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We study freeness of group actions on C∗-algebras from the viewpoint of homo-

logical algebra of triangulated category and relate it with dynamics.

This thesis consists of two parts. In Part I, we investigate the homological ideal JH
G ,

the kernel of the restriction functors in compact Lie group equivariant Kasparov

categories. Applying the relative homological algebra developed by Meyer and

Nest, we relate the Atiyah-Segal completion theorem with the comparison of JH
G

with the augmentation ideal of the representation ring. As an application, we

refine a known result on permanence property of the Baum-Connes conjecture

under extensions of groups.

In Part II, we study the continuous Rokhlin property of C∗-dynamical systems,

which is an analogue of freeness in dynamical system. We relate it with relative

injectivity studied in Part I. In addition to that, we determine the KK-equivalence

class of a G-C∗-algebra with the continuous Rokhlin property and give a classifica-

tion of continuour Rokhlin actions on Kirchberg algebras when the G is a compact

Lie group with the Hodgkin condition.



Acknowledgements

First of all, I would like to offer my immeasurable gratitude to my supervisor

Yasuyuki Kawahigashi for his great instruction, support and encouragement.

I acknowledge the support by the Japan Society for the Promotion of the Science

(No. 26-7081) and the Program for Leading Graduate Schools, MEXT, Japan. In

particular, my stay at the Penn. State University during a part of my doctoral

course is supported by the Program for Leading Graduate Schools. I also would

like to thank Nigel Higson, the host researcher during this stay.

For the work in Part I, I am deeply grateful to Georges Skandalis and N. Christo-

pher Phillips. Their initial suggestions on the Rokhlin property and the classifying

space triggered this research. I also thank Kang Li for his helpful comments.

For the work in Part II, I would like to thank Eusebio Gardella for his helpful

comments on an error in our preprint, which enables us to reach to a correct

and more deep conclusion. I also thank Masaki Izumi, Takeshi Katsura, Norio

Nawata, Yuhei Suzuki and the referee of our article for their helpful comments

and discussions.

Finally, I cordially thank my friend Yuki Arano, who is also the collaborator of

this series of researches. Our research started when he brought to me a vague

idea about the way to study the Rokhlin property of quantum group actions. His

ideas, in particular the use of quantum group theory, saved dying proofs of some

theorems.

ii



Contents

Abstract i

Acknowledgements ii

1 Introduction 1

I A categorical perspective of freeness and the Atiyah–
Segal completion theorem 9

2 Preliminaries in the relative homological algebra 10

3 Equivariant KK-theory for σ-C∗-algebras 15

3.1 Generalized operator algebras and Hilbert C∗-modules . . . . . . . 15

3.2 Equivariant KK-groups . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 The Kasparov category . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Equivariant topology in KK-theory 26

4.1 Semi-orthogonal decomposition in equivariant KK-theory . . . . . . 26

4.2 The Borel construction . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Comparison of ideals and the Atiyah–Segal completion theorem . . 31

4.4 The Baum-Connes conjecture for group extensions . . . . . . . . . . 40

II Continuous Rokhlin property for compact group ac-
tions 45

5 Continuous Rokhlin property 46

5.1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Averaging technique via equivariant KK-theory . . . . . . . . . . . 49

6 Classification results 52

6.1 Equivariant KK classification . . . . . . . . . . . . . . . . . . . . . 52

6.2 Model actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Classification of Kirchberg G-algebras . . . . . . . . . . . . . . . . . 57

6.4 Rokhlin property vs. continuous Rokhlin property . . . . . . . . . . 60

iii



Chapter 1

Introduction

Equivariant KK-theory is one of main subjects in the noncommutative topology

(the area of mathematics which deals with topological properties of C∗-algebras).

