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Abstract. We show that the presence of a non-contractible one-periodic tra-

jectory in a Hamiltonian dynamics on a connected closed symplectic manifold
(M,ω) implies the existence of infinitely many non-contractible simple peri-

odic trajectories, provided that the symplectic form ω is aspherical and the

fundamental group π1(M) is either a virtually abelian group or an R-group.
We also show that a similar statement holds for Hamiltonian dynamics on

closed monotone or negative monotone symplectic manifolds under the same

conditions on their fundamental groups. These results generalize some works
by Ginzburg and Gürel. The proof uses the filtered Floer–Novikov homology

for non-contractible periodic trajectories.
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2 RYUMA ORITA

1. Introduction

Let (M,ω) be a connected closed symplectic manifold and H : S1 ×M → R a
Hamiltonian on M . The Hamiltonian H defines the Hamiltonian isotopy {ϕtH}t∈R
(ϕ0
H = id) and the Hamiltonian diffeomorphism ϕH = ϕ1

H . In the present paper,
we study periodic trajectories of the Hamiltonian isotopies of various periods.

It is one of the most important problems in symplectic geometry to find peri-
odic solutions to Hamiltonian systems. In 1984, Conley [Co] conjectured that every
Hamiltonian diffeomorphism of tori T2n has infinitely many simple periodic trajec-
tories. This conjecture was proved in [Hi, Ma]. Other than the tori, Ginzburg and
Gürel [GG16b] proved the Conley conjecture for a broad class of closed symplectic
manifolds containing closed symplectic manifolds whose first Chern class is aspher-
ical and closed negative monotone symplectic manifolds (see Subsection 3.1 for the
definitions).

The Conley conjecture fails for the 2-sphere S2. Indeed, an irrational rotation
of S2 about the z-axis is a Hamiltonian diffeomorphism with only two fixed points.
However, Franks [Fr92, Fr96] proved that every Hamiltonian diffeomorphism of S2

with at least three fixed points has infinitely many simple periodic trajectories.
Concerning this phenomenon, Hofer and Zehnder [HZ, Chapter 6] conjectured that
every Hamiltonian diffeomorphism with more non-degenerate fixed points than a
lower bound derived from the Arnold conjecture has infinitely many simple periodic
trajectories.

Gürel [Gü13] interpreted this threshold as the existence of a non-contractible
non-degenerate (or just homologically non-trivial) one-periodic trajectory. For
closed symplectic manifolds, non-contractible periodic trajectories are unnecessary
in the sense that the total Floer homology HF(H;α) for non-contractible periodic
trajectories representing α 6= 0 always vanishes. Actually, she [Gü13] proved that
every Hamiltonian diffeomorphism ϕH of a closed symplectic manifold equipped
with an atoroidal (see Subsection 3.1 for the definition) symplectic form has infin-
itely many simple periodic trajectories, provided that ϕH has a non-contractible
homologically non-trivial one-periodic trajectory (see also [GG16a, Theorem 2.4]
for a refined version of her theorem). To be more precise, she proved

Theorem 1.1 ([Gü13, Theorem 1.1],[GG16a, Theorem 2.4]). Assume that ω is
atoroidal. Let H : S1 ×M → R be a Hamiltonian having a non-degenerate one-
periodic trajectory x in the homotopy class α such that [α] 6= 0 in H1(M ;Z)/Tor,
P1(H; [α]) is finite. Then for every sufficiently large prime p, the Hamiltonian H
has a simple periodic trajectory in the homotopy class αp and with period either p or
its next prime p′. Moreover, if π1(M) is torsion-free hyperbolic, then the condition
[α] 6= 0 can be replaced by α 6= 1 and no finiteness condition is needed.

Here P1(H; [α]) is the set of one-periodic trajectories of ϕH representing [α] ∈
H1(M ;Z)/Tor. The author [Or, Theorem 1.1] proved that the conclusion of Theo-
rem 1.1 holds for the tori (T2n, ωstd). We note that the standard symplectic form
ωstd on T2n is not atoroidal but aspherical. It is worth pointing out here that
Theorem 1.1 implies the existence of infinitely many non-contractible simple peri-
odic trajectories of ϕH . Focusing on non-contractible ones, Ginzburg and Gürel
[GG16a] proved that a statement similar to Theorem 1.1 holds for closed toroidally
monotone or toroidally negative monotone (see Subsection 3.1 for the definition)
symplectic manifolds under an assumption on the “Euler characteristic” χ. More
precisely, they proved

Theorem 1.2 ([GG16a, Theorem 2.2]). Assume that (M,ω) is toroidally monotone
or toroidally negative monotone. Let H : S1 ×M → R be a Hamiltonian such that

P1(H; [α]) is finite, and χ(H, I;α) 6= 0 for some interval I with ∂I∩S̃pec(H;α) = ∅,
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where α ∈ [S1,M ], [α] 6= 0 in H1(M ;Z)/Tor. Then for every sufficiently large
prime p, the Hamiltonian H has a simple periodic trajectory in the homotopy class
αp and with period either p or its next prime p′. Moreover, if π1(M) is torsion-free
hyperbolic, then the condition [α] 6= 0 can be replaced by α 6= 1 and no finiteness
condition is needed.

Here χ(H, I;α) is the sum of the Poincaré–Hopf indices of the Poincaré return
maps of one-periodic trajectories of ϕH representing α with augmented action (see

Subsection 6.1 for the definition) in I, and S̃pec(H;α) is the set of values of the
augmented action of one-periodic trajectories of ϕH representing α.

2. Main results

Let us now state our main results. Let (M,ω) be a connected closed symplectic
manifold. Let α ∈ [S1,M ] = π1(M)/ ∼conj be a free homotopy class of loops in M
and choose γα ∈ π1(M) whose conjugacy class is α.

2.1. Results. If π1(M) is virtually abelian, by definition, it contains an abelian
subgroupA of finite index. Since (π1(M) : A) <∞, there exists ` ∈ {1, . . . , (π1(M) :
A)} such that γ`α ∈ A. We fix a positive integer q coprime to `. We consider the
set Pq,` of primes congruent to q modulo `

(1) Pq,` = { p ∈ N | p is prime, p ≡ q mod ` } = { pi | i ∈ N, pi < pi+1 }.
Dirichlet’s theorem on arithmetic progressions [Di] asserts that #Pq,` =∞. One of
our main results is the following theorem.

Theorem 2.1. Assume that ω is aspherical and π1(M) is either a virtually abelian
group or an R-group. Let H : S1 × M → R be a Hamiltonian having a non-
degenerate one-periodic trajectory x in the homotopy class α such that [α] 6= 0
in H1(M ;Z)/Tor, P1(H; [α]) is finite and ω is α-toroidally rational (see Subsection
3.1). Let q be a positive integer coprime to `. Then for every sufficiently large prime
pi ∈ Pq,`, the Hamiltonian H has a simple periodic trajectory in the homotopy class
αpi and with period either pi or pi+1. Moreover, when π1(M) is an R-group, then
the finiteness condition on P1(H; [α]) can be replaced by that on P1(H;α).

When π1(M) is an R-group (see Definition 4.8), we think of ` as an arbitrary
positive integer. Actually, we can also prove that for every sufficiently large prime
p, the Hamiltonian H has a simple periodic trajectory in αp and with period either
p or its next prime p′.

The main tool for the proof of Theorem 2.1 is the filtered Floer–Novikov ho-
mology HFNI(H;α) for non-contractible periodic trajectories [BH]. It is the main
difficulty to use the Floer–Novikov homology in our setting that all lifts of trajecto-
ries shifted by the Novikov actions appear as generators. However, if ω is aspherical
and π1(M) is either a virtually abelian group or an R-group, then Lemmas 4.6 and
4.10 enable us to deal with them.

In the present paper, we also prove the following theorems which are certain
generalizations of Theorem 1.2.

