B+

for w ∈ W . Here ẇ′′ is an arbitrary lift of w′′ ∈ W to G, and ≤ denotes the Bruhat order on
W . Then N−(w) (resp. Nw

− , X(w)) is called the unipotent subgroup (resp. the unipotent cell,
the Schubert variety) associated with w. In this thesis, we deal with quantum analogues
of coordinate algebras of these objects and intersections of some of them.

I.1.3. Quantized enveloping algebras. In this subsection, we present the defini-
tions of quantized enveloping algebras and their variants.

Notation I.1.3. Let q be an indeterminate. Set

qi := q
(αi,αi)

2 , [n] :=
qn − q−n

q − q−1
for n ∈ Z,[

n
k

]
:=


[n][n− 1] · · · [n− k + 1]

[k][k − 1] · · · [1]
if n ∈ Z, k ∈ Z>0,

1 if n ∈ Z, k = 0,
[n]! := [n][n− 1] · · · [1] for n ∈ Z>0, [0]! := 1.

Note that [n],

[
n
k

]
∈ Z[q±1] and

[
n
k

]
=

[n]!

[k]![n− k]!
if n ≥ k ≥ 0. For a rational function

R ∈ Q(q), we define Ri as the rational function obtained from X by substituting q by qi,
i ∈ I.

Definition I.1.4. The quantized enveloping algebra Uq(:= Uq(g)) is the unital asso-
ciative Q(q)-algebra (associated with (P, I, {αi}i∈I , {hi}i∈I , ( , ))) defined by the generators

ei, fi (i ∈ I), qh (h ∈ P ∗),
and the relations (i)–(iv) below:

(i) q0 = 1, qhqh
′
= qh+h′ for h, h′ ∈ P ∗,

(ii) qhei = q〈h,αi〉eiq
h, qhfi = q−〈h,αi〉fiq

h for h ∈ P ∗, i ∈ I,

(iii) [ei, fj] = δij
ti − t−1

i

qi − q−1
i

for i, j ∈ I where ti := q
(αi,αi)

2
hi ,

(iv)

1−aij∑
k=0

(−1)k
[

1− aij
k

]
i

xki xjx
1−aij−k
i = 0 for i, j ∈ I with i 6= j, and x = e, f .
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The Q(q)-subalgebra of Uq generated by {ei}i∈I (resp. {fi}i∈I , {qh}h∈P ∗ , {ei, qh}i∈I,h∈P ∗ ,
{fi, qh}i∈I,h∈P ∗) will be denoted by U+

q (resp. U−q , U0
q, U≥0

q , U≤0
q ). For α =

∑
i∈I miαi ∈ Q,

mi ∈ Z, we set tα :=
∏

i∈I t
mi
i . In particular, tαi = ti for i ∈ I.

For α ∈ Q, write (Uq)α := {x ∈ Uq | qhxq−h = q〈α,h〉x for all h ∈ P ∗}. The elements
of (Uq)α are said to be homogeneous. For a homogeneous element x ∈ (Uq)α, we set
wtx = α. For any subset X ⊂ Uq and α ∈ Q, we set Xα := X ∩ (Uq)α.

The algebra Uq has a Hopf algebra structure. In this thesis, we take the coproduct
∆: Uq → Uq ⊗Uq, the counit ε : Uq → Q(q) and the antipode S : Uq → Uq as follows:

∆ (ei) = ei ⊗ t−1
i + 1⊗ ei, ε (ei) = 0, S (ei) = −eiti,

∆ (fi) = fi ⊗ 1 + ti ⊗ fi, ε (fi) = 0, S (fi) = −t−1
i fi,

∆
(
qh
)

= qh ⊗ qh, ε
(
qh
)

= 1, S
(
qh
)

= q−h.

for i ∈ I, h ∈ P ∗.
For i ∈ I, define Uq,i as the Hopf subalgebra of Uq generated by {ei, fi, t±1

i }. Denote
by ιi : Uq,i ↪→ Uq the natural inclusion of a Hopf algebra.

Definition I.1.5. Let ∨ : Uq → Uq be the Q(q)-algebra, anti-coalgebra involution
defined by

e∨i = fi, f∨i = ei,
(
qh
)∨

= q−h.

Let : Q(q)→ Q(q), : Uq → Uq be the Q-algebra involutions defined by

q = q−1, ei = ei, fi = fi, qh = q−h.

Let ∗, ϕ, ψ : Uq → Uq be the Q (q)-anti-algebra involutions defined by

∗(ei) = ei, ∗(fi) = fi, ∗
(
qh
)

= q−h,

ϕ (ei) = fi, ϕ (fi) = ei, ϕ
(
qh
)

= qh

ψ (ei) = q−1
i t−1

i fi, ψ (fi) = q−1
i tiei, ψ

(
qh
)

= qh.

Remark that ψ is also a Q(q)-coalgebra homomorphism, and ϕ = ∨ ◦ ∗ = ∗ ◦ ∨.

Definition I.1.6. For i ∈ I, define the Q(q)-linear maps e′i and ie
′ : U−q → U−q by

e′i (xy) = e′i (x) y + q
〈hi,wtx〉
i xe′i (y) , e′i(fj) = δij,

ie
′ (xy) = q

〈hi,wt y〉
i ie

′ (x) y + xie
′ (y) , ie

′(fj) = δij

for homogeneous elements x, y ∈ U−q . For i ∈ I, define the Q(q)-linear maps f ′i and

if
′ : U+

q → U+
q by

f ′i (xy) = f ′i (x) y + q
−〈hi,wtx〉
i xf ′i (y) , f ′i(ej) = δij,

if
′ (xy) = q

−〈hi,wt y〉
i if

′ (x) y + xif
′ (y) , if

′(ej) = δij

for homogeneous elements x, y ∈ U+
q . We have ∗ ◦ ie′ ◦ ∗|U−q = e′i and ∗ ◦ if ′ ◦ ∗|U+

q
= f ′i .

Moreover ∨ ◦ f ′i ◦ ∨|U−q = e′i and ∨ ◦ if ′ ◦ ∨|U+
q

= ie
′.
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In this thesis, we use the following variant Ǔq of the quantized enveloping algebra Uq.

Definition I.1.7. A variant Ǔq of the quantized enveloping algebra Uq is the unital
associative Q(q)-algebra defined by the generators

ei, fi (i ∈ I), qµ (µ ∈ P ),

and the relations (i)–(iv) below:

(i) q0 = 1, qµqµ
′
= qµ+µ′ for µ, µ′ ∈ P ,

(ii) qµei = q(µ,αi)eiq
µ, qµfi = q−(µ,αi)fiq

µ for µ ∈ P, i ∈ I,

(iii) [ei, fj] = δij
ti − t−1

i

qi − q−1
i

for i, j ∈ I where ti := qαi (abuse of notation),

(iv)

1−aij∑
k=0

(−1)k
[

1− aij
k

]
i

xki xjx
1−aij−k
i = 0 for i, j ∈ I with i 6= j, and x = e, f .

The Q(q)-algebra Ǔq has a Hopf algebra structure given by the same formulae as Uq. The
notions, notations and maps defined in Definition I.1.4 and I.1.5 are immediately translated
into those for Ǔq. Note that Ǔ±q can be identified with U±q respectively in an obvious way.

Notation I.1.8. Set x
(n)
i := xni /[n]i! ∈ Uq for i ∈ I, n ∈ Z≥0 and x = e, f .

I.1.4. Drinfeld pairings and Lusztig pairings. Some nondegenerate bilinear forms
play a role of bridges between quantized enveloping algebras and their dual objects. The
maps in Definition I.1.16 are important for our study of quantized coordinate algebras.

Proposition I.1.9 ([12], [47]). There uniquely exists a Q(q)-bilinear map ( , )D : Ǔ≥0
q ×

U≤0
q → Q(q) such that

(i) (∆(x), y1 ⊗ y2)D = (x, y1y2)D for x ∈ Ǔ≥0
q , y1, y2 ∈ U≤0

q ,

(ii) (x2 ⊗ x1,∆(y))D = (x1x2, y)D for x1, x2 ∈ Ǔ≥0
q , y ∈ U≤0

q ,

(iii) (ei, q
h)D = (qλ, fi)D = 0 for i ∈ I and h ∈ P ∗, λ ∈ P ,

(iv) (qλ, qh)D = q−〈λ,h〉 for λ ∈ P, h ∈ P ∗,
(v) (ei, fj)D = −δij

1

qi − q−1
i

for i, j ∈ I.

This bilinear form is called the Drinfeld pairing. It has the following properties:

(1) For α, β ∈ Q+, ( , )D |(Ǔ≥0
q )α×(U≤0

q )−β
= 0 unless α = β.

(2) ( , )D|(U+
q )α×(U−q )−α

is nondegenerate.

(3) (qλx, qhy)D = q−〈λ,h〉(x, y)D for λ ∈ P, h ∈ P ∗ and x ∈ U+
q , y ∈ U−q .

Definition I.1.10. Define the Q(q)-bilinear form ( , )L : U−q ×U−q → Q(q) by (x, y)L :=
(ψ(x), y)D for x, y ∈ U−q . Then this bilinear form satisfies

(1, 1)L = 1, (fix, y)L =
1

1− q2
i

(x, e′i(y))L, (xfi, y)L =
1

1− q2
i

(x, ie
′(y))L.
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This is a symmetric bilinear form, called the Lusztig pairing. The bilinear form ( , )L is
the unique symmetric Q(q)-bilinear form satisfying the properties above. Moreover, ( , )L
is nondegenerate and has the following property:

(I.1) (∗(x), ∗(y))L = (x, y)L

for all x, y ∈ U−q .

Define the Q(q)-bilinear form ( , )+
L : U+

q × U+
q → Q(q) by (x, y)+

L := (x, ψ(y))D for
x, y ∈ U+

q . Then this bilinear form satisfies

(1, 1)+
L = 1, (eix, y)+

L =
1

1− q2
i

(x, f ′i(y))+
L , (xei, y)+

L =
1

1− q2
i

(x, if
′(y))+

L .

The forms ( , )L and ( , )+
L are related as follows:

(x, y)L = (x∨, y∨)
+
L(I.2)

for all x, y ∈ U−q .

The following dual bar involution is useful for the study of dual canonical bases. We also
prepare the twisted dual bar involution, which is compatible with the algebra structure of
U−q .

Definition I.1.11. For a homogeneous x ∈ U−q , we define σ (x) = σL (x) ∈ U−q by the
property that

(σ (x) , y)L = (x, y)L
for an arbitrary y ∈ U−q . By the nondegeneracy of ( , )L, the element σ (x) is well-defined.
This map σ : U−q → U−q is called the dual bar involution.

The following proposition can be proved in the same manner as [34, Proposition 3.2].

Proposition I.1.12. For a homogeneous element x ∈ U−q , we have

σ (x) = (−1)ht(wtx) q(wtx,wtx)/2−(wtx,ρ) ( ◦ ∗) (x) .

In particular, for homogeneous elements x, y ∈ U−q , we have

σ(xy) = q(wtx,wt y)σ(y)σ(x).

Definition I.1.13. Define a Q(q)-linear isomorphism ctw : U−q → U−q by

x 7→ q(wtx,wtx)/2−(wtx,ρ)x

for every homogeneous element x ∈ U−q . Set σ′ := c−1
tw ◦ σ : U−q → U−q . We call σ′ the

twisted dual bar involution. By Proposition I.1.12, σ′(x) = (−1)ht(wtx) ( ◦ ∗)(x) for every
homogeneous element x ∈ U−q . In particular, σ′ is a Q-anti-algebra involution.

Remark I.1.14. Let x ∈ U−q be a homogeneous element. Then,

σ(x) = x if and only if σ′(x) = q−(wtx,wtx)/2+(wtx,ρ)x.

We prepare a convenient lemma here. See also Definition I.1.16.



I.1. QUANTIZED ENVELOPING ALGEBRAS 15

Lemma I.1.15. For µ ∈ P , h ∈ P ∗, y1, y2 ∈ U−q and x1, x2 ∈ U+
q , we have

(ψ(y1q
µ), y2q

h)D = q−〈µ,h〉(y1, y2)L, (x1q
µ, ψ(x2q

h))D = q−〈µ,h〉(x1, x2)+
L .

Proof. We have

(ψ(y1q
µ), y2q

h)D = (qµψ(y1), y2q
h)D

= (ψ(y1)⊗ qµ,∆(y2)∆(qh))D

= (ψ(y1)⊗ qµ, y2q
h ⊗ qh)D

= q−〈µ,h〉(ψ(y1), y2q
h)D

= q−〈µ,h〉(ψ(y1), y2q
h)D

= q−〈µ,h〉((ψ ⊗ ψ)(∆(y1)), y2 ⊗ qh)D
= q−〈µ,h〉((ψ ⊗ ψ)(y1 ⊗ 1), y2 ⊗ qh)D = q−〈µ,h〉(y1, y2)L.

The second equality is proved in the same manner. �

The following maps connect the algebra structures of (half) quantized enveloping alge-
bras with those of their dual spaces. Note that the dual space of coalgebras have algebra
structures dual to their coalgebra structures.

Definition I.1.16. Define the following linear maps:

Φ: Ǔ≤0
q → (U≤0

q )∗, y1 7→ (y2 7→ (ψ(y1), y2)D) ,

Φ+ : Ǔ≥0
q → (U≥0

q )∗, x1 7→ (x2 7→ (x1, ψ(x2))D) .

By the properties of the Drinfeld pairing, Φ is an injective algebra homomorphism and Φ+

is an injective anti-algebra homomorphism.

I.1.5. Quantized coordinate algebras. We use quantized coordinate algebras as-
sociated with Uq and their subalgebras when constructing quantum analogues of the
Berenstein-Fomin-Zelevinsky automorphisms in Chapter III. We begin with preparation
of the terminologies for representations of Uq.

Definition I.1.17. Let V be a left (resp. right) Uq-module. For µ ∈ P , we set

Vµ := {u ∈ V | qh.u = q〈h,µ〉u (resp. u.qh = q〈h,µ〉u) for all h ∈ P ∗}.

This is called the weight space of V of weight µ, and for u ∈ Vµ, we write wtu := µ. For
a Uq-module V =

⊕
µ∈P Vµ with weight space decomposition, its graded dual

⊕
µ∈P V

∗
µ is

denoted by V ?. Recall that V ? is a right Uq-module.

Definition I.1.18. A left (resp. right) Uq-module V is said to be integrable if

• V has the weight space decomposition V =
⊕

µ∈P Vµ, and
• for every i ∈ I, the actions of ei and fi on V are locally nilpotent, or equivalently

dimQ(q) Uq,i.u <∞ (resp. dimQ(q) u.Uq,i <∞) for all u ∈ V .
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Let λ ∈ P+. The integrable irreducible Uq-module with highest (resp. lowest) weight
λ (resp. −λ) is denoted by V (λ) (resp. V (−λ)). We fix its highest (resp. lowest) weight
vector uλ (resp. u−λ). For w ∈ W , define the elements u±wλ ∈ V (±λ) by

uwλ = f
(〈hi1 ,si2 ···si`λ〉)
i1

· · · f
(〈hi`−1

,si`λ〉)
i`−1

f
(〈hi` ,λ〉)
i`

.uλ

u−wλ = e
(〈hi1 ,si2 ···si`λ〉)
i1

· · · e
(〈hi`−1

,si`λ〉)
i`−1

e
(〈hi` ,λ〉)
i`

.u−λ

for (i1, . . . , i`) ∈ I(w). It is known that these elements do not depend on the choice of
(i1, . . . , i`) ∈ I(w) and w ∈ W . See, for example, [44, Proposition 39.3.7]. These vectors
u±wλ are called the extremal weight vectors of weight ±wλ.

Definition I.1.19. Let λ ∈ P+ ∪ (−P+). Then there exists a unique nondegenerate
symmetric Q(q)-bilinear form ( , )ϕλ on V (λ) such that

(uλ, uλ)
ϕ
λ = 1 (x.u, u′)ϕλ = (u, ϕ(x).u′)ϕλ

for u, u′ ∈ V (λ) and x ∈ Uq. For u ∈ V (λ), we set u∗ := (u′ 7→ (u, u′)ϕλ) ∈ V (λ)∗. Note that
(uwλ, uwλ)

ϕ
λ = 1 for all w ∈ W . Set fwλ := u∗wλ ∈ V (λ). Note that V (λ)? = {u∗ | u ∈ V (λ)}.

Definition I.1.20. Let V be a Uq-module. For f ∈ V ∗ and u ∈ V , define the element
cVf,u ∈ U∗q by

x 7→ 〈f, x.u〉
for x ∈ Uq. An element of this form is called a (quantum) matrix coefficient. For λ ∈ P ,

a matrix coefficient c
V (λ)
f,u will be briefly denoted by cλf,u. Moreover, for w,w′ ∈ W and

λ ∈ P+, we write
cλwλ,w′λ := cλfwλ,uw′λ .

Definition I.1.21. The quantized coordinate algebra Rq := Rq(g) associated with Uq

is the Q(q)-vector subspace of U∗q spanned by the elements{
cλf,u | f ∈ V (λ)?, u ∈ V (λ) and λ ∈ P+

}
.

Then Rq is a subalgebra of U∗q, and isomorphic to
⊕

λ∈P+
V (λ)?⊗ V (λ) as a Uq-bimodule

[33, Chapter 7]. This isomorphism is known as the Peter-Weyl isomorphism. Here the
Uq-bimodule structure on U∗q (and Rq) is given by 〈(x.F.y), z〉 = 〈F, yzx〉 for F ∈ U∗q
and x, y, z ∈ Uq. Recall that the algebra structure of U∗q is induced from the coalgebra
structure of Uq.

Example I.1.22. In type A case, the quantized coordinate algebra Rq(sln) is isomor-
phic to the unital associative Q(q)-algebra with the generators {cij}i,j=1,...,n and the follwing
defining relations:

(i) cijcik = qcikcij if j < k,
(ii) cijckj = qckjcij if i < k,
(iii) [cij, ck`] = 0 if i < k, j > `,
(iv) cijck` − ck`cij = (q − q−1)ci`ckj if i < k, j < `,
(v)

∑
τ∈Sn(−q)`(τ)c1τ(1)c2τ(2) · · · cnτ(n) = 1, here Sn is the symmetric group of degree

n.
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In this case, we can identify the index set I of simple roots with {1, . . . , n − 1} in a
natural way, and then V ($1) is n-dimensional module. Write uk := fk−1 . . . f1.u$1(6= 0)
for k = 1, . . . , n. Then the cij (i, j = 1, . . . , n) above corresponds to the matrix coefficient
c$iui,uj in the Peter-Weyl type presentation. The relation (v) is nothing but the quantum

analogue of the condition that determinants are equal to 1. Hence Rq(sln) is a quantum
analogue of the coordinate algebra of SLn.

Here we define some subalgebras of the quantized coordinate algebra Rq. See, for
instance, [26, Chapter 9, 10], [48, Chapter 3].

Definition I.1.23. Let w,w′ ∈ W and λ ∈ P+. Set

Rw(+)
q (λ) := {cλf,uwλ | f ∈ V (λ)?} Rw(+)

q :=
∑
λ′∈P+

Rw(+)
q (λ′) ⊂ Rq,

Q
w(+)
w′ (λ) := {cλf,uwλ | f ∈ V (λ)?, 〈f,U+

q .uw′λ〉 = 0} Q
w(+)
w′ :=

∑
λ′∈P+

Q
w(+)
w′ (λ′) ⊂ Rq.

When w = e, we write R
e(+)
q (resp. Q

e(+)
w′ ) as R+

q (resp. Q+
w′). It is easy to show that,

for all w ∈ W , R
w(+)
q is a subalgebra of Rq, and isomorphic to R+

q as Q(q)-algebras via

cλf,uwλ 7→ cλf,uλ . Moreover, for w′, w ∈ W , Q
w(+)
w′ is a two-sided ideal of R

w(+)
q , and the

previous isomorphism induces the isomorphism from R
w(+)
q /Q

w(+)
w′ to R+

q /Q
+
w′ .

Definition I.1.24. The restriction map R≥0 : U∗q → (U≥0
q )∗ (resp. R≤0 : U∗q → (U≤0

q )∗)

induces the Q(q)-algebra homomorphism R≥0 : Rq → (U≥0
q )∗ (resp. R≤0 : Rq → (U≤0

q )∗).

We prepare a lemma for the definition of the map Ψ− in Definition I.1.26. This is the
argument in [26, Proposition 9.2.11].

Lemma I.1.25. Let F ∈ U∗q be an element such that F.qh = q〈λ,h〉F and qh.F = q〈µ,h〉F
for all h ∈ P ∗ and some λ, µ ∈ P . Then we have

R≤0(F ) ∈ Φ(Ǔ≤0
q ).

In particular, R≤0(Rq) ⊂ Φ(Ǔ≤0
q ).

Proof. For a homogeneous element x ∈ U−q , we have 〈F, x〉 = 0 unless wtx = λ − µ.
Since ( , )L |(U−q )λ−µ×(U−q )λ−µ

is nondegenerate, there uniquely exists xF ∈ (U−q )λ−µ such

that (xF , x)L = 〈F, x〉 for all x ∈ (U−q )λ−µ. Then, by Lemma I.1.15,

〈R≤0(F ), xqh〉 = q〈µ,h〉〈F, x〉 = q〈µ,h〉(xF , x)L = 〈Φ(xF q
−µ), xqh〉

for h ∈ P ∗ and x ∈ U−q . This proves the lemma. �

Definition I.1.26. By Lemma I.1.25, we can define an injective Q(q)-algebra homo-
morphism

Ψ− := Φ−1 |R≤0(Rq) : R≤0(Rq)→ Ǔ≤0
q .
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I.1.6. Lusztig’s braid group symmetries. In this subsection, we present the def-
inition of braid group actions on integrable modules and quantized enveloping algebras.
We also review the fundamental properties of them. All statements in this subsections are
found, for example, in [44], [46].

Definition I.1.27. Let V =
⊕

µ∈P Vµ be an integrable Uq-module. We can define a

Q(q)-linear automorphism Ti : V → V for i ∈ I by

Ti(u) :=
∑

−a+b−c=〈hi,µ〉

(−1)bq−ac+bi e
(a)
i f

(b)
i e

(c)
i .u

for u ∈ Vµ and µ ∈ P . Its inverse map is given by

T−1
i (u) =

∑
a−b+c=〈hi,µ〉

(−1)bqac−bi f
(a)
i e

(b)
i f

(c)
i .u

for u ∈ Vµ and µ ∈ P .

Definition I.1.28. We can define a Q (q)-algebra automorphism Ti : Uq → Uq for
i ∈ I by the following formulae:

Ti
(
qh
)

= qsi(h),

Ti (ej) =


−fiti for j = i,∑
r+s=−〈hi,αj〉

(−1)r q−ri e
(s)
i eje

(r)
i for j 6= i,

Ti (fj) =


−t−1

i ei for j = i,∑
r+s=−〈hi,αj〉

(−1)r qri f
(r)
i fjf

(s)
i for j 6= i.