In the study of the ordinal equivariant topology, freeness of group actions is one of

the most fundamental properties. However, it is not trivial to give an appropriate

definition of freeness for group actions on C∗-algebras. This problem was first

studied by Phillips by using equivariant K-theory for C∗-algebras and summarized

in the book [Phi87]. On the other hand, the Rokhlin property of finite group ac-

tions introduced by Izumi [Izu04a] is able to be regarded as a dynamical definition

of freeness.

In this thesis, we give a new approach for freeness from the viewpoint of the

homological algebra of triangulated categories and study the relation with the

previous researches. A modified version of the Rokhlin property, the continuous

Rokhlin property, is compatble with this viewpoint. It enables us to apply the

homological algebra to classification theory.

Part I. A categorical perspective of freeness and

the Atiyah–Segal completion theorem

The first part is based on the paper [AK15].
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The main subject here is the homological ideal

JH
G (A,B) := Ker(ResHG : KKG(A,B)→ KKH(A,B))

of the Kasparov category KKG. Here, KKG is the category whose objects are sepa-

rable G-C∗-algebras, morphisms are equivariant KK-groups [Kas80b] and compo-

sition is given by the Kasparov product.

In [MN06], Meyer and Nest introduced a new approach to study the homological

algebra of the Kasparov category. They observed that the Kasparov category

has a canonical structure of the triangulated category. Moreover, they applied the

Verdier localization for KKG in order to give a categorical formulation of the Baum–

Connes assembly map. Actually, they prove that an analogue of the simplicial

approximation in the Kasparov category is naturally isomorphic to the assembly

map. Their argument is refined in [Mey08] in terms of relative homological algebra

of the projective class developed by Christensen [Chr98]. Moreover, it is proved

that the ABC spectral sequence (a generalization of Adams spectral sequence in

relative homological algebra) for the functor K∗(G⋉ ) and an object A converges

to the domain of the assembly map.

These results are essentially based on the fact that the induction functor IndG
H is

the left adjoint of the restriction functor ResHG when H ≤ G is an open subgroup.

On the other hand, it is also known that when H ≤ G is a cocompact subgroup,

IndG
H is the right adjoint of ResHG . This relation enables us to apply the homological

algebra of the injective class for KK-theory. It should be noted that the category

of separable G-C∗-algebras is not closed under countable direct product although

the fact that KKG have countable direct sums plays an essential role in [MN06,

MN10,Mey08]. Therefore, we replace the category G-C∗sep of separable G-C∗-

algebras with its (countable) pro-category. Actually, the category ProZ>0 G-C
∗sep

is naturally equivalent to the category σG-C∗sep of σ-G-C∗-algebras, which is dealt

with by Phillips in his study of the Atiyah–Segal completion theorem. Fortunately,

KK-theory for (non-equivariant) σ-C∗-algebras are investigated by Bonkat [Bon02].

We check that his definition is generalized for equivariant KK-theory and get the

following theorem.

Theorem 3.16 and Theorem 4.4. For a compact group G, the equivariant

Kasparov category σKKG of σ-G-C∗-algebras has a structure of the triangulated
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category. Moreover, for a family F of G (Definition 4.1), the pair of thick sub-

categories (FC, ⟨FI⟩loc) is complementary. Here FC is the full subcategory of

F-contractible objects and FI is the class of F-induced objects (for more details,

see Definition 4.3).

By investigating an explicit construction of the semi-orthogonal decomposition

associated to the above homological algebra by using the phantom castle, we

observe that the Milnor construction {EF ,nG} of the universal F -free proper G-

space EFG arises in a canonical way. For example, compornents Ãn of the phantom

castle is the tensor product with C(EF ,nG) and the right component Ã of A with

respect to the semi-orthogonal decomposition is nothing but A⊗C(EFG). For this

reason, the subcategory ⟨FI⟩loc can be regarded as the category of C∗-algebras

with F -free G-actions. In particular, we are interested in the case that F = T .
Indeed, this characterization of freeness is compatible with the previous studty in

[Phi87] (see Remark 4.8).

