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ABSTRACT. Quantum unipotent subgroups and quantum unipotent cells are quantum
analogues of the coordinate algebras of unipotent subgroups and unipotent cells of Kac-
Moody groups, respectively. Here unipotent subgroups are affine algebraic groups and
unipotent cells are affine algebraic varieties. Those quantized coordinate algebras have
many interesting structures and reflect structures of other mathematical objects via cate-
gorifications. Typical examples are their dual canonical bases and quantum cluster algebra
structures.

In this thesis, we develop the theory of quantum analogues of twist maps on those
quantized coordinate algebras. In particular, we study their compatibility with specific
bases and quantum cluster algebra structures of those quantized coordinate algebras. Here
the twist maps indicate the Fomin-Zelevinsky twist maps (henceforth the FZ-twist maps)
between unipotent subgroups and the Berenstein-Fomin-Zelevinsky twist automorphisms
(henceforth the BFZ-twist automorphisms) on unipotent cells.

The quantum analogues of the FZ-twist maps were constructed by Lenagan-Yakimov.
We show that these quantum FZ-twist maps are restricted to bijections between the
dual canonical bases of quantum unipotent subgroups, and preserve quantum analogues
of certain unipotent generalized minors, in particular, specific determinantal identities,
called quantum T-systems.

The quantum analogues of the BFZ-twist automorphisms were obtained by Berenstein-
Rupel when the Weyl group elements corresponding to quantum unipotent cells are squares
of Coxeter elements. In this thesis, we construct the quantum analogues of the BFZ-twist
automorphisms on arbitrary quantum unipotent cells in a different method. Our ap-
proach relies on the relations between the structures of quantum unipotent subgroups,
quantum unipotent cells and non-unipotent quantized coordinate algebras. We define ap-
propriately the dual canonical bases of the quantum unipotent cells and show that these
quantum BFZ-twist automorphisms are restricted to permutations on the dual canonical
bases. Moreover we prove that the quantum BFZ-twist automorphisms are categorified
by representations of preprojective algebras following Geif3-Leclerc-Schroer’s theory when
the corresponding Lie algebra is symmetric. As a corollary, we show the compatibility
between quantum BFZ-twist automorphisms and quantum cluster monomials. At last,
the Chamber Ansatz formulae for quantum unipotent cells are obtained by means of the
quantum BFZ-twist automorphisms. These formulae tell that our quantum BFZ-twist
automorphisms are generalizations of Berenstein-Rupel’s ones.
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Introduction

Organization of the thesis

This thesis is divided into three chapters. In Chapter I, we fix our notations and review
known properties of our main targets, quantized enveloping algebras, quantized coordinate
algebras and canonical bases. The definition of quantum cluster algebras is also reviewed.
In Chapter II and III, we develop the theory of twist maps in the quantum settings from
the basis-theoretic viewpoint. In particular, we focus on their compatibility with dual
canonical bases and quantum cluster monomials. In Chapter II, we deal with quantum
analogues of Fomin-Zelevinsky twist maps, introduced by Lenagan-Yakimov. In Section
I1.1, we show that quantum analogues of Fomin-Zelevinsky twist maps are restricted to
bijections between dual canonical bases of quantum unipotent subgroups. In Section II.2,
we treat quantum analogues of generalized minors on unipotent groups, called unipotent
quantum minors. They are typical example of dual canonical basis elements and some of
them are quantum cluster monomials of quantum unipotent subgroups. We prove that the
image of some unipotent quantum minors under quantum analogues of Fomin-Zelevinsky
twist maps are also unipotent quantum minors. In Chapter I1I, we deal with quantum ana-
logues of Berenstein-Fomin-Zelevinsky twist automorphisms. In Section II1.1, we construct
quantum analogues of Berenstein-Fomin-Zelevinsky twist automorphisms and show that
they are restricted to permutations on dual canonical bases of quantum unipotent cells.
In Section III.2, we prove that quantum analogues of Berenstein-Fomin-Zelevinsky twist
automorphisms are categorified by representations of preprojective algebras following Geif3-
Leclerc-Schroer’s theory when the corresponding Lie algebra is symmetric. As a corollary,
we show the compatibility between quantum analogues of Berenstein-Fomin-Zelevinsky
twist automorphisms and quantum cluster monomials. In Section III.3, the “Chamber
Ansatz formulae” for quantum unipotent cells are established by means of quantum ana-
logues of Berenstein-Fomin-Zelevinsky twist automorphisms.

Backgrounds and Main results

Let g be a complex semisimple Lie algebra and g =n_ & hPHn,y its triangular decom-
position, G the connected simply-connected complex algebraic group with the Lie algebra
g, and Ny, H the closed subgroups of G with the Lie algebras n., b, respectively. Set
B_:= N_H, By := HN,, which are called Borel subgroups. The Weyl group Ng(H)/H
is denoted by W. (Here we take g as a semisimple Lie algebra for simplicity, however all
results are valid in arbitrary symmetrizable Kac-Moody settings unless otherwise specified.)
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BACKGROUNDS AND MAIN RESULTS 2

For w € W, the algebraic subgroup N_(w) := N_ NwNw™! is called a unipotent
subgroup, and the affine algebraic variety N* := N_ N By wB, is called a unipotent cell.
Here w denotes an arbitrary lift of w to Ng(H). We deal with the quantum analogues
A, [N_(w)] and A, [N™] of the coordinate algebras C[N_(w)] and C[N"], respectively.
These algebras A [N_(w)] and A,[N"] are introduced by De Concini, Kac and Procesi
[10], [11]. The algebras A, [N_(w)] and A,[N*] are called the quantum unipotent subgroup
and the quantum unipotent cell, respectively.

An important research topic concerning those quantized coordinate algebras is the
theory of their specific bases. Our main interests are dual canonical bases(= upper global
bases) in the sense of Lusztig [40, 41, 44| and Kashiwara [29]. A guiding principle of
algebraic and combinatorial research on such remarkable bases is a quantum cluster algebra
structure. It provides the special elements, called quantum cluster monomzials, in the given
algebra which are constructed by the successive procedure, called mutation. See Section
[.2 for the precise definition of the quantum cluster algebras.

The dual canonical bases and the quantum cluster algebra structures reflect structures
of other mathematical objects; In [40] (and his subsequent work [41, 44]), Lusztig has
originally constructed the canonical bases by using perverse sheaves on affine spaces arising
from the representation theory of quivers. In his construction, the canonical basis elements
correspond to simple perverse sheaves. The multiplication structure of the dual canonical
basis elements is a shadow of the images of those simple perverse sheaves under “the
restriction functor”. In [29], Kashiwara has independently constructed the canonical bases
(more precisely, he called them global crystal bases, and subsequently their coincidence
with canonical bases is proved), and shown that they have some combinatorial structures,
called Kashiwara crystals. When g is symmetric, the algebra A,[/N_] is isomorphic to the
deformed Grothendieck ring of an appropriate monoidal subcategory of finite dimensional
representations of quantum affine algebras, and the dual canonical basis corresponds to
the basis coming from simple objects [23]. The quantum cluster algebra structures on
A [N_(w)] and A [N™] are categorified by representations of the preprojective algebras
[20], and we deal with this kind of categorification in this thesis. There is also a monoidal
categorification of quantum cluster algebra structures on A,[N_(w)] and A,[N™] through
quiver Hecke algebras [27], [28].

In this thesis, we develop the theory of quantum analogues of “twist maps” from the
basis-theoretic viewpoint. Ideally (and, in consequence, actually), they should be nontrivial
(anti-)algebra isomorphisms of the quantized coordinate algebras. Hence they preserve
multiplication structure. If these quantum twist maps preserve specific bases, especially
dual canonical bases, then such results may suggest the new “symmetries” of various
mathematical objects. The main aim of this paper is to establish the foundation of this
direction: (1) to show the compatibility between dual canonical bases and the “known”
quantum twist maps (2) to construct quantum analogues of twist maps and show their
compatibility with dual canonical bases and quantum cluster monomials. Moreover, as an
application of (2), we deduce quantum analogues of the Chamber Ansatz formulae, which
we will explain below. The results in Chapter II correspond to (1) and the results in
Chapter III correspond to (2).
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Here we present explicit forms of (non-quantum) twist maps whose quantum analogues
are discussed in this thesis. Set Go := N_HN, and let g = [g]_[g]o]g]+ be the correspond-
ing (unique) decomposition for g € Gy.

DEFINITION (Twist maps [4], [6], [14]). Let w € W. There exists a biregular auto-
morphism 7,,: N¥ — N given by

y e [yTi)-,

here y* is a transpose of y in G and 1 is an arbitrary lift of w to Ng(H). This is called the
BFZ-twist automorphism. Moreover, there exists a biregular isomorphism 7,,: N_(w™') —
N_(w) given by

y = w(y)w
here V is a involutive group automorphisms of G' which interchanges positive and negative
Chevalley generators (cf. Definition 1.1.5), and w is a specific lift of w to Ng(H). This is
called the FZ-twist map (with respect to the y-coordinate in the sense of [14]).

These are introduced in order to solve the “factorization problems” which arose from
research on totally positive elements in G. Indeed, we consider the quantum analogue of
factorization problems for unipotent cells in Section II1.3 and explain them below. These
twist maps induce the C-algebra isomorphisms 7} : C[N*] — C[N¥] and 7, : C[N_(w)] —
C[N_(w™")] respectively. It is known that these isomorphisms are compatible with some
specific basis elements of C[N_(w)] and C[N"], for instance, [14, Lemma 2.25], [19, The-
orem 6]. We pursue such phenomena in quantum settings, focusing on especially dual
canonical bases. Note that dual canonical bases are originally defined in quantum settings.
Chapter II discusses quantum analogues of FZ-twist maps, and Chapter III deals with
quantum analogues of BFZ-twist automorphisms.

Before explaining the details of our main results, we briefly confirm our setup and
prepare notations from representation theory. The quantized coordinate algebras above are
defined from the Drinfeld-Jimbo quantized enveloping algebra U, := U,(g) associated with
g, which is an algebra over the rational function field Q(g) in one variable q. The algebra
U, is a Hopf algebra which is a quantum analogue of the universal enveloping algebra
U(g) of g. The coordinate algebra C[N_] is isomorphic to the graded dual (U(n_))s, of
the enveloping algebra of n_. Note that the algebra structure of (U(n_));, comes from
the coalgebra structure of U(n_). Hence A [N_] is defined as a graded dual (U} )z, of the
negative half U of U,. Here the algebra structure of (U );, is defined as a dual of the
twisted coalgebra structure of U, . In quantum settings, A [N_] is actually isomorphic
to U, as Q(g)-algebras by the existence of an appropriate nondegenerate pairing. The
quantum unipotent subgroups A,[N_(w)] are defined as certain subalgebras of A, [N_],
and the quantum unipotent cells A, [N™] are defined as some localizations of quotient
algebras of A [N_].

Let P, be the set of dominant integral weights. For A € P, , V(\) denotes the integrable
highest weight U,-module with highest weight A. Fix a highest weight vector uy and let
uyx € V(A) be the (unique) canonical basis element of weight wA. Then there exists a
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Q(g)-bilinear form (, )¥: V(A) x V(A) = Q(g) such that (uy,uy)§ =1 and (z.u, ) =
(u, p(x).u)¥ for z € Uy, u,u’ € V(A). Here ¢ is the Q(g)-anti-algebra involution which is a
quantum analogue of the transpose in G (see Definition I.1.5). Now two vectors u, u’ € V' (\)
determine the element D, . of (U7 );, = A [N_] ~ U given by n +— (u,n.u')3 forn € U_.
We write Dy, u,,, @ Dyxwa for w,w € W and A € P.. The elements of this form are
called unipotent quantum minors, which are quantum analogues of generalized minors on
the unipotent group N_. The unipotent quantum minors are important and manageable

examples of the dual canonical basis elements.

Quantum FZ-twist maps: The quantum analogue 7, , of the FZ-twist map 7, is intro-
duced by Lenagan-Yakimov [39]. This quantum FZ-twist map 7, , is constructed as a com-
position of well-known algebra automorphisms and anti-automorphisms on the quantized
enveloping algebras, more precisely, 7, , := x0T, ~10S50Vox: A [N_(w)] = A,[N_(w™)];
here let T, be Lusztig’s braid group symmetry, S the antipode, * the x-involution and by V
the involution analogous to the one in the definition of twist maps (see Definition I.1.5 and
[.1.28). Note that A,[N_] = (U, )z, is isomorphic to U as Q(g)-algebras In particular,
Tw,q 15 & Q(g)-anti-algebra involution. (We use the s-involution for the technical reason.)
We first show the following;:

THEOREM (Theorem I1.1.10). The quantum FZ-twist map T, 4 15 restricted to a bijec-
tion from the dual canonical basis of A,[N_(w)] to that of A [N_(w™1)].

The quantum unipotent subgroup A,[N_(w)] has another specific basis called the
(dual) Poincaré-Birkhoff-Witt type basis. It is known that the transition matrices between
the dual canonical basis and the dual Poincaré-Birkhoff-Witt type basis are unitriangular
with respect to “the left lexicographic order”. As a corollary of the theorem above, we
proved that this unitriangularity also holds under “the right lexicographic order” (Corollary
I1.1.11). If g is not of finite type, this reverse unitriangularity is a new symmetry.

Next we show the compatibility between quantum FZ-twist maps and unipotent quan-
tum minors. The following statement is a quantum analogue of [14, Lemma 2.25] and a
slight refinement of [39, The equality (6.7)].

THEOREM (Theorem 11.2.8, Corollary 11.2.14). Let wy,ws € W. Suppose that w, and

wy are less than or equal to w with respect to the weak right Bruhat order (see Proposition
I1.2.7). Then we have Dyyxuwxn € Ag[N_(w)], Dy-1uyraw-twsr € Ag[N_(w™)], and

Tw,q(Dwz)\,m)\) = Dw*1w1>\,w*1w2>\'

In particular, 7,4, maps the quantum analogues of specific determinantal identities, called
the quantum T-system, in A [N_(w)] to those in A, [N_(w™1)].

Note that the quantum T-systems are specific mutation sequences consisting of unipo-
tent quantum minors from the viewpoint of quantum cluster algebras.

Quantum BFZ-twist automorphisms: Berenstein-Rupel constructed a quantum ana-
logue of the BFZ-twist automorphism on A,[N"] in the case that w is a square of Coxeter
elements, by using quantum cluster algebra structures [5, Theorem 2.10]. In this thesis,
we construct a quantum analogue 7, , of the BFZ-twist automorphism 7}, on an arbitrary
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quantum unipotent cell A,[N"] without referring quantum cluster algebra structures. Our
construction depends on the relations between the structure of quantum unipotent sub-
groups, quantum unipotent cells and a quantum analogue of the coordinate algebra of
G. We present the explicit form of our quantum BFZ-twist automorphisms here. Since
A, [N™] is some localization of a quotient algebra of A,[N_], there exists the element
[Dy.w] € Ay[NY] derived from D, € A [N_] for every u,u’ € V(X), A € Py:

THEOREM (Theorem I11.1.42). Let w € W. There ezists a Q(q)-algebra automorphism
Nwq: Ag[NY] = A [N™] given by

[Du,uA] = qf()\,wtuf)\) [Dw)\,)\]il[DuwA,u]u [Dw/\,)\]il = q()\,w/\f/\) [Dw)\,/\]

for a weight vector u € V(A\) and A\ € P.. Here wtu denotes the weight of w and (, ) is
the standard bilinear form on bh*.

We call n,, , the quantum BFZ-twist automorphism on A,[N"]. Actually, it is shown in
[37, Corollary 5.5] that this automorphism 7, , coincides with the BFZ-twist automorphism
nt . C[N"] — C[N"] when we consider an appropriate specialization to ¢ = 1. Our aim is
to study the compatibility between quantum BFZ-twist automorphisms and dual canonical
bases. We define naturally the dual canonical basis B"™" of A/ [N™] (Definition III.1.35)
and prove the following.

THEOREM (Theorem I11.1.42). The quantum BFZ-twist automorphism n,, , is restricted
to a permutation on B"™"Y.

Since this is a permutation, we can consider the iterated application of quantum BFZ-
twist automorphisms, and the “orbit” of dual canonical basis elements. In fact, we prove
that, if w is a longest element wy of W, then 1, , has “6-periodicity” (Theorem III.1.45).
The necessary and sufficient condition for such periodicity is unclear. When g is symmetric,
the periodicity is categorified as the “periodicity” of (relative) syzygy functors on represen-
tations of preprojective algebras via Geifs-Leclerc-Schréer’s additive categorification, which
is our next topic. In fact, “6-periodicity” is a well-known property in such context.

We next show an additive categorification of quantum BFZ-twist automorphisms in the
sense of GeiB-Leclerc-Schroer. Here we assume that g is symmetric. In particular, we show
that quantum BFZ-twist automorphisms preserve quantum cluster monomials.

Geif-Leclerc-Schroer have categorified the (non-quantum) BFZ-twist automorphisms
[19] and quantum cluster algebra structures on quantum unipotent subgroups (and quan-
tum unipotent cells) [20] by using representations of the preprojective algebra IT associated
with g. They used specific full subcategories C,, w € W of II-modules which are intro-
duced by Buan-Iyama-Reiten-Scott [8] and independently by Geifi-Leclerc-Schréer [17] for
specific w. Lusztig’s construction [43] of C[N_] = (U(n_));, associates each X € C,
with a regular function [px] € C[N¥]. There exists a quantum analogue Yz € A, [N"]
of [¢r] € CIN"] if R € C, is a reachable II-module in the sense of [18, 20]. In terms of
quantum cluster algebras, the elements Yz correspond to the quantum cluster monomials.
If R is projective-injective in C,, (in fect, C,, is a Frobenius category), then Yy is invertible
in A,[N"]. For X € C,, I(X) denotes the injective hull of X in C, and Q,'(X) denotes
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the cokernel of the corresponding embedding X — I(X). Then we prove the following
theorem:

THEOREM (Theorem I11.2.20). Letw € W. Then for every reachable II-module R € C,,,
we have

nw,q(YR) = E/IZII%)YQ;JI (R)"

Here ~ stands for the coincidence up to some powers of q.

This result is a quantum analogue of Geifl-Leclerc-Schréer’s result in [19, Theorem 6]
(Proposition I11.2.19) and we actually use their result essentially in our proof. This is
regarded as an additive categorification of the quantum BFZ-twist automorphisms. An
important corollary is the following (Corollary I11.2.21): for a reachable II-module R € C,,
Y is a dual canonical basis element if and only if Yoz1(r) 1S so. Therefore the property that
a quantum cluster monomial belongs to dual canonical basis is preserved in an “orbit” of
syzygy functors. Actually, Kang-Kashiwara-Kim-Oh have shown that all quantum cluster
monomials belong to the dual canonical bases by using a categorification via representations
of quiver Hecke algebras [27], [28]. Hence we have already known that every Y% is a dual
canonical basis element. However, the understanding of the orbits of syzygy functors may
provide another approach to this strong result. Indeed, there is now no proof of it through
the additive categorification. It would be interesting to determine the dual canonical basis
elements obtained from the corollary above and, for example, quantum T-systems.

At last, we consider quantum analogues of the “factorization problems” for unipotent
cells as mentioned above. These problems are considered by Berenstein, Fomin and Zelevin-
sky in [4], [6] in order to study the totally positive elements in Schubert cells. Here we
explain them in non-quantum settings. Let {a; (resp. h;) | ¢ € I} be the set of simple roots
(resp. simple coroots), {s; | i € I} C W the set of simple reflections, {w; | i € [} C P,
the set of fundamental weights, that is, (h;,w;) = d;; for i, j € I. Denote by f; a root
vector of g corresponding to —a;, by y;: C — N_,t — exp(tf;) the 1-parameter subgroup
corresponding to f;. For w € W, denote by £(w) the length of w and by I(w) C I“™) the
set of the reduced words of w. For w € W and ¢ = (i4,...,is) € I(w), there exists a map
yi: (C*)¢ — NY given by

(tr, ... te) = exp(tyfi,) - - exp(tefi,).

Then it is known that y; is a birational map. The problem on finding an explicit description
of the inverse birational map v, is called the factorization problem. By the way, if n € N¥
is in the image of y; and y, '(n) € RY,, then n is called a totally positive element in N*.
This problem is also formulated in terms of coordinate algebras: the map y; induces an
embedding of algebras
yi: CINY] — Cl5, ..., t7!)

The problem is to describe explicitly each t; (k = 1,...,¢) as a rational function on N™.
Berenstein, Fomin and Zelevinsky solved this problem by using generalized minors and
the BFZ-twist automorphisms [4], [6]. Indeed, this problem is the original motivation
for the BFZ-twist automorphisms. The resulting formulae are called the Chamber Ansatz
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formulae [4, Theorem 1.4], [6, Theorem 1.4]. We present the exact quantum analogue of
them below. We already have the quantum analogues of the coordinate algebra C[N™],
generalized minors and the BFZ-twist automorphism 7). Actually, there also exists a
quantum analogue of the embedding y;: C[N*] — C[t{,..., "], which is known as a
Feigin homomorphism. This is an injective Q(g)-algebra homomorphism ®;: A,[N"] —
L;, where £; is a “non-commutative” Laurent polynomial algebra(=a quantum torus) in
(-variables tq,--- t,. By using these materials, we obtain the following exact quantum
analogues of the Chamber Ansatz formulae.

THEOREM (Theorem I11.3.6, Corollary I11.3.9). Letw € W and @ = (i1, ...,1s) € I(w).
For j=1,...,(, set wej = 8;; -+~ 5;;. Then, fork=1,... (, we have

_ i —dy 4—d —d
((I)i © nw,l(])([Dwgkwik7wik])(:: Diu(;iwlk ’wik) = tl 1t2 Teen tk ka

where dj := (w<;hi;, w<xw;,), j =1,..., k. Here ~ stands for the coincidence up to some
powers of q. These formulae are equivalent to the following:

~ i -1 i -1 i —aji
Jel\{ix}
here a;; := (h;, ) fori,j € I. Note that the right-hand side is determined up to powers
of q.