Its inverse map is given by

T−1
i

(
qh
)

= qsi(h),

T−1
i (ej) =


−t−1

i fi for j = i,∑
r+s=−〈hi,αj〉

(−1)r q−ri e
(r)
i eje

(s)
i for j 6= i,

T−1
i (fj) =


−eiti for j = i,∑
r+s=−〈hi,αj〉

(−1)r qri f
(s)
i fjf

(r)
i for j 6= i.

The following are fundamental properties of Ti.

Proposition I.1.29. Let V be an integrable Uq-module.

(1) For i ∈ I, Ti(x.u) = Ti(x).Ti(u) for u ∈ V and x ∈ Uq.
(2) For w ∈ W , the composition maps Tw := Ti1 · · ·Ti` : V → V , Uq → Uq do not

depend on the choice of (i1, . . . , i`) ∈ I(w).
(3) For µ ∈ P and w ∈ W , Tw maps Vµ to Vwµ.
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(4) For i ∈ I, Ti ◦ ∨ ◦ = ∨ ◦ ◦ T−1
i on Uq.

Proposition I.1.30. Let V be an integrable Uq-module and i ∈ I. Then, for u ∈
Vµ ∩Ker(ei.) and u′ ∈ Vµ′ ∩Ker(fi.), we have

T−1
i (u) = f

(〈hi,µ〉)
i .u Ti(u

′) = e
(−〈hi,µ′〉)
i .u′.

In particular, for λ ∈ P+ and w ∈ W , we have

uwλ = (Tw−1)−1(uλ) u−wλ = Tw(u−λ).

We have the following invariance of the bilinear form ( , )L under the braid group
symmetry Ti.

Proposition I.1.31. (1) For i ∈ I, we have Ker e′i = U−q ∩ TiU−q and Ker ie
′ =

U−q ∩ T−1
i U−q .

(2) For i ∈ I and x, y ∈ Ker e′i, we have (x, y)L =
(
T−1
i (x), T−1

i (y)
)
L

.

I.1.7. Canonical/Dual canonical bases. We review basic properties of canoni-
cal/dual canonical bases of quantized enveloping algebras and highest weight integrable
modules. See, for example, [32] for the fundamental results on crystal bases and canon-
ical bases. We refer to [30] for the definition of the category of Kashiwara crystals

(B; wt, {εi}i∈I , {ϕi}i∈I , {ẽi}i∈I , {f̃i}i∈I) associated with (P, {αi}i∈I , {hi}i∈I).
Denote by B(∞) (resp. B(λ), λ ∈ P+) the crystal associated with U−q (resp. V (λ)).

The unique element of B(∞) with weight 0 is denoted by ũ∞, and the unique element of
B(λ) with weight wλ is denoted by uwλ for λ ∈ P+ and w ∈ W , by abuse of notation.

Set A := Q[q±1]. Denote by U−A the A-subalgebra of U−q generated by the elements

{f (n)
i }i∈I,n∈Z≥0

. Lusztig [40, 41, 44] and Kashiwara [29] have constructed the specific

Q(q)-basis Blow (resp. Blow(λ), λ ∈ P+) of U−q (resp. V (λ)), called the canonical basis (or

the lower global basis), which is also an A-basis of U−A (resp. VA(λ) := U−A.uλ). Moreover
the elements of Blow (resp. Blow(λ)) are parametrized by the Kashiwara crystal B(∞)

(resp. B(λ)). We write Blow = {G(b̃)}b̃∈B(∞) and Blow(λ) = {g(b)}b∈B(λ).

Notation I.1.32. Let i ∈ I and λ ∈ P+. For b ∈ B(λ) and b̃ ∈ B(∞), write

ẽmax
i b := ẽ

εi(b)
i b 6= 0 f̃max

i b := f̃
ϕi(b)
i b 6= 0 ẽmax

i b̃ := ẽ
εi(b̃)
i b̃ 6= 0.

Then ẽi(ẽ
max
i b) = 0, f̃i(f̃

max
i b) = 0 and ẽi(ẽ

max
i b̃) = 0.

Definition I.1.33. Denote by Bup (resp. Bup(λ), λ ∈ P+) the basis of U−q (resp. V (λ))

dual to Blow (resp. Blow(λ)) with respect to the bilinear form ( , )L (resp. ( , )ϕλ), that is,

Bup = {Gup(b̃)}b̃∈B(∞) (resp. Bup(λ) = {gup(b)}b∈B(λ)) such that

(G(b̃), Gup(b̃′))L = δb̃,b̃′ (resp. (g(b), gup(b′))ϕλ = δb,b′)

for any b̃, b̃′ ∈ B(∞) (resp. b, b′ ∈ B(λ)).
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Definition I.1.34. For λ ∈ P+, define a U−q -module surjective homomorphism πλ : U−q →
V (λ) by

πλ (y) = y.uλ.

Proposition I.1.35 ([29, Theorem 5, Lemma 7.3.2] ). Let λ ∈ P+. There exists a
surjective map πλ : B(∞)→ B(λ)

∐
{0} such that

πλ(G(b̃)) = g(πλ(b̃))

for b̃ ∈ B(∞), here g(0) = 0. Moreover πλ induces a bijection π−1
λ (B(λ))→ B(λ).

Definition I.1.36. Let λ ∈ P+. Define jλ : V (λ) ↪→ U−q as the dual homomor-
phism of πλ given by the nondegenerate bilinear forms ( , )ϕλ : V (λ) × V (λ) → Q (q)
and ( , )L : U−q ×U−q → Q (q), that is

(jλ (v) , y)L = (v, πλ (y))ϕλ = (v, y.uλ)
ϕ
λ .

Proposition I.1.37 ([29, Theorem 5]). There is an injective map λ : B (λ) ↪→ B (∞)
such that

(gup(b), G(b̃′).uλ)
ϕ
λ = δb̃′,λ(b)

for any b ∈ B (λ) and b̃′ ∈ B (∞). That is, we have jλ (gup (b)) = Gup (λ (b)).

Remark I.1.38. Let λ ∈ P+. Then,

• wt λ(b) = wt b− λ for b ∈ B(λ), and
• λ (πλ(b)) = b for b ∈ π−1

λ (B(λ)).

Proposition I.1.39 ([29, Lemma 7.3.4], ). For all b̃ ∈ B(∞), we have

G(b̃) = G(b̃)

Note that this implies

σ(Gup(b̃)) = Gup(b̃).

Proposition I.1.40 ([30, Theorem 2.1.1]). There exist bijections ∗ : B(∞) → B(∞)
such that

∗G(b̃) = G(∗b̃)
for b̃ ∈ B(∞). Note that this implies

∗Gup(b̃) = Gup(∗b̃).
See the equality (I.1).

Definition I.1.41. The bijections ∗ give new crystal structures on B(∞), defined by
the maps

wt∗ := wt ◦∗ = wt, ε∗i := εi ◦ ∗, ϕ∗i := ϕi ◦ ∗, ẽ∗i := ∗ ◦ ẽi ◦ ∗, f̃ ∗i := ∗ ◦ f̃i ◦ ∗.

Note that wt∗ = wt for B(∞). For b̃ ∈ B(∞), set (ẽ∗i )
maxb̃ := (ẽ∗i )

ε∗i (b̃)b̃ 6= 0. Then

ẽ∗i ((ẽ
∗
i )

maxb̃) = 0.
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Proposition I.1.42 ([32, Proposition 8.2]). Let λ ∈ P+. Then we have

λ(B(λ)) = {b̃ ∈ B(∞) | ε∗i (b̃) ≤ 〈hi, λ〉 for all i ∈ I}.

Proposition I.1.43 ([33, Lemma 5.1.1]). For i ∈ I, λ ∈ P+, b ∈ B(λ) and b̃ ∈ B(∞),
we have

e
(εi(b))
i .gup(b) = gup(ẽmax

i b) e
(k)
i .gup(b) = 0 if k > εi(b),

f
(ϕi(b))
i .gup(b) = gup(f̃max

i b) f
(k)
i .gup(b) = 0 if k > ϕi(b),

(e′i)
(εi(b̃))Gup(b̃) = (1− q2

i )
(εi(b̃))Gup(ẽmax

i b̃) (e′i)
(k)Gup(b̃) = 0 if k > εi(b̃),

(ie
′)(ε∗i (b̃))Gup(b̃) = (1− q2

i )
(ε∗i (b̃))Gup((ẽ∗i )

maxb̃) (ie
′)(k)Gup(b̃) = 0 if k > ε∗i (b̃).

Here (e′i)
(n) := (e′i)

n/[n]i! and (ie
′)(n) := (ie

′)n/[n]i! for n ∈ Z≥0.

I.1.8. Quantum unipotent subgroups. A quantum unipotent subgroup is a quan-
tum analogue of the coordinate algebra C[N−(w)] of a unipotent subgroup N−(w). See,
for example, [37] for the specialization to q = 1. These algebras are introduced by De
Concini-Kac-Procesi [10]. The quantum unipotent subgroup has the dual canonical basis
and (dual) Poincaré-Birkhoff-Witt type bases.

Definition I.1.44. (1) For w ∈ W , we set U−q (w) = U−q ∩ Tw
(
U≥0
q

)
. These subalge-

bras of U−q are called quantum nilpotent subalgebras.

(2) Let w ∈ W and i = (i1, · · · , i`) ∈ I (w). For c = (c1, · · · , c`) ∈ Z`≥0, we set

F low (c, i) := f
(c1)
i1

Ti1(f
(c2)
i2

) · · ·
(
Ti1 · · ·Ti`−1

)
(f

(c`)
i`

),

F up (c, i) := F low (c, i) /
(
F low (c, i) , F low (c, i)

)
L
.

Proposition I.1.45 ([2, Proposition 2.3], [10, Proposition 2.2] [44, Proposition 38.2.3]).
(1) F low (c, i) ∈ U−q (w) for c ∈ Z`≥0 and {F low (c, i)}c∈Z`≥0

forms a basis of U−q ∩Tw
(
U≥0
q

)
.

(2) {F low (c, i)}c∈Z`≥0
is an orthogonal basis of U−q (w), more precisely, we have

(F low (c, i) , F low (c′, i))L = δc,c′
∏̀
k=1

ck∏
j=1

(1− q2j
ik

)−1.(I.5)

In particular, {F up (c, i)}c∈Z`≥0
is also a basis of U−q (w). The basis {F low (c, i)}c∈Z`≥0

is called the (lower) Poincaré-Birkhoff-Witt type basis (henceforth the PBW-type basis)
associated with i ∈ I (w), and the basis {F up (c, i)}c∈Z`≥0

is called the dual (or upper)

Poincaré-Birkhoff-Witt type basis (henceforth the dual PBW-type basis).

Definition I.1.46. For w ∈ W , we set

U+
q (w) :=

(
U−q (w)

)∨
,

Aq[N− (w)] := ∗
(
U−q (w)

)
.
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We call Aq[N− (w)] a quantum unipotent subgroup. The quantum unipotent subgroup
has a Q−-graded algebra structure induced from that of U−q . Note that ϕ (Aq[N− (w)]) =
U+
q (w). Set

Elow (c, i) := F low (c, i)∨ Eup (c, i) := F up (c, i)∨

F low
−1 (c, i) := ∗(F low (c, i)) F up

−1 (c, i) := ∗(F up (c, i))

for c ∈ Z`(w)
≥0 and i ∈ I(w). Then {Elow(resp. up) (c, i)}

c∈Z`(w)
≥0

is a basis of U+
q (w), and

{F low(resp. up)
−1 (c, i)}

c∈Z`(w)
≥0

is a basis of Aq[N− (w)]. Moreover

(F low
−1 (c, i) , F up

−1 (c′, i))L = (Elow (c, i) , Eup (c′, i))+
L = δc,c′ .

Proposition I.1.47 ([34, Theorem 4.25, Theorem 4.29]). Let w ∈ W and i ∈ I (w).
(1) U−q (w) ∩Bup is a basis of U−q (w).
(2) every element Gup(b) of U−q (w) ∩Bup satisfies the following conditions:

(DCB1) σ(Gup(b)) = Gup(b), and

(DCB2) Gup (b) = F up (c, i)+
∑

c′<c d
i
c,c′F

up (c′, i) with dic,c′ ∈ qZ[q] for a unique c ∈ Z`(w)
≥0 .

Here < denotes the left lexicographic order on Z`(w)
≥0 , that is, we write (c′1, . . . , c

′
`(w)) <

(c1, . . . , c`(w)) if and only if there exists k ∈ {1, . . . , `(w)} such that c′1 = c1, . . . , c
′
k−1 = ck−1

and c′k < ck.

Definition I.1.48. Proposition I.1.47 (2) says that F up (c, i) determines a unique dual
canonical basis element Gup(b) in U−q (w). We write the corresponding element of B(∞) as
b (c, i). Then U−q (w) ∩ Bup = {Gup(b(c, i))}

c∈Z`(w)
≥0

. Write B(U−q (w)) := {b (c, i)}
c∈Z`(w)

≥0

.

Set b−1 (c, i) := ∗ (b(c, i)). Then Aq[N− (w)] ∩ Bup = {Gup(b−1(c, i))}
c∈Z`(w)

≥0

. Recall that

A := Q[q±1]. Set

AA[N−(w)] := {x ∈ Aq[N− (w)] | (x,U−A)L ∈ A} =
∑

c∈Z`(w)
≥0

AGup(b−1(c, i)).

Then AA[N−(w)] is an A-subalgebra of Aq[N− (w)].

Remark I.1.49. In fact, the element Gup(b(c, i)) is characterized by the property
(DCB1) in Proposition I.1.47 and the following property:

(DCB2)′ Gup(b)− F up (c, i) ∈
∑

c′∈Z`(w)
≥0

qZ[q]F up (c′, i).

Remark I.1.50. For k = 1, . . . , `(w), we set ck := (0, . . . , 0,

k
∨
1, 0, . . . , 0). Then we have

Gup(b(ck, i)) = F up (ck, i).
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Remark I.1.51. The unitriangular property in Proposition I.1.47 (2) is equivalent to
the following unitriangular property:

F up (c, i) =
∑

c′∈Z`(w)
≥0

[F up (c, i) : Gup (b (c′, i))]Gup (b (c′, i)) with

[F up (c, i) : Gup (b (c′, i))]

{
∈ δc′,c + qZ[q] if c′ ≤ c

= 0 otherwise.

In fact, these unitriangular properties also hold when we consider the right lexicographic

order on Z`(w)
≥0 . See Corollary II.1.11.

I.1.9. Quantum closed unipotent cells. A quantum closed unipotent cell is a quan-
tum analogue of the coordinate algebra C[N−∩X(w)] of a closed unipotent cell N−∩X(w).
Here we identifyN− with its image under the natural projectionG→ G/B+. See, for exam-
ple, [37] for the specialization to q = 1. The quantum closed unipotent cells are essentially
introduced by De Concini-Procesi [11]. They also have the dual canonical bases.

Quantum closed unipotent cells are actually “related” to quantum unipotent subgroups.
See Proposition III.1.41. The definition of quantum unipotent cells are presented in Defi-
nition III.1.29.

Proposition I.1.52 ([30, Proposition 3.2.3, 3.2.5]). For λ ∈ P+, w ∈ W and i =
(i1, · · · , i`) ∈ I (w), we set

Bw (λ) :=
{
f̃a1
i1
· · · f̃a`i` uλ | a = (a1, · · · , a`) ∈ Z`≥0

}
\ {0} ⊂ B (λ) .

Then we have

Vw(λ) := U+
q .uwλ =

∑
b∈Bw(λ)

Q (q) g (b) .

This U≥0
q -module Vw(λ) is called a Demazure module.

(2) For w ∈ W and i = (i1, · · · , i`) ∈ I (w), we set

Bw (∞) =
{
f̃a1
i1
· · · f̃a`i` ũ∞ | a = (a1, · · · , a`) ∈ Z`≥0

}
and U−w :=

∑
a1,...,a`∈Z≥0

Q (q) fa1
i1
· · · fa`i` . Then we have

U−w =
∑

b̃∈Bw(∞)

Q (q)G(b̃).

For more details on Demazure modules and their crystal bases, see Kashiwara [30].

Remark I.1.53. We have ⋃
λ∈P+

λ (Bw (λ)) = Bw (∞) .

See also Theorem III.1.9.
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Definition I.1.54. Let w ∈ W . Set(
U−w
)⊥

:= {x ∈ U−q | (x,U−w)L = 0}.

Then, by the equality ∆ (U−w) ⊂ U−wU0
q ⊗ U−w and properties of Drinfeld and Lusztig

pairings, (U−w)
⊥

is a two-sided ideal of U−q . Hence we obtain a Q(q)-algebra U−q / (U−w)
⊥

,
denoted by Aq[N− ∩ X(w)] and called the quantum closed unipotent cell. The quantum
closed unipotent cell has a Q−-graded algebra structure induced from that of U−q . Note
that (

U−w
)⊥

=
∑

b̃∈B(∞)\Bw(∞)

Q (q)Gup(b̃).

Describe the canonical projection U−q → Aq[N− ∩ X(w)] as x 7→ [x]. The element [x]
clearly depends on w, however, we omit to write w because it will cause no confusion
below.

I.2. Quantum cluster algebras

In this section, We review the definitions of skew-symmetric quantum cluster algebras.
Roughly speaking, quantum cluster algebras are subalgebras of quantum tori with infinitely
many generators and relations, which are obtained by some inductive procedure, called
mutation. The main references are [7] and [20]. Quantum cluster algebras are frameworks
of the algebraic and combinatorial research on quantum objects. In Section III.2, we
review an additive categorification of the quantum cluster algebras due to Geiß-Leclerc-
Schröer. In this case, the resulting quantum cluster algebras are isomorphic to quantum
unipotent subgroups, and we will consider quantum Berenstein-Fomin-Zelevinsky twist
automorphisms in their settings.

Notation I.2.1. For m,m′ ∈ Z≥0 with m ≤ m′, set [m,m′] := {k ∈ Z | m ≤ k ≤ m′}.

Definition I.2.2. Let ` be a positive integer such that n ≤ `. Let Λ = (λij)i,j∈[1,`]

be a skew-symmetric integer matrix. This skew-symmetric integer matrix Λ determines a
skew-symmetric Z-bilinear form Z` × Z` → Z by Λ(ei, ej) = λij for i, j ∈ [1, `], denoted
also by Λ. Here {ei | i ∈ [1, `]} denotes the standard basis of Z`. The based quantum torus
T (= T (Λ)) associated with Λ is the Q[q±1/2]-algebra defined as follows; as a Q[q±1/2]-
module T is free and has a Q[q±1/2]-basis {Xa | a ∈ Z`}. The multiplication is defined
by

XaXb = qΛ(a,b)/2Xa+b

for a, b ∈ Z`. Then

• T is an associative algebra,
• XaXb = qΛ(a,b)XbXa for a, b ∈ Z`,
• X0 = 1 and (Xa)−1 = X−a for a ∈ Z`.

Hence the based quantum torus T is a quantum analogue of Laurent polynomial algebras in
`-variables(=the coordinate algebra of the `-dimensional algebraic torus). More precisely,
Q ⊗Q[q±1/2] T is naturally isomorphic to Q[X±1

1 , . . . , X±1
` ], here Q is a Q[q±1/2]-module
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via q±1/2 7→ 1. The based quantum torus T is contained in the skew-field of fractions
F(= F(Λ)) [7, Appendix A]. Note that F is a Q(q1/2)-algebra. Write Xi := Xei for
i ∈ [1, `].

Next we define an important operation, called mutation. Let B̃ = (bij)i∈[1,`],j∈[1,`−n] be

an `× (`− n) integer matrix. Its submatrix B = (bij)i,j∈[1,`−n] of B̃ is called the principal

part of B̃. The pair (Λ, B̃) is said to be compatible if, for i ∈ [1, `] and j ∈ [1, `− n],∑̀
k=1

bkjλki = δijdj for some di ∈ Z>0.

Note that, when (Λ, B̃) is compatible, B̃ has full rank ` − n and the principal part B =
(bij)i,j∈[1,`−n] is skew-symmetrizable [7, Proposition 3.3]. We will assume that B is skew-
symmetric.

For k ∈ [1, `− n], define E(k) = (eij)i,j∈[1,`] and F (k) = (fij)i,j∈[1,`−n] as follows;

eij =


δi,j if j 6= k,

−1 if i = j = k,

max(0,−bik) if i 6= j = k,

fij =


δi,j if i 6= k,

−1 if i = j = k,

max(0, bkj) if i = k 6= j.

Set

µk(Λ) = (E(k))TΛE(k) µk(B̃) = E(k)B̃F (k).

Then µk(Λ, B̃) := (µk(B̃), µk(Λ)) is again compatible [7, Proposition 3.4]. It is said that

µk(Λ, B̃) is obtained from (Λ, B̃) by the mutation in direction k. Note that µk(µk(Λ, B̃)) =

(Λ, B̃).

The pair S = ({Xi}i∈[1,`], B̃,Λ) is called a quantum seed in F , and {Xi}i∈[1,`] is called
the quantum cluster of S . For k ∈ [1, `− n], define µk({Xi}i∈[1,`]) = {X ′i}i∈[1,`] ⊂ F \ {0}
by

(M1) X ′i = Xi if i 6= k,

(M2) X ′k = X
−ek−

∑
j;−bjk>0 bjkej +X

−ek+
∑
j;bjk>0 bjkej .

Then there is an injective Q[q±1/2]-algebra homomorphisms T (µk(Λ)) → F(Λ) given by
X±1
i 7→ (X ′i)

±1 (i ∈ [1, `]). Moreover there exist a basis {ci}i∈[1,`] of Z` and a Q(q1/2)-algebra
automorphism ϑ : F(Λ) → F(Λ) such that ϑ(Xci) = X ′i for i ∈ [1, `] [7, Proposition 4.7].
Hence the map above is extended to the isomorphism F(µk(Λ)) → F(Λ). Through this
isomorphism, we identify F(µk(Λ)) with F(Λ), and henceforth always write F for this
skew-field. Write

µk(S ) := (µk({Xi}i∈[1,`]), µk(B̃), µk(Λ))

and this is called a quantum seed obtained from the mutation of S in direction k. By
the argument above, we can consider the iterated mutations in arbitrary various directions
k ∈ [1, ` − n]. Note that µk(µk(S ′)) = S ′ for any quantum seed S ′ and k ∈ [1, ` − n].
The subset {Xi | i ∈ [` − n + 1, `]}, called the set of frozen variables, is contained in the
quantum cluster of an arbitrary seed obtained by iterated mutations of S .
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The quantum cluster algebra Aq±1/2(S ) is defined as the Q[q±1/2]-subalgebra of F gen-
erated by the union of the quantum clusters of all quantum seeds obtained by iterated
mutations of S . An element M ∈ Aq±1/2(S ) is called a quantum cluster monomial if
there exists a quantum cluster {X ′i = (X ′)ei}i∈[1,`] of a quantum seed obtained by iterated
mutations of S such that M = (X ′)a for some a ∈ Z`≥0.