Theorem 2.2. Assume that (M,ω) is monotone or negative monotone with mono-
tonicity constant λ and π1(M) is virtually abelian. Let H : S1 × M → R be a
Hamiltonian such that P1(H; [α]) is finite, and χ(H, I;α) 6= 0 for every sufficiently

small interval I centered at some s ∈ S̃pec(H;α), where α ∈ [S1,M ], [α] 6= 0 in
H1(M ;Z)/Tor and ω is α-toroidally rational. Let q be a positive integer coprime
to `. Then for every sufficiently large prime pi ∈ Pq,`, the Hamiltonian H has a
simple periodic trajectory in the homotopy class αpi and with period either pi or
pi+1.
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If π1(M) is an R-group, then we can relax the condition on χ(H, I;α) as follows:

Theorem 2.3. Assume that (M,ω) is monotone or negative monotone with mono-
tonicity constant λ and π1(M) is an R-group. Let H : S1×M → R be a Hamiltonian
such that P1(H;α) is finite, and χ(H, I;α) 6= 0 for some interval I = [a, b) with

a, b ∈ R \ S̃pec(H;α), where α ∈ [S1,M ], [α] 6= 0 in H1(M ;Z)/Tor and ω is α-
toroidally rational. Then for every sufficiently large prime p, the Hamiltonian H
has a simple periodic trajectory in the homotopy class αp and with period either p
or its next prime p′.

As in Theorem 2.1, one can show that for any pair of coprime positive integers
(q, `) and every sufficiently large prime pi ∈ Pq,`, the Hamiltonian H has a simple
periodic trajectory in the homotopy class αpi and with period either pi or pi+1.

For the proof, we review the augmented action filtration on the Floer–Novikov

homology H̃FN
I
(H;α) introduced in [GG09, GG16a]. We note that if (M,ω) is

toroidally monotone or toroidally negative monotone as in [GG16a], then the aug-
mented action does not depend on the choice of the capping. However in our setting,
it does.

2.2. Examples. One important example for Theorem 2.1 is the tori T2n with the
standard symplectic form. This Theorem 2.1 generalizes [Or, Theorem 1.1]. Even
when π1(M) is just finitely generated abelian, we have numerous examples due to
the following theorem.

Theorem 2.4 ([KRT, Theorem 1.2]). Let G be a finitely generated abelian group.
Then there exists a closed symplectic manifold (M,ω) with aspherical ω such that
π1(M) = G if and only if either G ∼= Z⊕ Z or rankG ≥ 4.

Another interesting example is the Kodaira–Thurston manifold KT, which is the
product of the circle and the Heisenberg manifold. Namely,

KT = S1 × (H(R)/H(Z)),

where H(R) denotes the set of the upper triangular unipotent 3× 3 matrices with
coefficients in a given ring R. The fundamental group π1(KT) is isomorphic to
Z×H(Z), and hence it is torsion-free nilpotent, in particular, an R-group. We note
that KT naturally admits an aspherical symplectic form.

On the α-rationality condition on ω in Theorem 2.1, we have the following.

Proposition 2.5 ([IKRT, Proposition 1.5]). Let M be a closed symplectic man-
ifold equipped with an aspherical symplectic form. Then M admits an aspherical
symplectic form ω such that 〈[ω], a〉 ∈ Z for all a ∈ H2(M ;Z).

Let us now discuss examples for Theorems 2.2 and 2.3. Let (N,ωN ) be a con-
nected closed symplectically aspherical (i.e., ωN and c1 = c1(N,ωN ) are both as-
pherical) symplectic manifold whose fundamental group is a virtually abelian group
or an R-group (e.g., N = T2n, KT). Then the product (N × CPm, ωN ⊕ ωFS) of
(N,ωN ) and the complex projective space CPm equipped with the Fubini–Study
form ωFS satisfies the assumptions of Theorem 2.2 or 2.3.

3. Preliminaries

In this section, first we set conventions and notation. Then we define the filtered
Floer–Novikov homology which is the main tool for the proof of the main theorems.
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3.1. Conventions and notation. Let X be a connected CW-complex. Let LX =
Map(S1, X) be the space of free loops in X where S1 = R/Z. For a free homotopy
class α ∈ [S1, X], denote by LαX the component of LX with loops representing α.
We choose a loop zα ∈ LX whose free homotopy class is α.

Every element of π1(LαX, zα) is represented by a map v : S1 × S1 → X such
that v|{0}×S1 = v|{1}×S1 = zα. We denote by [S1 × S1] ∈ H2(S1 × S1;Z) ∼= Z the

fundamental class of S1 × S1. We define a homomorphism

f : π1(LαX, zα)→ H2(X;Z)

by f([v]) = v∗([S
1×S1]), where v∗ : H2(S1×S1;Z)→ H2(X;Z). Then a cohomol-

ogy class u ∈ H2(X;R) defines a cohomology class

u ∈ H1(LX;R) = Hom(H1(LX;Z), R) = Hom(π1(LαX, zα), R)

by the formula u = u ◦ f , where R = R or Z.
A cohomology class u ∈ H2(X;R) is called aspherical if u vanishes on π2(X).

Similarly, a cohomology class u ∈ H2(X;R) is called atoroidal if the cohomology
class u vanishes on π1(LαX, zα) for any α ∈ [S1, X]. We note that every atoroidal
class is aspherical.

A cohomology class u ∈ H2(X;R) is called α-toroidally rational if the set
〈u, π1(LαX, zα)〉 is discrete in R. Namely, if u is α-toroidally rational, then there
exists a number hα ∈ R such that

〈u, π1(LαX, zα)〉 = hαZ.

Let (M,ω) be a connected closed symplectic manifold. We call a closed 2-form
η ∈ Ω2(M) aspherical (resp. atoroidal, α-toroidally rational) if its cohomology class
[η] is aspherical (resp. atoroidal, α-toroidally rational).

As is explained above, the symplectic form ω ∈ Ω2(M) and the first Chern class
c1 ∈ H2(M ;Z) of (M,ω) define the cohomology classes

[ω] ∈ H1(LM ;R) = Hom(H1(LM ;Z),R)

and

c1 ∈ H1(LM ;Z) = Hom(H1(LM ;Z),Z),

respectively. A symplectic manifold (M,ω) is called monotone (resp. negative
monotone) if we have

[ω]|π2(M) = λc1|π2(M)

for some non-negative (resp. negative) number λ ∈ R. Similarly, a symplectic
manifold (M,ω) is called toroidally monotone (resp. toroidally negative monotone)
if we have

[ω]|π1(LαM,zα) = λc1|π1(LαM,zα)

for some non-negative (resp. negative) number λ ∈ R. We note that every toroidally
monotone (resp. toroidally negative monotone) symplectic manifold is monotone
(resp. negative monotone).

We note that every atoroidal symplectic form is α-toroidally rational with hα = 0
for any α ∈ [S1,M ]. Moreover, every toroidally monotone or toroidally negative
monotone symplectic form is an α-toroidally rational symplectic form with hα =
λcmin

1,α for any α ∈ [S1,M ], where cmin
1,α ∈ N is the α-minimal first Chern number

given by

〈c1, π1(LαM, zα)〉 = cmin
1,α Z.

Similarly, the minimal first Chern number cmin
1 ∈ N is given by

〈c1, π2(M)〉 = cmin
1 Z.

We note that cmin
1,α divides cmin

1 .
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In the present paper, we assume that all Hamiltonians H are one-periodic in
time, i.e., H : S1 × M → R, and we set Ht = H(t, ·) for t ∈ S1 = R/Z. The
Hamiltonian vector field XHt ∈ X(M) associated to Ht is defined by

ιXHtω = −dHt.

The Hamiltonian isotopy {ϕtH}t∈R associated to H is defined by{
ϕ0
H = id,
d
dtϕ

t
H = XHt ◦ ϕtH for all t ∈ R,

and its time-one map ϕH = ϕ1
H is referred to as the Hamiltonian diffeomor-

phism generated by H. For k ∈ N, let Pk(H;α) be the set of k-periodic (i.e.,
defined on R/kZ) trajectories of the Hamiltonian isotopy {ϕtH}t∈R representing
α. A one-periodic trajectory x ∈ P1(H;α) is called non-degenerate if it satisfies
det
(
(dϕH)x(0) − id

)
6= 0. Moreover, H is said to be α-regular if all one-periodic

trajectories of H representing α are non-degenerate.
LetK andH be two one-periodic Hamiltonians. The compositionK\H is defined

by

(K\H)t = Kt +Ht ◦ (ϕtK)−1.