This is a generalization of Berenstein-Rupel’s result [5, Corollary 1.2]. By this the-
orem, we can say that the quantum BFZ-automorhisms in this thesis are generalization
of Berenstein-Rupel’s quantum twist automorphisms [5, Theorem 2.10], which has been
constructed in the case that w is a square of a Coxeter element. Hence the quantum
BFZ-automorhisms 7, , are the ones predicted in [5, Conjecture 2.12 (c)]. Moreover,
their compatibility with dual canonical bases corresponds to [5, Conjecture 2.17 (a)]. We
should remark that they treat quantum unipotent cells as subalgebras of quantum Lau-
rent polynomial algebras via Feigin homomorphisms and construct quantum BFZ-twist
automorphisms by using quantum cluster algebra structures defined in quantum Laurent
polynomial algebras. We hope that this result provides the new interesting tools for the
study of quantum cluster algebra structure of quantum unipotent subgroups and quan-
tum unipotent cells. For example, by Feigin homomorphisms and the Chamber Ansatz
formulae, we can obtain an expression of an element of A,[N"] as a Laurent polynomial
in variables {1, ([Dw o, @ 1) | k=1,...,(}.

Further questions

In this thesis, we consider quantum analogues of Chamber Ansatz formulae only for
unipotent cells. There are the Chamber Ansatz formulae for double Bruhat cells [14],
and they are the original motivation for FZ-twist maps. The quantum analogue of their
Chamber Ansatz formulae may be interesting for the theory of quantum cluster algebra
structures on quantum double Bruhat cells. By the way, the quantum cluster algebra
structures on quantum double Bruhat cells are obtained in [22] and they consider quantum
analogues of FZ-twist maps for double Bruhat cells.
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It would be also interesting to explain the existence of the quantum FZ-twist maps via
categorifications.

Since the quantum BFZ-twist automorphism 7, , is an automorphism, we can apply
Nw,q on Ay [N]| repeatedly. Moreover we should remark that the image of a unipotent
quantum minor under the quantum BFZ-twist automorphism is not necessarily a unipotent
quantum minor. Hence, roughly speaking, we can obtain the “difficult” dual canonical
basis elements from the “easy” dual canonical basis elements by iterated application of
quantum BFZ-twist automorphisms. Therefore it would be interesting to investigate how
“many” dual canonical basis elements are obtained from unipotent quantum minors and
their appropriate monomials by this procedure. Theorem III.1.45 is considered as a result
related with this investigation.

It is also unclear whether quantum BFZ-twist automorphisms are categorified by using
finite dimensional representations of quantum affine algebras or quiver Hecke algebras.
In particular, it is unknown that quantum BFZ-twist automorphisms preserve the basis
coming from the simple modules of quiver Hecke algebras.

The Chamber Ansatz formulae for quantum unipotent cells state the monomiality of
(@3 01y 0)([Dweywr, i, |)- This is a non-trivial point, and it would be interesting to un-
derstand this phenomenon via categorifications. Actually, in non-quantum settings, Geif3-
Leclerc-Schroer have obtained an explanation by using their additive categorification [19].



CHAPTER 1

Preliminaries

In this chapter, we fix our basic notations and summarize known properties of quantized
enveloping algebras, quantized coordinate algebras, canonical bases and quantum cluster
algebras. In Section 1.1, we review the several objects related with quantized enveloping
algebras, which are our main subjects. In Section 1.2, we prepare the fundamental notions
concerning quantum cluster algebras, which are algebraic and combinatorial frameworks
for the study of canonical bases.

General notation

The following are general notations in this thesis.

(1) For a vector space V over a field k, set V* := Homy(V, k). Denote by (, ): V* x
V — k, (f,u) — (f,u) the canonical pairing.

(2) For a k-algebra o7, we set [ay, as] := ajas — agay for ay,ay € &7. An Ore set M of
o/ stands for a left and right Ore set consisting of non-zero divisors. Denote by
o | M ] the algebra of fractions with respect to the Ore set .. In this case, &
is naturally a subalgebra of &7 [.# ~']. See [21, Chapter 6] for more details.

(3) An o/-module V means a left o/-module. The action of &/ on V is denoted by
a.v for a € o/ and v € V. In this case, V* is regarded as a right &/-module by
(f.a,v) = (f,av) for feV* a€ o/ andv e V.

(4) For two letters i, j, the symbol §;; stands for the Kronecker delta.

I.1. Quantized enveloping algebras

Quantum analogues of Fomin-Zelevinsky twist maps, which will be treated in Chapter
II, are the Q(q)-anti-algebra isomorphisms between quantum unipotent subgroups. In
subsection 1.1.8, we present the definition of quantum unipotent subgroups. Quantum
analogues of Berenstein-Fomin-Zelevinsky twist maps, which will be dealt with in Chapter
ITI, are Q(q)-algebra automorphisms on quantum unipotent cells. In subsection 1.1.9,
we present the definition of “closed version” of quantum unipotent cells. To obtain the
“non-closed version”, we consider localizations of these objects, which will be presented in

Chapter III.
1.1.1. Lie theoretic setups.

DEFINITION I.1.1. A root datum consists of the following data;

(1) I : a finite index set,
(2) b : a finite dimensional Q-vector space,

9
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(3) P C b* : alattice, called weight lattice,

(4) P*={h eb | (h,P) C Z} with the canonical pairing ( , ) : P* x P — Z, called
the coweight lattice,

(5) {ai};e; € P : asubset, called the set of simple roots,

(6) {hi},e; € P* : asubset, called the set of simple coroots,

(7) (, ): Px P — Q: aQ-valued symmetric Z-bilinear form on P.

satisfying the following conditions:

(a) (ay, ;) € 2Zsg fori € I,
(b) (his A) =2 (ay, A) / (qu, ) for A € P and @ € I,

(c) A = (aij)ijer = ((hi,;)); jc; s a symmetrizable generalized Cartan matrix,
that is (h;, ) = 2, (hi, o) € Z<p for i # j and, (h;, ;) = 0 is equivalent to
<hj7 a;) =0,

(d) {ai},e; € b* {hi},c; C b are linearly independent subsets.

The Z-submodule QQ = >, ;Za; C P is called the root lattice, Q" = ., Zh; C P*
is called the coroot lattice. We set Q1 = > Zsoa; C Q and Q- = —Q4. For a =
Y ier Mic; € Q, we set ht (o) = Y., m; € Z.

Let Py := {\ € P | (hi,\) € Zx( for all i € I} and we assume that there exists {w; },., C
P, such that (h;,w;) = §;;. An element of P, is called a dominant integral weight. Set
pi=> ;@i € Py. Then (h;, p) =1 and (4, p) = (v, ;) /2 for all i € I.

Fix elements {w,  };e; C b such that (w;, ;) = 0;; for ¢, 7 € I. We do not assume that
{w;/}igj C P

DEFINITION 1.1.2. Let W be the Weyl group associated with the above root datum,
that is, the group generated by {s;}ic; with the defining relations s? = e for i € I and
(sis;)™ = e for i,j € I, i # j. Here e is the unit of W, m;; = 2 (resp. 3,4,6,00)
if a;;a;; = 0 (resp. 1,2,3,> 4), and w™ := e for any w € W. We have the group
homomorphisms W — Auth and W — Aut h* given by

si(h) = h — (h, o)l si (1) = p— (hi, ey
for h € h and p € h*. For an element w of W, ¢(w) denotes the length of w, that is, the
smallest integer ¢ such that there exist ¢1,...,7 € [ with w =s;, ---s;,. For w € W, set

I(w) = {’l, = (il, e ,ig(w)) S Ihw) | W = S5 "+ Sil(w)}'
Here we set I(e) := {0}. An element of I(w) is called a reduced word of w.

1.1.2. Notations for non-quantum objects. In this thesis, we do not deal with
specializations of quantum objects to non-quantum objects. Nevertheless, when describ-
ing quantum objects, we use notations of non-quantum objects to clarify non-quantum
counterparts. Hence we explain them here. However, since we do not need those objects
logically, we drop their precise definitions. See, for example, [37] for precise definitions
and specializations of quantum objects.

Let g := g(A) be the Kac-Moody Lie algebra associate with the symmetrizable gen-
eralized Cartan matrix A, and G a corresponding Kac-Moody group. Denote by @, the
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set of positive roots of g and set ny := ®BG<I>+ gip, Ny = H/36<1>+ g+p5. Here gig denotes
the root space of 5. Let NL(C G) be the pro-unipotent pro-group whose pro-nilpotent
pro-Lie algebra is ny. Let H(C G) the algebraic torus whose character lattice is P. Write
B:I: = HN:t Set
Go:=N_HN,
N_(w) := N_NwN ™"
Niu = N_ N B+wB+
X(w):= | J Byi'By/By
w' eWiw’ <w

for w € W. Here w"” is an arbitrary lift of w” € W to G, and < denotes the Bruhat order on
W. Then N_(w) (resp. N*, X (w)) is called the unipotent subgroup (resp. the unipotent cell,
the Schubert variety) associated with w. In this thesis, we deal with quantum analogues
of coordinate algebras of these objects and intersections of some of them.

1.1.3. Quantized enveloping algebras. In this subsection, we present the defini-
tions of quantized enveloping algebras and their variants.

NoTATION [.1.3. Let ¢ be an indeterminate. Set

q; ‘= q(a—iéa;n’ [n] - g for n e Z
i =1 fn k)
n ifne€Z, ke Zy,
b= EE-T &
1 iftneZ,k=0,
]! := [n|[n —1]---[1] for n € Z~,, [0]! := 1.
n +1 n [n]!
Note that [n], e | € Z[q*"] and e = Tlin — 1 if n > k > 0. For a rational function
n—

R € Q(q), we define R; as the rational function obtained from X by substituting ¢ by ¢;,
1e 1.

DEFINITION [.1.4. The quantized enveloping algebra U,(:= U,(g)) is the unital asso-
ciative Q(q)-algebra (associated with (P, I, {«;}ier, {hi}ier, (, ))) defined by the generators
ei, fi (i € 1),¢" (h € P),

and the relations (i)—(iv) below:
(i) " =1, ¢"¢" = ¢"*" for h, I € P*,
(ii) ¢"e; = ¢'meiqh, ¢ f; = ¢ figh for h € P* i€ 1,
ti —t; a0
(ili) [es, fi] = &y “— for 4,5 € I where t; := q%hi

( i

1—ay;
(iv) Z (—1)k l L _kaij ] :z:f:r:j:vil_aij_k =0fori,j el withi#j,andx =e,f.
k=0 i
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The Q(g)-subalgebra of U, generated by {e;}icr (vesp. {fi}icr, {¢"}heps, {€i,q" }icrnep,
{fi»d"}ier.nep+) will be denoted by U (resp. U, Uy, UZ%, US0). Fora = >, mio; € Q,
m; € Z, we set to := [[,.,; ti"". In particular, t,, = ; fori € I.

For a € Q, write (U,), := {z € U, | ¢"vq™" = ¢!*"x for all h € P*}. The elements
of (U,), are said to be homogeneous. For a homogeneous element x € (U,),, we set
wt 2 = a. For any subset X C U, and a € @, we set X, := X N (U,),.

The algebra U, has a Hopf algebra structure. In this thesis, we take the coproduct
A: U, - U, ® U, the counit e: U, = Q(¢) and the antipode S: U, — U, as follows:

A (62) = €; & t;l + 1 & €, £ (61) = 0, S (ez) = —eit,;,
A(fi)=fi®ol+t® fi e(fi) =0, S(f;)=—tfs,
A (qh) = qh & qh’, € (qh) =1, S (qh) = q’h.

forie I, h e P
For i € I, define U,; as the Hopf subalgebra of U, generated by {e;, fi,t*}. Denote
by ¢; : Uy, = U, the natural inclusion of a Hopf algebra.

DErINITION I.1.5. Let V: U, — U, be the Q(g)-algebra, anti-coalgebra involution
defined by

e = fi, I =e, (C]h)v =q"
Let 7: Q(q) — Q(q), ~: U, = U, be the Q-algebra involutions defined by
q:qilv e_i:eia E:fla quih'
Let %, p,¢: U, — U, be the Q (¢)-anti-algebra involutions defined by
*(61) = €4, *(fl) - fi7 * (qh) = q_h7
¢ (&) = fi, e (fi) = e, e (") =4¢"
V(e) =q; 't fi, U (fi) = q; 'ties, (0 (qh) =q".

Remark that ¢ is also a Q(g)-coalgebra homomorphism, and ¢ =V o* = %o V.
DEFINITION 1.1.6. For i € I, define the Q(g)-linear maps e} and ;¢': U, — U_ by

h;,wtx
¢} (xy) = ¢ (@) y + g™ el (y), ei(f;) = b,
16/ (:cy) _ q;hi,wty)ie/ (l’) y + xie’ (y) 7 iel(fj) _ 5@']’

for homogeneous elements z,y € U, . For ¢ € I, define the Q(g)-linear maps f/ and
i U; — U; by

—(h;,wtx
filay) = £ @)y +a " e f ), files) = 8,
—(hj,w
f (xy) = g, < ty)if/ ()y+ i f (y), f'(e5) = 0y
for homogeneous elements z,y € U}. We have * o ¢’ o * u; = e; and xo;f o *|U; = fl.
Moreover Vo f!o V|U,; =e/and Vo,;f' o \/’U;; = ;€.
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In this thesis, we use the following variant Uq of the quantized enveloping algebra Uj,.

DEeFINITION [.1.7. A variant Uq of the quantized enveloping algebra U, is the unital
associative QQ(¢)-algebra defined by the generators

6'i7f’i (Z € ]>7qlt (:u S P)a
and the relations (i)—(iv) below:
(i) ¢° =1, ¢"q" = ¢+ for p, ' € P,

(i) ¢"e; = g deiqt, ¢ f; = g9 fig" for p € Pyi € I,

ti—t;"
(iii) [e;, f;] = 0;j—— for i, j € I where t; := ¢* (abuse of notation),
q

1 Y

1—a;j;
(iv) Z (—1)k { 1 _kaij } xfacjxil_a”_k =0fori,j el withi#j, andx=e,f.
k=0 @

The Q(g)-algebra Uq has a Hopf algebra structure given by the same formulae as U,. The
notions, notations and maps defined in Definition I.1.4 and .1.5 are immediately translated
into those for U,. Note that qu can be identified with qu respectively in an obvious way.

NOTATION L.1.8. Set xgn) =a/[n);! e U, forie I, ne€Zspand z =e,f.

I1.1.4. Drinfeld pairings and Lusztig pairings. Some nondegenerate bilinear forms
play a role of bridges between quantized enveloping algebras and their dual objects. The
maps in Definition [.1.16 are important for our study of quantized coordinate algebras.

PRrROPOSITION 1.1.9 ([12], [47]). There uniquely exists a Q(q)-bilinear map (, )p: UEOX
U2 — Q(q) such that

(i) (A(x),y1 ® y2)p = (7, y192)p for x € UCIEO,QMCUQ c UzY,
(i) (r2 @ x1, A(y))p = (x122,Y)p for x1, 29 € U>0,y € U<0,
(iii) (e, ¢")p = (¢*, fi)p =0 fori € I and h € P*, A € P,
(iv) (¢, h) =q M for \€ P,h € P,
1
(v) (es, fj)p = —=0ij————= fori,j € I.
q4i — ¢q;

This bilinear form is called the Drinfeld pairing. It has the following properties:
(1) For a, 5 € Q4+, (, )b |(ﬁ§0)ax(U§°),5: 0 unless a = f.

(2) (, )D|(Uq+)ax(U;)_a is nondegenerate.

3) (¢*z,¢"y)p = ¢ (2,9)p for A€ P, h € P* and x € Ur,yeU,.

DEFINITION 1.1.10. Define the Q(qg)-bilinear form (, ).: U, xU, — Q(q) by (z,y). :=
(¥(x),y)p for z,y € U, . Then this bilinear form satisfies

%QQ(CL’,@;(:U))L (@fiy)r = 1 —1q2

7 7

(1’1)L = ]'7 (fzxay)L (l’w@/(y))L.
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This is a symmetric bilinear form, called the Lusztig pairing. The bilinear form ( , ) is
the unique symmetric Q(q)-bilinear form satisfying the properties above. Moreover, (, )
is nondegenerate and has the following property:

(1.1) (+(2), %(y)), = (z,y),,
for all z,y € U, .

Define the Q(g)-bilinear form (, )7 : Uf x UF = Q(q) by (z,9)} = (z,¢(y))p for
x,y € UF. Then this bilinear form satisfies

1 1
(1,1} =1, (eiw,y)] = 1_—q2(l’, W)L (vei, y)1 = 1_—q2($mf/(y))f
The forms (, ) and (, )} are related as follows:
(1.2) (2,9), = (2", 9");,

for all z,y € U, .

The following dual bar involution is useful for the study of dual canonical bases. We also
prepare the twisted dual bar involution, which is compatible with the algebra structure of
uU,.

DEFINITION 1.1.11. For a homogeneous x € U, we define o () = o (z) € U by the
property that

(0(z),y)p = (x.7)
for an arbitrary y € U_. By the nondegeneracy of (, )z, the element o (z) is well-defined.
This map o: U, — U is called the dual bar involution.

The following proposition can be proved in the same manner as [34, Proposition 3.2].

q’

o (x) — (_1)ht(Wt$) q(wtx,wtz)/Qf(th,p) (— o *) (,T) )

PROPOSITION 1.1.12. For a homogeneous element x € U, we have

. We have

In particular, for homogeneous elements x,y € U

(wt z,wt y)

o(zy) =q o(y)o(x).
DEFINITION [.1.13. Define a Q(g)-linear isomorphism cq,: U, — Uy by

(wtz,wtz) /2— (Wt z,p)

T q T

for every homogeneous element z € U_. Set o' := Crpoo: U, — U,. We call o’ the
twisted dual bar involution. By Proposition 1.1.12, o/(z) = (—1)™™*) (=0 «)(z) for every
homogeneous element x € U_ . In particular, ¢’ is a Q-anti-algebra involution.

REMARK [.1.14. Let x € U, be a homogeneous element. Then,

wtz,wt ) /24 (wt z,p)

o(x) = x if and only if o/(x) = ¢~ x.

We prepare a convenient lemma here. See also Definition 1.1.16.
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LEMMA L1.15. For p € P, h € P*, y1,y2 € U and x1, 72 € U], we have

(@(1¢"), 424" = ¢ " (41, 92) 1, (214", (x2q"))p = g~ "M (21, 22)
Proof. We have
(¥(414"), 924" ) = (@" (1), 924" )p

= (V1) © ¢", Aly2)Ad"))

= (V) ® ¢, 124" © ¢")p
=q "M (W (y1),92¢")p
—q >( V(1) v24")p
=q "W ¥)(Aw)), 12 @ d")p

=q "N @Y ®1),:©¢")p = ¢ *" (4, 2)L-

The second equality is proved in the same manner. U

The following maps connect the algebra structures of (half) quantized enveloping alge-
bras with those of their dual spaces. Note that the dual space of coalgebras have algebra
structures dual to their coalgebra structures.

DEFINITION 1.1.16. Define the following linear maps:

B: U0 -5 (U, 1 > (v > (). 42)).
ot [quzo — (quo)*, T, — ($2 — ($1aw($2))D)-

By the properties of the Drinfeld pairing, ® is an injective algebra homomorphism and ®*
is an injective anti-algebra homomorphism.

I1.1.5. Quantized coordinate algebras. We use quantized coordinate algebras as-
sociated with U, and their subalgebras when constructing quantum analogues of the
Berenstein-Fomin-Zelevinsky automorphisms in Chapter III. We begin with preparation
of the terminologies for representations of U,.

DEFINITION [.1.17. Let V be a left (resp. right) U,-module. For € P, we set
V,={ueV|q¢"u=q¢"u (resp. u.q" = ¢""u) for all h € P*}.

This is called the weight space of V' of weight p, and for v € V), we write wtu := pu. For
a Ug-module V = P wep Vi with weight space decomposition, its graded dual D uep Vi s
denoted by V*. Recall that V* is a right U -module.

DEFINITION [.1.18. A left (resp. right) U,-module V' is said to be integrable if

e 1 has the weight space decomposition V' = P uep Vi and
e for every ¢ € I, the actions of e; and f; on V are locally nilpotent, or equivalently
dimg(q) Ug,i-u < 0o (resp. dimgqg) u.Ug; < 00) for all u € V.
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Let A € P,. The integrable irreducible U,-module with highest (resp. lowest) weight
A (resp. —A) is denoted by V(A) (resp. V(—A)). We fix its highest (resp. lowest) weight
vector uy (resp. u_y). For w € W, define the elements uy,\ € V(£A) by

(Riq sSinSi,A)) ((hz _ 1954 )\>) hi, A
uw)\ — fz(l 1072 4 > - fz'Z71£ 177% fz(j A >)U)\
i1 3800 "S5 hz 1554 A iy
U yr = ez(fhm 2 SigN) ~6§f,f 1953 >)e£§h , *>).u7/\
for (iy,...,4) € I(w). It is known that these elements do not depend on the choice of

(11,...,10) € I(w) and w € W. See, for example, [44, Proposition 39.3.7]. These vectors
U4 are called the extremal weight vectors of weight +w.

DEFINITION 1.1.19. Let A € P, U (—P,). Then there exists a unique nondegenerate
symmetric Q(g)-bilinear form (, )§ on V(A) such that

(ur,up)y =1 (z.u, u)5 = (u, p(x).u)%

for u,u’ € V(A\) and x € U,. Foru € V(\), we set u* := (u' + (u,u)¥) € V(A)*. Note that
(i, Uwr)§ = Lforallw € W. Set fyn :=ul, € V(A). Note that V( ={u* |ueV(N}

DEFINITION 1.1.20. Let V' be a Uj,-module. For f € V* and u € V, define the element
c}/u e U, by
for x € U,. An element of this form is called a (quantum) matrix coefficient. For X € P,
a matrix coefficient c}fi’“
A € Py, we write

will be briefly denoted by c}u. Moreover, for w,w’ € W and
A A
Cw)\,w’)\ T wak,uwu'

DEFINITION 1.1.21. The quantized coordinate algebra R, := R,(g) associated with U,
is the Q(q)-vector subspace of U, spanned by the elements

{ci | feVN,ueV(A)and A€ P} .