The following property is known as the Laurent phenomenon.

Proposition I.2.3 ([7, Corollary 5.2]). The quantum cluster algebra Aq±1/2(S ) is
contained in the based quantum torus generated by the quantum cluster of an arbitrary
quantum seed obtained by iterated mutations of S .

In fact, the Q-subalgebra Q⊗Q[q±1/2] Aq±1/2(S ) of Q⊗Q[q±1/2] T ' Q[X±1
1 , . . . , X±1

` ] is

called a cluster algebra. This is an algebra associated with the data ({Xi}i∈[1,`], B̃). In
other words, Λ is a datum of “noncommutativity”.



CHAPTER II

Quantum Fomin-Zelevinsky twist maps

In this chapter, we deal with quantum analogues of Fomin-Zelevinsky twist maps
(henceforth quantum FZ-twist maps). See Introduction for their definitions in non-quantum
settings. Quantum FZ-twist maps are introduced by Lenagan-Yakimov [39]. They are
Q(q)-anti-algebra isomorphisms between quantum unipotent subgroups. In Section II.1,
we show that quantum FZ-twist maps are restricted to bijections between the dual canon-
ical bases of quantum unipotent subgroups. As a corollary, we obtain the unitriangular
property between dual canonical bases and dual PBW-type bases under the “reverse” lex-
icographic order. This is a new symmetry when g is not of finite type. In Section II.2, we
show that quantum FZ-twist maps induce bijections between certain unipotent quantum
minors. This result is a quantum analogue of [14, Lemma 2.25]. In particular, quantum
FZ-twist maps preserve the specific quantum determinantal identities, called quantum T -
systems.

II.1. Quantum Fomin-Zelevinsky twist maps and dual canonical bases

We define quantum FZ-twist maps following Lenagan-Yakimov [39]. In this thesis,
we refer to their restriction to quantum unipotent subgroups as quantum FZ-twist maps
(Definition II.1.8). We show the compatibility between quantum FZ-twist maps and dual
canonical bases of quantum unipotent subgroups (Theorem II.1.10). When g is of finite
type, the symmetries of quantum FZ-twist maps are related with the symmetries coming
from ∗-involution. We remark this point in the last part of this section.

Definition II.1.1 ([39, Section 6.1]). For w ∈ W , we consider the Q(q)-algebra anti-
automorphisms Θw and Θ∗w of Uq defined by

Θw := Tw ◦ S ◦ ∨ Θ∗w := ∗ ◦ Tw ◦ S ◦ ∨ ◦ ∗.
For a homogeneous element x ∈ Uq, we have wt (Θw(x)) = wt (Θ∗w(x)) = −wwt (x).

The following lemma follows from the straightforward check on the generators of Uq.

Lemma II.1.2. For i ∈ I, we have Ti ◦ S ◦ ∨ = S ◦ ∨ ◦ T−1
i .

By this lemma and (S ◦ ∨)2 = id, we have (Θw)−1 = Θw−1 and (Θ∗w)−1 = Θ∗w−1 .

Remark II.1.3. In Definition II.1.8, we define quantum FZ-twist maps by using the “∗-
versions” Θ∗w in order to match them with our definition of quantum unipotent subgroups.
However, in the proof of the following statements, we use the “simplified-versions” Θw for
abbreviation.

27
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Proposition II.1.4. For w ∈ W and i = (i1, · · · , i`) ∈ I (w), we have

Θw−1

(
Ti1 · · ·Tik−1

(fik)
)

= Ti` · · ·Tik+1
(fik) for k = 1, . . . , `.

Proof. It can be easily checked that

(Ti ◦ S ◦ ∨) (fi) = fi.

Hence by Lemma II.1.2 we have

Θw−1

(
Ti1 · · ·Tik−1

(fik)
)

= (Ti` · · ·Ti1 ◦ S ◦ ∨)
(
Ti1 · · ·Tik−1

(fik)
)

= (Ti` · · ·Tik ◦ S ◦ ∨) (fik)

=
(
Ti` · · ·Tik+1

)
(fik) .

�

Definition II.1.5. (1) For i = (i1, · · · , i`) ∈ I (w), we set irev = (i`, . . . , i1) ∈ I (w−1).
(2) For c = (c1, . . . , c`) ∈ Z`≥0, we set crev := (c`, . . . , c1) ∈ Z`≥0.

Proposition II.1.6. For w ∈ W , i ∈ I (w) and c ∈ Z`≥0, we have

Θw−1 (F up (c, i)) = F up (crev, irev) , Θ∗w−1

(
F up
−1 (c, i)

)
= F up

−1 (crev, irev) .

Proof. The latter follows from the former. By the equality (I.5), we have(
F low (c, i) , F low (c, i)

)
L

=
(
F low (crev, irev) , F low (crev, irev)

)
L
.

Hence it suffices to show that Θw−1

(
F low (c, i)

)
= F low (crev, irev). This follows immediately

from Proposition II.1.4. �

By Proposition II.1.6, Θw−1 (resp. Θ∗w−1) is also regarded as a Q(q)-algebra anti-
isomorphism from U−q (w) (resp. Aq[N−(w)]) to U−q (w−1) (resp. Aq[N−(w−1)]).

Lemma II.1.7. Let w ∈ W . For x, x′ ∈ U−q (w) and y, y′ ∈ Aq[N−(w)], we have

(x, x′)L = (Θw−1(x),Θw−1(x′))L, (y, y′)L = (Θ∗w−1(y),Θ∗w−1(y′))L.

Proof. This follows immediately from Proposition II.1.6 and the equality (I.5). �

Definition II.1.8. Let w ∈ W . set

τw,q := Θ∗w−1 |Aq [N−(w)] : Aq[N−(w)]→ Aq[N−(w−1)].

We call this Q(q)-anti-algebra isomorphism τw,q a quantum FZ-twist map. By Lemma
II.1.7, we have

(y,Θ∗w(y′))L = (τw,q(y), y′)L

for y ∈ Aq[N−(w)] and y′ ∈ Aq[N−(w−1)].

Proposition II.1.9. Let w ∈ W . For x ∈ U−q (w) and y ∈ Aq[N−(w)], we have

(Θw−1 ◦ σ) (x) = (σ ◦Θw−1) (x) (τw,q ◦ σ) (y) = (σ ◦ τw,q) (y) .
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Proof. The latter follows from the former and the equality ∗ ◦ σ = σ ◦ ∗ on U−q , which
is derived from Proposition I.1.12. We may assume that x is homogeneous. On generators,
by Remark I.1.50, we have

(Θw−1 ◦ σ) (F up (ck, i)) = Θw−1 (F up (ck, i))

= F up (crev
k , irev) = σ (F up (crev

k , irev))

= (σ ◦Θw−1) (F up (ck, i)) .

Assume that the desired equality holds for homogeneous elements x′, x′′ ∈ U−q (w). Then,
by Proposition I.1.12, we have

(Θw−1 ◦ σ) (x′x′′) = q(wt(x′),wt(x′′))Θw−1 (σ (x′′)σ (x′))

= q(wt(x′),wt(x′′))Θw−1 (σ (x′)) Θw−1 (σ (x′′))

= q(−w
−1 wt(x′),−w−1 wt(x′′))σ (Θw−1 (x′))σ (Θw−1 (x′′))

= σ (Θw−1 (x′′) Θw−1 (x′))

= (σ ◦Θw−1) (x′x′′) .

Hence we obtained the assertion. �

Now we prove the compatibility between quantum FZ-twist maps and dual canonical
bases. Recall Definition I.1.48.

Theorem II.1.10. Let w ∈ W and i ∈ I(w). For c ∈ Z`(w)
≥0 , we have

Θw−1 (Gup (b (c, i))) = Gup (b (crev, irev)) τw,q (Gup (b−1 (c, i))) = Gup (b−1 (crev, irev)) .

In particular, τw,q (resp. Θw−1) induces a bijection between the dual canonical basis of
Aq[N−(w)] and that of Aq[N−(w−1)] (resp. the dual canonical basis of U−q (w) and that of

U−q (w−1)).

Proof. The former implies the latter. We have already checked that Θw−1 (Gup (b (c, i))) ∈
U−q (w−1). Hence by Remark I.1.49 we only have to show that

σ (Θw−1 (Gup (b (c, i)))) = Θw−1 (Gup (b (c, i))) ,

Θw−1 (Gup (b (c, i)))− F up (crev, irev) ∈
∑

c′∈Z`(w)
≥0

qZ[q]F up (c′, irev) .

The latter follows from Proposition I.1.47 and Proposition II.1.6. The former follows
from Proposition I.1.39 and II.1.9. �

Recall the notation in Remark I.1.51. By applying Θw−1 to the expansion of the dual
PBW basis into the dual canonical basis in Remark I.1.51, we obtain the following corollary.
This symmetry is new when g is not finite dimensional. See also Remark II.1.17.

Corollary II.1.11. Let w ∈ W and i ∈ I(w). For c ∈ Z`(w)
≥0 , we have

(II.1) [F up (c, i) : Gup (b (c′, i))] =
[
F up (crev, irev) : Gup

(
b
(
(c′)

rev
, irev

))]
.
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In particular, we can write the expansion as follows:

F up (c, i) = Gup (b (c, i)) +
∑

c′<c, c′<rc

[F up (c, i) : Gup (b (c′, i))]Gup (b (c′, i)) ,

here <r denotes the right lexicographic order on Z`(w)
≥0 , which is deterined by the condition

that c′ <r c if and only if (c′)rev < crev.

In the rest of this section, we assume that g is a finite dimensional complex simple Lie
algebra. Let w0 ∈ W be the longest element of W . There is a unique Dynkin diagram
automorphism θ with −w0 (αi) = αθ(i) for all i ∈ I. For a reduced word i = (i1, · · · , iN) ∈
I (w0), the sequence (i2, · · · , iN , θ (i1)) is also a reduced word of w0.

Definition II.1.12. We define a Q (q)-algebra automorphism on Uq (g) defined by

θ (ei) = eθ(i) θ (fi) = fθ(i) θ
(
qh
)

= q−w0(h).

Proposition II.1.13 ([25, Proposition 8.20], [45, Proposition 3.2]). For w (αi) = αj ∈
Π, we have

Tw (xi) = xj

where x = e, f .

Proposition II.1.14. We have

θ ◦ ∗(= ∗ ◦ θ) = Θw0 = τw0,q.

Proof. By Proposition II.1.13, we have

Tw0 (ei) = −fθ(i)tθ(i), Tw0 (fi) = −t−1
θ(i)eθ(i), Tw0

(
qh
)

= qw0(h).

Hence the proposition follows from the straightforward check on the generators of Uq. �

By Proposition II.1.14, we obtain the following corollary.

Corollary II.1.15. For i = (i1, · · · , iN) ∈ I (w0) and c = (c1, · · · , cN) ∈ ZN≥0, we
have

(θ ◦ ∗) (Gup (b (c, i))) = Gup (b (crev, irev)) .

Moreover by Lemma II.1.7 we obtain the following corollary.

Corollary II.1.16. Let i = (i1, · · · , iN) ∈ I (w0) and c = (c1, · · · , cN) ∈ ZN≥0.
(1) We have

(θ ◦ ∗) (G (b (c, i))) = G (b (crev, irev)) .

(2) Write G (b (c, i)) =
∑

c′

(
G (b (c, i)) : F low (c′, i)

)
F low (c′, i). Then we have(

G (b (c, i)) : F low (c′, i)
)

=
(
G (b (crev, irev)) : F low

(
(c′)

rev
, irev

))
.

In particular, we have

G (b (c, i)) = F low (c, i) +
∑

c<c′,c<rc′

(
G (b (c, i)) : F low (c′, i)

)
F low (c′, i) .
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Remark II.1.17. We have to remark that Corollary II.1.15 was already proved by
Lusztig [40, 2.11]. In fact, if g is of finite type, we can also show the equality (II.1)
in Corollary II.1.11 without using quantum FZ-twist maps, by the results in [40, 2.11]
together with [46, Proposition 3.4.7, Corollary 3.4.8], [42, Theorem 1.2]. Note that Θw =
(Tw0w−1)−1 ◦ θ ◦ ∗ for all w ∈ W if g is of finite type.

II.2. Quantum Fomin-Zelevinsky twist maps and unipotent quantum minors

We again assume that g is an arbitrary Kac-Moody Lie algebra. Unipotent quantum
minors are typical and manageable elements of dual canonical bases. In this section, we
show that the images of some unipotent quantum minors under quantum FZ-twist maps are
also described by unipotent quantum minors (Theorem II.2.8). In particular, quantum FZ-
twist maps preserve quantum analogue of specific determinantal identities, called quantum
T -system (Corollary II.2.14).

Definition II.2.1. For λ ∈ P+∪(−P+) and w,w′ ∈ W , define an elementDwλ,w′λ ∈ U−q
by the following property:

(Dwλ,w′λ, x)L = (uwλ, x.uw′λ)
ϕ
λ

for x ∈ U−q . By the nondegeneracy of the bilinear form ( , )L, this element is uniquely
determined. An element of this form is called a unipotent quantum minor. Note that, if
Dwλ,w′λ 6= 0, then wt (Dwλ,w′λ) = wλ− w′λ. See [34, Section 6].

Proposition II.2.2 ([30, Proposition 4.1]). The unipotent quantum minors belong to
Bup.

The unipotent quantum minors associated with lowest weight modules are related with
those associated with highest weight modules via ∗-involution.

Proposition II.2.3. For λ ∈ P+ and w,w′ ∈ W , we have

∗D−wλ,−w′λ = Dw′λ,wλ.

Proof. For all x ∈ U−q , we have

(∗D−wλ,−w′λ, x)L = (D−wλ,−w′λ, ∗x)L
= (u−wλ, ∗(x).u−w′λ)

ϕ
−λ = (u−w′λ, (x)∨.u−wλ)

ϕ
−λ.

We can consider a new Uq-module V (−λ)∨ which has the same underlying vector space
as V (−λ) and is endowed with the action • of Uq given by x • u = (x)∨.u for x ∈ Uq and
u ∈ V (−λ)∨. Then there exists a Uq-module isomorphism Υ : V (λ) → V (−λ)∨ given by
uλ 7→ u−λ. Moreover Φ(uvλ) = u−vλ for all v ∈ W . Indeed, for (i1, . . . , i`) ∈ I(v),

Υ(uvλ) = Υ
(
f

(〈hi1 ,si2 ···si`λ〉)
i1

· · · f
(〈hi`−1

,si`λ〉)
i`−1

f
(〈hi` ,λ〉)
i`

.uλ

)
= e

(〈hi1 ,si2 ···si`λ〉)
i1

· · · e
(〈hi`−1

,si`λ〉)
i`−1

e
(〈hi` ,λ〉)
i`

.u−λ = u−vλ.
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Hence

(∗D−wλ,−w′λ, x)L = (u−w′λ, (x)∨.u−wλ)
ϕ
−λ

= (u−w′λ, (Υ ◦Υ−1)(x • u−wλ))ϕ−λ
= (u−w′λ,Υ(x.uwλ))

ϕ
−λ

= (uw′λ, x.uwλ)
ϕ
λ = (Dw′λ,wλ, x)L

for all x ∈ U−q . This proves the proposition. �

We consider the unipotent quantum minors which belong to U−q (w).

Proposition II.2.4 ([35, Proposition 3.4]). For w ∈ W and i = (i1, . . . , i`) ∈ I(w),
we have

U−q ∩ Tw
(
U−q
)

= U−q ∩ Ti1
(
U−q
)
∩ Ti1Ti2

(
U−q
)
∩ · · · ∩ Ti1Ti2 · · ·Ti`

(
U−q
)
.

Proposition II.2.5 ([35, Theorem 1.1]). Let w ∈ W . Then the multiplication map
induces the Q(q)-linear isomorphism:

U−q (w)⊗
(
U−q ∩ TwU−q

) ∼−→ U−q .

Lemma II.2.6. For w ∈ W , set U−q (w)⊥ := {x ∈ U−q | (x,U−q (w))L = 0}. Then the
multiplication map induces the Q(q)-linear isomorphism:

U−q (w)⊗
(
U−q ∩ TwU−q ∩Kerε

) ∼−→ U−q (w)⊥ .

Recall that ε is the counit of Uq. In particular, U−q (w)⊥ is a left ideal of U−q .

Proof. By Proposition II.2.5, we have a decomposition U−q = U−q (w) ⊕U−q (w)(U−q ∩
Tw(U−q )∩Ker ε) of a Q(q)-vector space. By the way, we also have U−q = U−q (w)⊕U−q (w)⊥.

Hence it suffices to prove the following inclusion:

U−q (w)(U−q ∩ Tw(U−q ) ∩Ker ε) ⊂ U−q (w)⊥.

It is shown by using Proposition I.1.31 and Proposition II.2.4 repeatedly. �

Proposition II.2.7. Let λ ∈ P+ and w1, w2, w ∈ W . Suppose that w2 is less than or
equal to w with respect to the weak right Bruhat order, that is, `(w) = `(w2) + `(w−1

2 w).
Then

D−w1λ,−w2λ ∈ U−q (w) Dw2λ,w1λ ∈ Aq[N−(w)].

Proof. By Proposition II.2.3, the latter is equivalent to the former. Since Uq(w) =
{x ∈ U−q | (x,U−q (w)⊥)L = 0}, it suffices to show that

(u−w1λ,U
−
q (w)⊥.u−w2λ)

ϕ
−λ = 0.

For every homogeneous element x ∈ U−q ∩ Tw(U−q ) ∩ Ker ε, we have w−1
2 wtx ∈ Q−

by Proposition II.2.4. Here note that there exists i = (i1, i2, . . . , i`) ∈ I(w) such that
(i1, i2, . . . , i`(w2)) ∈ I(w2). Therefore, by Proposition I.1.29 and I.1.30,

x.u−w2λ = Tw2

(
(Tw2)−1(x).u−λ

)
= 0.
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Hence Lemma II.2.6 implies the assertion. �

The following is a quantum analogue of [14, Lemma 2.25].

Theorem II.2.8. Let λ ∈ P+ and w1, w2 ∈ W . Suppose that w1 and w2 are less than
or equal to w with respect to the weak right Bruhat order. Then we have

Θw−1(D−w1λ,−w2λ) = D−w−1w2λ,−w−1w1λ τw,q(Dw2λ,w1λ) = Dw−1w1λ,w−1w2λ.

Proof. The latter follows from the former by Proposition II.2.3. By Proposition II.2.7,
we have D−w1λ,−w2λ ∈ U−q (w). Therefore we have Θw−1(D−w1λ,−w2λ) ∈ U−q (w−1). By

Lemma II.1.7, for x ∈ U−q (w−1),

(Θw−1(D−w1λ,−w2λ), x)L = (D−w1λ,−w2λ,Θw(x))L
= (u−w1λ,Θw(x).u−w2λ)

ϕ
−λ

= (u−w2λ, (ϕ ◦Θw) (x).u−w1λ)
ϕ
−λ .

Now ϕ ◦ Θw is a Q(q)-algebra automorphism of Uq. Hence we can consider a new Uq-
module V ′(−λ) which has the same underlying vector space as V (−λ) and is endowed
with the action ? of Uq given by x ? u = (ϕ ◦Θw)(x).u for x ∈ Uq and u ∈ V ′(−λ).

Then there exists a Uq-module isomorphism V (−λ) → V ′(−λ) given by u−λ 7→ u−wλ.
Note that (ϕ ◦Θw)(qh) = qw(h) for h ∈ P ∗. Hence the vector u−wiλ ∈ V ′(−λ) is a vector of
weight −w−1wiλ (i = 1, 2). Moreover it is well-known that the weight space of V (−λ) of
weight µ is 1-dimensional for all µ ∈ −Wλ. Therefore as in the proof of Proposition II.2.3
we have

(u−w2λ, (ϕ ◦Θw) (x).u−w1λ)
ϕ
−λ = ζ (u−w−1w2λ, x.u−w−1w1λ)

ϕ
−λ

= ζ (D−w−1w2λ,−w−1w1λ, x)
L

for some ζ ∈ Q(q)× and all x ∈ U−q (w−1). By our assumption, w−1w1 is less than or equal to

w−1 with respect to the weak right Bruhat order. Therefore D−w−1w2λ,−w−1w1λ ∈ U−q (w−1)
by Proposition II.2.7. Hence Θw−1(D−w1λ,−w2λ) = ζD−w−1w2λ,−w−1w1λ.

On the other hand, by Theorem II.1.10, Θw−1(D−w1λ,−w2λ) ∈ Bup∩U−q (w−1). Therefore,
by Proposition II.2.2, ζ = 1 and Θw−1(D−w1λ,−w2λ) = D−w−1w2λ,−w−1w1λ. �

As a corollary of Theorem II.2.8, we show the compatibility between quantum FZ-
twist maps and quantum analogues of specific determinantal identities, called quantum
T -systems. From the view point of the theory of quantum cluster algebras, quantum T -
system is the specific mutation sequences of the quantum cluster algebra Aq[N−(w)] [20].

Notation II.2.9. When we fix w ∈ W and i = (i1, . . . , i`) ∈ I(w), we write

k+ := min({`+ 1} ∪ {k + 1 ≤ j ≤ ` | ij = ik}),
k− := max({0} ∪ {1 ≤ j ≤ k − 1 | ij = ik}),

k−(i) := max({0} ∪ {1 ≤ j ≤ k − 1 | ij = i}),
kmax := max{1 ≤ j ≤ ` | ij = ik},
kmin := min{1 ≤ j ≤ ` | ij = ik}.
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for k = 1, . . . , ` and i ∈ I.

Definition II.2.10. Let w ∈ W and i = (i1, . . . , i`) ∈ I(w). For 0 ≤ b ≤ d ≤ ` and
j ∈ I, we set

D(d, b; j)(= Di(d, b; j)) := Dµ(d,j),µ(b,j),

here µ(b, j)(= µi(b, j)) := si1 · · · sib$j. By Proposition II.2.7, this is an element of
Aq[N−(w)]. Moreover, when ib = id = j, we write D(d, b)(= Di(d, b)) := D(d, b; j).
Note that D(d, 0) = Dsi1 ···sid$id ,$id for 1 ≤ d ≤ ` and D(b, b) := 1 for b = 0, . . . , `. Then,

for 0 ≤ b ≤ d ≤ ` and j ∈ I, we have D(d, b; j) = D(d−(j), b−(j)).

Recall that aji := 〈hj, αi〉 for i, j ∈ I.