Then the isotopy defined by K\H coincides with ϕtK ◦ ϕtH . For k ∈ N, we set
H\k = H\ · · · \H (k times). We denote by xk the k-th iteration of a one-periodic
trajectory x of H. To be more precise, xk is the k-periodic trajectory x : R/kZ→M
of H. Since there is an action-preserving and mean index-preserving one-to-one
correspondence between the set of k-periodic trajectories of H and the set of one-
periodic trajectories of H\k, we can think of xk as the one-periodic trajectory of
H\k later.

3.2. Floer–Novikov homology. In this subsection, we define the Floer–Novikov
homology for non-contractible periodic trajectories (see, e.g., [BPS, BH] for details).
Let (M,ω) be a connected closed symplectic manifold. Although [BH] assumed that
(M,ω) is weakly monotone, we need not impose any additional conditions on (M,ω)
[FO, On].

Let H : S1 ×M → R be a Hamiltonian. For a free homotopy class α ∈ [S1,M ],
we fix a reference loop zα ∈ α.

3.2.1. Action functional. We consider the universal covering space L̃αM of LαM
and define the covering space π : LαM → LαM with fiber being the group

Γα =
π1(LαM, zα)

Ker [ω] ∩Ker c1
.

We consider the set of pairs (x,Π), where x ∈ LαM and Π: [0, 1]×S1 →M is a path
in LαM joining zα and x. We set an equivalence relation ∼ by defining (x1,Π1) ∼
(x2,Π2) if and only if x1 = x2, 〈[ω],Π1#(−Π2)〉 = 0 and 〈c1,Π1#(−Π2)〉 = 0,
where Π1#(−Π2) is the loop defined by the path Π1 and the path −Π2, which
can be seen as a toroidal 2-cycle obtained by gluing Π1 and Π2 with orientation
reversed along the boundaries. Then the space LαM can be viewed as the set of
such equivalence classes [x,Π].

We define the action functional AH : LαM → R by

AH([x,Π]) = −
∫

[0,1]×S1

Π∗ω +

∫ 1

0

Ht

(
x(t)

)
dt.

Since π∗[ω] = 0 ∈ H1(LαM ;R), the action functional AH is well-defined. Here we
note that the critical point set Crit(AH) is equal to P1(H;α) = π−1

(
P1(H;α)

)
.
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We fix a trivialization of TM along the reference loop zα. Then one can associate
the mean index ∆H(x̄) to a capped one-periodic trajectory x̄ = [x,Π] ∈ LαM as
follows. By extending the trivialization of TM |zα to the capping Π, we obtain a
trivialization of TM |x. Thus we get a path t 7→ (dϕtH)x(0) in the group Sp(2n).
Now we define the mean index ∆H(x̄) to be the mean index of the resulting path
(see, e.g., [SZ]). Similarly, if x is non-degenerate, we can define the Conley–Zehnder
index µCZ(H, x̄) of x̄. We note that the above two indices have the relation

|∆H(x̄)− µCZ(H, x̄)| ≤ n.

Assume that all iterated homotopy classes αk, k ∈ N, are distinct and non-trivial.
We choose the iterated loop zkα with the iterated trivialization as the reference loop
for αk. Then the action functional AH and the mean index ∆H are homogeneous
with respect to iterations in the sense that

AH\k([x,Π]k) = kAH([x,Π]) and ∆H\k([x,Π]k) = k∆H([x,Π]),

where [x,Π]k = [xk,Πk] is the k-th iteration of [x,Π]. Here we think of the iterated
loop xk as the loop defined on S1 = R/Z, where xk defined on R/kZ and on R/Z
have the same action and mean index (see, e.g., [GG10, Subsection 2.1]). Moreover,
for any x̄ ∈ P1(H;α) and any [v] ∈ π1(LαM, zα) the equalities

AH(x̄#[v]) = AH(x̄)− 〈[ω], [v]〉, ∆H(x̄#[v]) = ∆H(x̄)− 2〈c1, [v]〉

and

µCZ(H, x̄#[v]) = µCZ(H, x̄)− 2〈c1, [v]〉 (if x is non-degenerate)

hold (see, e.g., [Ba, Subsection 2.3]). We define the action spectrum of AH by

Spec(H;α) = AH
(
P1(H;α)

)
.

3.2.2. The filtered Floer–Novikov chain complex. We assume that H is α-regular.
Let J ∈ J (M,ω) be an ω-compatible almost complex structure. We consider the
Floer differential equation

(2) ∂su+ J(u)
(
∂tu−XHt(u)

)
= 0

for u : R× S1 → M where (s, t) ∈ R× S1. For a smooth solution u : R× S1 → M
to (2), we define the energy by the formula

E(u) =

∫ 1

0

∫ ∞
−∞
|∂su|2 dsdt.

Then we have the following:

Lemma 3.1 ([Sa]). Let u : R × S1 → M be a smooth solution to (2) with finite
energy.

(i) There exist x̄± ∈ P1(H;α) such that

lim
s→±∞

u(s, t) = x±(t) and lim
s→±∞

∂su(s, t) = 0,

where x̄+ = [x+,Π+] and x̄− = [x−,Π−], and both limits are uniform in
the t-variable. Moreover, we have

[x+,Π−#u] = [x+,Π+] ∈ L̃αM.

(ii) The energy identity holds:

E(u) = AH(x̄−)−AH(x̄+).
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We call a family of almost complex structures regular if the linearized operator
for (2) is surjective for any finite-energy solution to (2) in the homotopy class α.
We denote by Jreg(H;α) the space of regular families of almost complex structures.
This subspace is generic in J (M,ω) (see [FHS]). For any J ∈ Jreg(H;α) and any

pair x̄± ∈ P1(H;α), the space

M(x̄−, x̄+;H,J) = { solution to (2) satisfying (i) }

is a smooth manifold whose dimension near such a solution u is given by the
difference of the Conley–Zehnder indices of x̄− and x̄+ relative to u. We de-
note by M1(x̄−, x̄+;H,J) the subspace of solutions of relative index one. For
J ∈ Jreg(H;α), the quotient M1(x̄−, x̄+;H,J)/R is a finite set for any pair x̄± ∈
P1(H;α).

Let a and b be real numbers such that −∞ ≤ a < b ≤ ∞ and a, b 6∈ Spec(H;α).

We set Pa1 = { x̄ ∈ P1(H;α) | AH(x̄) < a }. We define the chain group of our
Floer–Novikov chain complex to be

CFN[a,b)(H;α) = CFNb(H;α)/CFNa(H;α),

where

CFNa(H;α) =

{
ξ =

∑
ξx̄x̄

∣∣∣∣∣ x̄ ∈ P
a

1 , ξx̄ ∈ Z/2Z such that ∀C ∈ R,

#{ x̄ | ξx̄ 6= 0, AH(x̄) > C } <∞

}
.

We define the boundary operator ∂H,Jb : CFNb(H;α)→ CFNb(H;α) by

∂H,Jb (x̄) =
∑

#
(
M1(x̄, ȳ;H,J)/R

)
ȳ

for a generator x̄ ∈ Pb1.

Theorem 3.2 ([Fl]). If J is regular, then the operator ∂H,Jb is well-defined and

satisfies ∂H,Jb ◦ ∂H,Jb = 0.

The energy identity (ii) in Lemma 3.1 implies that CFNa(H;α) is invariant

under the boundary operator ∂H,Jb . Thus we get an induced operator ∂H,J[a,b) on the

quotient CFN[a,b)(H;α).

Definition 3.3. The filtered Floer–Novikov homology group is defined to be

HFN[a,b)(H,J ;α) = Ker ∂H,J[a,b)/ Im ∂H,J[a,b).

Theorem 3.4 ([Fl, Sa, SZ]). If J0, J1 ∈ J (H;α) are two regular almost complex
structures, then there exists a natural isomorphism

HFN[a,b)(H,J0;α)→ HFN[a,b)(H,J1;α).