Then R, is a subalgebra of Uy, and isomorphic to P,cp, V(A)*® V(A) as a Ug-bimodule
(33, Chapter 7]. This isomorphism is known as the Peter-Weyl isomorphism. Here the
U,-bimodule structure on Uy (and Ry) is given by ((z.F.y),2) = (F,yzx) for F' € Uj
and z,y,z € U, Recall that the algebra structure of U} is induced from the coalgebra
structure of Uj,.

EXAMPLE 1.1.22. In type A case, the quantized coordinate algebra R, (sl,) is isomor-
phic to the unital associative Q(g)-algebra with the generators {c;; }; j=1,.., and the follwing
defining relations:

-----

(l) CijCik = QCikCij lf] < k’,

( ) CijCkj = qCkjCij if 7 < k,

(iii) [cij, che) =01if 4 < k,j > £,

(iv) cijche — ckgc” = (q—q Yewer; i1 < k,j <,

(V) Yres, (— Q)11 Car2) * Corny = 1, here &, is the symmetric group of degree
n.
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In this case, we can identify the index set I of simple roots with {1,...,n — 1} in a
natural way, and then V(w;) is n-dimensional module. Write uy = fr_1... fi.um, (# 0)
for k =1,...,n. Then the ¢;; (4,5 = 1,...,n) above corresponds to the matrix coefficient

Coru; in the Peter-Weyl type presentation. The relation (v) is nothing but the quantum

analogue of the condition that determinants are equal to 1. Hence R,(sl,) is a quantum
analogue of the coordinate algebra of SL,,.

Here we define some subalgebras of the quantized coordinate algebra R,. See, for
instance, [26, Chapter 9, 10|, [48, Chapter 3].

DEFINITION 1.1.23. Let w,w’ € W and A € P,. Set

RN = {c},. | F€VND Ry = Y RyYMD(X) CR,,
NePy

Qo) = {chu,, [ F €V, (LU ) =0} Q= 3 Qut(V) C R,
NePy

When w = e, we write RZP (resp. QZ)(,JF)) as R} (resp. Q). It is easy to show that,
for all w € W, R;U(Jr) is a subalgebra of R,, and isomorphic to R; as Q(q)-algebras via
G us 7 Cha,- Moreover, for w',w € W, QZ,H) is a two-sided ideal of R, and the
previous isomorphism induces the isomorphism from RY" / QZ,(JF) to R}/Q,..
DEFINITION 1.1.24. The restriction map Rxo: U} — (UZ%)* (resp. R<o: U, — (U%)*)
induces the Q(g)-algebra homomorphism R>q: Ry — (U7%)* (resp. R<o: Ry — (UZ%)%).

We prepare a lemma for the definition of the map W_ in Definition 1.1.26. This is the
argument in [26, Proposition 9.2.11].

LEMMA [.1.25. Let F € U} be an element such that Fq¢'=¢MF and " F = ¢ F
for all h € P* and some \,u € P. Then we have

R<o(F) € ®(UY).
In particular, R<o(R,) C ®(UZ).

Proof. For a homogeneous element z € U, we have (F,x) = 0 unless wtz = A — p.
Since (, )L |(U¢;)A7MX(U¢;)>\7M is nondegenerate, there uniquely exists zp € (U, )r—, such
that (vp,r)r = (F,x) for all z € (U;)x_,. Then, by Lemma I.1.15,

(Reo(F), 2q") = ¢""(F,z) = ¢"" (ap,2)p = (2(xpg "), 24")
for h € P* and x € U, . This proves the lemma. O

DEFINITION 1.1.26. By Lemma [.1.25, we can define an injective Q(gq)-algebra homo-
morphism

U_ = q)_l |R§0(Rq): RSO(Rq> — Iquo
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1.1.6. Lusztig’s braid group symmetries. In this subsection, we present the def-
inition of braid group actions on integrable modules and quantized enveloping algebras.
We also review the fundamental properties of them. All statements in this subsections are
found, for example, in [44], [46].

DEFINITION 1.1.27. Let V = @ueP V., be an integrable U,-module. We can define a
Q(g)-linear automorphism 7;: V' — V for i € I by
T = > (=D el
—a+b—c=(h;,u)
for uw € V,, and pp € P. Its inverse map is given by
T'w)= Y (Dt
a—b+c=(h;,u)
forueV,and p € P.

DEFINITION 1.1.28. We can define a Q (¢)-algebra automorphism 7;: U, — U, for
1 € I by the following formulae:

T; (¢") = ¢ ™,

—fiti for j =1,
T; (e;) = (-1)" q[rez(s)ejey) for 7 # 1,

r+s=—(hi,a;)

—t e for j =1,
Ti (f;) = (U g 7L forj # .

r+s=—(h;, o )
Its inverse map is given by
71 (qh) — g5,

)

—t7f; for j =1,
T (e;) = (—1)" qi”“egr)ejez(s) for j # 1,

r+s=—(hs,a;)

—e;t; for j =1,
T (f;) = (1 G SO forj £

r+s=—(hs,a;)

The following are fundamental properties of 7;.

PROPOSITION 1.1.29. Let V' be an integrable U,-module.
(1) Foriel, T;(z.u) = Ti(x).Ti(u) forueV and x € U,.
(2) For w € W, the composition maps T, == T;, ---T;,: V — V, U, — U, do not
depend on the choice of (i1,...,i;) € I(w).
(3) For pe€ P and w e W, T, maps V, to Vi,.
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(4) Forie I, T;oVo~ =Vo oT, "' onU,.

PropPOSITION 1.1.30. Let V' be an integrable Uy-module and i € I. Then, for u €
V. N Ker(e;.) and v’ € V,y NKer(fi.), we have

T (u) = f((hi’/l»'u Ti(u) = o (han)) 1

3 (2

In particular, for A € Py and w € W, we have

We have the following invariance of the bilinear form ( , ), under the braid group
symmetry 7T;.

PropoSITION 1.1.31. (1) For i € I, we have Kere; = U, N T;U, and Kere' =
U, N1 'U,.
(2) Forie I and x,y € Kerej, we have (x,y), = (T; '(z), T; ' (y)), -

K3 K3

I.1.7. Canonical/Dual canonical bases. We review basic properties of canoni-
cal/dual canonical bases of quantized enveloping algebras and highest weight integrable
modules. See, for example, [32] for the fundamental results on crystal bases and canon-
ical bases. We refer to [30] for the definition of the category of Kashiwara crystals
(%; wt, {eitier, {i}ier, {€i}ier, { fi}ier) associated with (P, {e }bier, {hi}ier)-

Denote by %(co) (resp. (), A € Py) the crystal associated with U_" (resp. V())).
The unique element of %(co) with weight 0 is denoted by @, and the unique element of
PB(N) with weight wA is denoted by u,y for A € P, and w € W, by abuse of notation.

Set A := Q[¢*']. Denote by U the A-subalgebra of U, generated by the elements
{ fi(n)}i€[7nez>0. Lusztig [40, 41, 44] and Kashiwara [29] have constructed the specific
Q(q)-basis BV (resp. B¥(X), A € P;) of U (resp. V(X)), called the canonical basis (or
the lower global basis), which is also an A-basis of U, (resp. V4(A) := U j.uy). Moreover
the elements of BV (resp. B°¥(\)) are parametrized by the Kashiwara crystal %(oco)

(resp. B()\)). We write BV = {G(0) }ies(o0) and B " (\) = {g(b) }rezr)-
NOTATION 1.1.32. Let i € I and A € P,. For b € Z()\) and b € B(c0), write

erp = £ 0 frep = fEO £ 0 e = & 0f £ 0,

Then & (&™) = 0, f;(f™>*b) = 0 and &(e™>b) = 0.

DEFINITION [.1.33. Denote by B"™ (resp. B"(A), A € P, ) the basis of U_ (resp. V(A))
dual to BV (resp. B°"(\)) with respect to the bilinear form (, ) (vesp. (, )%), that is,
B = {G"(b) }rem(oo) (resp. B(A) = {g"(b) }rem(n)) such that

(G(D), G (V)1 = G (resp. (g(b), " (V)X = o)
for any b, b’ € B(c0) (resp. b, b € B(N)).
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DEFINITION [.1.34. For A € P, define a U -module surjective homomorphism 7y: U, —
V() by
T (y) = y.u,.
ProposITION 1.1.35 ([29, Theorem 5, Lemma 7.3.2] ). Let A\ € P,. There exists a
surjective map wy: B(oo) — B(N) [[{0} such that
m(G (b)) = g(ma(b))
for b € B(c0), here g(0) = 0. Moreover my induces a bijection T (BN) = B(N).
DEFINITION [.1.36. Let A € P,. Define jy: V (\) — U as the dual homomor-
phism of 7, given by the nondegenerate bilinear forms (, )¥: V (A) x V(A) = Q(q)
and (, ), : U, x U — Q(q), that is
(j/\ (U) 7y)L = (Ua P (y))f = <Ua yu}\)f .

PROPOSITION 1.1.37 ([29, Theorem 5]). There is an injective map 7y : B (N\) — B (o0)
such that

(g™ (b), G(E/)-Uk)f = 55/,@(1))
for any b€ B(\) and ¥ € B (c0). That is, we have jy (g"° (b)) = G (3, ().
REMARK [.1.38. Let A € P,. Then,

e wt7,(b) =wth— X for b € B()\), and
e 7, (m(b)) = b for b € m ' (B(N)).

PROPOSITION 1.1.39 ([29, Lemma 7.3.4], ). For all b € B(c0), we have
G(b) = G(b)
Note that this implies

7(G™(D)) = G (D).

PROPOSITION 1.1.40 ([30, Theorem 2.1.1]). There exist bijections x: B(oc0) — FB(o0)
such that

*G(b) = G(x*b)
for b e B(c0). Note that this implies
«G™(b) = GUP(xb).
See the equality (1.1).

DEFINITION 1.1.41. The bijections x give new crystal structures on % (o0), defined by
the maps

Wt* = wtox = wt, " =g 0%, ©F ‘= 0%, & :=%0¢& 0%, [ i=%o0f 0%
Note that wt* = wt for %(c0). For b € B(c0), set (&)™) = (éj)gi(z’)l; # 0. Then
& ((E)™F) = 0.

1
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PROPOSITION 1.1.42 ([32, Proposition 8.2]). Let A € P,. Then we have
TWBN) = {be B(c0) | &:(b) < (hi, \) for alli € I}.

PROPOSITION 1.1.43 ([33, Lemma 5.1.1]). Fori€ I, \ € Py, b€ B(\) and b € B(c0),
we have

(G40 gup () — gup(zmaxp) eM g™ (b) = 0 if k > £(b),
f(goz(b g (b) = ¢"( ™) FB g (b)) = 0 if k > ¢(b),
DOGH = (-G (OG0 =07k > i)
() EDEPE) = (1= @)D (E)™D) (HIEGE) =0 if k> e (D)

Here ()™ := (/)" /[n];! and (;¢")™ = (;&')"/[n];! for n € Zsy.

)

1.1.8. Quantum unipotent subgroups. A quantum unipotent subgroup is a quan-
tum analogue of the coordinate algebra C[N_(w)] of a unipotent subgroup N_(w). See,
for example, [37] for the specialization to ¢ = 1. These algebras are introduced by De
Concini-Kac-Procesi [10]. The quantum unipotent subgroup has the dual canonical basis
and (dual) Poincaré-Birkhoff-Witt type bases.

DEFINITION 1.1.44. (1) For w € W, we set U, (w) = U, NT,, (UZ°). These subalge-
bras of U, are called quantum nilpotent subalgebras.
(2) Let w € W and 4 = (i1, -+ ,i¢) € I (w). For ¢ = (c1,- -+ ,¢) € ZE,, we set

Flow c, Z) )T (f(c2)) ce (TILI . Eg,l) (fz'(ece)>7

( iz

F (¢,1) = FIOW (c,3) / (F' (c,3) , F" (c,i))L.
PRrROPOSITION 1.1.45 ([2, Proposition 2.3], [10, Proposition 2.2] [44, Proposition 38.2.3]).

(1) F'V (¢,4) € Uy (w) for e € Z&y and {F'" (c, z)}ceze forms a basis of U; NT,, (UZ°).

(2) {F"¥ (e, i)}ceze> is an orthogonal basis of U, (w ), more precisely, we have

(L.5) (F (¢,3), F* (¢/,4))1 = e H H qZk

k=1 j=1

In particular, {F" (¢, 2)}.eze  is also a basis of U, (w). The basis {Fv (e, ©)}eezt

is called the (lower) Poincaré- Blrkhoff Witt type basis (henceforth the PBW-type ba&s)
associated with ¢ € I (w), and the basis {F" (¢, %)}ecze is called the dual (or upper)

Poincaré-Birkhoff-Witt type basis (henceforth the dual PBW-type basis).
DEFINITION [.1.46. For w € W, we set

U, (w) = (U, (w) ",
AN_ (w)] =% (U, (w)).
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We call A, [N_ (w)] a quantum unipotent subgroup. The quantum unipotent subgroup
has a Q_-graded algebra structure induced from that of U_". Note that ¢ (A [N_ (w)]) =
Ul (w). Set

EY (¢,1) == F*" (¢, )" E"™ (¢,i) := F"™ (¢,)"
F (e,4) = %(F' (¢, 1)) F™ (¢, i) == %(F" (c, 1))

for ¢ € Zé%”) and i € I(w). Then {Elewesp-up) (C’i)}cezgg”) is a basis of Uf(w), and
{Flofv(resp. up) (e, i>}ceZ§(§”) is a basis of A,[N_ (w)]. Moreover

F'%(¢,4) ,F™ (c',1)) = (B (¢,1), E™ (¢',1))] = 0per.
1 1 L >

PROPOSITION 1.1.47 ([34, Theorem 4.25, Theorem 4.29]). Let w € W and i € I (w).
(1) U, (w) NB™ s a basis of U_ (w).
(2) every element G'(b) of U, (w) N B satisfies the following conditions:

(DCB1) o(G"™ (b)) = G"P(b), and

(DCB2) G (b) = F™ (¢,8)+ Yy o di o F™ () with d , € qZq] for a unique ¢ € ZEZ(SU).

Here < denotes the left lexicographic order on Zé%"), that is, we write (c},. .. ,cg(w)) <

(c1,- .., cuw)) if and only if there exists k € {1,...,l(w)} such that ¢} = cy,..., ¢4 = Ck—
and ¢, < ¢x.

DEFINITION 1.1.48. Proposition 1.1.47 (2) says that F"? (¢, ) determines a unique dual
canonical basis element G"P(b) in U, (w). We write the corresponding element of %(cc) as
b(e,i). Then U (w) N B = {G"(b(c, 1))}, e Write B(U, (w)) := {b(c, %)} e

>0 >0
Set b1 (c,2) = * (b(c,2)). Then A [N_ (w)]NB™ = {G"P(b_1(c, %))}, e . Recall that
>0
A = Qlg*™]. Set

AAIN-(w)] = {z € AJN-(w)] | (2, Ux) € A} = ) AG™(bi(c,9)).

celi%”)

Then A 4[N_(w)] is an A-subalgebra of A [N_ (w)].

REMARK 1.1.49. In fact, the element G"P(b(c, %)) is characterized by the property
(DCB1) in Proposition 1.1.47 and the following property:

(DCB2)" G'"(b) — F'™ (¢, 1) € >, pe0 gLl FMP (', 3).

k
V
REMARK 1.1.50. For k =1,...,¢(w), we set ¢; := (0,...,0,1,0,...,0). Then we have
GuP(b(Ck, 'L)) = F" (Ck, ’L)
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REMARK [.1.51. The unitriangular property in Proposition 1.1.47 (2) is equivalent to
the following unitriangular property:

F' (¢, i) = Zdezgw [F™ (¢,4) : G (b(c,4))] G™ (b(c,4)) with

0
€leetqZlg) ifcd <c
=0 otherwise.

[F' (¢,1) : G*™ (b(c,1))] {

In fact, these unitriangular properties also hold when we consider the right lexicographic
order on Zgg’). See Corollary II.1.11.

1.1.9. Quantum closed unipotent cells. A quantum closed unipotent cell is a quan-
tum analogue of the coordinate algebra C[N_N X (w)] of a closed unipotent cell N_NX (w).
Here we identify N_ with its image under the natural projection G — G/B... See, for exam-
ple, [37] for the specialization to ¢ = 1. The quantum closed unipotent cells are essentially
introduced by De Concini-Procesi [11]. They also have the dual canonical bases.

Quantum closed unipotent cells are actually “related” to quantum unipotent subgroups.

See Proposition I11.1.41. The definition of quantum unipotent cells are presented in Defi-
nition ITI.1.29.

ProrosiTION 1.1.52 ([30, Proposition 3.2.3, 3.2.5]). For A € P,, w € W and i =
(i1,--- ,10) € I (w), we set

B ()= { o Tl e = (- ) € 25, b\ {0} € B (V).
Then we have

VoA =Ub = Y Q) g(b).

bERBw (M)
This UZ°-module V,,(X) is called a Demazure module.
(2) Forw e W and ¢ = (i1, ,is) € I (w), we set
B (00) = { T+ Fitiioe | @ = (a1, a0) € 2L, }
and Uy =3 ar€Zso @ (q) fir--- f*. Then we have

U,= > Q@G
bE By (o)
For more details on Demazure modules and their crystal bases, see Kashiwara [30].

REMARK 1.1.53. We have
U 71 (B0 (V) = By ().

AEP,

See also Theorem II1.1.9.
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DEFINITION 1.1.54. Let w € W. Set
(U,)" =={zeU, | (z,U,), =0}
Then, by the equality A(U,) € U,U? ® U, and properties of Drinfeld and Lusztig

pairings, (U3)" is a two-sided ideal of U_ . Hence we obtain a Q(q)-algebra U,/ (U)",
denoted by A,[N_ N X (w)] and called the quantum closed unipotent cell. The quantum
closed unipotent cell has a ()_-graded algebra structure induced from that of U . Note

that
(L)'= > Q@e)
bERB(00)\ Buw (0)
Describe the canonical projection Uy — A [N_ N X(w)] as @ + [z]. The element [z]
clearly depends on w, however, we omit to write w because it will cause no confusion
below.

1.2. Quantum cluster algebras

In this section, We review the definitions of skew-symmetric quantum cluster algebras.
Roughly speaking, quantum cluster algebras are subalgebras of quantum tori with infinitely
many generators and relations, which are obtained by some inductive procedure, called
mutation. The main references are [7] and [20]. Quantum cluster algebras are frameworks
of the algebraic and combinatorial research on quantum objects. In Section III.2, we
review an additive categorification of the quantum cluster algebras due to Geif}-Leclerc-
Schroer. In this case, the resulting quantum cluster algebras are isomorphic to quantum
unipotent subgroups, and we will consider quantum Berenstein-Fomin-Zelevinsky twist
automorphisms in their settings.

NOTATION 1.2.1. For m,m’ € Zso with m <m/, set [m,m'] :={k€Z|m <k <m'}.

DEFINITION 1.2.2. Let ¢ be a positive integer such that n < £. Let A = (N;j)ijeng
be a skew-symmetric integer matrix. This skew-symmetric integer matrix A determines a
skew-symmetric Z-bilinear form Z* x Z* — Z by A(e;, e;) = \ij for i,j € [1,], denoted
also by A. Here {e; | i € [1,/]} denotes the standard basis of Z‘. The based quantum torus
T(= T(A)) associated with A is the Q[¢*'/?]-algebra defined as follows; as a Q[g*'/?]-
module 7 is free and has a Q[¢*'/?]-basis {X® | @ € Z‘}. The multiplication is defined
by

Xa,Xb _ qA(a,b)/2Xa+b

for a,b € Z*. Then

e 7 is an associative algebra,

o X2Xb = gMab) xbxa for q be 7L,

e X°=1and (X% !=X"2foracZ".
Hence the based quantum torus 7 is a quantum analogue of Laurent polynomial algebras in
(-variables(=the coordinate algebra of the ¢-dimensional algebraic torus). More precisely,
Q ®gqgt1r2) T is naturally isomorphic to QX ..., X;Y], here Q is a Q[¢*"/?-module
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via ¢*'/2 — 1. The based quantum torus 7 is contained in the skew-field of fractions
F(= F(A)) [7, Appendix A]. Note that F is a Q(q'/?)-algebra. Write X; := X¢ for
ie[l,/.

Next we define an important operation, called mutation. Let B = (bij)icp,g,je1,0-n] be
an ¢ x (¢ —n) integer matrix. Its submatrix B = (bi;); jeq1,¢—n) Of B is called the principal
part of B. The pair (A, E) is said to be compatible if, for i € [1,/] and j € [1,¢ — n],

¢
Z bij ki = 0;;d; for some d; € Zy.
k=1
Note that, when (A, B) is compatible, B has full rank ¢ — n and the principal part B =
(bij)ijen,e—n is skew-symmetrizable [7, Proposition 3.3]. We will assume that B is skew-

symmetric.
For k € [1,£ — n], define EW = (e;;); je,q and F® = (fi;)ijeq1,0-n as follows;

i if j # k, i if i # k,
e =4 —1 ifi=j=k, fi=14 -1 ifi=j=k,
max(0, —byx) ifi# j=F, max(0,by;) ifi=Fk#j.
Set
a(A) = (E®)TAR® un(B) = EWBF®),

Then pux(A, B) := (ux(B), ur(A)) is again compatible [7, Proposition 3.4]. It is said that
(A, B) is obtained from (A, B) by the mutation in direction k. Note that g (ue(A, B)) =
(A, B).