Proposition II.2.11 ([20, Proposition 5.5]). Let w ∈ W and i = (i1, . . . , i`) ∈ I(w).
Fix an arbitrary total order on I. Suppose that the integers b, d satisfy that 1 ≤ b < d ≤ `
and ib = id = i. Then we have

qAD(d, b)D(d−, b−) = q−1
i qBD(d, b−)D(d−, b) + qC

−→∏
j∈I\{i}

D(d−(j), b−(j))−aji(II.2)

= q−1
i qB

′
D(d−, b)D(d, b−) + qC

−→∏
j∈I\{i}

D(d−(j), b−(j))−aji ,(II.3)

here

A =(µ(b, i), µ(b−, i)− µ(d−, i)),

B =(µ(b−, i), µ(b, i)− µ(d−, i)), B′ = (µ(b, i), µ(b−, i)− µ(d, i)),

C =
∑

j∈I\{i}

(
−aji

2

)
(µ(b, j), µ(b, j)− µ(d, j))

+
∑

j,k∈I\{i};j<k

ajiaki(µ(b, j), µ(b, k)− µ(d, k)),

and
−→∏

denotes a product with respect to the increasing order from left to right. This system
of equalities is called the quantum T -system in Aq[N−(w)].

Remark II.2.12. Note that our convention is different from the one in [20], and Geiß-
Leclerc-Schröer always assume that g is symmetric. Nevertheless, we can prove the equality
above in the same manner as in [20]. See also Remark III.2.11 below.

Example II.2.13. We consider the case that g = sl3, I = {1, 2}. Note that N−(w0) =
N− in this case and this is the group of unipotent lower triangular 3 × 3 matrices. The
following is a basic determinantal identities in the non-quantum settings:

D3,2D2,1 = D3,1 +D23,12(II.4)

Here DJ1,J2 denotes the regular function on N− which assigns to a matrix its minor with
row-set J1 and column-set J2. This is nothing but the classical counterpart of the equality
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in Proposition II.2.11 with w = w0 = s1s2s1, i = (1, 2, 1) and i = 1, b = 1, d = 3. In fact,
the unipotent quantum minors appearing in this equality are the quantum analogues of
the ones in (II.4). By using the same notation, the equality (II.2) (which is equivalent to
(II.3)) is described as follows:

D3,2D2,1 = q−1D3,1 +D23,12.

Corollary II.2.14. The quantum FZ-twist map τw,q maps the quantum T -system in
Aq[N−(w)] to the one in Aq[N−(w−1)].

Proof. Fix i = (i1, . . . , i`) ∈ I(w). Let b, d the integers such that 1 ≤ b < d ≤ `
and ib = id = i. For a = 1, . . . , `, set ar := ` − a + 1. For simplicity of notation,
we write a−r := (ar)

− and a−r (j) := (ar)
−(j) for a = 1, . . . , `. Note that w−1µi(a′, j) =

µirev
(`− a′, j) for a′ = 0, . . . , ` and j ∈ I. In particular, for a = b, d, we have w−1µi(a, i) =

µirev
(a−r , i), w

−1µi(a−, i) = µirev
(ar, i) and w−1µi(a, j) = µirev

(ar, j) if j 6= i. Hence, by
applying τw,q to both sides of (II.2) and using Theorem II.2.8, we obtain

qADirev

(br, dr)D
irev

(b−r , d
−
r )(II.5)

= q−1
i qBDirev

(b−r , dr)D
irev

(br, d
−
r ) + qC

−→∏
j∈Irev\{i}

Direv

(b−r (j), d−r (j))−aji ,

here A,B and C are the same as in Proposition II.2.11 and Irev denotes the index set I
with the reverse total order. By the way,

(µi(b, i), µi(b−, i)) = (si$i, $i) = (µi(d, i), µi(d−, i)),

(µi(a′, j), µi(a′, k)) = ($j, $k) for all a′ = 0, . . . , ` and j, k ∈ I.
Therefore we have

A = (µi(b, i), µi(b−, i)− µi(d−, i)) = (µi(d−, i), µi(d, i)− µi(b, i))

= (µirev

(dr, i), µ
irev

(d−r , i)− µirev

(b−r , i)),

B = (µi(b−, i), µi(b, i)− µi(d−, i)) = (µi(d−, i), µi(d, i)− µi(b−, i))

= (µirev

(dr, i), µ
irev

(d−r , i)− µi(br, i)),

C =
∑

j∈I\{i}

(
−aji

2

)
(µi(b, j), µi(b, j)− µi(d, j))

+
∑

j,k∈I\{i};j<k

ajiaki(µ
i(b, j), µi(b, k)− µi(d, k))

=
∑

j∈Irev\{i}

(
−aji

2

)
(µirev

(dr, j), µ
irev

(dr, j)− µirev

(br, j))

+
∑

j,k∈Irev\{i};k<j

akiaji(µ
irev

(dr, k), µirev

(dr, j)− µirev

(br, j)).

Therefore the equality (II.5) belongs to the quantum T -system in Aq[N−(w−1)]. �



CHAPTER III

Quantum Berenstein-Fomin-Zelevinsky twist automorphisms

In this chapter, we consider quantum analogues of Berenstein-Fomin-Zelevinsky twist
automorphisms (henceforth quantum BFZ-twist automorphisms). See Introduction for
their definitions in non-quantum settings. In Section III.1, we construct quantum BFZ-
twist automorphisms, and show that they preserve dual canonical bases of quantum unipo-
tent cells, which are defined also in Section III.1. Our quantum BFZ-twist automorphisms
on arbitrary quantum unipotent cells are generalizations of the quantum BFZ-twist au-
tomorphisms in [5, Theorem 2.10] and correspond to those in [5, Conjecture 2.12 (c)].
However our approach to the construction is different from their way. Berenstein-Rupel
used a quantum cluster algebra structure on a quantum unipotent cell Aq[N

w
− ] and mainly

dealt with the case that w is a square of a Coxeter element. Our method relies on the
relation between the structures of quantum unipotent cells Aq[N

w
− ] and those of quantized

coordinate algebras Rq. The compatibility between quantum BFZ-twist automorphisms
and dual canonical bases corresponds [5, Conjecture 2.17 (a)]. In Section III.2, we obtain
an additive categorification of quantum BFZ-twist automorphisms by using Geiß-Leclerc-
Schröer’s theory when g is symmetric. As a corollary, we show the compatibility between
quantum BFZ-twist automorphisms and quantum cluster monomials. In Section III.3,
we prove the Chamber Ansatz formulae for arbitrary quantum unipotent cells by using
quantum BFZ-twist automorphisms. This is a generalization of [5, Corllary 1.2].

III.1. Quantum Berenstein-Fomin-Zelevinsky twist automorphisms

In this section, we construct quantum BFZ-twist automorphisms on quantum unipotent
cells (Theorem III.1.42). Quantum BFZ-twist automorphisms are Q(q)-algebra automor-
phisms on quantum unipotent cells. Quantum unipotent cells are localizations of quantum
closed unipotent cells, but our construction of quantum BFZ-twist automorphisms requires
the quantized coordinate algebras Rq associated with Uq. We also define dual canonical
bases of quantum unipotent cells (Definition III.1.35). Then quantum BFZ-twist automor-
phisms are restricted to permutations on these dual canonical bases. This compatibility
is essentially useful when we consider an additive categorification of quantum BFZ-twist
automorphisms in Section III.2.

III.1.1. Unipotent quantum matrix coefficients. We introduce quantum ana-
logues of matrix coefficients on unipotent groups N− and variants j∨wλ of jλ in Proposi-
tion I.1.37. They are useful for describing quantum BFZ-twist automorphisms (Theorem
III.1.30, III.1.42).

36
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Definition III.1.1. For λ ∈ P+ and u, u′ ∈ V (λ), define the element Du,u′ ∈ U−q by

(Du,u′ , x)L = (u, x.u′)ϕλ

for all x ∈ U−q . We call an element of this form a unipotent quantum matrix coefficient.
Note that wt (Du,u′) = wtu−wtu′ for weight vectors u, u′ ∈ V (λ) and Duwλ,uw′λ

= Dwλ,w′λ

for w,w′ ∈ W . Recall Definition II.2.1.

Definition III.1.2. Let λ ∈ P+. Define a surjective Q (q)-linear map π∨wλ : U−q →
Vw (λ) by

π∨wλ (y) = y∨.uwλ.

Proposition III.1.3 ([44, Proposition 25.2.6],[31, 8.2.2 (iii), (iv)]). Let λ ∈ P+ and
w ∈ W . Then there exists a surjective map π∨wλ : B(∞)→ Bw(λ)

∐
{0} such that

π∨wλ(G(b)) = g(π∨wλ(b))

for b ∈ B(∞), here g(0) = 0. Moreover, π∨wλ induces a bijection (π∨wλ)
−1(Bw(λ)) →

Bw(λ).

Definition III.1.4. Let λ ∈ P+ and w ∈ W . Set Vw (λ)⊥ := {u ∈ V (λ) | (u, Vw (λ))ϕλ =

0}. Define j∨wλ : V (λ) /Vw (λ)⊥ ↪→ U−q as the dual homomorphism of π∨wλ given by the
nondegenerate bilinear forms ( , )ϕλ : V (λ)×V (λ)→ Q (q) and ( , )L : U−q ×U−q → Q (q),
that is,

(j∨wλ (u) , y)L = (u, π∨wλ (y))
ϕ
λ (= (u, y∨.uwλ)

ϕ
λ = (ϕ (y∨) .u, uwλ)

ϕ
λ).

In the following, the map V (λ) → U−q given by u 7→ j∨wλ(pw(u)) is also denoted by j∨wλ,

here pw is the canonical projection V (λ)→ V (λ)/Vw (λ)⊥.

The following proposition immediately follows from Proposition III.1.3.

Proposition III.1.5. Let λ ∈ P+ and w ∈ W . Then there is an injective map
∨wλ : Bw (λ) ↪→ B (∞) such that

(gup(b), G(b̃′)∨.uwλ)
ϕ
λ = δb̃′,∨wλ(b)

for any b ∈ Bw (λ) and b̃′ ∈ B (∞). That is, we have j∨wλ (gup (b)) = Gup (∨wλ (b)). .

Remark III.1.6. Let λ ∈ P+ and w ∈ W . Then,

• wt ∨wλ (b) = −wt b+ wλ for b ∈ Bw(λ), and

• ∨wλ(π∨wλ(b̃)) = b̃ for b̃ ∈ (π∨wλ)
−1(Bw(λ)).

Proposition III.1.7. Let λ ∈ P+ and w ∈ W . Then the following hold:

(1) Dgup(b),uλ = Gup (λ(b)) for all b ∈ B (λ),
(2) Duwλ,gup(b) = Gup (∗∨wλ (b)) for all b ∈ Bw (λ), and
(3) Duwλ,gup(b) = 0 for all b ∈ B (λ) \Bw (λ).
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Proof. The equality (1) follows immediately by Proposition I.1.37. For y ∈ U−q , we
have

(Duwλ,gup(b), y)L = (uwλ, y.g
up (b))ϕλ

= (gup (b) , (∗(y))∨.uwλ)
ϕ
λ

= (Gup (∨wλ (b)) , ∗(y))L

= (Gup (∗∨wλ (b)) , y)L.

This completes the proof of (2). The assertion (3) follows from the similar calculation and
Proposition I.1.52. �

Proposition III.1.8 ([34, Corollary 6.4]). Let w ∈ W and i = (i1, . . . , i`) ∈ I(w). For

i ∈ I, define n(i) = (n
(i)
1 , . . . , n

(i)
` ) ∈ Z`≥0 by

n
(i)
k =

{
1 if ik = i,

0 otherwise.

For λ ∈ P+, set nλ :=
∑

i∈I〈λ, hi〉n(i). Then we have

Dwλ,λ = Gup(b−1(nλ, i)).

III.1.2. Kumar-Peterson identity. We investigate the map ∨wλ a little more. Ku-
mar and Peterson studied the identity which expresses the “characters” of the coordinate
ring C [Xw ∩ Uv] of the intersection X(w)∩Uv of Schubert varieties X(w) and “v-translates
of the open cell Uv” as the limit of a family of “twisted” characters of Demazure modules
in general Kac-Moody Lie algebras, see Kumar [38, Theorem 12.1.3] for details. The fol-
lowing bijection can be considered as a crystalized Kumar-Peterson identity for the special
case v = w.

Theorem III.1.9. We have⋃
λ∈P+

∨wλ (Bw (λ)) = B
(
U−q (w)

)
.

The rest of this subsection is devoted to the proof of Theorem III.1.9.

Lemma III.1.10. For y ∈ U−q (w)⊥, we have y∨.uwλ = 0 for all λ ∈ P+.

Proof. By Lemma II.2.5, we write y =
∑
y(1)y(2) with y(1) ∈ U−q (w) and homogeneous

elements y(2) ∈ U−q ∩ TwU−q ∩Ker ε. Then, by Proposition I.1.29 and I.1.30, we have

y∨.uwλ = (Tw−1)−1
(∑

Tw−1

(
y∨(1)

)
Tw−1

(
y∨(2)

)
.uλ

)
= 0

because wt(Tw−1(y∨(2))) ∈ Q+ \ {0}. �

Proposition III.1.11. We have⋃
λ∈P+

∨wλ (Bw (λ)) ⊂ B
(
U−q (w)

)
.
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Proof. Let π (w) : U−q → U−q be the orthogonal projection with respect to U−q =

U−q (w) ⊕ U−q (w)⊥. Since U−q (w)⊥ ∩ Blow is a basis of U−q (w)⊥ by Proposition I.1.47,

we have π (w) (G(b̃)) 6= 0 if and only if b̃ ∈ B
(
U−q (w)

)
for b̃ ∈ B (∞). Let b̃ ∈⋃

λ∈P+
∨wλ (Bw (λ)). Then there exists λ ∈ P+ such that G(b̃)∨.uwλ 6= 0. By Proposi-

tion III.1.10, we have

G(b̃)∨.uwλ = (π(w)(G(b̃)))∨.uwλ.

In particular, we have π (w) (G(b̃)) 6= 0. This completes the proof. �

We prove the opposite inclusion.

Proposition III.1.12. We have

B
(
U−q (w)

)
⊂
⋃
λ∈P+

∨wλ (Bw (λ)) .

Proof. Let b̃ ∈ B
(
U−q (w)

)
, that is 0 6= π (w) (G(b̃)) ∈ U−q (w). (See the proof of

Proposition III.1.11.) By Proposition III.1.3 and Remark III.1.6, it suffices to show that

G(b̃)∨.uwλ = (π(w)(G(b̃)))∨.uwλ 6= 0 for some λ ∈ P+. Note that (π(w)(G(b̃)))∨.uwλ 6= 0 is

equivalent to (π(w)(G(b̃)))
∨
.uwλ 6= 0.

By the way, it follows from Proposition I.1.29 that

y∨.uwλ = (Tw−1)−1 ((Tw−1 ◦ ∨ ◦ ) (y) .uλ) = (Tw−1)−1
((
∨ ◦ ◦ T−1

w

)
(y) .uλ

)
.

Since y0 := π(w)(G(b̃)) ∈ U−q ∩ TwU≥0
q , we have (∨ ◦ ◦ T−1

w )(y0) ∈ U≤0
q . It is

well-known that, for ξ ∈ Q−, there exists an element λ ∈ P+ such that the projection(
U−q
)
ξ
→ V (λ)ξ+λ given by y 7→ y.uλ is an isomorphism of vector space. Hence it can be

shown that there exists λ ∈ P+ such that (∨ ◦ ◦ T−1
w )(y0).uλ 6= 0. �

III.1.3. Other descriptions of quantum unipotent subgroups and quantum
unipotent cells. In this subsection, we describe the algebras, quantum unipotent sub-
groups and quantum unipotent cells, by using the quantized coordinate algebra Rq. The
following descriptions are essentially shown in [26, 9.1.7], [49, Theorem 3.7]. However, we
state them again emphasizing the terms of dual canonical bases. Actually, we can now
prove each statement immediately.

Notation III.1.13. Let v, w ∈ W . By abuse of notation, we describe the canonical

projection R
w(+)
q → R

w(+)
q /Q

w(+)
v as c 7→ [c].

Definition III.1.14. Let λ ∈ P+. Set

U−q (λ) := jλ (V (λ)) =
∑

b∈B(λ)
Q(q)Gup (λ(b)) .

Recall Definition I.1.24 and I.1.26. The following propositions follow from Lemma I.1.15
and Proposition III.1.7.
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Proposition III.1.15. The Q(q)-algebra homomorphism R+
q → Ǔ≤0

q , F 7→ (Ψ− ◦
R≤0)(F ) induces the Q(q)-algebra isomorphism I : R+

q →
∑

λ∈P+
U−q (λ)q−λ.

Proposition III.1.16. For λ ∈ P+ and b ∈ B (λ), we have

I
(
cλgup(b)∗,uλ

)
= Gup (λ(b)) q

−λ = Dgup(b),uλq
−λ.

In particular, for w ∈ W , we have

I
(
Q+
w(λ)

)
=
∑

b∈B(λ)\Bw(λ)
Q(q)Gup (λ(b)) q

−λ.

Definition III.1.17. An element z of R+
q (resp. R+

q /Q
+
w) is said to be q-central if, for

every weight vectors f ∈ V (λ)? and λ ∈ P+, there exists l ∈ Z such that

zcλf,uλ = qlcλf,uλz (resp. z[cλf,uλ ] = ql[cλf,uλ ]z).

Corollary III.1.18. The set S = {cλλ,λ}λ∈P+ is an Ore set in R+
q consisting of q-

central elements. In particular, [S] := {[cλλ,λ]}λ∈P+ is an Ore set in R+
q /Q

+
w consisting of

q-central elements.

By Corollary III.1.18, we can consider the algebra (R+
q /Q

+
w)[[S]−1]. Proposition III.1.15

and III.1.16 together with Remark I.1.53 immediately imply the following proposition. This
gives the description of Aq[N− ∩X(w)] in terms of the quantized coordinate algebra Rq.
This kind of description appears in [26, 9.1.7].

Proposition III.1.19. Let w ∈ W . Set Aq[N− ∩ X(w)]ex := Ǔ≤0
q /(U−w)⊥Ǔ0

q. Note

that (U−w)⊥Ǔ0
q is a two-sided ideal of Ǔ≤0

q . Then the Q(q)-algebra isomorphism I induces
the Q(q)-algebra isomorphism

Iw :
(
R+
q /Q

+
w

)
[[S]−1]→ Aq[N− ∩X(w)]ex.

Moreover the Q(q)-algebra
∑

λ∈P+

(
R+
q (λ)/Q+

w

)
[cλλ,λ]

−1(⊂
(
R+
q /Q

+
w

)
[[S]−1]) is isomorphic

to Aq[N− ∩X(w)].

Next we consider the algebra R
w(+)
q /Q

w(+)
w , which is isomorphic to R+

q /Q
+
w . See Defi-

nition I.1.23.

Definition III.1.20. Let w ∈ W and λ ∈ P+. Set

U+
q (w, λ) :=

(
j∨wλ
(
V (λ)/Vw(λ)⊥

))∨
=
∑

b∈Bw(λ)
Q(q)Gup (∨wλ (b))

∨
.

The following proposition follows again from the nondegeneracy of the Drinfeld pairing,
the equality (I.2), Lemma I.1.15, Proposition I.1.40 and Proposition III.1.7.

Proposition III.1.21. Let w ∈ W . The restriction map R≥0 : U∗q → (U≥0
q )∗ induces

the algebra homomorphism Rw
≥0 : R

w(+)
q → (U≥0

q )∗, and it satisfies Ker(Rw
≥0) = Q

w(+)
w and

ImRw
≥0 ⊂ Im Φ+. Hence Rw

≥0 induces the Q(q)-algebra isomorphism R
w

≥0 : R
w(+)
q /Q

w(+)
w →

ImRw
≥0. Moreover we have an well-defined anti-algebra isomorphism I+

w : R+
q /Q

+
w →
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λ∈P+

U+
q (w, λ)q−wλ given by [cλf,uλ ] 7→

(
(Φ+)−1 ◦Rw

≥0

) (
[cλf,uwλ ]

)
for f ∈ V (λ)?, λ ∈ P+.

We have

I+
w

(
[cλgup(b)∗,uλ

]
)

= Gup (∨wλ (b))
∨
q−wλ = ϕ(Duwλ,gup(b))q

−wλ

for b ∈ Bw(λ).

Corollary III.1.22. The set [wS] := {[cλwλ,λ]}λ∈P+ is an Ore set in R+
q /Q

+
w consisting

of q-central elements.

Remark III.1.23. The description in Proposition III.1.21 implies that the algebra
R+
q /Q

+
w has no zero divisors.

By Corollary III.1.22, we can consider the Q(q)-algebra (R+
q /Q

+
w)[[wS]−1]. Proposi-

tion III.1.21 immediately implies the following proposition. This gives the description of
Aq[N−(w)] in terms of the quantized coordinate algebra Rq. This kind of description
appears in [49, Theorem 3.7].

Proposition III.1.24. Let w ∈ W . Then I+
w induces the anti-algebra isomorphism

I+
w :
(
R+
q /Q

+
w

)
[[wS]−1]→ U+

q (w)Ǔ0
q.

Moreover the Q(q)-algebra
∑

λ∈P+

(
R+
q (λ)/Q+

w

)
[cλwλ,λ]

−1(⊂
(
R+
q /Q

+
w

)
[[wS]−1]) is anti-isomorphic

to U+
q (w), and is isomorphic to Aq[N−(w)] via ϕ.

Proof. It suffices to show that
∑

λ∈P+
U+
q (w, λ) = U+

q (w). This follows from Theorem
III.1.9. �

III.1.4. Quantum BFZ-twist isomorphisms and dual canonical bases. In this
subsection, we consider two kinds of localized algebras, Aq[N−(w) ∩ ẇG0] and Aq[N

w
− ].

The former is a localization of the quantum unipotent subgroup Aq[N−(w)] and the latter
is a localization of Aq[N− ∩X(w)] (Definition III.1.29). The latter is called the quantum
unipotent cell. The aim of this section is construct a quantum analogue of the BFZ-twist
automorphism on Aq[N

w
− ]. In preparation for it, we construct a Q(q)-algebra isomorphism

from Aq[N
w
− ] to Aq[N−(w) ∩ ẇG0] in a “twisted” way (Theorem III.1.30). This is a quan-

tum analogue of η̃w |N−(w)∩ẇG0 (=: γw) in [18, Subsection 8.2] (see also [18, Proposition
8.4 (iv)]). Actually, the construction of this isomorphism is an essential step for our con-
struction of a quantum BFZ-twist automorphism. Moreover we naturally define the dual
canonical bases of Aq[N−(w) ∩ ẇG0] and Aq[N

w
− ] (Definition III.1.35). At last, we show

that the isomorphism above induces a bijection between these dual canonical bases.

Notation III.1.25. Let V be a Z[q±1]-module. For a subset M ⊂ V, write qZM :=
{qkm | m ∈M, k ∈ Z}.

The following lemma easily follows from Corollary III.1.18 and III.1.22. See also [21,
Proposition 6.3]. This localization is important in the proof of Theorem III.1.30.