Moreover, this construction is parallel to the proof of a classical theorem in the

ordinal equivariant topology, the Atiyah–Segal completion theorem. In the theory

of equivariant cohomology, there is a canonical way to construct an equivariant

general cohomology theory from a non-equivariant cohomology theory. Actually,

the general cohomology group of the new space given by the Borel construction

X ×G EG is regarded as the equivariant version of the given cohomology group

of X. On the other hand, equivariant K-theory is defined in terms of equivariant

vector bundles by Atiyah and Segal in [AS68,Seg68]. This group has a structure

of modules over the representation ring R(G) and hence is related to the repre-

sentation theory of compact Lie groups. In 1969, Atiyah and Segal discovered a

beautiful relation between them [AS69]. When the equivariant K-group K∗
G(X) of

a compact G-space is finitely generated as an R(G)-module, then the completion

of the equivariant K-group by the augmentation ideal is actually isomorphic to

the (representable) K-group pf the Borel construction of X.

There are two generalization of this theorem. In [AHJM88], it is proved that the

completion of K∗
G(X) by the family of ideals of the form IHG (where H is in a

given family of subgroups of G) is isomorphic to the equivariant K-group KG(X×
EFG), where EFG is the universal F -free G-space. In [Phi89a], the Atiyah–

Segal completion theorem is generalized for K-theory of C∗-algebras. In order to

formulate the statement, he generalizes operator K-theory for σ-C∗-algebras in
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[Phi89b]. Actually, this contains the Atiyah–Segal completion theorem for twisted

K-theory because the twisted equivariant K-group is isomorphic to the K-group

of certain C∗-algebra bundles with (twisted) group actions.

Here, we prove the following categorical counterpart of the Atiyah–Segal comple-

tion theorem.

Theorem 4.16. Let G be a compact Lie group and let A, B be σ-C∗-algebras such

that KKG
∗ (A,B) are finitely generated for ∗ = 0, 1. Then the filtrations (JF

G)
∗(A,B)

and (IFG )
∗KKG(A,B) are equivalent.

Applying it for the relative homological algebra of the injective class, we obtain

the following generalization of the Atiyah–Segal completion theorem.

Theorem 4.22. When KKG
∗ (A,B) are finitely generated R(G)-modules for ∗ =

0, 1, the following R(G)-modules are canonically isomorphic:

KKG(A,B)̂IFG
∼= KKG(A, B̃) ∼= RKKG(EFG;A,B) ∼= σKKG/FC(A,B).

We remark that the Atiyah–Segal completion theorem has been already generalized

for equivariant KK-theory by Uuye [Uuy12]. He assumes that KKH
∗ (A,B) are

finitely generated for all subgroups H of G in order to regard the correspondence

X 7→ KKG(A,B ⊗ C(X)) as an equivariant cohomology theory of finite type. In

Theorem 4.22, we succeed to weaken this assumption.

It is remarkable that in some special cases we need not to assume that KKG
∗ (A,B)

are finitely generated.

Corollary 4.14. Let Z be the family generated by all cyclic subgroups of G. Then,

there is n > 0 such that (JZ
G)

n = 0.

It immediately follows from Corollary 4.14 that if ResHG A is KKH-contractible for

any cyclic subgroup H of G, then A is KKG-contractible. This is a variation of Mc-

Clure’s restriction map theorem [McC86] which is generalized by Uuye [Uuy12] for

equivariant KK-theory. Since we improve the Atiyah–Segal completion theorem,

the assumption in Theorem 0.1 of [Uuy12] is also weakened (Corollary 4.24).