We refer to HFN[a,b)(H;α) = HFN[a,b)(H,J ;α) as the Floer–Novikov homology
associated to H.

3.2.3. Continuation. We define the set

Ha,b(M ;α) = {H : S1 ×M → R | a, b 6∈ Spec(H;α) }.

Proposition 3.5 ([BPS, Remark 4.4.1]). Every Hamiltonian H ∈ Ha,b(M ;α) has

a neighborhood U such that the Floer–Novikov homology groups HFN[a,b)(H ′, J ′;α),
for any α-regular H ′ ∈ U and any regular almost complex structure J ′ ∈ Jreg(H ′;α),
are naturally isomorphic.

Proposition 3.5 enables us to define the Floer–Novikov homology HFN[a,b)(H;α)
even when H is not α-regular.
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Definition 3.6. For H ∈ Ha,b(M ;α), we define HFN[a,b)(H;α) = HFN[a,b)(K;α),
where K is any α-regular Hamiltonian sufficiently close to H.

Let H+, H− : S1 ×M → R be two Hamiltonians. We choose regular almost
complex structures J± ∈ Jreg(H±;α). We consider a linear homotopy {Hs}s∈R
from H− to H+, i.e., a smooth homotopy of the form

(Hs)t = H−t + β(s)(H+
t −H−t ),

where β : R → [0, 1] is a non-decreasing function, and choose a smooth homotopy
{Js}s∈R from J− to J+ such that

(Hs, Js) =

{
(H−, J−) if s� −1,

(H+, J+) if s� 1.

We set Hs,t = (Hs)t. Let α ∈ [S1,M ] be a nontrivial free homotopy class and
a, b ∈ R ∪ {∞} such that a < b and a, b 6∈ Spec(H±;α). It follows from the energy
identity

E(u) = AH−(x̄−)−AH+(x̄+) +

∫ 1

0

∫ ∞
−∞

∂sH
(
s, t, u(s, t)

)
dsdt

that the Floer–Novikov chain map CFN(H−;α) → CFN(H+;α), defined in terms
of the solutions of the equation

∂su+ Js(u)
(
∂tu−XHs,t(u)

)
= 0,

induces a natural homomorphism

σH+H− : HFN[a,b)(H−;α)→ HFN[a+C,b+C)(H+;α),

where C = C(Hs) is the constant given by

C = max

{∫ 1

0

max
M

(
H+
t −H−t

)
dt, 0

}
(see, e.g., [BPS, Subsection 4.4]).

4. Lemmas from algebraic topology and group theory

In this section, we review several necessary facts on aspherical cohomology
classes, the fundamental groups of loop spaces and elementary group theory.

4.1. Aspherical cohomology classes and Eilenberg–MacLane spaces. In
this subsection, we collect some facts concerning aspherical cohomology classes
and the Eilenberg–MacLane space. Given a group G, we recall that the Eilenberg–
MacLane space K(G, 1) is defined to be a connected CW-complex with fundamental
group G and such that πi(K(G, 1)) = 0 for any i > 1.

Proposition 4.1 ([RT, Lemma 2.1]). Let X be a finite CW-complex and u ∈
H2(X;R) an aspherical cohomology class. Then for every map f : X → K(π1(X), 1)
which induces an isomorphism of fundamental groups,

u ∈ Im
(
f∗ : H2(K(π1(X), 1);R)→ H2(X;R)

)
.

Corollary 4.2 ([LO, Lemma 4.2], [RT, Corollary 2.2]). Let (M,ω) be a symplectic
manifold. Then the following conditions are equivalent.

(i) ω is aspherical,
(ii) there exists a map f : M → K(π1(M), 1) which induces an isomorphism

of fundamental groups and such that

[ω] ∈ Im
(
f∗ : H2(K(π1(M), 1);R)→ H2(M ;R)

)
,
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(iii) there exists a map f : M → K(π1(M), 1) such that

[ω] ∈ Im
(
f∗ : H2(K(π1(M), 1);R)→ H2(M ;R)

)
.

4.2. Fundamental groups of free loop spaces. In this subsection, we describe
the growth of the fundamental group of the free loop component containing itera-
tions of a loop. Namely, we examine how π1(LαX) and π1(LαkX) differ. Let CG(g)
denote the centralizer of an element g in a group G: CG(g) = { c ∈ G | gc = cg }.
The following proposition enables us to compute the fundamental group of a com-
ponent of a free loop space.

Proposition 4.3 ([Ha, Proposition 1]). Let X be a connected topological space such
that π2(X) = 0. Let α ∈ [S1, X] be a free homotopy class and choose zα ∈ LαX
and γα ∈ π1(X) representing α. Then

π1(LαX, zα) ∼= Cπ1(X)(γα).

4.2.1. Virtually abelian groups. From now on, we concentrate on spaces having
virtually abelian fundamental groups.

Definition 4.4. A group G is called virtually abelian if it contains an abelian
subgroup of finite index.

Let G be a virtually abelian group and A < G an abelian subgroup of finite
index. For g ∈ G, there exists ` ∈ {1, . . . , (G : A)} such that g` ∈ A. Let q be a
positive integer coprime to `. We prepare the following useful lemma concerning
virtually abelian groups.

Lemma 4.5. Let G be a virtually abelian group. Choose A, g, ` and q as above.
Then for every k ∈ Z≥0 and c ∈ CG(gq+k`), there exists m ∈ {1, . . . , (G : A)} such
that cm ∈ CG(g).

Proof. Let k ∈ Z≥0 and c ∈ CG(gq+k`) ⊂ G. Then there exists m ∈ {1, . . . , (G : A)}
such that cm ∈ A. Since A is abelian, g` and cm commute. Since q and ` are
coprime, we have

n1q + n2` = 1

for some n1, n2 ∈ Z. Therefore, we have

cmgc−m = cmgn1q+n2`c−m = cm
(
gq+k`

)n1
(
g`
)−n1k+n2

c−m

=
(
gq+k`

)n1
cmc−m

(
g`
)−n1k+n2

= g. �

Let X be a finite CW-complex whose fundamental group is virtually abelian.
Then there exists an abelian subgroup A < π1(X) of finite index. Let α ∈ [S1, X]
be a free homotopy class and choose γα ∈ π1(X) representing α. As above, there
exists ` ∈ {1, . . . , (π1(X) : A)} such that γ`α ∈ A. Let q be a positive integer
coprime to `.

We recall that every cohomology class u ∈ H2(X;R) defines a cohomology class
u ∈ H1(LX;R) (see Subsection 3.1). The following is the key lemma.

Lemma 4.6. Let X be a finite CW-complex whose fundamental group is virtually
abelian and u ∈ H2(X;R). Then the following conditions are equivalent.

(i) u is aspherical,
(ii) for every α ∈ [S1, X], k ∈ Z≥0 and [v] ∈ π1(Lαq+k`X), there exist m ∈
{1, . . . , (π1(X) : A)} and [w] ∈ π1(LαX) such that

m〈u, [v]〉 = (q + k`)〈u, [w]〉,
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(iii) some α0 ∈ [S1, X] satisfies the following: For any k ∈ Z≥0 and [v] ∈
π1

(
Lαq+k`0

X
)

there exist m ∈ {1, . . . , (π1(X) : A)} and [w] ∈ π1(Lα0X)

such that

m〈u, [v]〉 = (q + k`)〈u, [w]〉.

Proof. (i)⇒(ii): Suppose that u is aspherical. Fix α ∈ [S1, X] and k ∈ Z≥0. Choose
γα, ` and q as above. Let f : X → K = K(π1(X), 1) be the classifying map. Hence
f induces an isomorphism of fundamental groups. Applying Proposition 4.1, there
exists Ω ∈ H2(K;R) such that

u = f∗Ω.

For every [v : T2 → X] ∈ π1(Lαq+k`X), we have

〈u, [v]〉 = 〈f∗Ω, [v]〉 = 〈Ω, [f ◦ v]〉.