Lemma III.1.26. Let w ∈ W . Then the set [wS̃] := qZ{[cλwλ,λcλ
′

λ′,λ′ ]}λ,λ′∈P+ is an Ore set
in R+

q /Q
+
w consisting of q-central elements.
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Moreover the maps (R+
q /Q

+
w)[[S]−1]→ (R+

q /Q
+
w)[[wS̃]−1], [cλf,uλ ][cλ

′

λ′,λ′ ]
−1 7→ [cλf,uλ ][cλ

′

λ′,λ′ ]
−1

and (R+
q /Q

+
w)[[wS]−1]→ (R+

q /Q
+
w)[[wS̃]−1], [cλf,uλ ][cλ

′

wλ′,λ′ ]
−1 7→ [cλf,uλ ][cλ

′

wλ′,λ′ ]
−1 are injective

Q(q)-algebra homomorphisms.

We prove the following proposition (Proposition III.1.27) and theorem (Theorem III.1.30)
simultaneously.

Proposition III.1.27. Let w ∈ W and set wD := qZ{Dwλ,λ}λ∈P+. Then the sets wD
and [wD] are Ore sets of Aq[N−(w)] and Aq[N−∩X(w)] respectively consisting of q-central
elements. More explicitly, for λ, λ′ ∈ P+ and homogeneous elements x ∈ Aq[N−(w)],
y ∈ Aq[N− ∩X(w)], we have

q−(λ,wλ′−λ′)Dwλ,λDwλ′,λ′ = Dw(λ+λ′),λ+λ′

Dwλ,λx = q(λ+wλ,wtx)xDwλ,λ in Aq[N−(w)], and

[Dwλ,λ][y] = q(λ+wλ,wt y)[y][Dwλ,λ] in Aq[N− ∩X(w)].

Remark III.1.28. In fact, Proposition III.1.27 is a known fact. See, for example, [34,
Proposition 6.11, Corollary 6.18].

Definition III.1.29. By Proposition III.1.27, we can consider the localizations;

Aq[N−(w) ∩ ẇG0] := Aq[N−(w)][wD−1],

Aq[N
w
− ] := Aq[N− ∩X(w)][[wD]−1].

Those algebras have Q-graded algebra structures in an obvious way. The algebra Aq[N
w
− ]

is called a quantum unipotent cell.

The algebras Aq[N−(w) ∩ ẇG0] and Aq[N
w
− ] are isomorphic as follows. These isomor-

phisms are “almost” the desired quantum BFZ-twist automorphisms. In fact, these are
quantum analogues of the maps η̃w in [18, Subsection 8.2] (see also [18, Proposition 8.4
(iv)]). See also subsection III.1.5.

Theorem III.1.30. There exists an isomorphism of Q(q)-algebras

γw,q : Aq[N
w
− ]→ Aq[N−(w) ∩ ẇG0]

given by

[Du,uλ ] 7→ q−(λ,wtu−λ)D−1
wλ,λDuwλ,u, [Dwλ,λ]

−1 7→ q(λ,wλ−λ)Dwλ,λ

for a weight vector u ∈ V (λ) and λ ∈ P+.

Definition III.1.31. We call γw,q a quantum twist isomorphism.

Proof of Proposition III.1.27 and Theorem III.1.30. By Proposition III.1.19
(see also Proposition III.1.16), we have the algebra isomorphism

Aq[N− ∩X(w)]
I−1
w−−→

∑
λ∈P+

(
R+
q (λ)/Q+

w

)
[cλλ,λ]

−1(III.1)
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given by

[Du,uλ ] 7→ [cλu∗,uλ ][cλλ,λ]
−1(III.2)

for λ ∈ P+ and u ∈ V (λ). In particular, I−1
w ([Dwλ,λ]) = [cλwλ,λ][c

λ
λ,λ]
−1.

By Lemma III.1.26,
∑

λ∈P+

(
R+
q (λ)/Q+

w

)
[cλλ,λ]

−1 is naturally regarded as a subalgebra

of (R+
q /Q

+
w)[[wS̃]−1], and in the latter algebra, the set qZ{[cλwλ,λ][cλλ,λ]−1}λ∈P+ is a mul-

tiplicative set consisting of invertible q-central elements. Hence [wD] is an Ore set of
Aq[N− ∩ X(w)] consisting of q-central elements, and the algebra isomorphism (III.1) is
extended to the algebra isomorphism

J1 : Aq[N
w
− ]→

∑
λ,λ′,λ′′∈P+

λ=λ′+λ′′

(
R+
q (λ)/Q+

w

)
[cλ
′

λ′,λ′c
λ′′

wλ′′,λ′′ ]
−1.(III.3)

On the other hand, by Proposition III.1.24 (see also Proposition III.1.21), we have an
algebra isomorphism ∑

λ∈P+

(
R+
q (λ)/Q+

w

)
[cλwλ,λ]

−1 ϕ◦I+
w−−−→ Aq[N−(w)],(III.4)

given by

[cλwλ,λ]
−1[cλu∗,uλ ] 7→ Duwλ,u(III.5)

for λ ∈ P+ and u ∈ V (λ). In particular, (ϕ ◦ I+
w )([cλwλ,λ]

−1[cλλ,λ]) = Dwλ,λ.

As above, the set qZ{[cλwλ,λ]−1[cλλ,λ]}λ∈P+ is a multiplicative set consisting of invertible

q-central elements of (R+
q /Q

+
w)[[wS̃]−1]. Hence wD is an Ore set of Aq[N−(w)] consist-

ing of q-central elements, and the algebra isomorphism (III.4) is extended to the algebra
isomorphism

J2 :
∑

λ,λ′,λ′′∈P+

λ=λ′+λ′′

(
R+
q (λ)/Q+

w

)
[cλ
′

λ′,λ′c
λ′′

wλ′′,λ′′ ]
−1 → Aq[N−(w) ∩ ẇG0].(III.6)

By the way, we obtained Proposition III.1.27. The calculation of explicit q-commutation
is left to the reader.

By (III.3) and (III.6), we obtain the Q(q)-algebra isomorphism

γw,q := J2 ◦ J1 : Aq[N
w
− ]→ Aq[N−(w) ∩ ẇG0].

Moreover, for λ ∈ P+ and a weight vector u ∈ V (λ), we have

γw,q(Du,uλ) = J2([cλu∗,uλ ][cλλ,λ]
−1) by (III.2),

= J2(q−(λ,wtu−λ)[cλλ,λ]
−1[cλu∗,uλ ])

= J2(q−(λ,wtu−λ)[cλλ,λ]
−1[cλwλ,λ][c

λ
wλ,λ]

−1[cλu∗,uλ ])

= q−(λ,wtu−λ)D−1
wλ,λDuwλ,u by (III.5).
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Moreover,

1 = γw,q([Dwλ,λ][Dwλ,λ]
−1)

= q−(λ,wλ−λ)D−1
wλ,λγw,q([Dwλ,λ]

−1).

Hence,
γw,q([Dwλ,λ]

−1) = q(λ,wλ−λ)Dwλ,λ.

This completes the proof of the theorem. �

Next we define the dual canonical bases of Aq[N
w
− ] and Aq[N−(w) ∩ ẇG0].

Proposition III.1.32 ([34, Theorem 6.24, Theorem 6.25]). Let w ∈ W .

(1) For λ ∈ P+ and b ∈ Bw (∞), there exists b′ ∈ Bw (∞) such that

q−(λ,wt b)[Dwλ,λ][G
up(b)] = [Gup(b′)].

(2) For λ ∈ P+, i ∈ I(w) and c ∈ Z`(w)
≥0 , we have

q−(λ,wt b−1(c,i))Dwλ,λG
up(b−1(c, i)) = Gup(b−1(c + nλ, i)),

where nλ is defined as in Proposition III.1.8.

Remark III.1.33. Proposition I.1.12 and III.1.32 also imply the equalities in Proposi-
tion III.1.27.

Proposition III.1.34. Let w ∈ W and i ∈ I(w). Then the following hold:

(1) The subset

{q(λ,wt b+λ−wλ)[Dwλ,λ]
−1[Gup(b)] | λ ∈ P+, b ∈ Bw(∞)}

of Aq[N
w
− ] forms a basis of Aq[N

w
− ].

(2) The subset

{q(λ,wt b−1(c,i)+λ−wλ)D−1
wλ,λG

up(b−1(c, i)) | λ ∈ P+, c ∈ Z`(w)
≥0 }

of Aq[N−(w) ∩ ẇG0] forms a basis of Aq[N−(w) ∩ ẇG0].

Proof. We prove only (1). The assertion (2) is proved in the same manner. The given
subset obviously spans the Q(q)-vector space Aq[N

w
− ]. Hence it remains to show that

this set is a linearly independent set. For (λ, b), (λ′, b′) ∈ P+ × Bw(∞), write (λ, b) ∼
(λ′, b′) if and only if q(λ,wt b+λ−wλ)[Dwλ,λ]

−1[Gup(b)] = q(λ′,wt b′+λ′−wλ′)[Dwλ′,λ′ ]
−1[Gup(b′)].

The relation ∼ is clearly an equivalence relation, and we take a complete set F of coset
representatives of (P+ ×Bw(∞))/ ∼. Suppose that there exists a finite subset F ′ ⊂ F
and aλ,b ∈ Q(b) ((λ, b) ∈ F ′) such that

∑
(λ,b)∈F ′ q

(λ,wt b+λ−wλ)aλ,b[Dwλ,λ]
−1[Gup(b)] = 0.

There exists λ0 ∈ P+ such that λ0 − λ ∈ P+ for all λ ∈ P+ such that (λ, b) ∈ F ′ for some
b ∈ Bw(∞). Now the equality

∑
(λ,b)∈F ′ q

(λ,wt b+λ−wλ)aλ,b[Dwλ,λ]
−1[Gup(b)] = 0 is equivalent

to the equality

[Dwλ0,λ0 ]

 ∑
(λ,b)∈F ′

q(λ,wt b+λ−wλ)aλ,b[Dwλ,λ]
−1[Gup(b)]

 = 0.(III.7)
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By Proposition III.1.27 and Proposition III.1.32, for (λ, b) ∈ F ′, we have

[Dwλ0,λ0 ]
(
q(λ,wt b+λ−wλ)[Dwλ,λ]

−1[Gup(b)]
)

= q−(λ0−λ,wλ−λ)+(λ,wt b+λ−wλ)[Dw(λ0−λ),(λ0−λ)][G
up(b)]

= q(λ0,wt b+λ−wλ)[Gup(b(λ0−λ))]

for some b(λ0−λ) ∈ Bw(∞). Note that wt b + λ − wλ = wt b(λ0−λ) − wtDwλ0,λ0 . Therefore
if b(λ0−λ) = (b′)(λ0−λ′) for (λ, b), (λ′, b′) ∈ F ′ then we have the equality

[Dwλ0,λ0 ]
(
q(λ,wt b+λ−wλ)[Dwλ,λ]

−1[Gup(b)]
)

= [Dwλ0,λ0 ]
(
q(λ′,wt b′+λ′−wλ′)[Dwλ′,λ′ ]

−1[Gup(b′)]
)
,

hence (λ, b) = (λ′, b′). Thus (III.7) implies aλ,b = 0 for all (λ, b) ∈ F ′. This completes the
proof. �

Definition III.1.35. Let w ∈ W . We call

B̃up,w := {q(λ,wt b+λ−wλ)[Dwλ,λ]
−1[Gup(b)] | λ ∈ P+, b ∈ Bw(∞)}, and

B̃up(w) := {q(λ,wt b−1(c,i)+λ−wλ)D−1
wλ,λG

up(b−1(c, i)) | λ ∈ P+, c ∈ Z`(w)
≥0 }

the dual canonical bases of Aq[N
w
− ] and Aq[N−(w) ∩ ẇG0], respectively.

For λ ∈ P , there exist λ1, λ2 ∈ P+ such that λ = −λ1 + λ2. Set

Dw,λ := q(λ1,wλ−λ)D−1
wλ1,λ1

Dwλ2,λ2 ∈ B̃up(w).

Then Dw,λ does not depend on the choice of λ1, λ2 ∈ P+ by Proposition III.1.34. Note that
wtDw,λ = wλ− λ.

The following is straightforwardly proved by Proposition III.1.27.

Proposition III.1.36. Let w ∈ W and λ, λ′ ∈ P+. Then the following hold:

(1) Dw,λ = q(λ,wλ1−λ1)Dwλ2,λ2D
−1
wλ1,λ1

for λ1, λ2 ∈ P+ with λ = −λ1 + λ2.

(2) Dw,λDw,λ′ = q(λ,wλ′−λ′)Dw,λ+λ′. In particular, D−1
w,λ = q(λ,wλ−λ)Dw,−λ.

(3) Dw,λx = q(λ+wλ,wtx)xDw,λ for λ ∈ P+ and a homogeneous element Aq[N−(w) ∩
ẇG0].

Remark III.1.37. By using Proposition III.1.32 (2), we can parametrize explicitly the

elements of B̃up(w). Fix i = (i1, . . . , i`) ∈ I(w). An element c ∈ Z`≥0 is said to have gaps
if min{ck | ik = i} = 0 for all i ∈ I. Then, by Propositions III.1.32 (2) and III.1.34 (2), we

obtain the non-overlapping parametrization of the elements of B̃up(w) as follows:

B̃up(w) = {q−(λ,wt b−1(c,i))Dw,λG
up(b−1(c, i)) | λ ∈ P, c ∈ Z`≥0 has gaps}.

By Proposition III.1.32, the property of b−1(c, i) that b−1(c, i) has gaps does not depend
on the choice of i ∈ I(w).

We define the dual bar involutions on Aq[N
w
− ] and Aq[N−(w)∩ ẇG0], which are useful

when we study the dual canonical bases.

Proposition III.1.38. The following hold:
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(1) The twisted dual bar involution σ′ induces Q-anti-algebra involutions Aq[N− ∩
X(w)]→ Aq[N−∩X(w)] and Aq[N−(w)]→ Aq[N−(w)]. See Definition I.1.13 for
the definition of σ′. Moreover these maps are extended to Q-anti-algebra involu-
tions σ′ : Aq[N

w
− ]→ Aq[N

w
− ] and σ′ : Aq[N−(w) ∩ ẇG0]→ Aq[N−(w) ∩ ẇG0].

(2) Define a Q(q)-linear isomorphism ctw : Aq[N
w
− ] → Aq[N

w
− ] (resp. Aq[N−(w) ∩

ẇG0]→ Aq[N−(w) ∩ ẇG0]) by

x 7→ q(wtx,wtx)/2−(wtx,ρ)x

for every homogeneous element x ∈ Aq[N
w
− ] (resp. x ∈ Aq[N−(w) ∩ ẇG0]). Set

σ := ctw ◦ σ′. Then for homogeneous elements x, y ∈ Aq[N
w
− ] (resp. Aq[N−(w) ∩

ẇG0]) we have

(III.8) σ(xy) = q(wtx,wt y)σ(y)σ(x).

Moreover the elements of the dual canonical basis B̃up,w and B̃up(w) are fixed by
σ.

Definition III.1.39. The Q-linear isomorphisms σ and σ′ : Aq[N
w
− ]→ Aq[N

w
− ],Aq[N−(w)∩

ẇG0] → Aq[N−(w) ∩ ẇG0] defined in Proposition III.1.38 will be also called the dual bar
involution and the twisted dual bar involution, respectively.

Proof of Proposition III.1.38. Recall that σ′(Gup(b)) = q−(wt b,wt b)/2+(wt b,ρ)Gup(b)
for all b ∈ B(∞). See Remark I.1.14. Hence (1) follows from the compatibility of the alge-
bras Aq[N−∩X(w)], Aq[N−(w)] and the dual canonical basis (Definition I.1.48, Definition
I.1.54), and the universality of localization [21, Proposition 6.3]. A direct calculation
immediately shows the equality III.8. For λ ∈ P+, we have

1 = σ(Dwλ,λD
−1
wλ,λ)

= q−(wλ−λ,wλ−λ)σ(D−1
wλ,λ)σ(Dwλ,λ)

= q2(λ,wλ−λ)σ(D−1
wλ,λ)Dwλ,λ

in Aq[N−(w) ∩ ẇG0]. Hence

σ(D−1
wλ,λ) = q−2(λ,wλ−λ)D−1

wλ,λ.

Let b ∈ Bw(∞). Then, by Proposition III.1.27 and the equality above, we have

σ(q(λ,wt b+λ−wλ)[Dwλ,λ]
−1[Gup(b)])

= q−(λ,wt b+λ−wλ)+(λ−wλ,wt b)σ([Gup(b)])σ([Dwλ,λ]
−1)

= q−(λ,wt b+λ−wλ)+(λ−wλ,wt b)−2(λ,wλ−λ)[Gup(b)][Dwλ,λ]
−1

= q−(λ,wt b+λ−wλ)+(λ−wλ,wt b)−2(λ,wλ−λ)+(λ+wλ,wt b)[Dwλ,λ]
−1[Gup(b)]

= q(λ,wt b+λ−wλ)[Dwλ,λ]
−1[Gup(b)].

This proves the dual bar invariance property for B̃up,w. The assertion for B̃up(w) is proved
in the same manner. �
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The quantum twist isomorphism γw,q is compatible with the dual canonical bases:

Theorem III.1.40. Let w ∈ W . Then the quantum twist isomorphism γw,q : Aq[N
w
− ]→

Aq[N−(w) ∩ ẇG0] is restricted to the bijection B̃up,w → B̃up(w) given by

q(λ,wt(λ′ (b))+λ−wλ)[Dwλ,λ]
−1[Gup (λ′(b))] 7→ q−(λ−λ′,wt(∗∨

wλ′ (b)))Dw,λ−λ′G
up (∗∨wλ′ (b))

for λ, λ′ ∈ P+, b ∈ Bw (λ′). In particular, γw,q([Dw,λ]) = Dw,−λ for λ ∈ P , and γw,q ◦ σ =
σ ◦ γw,q.

Proof. By Proposition III.1.7, for λ, λ′ ∈ P+ and b ∈ Bw(λ′), we have

γw,q(q
(λ,wt(λ′ (b))+λ−wλ)[Dwλ,λ]

−1[Gup (λ′(b))])

= γw,q(q
(λ,wt b−λ′+λ−wλ)[Dwλ,λ]

−1[Dgup(b),uλ′
])

= q(λ,wt b−λ′+λ−wλ)(q(λ,wλ−λ)Dwλ,λ)(q
−(λ′,wt b−λ′)D−1

wλ′,λ′Duwλ′ ,g
up(b))

= q−(λ−λ′,wt(∗∨
wλ′ (b)))Dw,λ−λ′G

up (∗∨wλ′ (b)) .

This completes the proof. �

III.1.5. Quantum BFZ-twist automorphisms. We introduce quantum analogues
of BFZ-twist automorphisms on quantum unipotent cells (Theorem III.1.42). Since they
are automorphisms, we can consider the iterated application of them. In this subsection,
we also show the “periodicity” of quantum BFZ-twist automorphisms corresponding to a
finite dimensional Lie algebra g and the longest element w0 of W .

The following is known as the (generalized) De Concini-Procesi isomorphism.

Proposition III.1.41 ([34, Theorem 5.13], [37, Theorem 3.17]). Let w ∈ W . Define

ιw : Aq[N−(w)]→ Aq[N− ∩X(w)], x 7→ [x]

as a Q(q)-algebra homomorphisms induced from the canonical projection U−q → Aq[N− ∩
X(w)]. Recall Definition I.1.46 and I.1.54.

Then ιw is injective, or equivalently, ∗(B(U−q (w))) ⊂ Bw(∞). Moreover ιw induces an
isomorphism;

ιw : Aq[N−(w) ∩ ẇG0]
∼−→ Aq[N

w
− ].

By Proposition III.1.41, we now obtain quantum BFZ-twist automorphisms on quan-
tum unipotent cells. These are generalizations of the quantum BFZ-twist automorphisms
in [5, Theorem 2.10] and correspond to those in [5, Conjecture 2.12 (c)]. Their compat-
ibility between quantum BFZ-twist automorphisms and dual canonical bases corresponds
[5, Conjecture 2.17 (a)]. Actually, Berenstein-Rupel dealt with the case that w is a square
of a Coxeter element and state their results and conjectures through quantum cluster al-
gebras rather than quantum unipotent cells Aq[N

w
− ]. Remark that our method “directly”

treat the structures of quantum unipotent cells Aq[N
w
− ] and those of quantized coordinate

algebras Rq. See also III.3.8.
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Theorem III.1.42. Let w ∈ W . Then there exists a Q(q)-algebra automorphism;

ηw,q := ιw ◦ γw,q : Aq[N
w
− ]→ Aq[N

w
− ]

given by

[Du,uλ ] 7→ q−(λ,wtu−λ)[Dwλ,λ]
−1[Duwλ,u], [Dwλ,λ]

−1 7→ q(λ,wλ−λ)[Dwλ,λ]

for a weight vector u ∈ V (λ) and λ ∈ P+. In particular, wt ηw,q([x]) = −wt[x] for a
homogeneous element [x] ∈ Aq[N

w
− ].

Moreover ηw,q is restricted to a permutation on the dual canonical basis B̃up,w. In
particular, ηw,q commutes with the dual bar involution σ. We have ηw,q([Dw,λ]) = [Dw,−λ]
for λ ∈ P+.

Definition III.1.43. We call the Q(q)-algebra automorphism ηw,q : Aq[N
w
− ]→ Aq[N

w
− ]

the quantum BFZ-twist automorphism on the quantum unipotent cell Aq[N
w
− ].

Indeed, quantum BFZ-twist automorphisms coincide with BFZ-twist automorphisms
when we consider the appropriate specialization to q = 1. See [37, Corollary 5.5].

Remark III.1.44. In order to apply quantum BFZ-twist automorphisms to a dual
canonical basis element [Gup(b̃)], b̃ ∈ B(λ), we have to find λ ∈ P+ and b ∈ B(λ) such

that Gup(b̃) = Dgup(b),uλ = Gup(λ(b)). By Proposition I.1.42, we can take λ as λb̃ :=∑
i∈I ε

∗
i (b̃)$i. Note that λb̃ is “minimal” in an appropriate sense.

Since the map ηq,w is an automorphism, we can apply it repeatedly. In the rest of this
subsection, we show the “6-periodicity” of the specific quantum BFZ-twist automorphisms.
Assume that g is a finite dimensional Lie algebra, and let w0 be the longest element of W .

Theorem III.1.45. For a homogeneous element x ∈ Aq[N
w0
− ], we have

η6
w0,q

(x) = q(wtx+w0 wtx,wtx)Dw0,−wtx−w0 wtxx.

Remark III.1.46.