The pair . = ({ X, }iep g, E,A) is called a quantum seed in F, and {X;}icp1,q is called
the quantum cluster of 7. For k € [1,£ — n|, define p,({X;}iep,q) = { X/ biep,g € F\ {0}
by

(M1) X| =X, if i #k,

(M2) X} = X Sk 2wtuo0bik€s oy ert o o bines,
Then there is an injective Q[g*'/?]-algebra homomorphisms 7T (ju;(A)) — F(A) given by
X' (X])®! (i € [1,4]). Moreover there exist a basis {¢; }ic(1,4 of Z° and a Q(q*/?)-algebra
automorphism ¢: F(A) — F(A) such that 9(X) = X! for i € [1,/] [7, Proposition 4.7].
Hence the map above is extended to the isomorphism F(ug(A)) — F(A). Through this

isomorphism, we identify F(ux(A)) with F(A), and henceforth always write F for this
skew-field. Write B
k() = (ue({ Xibiep.a), 1e(B), e (A))

and this is called a quantum seed obtained from the mutation of . in direction k. By
the argument above, we can consider the iterated mutations in arbitrary various directions
k € [1,¢ — n]. Note that u(up(-’)) = & for any quantum seed .’ and k € [1,¢ — n].
The subset {X; | i € [( —n + 1,]}, called the set of frozen variables, is contained in the
quantum cluster of an arbitrary seed obtained by iterated mutations of .#.
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The quantum cluster algebra o,.1/2(.) is defined as the Q[g*'/?]-subalgebra of F gen-
erated by the union of the quantum clusters of all quantum seeds obtained by iterated
mutations of . An element M € o7 +12() is called a quantum cluster monomial if
there exists a quantum cluster {X] = (X')® }ie1,q of a quantum seed obtained by iterated
mutations of .% such that M = (X’)® for some a € Z5,.

The following property is known as the Laurent phenomenon.

ProrosiTION 1.2.3 ([7, Corollary 5.2]). The quantum cluster algebra A z/2(5) is
contained in the based quantum torus gemerated by the quantum cluster of an arbitrary
quantum seed obtained by iterated mutations of .7 .

In fact, the Q-subalgebra Q ®gg+1/2) Agz1/2(F) of Q @gpgery) T = QX ..., X is

called a cluster algebra. This is an algebra associated with the data ({X;}icp,q, B). In
other words, A is a datum of “noncommutativity”.



CHAPTER II

Quantum Fomin-Zelevinsky twist maps

In this chapter, we deal with quantum analogues of Fomin-Zelevinsky twist maps
(henceforth quantum FZ-twist maps). See Introduction for their definitions in non-quantum
settings. Quantum FZ-twist maps are introduced by Lenagan-Yakimov [39]. They are
Q(g)-anti-algebra isomorphisms between quantum unipotent subgroups. In Section II.1,
we show that quantum FZ-twist maps are restricted to bijections between the dual canon-
ical bases of quantum unipotent subgroups. As a corollary, we obtain the unitriangular
property between dual canonical bases and dual PBW-type bases under the “reverse” lex-
icographic order. This is a new symmetry when g is not of finite type. In Section I1.2, we
show that quantum FZ-twist maps induce bijections between certain unipotent quantum
minors. This result is a quantum analogue of [14, Lemma 2.25]. In particular, quantum
FZ-twist maps preserve the specific quantum determinantal identities, called quantum 7-
systems.

II.1. Quantum Fomin-Zelevinsky twist maps and dual canonical bases

We define quantum FZ-twist maps following Lenagan-Yakimov [39]. In this thesis,
we refer to their restriction to quantum unipotent subgroups as quantum FZ-twist maps
(Definition I1.1.8). We show the compatibility between quantum FZ-twist maps and dual
canonical bases of quantum unipotent subgroups (Theorem I1.1.10). When g is of finite
type, the symmetries of quantum FZ-twist maps are related with the symmetries coming
from *-involution. We remark this point in the last part of this section.

DEFINITION II.1.1 ([39, Section 6.1]). For w € W, we consider the Q(g)-algebra anti-
automorphisms ©,, and O} of U, defined by

O, =T,050V O, :=%0T,0S0Vox.
For a homogeneous element x € U,, we have wt (0,(x)) = wt (0} (z)) = —w wt (x).
The following lemma follows from the straightforward check on the generators of U,,.
LEMMA I1.1.2. Fori € I, we have T;o SoV =SoVoT; '
By this lemma and (S o V)% = id, we have (6,,)™' = ©,-1 and (0})~' = ©*

w—1*

REMARK II.1.3. In Definition I1.1.8, we define quantum FZ-twist maps by using the “x-
versions” O in order to match them with our definition of quantum unipotent subgroups.
However, in the proof of the following statements, we use the “simplified-versions” ©,, for
abbreviation.

27
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PropoSITION I1.1.4. Forw € W and @ = (i1,--- ,i¢) € I (w), we have
@w—1 (Tn o lk 1 (flk)) - Ze ’ Tik+1 (flk) f07“ k= I... >€~
Proof. It can be easily checked that
(TioSoV)(fi) = fi

Hence by Lemma II.1.2 we have

@w_l (Tll o % 1 (flk)) = ( 7 ‘Ti1 oSo \/) (Tzl e 'Tik,l (fzk)>

= (Tiz T OSO\/) (flk)
- (Til ) zk+1) (flk)
U
DEFINITION IL.1.5. (1) For ¢ = (i1, ,i,) € I (w), we set 2" = (ig,...,11) € [ (w™).

(2) For ¢ = (c1,...,¢0) € ZE, we set € := (cp,..., 1) € ZE,.
PROPOSITION I1.1.6. For w € W, i € I (w) and ¢ € Z&,,, we have
Ou-1 (F" (¢,i)) = F" (&, 4"") , w1 (F (e,2)) = FI% (€, 4Y) .
Proof. The latter follows from the former. By the equality (1.5), we have
(Flow (c,3), F* (c, 'L))L _ (Flow (€7, %), Flov (&, rev))
)-

Hence it suffices to show that ©,,-1 (F' (¢, 7)) = F'¥ (™, *"). This follows immediately
from Proposition I1.1.4. O

By Proposition 11.1.6, ©,-1 (resp. ©F_,) is also regarded as a Q(¢)-algebra anti-
isomorphism from U, (w) (resp. Ag[N_(w)]) to U, (w™') (resp. Ag[N_(w™)]).

LEMMA I1.1.7. Let w € W. For x,x’' € Uq_(w) and y,y' € Ay N_(w)], we have
(7)1 = (Oy-1(2), Op-1(2))1, (9L = (0,1 (), O3, (¥)) L.
Proof. This follows immediately from Proposition II1.1.6 and the equality (I1.5). O
DEFINITION II.1.8. Let w € W. set
Twg = O | A - () Ag[N-(w)] = Ag[N_(w )],

We call this Q(g)-anti-algebra isomorphism 7, , a quantum FZ-twist map. By Lemma
I1.1.7, we have

(4,05, = (Twa(y):¢)r
for y € A [N_(w)] and ¢/ € A [N_(w™1)].

PROPOSITION I1.1.9. Let w € W. For z € U_(w) and y € A [N_(w)], we have
(By-100)(2) = (006y1) () (Twq ©0) (y) = (00 Tug) () -
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Proof. The latter follows from the former and the equality * oo = ¢ o on U, which
is derived from Proposition 1.1.12. We may assume that = is homogeneous. On generators,
by Remark 1.1.50, we have

(Op-100) (F™ (¢, 1)) = Op-1 (F' (¢, 1))
— Fup (c};ev7 zrev) =0 (Fup (czev’ Zrev))
— (000,1) (F™ (cr, ).

Assume that the desired equality holds for homogeneous elements z’, 2" € U, (w). Then,
by Proposition 1.1.12, we have

(Gw_l o O') (l'/l'//) — q(Wt(x’),Wt(x”))@ » (O’ (Q?II) o (Q?/))

= gl >@w 1<o—<x’>>@ (o ()
=q<—w”m<f @)g (Bt () 0 (Bt ("))
= (01 (¢") Oy 1 (')

(60 0,1) ().
Hence we obtained the assertion. O

Now we prove the compatibility between quantum FZ-twist maps and dual canonical
bases. Recall Definition 1.1.48.

THEOREM I1.1.10. Let w € W and t € I(w). For c € Z>(o , we have
O,,-1 (Gup (b (C, 1,))) — G (b (crev7 irev)) Twg (Gup (b—l ( c, ))) — QW (b—l (crev7 irev)) ‘

In particular, T, (resp. ©y-1) induces a bijection between the dual canonical basis of
A [N_(w)] and that of Ag[N_(w™")] (resp. the dual canonical basis of Uy (w) and that of
U (w™)).

q

Proof. The former implies the latter. We have already checked that ©,-1 (G" (b(c,%))) €
U, (w™'). Hence by Remark 1.1.49 we only have to show that
7 (01 (G™ (b(e. 1)) = Ops (G™ (b(e,d)).
Op-1 (Gup (b( ))) Fup ( rev zrev) e Z qZ[q]Fup (6,7 irev) )
£(w)

CEZ

The latter follows from Proposition 1.1.47 and Proposition I1.1.6. The former follows
from Proposition 1.1.39 and II.1.9. U

Recall the notation in Remark 1.1.51. By applying ©,-1 to the expansion of the dual
PBW basis into the dual canonical basis in Remark I.1.51, we obtain the following corollary.
This symmetry is new when g is not finite dimensional. See also Remark I1.1.17.

COROLLARY I1.1.11. Let w € W and i € I(w). Forc € Zi(g’), we have
(IL.1) [F' (¢,1) : G™ (b(c,1))] = [Fup (v, ¢") . G (b (( S irev))} :
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In particular, we can write the expansion as follows:

F™(ed) =G (b(c,i) + Y [F'(ed): G™(b(c,3)]G™ (b(c9)),

here <, denotes the right lexicographic order on ZZZ(BU), which 1s deterined by the condition
that ¢ <, ¢ if and only if (/)" < ™.

In the rest of this section, we assume that g is a finite dimensional complex simple Lie
algebra. Let wy € W be the longest element of W. There is a unique Dynkin diagram
automorphism 6 with —wy (o) = aygg;) for all i € I. For a reduced word ¢ = (i1,-- - ,in) €
I (wp), the sequence (ig, -+ ,in,0 (i1)) is also a reduced word of wy.

DEFINITION IL1.1.12. We define a Q (¢)-algebra automorphism on U, (g) defined by
0 (e:) = eq) 0 (fi) = fogi) 0 (q") = q ™.

ProproOSITION 11.1.13 (|25, Proposition 8.20], [45, Proposition 3.2]). For w (a;) = a; €

II, we have
Tw (iL’l) = Tj

where x = e, f.

ProposiTioN I1.1.14. We have

fox(=%00) =0y, = Tw.q
Proof. By Proposition I1.1.13, we have
T, (€1) = — foyto), Ty (fi) =t o0 T (q") = g™,

Hence the proposition follows from the stralghtforward check on the generators of U,. [

By Proposition 11.1.14, we obtain the following corollary.

COROLLARY IL.1.15. For i = (i1, ,in) € I (wo) and ¢ = (c1,-++ ,en) € Z5,, w
have

(6 0%) (G (b(c,4))) = G (b(c™,3™)) .
Moreover by Lemma I1.1.7 we obtain the following corollary.

COROLLARY IL1.16. Let i = (i1, - ,in) € I (wg) and ¢ = (c1,- -+ ,cn) € ZE,

(1) We have
(0 0x) (G (b(e 1)) =G (b(c™, 7))
(2) Write G (b(c,%)) =Y. (G (b(e,1)) : F*¥(c,4)) F*¥ (c/,4). Then we have
(G (b (C, ’l,)) Flow C Z ) ( b(crev rev ) Flow (( )rev : irev)) )
In particular, we have

G(b(c.i)=F"(ci)+ Y  (G(b(ei): F* () F(c,i).

c<c ,e<,c!
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REMARK II.1.17. We have to remark that Corollary II.1.15 was already proved by
Lusztig [40, 2.11]. In fact, if g is of finite type, we can also show the equality (II.1)
in Corollary II.1.11 without using quantum FZ-twist maps, by the results in [40, 2.11]
together with [46, Proposition 3.4.7, Corollary 3.4.8], [42, Theorem 1.2]. Note that ©,, =
(Twyw-1)"t 08 ox for all w € W if g is of finite type.

I1.2. Quantum Fomin-Zelevinsky twist maps and unipotent quantum minors

We again assume that g is an arbitrary Kac-Moody Lie algebra. Unipotent quantum
minors are typical and manageable elements of dual canonical bases. In this section, we
show that the images of some unipotent quantum minors under quantum FZ-twist maps are
also described by unipotent quantum minors (Theorem 11.2.8). In particular, quantum FZ-
twist maps preserve quantum analogue of specific determinantal identities, called quantum
T-system (Corollary 11.2.14).

DEFINITION I1.2.1. For A € PLU(—P;) and w,w’ € W, define an element D,y yx € U,
by the following property:

(Dw)\,w’)n I)L = (uwka :E'uw’k)f

for x € U, . By the nondegeneracy of the bilinear form (, ), this element is uniquely
determined. An element of this form is called a unipotent quantum minor. Note that, if
Dy # 0, then wt (Dyxwn) = wA — w'A. See [34, Section 6].

ProprosITION 11.2.2 ([30, Proposition 4.1]). The unipotent quantum minors belong to
B".

The unipotent quantum minors associated with lowest weight modules are related with
those associated with highest weight modules via x-involution.

ProrosITION 11.2.3. For A € Py and w,w' € W, we have
*wa)\,fw’/\ - Dw’)\,w)\-
Proof. For all z € U, we have

(*D,w)“,w/)\, x)L = (D—w)\,fw/)\a *m)L
= (u,w)\, *(ﬁ).u,w/)\)f/\ = (U,w/)\, (x)v'u*U))\>f>\'

We can consider a new U,-module V(—\)¥ which has the same underlying vector space

as V(—A) and is endowed with the action e of U, given by z e u = (z)".u for x € U, and
u € V(=A)Y. Then there exists a Uj-module isomorphism Y : V(A) — V(—A)" given by
uy — u_y. Moreover ®(u,y) = u_,y for all v € W. Indeed, for (i, ...,i) € I(v),

T(ups) =T (f'«hil’smmsizxn a f«hie’l’Siemf«h”’A)).ux>

i ig_1 i

((hilvsiz'“sig)‘» (<hi£71’si£>\>) (<higy >)
— 611 te Gig_l 6” .U_)\ — u_v>\.
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Hence
(< D—wr—wxs T), = (Umwrns () )7
= (Uewir, (Yo T (z 0 uy))?,
= (u—win, T(@uwa))?,
= (U, TUpp) Y = (Durwn, T)
for all z € U, . This proves the proposition. O

We consider the unipotent quantum minors which belong to U, (w).

ProposITION 11.2.4 ([35, Proposition 3.4]). For w € W and © = (i1,...,1) € I(w),
we have

u,NT,(U;)=U,nT, (U)NT,T, (U,)n---NT,T;,---T;, (U,) .

q

ProrosITION 11.2.5 ([35, Theorem 1.1]). Let w € W. Then the multiplication map
induces the Q(q)-linear isomorphism:

U, (w)® (U, NT,U;) = U, .

q

LEMMA I1.2.6. For w € W, set U, (w)* := {z € U, | (2,U_(w)), = 0}. Then the

multiplication map induces the Q(q)-linear isomorphism:
_ _ _ ~oTT— (L
U, (w)® (U, NT,U; NKere) = U, (w)
Recall that € is the counit of U,. In particular, U, (w)l is a left wdeal of U, .
Proof. By Proposition I1.2.5, we have a decomposition U, = U (w) © U, (w)(U; N

T,(U;)NKere) of a Q(q)-vector space. By the way, we also have U, = U (w)® U, (w)*.
Hence it suffices to prove the following inclusion:

U, (w)(U,; NT,(U,;) NKere) C U, (w)™".
It is shown by using Proposition [.1.31 and Proposition I1.2.4 repeatedly. U

PROPOSITION I1.2.7. Let A € P, and wy,ws,w € W. Suppose that ws is less than or
equal to w with respect to the weak right Bruhat order, that is, £(w) = £(wy) + (ws "w).
Then

D—w1>\7—w2>\ S Uq_ (w) D’LUQ)\7’LU1)\ S AQ[N— (w)]

Proof. By Proposition 11.2.3, the latter is equivalent to the former. Since Uy(w) =
{r €U, | (z,U, (w)")r = 0}, it suffices to show that

(U—wyr, Uy (w)L.u_m,\)f/\ =0.

For every homogeneous element x € U, N T, (U ) N Kere, we have wy, 'wtor € Q_
by Proposition 11.2.4. Here note that there exists ¢ = (iy,4s,...,4) € I(w) such that
(41,92, - ., Ge(ws)) € I(w2). Therefore, by Proposition 1.1.29 and 1.1.30,

Ttl—yon = Ty ((Twy) ' (z).u_y) = 0.
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Hence Lemma I1.2.6 implies the assertion. O

The following is a quantum analogue of [14, Lemma 2.25].

THEOREM I1.2.8. Let A € P, and wy,ws € W. Suppose that wy and wo are less than
or equal to w with respect to the weak right Bruhat order. Then we have

@w*(D—wl/\,—wz)\) - D—wflwzk,—wfluu)\ Tw,q(Dwz)\,wM) - Dw*lwlk,w”wzk'
Proof. The latter follows from the former by Proposition I1.2.3. By Proposition 11.2.7,
we have D_yn—wpn € Uy (w). Therefore we have ©,-1(D_y;x—w,n) € Uy (w™'). By
Lemma IL.1.7, for z € U, (w™),

(@ufl (D—wl)\,—wz/\)a ZE)L = (D—wl)\,—wz)\a @w(x))L
= (U—wl)\y @w<x)‘u—w2)\)f)\
= (U—wy, (9 © Ou) (x)-ufuu)\)f)\ :

Now ¢ 0 ©,, is a Q(¢)-algebra automorphism of U,. Hence we can consider a new U,-
module V’(—\) which has the same underlying vector space as V(—A\) and is endowed
with the action x of U, given by z xu = (¢ 0 0,,)(z).u for z € U, and u € V'(=\).

Then there exists a U -module isomorphism V(—X) — V’(—=X\) given by u_y + u_y).
Note that (¢ 0 ©,)(¢") = ¢*™ for h € P*. Hence the vector u_,, € V'(—\) is a vector of
weight —w™w; A (i = 1,2). Moreover it is well-known that the weight space of V(—\) of
weight 4 is 1-dimensional for all u € —W A. Therefore as in the proof of Proposition 11.2.3
we have

(u—w2>\7 (90 © @w) (I’).U_wl)\)f)\ = < (u—w*1w2)0 :E-u—w*lwl)\)f)\
- < (waflwg)\,fwflwlx\a x)L

for some ¢ € Q(q)* and allx € U (w™1). By our assumption, w™tw; is less than or equal to
w™" with respect to the weak right Bruhat order. Therefore D_ -1y, w102 € Uy (w™)
by Proposition I1.2.7. Hence ©,-1(D_y;x —wsr) = CD sty ) — w1 A-

On the other hand, by Theorem I1.1.10, ©,-1(D_y;x —w,n) € B®NU, (w™). Therefore,
by Proposition 11.2.2, =1 and ©,-1(D_yx —wsr) = D—w—twpr—w—1wra- O

As a corollary of Theorem I1.2.8, we show the compatibility between quantum FZ-
twist maps and quantum analogues of specific determinantal identities, called quantum
T-systems. From the view point of the theory of quantum cluster algebras, quantum 7-
system is the specific mutation sequences of the quantum cluster algebra A,[N_(w)] [20].

NOTATION I1.2.9. When we fix w € W and ¢ = (iy,...,4) € I(w), we write
Eti=min({0+ 1} U{k+ 1< </0|i; =ix}),
k™ =max({0fU{l <j<k—1]|i; =1}),
k(1) ==max({0} U{1 <j<k—1]i; =1}),
EM = max{l < j </l |i; =i},
F = min{l < j < 0 ]d; =iy}
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fork=1,...,fand € I.

DEFINITION 11.2.10. Let w € W and @ = (iy,...,4) € I(w). For 0 < b < d < ¢ and

7 €1, we set ‘
D(d,b; j)(= D*(d, b; j)) := Dyu(a,j).ubs)s

here u(b,j)(= pi(b,j)) := s; - -s,w;. By Proposition 11.2.7, this is an element of
A [N_(w)]. Moreover, when i, = iq = j, we write D(d,b)(= D%*(d,b)) := D(d,b;j).
Note that D(d,0) = Dy, .5, w;,w, for 1 <d <€ and D(b,b) :=1for b=0,...,(. Then,
for 0 <b<d</landje€ I, wehave D(d,b;j) = D(d (j),b(5)).

Recall that aj; :== (hj, o) for i, j € 1.

ProrosITION 11.2.11 ([20, Proposition 5.5]). Let w € W and © = (iy,...,1) € I(w).
Fix an arbitrary total order on I. Suppose that the integers b, d satisfy that 1 <b < d </
and i, = iq = 1. Then we have

__)

(IL2)  ¢*D(d,b)D(d",b") = q;'¢°D(d,b7)D(d",b) + ¢ [] D(d (5),b(5))™
Jeni}
__>

(I1.3) = ¢, '¢" D(d",0)D(d,b7) +¢° [] Dl ()b~ ()",
jendi}

here

:<:u(b_a 7;)7 M<b> Z) - :u(d_’ Z))> B/ = (M(b7 i)v :u(b_v 7’) - :u(dv 7’))7
c= % (79 ) 0 tv.d) - ()
jENi}

+ Z ajiaki(,u(baj)nu(ba k) - ﬂ(da k)),
JkeN\{i};j<k
and ﬁ denotes a product with respect to the increasing order from left to right. This system
of equalities is called the quantum T-system in A [N_(w)].

REMARK I1.2.12. Note that our convention is different from the one in [20], and Geif-
Leclerc-Schroer always assume that g is symmetric. Nevertheless, we can prove the equality
above in the same manner as in [20]. See also Remark II1.2.11 below.

ExAMPLE I1.2.13. We consider the case that g = sl3, I = {1,2}. Note that N_(w) =
N_ in this case and this is the group of unipotent lower triangular 3 x 3 matrices. The
following is a basic determinantal identities in the non-quantum settings:

(IL.4) D39Ds1 = D31 + Das 12

Here Dy, ;, denotes the regular function on N_ which assigns to a matrix its minor with
row-set J; and column-set Jy. This is nothing but the classical counterpart of the equality
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in Proposition 11.2.11 with w = wg = $18251, ¢ = (1,2,1) and i = 1, b =1, d = 3. In fact,
the unipotent quantum minors appearing in this equality are the quantum analogues of

the ones in (I1.4). By using the same notation, the equality (I1.2) (which is equivalent to
(I1.3)) is described as follows:

D35Ds1 = q ' D31 + Do 1.