We note that [f ◦ v] ∈ π1

(
Lf∗(αq+k`)K

)
= π1

(
Lf∗(α)q+k`K

)
, where f∗ : [S1, X] →

[S1,K] is the map induced by f . Moreover, Proposition 4.3 implies that

π1

(
Lf∗(α)q+k`K

) ∼= Cπ1(K)

(
f∗(γα)q+k`

)
,

where f∗(γα) ∈ π1(K) is a representative of the conjugacy class f∗(α) ∈ [S1,K].
Denote by c ∈ Cπ1(K)

(
f∗(γα)q+k`

)
the image of [f ◦ v] ∈ π1

(
Lf∗(α)q+k`K

)
under

the above isomorphism. Applying Lemma 4.5 for c, there existsm ∈ {1, . . . , (π1(K) :
A)} such that

cm ∈ Cπ1(K)

(
f∗(γα)

) ∼= π1

(
Lf∗(α)K

)
.

It implies that there exists [w0] ∈ π1

(
Lf∗(α)K

)
such that

m〈Ω, [f ◦ v]〉 = (q + k`)〈Ω, [w0]〉.

· · ·

· · ·

...
...···

c c c

f∗(γα)

f∗(γα)

f∗(γα)

q + k`

m

〈Ω, [f ◦ v]〉

〈Ω, [w0]〉

Since now f∗ : π1(X) → π1(K) is an isomorphism, the elements γα, f−1
∗ (cm) ∈

π1(X) determine an element [w] ∈ π1(LαX) such that

[w0] = f∗([w]) = [f ◦ w].

Therefore, we have

m〈u, [v]〉 = m〈Ω, [f ◦ v]〉 = (q + k`)〈Ω, [w0]〉 = (q + k`)〈Ω, [f ◦ w]〉
= (q + k`)〈f∗Ω, [w]〉 = (q + k`)〈u, [w]〉.

Thus (ii) holds.
(iii)⇒(i): Suppose that u is not aspherical. Then 〈u, π2(X)〉 is a non-trivial

finitely generated Z-submodule of R. We fix α ∈ [S1, X] and choose a loop zα
representing α. Choose ` and q as above.
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We denote by Ωzα(0)X ⊂ LX the space of loops with base point zα(0). We
define a map ι1 : Ωzα(0)X → LαX by concatenating a loop x ∈ Ωzα(0)X with zα.
Then ι1 induces the homomorphism

ι1∗ : π2(X, zα(0))→ π1(LαX, zα),

where we used the fact that π1

(
Ωzα(0)X, zα(0)

) ∼= π2(X, zα(0)). Similarly, for all
n ∈ N, we can define the homomorphisms

ιn∗ : π2(X)→ π1(LαnX).

Choose s ∈ π2(X) such that 〈u, s〉 6= 0. Then we have

〈u, s〉 ∈ 〈u, π2(X)〉 = 〈u, ιn∗(π2(X))〉 ⊂ 〈u, π1(LαnX)〉
for any n ∈ N. Hence it is enough to show that for every m = 1, . . . , (π1(X) : A)
and every [w] ∈ π1(LαX) we have

m〈u, s〉 6= (q + k`)〈u, [w]〉
when k is large.

We note that

〈u, π2(X)〉 ⊂ Q〈u, π2(X)〉 ∩ 〈u, π1(LαX)〉 ⊂ 〈u, π1(LαX)〉 ⊂ R.

If 〈u, [w]〉 ∈ 〈u, π1(LαX)〉 \ (Q〈u, π2(X)〉 ∩ 〈u, π1(LαX)〉), then we have

〈u, [w]〉 6= m

q + k`
〈u, s〉

for any m = 1, . . . , (π1(X) : A) and any k ∈ Z≥0. If 〈u, [w]〉 ∈ Q〈u, π2(X)〉 ∩
〈u, π1(LαX)〉 and k is so large that

q + k` > (π1(X) : A)(Q〈u, π2(X)〉 ∩ 〈u, π1(LαX)〉 : 〈u, π2(X)〉),
then

〈u, s〉 6= q + k`

m
〈u, [w]〉

for any m = 1, . . . , (π1(X) : A).
Since (iii) immediately follows from (ii), Lemma 4.6 is proved. �

Remark 4.7. In general, we have

〈u, π1(LαnX)〉 ⊃ n〈u, π1(LαX)〉
for any u ∈ H2(X;R), α ∈ [S1, X] and n ∈ N.

4.2.2. R-groups. Here we consider R-groups.

Definition 4.8 ([Ko, Ku]). A group G is called an R-group if the equality gn = hn

implies g = h, where g, h are any elements in G and n is any natural number.

Let G be an R-group. Then we have

Proposition 4.9. Let g ∈ G and n ∈ N. If c ∈ CG(gn), then c ∈ CG(g).

Proof. Let c ∈ CG(gn). Then the equality (cgc−1)n = cgnc−1 = gn implies cgc−1 =
g. Hence c ∈ CG(g). �

Combining with the proof of Lemma 4.6, we then obtain

Lemma 4.10. Let X be a finite CW-complex whose fundamental group is an R-
group and u ∈ H2(X;R). Then the following conditions are equivalent.

(i) u is aspherical,
(ii) for every α ∈ [S1, X] and n ∈ N, we have

〈u, π1(LαnX)〉 = n〈u, π1(LαX)〉,
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(iii) there exists α0 ∈ [S1, X] such that for every n ∈ N, we have

〈u, π1(Lαn0X)〉 = n〈u, π1(Lα0X)〉.

5. Proof of Theorem 2.1

In this section, we state a refined version (Theorem 5.1) of Theorem 2.1 and
prove the theorems. Let (M,ω) be a closed symplectic manifold. We recall that an
isolated periodic trajectory x of H is said to be homologically non-trivial if for some
lift x̄ ∈ LαM of x, the local Floer homology HFloc(H, x̄) of H at x̄ is non-zero (see
[GG10] for details). Every non-degenerate fixed point x is homologically non-trivial
since we have

HFloc
∗ (H, x̄) ∼=

{
Z/2Z if ∗ = µCZ(H, x̄),

0 otherwise,

where µCZ(H, x̄) is the Conley–Zehnder index of x̄. Then we can refine Theorem
2.1 as follows (see also [Gü13, Theorem 3.1]).

Theorem 5.1. Assume that ω is aspherical and π1(M) is either a virtually abelian
group or an R-group. Let H : S1×M → R be a Hamiltonian having an isolated and
homologically non-trivial one-periodic trajectory x in the homotopy class α such
that [α] 6= 0 in H1(M ;Z)/Tor, P1(H; [α]) is finite and ω is α-toroidally rational.
Let q be a positive integer coprime to `. Then for every sufficiently large prime
pi ∈ Pq,`, the Hamiltonian H has a simple periodic trajectory in the homotopy class
αpi and with period either pi or pi+1. Moreover, when π1(M) is an R-group, then
the finiteness condition on P1(H; [α]) can be replaced by that on P1(H;α).

Here, when π1(M) is virtually abelian, we choose an abelian subgroup A <
π1(M) of finite index, γα ∈ π1(M) representing α, and ` ∈ {1, . . . , (π1(M) : A)}
such that γ`α ∈ A. When π1(M) is an R-group, we may choose an arbitrary positive
integer `. The proof of Theorem 5.1 is inspired by the argument by Gürel [Gü13].

Proof: the virtually abelian case. Since P1(H; [α]) is finite, there exist finitely many
distinct homotopy classes αj ∈ [S1,M ] representing [α] ∈ H1(M ;Z)/Tor such that
every x ∈ P1(H; [α]) is contained in one of αj ’s. As in [GG16a], one can show that
for every sufficiently large prime p, the classes αpj are all distinct (If we replace the

finiteness condition on P1(H; [α]) with that on P1(H;α), then there might exist
β 6= α such that βp = αp even when p is large. However, if π1(M) is an R-group,
then γpα has the unique p-th root γα and hence the conjugacy class αp has the
unique p-th root α).