When the action of w0 on P is given by µ 7→ −µ,(III.9)

the theorem above states that η6
w0,q

= id. Hence ηw0,q is “really” periodic. If g is simple,
then the condition (III.9) is satisfied in the case that g is of type Bn, Cn, D2n for n ∈ Z>0

and E7, E8, F4, G2. See [24, Section 3.7].
When g is symmetric, this periodicity is also explained by Geiß-Leclerc-Schröer’s ad-

ditive categorification of BFZ-twist automorphisms (see Section III.2). The periodicity
corresponds to the well-known 6-periodicity of syzygy functors [1], [13], that is, the prop-
erty that (Ω−1

w0
)6(M) 'M for an indecomposable non-projective-injective module M of Π

in the notation of Section III.2.
We can consider the similar periodicity problems for every w ∈ W . It would be interest-

ing to find the necessary and sufficient condition of w ∈ W for periodicity. Since quantum
BFZ-twist automorphisms are restricted to permutations on dual canonical bases, the pe-
riodicity of a quantum BFZ-twist automorphism ηw,q is equaivalect to the periodicity of a
(non-quantum) BFZ-twist automorphism ηw.
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Lemma III.1.47. Let λ ∈ P+. Take u, u′ ∈ V (λ) such that Du,u′ = Gup(b̃) for some

b̃ ∈ B(∞). Then, for i ∈ I,

εi(b̃) = max{k ∈ Z≥0 | Deki .u,u
′ 6= 0} ε∗i (b̃) = max{k ∈ Z≥0 | Du,fki .u

′ 6= 0}.
In particular,

εi(λ(b)) = εi(b) εi(
∨
w0λ

(b)) = ϕi(b)(= εi(b) + 〈hi,wt b〉).
Proof. By Proposition I.1.43,

εi(b̃) = max{k ∈ Z≥0 | (e′i)k(Du,u′) 6= 0}.(III.10)

For k ∈ Z≥0 and x ∈ U−q , we have

((e′i)
k(Du,u′), x)L = (1− q2

i )
k(Du,u′ , f

k
i x)L

= (1− q2
i )
k(u, fki x.u

′)ϕλ

= (1− q2
i )
k(eki .u, x.u

′)ϕλ = (1− q2
i )
k(Deki .u,u

′ , x)L.

Hence (e′i)
k(Du,u′) = (1− q2

i )
kDeki .u,u

′ . Combining this equality with (III.10), we obtain the
first equality. The second equality is proved in the same manner. The last two equalities
are deduced from Proposition I.1.43 and III.1.7. �

Proof of Theorem III.1.45. It is easily seen that we need only check the case that
x ∈ U−q . For i ∈ I, we have Dsi$i,$i = (1− q2

i )fi. We first consider the images of Dsi$i,$i ,
i ∈ I under iterated application of ηw0,q. If I = {i}, that is, g = sl2, the quantum unipotent
cell Aq[N

w0
− ] is generated by D±1

si$i,$i
(= D±1

w0$i,$i
). In this case, η2

w0,q
(Dsi$i,$i) = Dsi$i,$i .

Hence η2
w0,q

= id, in particular, the theorem holds. Henceforth, we consider the case that
g does not have ideals of Lie algebras which are isomorphic to sl2. We have

ηw0,q(Dsi$i,$i) ' D−1
w0$i,$i

Dw0$i,si$i .

Here ' stands for the coincidence up to some powers of q. Now, by Proposition III.1.7,
Dw0$i,si$i = Gup(∗∨w0$i

(usi$i)). By Lemma III.1.47,

ε∗j(∗∨w0$i
(usi$i)) = εj(

∨
w0$i

(usi$i)) = ϕj(usi$i) =

{
−aji if j 6= i,

0 if j = i.

Therefore
∑

j∈I ε
∗
j(∗∨w0$i

(usi$i))$j = $i + si$i(=: λ1). Recall Remark III.1.44. Then

there exists b1 ∈ B(λ1) such that Dw0$i,si$i = Dgup(b1),uλ1
, that is, λ1

(b1) = ∗∨w0$i
(usi$i).

Then
η2
w0,q

(Dsi$i,$i) ' Dw0$i,$iD
−1
w0λ1,λ1

Duw0λ1
,gup(b1).

As above, Dw0λ1,gup(b1) = Gup(∗∨w0λ1
(b1)), and by Lemma III.1.47,

ε∗j(∗∨w0λ1
(b1)) = εj(

∨
w0λ1

(b1))

= εj(b1) + 〈hj,wt b1〉
= εj(λ1

(b1)) + 〈hj, w0$i − si$i + λ1〉
= εj(∗∨w0$i

(usi$i)) + 〈hj, w0$i +$i〉.
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By Proposition III.1.7 and Lemma III.1.47,

εj(∗∨w0$i
(usi$i)) = max{k ∈ Z≥0 | Dekj .uw0$i ,usi$i

6= 0}.

By the way, recall the map θ on I defined just before Definition II.1.12. Then w0$i =
−$θ(i) and sθ(i)w0$i = w0si$i. When g does not have ideals of Lie algebras which are
isomorphic to sl2, we have Dw0si$i,si$i 6= 0. Therefore εj(∗∨w0$i

(usi$i)) = δj,θ(i). Hence

ε∗j(∗∨w0λ1
(b1)) = δj,θ(i) − δj,θ(i) + δij = δij.

Therefore
∑

j∈I ε
∗
j(∗∨w0λ1

(b1))$j = $i. Then there exists b2 ∈ B($i) such thatDw0λ1,gup(b1) =
Dgup(b2),u$i

. Then

η3
w0,q

(Dsi$i,$i) ' D−1
w0$i,$i

Dw0λ1,λ1D
−1
w0$i,$i

Duw0$i ,g
up(b2)

' Dw0,−αiDuw0$i ,g
up(b2).

Here wtDuw0$i ,g
up(b2) = w0$i − wt b2 = w0$i − (w0λ1 − wt b1 + $i) = w0$i − (w0λ1 −

(w0$i − si$i + λ1) + $i) = −αθ(i). Hence Duw0$i ,g
up(b2) = Dsθ(i)$θ(i),$θ(i) because both

hand-sides are unique elements of the dual canonical basis of weight −αθ(i). Therefore,

η6
w0,q

(Dsi$i,$i) ' Dw0,αi−αθ(i)Dsi$i,$i .

Moreover, by Theorem III.1.42, η6
w0,q

(Dsi$i,$i) is an element of dual canonical basis, in
particular, dual bar-invariant. Therefore,

η6
w0,q

(Dsi$i,$i) = q(αi−αθ(i),αi)Dw0,αi−αθ(i)Dsi$i,$i .

By this result and Proposition III.1.27, III.1.36, for i1, . . . , i` ∈ I, we have

η6
w0,q

(Dsi1$i1 ,$i1
· · ·Dsi`$i` ,$i`

)

= q
∑`
k=1(αik−αθ(ik),αik )Dw0,αi1−αθ(i1)

Dsi1$i1 ,$i1
· · ·Dw0,αi`−αθ(i`)

Dsi`$i` ,$i`

= q(
∑`
k=1 αik−

∑`
k=1 αθ(ik),

∑`
k=1 αik )Dw0,

∑`
k=1 αik−

∑`
k=1 αθ(ik)

Dsi1$i1 ,$i1
· · ·Dsi`$i` ,$i`

.

This proves the theorem. �

III.2. Geiß-Leclerc-Schröer type categorification

In this section, we consider an additive categorification of the quantum BFZ-twist
automorphisms in the sense of Geiß-Leclerc-Schröer. When g is symmetric, Geiß-Leclerc-
Schröer [19] obtained a categorification of the (non-quantum) BFZ-twist automorphisms
(Proposition III.2.19). They used subcategories Cw, introduced by Buan-Iyama-Reiten-
Scott [8] and independently by Geiß-Leclerc-Schröer [17] for specific w, of the module
category of the preprojective algebra Π corresponding to the Dynkin diagram for g. Geiß-
Leclerc-Schröer [20] have also shown that the quantum unipotent subgroup Aq[N−(w)] is
isomorphic to a certain quantum cluster algebra AQ(q)(Cw), which is determined by data
of Cw (Proposition III.2.14). Combining these results, we obtain a categorification of the
twist automorphism ηw,q (Theorem III.2.20). This results state the compatibility between
quantum BFZ-twist automorphisms and quantum cluster monomials. See also Corollary
III.2.21.
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In this section, we always assume that g is symmetric. We may assume that (αi, αi) = 2
for all i ∈ I and I = {1, 2, . . . , n} = [1, n]. Note that qi = q for all i ∈ I. Recall also
Section I.2.

We first review Geiß-Leclerc-Schröer’s theory with concision in subsection III.2.1. The
main references are [8, 15, 16, 18, 19, 20]. However our convention is different from
Geiß-Leclerc-Schröer’s one. See Remark III.2.11. The main result in this section is stated
in subsection III.2.2.

III.2.1. Additive categorification of quantum cluster cluster structures on
quantum unipotent subgroups and quantum unipotent cells.

Definition III.2.1. A finite quiver Q = (Q0,Q1, s, t) is a datum such that

• Q0 is a finite set, called the set of vertices,
• Q1 is a finite set, called the set of arrows,
• s, t : Q1 → Q0 are maps, and it is said that a ∈ Q1 starts in a vertex s(a) and

terminates in a vertex t(a).

For i, j ∈ Q0,
Here we take a quiver Q such that Q0 = I, s(a) 6= t(a) for all a ∈ Q1 and aij(:=

〈hi, αj〉) = −#{a ∈ Q1 | s(a) = i, t(a) = j} − #{a ∈ Q1 | s(a) = j, t(a) = i}. Such a
quiver Q is called a finite quiver without edge loops which corresponds to the symmetric
generalized Cartan matrix A.

Let Q = (Q0,Q1 := Q1

∐
Q∗1, s, t) be the double quiver of Q, which is obtained from Q

by adding to each arrow a ∈ Q1 an arrow a∗ ∈ Q1 such that s(a∗) = t(a) and t(a∗) = s(a).
Set

Π := CQ/(
∑
a∈Q1

(a∗a− aa∗)),

Here CQ is a path algebra of Q, which is the C-algebra with the generators ei (i ∈ Q0 = I),
a′ (a′ ∈ Q1) and the relations:

(i) eiej = δijei for i, j ∈ Q0,
(ii) a′es(a′) = et(a′)a

′ = a′ for a′ ∈ Q1,

and (
∑

a∈Q1
(a∗a − aa∗)) stands for the two-sided ideal generated by

∑
a∈Q1

(a∗a − aa∗).
This is called the preprojective algebra associated with Q.

For a finite dimensional Π-module X, write dimX := −
∑

i∈I(dimC ei.X)αi ∈ Q−.
Remark that we do not regard dimX as an element of Q+. A finite dimensional Π-module
X is said to be nilpotent if there exists N ∈ Z≥0 such that a1 · · · aN .X = 0 for any sequence

(a1, . . . , aN) ∈ Q
N

1 with s(aj) = t(aj+1), j = 1, . . . , N − 1.
Let d = (dj)j∈I ∈ ZI≥0. Set rep(Q,d) :=

∏
a′∈Q1

HomC(Cds(a′) ,Cdt(a′)) and define an

affine variety rep(Π,d) by

rep(Π,d) := {(fa′)a′∈Q1
∈ rep(Q,d) |

∑
a∈Q1;s(a)=i

fa∗fa =
∑

a∈Q1;t(a)=i
fafa∗ for all i ∈ I}.
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An element (fa′)a′∈Q1
∈ rep(Π,d) naturally determines a representation X of Π such that

dimX := −
∑

i∈I diαi. Define an affine variety Λd by

Λd := {(fa′)a′∈Q1
∈ rep(Π,d) | (fa′)a′∈Q1

corresponds to a nilpotent Π-module}.

The varieties {Λd | d ∈ Zn≥0} are called nilpotent varieties. Then GLd :=
∏

i∈I GLdi(C)

acts on rep(Π,d) and Λd by (gi)i∈I .(fa′)a′∈Q1
= (gt(a′)fa′g

−1
s(a′))a′∈Q1

. Then each GLd-orbit

of an element of rep(Π,d) naturally corresponds to an isomorphism class of Π-modules.
A function f : Λd → C is called constructible if Im f is a finite set and f−1(z) is a

constructible subset (namely, a finite union of locally closed subsets) of Λd for all z ∈ C.

Denote the set of constructible functions f : Λd → C by M̃(Λd). Let M̃(Λd)GLd be the

subspace of M̃(Λd) consisting of the constructible functions which are constant on the

GLd-orbits in Λd. For i ∈ I, define e(i) = (e
(i)
j )j∈I ∈ ZI≥0 by e

(i)
j = δij. Then Λe(i)

consists of a point. The corresponding simple Π-module will be denoted by Si. Then

M̃(Λe(i)) = C1i, where 1i(Si) = 1.
Set

M̃ :=
⊕
d∈ZI≥0

M̃(Λd)GLd .

Let d′,d′′ ∈ ZI≥0. For f ′ ∈ M̃(Λd′)
GLd′ and f ′′ ∈ M̃(Λd′′)

GLd′′ , define f ′ ∗ f ′′ : Λd′+d′′ → C
by

(f ′ ∗ f ′′)(X) :=
∑
z∈C

zχc({U | U is a submodule of X, f ′(X/U)f ′′(U) = z})

for X ∈ Λd′+d′′ . Here χc means topological Euler characteristic with respect to cohomology

with compact support. This operation makes M̃ into an associative C-algebra. Let M
be a C-subalgebra of M̃ generated by {1i}i∈I . Lusztig has shown that the algebra M is
isomorphic to the universal enveloping algebra U(n−) of n−:

Proposition III.2.2 ([43]). There exists an isomorphism of C-algebras U(n−) →M
given by fi 7→ 1i, here fi denotes a root vector of g corresponding to −αi (abuse of nota-
tion).

By the way, a nilpotent Λ-module X determines a well-defined linear map ϕX : M→ C
given by f 7→ f(X). Through the isomorphism U(n−) ' M above, we regard ϕX as an
element of the graded dual U(n−)∗gr of U(n−), which can be identified with the coordinate
algebra C[N−] of N−.

Proposition III.2.3 ([9, Lemma 1]). For any finite dimensional Π-module X, Y , we
have

(dimX, dimY ) = dimC HomΠ(X, Y ) + dimC HomΠ(Y,X)− dimC Ext1
Π(X, Y ).

The following property of ϕX is obtained by Geiß-Leclerc-Schröer.

Proposition III.2.4 ([15, 16]). Let X, Y be nilpotent Π-modules. The following hold:

(1) ϕXϕY = ϕX⊕Y .
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(2) Suppose that dimC Ext1
Π(X, Y ) = 1. Write non-split short exact sequences as

0→ X → Z1 → Y → 0 0→ Y → Z2 → X → 0.

Then we have ϕXϕY = ϕZ1 + ϕZ2.

Remark III.2.5. Note that, for any finite dimensional Π-modules X, Y , we have

dimC Ext1
Π(X, Y ) = dimC Ext1

Π(Y,X)

by Proposition III.2.3.

Definition III.2.6. For a Π-module X and i ∈ I, define soci(X) ⊂ X by the sum of
all submodules of X isomorphic to Si. For a sequence (i1, . . . , ik) ∈ Ik (k ∈ Z>0), there
exists a unique chain

X ⊃ X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xk = 0

of submodules ofX such thatXj−1/Xj ' socij(X/Xj) for j = 1, . . . , k. Set soc(i1,...,ik)(X) :=

X0. For i ∈ I, denote by Îi the indecomposable injective Π-module with socle Si. Let
w ∈ W and i = (i1, . . . , i`) ∈ I(w). For k = 1, . . . , `, set

Vi,k := soc(i1,...,ik)(Îik).

Set Vi :=
⊕

k=1,...,` Vi,k. Define Cw as a full subcategory of the category of Π-modules
consisting of all Π-modules X such that there exist t ∈ Z>0 and a surjective homomorphism
V ⊕ti → X. Then it is known that Cw does not depend on the choice of i ∈ I(w). Note
that all objects of Cw are nilpotent Π-modules. An object C ∈ Cw is called Cw-projective
(resp. Cw-injective) if Ext1

Π(C,X) = 0 (resp. Ext1
Π(X,C) = 0) for all X ∈ Cw. The

category Cw is closed under extension and Frobenius. In particular, an object X ∈ Cw is
Cw-projective if and only if it is Cw-injective. An object T of Cw is called Cw-maximal rigid
if Ext1

Π(T ⊕X,X) = 0 with X ∈ Cw implies that X is isomorphic to a direct summand of
a direct sum of T . In fact, Vi is a basic Cw-maximal rigid module. Recall that a Π-module
M is called basic if it is written as a direct sum of pairwise non-isomorphic indecomposable
modules. See [8] for more details, and [18, Subsection 2.4] for more detailed summaries.

Let T be a basic Cw-maximal rigid module T = T1 ⊕ · · · ⊕ T` its indecomposable
decomposition. We always number indecomposable modules as T`−n+i is a Cw-projective-
injective module with socle Si for i ∈ I. Note that this labelling is different from the
labelling Vi =

⊕
k∈[1,`] Vi,k. Let ΓT be the Gabriel quiver of AT := EndΠ(T )op, that is, the

vertex set of ΓT is [1, `] and dij := dimC Ext1
AT

(STi , STj) arrows from i to j, where STi is the

head of a (projective) AT -module HomΠ(T, Ti). Define B̃T = (bij)i∈[1,`],j∈[1,`−n] by bij :=
dji − dij. The following proposition is an essential results for the additive categorification
of cluster algebras.

Proposition III.2.7 ([8], [17]). In the setting above, the following hold:

(1) ` = `(w).
(2) For any k ∈ [1, `− n], there exists a unique indecomposable Π-module in Cw such

that T ∗k 6' Tk and (T/Tk) ⊕ T ∗k is a basic Cw-maximal rigid module. This basic
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Cw-maximal rigid module is denoted by µTk(T ) and celled the mutation of T in
direction Tk.

(3) For any k ∈ [1, `− n], µk(B̃T ) = B̃µTk (T ). Recall Definition I.2.2.

(4) For any k ∈ [1, `− n], we have dimC Ext1
Π(Tk, T

∗
k ) = 1, and there exists non-split

exact sequences

0→ Tk → T− → T ∗k → 0 0→ T ∗k → T+ → Tk → 0

such that T− '
⊕

j;bjk<0 T
⊕(−bjk)
j and T+ '

⊕
j;bjk>0 T

⊕bjk
j .

Note that, by Proposition III.2.4 and III.2.7, we have

ϕTkϕT ∗k =
∏

j;bjk<0

ϕ
−bjk
Tj

+
∏

j;bjk>0

ϕTj .(III.11)

This is nothing but an additive categorification of mutation. See [18, Subsection 2.7] and
references therein for more details. An object T of Cw is said to be reachable (in Cw) if
T is isomorphic to a direct summand of a direct sum of a basic Cw-maximal rigid module
which is obtained from Vi by iterated mutations. In fact, the notion of reachable does not
depend on the choice of i [8, Proposition III.4.3].

Recall Notation II.2.9. For 1 ≤ a < b ≤ ` with ia = ib, there exists a natural injective
homomorphism Vi,a− → Vi,b of Π-modules, and the cokernel of this homomorphism is
denoted by Mi[b, a]. Here we set Vi,0 := 0. In particular, Mi[b, b

min] is isomorphic to Vi,b.
Geiß-Leclerc-Schröer shows that Mi[b, a] is reachable for all 1 ≤ a < b ≤ ` with ia = ib [18,
Section 13].

Remark III.2.8. Let T be a basic reachable Cw-maximal rigid module, and T = T1 ⊕
· · · ⊕ T` its indecomposable decomposition. By Proposition III.2.3, for any i, j ∈ [1, `], we
have

(dimTi, dimTj) = dimC HomΠ(Ti, Tj) + dimC HomΠ(Tj, Ti).

Definition III.2.9. We use the notation in Definition III.2.6. Geiß-Leclerc-Schröer
construct a quantum cluster algebra AQ(q)(Cw) associated with Cw. We may assume that
all elements of I = [1, n] appears in the sequence i.

Let T be a basic Cw-maximal rigid module and T = T1 ⊕ · · · ⊕ T` its indecomposable
decomposition. Define ΛT := (λij)i,j∈[1,`] by

λij := dimC HomΠ(Ti, Tj)− dimC HomΠ(Tj, Ti).

Geiß-Leclerc-Schröer have shown the following properties:

• (B̃T ,ΛT ) is compatible in the sense of Definition I.2.2 [20, Proposition 10.1],

• µk(B̃T ,ΛT ) = (B̃µTk (T ),ΛµTk (T )) for k ∈ [1, `− n] [20, Proposition 10.2],

The quantum cluster algebra Aq±1/2(Cw) is defined as the quantum cluster algebra with the

initial seed ((XT )i)i∈[1,`], B̃T ,ΛT ) for a basic reachable Cw-maximal rigid module T . Note
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that this algebra Aq±1/2(Cw) does not depend on the choice of T . By the properties above,
we may write

µk(((XT )i)i∈[1,`], B̃T ,ΛT ) = (((XµTk (T ))i)i∈[1,`], B̃µTk (T ),ΛµTk (T ))

for k ∈ [1, ` − n]. Moreover, for a = (a1, . . . , a`) ∈ Z`≥0, set X⊕
i∈[1,`] T

⊕a1
i

:= (XT )a. Then

the quantum cluster monomials of Aq±1/2(Cw) is indexed by reachable Π-modules in Cw.
Set

YR := q(dimR,dimR)/4XR.

for every reachable Π-module R in Cw. Recall that dimR ∈ Q−. Define the rescaled
quantum cluster algebra Aq±1(Cw) as an A(:= Q[q±1])-subalgebra of Aq±1/2(Cw) generated
by {YR | R is reachable in Cw}. For any basic reachable Cw-maximal rigid module T = T1⊕
· · · ⊕ T`, the rescaled quantum cluster algebra Aq±1(Cw) is contained in the rescaled based
quantum torus TA,T := A[Y ±1

Tk
| k ∈ [1, `]](⊂ F) [20, Lemma 10.4 and Proposition 10.5]

(they are cited as (III.12) and Proposition III.2.12 below). Note that, for (a1, . . . , a`) ∈ Z`≥0,
we have

(III.12) YR = qα(R)Y a1
T1
· · ·Y a`

T`
,

here we set R :=
⊕

i∈[1,`] T
⊕ai
i and

α(R) :=
∑
i∈[1,`]

ai(ai − 1) dimC HomΠ(Ti, Ti)/2 +
∑

i<j;i,j∈[1,`]

aiaj dimC HomΠ(Tj, Ti).

Note that I := qZ{Y⊕
i∈[`−n+1,`] T

ai
i
| (a`−n+1, . . . , a`) ∈ Zn≥0} is an Ore set in Aq±1(Cw). Set

Ãq±1(Cw) := Aq±1(Cw)[I−1], and AQ(q)(Cw) := Q(q) ⊗A Aq±1(Cw), ÃQ(q)(Cw) := Q(q) ⊗A
Ãq±1(Cw).