COROLLARY I1.2.14. The quantum FZ-twist map 7,4 maps the quantum T-system in
A [N_(w)] to the one in A [N_(w™1)].

Proof. Fix @ = (i1,...,4) € I(w). Let b,d the integers such that 1 < b < d </
and i, = ig = 7. Fora = 1,...,¢, set a, := { —a + 1. For simplicity of notation,
we write a7 := (a,)” and a; (j) := (a;)"(j) for @ = 1,...,¢. Note that w=tu*(d’,j) =
pe (0 —d',j) fora’ =0,...,¢ and j € I. In particular, for a = b, d, we have w='u*(a,i) =
p (ar,d), wipt(a™, i) = pt (ar, i) and wtpt(a,j) = pt (ar, ) if j # i. Hence, by
applying 7, , to both sides of (I1.2) and using Theorem I1.2.8, we obtain

(I1.5) ¢* D" (by, d,)D¥ (b7, dy)

T r

srev
2

_>
=g, 'q" D" (0, do) DT (b, d) + 07 [T DT (7 () dr ()7
jelrev\{i}
here A, B and C' are the same as in Proposition I1.2.11 and I™¥ denotes the index set [
with the reverse total order. By the way,

(' (b,2), ' (07, 1)) = (sywi, wi) = (u*(d,4), p*(d, 1)),
(' (d, 5), 1" (a', k) = (w;, ) for all @’ = 0,...,¢ and j, k € I.
Therefore we have
A= (b, i), p*(07,1) — p*(d™, 7)) = (u*(d, 1), 1 (d,7) — pi* (b, 7))
™ (o), i (A1) — 1 (b7 1),

—Qji N YR i :
c= ¥ (75 ) W) - i)
jen)
+ Y k(i (b, §), 1 (b, k) — p(d, k)
JkeI\{i};j<k
—a 117 ,irev . irev . irev .
= () 0 ) — i )
jer (i)
+ Z akiaji(ﬂirev (dv, k), Mirev(dra J) — Hirev(bra 7))-
J.kerrev\{i};k<j

Therefore the equality (I1.5) belongs to the quantum T-system in A [N_(w™)]. O



CHAPTER III

Quantum Berenstein-Fomin-Zelevinsky twist automorphisms

In this chapter, we consider quantum analogues of Berenstein-Fomin-Zelevinsky twist
automorphisms (henceforth quantum BFZ-twist automorphisms). See Introduction for
their definitions in non-quantum settings. In Section III.1, we construct quantum BFZ-
twist automorphisms, and show that they preserve dual canonical bases of quantum unipo-
tent cells, which are defined also in Section III.1. Our quantum BFZ-twist automorphisms
on arbitrary quantum unipotent cells are generalizations of the quantum BFZ-twist au-
tomorphisms in [5, Theorem 2.10] and correspond to those in [5, Conjecture 2.12 (c)].
However our approach to the construction is different from their way. Berenstein-Rupel
used a quantum cluster algebra structure on a quantum unipotent cell A,[N™] and mainly
dealt with the case that w is a square of a Coxeter element. Our method relies on the
relation between the structures of quantum unipotent cells A,[N™] and those of quantized
coordinate algebras R,. The compatibility between quantum BFZ-twist automorphisms
and dual canonical bases corresponds [5, Conjecture 2.17 (a)]. In Section III.2, we obtain
an additive categorification of quantum BFZ-twist automorphisms by using Geifl-Leclerc-
Schroer’s theory when g is symmetric. As a corollary, we show the compatibility between
quantum BFZ-twist automorphisms and quantum cluster monomials. In Section III.3,
we prove the Chamber Ansatz formulae for arbitrary quantum unipotent cells by using
quantum BFZ-twist automorphisms. This is a generalization of [5, Corllary 1.2].

III.1. Quantum Berenstein-Fomin-Zelevinsky twist automorphisms

In this section, we construct quantum BFZ-twist automorphisms on quantum unipotent
cells (Theorem I11.1.42). Quantum BFZ-twist automorphisms are Q(q)-algebra automor-
phisms on quantum unipotent cells. Quantum unipotent cells are localizations of quantum
closed unipotent cells, but our construction of quantum BFZ-twist automorphisms requires
the quantized coordinate algebras R, associated with U,. We also define dual canonical
bases of quantum unipotent cells (Definition I11.1.35). Then quantum BFZ-twist automor-
phisms are restricted to permutations on these dual canonical bases. This compatibility
is essentially useful when we consider an additive categorification of quantum BFZ-twist
automorphisms in Section III.2.

II1.1.1. Unipotent quantum matrix coefficients. We introduce quantum ana-
logues of matrix coefficients on unipotent groups N_ and variants j,, of j\ in Proposi-
tion 1.1.37. They are useful for describing quantum BFZ-twist automorphisms (Theorem
I11.1.30, TI1.1.42).

36
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DEFINITION IIL.1.1. For A € Py and u,u’ € V/(A), define the element D, ,» € U by
!/
(Dys @), = (u, z.u')§

for all z € U, . We call an element of this form a unipotent quantum matrix coefficient.
Note that wt (D, ) = wtu—wt ' for weight vectors u, v’ € V() and D, 4
for w,w’" € W. Recall Definition I1.2.1.

WA Dw)\,w’/\

DEerFINITION IIL1.1.2. Let A € P;. Define a surjective Q (g)-linear map my,: U, —
Vo (A) by

71'1\[/))\ (y) = yv‘uwk

ProposiTiON I11.1.3 ([44, Proposition 25.2.6],[31, 8.2.2 (iii), (iv)]). Let A € Py and
w € W. Then there exists a surjective map m),: B(c00) = Bu(A) [[{0} such that

W%A(G(b)) = Q(W@\{;A(b))

for b € B(0), here g(0) = 0. Moreover, ), induces a bijection (7)) " (PBw(N))
Bi(N).

1

DEFINITION IT1.1.4. Let A € Py and w € W. Set Vi, (\)" == {u € V(A) | (u, Viy (V) =
0}. Define 5%, : V(A /V (A" — U_ as the dual homomorphism of 7}, given by the
nondegenerate bilinear forms (1, )5 : V. (A) xV (A) = Q(¢) and (, ), : U, x U, — Q(q),
that is,

(Gux (@) 9), = (w, o W))3 (= (w,y " wwn)y = (0 (¥7) -, wwn)y)-
In the following, the map V' (\) — U, given by u — jy/,(pw(u)) is also denoted by jy,,
here p,, is the canonical projection V (\) — V(\)/V,, ()\)L.
The following proposition immediately follows from Proposition III.1.3.

ProrosITION III.1.5. Let A € P, and w € W. Then there is an injective map
Jor: Bu (X)) — B (o0) such that

(g™ (D), G(?)’)V.um)f = 513/,jv (b)

wA
for any b € By (N) and b € B (o). That is, we have j, (g™ (b)) = G*™ (72 (b)). .

REMARK III.1.6. Let A € P, and w € W. Then,
o Wt (b) = —wtb+wA for b € %,(A), and
® Jun(mua(0)) = b for b € ()~ (Bu(N)).
ProrosiTioN III.1.7. Let A € P, and w € W. Then the following hold:

(1) Dgue()uy, = G (7:(b)) for all b€ B (),
(2) Dy gwee) = G™ (%705 (b)) for all b € By (N), and
(3) Do guoy = 0 for all b e B (N)\ B (V).
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Proof. The equality (1) follows immediately by Proposition 1.1.37. For y € U, we
have

(D, g (b) s Y)r = (twr, y-g" (b))%

= (9" (b), (+(y))" - uwn)¥
= (G" (Jun (0)) , *(¥))z
= (G" (47 (b)) )L

This completes the proof of (2). The assertion (3) follows from the similar calculation and
Proposition 1.1.52. U

ProrosITION II1.1.8 ([34, Corollary 6.4)). Letw € W and ¢ = (iy,...,i) € I(w). For
i€, define n') = (ngl), . (Z)) € Z5 by

et

0 otherwise.
For A € Py, set n* =", (A hy)nD. Then we have
Dy = G*™(b_1(n*,1)).

I11.1.2. Kumar-Peterson identity. We investigate the map 7, a little more. Ku-
mar and Peterson studied the identity which expresses the “characters” of the coordinate
ring C [X,, N U,] of the intersection X (w)NU, of Schubert varieties X (w) and “v-translates
of the open cell U,” as the limit of a family of “twisted” characters of Demazure modules
in general Kac-Moody Lie algebras, see Kumar [38, Theorem 12.1.3] for details. The fol-

lowing bijection can be considered as a crystalized Kumar-Peterson identity for the special
case v = w.

THEOREM III.1.9. We have
U 720, (2 =% (U, (w)).

AePy

The rest of this subsection is devoted to the proof of Theorem III.1.9.
LEMMA IIL.1.10. Fory € U, (W)™, we have y” uyy = 0 for all X € P,

Proof. By Lemma I1.2.5, we write y = > y1)y2) with yu) € U, (w) and homogeneous
elements y) € U, NT,, U, NKere. Then, by Proposition I. 1 29 and [.1.30, we have

yv.uw)\ = —1 (ZT -1 w-—1 (yé)) .U)\) =0

because wt(To-1(y3))) € @+ \ {0}. O
ProprosITION II1.1.11. We have
U 700 (8. (V) € 2 (U, (w)) .

AEPL
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Proof. Let 7 (w): U, — U_ be the orthogonal projection with respect to U, =
U, (w) ® U, (w )*. Since U, (w)™ N B is a basis of U, (w)™ by Proposition 1.1.47,
we have 7 (w) (G(D)) # 0 if and only if b € % (U (w)) for b € B(0). Let b €
Usep, Jun (B (A)). Then there exists A € P, such that G(b)".uuy # 0. By Proposi-
tion II1.1.10, we have

G(b)Y gy = (m(w)(G(D)))Y Uy
In particular, we have 7 (w) (G(b)) # 0. This completes the proof. O
We prove the opposite inclusion.

PROPOSITION 1I1.1.12. We have

U jw)\

AePy

Proof. Let b € 2 (U, (w)), that is 0 # m(w) (G(b) € U_ (w). (See the proof of
Proposition II.1.11.) By Proposition III.1.3 and Remark III.1.6, it sufﬁcgs to show that
G(0)Y uyy = (m(w)(G(b)))Y.uyy # 0 for some A € P,. Note that (7(w)(G(D)))" uw # 0 is

—~\/
equivalent to (m(w)(G(D))) uwx # 0.
By the way, it follows from Proposition 1.1.29 that

7y = (L) (T-1 0V o) (y) wn) = (T1) 7 (Vom0 Ty (y) ) -

Since yo = m(w)(G(b)) € U, NT,U7° we have (Vo= o T, ")(y) € U’ It is
well-known that, for £ € Q_, there exists an element A € P, such that the projection
(U;) e V(A ¢y given by y — y.uy is an isomorphism of vector space. Hence it can be

shown that there exists A € P, such that (V o~ o T 1) (yo).uy # 0. O

II1.1.3. Other descriptions of quantum unipotent subgroups and quantum
unipotent cells. In this subsection, we describe the algebras, quantum unipotent sub-
groups and quantum unipotent cells, by using the quantized coordinate algebra R,. The
following descriptions are essentially shown in [26, 9.1.7], [49, Theorem 3.7]. However, we
state them again emphasizing the terms of dual canonical bases. Actually, we can now
prove each statement immediately.

NoTAaTION III.1.13. Let v,w € W. By abuse of notation, we describe the canonical
projection R¥™ — RZIU(JF)/Q%U(JF) as ¢ — [c].

DEeFINITION III1.1.14. Let A € P,. Set

Uy =i (V) =2, QDG (2(0))-

Recall Definition I.1.24 and 1.1.26. The following propositions follow from Lemma I.1.15
and Proposition II1.1.7.
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PRrOPOSITION IIL.1.15. The Q(q)-algebra homomorphism R} — U’ F — (¥_ o
Reo)(F) induces the Q(q)-algebra isomorphism I: Ry — 3\ p. Uq_()\)q_)‘

PRrOPOSITION II1.1.16. For A € P, and b € A (\), we have

1 <c;\“p(b)*aux) =G" (jk(b)) q_)\ = Dg“P(b),qu_)\

In particular, for w € W, we have
+ o up (= -\
T(QN) = X, QDG GO 0™

DEFINITION II1.1.17. An element z of R} (resp. R;}/Q}) is said to be g-central if, for
every weight vectors f € V(A)* and A € P,, there exists [ € Z such that

ZC?’UA = qlc?wz (resp. z[c},uk] = [C?UA]Z)

COROLLARY IIL1.18. The set S = {c} }rep, is an Ore set in R} consisting of q-

central elements. In particular, [S] := {[cy \]}rep, is an Ore set in R} /Qy consisting of
q-central elements.

By Corollary III.1.18, we can consider the algebra (R /Qf)[[S]™"]. Proposition II1.1.15
and II1.1.16 together with Remark I.1.53 immediately imply the following proposition. This
gives the description of A, [N_ N X (w)] in terms of the quantized coordinate algebra R,,.
This kind of description appears in [26, 9.1.7].

PROPOSITION I11.1.19. Let w € W. Set A[N_ N X (w)]*™ := Us°/(U;)* UL Note
that (U )*UY is a two-sided ideal of U". Then the Q(q)-algebra isomorphism T induces
the Q(q)-algebra isomorphism

To: (R/Q0) (S]] - A N (1 X ()]

Moreover the Q(q)-algebra 3 p, Ry (N/QY) [, Hc (RF/Qy) [[S]7Y) is isomorphic
to A [N_ N X(w)].

Next we consider the algebra RY" / Q™| which is isomorphic to R} /Qf. See Defi-
nition [.1.23.

DEFINITION II1.1.20. Let w € W and A € P,. Set
. v up /—
Uy (w,2) = (Gun (VOO/Va) =D Q@G (i (0)”

The following proposition follows again from the nondegeneracy of the Drinfeld pairing,
the equality (I.2), Lemma I1.1.15, Proposition 1.1.40 and Proposition III.1.7.

PROPOSITION IIL.1.21. Let w € W. The restriction map Rxo: U; — (UZ°)* induces
the algebra homomorphism R¥: Ry (UZ°)*, and it satisfies Ker(RY,) = Qu™

Im RY, C Im ®*. Hence RY, induces the Q(q)-algebra isomorphism E:o +)/Qw(+
Im RY,.  Moreover we have an well-defined anti-algebra isomorphism I+ RI/Qf —
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Sep, U . X)g™ given by [6},,] = ()7 0 BLy) (e, ) for f € VIO, A € P
We have

T (16w a]) = G Gin (60" 4 = (D o)™
for b e ABy(N).

COROLLARY II1.1.22. The set [,S] := {[c}y \|}aep, is an Ore set in R} /Qy consisting
of q-central elements.

REMARK III.1.23. The description in Proposition III.1.21 implies that the algebra
R/ /Q; has no zero divisors.

By Corollary II1.1.22, we can consider the Q(g)-algebra (R} /Q)[[wS]™!]. Proposi-
tion II1.1.21 immediately implies the following proposition. This gives the description of
A,[N_(w)] in terms of the quantized coordinate algebra R,. This kind of description
appears in [49, Theorem 3.7].

PROPOSITION I11.1.24. Let w € W. Then I} induces the anti-algebra isomorphism
TE: (RE/QE) [LSI7] - U (w) UL,

Moreover the Q(q)-algebra "\ p. (RF(N)/QF) [eaan] (S (RF/QE) [[wS]7Y]) is anti-isomorphic
to Uf(w), and is isomorphic to Ag[N_(w)] via .

Proof. It suffices to show that >, Uy (w,A) = Uy (w). This follows from Theorem
I11.1.9. U

II1.1.4. Quantum BFZ-twist isomorphisms and dual canonical bases. In this
subsection, we consider two kinds of localized algebras, A,[N_(w) N wGy| and A,[N"].
The former is a localization of the quantum unipotent subgroup A,[N_(w)] and the latter
is a localization of A,[N_ N X (w)] (Definition I11.1.29). The latter is called the quantum
unipotent cell. The aim of this section is construct a quantum analogue of the BFZ-twist
automorphism on A,[N™]. In preparation for it, we construct a Q(¢)-algebra isomorphism
from A,[N"] to A [N_(w) NwGo] in a “twisted” way (Theorem III.1.30). This is a quan-
tum analogue of 7, |N_(w)nwa, (=: 7w) in [18, Subsection 8.2] (see also [18, Proposition
8.4 (iv)]). Actually, the construction of this isomorphism is an essential step for our con-
struction of a quantum BFZ-twist automorphism. Moreover we naturally define the dual
canonical bases of A,[N_(w) N wGy| and A [N"] (Definition III.1.35). At last, we show
that the isomorphism above induces a bijection between these dual canonical bases.

NOTATION III.1.25. Let V be a Z[¢*!]-module. For a subset M C V, write ¢? M :=
{¢"m | m e M,k € Z}.

The following lemma easily follows from Corollary 111.1.18 and 111.1.22. See also [21,
Proposition 6.3]. This localization is important in the proof of Theorem III.1.30.

LEMMA IT1.1.26. Let w € W. Then the set [,,S] := ¢ {[chanch v avep, is an Ore set
in R} /Qy consisting of q-central elements.
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Moreover the maps (R /QE)[S1™'] > (R /QE) (w1711 e}, e ™ = e}, e ]
and (R Q) [[S)7] = (R Q)8 [} ][] ™ = [, Jlet ] are injective

Q(q)-algebra homomorphisms.

We prove the following proposition (Proposition I11.1.27) and theorem (Theorem I11.1.30)
simultaneously.

PROPOSITION II1.1.27. Let w € W and set ,D := ¢*{Dyrr}rep,. Then the sets , D
and [, D] are Ore sets of A;[N_(w)] and A,[N_NX(w)] respectively consisting of q-central

elements. More explicitly, for \, X' € Py and homogeneous elements © € A N_(w)],
y € A N_NX(w)], we have

—(OwN =N _
q ) DusrDux v = Doyxaay aex

Dt = ¢MAD D in Ag[N_(w)], and
[Dunally] = ¢ y][Dyan] in Ag[N- N X (w)].

REMARK II1.1.28. In fact, Proposition II1.1.27 is a known fact. See, for example, [34,
Proposition 6.11, Corollary 6.18].

DEerINITION II1.1.29. By Proposition II1.1.27, we can consider the localizations;
AN (w) N1iGo] = A,[N_(w)][ D,
Ag[N] = Ay [N- N X (w)][[D] ).

Those algebras have Q-graded algebra structures in an obvious way. The algebra A,[N"]
is called a quantum unipotent cell.

The algebras A,[N_(w) NwGy| and A,[N"] are isomorphic as follows. These isomor-
phisms are “almost” the desired quantum BFZ-twist automorphisms. In fact, these are

quantum analogues of the maps 7),, in [18, Subsection 8.2] (see also [18, Proposition 8.4
(iv)]). See also subsection III.1.5.

THEOREM II1.1.30. There exists an isomorphism of Q(q)-algebras
Vgt AN = Ag[N_(w) NGy
gien by
[Dyuy) — qf(/\’wwﬂ\)D;}\,ADum,u, (D] q(/\’m\ﬂ\)Dw,\,,\
for a weight vector uw € V(X\) and X € Py.
DEFINITION III.1.31. We call v, , a quantum twist isomorphism.

PrROOF OF PROPOSITION III.1.27 AND THEOREM II1.1.30. By Proposition III.1.19
(see also Proposition I11.1.16), we have the algebra isomorphism

(IIL1) AN X ()] ES ST (REN)/Q)) (]!

AEPL
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given by
(I111.2) [Duuy) = [che ][]

for A € Py and u € V(A). In particular, Z' ([Duana]) = [chanllean] -

By Lemma II11.1.26, >, p, (RF(N)/Qy) [ex,] 7" is naturally regarded as a subalgebra
of (RF/Q{)[[wS]7"], and in the latter algebra, the set ¢“{[c}, \][cX\] " hacp, is a mul-
tiplicative set consisting of invertible g-central elements. Hence [wD] is an Ore set of

A, [N_ N X(w)] consisting of g-central elements, and the algebra isomorphism (III.1) is
extended to the algebra isomorphism

(I11.3) T AN = > (RF(N)/Q) [ aemman] ™
AN N ePy
A=N 4N

On the other hand, by Proposition I11.1.24 (see also Proposition III.1.21), we have an
algebra isomorphism

(IIL4) ST (RF()/QE) [l £ AN ()]
given by
(IIL5) ] MY ] = Dy

for A € Py and u € V(X). In particular, (¢ o Z ) ([ 5] ' [eAa]) = D
As above, the set ¢*{[c}, \] ' [eX ] }rep, is a multiplicative set consisting of invertible

g-central elements of (R;/Qm[[wg]*l] Hence ,,D is an Ore set of A [N_(w)] consist-
ing of g-central elements, and the algebra isomorphism (II1.4) is extended to the algebra
isomorphism

(IIL.6) Joi Y (REN/QE) [ nhinma] ™ = AgIN_(w) NGy,
AN N ePy
)\:A/_’_)\N

By the way, we obtained Proposition I11.1.27. The calculation of explicit g-commutation
is left to the reader.
By (IIL.3) and (II1.6), we obtain the Q(g)-algebra isomorphism

Ywg = T20 T AYINY] = A [N_(w) NwG).
Moreover, for A € P, and a weight vector u € V(\), we have

Yurg(Dur) = Fa([€ ][] 1) by (IT1.2),
Talq M Ve e )
2(61 (Aowtu— A)[Ci ]_1[ Cw, Ale gA,\]_l[Ci*,uA])

=g —(A\,wtu— )\)D )\D

by (IIL5).

w Uw,u
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Moreover,
1 = Y g([Dirp] [Durn] )
= ¢ MDD g ([Duan] ).
Hence,
Ywq([Duwan] ") = Q(A’w/\_A)DwA,/»

This completes the proof of the theorem. O
Next we define the dual canonical bases of A,[N*] and A, [N_(w) N wG).
ProposITION II1.1.32 ([34, Theorem 6.24, Theorem 6.25]). Let w € W.

(1) For A € P, and b € B, (), there exists V' € B, (cx) such that
¢~ M D] [G(0)] = [GP (V).