Fix a reference loop zα ∈ α and choose the iterated loop zpα as the reference loop
for αp. Denote by xk the elements of P1(H;α). We note that every sufficiently
large prime p is admissible in the sense of [GG10] for all trajectories xk (i.e., λp 6= 1
for all eigenvalues λ 6= 1 of (dϕH)xk : TxkM → TxkM). Since x is isolated and

homologically non-trivial, we have HFloc
∗ (H, x̄) 6= 0 for some lift x̄ = [x,Π] ∈

LαM of x and some ∗ ∈ Z. By [GG10, Theorem 1.1 and Remark 1.1], when p is
admissible, we can think of xp as an isolated one-periodic trajectory of H\p and we
have

HFloc
∗+sp(H\p, x̄p) ∼= HFloc

∗ (H, x̄)

for some sp, where x̄p = [xp,Πp] ∈ LαpM . Hence we have HFloc
∗+sp(H\p, x̄p) 6= 0.

From now on, we only consider primes in Pq,` (see (1) in Section 2 for the defi-
nition). Let pi ∈ Pq,` be a sufficiently large prime satisfying the above conditions.
Assume that H has no simple pi-periodic trajectory in αpi . Since pi is prime,
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all pi-periodic trajectories in αpi are the pi-th iterations of one-periodic trajecto-
ries in α. Hence there is an action-preserving one-to-one correspondence between
P1(H\pi ;αpi) and the set of pi-th iterations { ypi | y ∈ P1(H;α) }.

By adding a constant to the Hamiltonian H, we can assume that the action of
the lift x̄ is AH(x̄) = 0. Hence for all n ∈ N, we have

AH\n(x̄n) = nAH(x̄) = 0.

Since P1(H; [α]) is finite and ω is α-toroidally rational, we can choose c > 0 so
small that for all m = 1, . . . , (π1(M) : A)

(3) [−c, c) ∩
{
AH(ȳ)− 1

m
〈[ω], [w]〉

∣∣∣∣ ȳ ∈ P1(H;α), [w] ∈ π1(LαM)

}
= {0}.

In particular, when m = 1, we have

[−c, c) ∩ Spec(H;α) = {0}.
Now we claim that

[−pic, pic) ∩ Spec(H\pi ;αpi) = {0}.
To see this, choose s ∈ [−pic, pic)∩Spec(H\pi ;αpi). Then there exist ȳ ∈ P1(H;α)
and [v] ∈ π1(LαpiM) such that

s = AH\pi (ȳpi#[v]) = piAH(ȳ)− 〈[ω], [v]〉.
Since π1(M) is virtually abelian and ω is aspherical, by applying Lemma 4.6 for
[v], there exist m ∈ {1, . . . , (π1(M) : A)} and [w] ∈ π1(LαM) such that

m〈[ω], [v]〉 = pi〈[ω], [w]〉.
Therefore,

|s| = pi

∣∣∣∣AH(ȳ)− 1

m
〈[ω], [w]〉

∣∣∣∣ < pic.

By (3), it concludes that

AH(ȳ)− 1

m
〈[ω], [w]〉 = 0.

Thus we obtain s = 0.
Hence zero is the only critical value of AH\pi in [−pic, pic). Therefore,

HFN
[−pic,pic)
∗+spi

(H\pi ;αpi) ∼= HFloc
∗+spi

(H\pi , x̄pi)⊕ · · · ,

where the dots represent the contributions of the local Floer homology groups of x̄pik
whose AH\pi (x̄

pi
k ) = 0 and µCZ(H\pi , x̄pik ) = ∗ + spi for some lifts x̄k ∈ P1(H;α).

For any [v] ∈ Γαpi , we have

0 6= HFloc
∗+spi

(H\pi , x̄pi) ∼= HFloc
∗+spi−2〈c1,[v]〉(H

\pi , x̄pi#[v]).

Hence
HFN

[−pic,pic)
∗+spi+d

(H\pi ;αpi) ∼= HFloc
∗+spi+d

(H\pi , x̄pi)⊕ · · · 6= 0

for any d ∈ Z/2cmin
1,αpiZ.

We set

C = max

{∫
S1

max
M

Ht dt, 0

}
+ max

{
−
∫
S1

min
M

Ht dt, 0

}
.

Since pi+1− pi = o(pi) as i→∞ (see, e.g., [BHP, Theorem 3 (I)]), we may assume
pi ∈ Pq,` so large that pic > 6C(pi+1 − pi) Choose K > 0 such that

pic− 4C(pi+1 − pi) < K < pic− 2C(pi+1 − pi).
Then we have

(4) − pic < −K < −K + 2C(pi+1 − pi) < 0 < K < K + 2C(pi+1 − pi) < pic,
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and

−pi+1c < −K + C(pi+1 − pi) < 0 < K + C(pi+1 − pi) < pi+1c.

We set δ = C(pi+1 − pi). Now we have the following commutative diagram:

HFN[−K,K)(H\pi ;αpi)

σ
H
\pi+1H\pi

��

∼=

++
HFN[−K+δ,K+δ)(H\pi+1 ;αpi)

σ
H\piH

\pi+1

// HFN[−K+2δ,K+2δ)(H\pi ;αpi)

Here the map σH\pi+1H\pi (resp. σH\piH\pi+1 ) is induced by a linear homotopy from

H\pi to H\pi+1 (resp. from H\pi+1 to H\pi), and the diagonal map is an isomor-
phism induced by the natural quotient-inclusion map (see (4)). Combining with

HFN[−K,K)(H\pi ;αpi) 6= 0, we conclude that

HFN[−K+δ,K+δ)(H\pi+1 ;αpi) 6= 0.

Thus H has a pi+1-periodic trajectory y in the homotopy class αpi , and hence in
the homology class pi[α].

Now it is enough to show that y is simple. Arguing by contradiction, we assume
that y is not simple. Since pi+1 is prime, y is the pi+1-th iteration of a one-periodic
trajectory in the homology class pi[α]/pi+1 ∈ H1(M ;Z)/Tor. Since pi/pi+1 is not
an integer, this contradicts the fact that [α] 6= 0 ∈ H1(M ;Z)/Tor. �

Proof: the R-group case. The proof is almost same as in the virtually abelian case
except at the following place.

Assume that all p-periodic trajectories in αp are the p-th iterations of one-
periodic trajectories in α for a large prime p. Since π1(M) is an R-group and
ω is aspherical, Lemma 4.10 shows that

(5) Spec(H\p;αp) = pSpec(H;α).

Since P1(H;α) is finite and ω is α-toroidally rational, we can choose c > 0 so small
that

[−c, c) ∩ Spec(H;α) = {0}.

By (5), we obtain

[−pc, pc) ∩ Spec(H\p;αp) = {0}.

Then the rest of the proof follows the same path as in the virtually abelian case. �

6. Proof of Theorems 2.2 and 2.3

In this section, we show Theorems 2.2 and 2.3. The main tool used here is the
augmented action filtration on the Floer–Novikov homology.

6.1. Augmented action filtered Floer–Novikov homology. This subsection
is devoted to introduce the augmented action filtration (see [GG09, GG16a]). Let
(M,ω) be a connected closed monotone or negative monotone symplectic manifold
of dimension 2n with monotonicity constant λ. Let H : S1 ×M → R be a Hamil-
tonian. For a free homotopy class α ∈ [S1,M ], we fix a reference loop zα ∈ α and
choose a trivialization of TM along zα.
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6.1.1. Augmented action. We define the augmented action of a capped one-periodic
trajectory x̄ ∈ P1(H;α) to be

ÃH(x̄) = AH(x̄)− λ

2
∆H(x̄).

This is introduced by [GG09] for contractible trajectories, and by [GG16a] for non-
contractible ones.

We assume that all iterated homotopy classes αk, k ∈ N, are distinct and non-
trivial. We choose the iterated loop zkα with the iterated trivialization as the refer-

ence loop for αk. As the usual action functional, the augmented action ÃH is also
homogeneous with respect to iterations. Namely,

ÃH\k(x̄k) = kÃH(x̄).

Moreover, for any x̄ ∈ P1(H;α) and [v] ∈ π1(LαM, zα), we have

ÃH(x̄#[v]) = ÃH(x̄)− 〈[ω]− λc1, [v]〉.

The augmented action spectrum S̃pec(H;α) is defined to be the set of values of the
augmented action of capped one-periodic trajectories in α, i.e.,

S̃pec(H;α) = ÃH
(
P1(H;α)

)
.