For X ∈ Cw, denote by I(X) the injective hull of X in Cw, and by Ω−1
w (X) the cokernel of

the corresponding injective homomorphism X → I(X). Hence we have an exact sequence

0→ X → I(X)→ Ω−1
w (X)→ 0.

Proposition III.2.10 ([18, Proposition 13.4]). Let w ∈ W , T a basic reachable Cw-
maximal rigid module and T = T1 ⊕ · · · ⊕ T` its indecomposable decomposition. Then
T ′ := Ω−1

w (T )⊕
⊕

i∈I T`−n+i is also a basic reachable Cw-maximal rigid module; hence there
exists a bijection [1, `− n]→ [1, `− n], k 7→ k∗ such that T ′k∗ = Ω−1

w (Tk).
Let k ∈ [1, `− n] and write µTk(T ) = (T/Tk)⊕ T ∗k . Then we have

µT ′
k∗

(T ′) = (T ′/T ′k∗)⊕ Ω−1
w (T ∗k ).

Remark III.2.11. Let w ∈ W . In this remark, we explain the difference between our
convention and Geiß-Leclerc-Schröer’s one in [18], [20], [19]. An object X in Geiß-Leclerc-
Schröer’s papers is denoted by XGLS here.

The category Cw is the same category as CGLS
w−1 . Moreover N−(w) = (N(w−1)GLS)T and

Nw
− = ((Nw−1

)GLS)T , here (−)T denotes the transpose in the Kac-Moody “group” G (see,
for example, [37]). We omitted the definition of ϕX for a finite dimensional nilpotent Π-
module X, however the algebra M which is used for its precise definition (see Definition
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III.2.1) is the same space as MGLS in [18, Subsection 2.2] equipped with the opposite
convolution product.

Thus there exist algebra isomorphisms C[N−(w)] → C[N(w−1)GLS] and C[Nw
− ] →

C[Nw−1,GLS] given by f → f ◦ (−)T . Moreover ϕX = ϕGLS
X ◦ (−)T for all X ∈ Cw = CGLS

w−1 .
See also [18, Chapter 6]. (This is the reason why we consider the opposite product onM.)

The quantum nilpotent subalgebra Uq(n(w−1))GLS in [20] is equal to Aq[N−(w)]∨.
Geiß-Leclerc-Schröer consider a Q(q)-algebra Aq(n(w−1))GLS, called the quantum coor-
dinate ring, which is defined in (U+

q )∗ [20, (4.6)], and define an algebra isomorphism

ΨGLS : Uq(n(w−1))GLS → Aq(n(w−1))GLS by using a nondegenerate bilinear form (−,−)GLS

[20, Proposition 4.1]. Actually, for x ∈ (U+
q )β, y ∈ (U+

q )β′ (β, β′ ∈ Q+), we have

(x, y)GLS = δβ,β′(1− q−2)htβ(x, y)+
L

= δβ,β′(1− q−2)htβ(x∨, y∨)L

= δβ,β′(1− q−2)htβ(x∨, σ(y∨))L

= q(β,β)/2(q−1 − q)htβ(x∨, ϕ(y))L.

The last equality follows from Proposition I.1.12. By the way, there exists a Q(q)-algebra
automorphism mnorm : U−q → U−q given by fi 7→ (q−1 − q)−1fi for i ∈ I. We now have the
following Q(q)-algebra isomorphism;

Inorm : Aq[N−(w)]
mnorm−−−→ Aq[N−(w)]

∨−→ Uq(n(w−1))GLS ΨGLS

−−−→ Aq(n(w−1))GLS,

which maps x ∈ (U−q )β (β ∈ −Q+) to q(β,β)/2(x, ϕ(−))L. By using this isomorphism, we

describe their results. Note that Inorm(Dwλ,w′λ) = q(wλ−w′λ,wλ−w′λ)/2DGLS
w′λ,wλ for w,w′ ∈ W

and λ ∈ P+ [20, (5.5)].
The definitions of the quantum cluster algebra Aq±1/2(Cw) = Aq±1/2(CGLS

w−1 ) are the same.

We have YR = q(dimR,dimR)/2Y GLS
R for every reachable Π-module R [20, (10.16)]. Note that

(dimR, dimR)/2 ∈ Z. Therefore we have Aq±1(Cw) = AA(CGLS
w−1 )GLS.

The following propositions describe mutations of quantum clusters and twisted dual
bar involutions in Aq±1(Cw). cf. (III.11).

Proposition III.2.12 ([20, Proposition 10.5]). Let T be a basic reachable Cw-maximal
rigid module, and T = T1 ⊕ · · · ⊕ T` its indecomposable decomposition. Fix k ∈ [1, ` − n].

Write B̃T = (bij)i∈[1,`],j∈[1,`−n] and µTk(T ) = (T/Tk) ⊕ T ∗k . Set T+ :=
⊕

j;bjk>0 T
⊕bjk
j and

T− :=
⊕

j;bjk<0 T
⊕(−bjk)
j . Then we have

YT ∗k YTk = q− dimC HomΠ(Tk,T
∗
k )(qYT+ + YT−).

Proposition III.2.13 ([20, Lemma 10.6, Lemma 10.7]). Let T be a basic reachable
Cw-maximal rigid module. Then there exists a unique Q-anti-algebra involution σ′T on TA,T
such that

q 7→ q−1, YR 7→ q−(dimR,dimR)/2+(dimR,ρ)YR
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for every direct summand R of a direct sum of T . Moreover σ′T induces Q-anti-algebra-

involutions σ′ on Aq±1(Cw) and Ãq±1(Cw), and σ′ does not depend on the choice of a basic
reachable Cw-maximal rigid module T .

Geiß-Leclerc-Schröer showed that a rescaled quantum cluster algebra AQ(q)(Cw) gives
an additive categorification of the quantum unipotent subgroup Aq[N−(w)] as follows.

Proposition III.2.14 ([20, Theorem 12.3]). Let w ∈ W and i = (i1, . . . , i`) ∈ I(w).
Then there is an isomorphism of Q(q)-algebras κ : Aq[N−(w)]→ AQ(q)(Cw) given by

Dsi1 ···sib$ib ,si1 ···sid−$id
7→ YM [b,d]

for all 1 ≤ d < b ≤ ` with ib = id. Moreover we have σ′ ◦ κ = κ ◦ σ′. See Definition I.1.13.

By Proposition III.1.41, this result also gives an additive categorification of the quantum
unipotent cell Aq[N

w
− ].

Corollary III.2.15. Let w ∈ W and i = (i1, . . . , i`) ∈ I(w). Then there is an

isomorphism of Q(q)-algebras κ̃ : Aq[N
w
− ]→ ÃQ(q)(Cw) given by

[Dsi1 ···sib$ib ,si1 ···sid−$id
] 7→ YM [b,d]

for all 1 ≤ d < b ≤ ` with ib = id. Moreover we have σ′◦ κ̃ = κ̃◦σ′. See Definition III.1.39.

The following is the classical counterpart of the results above due to Geiß-Leclerc-
Schröer. Note that we explain it as a “specialization” of the results above but it is actually
the preceding result of them.

Proposition III.2.16 ([18, Theorem 3.1, Theorem 3.3]). Let w ∈ W . For every
reachable Π-module R in Cw, we have ϕR ∈ C[N−(w)], and the correspondence

ϕR(resp. [ϕR]) 7→ 1⊗ YR.
gives the C-algebra isomorphism from C[N−(w)] (resp. C[Nw

− ]) to C⊗AAq±1(Cw) (resp. C⊗A
Ãq±1(Cw)).

Remark III.2.17. The isomorphism in Proposition III.2.16 is the “specialization” of the
one in Proposition III.2.14. However Geiß-Leclerc-Schröer did not prove the isomorphism
between the standard A-form AA[N−(w)] of Aq[N−(w)] and Aq±1(Cw). See [20, Conjecture
12.7].

Definition III.2.18. Let T be a basic reachable Cw-maximal rigid module and T =
T1 ⊕ · · · ⊕ T` its indecomposable decomposition. Then a Q−-grading on Q[q±1][Yk | k =
1, . . . , `](⊂ TA,T ) given by wtYTk = dimTk is extended to the Q-grading on TA,T . A
homogeneous element X ∈ TA,T is said to be dual bar invariant if

σ′T (X) = q−(wtX,wtX)/2+(wtX,ρ)X.

When X ∈ AQ(q)(Cw) (resp. ÃQ(q)(Cw)), the Q-grading and the definition of dual bar
invariance of homogeneous elements are compatible with the corresponding notions in
Aq[N−(w)] (resp. Aq[N

w
− ]) via κ (resp. κ̃). See Remark I.1.14. Note that YR is dual bar

invariant for any reachable Π-module R.
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Geiß-Leclerc-Schröer also obtained an additive categorification of the twist automor-
phism η∗w on the coordinate algebra C[Nw

− ] of a unipotent cell Nw
− in non-quantum settings.

Here the image of ϕX under the restriction map C[N−]→ C[Nw
− ] is denoted by [ϕX ].

Proposition III.2.19 ([19, Theorem 6]). Let w ∈ W . Then for every X ∈ Cw we have

η∗w([ϕX ]) =
[ϕΩ−1

w (X)]

[ϕI(X)]
.

III.2.2. Quantum twist automorphisms and the quantum cluster algebra
structure. Our main result in this section is the following quantum analogue of Proposi-
tion III.2.19. Recall Proposition III.2.10.

Theorem III.2.20. Let w ∈ W , T a basic reachable Cw-maximal rigid module, and
T = T1 ⊕ · · · ⊕ T` its indecomposable decomposition. Through κ̃ in Corollary III.2.15, we

regard the quantum twist map ηw,q as an algebra automorphism on ÃQ(q)(Cw). Then, for
every reachable Π-module R in Cw, we have

(III.13) ηw,q(YR) = q
∑
i∈I λi dimC ei.RY −1

I(R)YΩ−1
w (R).

here we write I(R) =
⊕

i∈I T
⊕λi
`−n+i.

Before proving Theorem III.2.20, we show its corollary.

Corollary III.2.21. Let R be a reachable Π-module in Cw. Then κ−1(YR) ∈ Bup ∩
Aq[N−(w)] if and only if κ−1(YΩ−1

w (R)) ∈ Bup ∩Aq[N−(w)].

Proof. By Theorem III.1.42 and III.2.20, κ−1(YR) ∈ Bup ∩ Aq[N−(w)] if and only if

κ̃−1(q
∑
i∈I λi dimC ei.RY −1

I(R)YΩ−1
w (R)) ∈ B̃up,w. By Theorem III.1.42 and the dual bar invariance

of YR, the element q
∑
i∈I λi dimC ei.RY −1

I(R)YΩ−1
w (R) is also dual bar invariant. Combining this

fact with the definition of B̃up,w = ιw(B̃up(w)) and the dual bar invariance of YΩ−1
w (R),

we have κ̃−1(q
∑
i∈I λi dimC ei.RY −1

I(R)YΩ−1
w (R)) ∈ B̃up,w if and only if κ−1(YΩ−1

w (R)) ∈ Bup ∩
Aq[N−(w)]. �

Remark III.2.22. Kang-Kashiwara-Kim-Oh [27, 28] have shown that all (rescaled)
quantum cluster monomials belong to Bup by using the categorification via representations
of quiver Hecke algebras. Hence we have already known that YR is an element of Bup for
an arbitrary reachable Π-module in Cw. However there is now no proof of this strong
result through the additive categorification above. Therefore it would be interesting to
determine the quantum monomials in Bup which are obtained from Corollary III.2.21

and, for example, (YVi)
a for a ∈ Z`(w)

≥0 and i ∈ I(w). Actually, it is easy to show that
(YVi)

a ∈ Bup by Proposition III.1.32. For iterated application of quantum BFZ-twist
automorphisms, see also subsection III.1.5. Moreover it is unclear whether a quantum BFZ-
twist automorphism ηw,q is categorified by using finite dimensional representations of quiver
Hecke algebras. In particular, it is unclear whether quantum BFZ-twist automorphisms
preserve the basis coming from the simple modules of quiver Hecke algebras.
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The rest of this subsection is devoted to the proof of Theorem III.2.20. In this proof,
we essentially use Geiß-Leclerc-Schröer’s theory.

Lemma III.2.23. Let T be a basic reachable Cw-maximal rigid module and T = T1 ⊕
· · · ⊕ T` its indecomposable decomposition. Take (a1, . . . , a`) ∈ Z`. Then there exists a
unique integer m such that qmY a1

T1
· · ·Y a`

T`
is dual bar invariant in TA,T .

Proof. We have

σ′T (qmY a1
T1
· · ·Y a`

T`
) = q−mσ′T (YT`)

a` · · · σ′T (YT1)a1

= q−m+
∑
i∈[1,`] ai(−(dimTi,dimTi)/2+(dimTi,ρ))Y a`

T`
· · ·Y a1

T1

= q−m+
∑
i∈[1,`] ai(−(dimTi,dimTi)/2+(dimTi,ρ))−

∑
i<j aiajλijY a1

T1
· · ·Y a`

T`
.

Here we write ΛT = (λij)i,j∈[1,`]. Therefore qmY a1
T1
· · ·Y a`

T`
is dual bar invariant if and only

if

m−
∑
i∈[1,`]

a2
i (dimTi, dimTi)/2−

∑
i<j

aiaj(dimTi, dimTj) +
∑
i∈[1,`]

ai(dimTi, ρ)

= −m+
∑
i∈[1,`]

ai(−(dimTi, dimTi)/2 + (dimTi, ρ))−
∑
i<j

aiajλij.

By Remark III.2.8, this is equivalent to

2m =
∑
i∈[1,`]

ai(ai − 1)(dimTi, dimTi)/2 + 2
∑
i<j

aiaj dimC HomΠ(Tj, Ti).

The right-hand side is an element of 2Z. Therefore we can take an integer m ∈ Z uniquely
which satisfies this equality. �

Remark III.2.24. For (a1, . . . , a`) ∈ Z`≥0, the dual bar invariant element in qZ{Y a1
T1
· · ·Y a`

T`
}

is nothing but Y⊕
i∈[1,`] T

⊕ai
i

. See Definition III.2.9.

Lemma III.2.25. With the notation in Theorem III.2.20, q
∑
i∈I λi dimC ei.RY −1

I(R)YΩ−1
w (R) is

dual bar invariant.

Proof. By Proposition III.2.14,

κ−1(YI(R)) = Dwλ,λ,

here λ :=
∑

j∈I λj$j. Hence, by Proposition III.1.27, we have

κ−1(YI(R)YΩ−1
w (R)) = Dwλ,λκ

−1(YΩ−1
w (R))

= q(λ+wλ,dim Ω−1
w (R))κ−1(YΩ−1

w (R))Dwλ,λ

= q(λ+wλ,dim Ω−1
w (R))κ−1(YΩ−1

w (R)YI(R)).

By the way, dim Ω−1
w (R) = dim I(R)−dimR = wλ−λ−dimR. Hence (λ+wλ, dim Ω−1

w (R)) =
−(λ+ wλ, dimR). Therefore

Y −1
I(R)YΩ−1

w (R) = q(λ+wλ,dimR)YΩ−1
w (R)Y

−1
I(R)
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Note that
∑

i∈I λi dimC ei.R = −(λ, dimR). We have

q(dim Ω−1
w (R)−dim I(R),dim Ω−1

w (R)−dim I(R))/2−(dim Ω−1
w (R)−dim I(R),ρ)σ′T (q−(λ,dimR)Y −1

I(R)YΩ−1
w (R))

= q(dimR,dimR)/2+(dimR,ρ)σ′T (q(wλ,dimR)YΩ−1
w (R)Y

−1
I(R))

= q(dimR,dimR)/2+(dimR,ρ)−(wλ,dimR)σ′T (Y −1
I(R))σ

′
T (YΩ−1

w (R))

= q(dimR,dimR)/2−(dim Ω−1
w (R),dim Ω−1

w (R))/2+(dim I(R),dim I(R))/2−(wλ,dimR)Y −1
I(R)YΩ−1

w (R)

= q(dim I(R),dimR)−(wλ,dimR)Y −1
I(R)YΩ−1

w (R)

= q−(λ,dimR)Y −1
I(R)YΩ−1

w (R).

This competes the proof. �

Lemma III.2.26. Let T be a basic reachable Cw-maximal rigid module and T = T1⊕· · ·⊕
T` its indecomposable decomposition. Then the equality (III.13) with R = Tk holds for all
k = 1, . . . , ` if and only if the one with R = T⊕a1

1 ⊕· · ·⊕T⊕a`` holds for all (a1, . . . , a`) ∈ Z`≥0.

Proof. The latter obviously implies the former. Suppose that the equality (III.13) holds
for R = Tk, k = 1, . . . , `. Write

ηw,q(YTk) = qmkY −1
I(Tk)YΩ−1

w (Tk), mk ∈ Z,

for k = 1, . . . , `. Set R = T⊕a1
1 ⊕ · · · ⊕ T⊕a`` for (a1, . . . , a`) ∈ Z`≥0. Note that I(R) =

I(T1)⊕a1⊕· · ·⊕I(T`)
⊕a` and Ω−1

w (R) = Ω−1
w (T1)⊕a1⊕· · ·⊕Ω−1

w (T`)
⊕a` . (Actually I(T`−n+i) =

T`−n+i and Ω−1
w (T`−n+i) = 0 for i ∈ I.) There exist unique A1, A2, A3 ∈ Z such that the

following hold:

ηw,q(YR) = qA1ηw,q(Y
a1
T1
· · ·Y a`

T`
)

= qA1(qm1Y −1
I(T1)YΩ−1

w (T1))
a1 · · · (qm`Y −1

I(T`)
YΩ−1

w (T`)
)a`

= qA2(Y a1

I(T1) · · ·Y
a`
I(T`)

)−1Y a1

Ω−1
w (T1)

· · ·Y a`
Ω−1
w (T`)

= qA3Y −1
I(R)YΩ−1

w (R).

Moreover ηw,q(YR) is dual bar invariant because of the dual bar invariance of YR and
Theorem III.1.42. Hence, by Lemma III.2.23 and Lemma III.2.25, the equality (III.13)
also holds for R. �

Proof of Theorem III.2.20. Recall that we always assume that T`−n+i is a Cw-
projective-injective module with socle Si for all i ∈ I = [1, n], in particular, the isomor-
phism class of T`−n+i does not depend on the choice of T . From now on, we identify

ÃQ(q)(Cw) with Aq[N
w
− ] via κ̃. First we consider the case that R in the statement of

Theorem III.2.20 is equal to T`−n+i for i ∈ I. Then

ηw,q(YT`−n+i
) = ηw,q([Dw$i,$i ])

= q−($i,w$i−$i)[Dw$i,$i ]
−1

= qdimC ei.T`−n+iY −1
T`−n+i

,
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which is the desired equality in this case since I(T`−n+i) = T`−n+i and Ω−1
w (T`−n+i) = 0.

Next we consider the case that R = Vi,k for some i ∈ I(w) and k ∈ [1, `] with k+ 6= `+ 1.
Then I(Vi,k) = Vi,kmax and Ω−1

w (Vi,k) = Mi[k
max, k+]. Therefore we have

ηw,q(YVi,k) = ηw,q(Dsi1 ···sik$ik ,$ik )

= q−($ik ,si1 ···sik$ik−$ik )D−1
w$ik ,$ik

Duw$ik
,si1 ···sik$ik

= q−($ik ,dimVi,k)Y −1
Vi,kmax

YMi[kmax,k+]

= qdimC ei.Vi,kY −1
I(Vi,k)YΩ−1

w (Vi,k).

Suppose that the equality (III.13) hold for R = T⊕a1
1 ⊕· · ·⊕T⊕a`` , where T = T1⊕· · ·⊕T` is

a basic reachable Cw-maximal rigid module. Fix k ∈ [1, `−n]. Write µTk(T ) = (T/Tk)⊕T ∗k
and I(T ∗k ) =

⊕
i∈I T

⊕λi
`−n+i. By Lemma III.2.26, it remains to prove the following equality;

ηw,q(YT ∗k ) = q
∑
i∈I λi dimC ei.T

∗
k Y −1

I(T ∗k )YΩ−1
w (T ∗k ).(III.14)

Write B̃T = (bij)i∈[1,`],j∈[1,`−n]. Set T+ :=
⊕

j;bjk>0 T
⊕bjk
j and T− :=

⊕
j;bjk<0 T

⊕(−bjk)
j . By

(III.11) and Proposition III.2.19, we have

η∗w([ϕTk ][ϕT ∗k ]) = η∗w([ϕT+ ] + [ϕT− ]) =
[ϕΩ−1

w (T+)]

[ϕI(T+)]
+

[ϕΩ−1
w (T−)]

[ϕI(T−)]
,

and

η∗w([ϕTk ][ϕT ∗k ]) =
[ϕΩ−1

w (Tk)]

[ϕI(Tk)]
·

[ϕΩ−1
w (T ∗k )]

[ϕI(T ∗k )]
.

Therefore

[ϕΩ−1
w (Tk)][ϕΩ−1

w (T ∗k )] = [ϕI(Tk⊕T ∗k )]

(
[ϕΩ−1

w (T+)]

[ϕI(T+)]
+

[ϕΩ−1
w (T−)]

[ϕI(T−)]

)
.(III.15)

By Proposition III.2.10, T ′ := Ω−1
w (T )⊕

⊕
i∈I T`−n+i is a basic reachable Cw-maximal rigid

module; hence there exists a bijection [1, `−n]→ [1, `−n], j 7→ j∗ such that T ′j∗ = Ω−1
w (Tj).

Moreover we have

µT ′
k∗

(T ′) = (T ′/T ′k∗)⊕ Ω−1
w (T ∗k ).

Write B̃T ′ = (b′ij)i∈[1,`],j∈[1,`−n] and (T ′k∗)
∗ := Ω−1

w (T ∗k ). Set T ′+ :=
⊕

j;b′
j∗k∗>0(T ′j∗)

⊕b′
j∗k∗ and

T ′− :=
⊕

j;b′
j∗k∗<0(T ′j∗)

⊕(−b′
j∗k∗ ). Then, by (III.11) and (III.15), we have

[ϕI(Tk⊕T ∗k )]

(
[ϕΩ−1

w (T+)]

[ϕI(T+)]
+

[ϕΩ−1
w (T−)]

[ϕI(T−)]

)
= [ϕT ′+ ] + [ϕT ′− ].(III.16)

We now recall our assumption that the equality (III.13) hold for R = T⊕a1
1 ⊕ · · · ⊕ T⊕a`` .

By Proposition III.2.12 and our assumption, there exist unique A1, A
′
1, A2, A

′
2, A3 ∈ Z such
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that

ηw,q(YTkYT ∗k ) = ηw,q(q
A1YT+ + qA2YT−)

= qA
′
1Y −1

I(T+)YΩ−1
w (T+) + qA

′
2Y −1

I(T−)YΩ−1
w (T−),

and

ηw,q(YTkYT ∗k ) = qA3Y −1
I(Tk)YT ′k∗ηw,q(YT

∗
k
).