We apply Corollary 4.14 for the study of the complementary pair (⟨CI⟩loc , CC) of
the Kasparov category σKKG and the Baum–Connes conjecture (BCC). Oue main
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interest here is permanence property of the BCC under group extensions, which is

studied by Chabert, Echterhoff and Oyono-Oyono in [OO01,CE01b,CE01a] with

the use of the partial assembly map. Let 1→ N → G
π−→ G/N → 1 be an extension

of groups. It is proved in Corollary 3.4 of [CE01a] and Theorem 10.5 of [MN06]

that if G/N and π−1(F ) for any compact subgroup F of G/N satisfy the (resp.

strong) BCC, then so does G. Here, the assumption that π−1(F ) satisfy the BCC is

related to the fact that the assmebly map is defined in terms of the complementary

pair (⟨CI⟩loc , CC) (this assumption is refined by Schick [Sch07] when G is discrete,

H is cohomologically complete and has enough torsion-free amenable quotients by

group-theoretic arguments). On the other hand, Corollary 4.14 implies that the

subcategories CC and CZC coincide in σKKG. As a consequence we refine their

results as following.

Theorem 4.29. Let 1→ N → G→ G/N → 1 be an extension of second countable

groups such that all compact subgroups of G/N are Lie groups and let A be a G-

C∗-algebra. Then the following holds:

1. If π−1(H) satisfies the (resp. strong) BCC for A for any compact cyclic

subgroup H of G/N , then G satisfies the (resp. strong) BCC for A if and

only if G/N satisfies the (resp. strong) BCC for N ⋉PR
r A.

2. If π−1(H) and G/N have the γ-element for any compact cyclic subgroup H

of G/N , then so does G. Moreover, in that case γπ−1(H) = 1 and γG/N = 1

if and only if γG = 1.

Part II. Continuous Rokhlin Property for com-

pact group actions

The second part is based on the paper [AK17].

After the initial work by Connes [Con75], the study of group actions on C∗-algebras

and von Neumann algebras, particularly their classification, is a fundamental sub-

ject in the theory of operator algebras, as well as the classification of operator

algebras themselves. In this paper, we focus on actions of compact Lie groups on

C∗-algebras.
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In the study of von Neumann algebras, the classification of compact group actions

on factors are studied in Kawahigashi-Takesaki [KT92], Masuda-Tomatsu [MT10]

and so on. In the context of C∗-algebras, Izumi [Izu04a, Izu04b] introduced the

Rokhlin property for finite group actions on C∗-algebras, extracting an essential

property which is used to classify group actions in the von Neumann algebra the-

ory. Izumi classified finite group actions with the Rokhlin property, while also

showing that many of fundamental C∗-dynamical systems such as infinite ten-

sor products of left regular actions of a finite group G on M|G| and the quasi-

free action of a finite group G on O|G| by a regular representation have this

property. After his work, the study of this kind of actions has been attracting

attention among C∗-algebraists [Phi11, OP12, HWZ15, HP15]. Among those, re-

cently, Gardella [Gar14c] initiated the study of Rokhlin actions for general compact

groups.

Roughly speaking, the Rokhlin property is an analogue in an approximate sense

of freeness of product type (that is, G-actions on G×X) in topological dynamics.

For a G-C∗-algebra A with the Rokhlin property, there is a fundamental technique

that allows us to replace a projection or a unitary with a G-invariant one, which

is called an averaging technique by Gardella [Gar14d]. More precisely, there is

a sequence of completely positive maps A → Aα which is approximately a ∗-
homomorphism preserving Aα. This gives a strong restriction on the structure of

C∗-dynamical systems, its K-groups, crossed products and so on. For example,

we can prove certain “approximate cohomology vanishing” type theorems, which

play an essential role in the study of actions on von Neumann algebras.

Here, we study a variation of the Rokhlin property, the continuous Rokhlin prop-

erty [Gar14e], replacing the parameter N of approximation with R≥0. Although

the continuous Rokhlin property is strictly stronger than the Rokhlin property,

many known examples of Rokhlin actions have the continuous Rokhlin property.