Now we assume that ω is α-toroidally rational, i.e., 〈[ω], π1(LαM, zα)〉 = hαZ for
some non-negative real number hα. Since (M,ω) is monotone or negative monotone,
we have

〈[ω], π2(M)〉 = λ〈c1, π2(M)〉 = λcmin
1 Z.

Hence hα divides λcmin
1 . We put ν = λcmin

1 /hα ∈ N and ξ = cmin
1 /cmin

1,α ∈ N. We fix

[v0] ∈ Ker c1 and [w0] ∈ Ker [ω] and choose nv, nw ∈ Z such that 〈[ω], [v0]〉 = hαnv
and 〈c1, [w0]〉 = cmin

1,α nw. Then we obtain

〈[ω]− λc1, [v0]nwν#[w0]nvξ〉 = nwνhαnv − λnvξcmin
1,α nw = 0.

We set an equivalence relation ∼ on P1(H;α) by defining [x1,Π1] ∼ [x2,Π2] if and
only if x1 = x2 and [Π1#(−Π2)] ∈ { ([v0]nwν#[w0]nvξ)k | k ∈ Z≥0 }. We denote

by P ′1(H;α) the set of such equivalence classes x̄′ = [x,Π]′. For [vk0 ] ∈ Ker c1 and

[wk0 ] ∈ Ker [ω], k ∈ N, we define the set P ′1(H;αk) in the same manner.

Let I = [a, b) be an interval with a, b ∈ R\ S̃pec(H;α). We suppose that H is α-
regular (i.e., all one-periodic trajectories of H representing α are non-degenerate).

Since [ω] − λc1 is also α-toroidally rational, the number of x̄′ ∈ P ′1(H;α) with
augmented action in I is finite. We define χ(H, I;α) to be the sum of the Poincaré–
Hopf indices of their Poincaré return maps. Namely,

χ(H, I;α) =
∑

x̄′∈P′1(H;α), ÃH(x̄′)∈I

sgn det
(
(dϕH)x(0) − id

)
.

Since S̃pec(K;α) depends continuously on the Hamiltonian K in the sense that for
any open subsets U, V ⊂ R satisfying V ⊂ U and for any Hamiltonian H sufficiently

C1-close to K we have S̃pec(H;α) ∩ U ⊂ V , and χ(H, I;α) takes values in Z, this

definition can be extended to all Hamiltonians K satisfying a, b ∈ R \ S̃pec(K;α).
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6.1.2. Augmented action filtration. Here we give necessary changes in the argument
of [GG16a, Subsection 3.3] to be applicable to our case. We define the augmented
action gap by

gap(H;α) = inf
{
|s− s′| ∈ [0,∞]

∣∣∣ s 6= s′ ∈ S̃pec(H;α)
}
.

We use the convention that inf ∅ =∞. We set

c0(M) = |λ|2n± 1

2
,

where ± is the sign of λ. We say that the gap condition is satisfied if

gap(H;α) > c0(M).

Proposition 6.1 ([GG16a, Proposition 3.1]). Assume that H is α-regular and the
gap condition is satisfied. Then the complex CFN(H;α), and hence HFN(H;α), is
filtered by the augmented action. In other words,

ÃH(ȳ′) ≤ ÃH(x̄′)

whenever ȳ′ appears in ∂x̄′ with non-zero coefficient.

Let a and b be real numbers such that −∞ ≤ a < b ≤ ∞ and a, b 6∈ S̃pec(H;α).

We assume that H is α-regular and the gap condition is satisfied. We set P̃a1 =

{ x̄′ ∈ P ′1(H;α) | ÃH(x̄′) < a }. We define the augmented action filtered chain
group by

C̃FN
[a,b)

(H;α) = C̃FN
b
(H;α)/C̃FN

a
(H;α),

where

C̃FN
a
(H;α) =

{
ξ =

∑
ξx̄′ x̄

′

∣∣∣∣∣ x̄′ ∈ P̃a1 , ξx̄′ ∈ Z/2Z such that ∀C ∈ R,

#{ x̄′ | ξx̄′ 6= 0, AH(x̄′) > C } <∞

}
.

Proposition 6.1 shows that C̃FN
a
(H;α) is invariant under the boundary operator

∂H,Jb . Thus we get an induced operator ∂H,J[a,b) on the quotient C̃FN
[a,b)

(H;α). Then

the augmented action filtered Floer–Novikov homology group is defined to be

H̃FN
[a,b)

(H;α) = Ker ∂H,J[a,b)/ Im ∂H,J[a,b).

The following proposition enables us to define the augmented action filtered

Floer–Novikov homology H̃FN
[a,b)

(H;α) even if H is not α-regular.

Proposition 6.2 ([GG16a, Proposition 3.3]). Let H : S1×M → R be a Hamilton-

ian such that the gap condition is satisfied and let a 6∈ S̃pec(H;α). Then for any

α-regular Hamiltonian K sufficiently C1-close to H, the subspace C̃FN
a
(K;α) ⊂

CFN(K;α) is a subcomplex.

We define the set

H̃a,b(M ;α) = {H : S1 ×M → R | a, b 6∈ S̃pec(H;α) }.

Definition 6.3. For H ∈ H̃a,b(M ;α), we define H̃FN
[a,b)

(H;α) = H̃FN
[a,b)

(K;α),
where K is any α-regular Hamiltonian sufficiently C1-close to H.

A standard argument similar to Subsection 3.2 shows that this definition does
not depend on the choice of K.
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Remark 6.4. Let I = [a, b) be an interval with a, b ∈ R \ S̃pec(H;α). We suppose
that ω is α-toroidally rational. Then a straightforward computation shows that

χ(H, I;α) =
∑

x̄′∈P′1(H;α), ÃH(x̄′)∈I

sgn det
(
(dϕH)x(0) − id

)
=

∑
x̄′∈P′1(H;α), ÃH(x̄′)∈I

(−1)µCZ(H,x̄′)−n

= (−1)n
{

dimZ/2Z C̃FN
I

even(H;α)− dimZ/2Z C̃FN
I

odd(H;α)

}
= (−1)n

{
dimZ/2Z H̃FN

I

even(H;α)− dimZ/2Z H̃FN
I

odd(H;α)

}
.

In particular, we have H̃FN
I
(H;α) 6= 0 if χ(H, I;α) 6= 0. Here we note that if one

of the conditions that a 6= −∞, b 6= ∞ and ω is α-toroidally rational is dropped,

then the Z/2Z-vector space C̃FN
I
(H;α) might be infinite-dimensional.

6.1.3. Continuation. Let H−, H+ : S1×M → R be two Hamiltonians. We consider
a linear homotopy {Hs}s∈R from H− to H+ (see Subsection 3.2). We set

ca(Hs) =

∫
S1

max
M

(H+ −H−) dt

and

ch(Hs) = max{0, ca(Hs)}+ |λ|n ≥ 0.

Proposition 6.5 ([GG16a, Proposition 3.5]). Assume that both H− and H+ satisfy
the gap condition, i.e.,

gap(H−;α) > c0(M) and gap(H+;α) > c0(M),

and a, b ∈ R ∪ {∞} satisfy a < b and a, b 6∈ S̃pec(H±;α). Then a homotopy {Hs}s
from H− to H+ induces a map in the Floer–Novikov homology shifting the action
filtration upward by ch(Hs):

σH+H− : H̃FN
[a,b)

(H−;α)→ H̃FN
[a,b)+ch(Hs)

(H+;α),

where [a, b) + ch(Hs) = [a+ ch(Hs), b+ ch(Hs)).

6.2. Proof of Theorem 2.2. As in Theorem 5.1, we choose an abelian subgroup
A < π1(M) of finite index, γα ∈ π1(M) representing α, a positive integer ` ∈
{1, . . . , (π1(M) : A)} such that γ`α ∈ A and a positive integer q coprime to `. The
proof is inspired by the argument by Ginzburg and Gürel [GG16a].