Therefore, by (III.16), there exist unique A,A′′1, A
′′
2 ∈ Z such that

ηw,q(YT ∗k ) = qAY −1
T ′
k∗
Y −1
I(T ∗k )YI(Tk⊕T ∗k )(q

A′1Y −1
I(T+)YΩ−1

w (T+) + qA
′
2Y −1

I(T−)YΩ−1
w (T−))

= Y −1
I(T ∗k )Y

−1
T ′
k∗

(
qA
′′
1YT ′+ + qA

′′
2YT ′−

)
.

Note that all rescaled quantum cluster monomials appearing in the rightmost side are
elements of the standard basis of the based quantum torus TA,T ′ . By Theorem III.1.42
and Proposition III.2.13, ηw,q(YT ∗k ) is dual bar invariant. Hence qA

′′
1Y −1

I(T ∗k )Y
−1
T ′
k∗
YT ′+ and

qA
′′
2Y −1

I(T ∗k )Y
−1
T ′
k∗
YT ′− are dual bar invariant elements of TA,T ′ . By Lemma III.2.23, A′′1 and A′′2

are uniquely determined by this property. On the other hand, by Proposition III.2.12,
q
∑
i∈I λi dimC ei.T

∗
k Y −1

I(T ∗k )Y(T ′
k∗ )∗ is of the following form as an element of Tq±1,T ′ ;

Y −1
I(T ∗k )Y

−1
T ′
k∗

(
qM1YT ′+ + qM2YT ′−

)
, M1,M2 ∈ Z.

Moreover, by Lemma III.2.25, q
∑
i∈I λi dimC ei.T

∗
k Y −1

I(T ∗k )Y(T ′
k∗ )∗ = q

∑
i∈I λi dimC ei.T

∗
k Y −1

I(T ∗k )YΩ−1
w (T ∗k )

is dual bar invariant. Hence, by the argument above, M1 = A′1 and M2 = A′′2. Therefore
we obtain the equality III.14, which completes the proof. �

III.3. Quantum Chamber Ansatz

We again consider an arbitrary symmetrizable Kac-Moody Lie algebra g. In this section,
we prove quantum analogues of the Chamber Ansatz formulae for unipotent cells (Corollary
III.3.9) by using the quantum BFZ-twist automorphisms constructed in Section III.1. The
quantum analogues of birational homomorphisms between algebraic tori and unipotent
cells are known as Feigin homomorphisms. By Feigin homomorphisms, we can realize
quantum unipotent cells in q-Laurent polynomial algebras. Quantum Chamber Ansatz
formulae provide explicit description of the variables of the q-Laurent polynomial algebras
in terms of elements of quantum unipotent cells.

Definition III.3.1. Let i = (i1, . . . , i`) ∈ I`. The q-polynomial algebra (resp. the q-
Laurent polynomial algebra) Pi (resp. Li) is the unital associative Q(q)-algebra generated
by t1, . . . , t` (resp. t±1

1 , . . . , t±1
` ) subject to the relations;

tjtk = q(αij ,αik )tktj for 1 ≤ j < k ≤ `,

tkt
−1
k = t−1

k tk = 1 for 1 ≤ k ≤ `.
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Set U−i :=
∏

α∈Q+
Pi ⊗Q(q) (U−q )−α. We write an element (p(−α) ⊗ x(−α))α∈Q+ (p(−α) ∈

Pi, x(−α) ∈ (U−q )−α) of U−i as
∑

α∈Q+
p(−α)x(−α). The vector space U−i has the Q(q)-algebra

structure given by∑
α∈Q+

p(−α)x(−α)

∑
α∈Q+

p′(−α)x
′
(−α)

 =
∑
α∈Q+

 ∑
β,β′∈Q+

β+β′=α

p(−β)p
′
(−β′)x(−β)x

′
(−β′)


for p(−α), p

′
(−α) ∈ Pi, x(−α), x

′
(−α) ∈ (U−q )−α. Set

yi := expqi1 (t1fi1) · · · expqi`
(t`fi`).

where
expqik

(tkfik) :=
∑

m∈Z≥0

q
m(m−1)/2
ik

tmk f
(m)
ik
∈ U−i

for 1 ≤ k ≤ `. Then we can define the Q(q)-linear map Φi : U−q → Pi by

x 7→ (x, yi)L :=
∑

a=(a1,...,a`)∈Z`≥0

qi(a)(x, f
(a1)
i1
· · · f (a`)

i`
)Lt

a1
1 · · · t

a`
`

where

qi(a) :=
∏̀
k=1

q
ak(ak−1)/2
ik

.

Note that the all but finitely many summands in the right-hand side are zero. The map
Φi is called a Feigin homomorphism.

Proposition III.3.2 ([3]). (1) For i ∈ I`, the map Φi is a Q(q)-algebra homomor-
phism.

(2) For w ∈ W and i ∈ I(w), we have Ker Φi = (U−w)
⊥

.
(3) For w ∈ W , i = (i1, . . . , i`) ∈ I(w) and λ ∈ P+, we have

Φi (Dwλ,λ) = qi(a)ta1
1 · · · t

a`
`

where a = (a1, . . . , a`) with ak := 〈hik , sik+1
· · · si`λ〉.

Remark III.3.3. For any i = (i1, . . . , i`) ∈ I`, we have Φi((1− q2
i )fi) =

∑
k;ik=i tk.

Definition III.3.4. Let w ∈ W and i ∈ I(w). By Proposition III.3.2 and the univer-
sality of localization, we have the embedding of an algebra Aq[N

w
− ]→ Li, also denoted by

Φi.

Definition III.3.5. Let w ∈ W and suppose that its reduced word i = (i1, . . . , i`) ∈
I(w) is fixed. Write w≤k := si1 · · · sik and wk≤ := sik · · · si` for k = 1, . . . , `.

In the following theorem, we need the inverse of quantum BFZ-twist automorphisms.
By Theorem III.1.42,

η−1
w,q([Duwλ,u]) = q(λ,wtu−wλ)[Dwλ,λ]

−1[Du,uλ ](III.17)
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for a weight vector u ∈ V (λ) and λ ∈ P+.

Theorem III.3.6. Let w ∈ W , i = (i1, . . . , i`) ∈ I(w) and k = 1, . . . , `. Then we have

(Φi ◦ η−1
w,q)([Dw≤k$ik ,$ik

]) =

(
k∏
j=1

q
dj(dj+1)/2
ij

)
t−d1
1 t−d2

2 · · · t−dkk ,

where dj := 〈w≤jhij , w≤k$ik〉, j = 1, . . . , k.

Remark III.3.7. Note that, by Proposition II.2.7, Dw≤k$ik ,$ik
∈ Aq[N−(w)].

Remark III.3.8. Theorem III.3.6 is a generalization of [5, Corollary 1.2], where they
treat the case that w is a square of a Coxeter element. Moreover, by Theorem III.3.6, we
can say that the quantum BFZ-twist automorphisms ηw,q is a generalization of Berenstein-
Rupel’s quantum BFZ-twist automorphisms [5, Theorem 2.10]. This result corresponds to
[5, Conjecture 2.12 (c)]. Therefore Theorem III.1.42 corresponds to [5, Conjecture 2.17
(a)]. However we do not deal with their upper quantum cluster algebras.

Proof. If w = e, there is nothing to prove. From now on, we assume that the length `
of w is greater than 0. The proof is by induction on k. Let k = 1. Take λ ∈ P+ such that
〈hi1 , wλ〉 < 0. Then it is easily seen that

Dsi1$i1 ,$i1
= [〈hi1 , w2≤λ〉]−1

i1
Duwλ, ei1 .uwλ

.

Hence, by (III.17),

(Φi ◦ η−1
w,q)([Dsi1$i1 ,$i1

]) = q
〈hi1 ,λ〉
i1

[〈hi1 , w2≤λ〉]−1
i1

Φi

(
[Dwλ,λ]

−1[Dei1 .uwλ,uλ
]
)
.

By Proposition III.3.2 (3), we have

Φi

(
[Dwλ,λ]

−1
)

= qi(c)−1t−c`` · · · t−c11 ,

Φi

(
[Dei1 .uwλ,uλ

]
)

= qi(c− (1, 0, . . . , 0))[c1]i1t
c1−1
1 tc22 · · · t

c`
` ,

where c = (c1, . . . , c`) with cj := 〈hij , wj+1≤λ〉. Combining the above equalities, we obtain

(Φi ◦ η−1
w,q)([Dsi1$i1 ,$i1

]) = q
〈hi1 ,λ−w2≤λ−

∑`
j=2 cjαij 〉+1

i1
t−1
1

= qi1t
−1
1 .

This proves the assertion in the case k = 1.
Assume that k > 1. By Proposition III.1.7 and Theorem III.1.9, we can take λ ∈ P+

and b ∈ Bw(λ) such that Duwλ,gup(b) = Dw≤k$ik ,$ik
.

Claim 1. Duwλ,gup(f̃max
i1

b) = Dw≤k$ik ,si1$ik
. Here f̃max

i1
b := f̃

ϕi1 (b)

i1
b = f̃

δi1,ik
i1

b.

Proof of Claim 1. Let δ := δi1,ik . Since usi1$ik = f δi1 .u$ik , we have

D
uwλ,f

(p)
i1
.gup(b)

=

{
Dw≤k$ik ,si1$ik

6= 0 if p = δ,

0 if p > δ.
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On the other hand, by Proposition I.1.43,

f
(p)
i1
.gup(b) =

{
gup(f̃max

i1
b) if p = ϕi1(b),

0 if p > ϕi1(b),

and f̃max
i1

b ∈ Bw(λ) by Proposition I.1.52. Hence,

D
uwλ,f

(p)
i1
.gup(b)

=

{
Duwλ,gup(f̃max

i1
b) 6= 0 if p = ϕi1(b),

0 if p > ϕi1(b).

Combining the above arguments, we obtain ϕi1(b) = δ and Dw≤k$ik ,si1$ik
= Duwλ,gup(f̃max

i1
b).

�

We write b2 := ẽmax
i1

b.

Claim 2. We have

Duwλ,gup(b2) = q
(X−1−2〈hi1 ,w≤k$ik 〉)X/2
i1

DX
si1$i1 ,$i1

Dw≤k$ik ,$ik
,

where X := −〈hi1 , wλ− w≤k$ik〉.

Proof of Claim 2. By [44, Corollary 3.1.8], for p ∈ Z≥0 and x ∈ U−q , we have

xe
(p)
i1

=
∑

p′+p′′+p′′′=p

A(p′, p′′, p′′′)t−p
′′′

i1
e

(p′′)
i1

(i1e
′)p
′
(e′i1)p

′′′
(x)tp

′

i1
,

where

A(p′, p′′, p′′′) := (−qi1)p
′′′
qp
′p′′+p′p′′′+p′′p′′′+p′2

i1

1

(1− q2
i1

)p′ [p′]i1 !

1

(1− q2
i1

)p′′′ [p′′′]i1 !
.
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Therefore, for x ∈ U−q , we have

(D
uwλ,e

(p)
i1
.gup(b)

, x)L

= (uwλ, xe
(p)
i1
.gup(b))ϕλ

=
∑

p′+p′′+p′′′=p

A(p′, p′′, p′′′)(uwλ, t
−p′′′
i1

e
(p′′)
i1

(i1e
′)p
′
(e′i1)p

′′′
(x)tp

′

i1
.gup(b))ϕλ

=
∑

p′+p′′=p

A(p′, 0, p′′)(uwλ, t
−p′′
i1

(i1e
′)p
′
(e′i1)p

′′
(x)tp

′

i1
.gup(b))ϕλ

=
∑

p′+p′′=p

A(p′, 0, p′′)q
p′〈hi1 ,wt b〉−p′′〈hi1 ,wλ〉
i1

(uwλ, (i1e
′)p
′
(e′i1)p

′′
(x).gup(b))ϕλ

=
∑

p′+p′′=p

A(p′, 0, p′′)q
p′〈hi1 ,wλ+$ik−w≤k$ik 〉−p

′′〈hi1 ,wλ〉
i1

(Dw≤k$ik ,$ik
, (i1e

′)p
′
(e′i1)p

′′
(x))L

=
∑

p′+p′′=p

A(p′, 0, p′′)q
p′〈hi1 ,wλ+$ik−w≤k$ik 〉−p

′′〈hi1 ,wλ〉
i1

(Dp′′

si1$i1 ,$i1
Dw≤k$ik ,$ik

Dp′

si1$i1 ,$i1
, x)L

=
∑

p′+p′′=p

A(p′, 0, p′′)q
p′〈hi1 ,wλ−2w≤k$ik 〉−p

′′〈hi1 ,wλ〉
i1

(Dp
si1$i1 ,$i1

Dw≤k$ik ,$ik
, x)L.

Note that the last equality follows from Proposition III.1.27. Therefore we have

D
uwλ,e

(p)
i1
.gup(b)

=
∑

p′+p′′=p

A(p′, 0, p′′)q
p′〈hi1 ,wλ−2w≤k$ik 〉−p

′′〈hi1 ,wλ〉
i1

Dp
si1$i1 ,$i1

Dw≤k$ik ,$ik
.

In particular, since gup(b2) = e
(εi1 (b))

i1
gup(b) = e

(−〈hi1 ,wλ−w≤k$ik 〉)
i1

gup(b) by Claim 1, we have

Duwλ,gup(b2) =
q
−〈hi1 ,w≤k$ik 〉X
i1

(1− q2
i1

)X

( ∑
p′+p′′=X

(−qi1)p
′′
qp
′′X
i1

1

[p′]i1 ![p′′]i1 !

)
DX
si1$i1 ,$i1

Dw≤k$ik ,$ik
.

(III.18)

Recall that X = −〈hi1 , wλ − w≤k$ik〉. By the way, the following equality is well-known.
See for instance [44, 1.3.1].

a∑
t=0

qt(a−1) [a]!

[t]![a− t]!
zt =

a−1∏
j=0

(1 + q2jz)

for a ∈ Z≥0. Substituting q by qi1 , a by X and z by −q2
i1

, we have

X∑
t=0

(−qi1)tqtXi1
[X]i1 !

[t]i1 ![X − t]i1 !
=

X∏
j=1

(1− q2j
i1

).
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Combining this equality with (III.18), we obtain

Duwλ,gup(b2) =
q
−〈hi1 ,w≤k$ik 〉X
i1

∏X
j=1(1− q2j

i1
)

(1− q2
i1

)X [X]i1 !
DX
si1$i1 ,$i1

Dw≤k$ik ,$ik

= q
(X−1−2〈hi1 ,w≤k$ik 〉)X/2
i1

DX
si1$i1 ,$i1

Dw≤k$ik ,$ik
.

�

By Claim 2 and (Φi ◦ η−1
w,q)(Dsi1$i1 ,$i1

) = qi1t
−1
1 , we have

(Φi ◦ η−1
w,q)([Duwλ,gup(b2)])(III.19)

= q
(c1+〈si1hi1 ,w≤k$ik 〉−1)X/2

i1
(Φi ◦ η−1

w,q)([Dsi1$i1 ,$i1
])X(Φi ◦ η−1

w,q)([Dw≤k$ik ,$ik
])

= q
(c1+〈si1hi1 ,w≤k$ik 〉+1)X/2

i1
t−X1 (Φi ◦ η−1

w,q)([Dw≤k$ik ,$ik
]).

Since our aim is to calculate (Φi ◦η−1
w,q)([Dw≤k$ik ,$ik

]), we describe (Φi ◦η−1
w,q)([Duwλ,gup(b2)])

in a different way. Now we have

η−1
w,q([Duwλ,gup(b2)])

= q(λ,wt b2−wλ)[Dwλ,λ]
−1[Dgup(b2),uλ ] = q(λ,$ik−w≤k$ik+Xαi1 )[Dwλ,λ]

−1[Dgup(b2),uλ ].

Moreover,

Φi([Dgup(b2),uλ ])(III.20)

=
∑

a=(a1,...,a`)∈Z`≥0

qi(a)(gup(b2), f
(a1)
i1
· · · f (a`)

i`
.uλ)

ϕ
λt
a1
1 · · · t

a`
`

=
∑

(a2,...,a`)∈Z`−1
≥0

qi((0, a2, . . . , a`))(g
up(b2), f

(a2)
i2
· · · f (a`)

i`
.uλ)

ϕ
λt
a2
2 · · · t

a`
` .

The last equality holds because ei1 .g
up(b2) = 0. Here we prepare one more claim.

Claim 3. Set µ2 := w2≤λ. Then Duµ2 ,g
up(b2) = Dsi1w≤k$ik ,$ik

.



III.3. QUANTUM CHAMBER ANSATZ 68

Proof of Claim 3. By Proposition I.1.29, I.1.30, I.1.31 and Claim 1, for x ∈ U−q ,
we have

(Dsi1w≤k$ik ,$ik
, x)L

= (usi1w≤k$ik , x.u$ik )ϕ$ik

=

{
(usi1w≤k$ik , x.u$ik )ϕ$ik

if x ∈ U−q ∩ Ti1(U−q ) = Ker e′i1 ,

0 if x ∈ fi1U−q = (Ker e′i1)⊥,

=

{
(uw≤k$ik , T

−1
i1

(x).usi1$ik )ϕ$ik
if x ∈ U−q ∩ Ti1(U−q ),

0 if x ∈ fi1U−q = (Ker e′i1)⊥,

=

{
(uwλ, T

−1
i1

(x).gup(f̃max
i1

b))ϕλ if x ∈ U−q ∩ Ti1(U−q ),

0 if x ∈ fi1U−q = (Ker e′i1)⊥,

= (uµ2 , x.g
up(b2))ϕλ

= (Duµ2 ,g
up(b2), x)L.

This completes the proof. �

Set i2≤ := (i2, . . . , i`) and identify Li2≤ with the subalgebra of Li generated by t±1
2 , . . . , t±1

` .
Write

C2 :=
k∏
j=2

q
〈si1w≤jhij ,si1w≤k$ik 〉(〈si1w≤jhij ,si1w≤k$ik 〉+1)/2

ij
=

k∏
j=2

q
dj(dj+1)/2
ij

.

By our induction assumption, Proposition III.3.2 (3) and Claim 3, we have

C2t
−〈w≤2hi2 ,w≤k$ik 〉
2 · · · t−〈w≤khik ,w≤k$ik 〉k

(
=: C2

−→∏
j=2,...,k

t
−〈w≤jhij ,w≤k$ik 〉
j

)
= (Φi2≤ ◦ η

−1
w2≤,q

)([Dsi1w≤k$ik ,$ik
])

= (Φi2≤ ◦ η
−1
w2≤,q

)([Duµ2 ,g
up(b2)])

= Φi2≤(q(λ,$ik−w≤k$ik+〈hi1 ,w≤k$ik 〉αi1 )[Dw2≤λ,λ]
−1[Dgup(b2),uλ ])

= q(λ,$ik−w≤k$ik+〈hi1 ,w≤k$ik 〉αi1 )qi2≤(c′)−1t−c`` · · · t−c22

×
∑

a′=(a2,...,a`)∈Z`−1
≥0

qi2≤(a′)(gup(b2), f
(a2)
i2
· · · f (a`)

i`
.uλ)

ϕ
λt
a2
2 · · · t

a`
` ,

where c′ = (c2, . . . , c`) with cj := 〈hij , wj+1≤λ〉. Therefore,∑
a′=(a2,...,a`)∈Z`−1

≥0

qi2≤(a′)(gup(b2), f
(a2)
i2
· · · f (a`)

i`
.uλ)

ϕ
λt
a2
2 · · · t

a`
`(III.21)

= C2q
−(λ,$ik−w≤k$ik+〈hi1 ,w≤k$ik 〉αi1 )qi2≤(c′)tc22 · · · t

c`
`

−→∏
j=2,...,k

t
−〈w≤jhij ,w≤k$ik 〉
j .
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Combining (III.20) and (III.21), we obtain the following equality (c = (c1, · · · c`), c1 :=
〈hi1 , w2≤λ〉):

(Φi ◦ η−1
w,q)([Duwλ,gup(b2)])(III.22)

= q(λ,$ik−w≤k$ik+Xαi1 )Φi([Dwλ,λ]
−1[Dgup(b2),uλ ])

= C2q
−〈hi1 ,λ〉〈hi1 ,wλ〉
i1

qi(c)−1qi2≤(c′)t−c`` . . . t−c11 tc22 · · · t
c`
`

−→∏
j=2,...,k

t
−〈w≤jhij ,w≤k$ik 〉
j

= C2q
−〈hi1 ,λ〉〈hi1 ,wλ〉−c1(c1−1)/2−

∑`
j=2〈hi1 ,cjαij 〉

i1
t−c11

−→∏
j=2,...,k

t
−〈w≤jhij ,w≤k$ik 〉
j

= C2q
c1(c1+1)/2
i1

t−c11

−→∏
j=2,...,k

t
−〈w≤jhij ,w≤k$ik 〉
j .

Recall that X = −〈hi1 , wλ−w≤k$ik〉 = c1− 〈si1hi1 , w≤k$ik〉. By (III.22) and (III.19), we
obtain

(Φi ◦ η−1
w,q)([Dw≤k$ik ,$ik

])

= C2q
−(c1+〈si1hi1 ,w≤k$ik 〉+1)(c1−〈si1hi1 ,w≤k$ik 〉)/2+c1(c1+1)/2

i1
t
−〈si1hi1 ,w≤k$ik 〉
1

−→∏
j=2,...,k

t
−〈w≤jhij ,w≤k$ik 〉
j

= C2q
〈si1hi1 ,w≤k$ik 〉(〈si1hi1 ,w≤k$ik 〉+1)/2

i1
t
−〈si1hi1 ,w≤k$ik 〉
1

−→∏
j=2,...,k

t
−〈w≤jhij ,w≤k$ik 〉
j .

This completes the proof. �

The following is a direct corollary of Theorem III.3.6. These equalities are exact quan-
tum analogues of the Chamber Ansatz formulae for unipotent cells [4, Theorem 1.4], [6,
Theorem 1.4]. See also the proof of [6, Theorem 4.3].

Corollary III.3.9. Let w ∈ W and i = (i1, . . . , i`) ∈ I(w). For j = 1, . . . , `, set

D′ (i)w≤j$ij ,$ij
:= (Φi ◦ η−1

w,q)([Dw≤j$ij ,$ij
]).

By Theorem III.3.6, these elements are Laurent monomials in Li. Then, for k = 1, . . . , `,

tk ' (D′ (i)w≤k−1$ik ,$ik
)−1(D′ (i)w≤k$ik ,$ik

)−1
∏

j∈I\{ik}

(D′ (i)w≤k$j ,$j
)−aj,ik ,

here ' means the coincidence up to some powers of q. Note that the right-hand side is
determined up to powers of q.
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