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Abstract

For integers 1 ≤ l < k with k ≥ 3 and a real number ξ such that 1, ξl, ξk are linearly
independent over Q, we obtain two results on upper bound of the uniform exponent of si-
multaneous approximation to (1, ξl, ξk) by rational numbers, which improve the results in our
previous paper. Our first result treats the case of arbitrary k, and our second and the main
result, which gives a better bound, treats the case k = 5, 7, 9.

This paper treats the problem of uniform simultaneous approximation by rational numbers

to certain set of real numbers, which was initiated by Davenport-Schmidt [1] in the study of

approximation to real numbers by algebraic integers of bounded degree. Fix a positive integer n

and an element Ξ = (ξ0, ..., ξn) ∈ Rn+1 with ξ0 ̸= 0. We say that a real number λ is a uniform

exponent of approximation to Ξ by rational numbers if there exists a constant c > 0 such that the

system of inequalities

max
0≤i≤n

(|xi|) ≤ X, max
0≤i≤n

(|x0ξi − xiξ0|) ≤ cX−λ

admits a non-zero solution (x0, ..., xn) ∈ Zn+1 for each real number X > 1. Let λ(Ξ) denote

the supremum of such exponents λ. First we explain some known results. Suppose that we are

given integers 1 ≤ l < k and Ξ = (1, ξl, ξk) ∈ R3 with 1, ξl, ξk linearly independent over Q. Then

Theorem 1a of [1] is described as follows:

Theorem 1 (Davenport-Schmidt 1969). If (l, k) = (1, 2), we have λ(Ξ) ≤ (
√
5− 1)/2 ∼= 0.618.

This bound of λ(Ξ) is optimal in the case k = 2 in the sense that the supremum of λ(Ξ)’s for ξ’s

in the theorem is equal to (
√
5− 1)/2 ∼= 0.618 (Roy [5]). Lozier-Roy [3] studied a similar problem

in the case (l, k) = (1, 3) and obtained the following result:

Theorem 2 (Lozier-Roy 2012). We have λ(Ξ) ≤ 2(9 +
√
11)/35 ∼= 0.7038, when (l, k) = (1, 3).

The optimal bound in the case (l, k) = (1, 3) is conjectured to be (1+ 3
√
5)/11 ∼= 0.7007 in [3],

but it has not been proven yet. In the paper [4], we studied a similar problem for general (l, k)

and proved the following result.
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Theorem 3. (1) λ(Ξ) ≤
√

(k−1)(k+3)−(k−1)

2 .

(2) λ(Ξ) ≤ (k−1)(k+2)
k2+2k−1 if k is odd.

Note that the bound in (2) is better than that in (1) for odd k.

As before, Theorem 1.3 would not be still optimal. The main goal of the present paper is to

improve the upper bound of Theorem 1.3 in some cases.

This paper gives us two kind of results, and our first result of this paper is as follows:

Theorem 4. We have λ(Ξ) ≤ (k2 − 1)/(k2 + k − 1), when k ≥ 3.

This upper bound is stronger than Theorem 1.3 (1). But Theorem 1.3 (2) is stronger than this

bound for k ≥ 3 odd. The main purpose of this paper is to improve the estimate of Theorem 1.3

(2) for k ∈ {5, 7, 9}. To describe our main result, we define the constants µ5, µ7, µ9 as follows:

• µ5 is the largest root of 31t3 + 120t2 − 144t+ 20 ∈ Q[t].

• µ7 is the largest root of 278t3 + 171t2 − 432t+ 63 ∈ Q[t].

• µ9 is the largest root of 983t3 + 8t2 − 960t+ 144 ∈ Q[t].

Then the main result of this paper is as follows:

Theorem 5. (1) We have λ(Ξ) ≤ µ5
∼= 0.822586, when k = 5.

(2) We have λ(Ξ) ≤ µ7
∼= 0.870696, when k = 7.

(3) We have λ(Ξ) ≤ µ9
∼= 0.897852, when k = 9.