(2) For A€ Py, i€ I(w) and c € Zgg}), we have

g~ M@ D AG™ (b (e, 1)) = G™(b_1(c + nt, 1)),
where n* is defined as in Proposition II1.1.8.

REMARK II1.1.33. Proposition 1.1.12 and II1.1.32 also imply the equalities in Proposi-
tion II1.1.27.
PROPOSITION I11.1.34. Let w € W and @ € I(w). Then the following hold:
(1) The subset

(gD TGP (B)] | A € Py, b € Bu(oo)}

of A NY] forms a basis of A [N"].
(2) The subset
{qOmitmr@d eI D LGP (b (ed) | A € Prye € 225
of A [N_(w) NwGy| forms a basis of Ay[N_(w) N wGy).

Proof. We prove only (1). The assertion (2) is proved in the same manner. The given
subset obviously spans the Q(g)-vector space A, [N™]. Hence it remains to show that
this set is a linearly independent set. For (A, b), (N,0) € Py x AB,(00), write (A, b) ~
(V,0) if and only if gONAN (D, U GR(E)] = X AT[D ] GR ().
The relation ~ is clearly an equivalence relation, and we take a complete set F' of coset
representatives of (P, x Z,(00))/ ~. Suppose that there exists a finite subset [’ C F
and ary € @(b) (()\, b) € F/> such that Z(A,b)EF’ q()"Wtb+)‘_w)‘)a>\,b[Dw)\’)\]_l[GUP(b)] = 0.
There exists A\g € P, such that \g — A € Py for all A € P, such that (\,b) € F’ for some
b € B,(00). Now the equality >y e pm qAtEA=wN) g D] THGP(B)] = 0 is equivalent
to the equality

(1117) [Dw)\o,)\o] Z q(k,wt b+/\fw)\)a)\’b[Dw/\,>\]*1[Gup(b)] = 0.

(A b)EF"
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By Proposition I11.1.27 and Proposition I11.1.32, for (A, b) € F’, we have

[DonJ\o] <q(/\,wtb+/\—w>\) [Dw)\7)\]_1[GuP(b)]) _ q—(Ao—)\,w/\—/\)—i-()\,wtb+>\—w)\) [Dw(AO,)\),(AO,)\)][GUP(b)]

_ q()\o,wt b+A—w) [Gup (b(AO—)\) )]

for some b0~ € %, (c0). Note that wt b+ A — wA = wt 6P~ — wt Dy, 5, Therefore
if BN = (1)Po=X) for (X, b), (N, ') € F’ then we have the equality

[DUJ/\U,)\()] (q()\,wt b+A—w) [Dw)\,)\]_l [Gup(b)]) _ [Dw)\07/\0] (q()\,7Wt VN —w) [Dw)\’)\’]_l [Gup(b/)]> :

hence (A, b) = (XN, b'). Thus (IIL.7) implies ay, = 0 for all (A, b) € F’. This completes the
proof. [l

DEFINITION III.1.35. Let w € W. We call
B = (M N[D TG ()] | A € Pyyb € By(o0)}, and
B (w) i= {g e e Dot (G (b_y(e,4)) | A € Pyc € Z59)y

the dual canonical bases of A,[N"] and A,[N_(w) N wGy], respectively.
For A\ € P, there exist A\, Ay € P, such that A = —\; + A\y. Set

Dy = q<A1:wA—*>D;;m Duryr, € B™(w).

Then D,, » does not depend on the choice of A\j, Ay € Py by Proposition I11.1.34. Note that
wt Dw)\ = WA — A\

The following is straightforwardly proved by Proposition I11.1.27.

PropoOSITION I11.1.36. Let w € W and A\, N € P,. Then the following hold:
(1) Dw)\ = q(/\’wM*)‘l)Dw)%)QD;/I\h)\l fO’I“ /\1, /\2 c P+ with A = —/\1 + /\2.
(2) DyrDuwy = qMY Dy rin. In particular, D;})\ = q™A=ND, .
(3) Dypx = ¢MeAt2gD, \ for X € Py and a homogeneous element A, [N_(w) N
wGy).
REMARK II1.1.37. By using Proposition I11.1.32 (2), we can parametrize explicitly the
elements of B"(w). Fix 4 = (iy,...,i,) € I(w). An element ¢ € Z, is said to have gaps

if min{cy | iy =i} =0 for all ¢ € I. Then, by Propositions 111.1.32 (2) and I11.1.34 (2), we
obtain the non-overlapping parametrization of the elements of B"P(w) as follows:

B (w) = {qOwibaled D G (b_y(c,i)) | A€ Pc € 7~ has gaps}.

By Proposition I11.1.32, the property of b_;(e, ) that b_;(c, ) has gaps does not depend
on the choice of ¢ € I(w).

We define the dual bar involutions on A,[N™] and A,[N_(w) N wG)|, which are useful
when we study the dual canonical bases.

ProprosiTioN I11.1.38. The following hold:
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(1) The twisted dual bar involution o' induces Q-anti-algebra involutions A,[N_ N
X(w)] = Ay N_NX(w)] and A [N_(w)] = A [N_(w)]. See Definition 1.1.13 for
the definition of o’. Moreover these maps are extended to Q-anti-algebra involu-
tions ' 1 Ag[N™] = A NY] and o' A N_(w) N WG] = A [N_(w) NwGy).

(2) Define a Q(q)-linear isomorphism cuy: Ay[NY] — A [NY] (resp. A N_(w) N
WGy = A [N_(w) NwGy|) by

(wtz,wtz) /2— (Wt z,p)

T q T

for every homogeneous element x € A [N"] (resp. x € A JN_(w) N wGy]). Set
0 1= ¢ty 0 0'. Then for homogeneous elements x,y € A [N™] (resp. A [N_(w)N
wGo|) we have

(I11.8) o(zy) = ¢ Vo (y)o ().

Moreover the elements of the dual canonical basis B and ﬁ“p(w) are fized by
0.

DEFINITION II1.1.39. The Q-linear isomorphisms o and o’: A,[N*] — A [N"], A;[N_(w)N
WwGo) = Ay [N_(w) NG| defined in Proposition I11.1.38 will be also called the dual bar
involution and the twisted dual bar involution, respectively.

PROOF OF PROPOSITION II1.1.38. Recall that o/ (G (b)) = g~ (Wtowtb)/2+(wtbp) Gup ()
for all b € #(0). See Remark 1.1.14. Hence (1) follows from the compatibility of the alge-
bras A,[N_NX(w)], A [N_(w)] and the dual canonical basis (Definition 1.1.48, Definition
[.1.54), and the universality of localization [21, Proposition 6.3]. A direct calculation
immediately shows the equality II1.8. For A € P, we have

1= O'(Dw)\,/\D;)l\,)\)
_ q—(wk—k,w)\—)\)o-(D;}\)\)o'(th)\)
_ q2()"w)‘_)‘)0(D;)l\,)\)Dw/\y)\
in A,[N_(w) NwGy]. Hence
O'(D;/l\,/\> = q_Q()\’w/\_/\)D;)l\,/\'
Let b € %,,(00). Then, by Proposition I11.1.27 and the equality above, we have
oD,y ]G ()
= OO 5 (G ()]0 (D] )
= g~ AWEBHA—wA)+ - wdwt 5)-2(AwA=2) [G"™(b)][D
=dq
_ q(A,wt b+A—w) [Dw)\,)\] -1 [Gup<b>]'

~1
w)\,)\]
— (AWt b+A—wA)+(A—wA,wt b) —2(A,wA—A)+(A+wA,wt b) [Dw/\,A] -1 [Gup (b)]

This proves the dual bar invariance property for B, The assertion for B" (w) is proved
in the same manner. O
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The quantum twist isomorphism 7, , is compatible with the dual canonical bases:

THEOREM I11.1.40. Let w € W. Then the quantum twist isomorphism vy q: A [NY] —
A, [N_(w) NwGy)| is restricted to the bijection B> — B (w) given by

gIMON RN [D TG (G (0)) ¢ O T D Dy G (65 (b))
for A, N € P..be By (N). In particular, vy q([Dwr]) = Dy—x for X € P, and v, 4,00 =
T 0 Vg
Proof. By Proposition I11.1.7, for A\, \ € P, and b € %,,()\’), we have

Yuog (g N EIIATEND 0 ATHE (3 (0))])

()\,Wt b*)\/‘i’/\*w)\) [Dw)\’)\] -1 [Dgup(b),uy ] )

—q gAY Do) (N ID L D g )

— q_(/\_/\/’Wt(*jxw(b)))Dw,)\_)\,GUP (*71\1/}/\, (b)).

= Yw,q (q
uwtb=A+A=wd)

This completes the proof. Il

II1.1.5. Quantum BFZ-twist automorphisms. We introduce quantum analogues
of BFZ-twist automorphisms on quantum unipotent cells (Theorem II1.1.42). Since they
are automorphisms, we can consider the iterated application of them. In this subsection,
we also show the “periodicity” of quantum BFZ-twist automorphisms corresponding to a
finite dimensional Lie algebra g and the longest element wg of W.

The following is known as the (generalized) De Concini-Procesi isomorphism.

ProrosITION I11.1.41 ([34, Theorem 5.13], [37, Theorem 3.17]). Let w € W. Define
Lw: AyN_(w)] = AyN- N X(w)], > [z]

as a Q(q)-algebra homomorphisms induced from the canonical projection Uy — A [N_ N
X (w)]. Recall Definition 1.1.46 and 1.1.54.

Then v, is injective, or equivalently, x(Z(U
isomorphism;

. (w))) C B,(c0). Moreover 1, induces an

Lt Ag[N_(w) NwGo) = A N"].

By Proposition I11.1.41, we now obtain quantum BFZ-twist automorphisms on quan-
tum unipotent cells. These are generalizations of the quantum BFZ-twist automorphisms
in [5, Theorem 2.10] and correspond to those in [5, Conjecture 2.12 (c)]. Their compat-
ibility between quantum BFZ-twist automorphisms and dual canonical bases corresponds
[5, Conjecture 2.17 (a)]. Actually, Berenstein-Rupel dealt with the case that w is a square
of a Coxeter element and state their results and conjectures through quantum cluster al-
gebras rather than quantum unipotent cells A,[N*]. Remark that our method “directly”
treat the structures of quantum unipotent cells A,[N™] and those of quantized coordinate
algebras R,. See also III.3.8.
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THEOREM I11.1.42. Let w € W. Then there exists a Q(q)-algebra automorphism;
Nw,q = bw © Ywg: Ag[NY] — A, [NY]
given by
(D] = @ M VD urn] ™ Dyl [Dusp] ™ = ¢ VD]
for a weight vector w € V(X) and X € Py. In particular, wtn, ,([z]) = —wt[z] for a

homogeneous element [x] € A [N"].

Moreover n,, 4 is restricted to a permutation on the dual canonical basts Bw™. In
particular, 10, commautes with the dual bar involution o. We have 0y 4([Dyr]) = [Dw,—]
for A€ Py.

DEFINITION II1.1.43. We call the Q(g¢)-algebra automorphism 7, ,: A,[N*] — A, [N"]
the quantum BFZ-twist automorphism on the quantum unipotent cell A, [N™].

Indeed, quantum BFZ-twist automorphisms coincide with BFZ-twist automorphisms
when we consider the appropriate specialization to ¢ = 1. See [37, Corollary 5.5].

REMARK III.1.44. In order to apply quantum BFZ-twist automorphisms to a dual
canonical basis element [G"™(b)], b € A(\), we have to find A € P, and b € #(\) such

that G'"?(b) = Dgwwyu, = G"™(7,(b)). By Proposition 1.1.42, we can take A as \; =

> icr € (b)w;. Note that )\; is “minimal” in an appropriate sense.

Since the map 7, is an automorphism, we can apply it repeatedly. In the rest of this
subsection, we show the “6-periodicity” of the specific quantum BFZ-twist automorphisms.
Assume that g is a finite dimensional Lie algebra, and let wq be the longest element of WW.

THEOREM I11.1.45. For a homogeneous element © € A,[N"°], we have

(wt z+wo wt z,wt ) D

M%) = 4
REMARK III.1.46.
(IT1.9) When the action of wg on P is given by p +— —pu,

wo,— wtx—wo wt zT.

the theorem above states that 772)07(1 = id. Hence 0y, 4 is “really” periodic. If g is simple,
then the condition (I11.9) is satisfied in the case that g is of type B, C,,, Dy, for n € Z+,
and E;, Eg, Fy, Go. See [24, Section 3.7].

When g is symmetric, this periodicity is also explained by Geif-Leclerc-Schroer’s ad-
ditive categorification of BFZ-twist automorphisms (see Section II1.2). The periodicity
corresponds to the well-known 6-periodicity of syzygy functors [1], [13], that is, the prop-
erty that (Q,})°(M) ~ M for an indecomposable non-projective-injective module M of II
in the notation of Section III.2.

We can consider the similar periodicity problems for every w € W. It would be interest-
ing to find the necessary and sufficient condition of w € W for periodicity. Since quantum
BFZ-twist automorphisms are restricted to permutations on dual canonical bases, the pe-
riodicity of a quantum BFZ-twist automorphism 7, , is equaivalect to the periodicity of a
(non-quantum) BFZ-twist automorphism 1,,.
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~ LemmMaA IIL147. Let A € P.. Take u,u’ € V(A) such that Dy = = G™(b) for some
be HB(x). Then, foriecl,
ei(b) = max{k € Zzg | Dt oy s 7 0} e;(b) = max{k € Zxq | D, v, # 0}.

In particular,

€i(7x(b)) = €:(b) €i(Juor (D)) = @i(b)(= €i(b) + (hi, Wt b)).
Proof. By Proposition 1.1.43,
(I11.10) £i(b) = max{k € Zsq | (€))*(Dyw) # 0}.

For k € Z>o and x € U, we have
() (Duw)s x)r = (1= ¢7)" (Duwr, f2)
= (1—q})"(u, ffau')3
= (1= g) (el u,z)5 = (1= ¢7)" (Dt s )1
Hence (e)*(Dyw) = (1—¢?)*Dx ,, ,,. Combining this equality with (II1.10), we obtain the

6 uu
first equality. The second equahty is proved in the same manner. The last two equalities

are deduced from Proposition 1.1.43 and III.1.7. U

Proor or THEOREM III.1.45. It is easily seen that we need only check the case that
z €U, Fori eI, wehave Dy, o = (1 —¢7)fi. We first consider the images of Dy, w,,
i € I under iterated application of 0, ,. If I = {i}, that is, g = sly, the quantum unipotent
cell Aj[N"] is generated by D3 _ (= Dl ). In this case, 15, (Ds,m,w,) = Doy,

S Wi, Wi wow;, Wi
Hence nfvo’q = id, in particular, the theorem holds. Henceforth, we consider the case that
g does not have ideals of Lie algebras which are isomorphic to sl,. We have
nwqu(DSiwivwz) Dw(:)lwl w; Dwowi,sz‘wi'

Here ~ stands for the coincidence up to some powers of q. Now, by Proposition II1.1.7,

Doy, s = G (¥Jppyeo, (Usio;) ). By Lemma I11.1.47,
if ) 41,
if =i,

%[ = — — Gy
gj(*j\lf)owi(usiwi)) - Ej(Jv\u/uowi (usiwi)) - @j(usiwi) = {0 ’

Therefore > ;€5 (¥Tpgm, (Usiw )@ = @i + s;wi(=: A1). Recall Remark II1.1.44. Then
there exists by € #(\1) such that Dyyw, si; = Dgun(b;),uy, » that is, Ty (01) = #7000 (U, co,) -
Then

77’121)0 q(DSzwz wz) = Dwowz sz'w(;L)\l A1 Duwoklvgup(bl)'
As above, Dy, gw() = G (%744, (b1)), and by Lemma II1.1.47,

&5 (g, (01) = €5 G, (1))
i bl) <h]’,Wt b1>
= £;(Jx, (b1)) + (hj, wow; — s;ww; + A1)

=& *]wow (usiwi)) + <h’j7 wWow; + wz)
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By Proposition II1.1.7 and Lemma II1.1.47,
gj(*jv\v/uowi (usiwi)> = max{k: S ZZO | De?.uwowi,usiwi 7é O}

By the way, recall the map 6 on [ defined just before Definition 11.1.12. Then wyw; =
—wp() and sguwow; = wos;ww;. When g does not have ideals of Lie algebras which are
isomorphic to sly, we have Dys,c, 5,0, 7 0. Therefore €;(x7y, o (ts,,)) = 0;9(;)- Hence

&5 (KTmon, (01)) = G500 — 0j00) + 0ij = s

Therefore D, €5 (¥7,x, (b1))w; = @;. Then there exists by € %(w;) such that Dy, gu () =
DQUP(bQ)fUJwZ-’ Then

3 ~ -1 -1
T]wo,q (‘Dszwzuwz) - Dwowi,wi 'DlUO)\l A1 Dwowi,wi ‘Duwowi 79up(b2)
~ Duy—a; Dy, g0 (52)

Here wt Dy, . gw(b,) = Wow; — Whby = wow; — (weA1 — Wt by + ;) = wew; — (WeAy —
(wow; — s;ww; + A1) + @;) = —oy). Hence Dy g2 (v2) = Dsgiiympqi).me PeCause both
hand-sides are unique elements of the dual canonical basis of weight —cay;). Therefore,

6
nwo,q(DSiwifwi) = Dwo@i—ae(i) Dsiwi,wi'

Moreover, by Theorem II1.1.42, 1% (Ds,z, w,) is an element of dual canonical basis, in
particular, dual bar-invariant. Therefore,

6 _ Q;— Qg (i),
nwo,q(DSiwi,wi) - q( o Z)D'LUOvai_aQ(i)DSiwiawi'

By this result and Proposition I11.1.27, II1.1.36, for iy,...,i, € I, we have

6
nwo,q(DSilwil,wil U Dsigwieywie)

- qu:1 (@i, =iy ), @ig,) )

wo,0; — QY (iy) Dsil Wi Wiy Dw()aa’ig —Qg(iy) Dsigwieawil

(T i =t iy ) i)

— = = k = k LB X . ..
q Dwo,2£:1 D ae(ik)Dsh @iy Wiy Dslew%’wle

This proves the theorem. O

I11.2. Geif3-Leclerc-Schroer type categorification

In this section, we consider an additive categorification of the quantum BFZ-twist
automorphisms in the sense of Geifl-Leclerc-Schroer. When g is symmetric, Geifl-Leclerc-
Schroer [19] obtained a categorification of the (non-quantum) BFZ-twist automorphisms
(Proposition I11.2.19). They used subcategories C,,, introduced by Buan-Iyama-Reiten-
Scott [8] and independently by GeiB-Leclerc-Schréer [17] for specific w, of the module
category of the preprojective algebra II corresponding to the Dynkin diagram for g. Geif3-
Leclerc-Schréer [20] have also shown that the quantum unipotent subgroup A [N_(w)] is
isomorphic to a certain quantum cluster algebra @y (Cy), which is determined by data
of C,, (Proposition II1.2.14). Combining these results, we obtain a categorification of the
twist automorphism 7,,, (Theorem II1.2.20). This results state the compatibility between
quantum BFZ-twist automorphisms and quantum cluster monomials. See also Corollary
I11.2.21.
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In this section, we always assume that g is symmetric. We may assume that (o, o;) = 2
forall i € I and I = {1,2,...,n} = [1,n]. Note that ¢; = ¢ for all 7 € I. Recall also
Section 1.2.

We first review Geifl-Leclerc-Schroer’s theory with concision in subsection II1.2.1. The
main references are [8, 15, 16, 18, 19, 20]. However our convention is different from
Geif-Leclerc-Schréer’s one. See Remark I11.2.11. The main result in this section is stated
in subsection I11.2.2.

II1.2.1. Additive categorification of quantum cluster cluster structures on
quantum unipotent subgroups and quantum unipotent cells.

DEFINITION II1.2.1. A finite quiver Q = (Qo, Q1, s,t) is a datum such that

e Q) is a finite set, called the set of vertices,

e Q is a finite set, called the set of arrows,

o s.t: Qi — Qp are maps, and it is said that a € Q; starts in a verter s(a) and
terminates in a verter t(a).

For i,5 € Qo,

Here we take a quiver Q such that Qo = I, s(a) # t(a) for all a € Q; and a;;(:=
(hi,aj)) = —#{a € Q1 | s(a) = i,t(a) = j} —#{a € Q1 | s(a) = j,t(a) = i}. Such a
quiver Q is called a finite quiver without edge loops which corresponds to the symmetric
generalized Cartan matriz A.

Let Q = (Qo, Q, := Q1 [[Q3, 5,t) be the double quiver of Q, which is obtained from Q
by adding to each arrow a € Q an arrow a* € Q; such that s(a*) = t(a) and t(a*) = s(a).
Set

= CQ/( Y (a"a — aa")),

acQq

Here CQ ) is a path algebra of Q, which is the C-algebra with the generators e; (i € Qo = I),
a' (a' € Q) and the relations:

(1) €e; = (5,-jei for Z,j < Q(],
(ii) a’es(a/) = et(a/)a’ =da forad € Ql,
and (3_,cq,(a"a — aa®)) stands for the two-sided ideal generated by >, q, (a*a — aa”).
This is called the preprojective algebra associated with Q.
For a finite dimensional II-module X, write dim X := —3% . /(dimce; X)a; € Q_.
Remark that we do not regard dim X as an element of Q. A finite dimensional II-module
X is said to be nilpotent if there exists N € Zx( such that a; - - - ay.X = 0 for any sequence

=N . .
(a1,...,an) € Q with s(aj) =t(ajs1), j=1,...,N —1.

Let d = (d;)jer € Z5y. Set 1ep(Q,d) = [[,cq, Homg (C%@), C%@)) and define an
affine variety rep(Il, d) by

rep(IL, d) == {(fu)eg, € rep(Q.d) [ ) e fa =D oy fofe foralli € 1},

a€Qi;s(a
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An element ( fa’)a'eﬁl € rep(Il, d) naturally determines a representation X of II such that
dim X := — .., d;a;. Define an affine variety Ag by

Aa = {(fo)weg, € rep(IL, @) | (fur)yeq, corresponds to a nilpotent Il-module}.