Actually, a necessary and sufficient condition for a Rokhlin action on a unital

UCT-Kirchberg algebra to have the continuous Rokhlin property is given in terms

of equivariant KK-theory (Theorem 6.15).

In connection with the homological algebra discussed in Part I, it is remarkable

that this replacement is compatible with Thomsen’s picture of equivariant KK-

theory [Tho99]. In fact, we immediately get the following theorem.

Theorem 5.9. Let G be a second countable compact group and let A be a sep-

arable unital G-C∗-algebra. If A has the continuous Rokhlin property, then A is
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JG-injective. Moreover, if A has continuous Rokhlin dimension with commuting

towers at most d− 1, then A is Jd
G-injective.

This theorem is also available for the study of the Rokhlin property. Indeed,

the Rokhlin dimension with commuting towers is finite if and only if so is the

continuous Rokhlin dimension with commuting towers (Proposition 5.3).

Compatibility of the continuous Rokhlin property with equivariant KK-theory en-

ables us to apply KK-theory for classification theory of C∗-dynamical systems.

Although KK-theory is a kind of (co)homology theory and hence does not dis-

tinguish two homotopic C∗-algebras, it is also a powerful tool for classifications

of C∗-algebras up to isomorphism. For example, the Kirchberg-Phillips classifi-

cation [Kir,Phi00] asserts that two unital Kirchberg algebras (separable, nuclear,

simple and purely infinite C∗-algebras) are isomorphic if and only if there is a KK-

equivalence preserving the unit classes in the K0-groups. It is essential in the proof

of [Phi00] that the KK-group has a presentation as the set of homotopy classes of

asymptotic morphisms. Actually, in [Izu04a] Izumi gives a necessary and sufficient

condition for two actions with the Rokhlin property to be conjugate by using an

intertwining argument. With the same argument, we prove that two unital Kirch-

berg G-algebras with the Rokhlin property are G-equivariantly isomorphic if and

only if they are KKG-equivalent (Proposition 6.12).

Now, let us focus on the case that G is a Lie group with the Hodgkin condi-

tion (connected and π1(G) is torsion-free) and A is a unital Kirchberg algebra.

Then, the following theorem enables us to determine the structure of Kirchberg

G-algebras with the continuous Rokhlin property.

Theorem 6.3. Let G be a compact Lie group with the Hodgkin condition. Then,

for any separable unital G-C∗-algebra (A,α) with the continuous Rokhlin prop-

erty, there is a KKG-equivalence from A to Aα ⊗ C(G) mapping [1A] ∈ KG
0 (A) to

[1Aα⊗C(G)].

For the proof, we use the strong Baum–Connes isomorphism for an arbitrary

coefficient of the dual quantum group Ĝ [MN07], which is rephrased in terms of

the crossed product functor since Ĝ is torsion-free in the sense of [Mey08].
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Consequently, together with a construction of the model action O(G) of a uni-

tal Kirchberg G-algebra with the continuous Rokhlin property which is KKG-

equivalent to C(G) (Corollary 6.10), we get the following complete classification

of unital Kirchberg G-algebras in terms of equivariant KK-theory.

Theorem 6.13. Let G be a Hodgkin Lie group.

◦ A unital Kirchberg G-algebra (A,α) with the continuous Rokhlin property is

G-equivariantly isomorphic to Aα ⊗O(G).

◦ Two unital Kirchberg G-algebras (A,α) and (B, β) with the continuous Rokhlin

property are isomorphic if and only if the fixed point algebras Aα and Bβ are

isomorphic. Moreover, if the underlying C∗-algerbas A and B are in the

UCT class, then (A,α) and (B, β) are conjugate if and only if

(K0(A
α), [1Aα ],K1(A

α)) ∼= (K0(B
β), [1Bβ ],K1(B

β)).

◦ A unital UCT-Kirchberg algebra (A,α) in the Cuntz standard form (i.e.