Note that the bound in Theorem 5 is stronger than that in Theorem 3 for k ∈ {5, 7, 9}.
Our proof of Theorem 5 is a generalization of that in Lozier-Roy [3] in some sense. Lozier-Roy

proved Theorem 2 by studying asymptotic behavior and divisibility property of certain polynomials

(D(2), D(3), D(6) in their notation). We develop a certain generalization of their technique and

construct certain polynomial D with good asymptotic behavior and divisibility property which are

much more complicated than theirs.

To explain the proof in more detail, we fix some notations. Let k ∈ {5, 7, 9}. For x :=

(x0, x1, x2) ∈ R3, we put

∥x∥ := max(|x0|, |x1|, |x2|), L(x) := max(|x1 − x0ξ
l|, |x2 − x0ξ

k|).

We fix λ, c > 0 with λ > µk, assume for any real number X > 1 that the inequalities

∥x∥ ≤ X and L(x) ≤ cX−λ

have a non-zero solution x in Z3 and deduce a contradiction.

It is known that there exists a sequence of nice solutions {xi}i in Z3, which is called a sequence

of minimal points. We define the set I by

I := {i | i ≥ 2, xi−1,xi,xi+1 are linearly independent over Q},

which is known to be an infinite set, and for each i ∈ I, let n(i) be the next element of i in I. Also,

we define the integers pi and qi (i ∈ I) by xn(i) = pixi + qixi+1.
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For triples of indeterminates x := (x0, x1, x2) and x(a) := (x
(a)
0 , x

(a)
1 , x

(a)
2 ) (1 ≤ a ≤ k), we

define φ(x) := xk−l
0 xl

2−xk
1 and define Φ(x(1), ...,x(k)) to be the unique symmetric multilinear form

with the property Φ(x, ...,x) =
(
k
l

)
φ(x). For each a ∈ {0, 1, ..., k}, we define

Φa(x,y) := Φ(x, ...,x,y, ...,y︸ ︷︷ ︸
a

).

Also, let G ∈ Z[x,y] be the polynomial constructed in [4, Section 4] as a Z-linear combination of

the polynomials Φa(x,y)Φk−1−a(x,y) (0 ≤ a ≤ (k − 1)/2).

Now we explain the proof of Theorem 5. We putQ(x,y) := G(x,y)Φ1(x,y)Φ0(x,y)
k−1Φk(x,y)

k−2

and define the polynomial D(x,y) ∈ Z[x,y] of the form

D = aGk + bΦk+1
0 Φk−1

k + cQ+

m∑
ν=1

dνFνΦ
k+1+βν−αν

0 Φk−1−βν

k

for some Fν ’s in Z[x,y] with G|Fν and some a, b, c, d1, ..., dm ∈ Z̸=0, αν , βν ∈ N.
For f ∈ Z[x,y], put f(i) := f(xi,xn(i)). We choose Fν ’s suitably as Z-linear combinations of

certain products of polynomials of the form Φa(x,y) so that Fν(i)’s have nice estimate from above

as i ∈ I goes to infinity, by the aid of computer. Then we prove that, if D(i) = 0 for infinitely

many i ∈ I, the main term of D(i) is cQ(i). On the other hand, we can prove that Q(i) ̸= 0 for

any sufficiently large i ∈ I. So we conclude that D(i) ̸= 0 for any sufficiently large i ∈ I.

Moreover, we choose the coefficients a, b, c, d1, ..., dm suitably so that D(i) is divisible by qki ,

again by the aid of the computer. Combining it with the nonvanishing D(i) ̸= 0, we conclude that

|qi|k ≪ |D(i)| as i ∈ I goes to infinity. On the other hand, we prove that the main term of D(i) is

aG(i)k + cQ(i) and that both G(i)k, Q(i) are o(|qi|k) as i ∈ I goes to infinity. Thus we deduce the

contradiction and the proof of Theorem 5 is finished.

It would be an interesting future problem to find more conceptual way to construct the poly-

nomial D which works for general k.
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