The varieties {Aq | d € ZZ,} are called nilpotent varieties. Then GLg4 := [],.; GL4, (C)
acts on rep(Il, d) and Aq4 by (gi)ief'(fa/)a’eél = (gt(a’)fa/gsj(i/))a’eél' Then each GLg-orbit
of an element of rep(Il, d) naturally corresponds to an isomorphism class of II-modules.

A function f: Aq — C is called constructible if Im f is a finite set and f~!(z) is a
constructible subset (namely, a finite union of locally closed subsets) of A4 for all z € C.
Denote the set of constructible functions f: Ag — C by M(Ag). Let M(Aq)e be the
subspace of M (Agq) consisting of the constructible functions which are constant on the
GLg-orbits in Ag. For i € I, define e = (ey))je[ € ZIZO by egi) = §;;. Then A,u
consists of a point. The corresponding simple II-module will be denoted by S;. Then
M(A,w)) = C1;, where 1,(5;) = 1.

Set . .

M:= P M(Ag)".
dezl,
Let d',d" € Z%,. For f' € M(Ag)% e and f” € M(Agr)le” | define f'* f”: Agyqr — C
by
(f = f)(X) = szc({U | U is a submodule of X, f'(X/U)f"(U) = z})
zeC

for X € Agqv. Here x. means topological Euler characteristic with respect to cohomology
with compact support. This operation makes M into an associative C-algebra. Let M
be a C-subalgebra of M generated by {1;}ic;. Lusztig has shown that the algebra M is
isomorphic to the universal enveloping algebra U(n™) of n™:

PrOPOSITION 111.2.2 ([43]). There exists an isomorphism of C-algebras U(n~) — M
given by f; — 1;, here f; denotes a root vector of g corresponding to —c; (abuse of nota-
tion).

By the way, a nilpotent A-module X determines a well-defined linear map ¢px: M — C
given by f — f(X). Through the isomorphism U(n~) ~ M above, we regard ¢x as an
element of the graded dual U(n™)7 of U(n~), which can be identified with the coordinate
algebra C[N_] of N_.

PRrOPOSITION I11.2.3 ([9, Lemma 1]). For any finite dimensional II-module X,Y, we
have

(dim X, dim Y') = dim¢ Homp (X, Y) + dime Homp (Y, X) — dime Exty (X, Y).
The following property of ¢x is obtained by Geifl-Leclerc-Schroer.

ProrosITION I11.2.4 ([15, 16]). Let X, Y be nilpotent I1-modules. The following hold:
(1) pxpy = oxay.
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(2) Suppose that dime Exty;(X,Y) = 1. Write non-split short exact sequences as
0=+X—=21—=Y =0 0—=Y =2y, =+ X —0.
Then we have pxoy = @z, + Pz,.
REMARK II1.2.5. Note that, for any finite dimensional II-modules XY, we have
dimg Exty (X, Y) = dime Extj; (Y, X)
by Proposition I11.2.3.

DEFINITION II1.2.6. For a II-module X and ¢ € I, define soc;(X) C X by the sum of
all submodules of X isomorphic to S;. For a sequence (iy,...,i;) € I* (k € Z+g), there
exists a unique chain

XDX()DXIDXQDDX]C:O
of submodules of X such that X;_;/X; ~ soc;, (X/Xj) for j = 1,... k. Setsoc,,..i)(X) =
Xo. For i € I, denote by I; the indecomposable injective [I-module with socle S;. Let
weW and ¢ = (iy,...,3) € [(w). For k=1,...,¢, set

A

‘/i,k = SOC(,‘1 ..... zk)(]z )

,,,,,

consisting of all II-modules X such that there exist ¢t € Z-q and a surjective homomorphism
VE# — X. Then it is known that C, does not depend on the choice of ¢ € I(w). Note
that all objects of C,, are nilpotent II-modules. An object C' € C,, is called C,-projective
(resp. Cy-injective) if Exti(C,X) = 0 (resp. Exty(X,C) = 0) for all X € C,. The
category C,, is closed under extension and Frobenius. In particular, an object X € C, is
Cw-projective if and only if it is Cy-injective. An object T of C,, is called C,-mazimal rigid
if Ext;;(T ® X, X) = 0 with X € C, implies that X is isomorphic to a direct summand of
a direct sum of T'. In fact, Vj is a basic C,,-maximal rigid module. Recall that a II-module
M is called basic if it is written as a direct sum of pairwise non-isomorphic indecomposable
modules. See [8] for more details, and [18, Subsection 2.4] for more detailed summaries.

Let T be a basic C,-maximal rigid module T' = T; @ --- & T, its indecomposable
decomposition. We always number indecomposable modules as T, _,,.; is a C,-projective-
injective module with socle S; for ¢ € I. Note that this labelling is different from the
labelling V; = @,y 4 Vik- Let I'r be the Gabriel quiver of Ar := Endn(T)°P, that is, the
vertex set of I'r is [1, /] and d;; := dim¢ ExtilT (St;, S1;) arrows from i to j, where Sy, is the
head of a (projective) Ap-module Homp (7T, T;). Define By = (bij)icp,g,je,e—n) Dy bij =
d;; — d;;. The following proposition is an essential results for the additive categorification
of cluster algebras.

ProposITION I11.2.7 ([8], [17]). In the setting above, the following hold:

(1) ¢ =l(w).
(2) For any k € [1,{ — n], there exists a unique indecomposable II-module in C,, such
that T # Ty and (T/Ty) © Ty is a basic Cy,-mazimal rigid module. This basic
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Cw-mazimal rigid module is denoted by pr, (T') and celled the mutation of T in
direction T}. N B

(3) For any k € [1,£ —n], pu(Br) = By, (). Recall Definition 1.2.2.

(4) For any k € [1, — n], we have dimg Ext{; (T, T;) = 1, and there exists non-split
eract sequences

0Ty, =T =T, =0 0T, =T, =T, =0

T8 and T, ~ @, T

Jibje<0 3 Jibjr>0 7 J

Note that, by Proposition I11.2.4 and II1.2.7, we have

7b,.
(11111) PT.PTy = H (‘OTij—i_ H L

G <0 Jibje>0

such that T_ ~

This is nothing but an additive categorification of mutation. See [18, Subsection 2.7] and
references therein for more details. An object T" of C,, is said to be reachable (in C,) if
T is isomorphic to a direct summand of a direct sum of a basic C,-maximal rigid module
which is obtained from V; by iterated mutations. In fact, the notion of reachable does not
depend on the choice of ¢ [8, Proposition II1.4.3].

Recall Notation I1.2.9. For 1 < a < b < ¢ with ¢, = 13, there exists a natural injective
homomorphism V;,- — V;; of II-modules, and the cokernel of this homomorphism is
denoted by M;[b,a]. Here we set Vo := 0. In particular, M;[b,b™"] is isomorphic to V;.
Geifl-Leclerc-Schroer shows that M;[b, a] is reachable for all 1 < a < b < ¢ with i, = 7, [18,
Section 13].

REMARK II1.2.8. Let T be a basic reachable C,-maximal rigid module, and T' =T} &
-+ @ Ty its indecomposable decomposition. By Proposition I11.2.3, for any 7, j € [1, /], we
have

(dim T}, dim T}) = dime Homy (T, T;) + dime Homy (T3, T3).
DEFINITION II1.2.9. We use the notation in Definition I11.2.6. Geif}-Leclerc-Schréer
construct a quantum cluster algebra o) (C,) associated with C,,. We may assume that
all elements of I = [1,n] appears in the sequence 3.

Let T be a basic C,-maximal rigid module and T' =T} & - -- & T} its indecomposable
decomposition. Define Ap := (i) ep.q by

Aij := dim¢ Homy (75, T;) — dime Homp (775, T5).
Geif3-Leclerc-Schréer have shown the following properties:

o (ETLAT) is compatible in the sense of Definition 1.2.2 [20, Proposition 10.1],

® ig(Br, A1) = (Bug, (1), Mg, (1)) for k € [1,£ —n] [20, Proposition 10.2],
The quantum cluster algebra 27, +1/2(Cy) is defined as the quantum cluster algebra with the
initial seed ((Xr)i)icn,q, Br, Ar) for a basic reachable C,-maximal rigid module 7. Note
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that this algebra @7 +1/2(Cy) does not depend on the choice of T'. By the properties above,
we may write

1 (((X1)i)ieqn,q: Bry Ar) = (Xyr, (1))i)iel1,0: B, (1)s M, (1))

for k € [1,£ — n]. Moreover, for a = (a1, ..., a;) € Z%,, set Xg LT (X7)®. Then
- i€[1, 7

the quantum cluster monomials of &7,+1/2(C,) is indexed by reachable II-modules in C,,.

Set
Yy = g@mRAmR)/4x

for every reachable II-module R in C,. Recall that dim R € ()_. Define the rescaled
quantum cluster algebra o7:1(C,) as an A(:= Q[¢™'])-subalgebra of &7+1/2(C,) generated
by {Yr | R is reachable in C, }. For any basic reachable C,,-maximal rigid module T' = T &
.-+ @ T}, the rescaled quantum cluster algebra .27+1(C,) is contained in the rescaled based
quantum torus Ty r := A[YTikl | k€ [1,¢])(C F) [20, Lemma 10.4 and Proposition 10.5]

(they are cited as (II1.12) and Proposition IT1.2.12 below). Note that, for (a1, ..., ar) € Z5,
we have

(111.12) Vi =Py v

here we set It := P, 4 T and

a(R) =) ai(a; — 1) dime¢ Homy(T3, T3) /2 + > aa; dime Homp (75, T5).

€1, i<j53,j €[1,]
Note that I := qZ{YEBE[p g T (@r—ny1,-- - a0) € Z%} is an Ore set in g1 (Cy). Set

Ay (Co) 1= A1 (Co)[I7Y], and o) (Cu) == Q) ®a Zgx1(Cur), F(q)(Cu) = Qg) ® 4
yx1(Cyp).

For X € C,, denote by I(X) the injective hull of X in C,,, and by (X)) the cokernel of
the corresponding injective homomorphism X — I(X). Hence we have an exact sequence

0— X — I(X)— Q. (X)—=0.

ProrposiTiON I11.2.10 ([18, Proposition 13.4]). Let w € W, T a basic reachable C,,-
mazimal rigid module and T = Ty & --- & Ty its indecomposable decomposition. Then
T = Q. T) DD, Tr—nti is also a basic reachable C,,-mazimal rigid module; hence there
exists a bijection [1,0 —n] — [1,0 — n], k — k* such that T}. = Q' (T}).

Let k € [1,£ —n] and write pp, (T) = (T'/T) & T). Then we have

pry, (T') = (T' /T ) & ,1(T3).

REMARK II1.2.11. Let w € W. In this remark, we explain the difference between our
convention and GeiB-Leclerc-Schréer’s one in [18], [20], [19]. An object X in Geifl-Leclerc-
Schréer’s papers is denoted by XS here.

The category C,, is the same category as CSP. Moreover N_(w) = (N (w™!)%5)T and
N® = (N* ST here (—)T denotes the transpose in the Kac-Moody “group” G (see,

for example, [37]). We omitted the definition of px for a finite dimensional nilpotent II-
module X, however the algebra M which is used for its precise definition (see Definition
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I11.2.1) is the same space as MY in [18, Subsection 2.2] equipped with the opposite
convolution product.

Thus there exist algebra isomorphisms C[N_(w)] — C[N(w™)%"S] and C[N¥] —
C[N® "CL8] given by f — f o (=)T. Moreover px = ¢$ o (=)7 for all X € C, = corp
See also [18, Chapter 6]. (This is the reason why we consider the opposite product on M.)

The quantum nilpotent subalgebra U,(n(w'))%"® in [20] is equal to A [N_(w)]".
Geif-Leclerc-Schréer consider a Q(g)-algebra A, (n(w=1))%™, called the quantum coor-
dinate ring, which is defined in (UJ)* [20, (4.6)], and define an algebra isomorphism
YOS U, (n(w1)) — A, (n(w1))%™ by using a nondegenerate bilinear form (—, —)“LS
20, Proposition 4.1]. Actually, for x € (U7 )s, y € (UJ)s (8,8 € Q4), we have

(2,9) = b5.0(1 — ¢ )"(z,7)]
= s (1—q )" @V, yV),,
= s (1—q )" (¥, 0(yV))s
= PP (g = )" (2, o(y))1.

The last equality follows from Proposition 1.1.12. By the way, there exists a Q(q)-algebra
automorphism Mupem : U, — U, given by fi = (¢7' — ¢)~' fi for i € I. We now have the
following Q(gq)-algebra isomorphism;

oo Ag[N- ()] 2225 AN ()] % Uy ) 225 A (nfur 1)1

which maps = € (U;)s (8 € —Q+) to ¢"/%(z,(—)),. By using this isomorphism, we
describe their results. Note that Iyorm(Duwrwa) = gloA—w'AwA= w,’\)/2DG,L>\Sw/\ for w,w € W
and )\ € P, [20, (5.5)].

The definitions of the quantum cluster algebra 7,«1/2(Cy) = Hpz1/2(CSEY) are the same.
We have Yy = ¢(dim Bdim B)/2y/GLS for every reachable IT-module R (20, (10.16)]. Note that
(dim R, dim R)/2 € Z. Therefore we have 1 (C,,) = 7, (CSL7 ).

The following propositions describe mutations of quantum clusters and twisted dual
bar involutions in 7z1(C,). cf. (IIL.11).

ProrosITION I11.2.12 ([20, Proposition 10.5]). Let T' be a basic reachable C,,-mazimal
rigid module, and T =T, @ - - - & Ty its indecomposable decomposition. Fiz k € [1,¢ — n].
Write By = (bij)icpajepien and pr (T) = (T/Ty) & Ty. Set Ty = @., o T"" and

Jibj>0 " j
T = EBj;ijO Tj@(_bjk). Then we have
YT*YTk — q dlmC Homn(Tk (qYT+ + YT )

ProposiTION 1I1.2.13 ([20, Lemma 10.6, Lemma 10.7]). Let T' be a basic reachable
Cw-mazimal rigid module. Then there exists a unique Q-anti-algebra involution ol on Tar
such that
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for every direct summand R of a direct sum of T. Moreover o7 induces Q-anti-algebra-
involutions o' on @+1(C,) and g1 (Cy), and o' does not depend on the choice of a basic
reachable Cy-mazimal rigid module T

GeiB-Leclerc-Schréer showed that a rescaled quantum cluster algebra o) (C.) gives
an additive categorification of the quantum unipotent subgroup A,[N_(w)] as follows.

ProrosiTION I11.2.14 ([20, Theorem 12.3]). Let w € W and & = (iy,...,3) € I(w).
Then there is an isomorphism of Q(q)-algebras k: Ay[N_(w)] — ) (Cw) given by

Dsil iy Wiy »Siy o Si,_ Dig = YM[b,d}
forall 1 < d < b<{ with i, = iq. Moreover we have 0’ ok = ko o'. See Definition 1.1.185.
By Proposition I11.1.41, this result also gives an additive categorification of the quantum
unipotent cell A,[N"].

COROLLARY II1.2.15. Let w € W and © = (i1,...,3) € I(w). Then there is an
isomorphism of Q(q)-algebras k: Ay[N"] = oy (Cw) given by
[Dsil"'sibwib73i1“‘Sid, wid] = YM[b,d]
foralll < d < b</{ with i, = iy. Moreover we have o0’ ok = koo'. See Definition I11.1.39.
The following is the classical counterpart of the results above due to Geifl-Leclerc-

Schroer. Note that we explain it as a “specialization” of the results above but it is actually
the preceding result of them.

ProposiTION 111.2.16 ([18, Theorem 3.1, Theorem 3.3|). Let w € W. For every
reachable I1-module R in C,, we have pr € C[N_(w)], and the correspondence

wr(resp. [pgr]) — 1® Y.
gives the C-algebra isomorphism from C[N_(w)] (resp. C[N¥]) to C® 4;=1(Cy,) (resp. C& 4
A1 (Cy)).

REMARK II1.2.17. The isomorphism in Proposition II1.2.16 is the “specialization” of the
one in Proposition I11.2.14. However Geifl-Leclerc-Schroer did not prove the isomorphism
between the standard A-form A 4[N_(w)] of A,[N_(w)] and .#Z+1(C,,). See [20, Conjecture
12.7].

DEeFINITION I11.2.18. Let T" be a basic reachable C,-maximal rigid module and T" =
Ty @ --- @ Ty its indecomposable decomposition. Then a Q_-grading on Q[¢T!]|[Y | k =
1,....0(C Tar) given by wtYr, = dimTj is extended to the Q-grading on Txr. A
homogeneous element X € 741 is said to be dual bar invariant if

U/T(X) _ q—(th,th)/2+(th,p)X.

When X € oyg)(Cuw) (resp. Hyq)(Cw)), the Q-grading and the definition of dual bar
invariance of homogeneous elements are compatible with the corresponding notions in
A [N_(w)] (resp. A [N"]) via  (resp. k). See Remark 1.1.14. Note that Yy is dual bar
invariant for any reachable II-module R.
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Geif3-Leclerc-Schroer also obtained an additive categorification of the twist automor-
phism 7} on the coordinate algebra C[N™] of a unipotent cell N* in non-quantum settings.
Here the image of px under the restriction map C[N_] — C[N"] is denoted by [px].

ProprosITION I11.2.19 ([19, Theorem 6]). Let w € W. Then for every X € C,, we have

(o)) = o0l

[QOI(X)] .

I11.2.2. Quantum twist automorphisms and the quantum cluster algebra

structure. Our main result in this section is the following quantum analogue of Proposi-
tion I11.2.19. Recall Proposition III1.2.10.

THEOREM II1.2.20. Let w € W, T a basic reachable C,-mazximal rigid module, and
T=T&---&1T, its indecomposable decomposition. Through K in Corollary I11.2.15, we
regard the quantum twist map 1,4 as an algebra automorphism on gy (Cw). Then, for
every reachable II-module R in C,, we have

(11113) nw,q(YR) — quez A; dime Ei.R}/}ZIl{)YQal(R)'

. by
here we write I(R) = @,; T,
Before proving Theorem I11.2.20, we show its corollary.

COROLLARY II1.2.21. Let R be a reachable lI-module in C,. Then ™1 (Yz) € B™ N
A [N_(w)] if and only if &~ (Yo_1 () € B N A, [N_(w)].

Proof. By Theorem II1.1.42 and I11.2.20, k' (Yz) € B" N A [N_(w)] if and only if
R (qXer Ao dime ei'RYI&lz)Y%l(R)) € B"". By Theorem III.1.42 and the dual bar invariance

of Yg, the element g2-ier i dime ei'RYIZ}%)YQl_f (r) 18 also dual bar invariant. Combining this

fact with the definition of B®™* = ,,(B"(w)) and the dual bar invariance of Yo-1(r)

we have &' (gierNdmeen Ry Yo b)) € B if and only if £ !(Y, ) € BN

-1
A, [N_(w)]. O

REMARK I11.2.22. Kang-Kashiwara-Kim-Oh [27, 28] have shown that all (rescaled)
quantum cluster monomials belong to B"P by using the categorification via representations
of quiver Hecke algebras. Hence we have already known that Y3 is an element of B" for
an arbitrary reachable II-module in C,. However there is now no proof of this strong
result through the additive categorification above. Therefore it would be interesting to

determine the quantum monomials in B" which are obtained from Corollary I11.2.21

and, for example, (Yy,)® for a € Zgéﬂ Jand i € I (w). Actually, it is easy to show that

(Yy,)* € B"™ by Proposition III1.1.32. For iterated application of quantum BFZ-twist
automorphisms, see also subsection I11.1.5. Moreover it is unclear whether a quantum BFZ-
twist automorphism 7, , is categorified by using finite dimensional representations of quiver
Hecke algebras. In particular, it is unclear whether quantum BFZ-twist automorphisms
preserve the basis coming from the simple modules of quiver Hecke algebras.
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The rest of this subsection is devoted to the proof of Theorem II1.2.20. In this proof,
we essentially use Geif-Leclerc-Schroer’s theory.

LEMMA 111.2.23. Let T be a basic reachable C,-mazimal rigid module and T = T; ®
- @ Ty its indecomposable decomposition. Take (ai,...,a;) € Z*. Then there exists a
unique integer m such that ¢"Yp' - 'Yq‘ff is dual bar invariant in Tar.

Proof. We have
or(q"Yp Y ) = q "op(Yr,) - op(Yr )™
_ q_m+2ie 1,0 @i(— (diimTiydiimTi)/Q'i'(diimTivp))Y]‘ff . ngb;
_ q_m+zie[1,4 ai(—(dim T3,dim T5) /2+(dim T5,p)) = 3=, « ; aia; Aij Yﬂl .. .yj‘ff

Here we write Az = (\ij)ijepn,q. Therefore ¢mYp! - Y is dual bar invariant if and only
if
m— Y a(dimT;, dimT;)/2 - Y aa;(dimT;, dim T;) + > a;(dim T3, p)
1€[1,4] i<j i€[1,]
=—m-+ Z a;(—(dim 7;,dim 73) /2 + (dim T3, p)) Zalaj i
1€[1,4] i<j
By Remark III.2.8, this is equivalent to
2m = Z a;(a; — 1)(dim 7;, dim T;) /2 + 2 Zaiaj dim¢ Homp (75, 7;).
i€[1,4] i<j

The right-hand side is an element of 2Z. Therefore we can take an integer m € Z uniquely

which satisfies this equality. O
REMARK I11.2.24. For (a4, ..., as) € Z%,, the dual bar invariant element in ¢*{Y7" - - - V7!
is nothing but Y@ g T See Deﬁmtlon I11.2.9.
€[l

LEMMA 111.2.25. With the notation in Theorem III.2.20, q2=ict i dimcei. RY
dual bar invariant.