[1A] = 0 ∈ K0(A)) admits a G-action with the continuous Rokhlin prop-

erty if and only if there is a countable abelian group M such that Ki(A)

(i = 0, 1) are isomorphic to M⊕n, where n = 2rankG−1. In this case,

M ∼= K0(A
α)⊕K1(A

α).

It generalizes Theorem 5.3 of [Gar14b] (for G = T1) and Theorem 6.6 of [IM10]

(for G = TN).



Part I

A categorical perspective of

freeness and the Atiyah–Segal

completion theorem

9



Chapter 2

Preliminaries in the relative

homological algebra

In this chapter, we briefly summarize some terminologies and basic facts on the

relative homological algebra of triangulated categories. The readers can find more

details in [MN10] and [Mey08]. We modify a part of the theory in order to deal

with the relative homological algebra of the injective class for countable families

of homological ideals.

A triangulated category is an additive category together with the category auto-

morphism Σ called the suspension and the class of triangles (a sequence A
f−→ B

g−→
C

h−→ ΣA such that g ◦ f = h ◦ g = Σf ◦h = 0) which satisfies axioms [TR0]-[TR4]

(see Chapter 1 of [Nee01]). We often write an exact triangle A→ B → C → ΣA

as

A // B

����
��
��

C.

◦99

\\999

Here the symbol A ◦ // B represents a morphism from A to ΣB.

Let T be a triangulated category. An ideal J of T is a family of subgroups J(A,B)

of T(A,B) such that T(A,B) ◦J(B,C) ◦T(C,D) ⊂ J(A,D). A typical example is

the kernel of an additive functor F : T→ A. We say that an ideal is a homological

ideal if it is the kernel of a stable homological functor from T to an abelian category

A with the suspension automorphism. Here a covariant functor F is homological

if F (A) → F (B) → F (C) is exact for any exact triangle A → B → C → ΣA

10
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and stable if F ◦ Σ = Σ ◦ F . Note that the kernel of an exact functor between

triangulated categories is a homological ideal by Proposition 20 of [MN10].

For a homological ideal J of T, an object A is J-contractible if idA is in J and is J-

injective if f ∗ : T(D,A)→ T(B,A) is zero for any f ∈ J(B,D). The triangulated

category T has enough J-injectives if for any object A ∈ ObjT there is a J-injective

object I and a J-monic morphism A→ I (i.e. the morphism ι in the exact triangle

N
ι−→ A → I → ΣN is in J). Note that the morphism ι is J-coversal, that is, an

arbitrary morphism f : B → A in J factors through ι (see Lemma 3.5 of [Mey08]).

More generally, we consider the above homological algebra for a countable family

J = {Jk}k∈Z>0 of homological ideals of T. For example, we say an object A is

J-contractible if A is Jk-contractible for any k ∈ Z>0.

Definition 2.1. A filtration associated to J is a filtration of the morphism sets of

T coming from the composition of ideals {Ji1 ◦Ji2 ◦· · ·◦Jir}r∈Z>0 where {i1, i2, . . . }
is a sequence of positive integers such that each k ∈ Z>0 arises infinitely many

times.

Note that two filtrations associated to J are equivalent (here, we say that two

filtrations A∗ and A
′
∗ of an abelian group A are equivalent if for any n ∈ Z>0 there

is m ∈ Z>0 such that Am ⊂ A′
n and A′

m ⊂ An). For simplicity of notation, we use

the letter Jr for the r-th component of a (fixed) filtration associated to J unless

otherwise noted.

The relative homological algebra is related to complementary pairs (or semi-

orthogonal decompositions) of the triangulated categories. For a thick triangu-

lated subcategory C of T (Definition 1.5.1 and Definition 2.1.6 of [Nee01]), there

is a natural way to obtain a new triangulated category T/C called the Verdier

localization (see Section 2.1 of [Nee01]). A pair (N, I) is a complementary pair

if T(N, I) = 0 for any N ∈ ObjN, I ∈ Obj I and for any A ∈ ObjT there is

an exact triangle NA → A → IA → ΣNA such that NA ∈ ObjN and IA ∈ Obj I.