Proof. Since P1(H; [α]) is finite, there exist finitely many distinct homotopy classes
αj ∈ [S1,M ] representing [α] ∈ H1(M ;Z)/Tor such that every x ∈ P1(H; [α]) is
contained in one of αj ’s. As in Theorem 5.1, one can show that for every sufficiently
large prime p, the classes αpj are all distinct. Fix a reference loop zα ∈ α and a

trivialization of TM |zα . Choose the iterated loop zpα with the iterated trivialization
as the reference loop for αp.

From now on, we only consider primes in Pq,` (see (1) in Section 2 for the
definition). Let pi ∈ Pq,` be a sufficiently large prime satisfying the above con-
dition. Assume that H has no simple pi-periodic trajectory in αpi . Since pi is
prime, all pi-periodic trajectories in αpi are the pi-th iterations of one-periodic
trajectories in α. Hence there is an action-preserving and mean index-preserving
one-to-one correspondence between P1(H\pi ;αpi) and the set of pi-th iterations
{ ypi | y ∈ P1(H;α) }.
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Put

S =

{
ÃH(x̄′)− 1

m
〈[ω]− λc1, [w]〉

∣∣∣∣∣ x̄′ ∈ P
′
1(H;α), [w] ∈ π1(LαM),

m = 1, . . . , (π1(M) : A)

}
.

Since χ(H, I;α) 6= 0 for every sufficiently small interval I centered at some s ∈
S̃pec(H;α), we can assume that χ(H, [−c, c);α) 6= 0 for every sufficiently small
c > 0 by adding a constant to the Hamiltonian H. Moreover, since P1(H; [α]) is
finite and ω is α-toroidally rational (and so is [ω] − λc1), we can choose c > 0 so
small that

[−c, c] ∩ S = {0}.

In particular, we have [−c, c)∩ S̃pec(H;α) = {0}. Since the monotonicity of (M,ω)
implies the asphericity of [ω]− λc1 and π1(M) is virtually abelian, as in the proof
of Theorem 5.1, one can show that

(6) [−pic, pic) ∩ S̃pec(Hpi ;αpi) = {0}.

Therefore, there is a one-to-one correspondence between the sets{
x̄′ ∈ P ′1(H;α)

∣∣∣ ÃH(x̄′) ∈ I
}

and
{
x̄′ ∈ P ′1(H\pi ;αpi)

∣∣∣ ÃH\pi (x̄′) ∈ piI } ,
where I = [−c, c) and piI = [−pic, pic). Moreover, the Shub–Sullivan theorem
[SS, CMPY] shows that the Poincaré–Hopf index of xpi coincides with that of x
for sufficiently large admissible (see the proof of Theorem 5.1 or [GG10] for the
definition) prime pi ∈ Pq,`. Therefore, we have

χ(H\pi , piI;αpi) = χ(H, I;α)

when pi ∈ Pq,` is large.
Now we claim that we can define the augmented action filtered Floer–Novikov

homology H̃FN
piI

(H\pi ;αpi) as long as pi ∈ Pq,` is so large that pic > c0(M).

Indeed, let x̄′ be a generator of CFN(H\pi ;αpi) with ÃH\pi (x̄′) ∈ piI. By the

choice of c, we have ÃH\pi (x̄′) = 0. Hence it is enough to show that ÃH\pi (ȳ′) ≤
0 = ÃH\pi (x̄′) whenever ȳ′ appears in ∂x̄′ with non-zero coefficient. For simplicity,
we assume that λ > 0. Then

ÃH\pi (ȳ′) = AH\pi (ȳ′)−
λ

2
∆H\pi (ȳ

′)

≤ AH\pi (ȳ′)−
λ

2
(µCZ(H\pi , ȳ′)− n)

< AH\pi (x̄′)−
λ

2
(µCZ(H\pi , x̄′)− n− 1)

≤ AH\pi (x̄′)−
λ

2
(∆H\pi (x̄

′)− 2n− 1)

= ÃH\pi (x̄′) + c0(M)

< pic.

By (6), we have either ÃH\pi (ȳ′) < −pic < 0 or ÃH\pi (ȳ′) = 0.
Since χ(H\pi , piI;αpi) = χ(H, I;α) 6= 0, Remark 6.4 shows that

H̃FN
piI

(H\pi ;αpi) 6= 0.

Let {H+
s }s (resp. {H−s }s) be a linear homotopy from H\pi to H\pi+1 (resp. from

H\pi+1 to H\pi). We set

e+ = max

{∫
S1

max
M

Ht dt, 0

}
, e− = max

{
−
∫
S1

min
M

Ht dt, 0

}
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and

a± = (pi+1 − pi)e± + |λ|n.

Then we have

(7) a± ≥ ch(H±s ).

Since pi+1 − pi = o(pi) as i→∞ (see, e.g., [BHP, Theorem 3 (I)]), we have

1

2
pic > a+ + a−

for sufficiently large pi ∈ Pq,`. Let J = [−c/2, c/2) ⊂ I. Then

(piJ + a+ + a−) ∩ S̃pec(Hpi ;αpi) = {0}.

Then H̃FN
piJ+a++a−

(H\pi ;αpi) is also defined when pi ∈ Pq,` is so large that
pic+ a+ + a− > c0(M). Moreover, we have an isomorphism

Φ: H̃FN
piJ

(H\pi ;αpi)→ H̃FN
piJ+a++a−

(H\pi ;αpi)

induced by the natural quotient-inclusion map.
Now we are in a position to show that H has a pi+1-periodic trajectory in the

homotopy class αpi . Arguing by contradiction, we assume that there are no such
trajectories. Then we have gap(H\pi+1 ;αpi) =∞. By Proposition 6.1, the filtered

Floer–Novikov homology H̃FN
piJ+a+

(H\pi+1 ;αpi) is defined (of course, this should
be zero at the chain level). Once the filtered Floer–Novikov homology groups are
defined, it is easy to see that the same conclusion as with Proposition 6.5 holds.
Hence we have the continuation maps

σH\pi+1H\pi : H̃FN
piJ

(H\pi ;αpi)→ H̃FN
piJ+a+

(H\pi+1 ;αpi)

and

σH\piH\pi+1 : H̃FN
piJ+a+

(H\pi+1 ;αpi)→ H̃FN
piJ+a++a−

(H\pi ;αpi)

by (7). Now we have the following commutative diagram:

H̃FN
piJ

(H\pi ;αpi)

σ
H
\pi+1H\pi

��

Φ

++

H̃FN
piJ+a+

(H\pi+1 ;αpi)
σ
H\piH

\pi+1

// H̃FN
piJ+a++a−

(H\pi ;αpi)

Since Φ is an isomorphism and H̃FN
piJ

(H\pi ;αpi) 6= 0, we conclude that

H̃FN
piJ+a+

(H\pi+1 ;αpi) 6= 0.

Thus H has a pi+1-periodic trajectory y in αpi , and hence in the homology class
pi[α].

Now it is enough to show that y is simple. Arguing by contradiction, we assume
that y is not simple. Since pi+1 is prime, y is the pi+1-th iteration of a one-periodic
trajectory in the homology class pi[α]/pi+1 ∈ H1(M ;Z)/Tor. Since pi/pi+1 is not
an integer, this contradicts the fact that [α] 6= 0 ∈ H1(M ;Z)/Tor. �
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6.3. Proof of Theorem 2.3.

Proof. Since the proof is almost same as in Theorem 2.2, here we only give the
necessary changes.

Assume that all p-periodic trajectories in αp are the p-th iterations of one-
periodic trajectories in α for a large prime p. Since π1(M) is an R-group and
[ω]− λc1 is aspherical, Lemma 4.10 shows that

S̃pec(H\p;αp) = pS̃pec(H;α).

Thus we obtain gap(H\p;αp) = p gap(H;α). Hence, by Proposition 6.1, the aug-

mented action filtered Floer–Novikov homology H̃FN
pI

(H\p;αp) is defined as long
as p is so large that p gap(H;α) > c0(M).

Moreover, since P1(H;α) is finite and [ω]− λc1 is α-toroidally rational, we can
show that

χ(H\p, pI;αp) = χ(H, I;α)

when p is large. Then the rest of the proof follows the same path as in Theorem
2.2. �
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