Proof. By Proposition I11.2.14,

1) Yoz (r) 1

£ (Yi(r)) = Dunoas
Ajw;. Hence, by Proposition I11.1.27, we have

(Yir Yozt (r) = Duaak™ (Yoz1(r))

()\+’LU/\,di7mQ;1(R))K,71 (Yﬂal(R))Dw)\’)\

. —1 —

By the way, dim Q' (R) = dim I(R)—dim R = wA—A—dim R. Hence (A+w, dim Q_'(R)) =
—(A 4+ wA,dim R). Therefore

—1 A+wA,dim R
YiimYosim = ¢ Yo

here A := )

jel

=q

1
S YR
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Note that ), ; \;dimc ;. R = —(\, dim R). We have

q(@QLI(R)fdiiml(R),diimﬂal(R)fdiiml(R))/%(diimﬂ (R)—dim I(R).p) ! (~(\dim R) y o Yas (R))
— qUim Rdim B)2+(dim Rp) g (qwAdmB)y, oyl )
= q(@R,@R)/2+(@R,p) (wAdim R) - %(E&))J/T(Y%I(R))
— g(dim i R)/2—(dim 00" () i 2" () /2+ (disn () i (R) 2w i Ry Yoo
:q(MI(R),@R) (“’)‘d‘mR)YI(R)Y R)
= qf(A’(ﬁ*mR)}%lz)le(R)-
This competes the proof. ]

LEMMA I11.2.26. Let T be a basic reachable C,,-mazimal rigid module and T = T1®- - -
Ty its indecomposable decomposition. Then the equality (I111.13) with R = T}, holds for all
k=1,...,0if and only if the one with R = T¥" @ --@T,” holds for all (ay, . ..,a;) € ZZZO.

Proof. The latter obviously implies the former. Suppose that the equality (IT1.13) holds
for R=Ty, k=1,...,0. Write
Nwe(Yr,) = q kY[(T Yooty Mk € Z,
for k =1,...,0. Set R =T ®--- & T, for (ay,...,ar) € Z,. Note that I(R) =
I(T)® @ - -®I(T,)®* and QY (R) = Q N (TP @ - - @ (Ty)®%. (Actually I(Ty_p4) =
Tynyi and Q1 (Ty_45) = 0 for i € I.) There exist unique Ay, Ay, A3 € Z such that the
following hold:

Nw,q(Yr) = qunwﬂ(YYC‘Lll T YY?;)
= qu( Y Yogran) ™ (@ Yy, Yog )™

I(Th) I(Ty)
A a a 1y a a
2(Y (lﬁ) Y([Tz)) Y : N1 "Yﬂgl(n)

(
Moreover 7, ,(Yr) is dual bar invariant because of the dual bar invariance of Yz and
Theorem I11.1.42. Hence, by Lemma I11.2.23 and Lemma II1.2.25, the equality (III.13)

also holds for R. U
Proor oF THEOREM III1.2.20. Recall that we always assume that Tp_,,1; is a Cy-
projective-injective module with socle S; for all ¢ € I = [1,n], in particular, the isomor-

phism class of T;_,.; does not depend on the choice of T. From now on, we identify
o) (Cw) with Ag[N™] via R. First we consider the case that R in the statement of

Theorem 111.2.20 is equal to Ty_,,.; for i € I. Then
nwﬂ(YTzan) = 77w74([wa¢,wi])
_ q—(wi,wwi—wi) [wa“wzl -1

dimc e;. Ty nt+i}/
- q YTZ n+z
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which is the desired equality in this case since I(Ty_,1;) = Ty_ny; and Q1 (Ty_4) = 0.
Next we consider the case that R = V; for some ¢ € I(w) and k € [1, /] with kT # ¢+ 1.
Then [(V; ;) = Vjpmax and Q' (Vig) = M;[k™, k*]. Therefore we have

nw,q(YVi,k) = nw,q(Ds@-l 84y Wiy Wiy, )

_—(wi, ,Siq8i, Wi, — 4, ) T)—1
= k7t k k k Z )
q Wiy Ty, Ywwy 5Siy Siy Wi

— q—(Wik,@%,k)y—l

‘/'i,kmax YM’L [kmax’]{k}

_ dimcei.‘/i’k -1

Suppose that the equality (II1.13) hold for R = T @- - -@TZ@‘”, where T =T\®---®T, is
a basic reachable C,,-maximal rigid module. Fix k € [1,¢—n|. Write up, (T') = (T/Ty) ® T}
and I(T}}) = D,c; Tfi/xﬂ By Lemma II1.2.26, it remains to prove the following equality;

(111.14) nw,q(YT;) — qzz'e[ i dimc e;. T} }/IZT{,:‘)YQEI(TI:)'

L5 b; —b;
Write BT = (bij)ie[l,é],je[l,éfn]- Set T+ = @j§bg‘k>0 1—1]69 Ik and T_ := ®j§bjk<0 T']@( ]k). By
(II1.11) and Proposition I11.2.19, we have

[¢Q;1(T+)] n [@Q;l(T,)]

Nw(lerller:]) = ny(ler] + lor]) = PN o]

and
[Pazr )] [Pazt i)
Mo (e llor;]) = ——"= ——"~.
T lormy)  loray)]
Therefore
[‘Psrl(T )] [WQ*(T )]
I11.15 Po-1 G107 ] = [ . w (L)l 7 (T
( ) ozt allPoziap] = | HTk@Tk)]( [erry)] [

By Proposition I11.2.10, 7" := Q' (T) & @, ; Ti—n+: is a basic reachable C,,-maximal rigid
module; hence there exists a bijection [1,£/—n] = [1,£—n], j = j* such that T}. = Q_*(T}).
Moreover we have

pry (T') = (T')Ty.) ® QN (TR).
Write BT’ = (b;j)ie[l,é],je[l,ffn} and (Té*)* = Q;I(T]:) Set T_ﬁ_ = @j;b;*k*>0(
T = @j;b,_*k*@(T;*)@(—”.’m*>. Then, by (IT1.11) and (II1.15), we have

.
T/.)*% = and

[@Q;l(ﬂ)] [909;1(1)] — o /
(I11.16) [goI(Tk@T:)]< rcr) + o] ) [z ] + [ ].

We now recall our assumption that the equality (I11.13) hold for R = T¥* @ --- @ T,7*.
By Proposition I11.2.12 and our assumption, there exist unique Ay, A}, Ao, A}, A3 € Z such
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that

Uw,q(YTkYT,:) = nw7q( MYy, +qMYr)

Yy Yor ) + 0 Vig Yoga
and
N (Y1, Y1) = q* Y Y12, Mo (Y1)
Therefore, by (I11.16), there exist unique A, A’l’ , Al € Z such that
nwaq(YTé‘) =4 Y 1Y1(T*)YI(TNBT;‘)(qA,lyffﬁ)le(n) + qAIQ}/}ZTl_)YQEJI(T_))
= YI(T*)YT' (q Yry + quYTL) '

Note that all rescaled quantum cluster monomials appearing in the rightmost side are
elements of the standard basis of the based quantum torus 747 By Theorem 1I1.1.42
and Proposition II1.2.13, 7, 4(Y7:) is dual bar invariant. Hence ¢ 1Y( )Y YT# and

2Y( Y, YT/_ are dual bar invariant elements of 74 7. By Lemma II1.2.23, A” and Aj

are unlquely determined by this property. On the other hand, by Proposition I11.2.12,
q2ier Nidime e Ty YIZ’},;‘)Y(T;Q*)* is of the following form as an element of T +1 7v;

Vit Vi <quYTi + quyTL> My, M, € 7.

1(Ty)

Moreover, by Lemma IT1.2.25, g2 dme ecley o Vi ). = q2ier Nmeecliy) b Yo o oy
is dual bar invariant. Hence, by the argument above, M; = A} and My = Aj. Therefore
we obtain the equality I11.14, which completes the proof. O

II1.3. Quantum Chamber Ansatz

We again consider an arbitrary symmetrizable Kac-Moody Lie algebra g. In this section,
we prove quantum analogues of the Chamber Ansatz formulae for unipotent cells (Corollary
I11.3.9) by using the quantum BFZ-twist automorphisms constructed in Section III.1. The
quantum analogues of birational homomorphisms between algebraic tori and unipotent
cells are known as Feigin homomorphisms. By Feigin homomorphisms, we can realize
quantum unipotent cells in g-Laurent polynomial algebras. Quantum Chamber Ansatz
formulae provide explicit description of the variables of the ¢-Laurent polynomial algebras
in terms of elements of quantum unipotent cells.

DEFINITION II1.3.1. Let 4 = (iy,...,i,) € I*. The g-polynomial algebra (resp. the g¢-
Laurent polynomial algebra) P; (resp. £;) is the unital associative QQ(¢)-algebra generated
by t1,...,t (vesp. ti', ... t7") subject to the relations;

tity = ¢\ @t for 1 < j < k < ¢,
ity =ty =1for 1 <k </
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Set U; = [l.eq, Pi ®aw@) (Uy)-a- We write an element (p(—a) ® 2(-a))ac@; (P(-a) €
Pisx(—a) € (Uy) o) of Uy as ZQEQ+ P(—a)T(—a)- The vector space U; has the Q(q)-algebra
structure given by

> pewrca | | 2 Peatia | = D | Do pearlamentios
acQ+ acQ+ a€Q4 %B’BEQ-s-
+6'=a

for p(,a),p’(fa) € P, x(,a),x’(ﬂ) € (U;)-a- Set
y'L = equil (tlfll) e equie (tff’l[)

where N
eXDy;, (trfiy) = Z qz:(m_ / tZ‘ff;") €Uy
mEZZO
for 1 <k < (. Then we can define the Q(g)-linear map ®;: U, — P; by
v wydii= > @) i
a=(ai,..., ag)GZZZO
where ,
ap(ar—1)/2
gi(a) == Hqi:( r=1)/2.
k=1

Note that the all but finitely many summands in the right-hand side are zero. The map
®; is called a Feigin homomorphism.

ProposITION 111.3.2 ([3]). (1) For ¢ € I*, the map ®; is a Q(q)-algebra homomor-
phism.
(2) Forw e W and i € I(w), we have Ker ®; = (U,)".

w

(3) Forw e W, 4= (i1,...,i) € [(w) and A € P, we have
©; (Duny) = gi(@)ty’ -y
where a = (ay, ..., ap) with a == (hi,, Siy,, - Si,A).
REMARK II1.3.3. For any @ = (i1, ...,i,) € I*, we have ®;((1 — ¢?) f;) = D iy —i Uk

DEFINITION II1.3.4. Let w € W and ¢ € I(w). By Proposition I11.3.2 and the univer-

sality of localization, we have the embedding of an algebra A,[N™] — L;, also denoted by
d;.

DEeFINITION II1.3.5. Let w € W and suppose that its reduced word ¢ = (iy,...,i7) €
I(w) is fixed. Write w<y, := sy, - -+ 55, and wg< == s;, -+ s, for k=1,... (.

In the following theorem, we need the inverse of quantum BFZ-twist automorphisms.
By Theorem III.1.42,

(III 17) n;quunw,\,u]) = Q(A’Wt umwd) [Dw)\,)\]_l [Du,uk]
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for a weight vector u € V/(\) and A € P,.

THEOREM II1.3.6. Let w € W, ¢ = (i1,...,4) € [(w) and k =1,...,¢. Then we have
k

_ di(d;+1)/2 \ ,—dy,— -
(@ 0 1y ) ([Duveyony 0, ) = (H g\ ) ey g

j=1
where dj := (w<;hi;, w<xw;,), 7 =1,..., k.

REMARK IIL.3.7. Note that, by Proposition I1.2.7, Dy, 1w, € Ag[N_(w)].

REMARK II1.3.8. Theorem I11.3.6 is a generalization of [5, Corollary 1.2], where they
treat the case that w is a square of a Coxeter element. Moreover, by Theorem II1.3.6, we
can say that the quantum BFZ-twist automorphisms 7, , is a generalization of Berenstein-
Rupel’s quantum BFZ-twist automorphisms [5, Theorem 2.10]. This result corresponds to
[5, Conjecture 2.12 (c)]. Therefore Theorem I11.1.42 corresponds to [5, Conjecture 2.17
(a)]. However we do not deal with their upper quantum cluster algebras.

Proof. If w = e, there is nothing to prove. From now on, we assume that the length ¢
of w is greater than 0. The proof is by induction on k. Let k = 1. Take A € P, such that
(hi;, w\) < 0. Then it is easily seen that

Dsilwil Wiy = [<h’i17 w2§>\>]i_11Duw/\7 €ip Uw\*
Hence, by (II1.17),

_ (hiy A) N N
(q)i © 77w,1q>([DS¢1wz'1 7wi1]) = 4; [<hi17 w2§A>]i11q)i ([DZU)\)\] 1[D€¢1-uwx,ux]) :

By Proposition I11.3.2 (3), we have
O ([Dupa]™") = @ile) ™', - 17,
D ([De,, wppun]) = gile = (1,0,...,0))[er)i, t5 7157 - - 47",
where ¢ = (c1, ..., ) with ¢; := (hi;, wj11<A). Combining the above equalities, we obtain

Riy A—wac A=S2_, cjay, _
(@i © 1) ([Dsi, conyor, ) = qi<1 P A=W A=) s ¢ J>+1t11
= qiltl_l.
This proves the assertion in the case k = 1.
Assume that £ > 1. By Proposition II1.1.7 and Theorem II1.1.9, we can take A\ € P,
and b € %, (A) such that D, gw) = Duoyw;, i, -

_ _ Fmaxy, . FPin(0)p 2,
CLAIM 1. Duwhgup(fﬂmb) = Dwgkwik,snwik- Here fmaxp .= fz‘1 b= fi1 b.

11

PROOF OF CLAIM 1. Let ¢ := 0;, 4. Since g, w, = z-‘sl.uwik, we have

_ Dwgsz'k,sz-lwik #0 ifp=4,
(P)_gup(b) - 0

uw)nfil

if p> 0.
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On the other hand, by Proposition 1.1.43,

()

10 guepy = L9 FR) i p = 0, (0),
0 if p > @, (D),

and ﬂ-’TaXb € %A.,(\) by Proposition 1.1.52. Hence,

D . Duw)”gup(f‘in;axb) % 0 lfp = (pil (b)’
wor £ g0 (6) 0 if (b
! if p > @;, (b).

Combining the above arguments, we obtain ¢;, (b) = § and D, k@i 5y @i, = Doy gue(Fmass)-
> WA 1

We write by := €7*D.
CLAIM 2. We have

D o (X—1—2<h11,w§szk>)X/2 X
Uwr,g"P(b2) = iy 84y Wiy Wiy W<k Wiy 0

where X 1= —(h;,, WA — w<pw;, ).

PrOOF OF CrLAIM 2. By [44, Corollary 3.1.8], for p € Z>¢ and x € U, we have

o " /
we = ST AW e (e ) (e ) (@)t
p'+p" +p'' =p

where

oA o1 11111

111 12 1 1
A(p’,p”,p”’) = (_Qi )P pr PP ; 7 .
v (L =g )PPl (1 =) [p"],!
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Therefore, for z € U, we have

(Duw/\, (P) up(b)?x)L
= (wwr, ze”.g"™ (b))%

= > AW ) wen e () () (1)t g™ (b))

p'+p''+p""=p

= > AW 00" (wan 157 (€))7 (el )7 (@)t 9" (b))

p'+p’'=p

= S AW 0, T Gl (e ) ()97 (0))5

p'+p’'=p

= 30 AW, 0, MRS TGN (D s (€ () (@)
p'+p"'=p

_ Z A(p’,0,p”)qfl%”’me’“_wSWW -p" <hllyw)\>(D§:llwil,wi1Dwgkwik7wik‘D§;1wi1,wil7‘r)L
p'+p’'=p

= Y A0 T T Dy e 21
p'+p"=p

Note that the last equality follows from Proposition II1.1.27. Therefore we have

<h117W)\ 2w<szk> <h21771/')‘> D
(p) § A p 0 » P ) 21 Dsilwil,wil Dwgkwikvwik'

/+p// =p

UwX,€;

In particular, since g"P(by) = (E”(b))g P(h) = el A= w<kw”“>) "P(h) by Claim 1, we have

Z1 11

(I11.18)

—(hiy w<kw@iy ) X

q; e X
Doy gov(ba) = 1(1— 2\X ( Z (=i, )" QZ '], [P”] )DsilwilvwilDw@wik’w%'

Qil) p/+p//=X

Recall that X = —(h;,, wA — w<xw;, ). By the way, the following equality is well-known.
See for instance [44, 1.3.1].

a

a—1
ta—1) __ 1¥%I* H 1 25
q +q72)
t=0 [t ] a—1] j=0

for a € Z>(. Substituting ¢ by ¢;,, @ by X and z by —qfl, we have

= t tX X i1! = 2j
> (—a)'d; m = [ -¢).

t=0 j=1
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Combining this equality with (II1.18), we obtain
7<h1‘ ,w 73 >X X y
g, T ILL (- a))

1y 7j=1
Dum,g“?(bz) - (1 _ qi2 )X[X]il! 8iy Wiy mlDwswm Wi
1

(X—1—2<hi1,wgkwik>)X/2 X

qll Siy Wiy, Wiy W< Wi  Wig *

By Claim 2 and (®; 0 1, )(Ds,; w;, i, ) = ¢i,t;*, we have

(IIL19)  (®; 070 ([Duy g (6)])
(c14(siy hig s w<pmiy ) —1) X /2

=4, (P 0 7 ) ([Dsy 1y 0, ) (5 0 0 ) [Pz, 2, )

(c1+(siy hiy wepmi )+1)X/2, 3
Qz‘ll PR t1X<(I)i Onw,lq)([Dwgkwik,wik])'

Since our aim is to calculate (®; on;}q)([Dwgkwik @, )); we describe (®; 01y ) ([Duugr.gwe (6)])
in a different way. Now we have

Ty ([P, g0 (5)])

_ q(A,wtbg—w)\) [D (A,wik_wgkwik"!‘Xail)[D

AT [Dgueo),un] = 4 Al T [Dgup (b))

Moreover,

(111.20) Di([Dgue (b2),u2])
= Z gi(a) (g™ (by), fi(1a1) . fi(aZ)~u/\)ft(111 o

a:(al,...7a4)EZé0

= > (0,0, an)) (g™ (be), £ f00 S -t

(-1
(a‘27"'7a‘l)EZ20

The last equality holds because e;,.g"P(by) = 0. Here we prepare one more claim.

CLAIM 3. Set pg := wacA. Then Dy, guw@p,) = D

Si) W<k Wiy , Wiy, *
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PRrROOF OF CLAIM 3. By Proposition 1.1.29, 1.1.30, I.1.31 and Claim 1, for x € U_,
we have

(Dsilwgkwik,wik ) CC)L

— ]
- (usilwgkwik Y aj'uwik )wlk

_ (ushwswik,xuwik)gik itz e U, NT;,(U;) = Kere,
0 if v € f;,U; = (Kerej))*,
_ (uwgkwik ) T;l(x)usnw%)zﬁ,% ifre Uq_ N Til (Uq_)7
0 if v € f;,U; = (Kerej )",
_ ) (wen, T Yx).gP(fraxp))§ ifx € U, N7, (U,),
0 if x € f;,U; = (Kerej )",

= (Upy, .9"(b2))5
— (Duu27gup(b2), I)L.

This completes the proof. O
Set i< := (ia, ..., %) and identify L;,_ with the subalgebra of £; generated by th Lt
Write
S swesh, )(siy we i, 2
L Sig W<y 511w<kw1k Siqg W<y 521w<kywzk d +1
02 o H ij H
j=2 =2

By our induction assumption, Proposition I11.3.2 (3) and Claim 3, we have

—
' J
k

=20,
= (Pie © Ny ) ([Dsiy wireory 1, )

= (Pire © My ) ([Duyy o0 (32)))

= &, _(qW =@ tth v o) D ST D () ))
_ q(A @iy, —w< @iy, +(hiy vwﬁkwikmh)qu( ’)—175;0@ ety

ST G (@)(g™(be), £ )t

{—
a’:(ag,,..,ag)ezzol

12<

X

where ¢ = (ca, ..., ¢;) with ¢; := (h;,,wj;1<A). Therefore,

(IT1.21) Z i, (a')(g" (ba), fi(:'z) . fi(;”).u,\)fzfg2 o

a/:(ag,...,ag)ez‘;—ol

_ o . ) R —(w<jhi  w<pw@s, )
:Czq (Awiy WSW%H%:wsww%)(ﬁzg(C/)t§2u.t? H tj ST
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Combining (II1.20) and (II1.21), we obtain the following equality (¢ = (c1,---¢p),c1 ==
(hiy, wacA)):
(IL.22) (D401 0) ([Duyrgov(o)])
= q(/\7w% _WSkWikJrXail)q)i([Dw)\,)\]_l [Dg“p(b2),ux])

—
<h11 1>\) <hl1 ﬂUA)

— hy ., w;
i) qs, (€Nt AT H t (wsihi;wenmiy)
§=2,....k

= CQq;

—
_ —(hiy A (hig swAh)—er (e1=1) /2= 305 o (hiy i >t_cl t_<w§ jhijwermiy)
- 2q11 1 .]

§=2,...k

c1(c1+1)/2,—c (wejhi; w<kw%>
= Oy e H t;
J=2,...k

Recall that X = —(h;,, w\ —w<,w;, ) = ¢1 — (Si, hiy, w<gw;, ). By (111.22) and (I11.19), we
obtain
((I)’L ° U;{;)([quw% 7wik])

_%

. CZ —(01+ siq hip w<pw@iy )+1)(c1— (sllhil,wgkwik))/2+cl(01+1)/2t—(si1hil,wgkwlk H t w<th W<E iy )
1

J=2,...k

—
C Szlhzl7w<szk>(<5i1hi17w§kwik>+1)/ t <Szlhzlyw<szk t w<]hb 7w<kwbk>
= 2 i .

1
J=2,...k

This completes the proof. O

The following is a direct corollary of Theorem II1.3.6. These equalities are exact quan-
tum analogues of the Chamber Ansatz formulae for unipotent cells [4, Theorem 1.4], [6,
Theorem 1.4]. See also the proof of [6, Theorem 4.3].

COROLLARY II1.3.9. Let w € W and ¢ = (i1,...,iy) € [(w). For j=1,...,¢, set
D;u(gwlj @i = ((I)l © U;,Z)([Dngwz»,wi.b‘

J J
By Theorem I11.5.6, these elements are Laurent monomials in L;. Then, fork=1,... ¢,
~ i -1 i -1 U —aj;
tk - (D:U(Si,lwik,wik) (D;}(ﬁiwllww%) H (D;}(Siwj,wj) ! k’
Je\{ix}

here ~ means the coincidence up to some powers of q. Note that the right-hand side is
determined up to powers of q.
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