Actually, such an exact triangle is unique up to isomorphism for each A and there

are functors N : T→ N and I : T→ I that maps A to NA and IA respectively. We

say that N (resp. I) the left (resp. right) approximation functor with respect to

the complementary pair (N, I). These functors induces the category equivalence

I : T/N→ I and N : T/I→ N.
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Moreover we assume that a triangulated category T admits countable direct sums

and direct products. A thick triangulated subcategory of T is colocalizing (resp.

localizing) if it is closed under countable direct products (resp. direct sums). For

a class C of objects in T, let ⟨C⟩loc (resp. ⟨C⟩loc) denote the smallest colocalizing

(resp. localizing) thick triangulated subcategory which includes all objects in C.
We say that an ideal J is compatible with countable direct products if the canonical

isomorphism T(A,
∏
Bn) ∼=

∏
T(A,Bn) restricts to J(A,

∏
Bn) ∼=

∏
J(A,Bn).

We write NJ for the thick subcategory of objects which is Jk-contractible for any

k. If each Jk is compatible with countable direct products, NJ is colocalizing. We

write IJ for the class of Jk-injective objects for some k.

Theorem 2.2 (Theorem 3.21 of [Mey08]). Let T be a triangulated category with

countable direct product and let J = {Ji} be a family of homological ideals with

enough Ji-injective objects which are compatible with countable direct products.

Then, the pair (NJ, ⟨IJ⟩loc) is complementary.

We review the explicit construction of the left and right approximation in Theorem

3.21 of [Mey08]. We start with the following diagram called the phantom tower

for B:

B N0

π0 ��8
88

88
8 N1

ι10oo

π1 ��8
88

88
8 N2

ι21oo

π2 ��8
88

88
8 N3

ι32oo

π3 ��8
88

88
8 N4

ι43oo

π4
��:

::
::

::
· · ·oo

I0

◦��� ε0

CC���

◦
δ1

// I1

◦��� ε1

CC���

◦
δ2

// I2

◦��� ε2

CC���

◦
δ2

// I3

◦��� ε3

CC���

◦
δ3

// · · ·

where ιk+1
k are in Jik and Ik are Jik-injective (here {ik}k∈Z>0 is the same as in

Definition 2.1). There exists such a diagram for any B since T has enough J-

injectives. We write ιlk for the composition ιll−1 ◦ ιl−1
l−2 ◦ · · · ◦ ι

k+1
k . Since each ιk+1

k

is Jik-coversal, we obtain Jp(A,B) = Im(ιp0)∗ for any A.

Next we extend this diagram to the phantom castle. Due to the axiom [TR1],

there is a (unique) object B̃p in T and an exact triangle Np → B → B̃p → ΣNp

for each p. By the axiom [TR4], we can complete the following diagram by dotted
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morphisms

B

��;
;;

;;
; Np−1
oo

��;
;;

;;
;

Np
oo

B̃p−1

◦}}}

>>}}}

◦ // Ip

CC������

��

B̃p.

__

and hence B̃p is Jp-injective. Moreover, we obtain a projective system

N1

}}{{{
{

N2

}}{{{
{

oo N3

}}{{{
{

oo N4

}}{{{
{

oo N5

}}{{{
{

oo · · ·oo

B
!!B

BB
B B

!!B
BB

B
oo B

!!B
BB

B
oo B

!!B
BB

B
oo B

!!B
BB

B
oo · · ·oo

B̃1

◦

OO

B̃2

◦

OO

oo B̃3

◦

OO

oo B̃4

◦

OO

oo B̃5

◦

OO

oo · · ·oo

of exact triangles. Now we take the homotopy projective limit IB := ho- lim←−p
B̃p (we

also use the symbol B̃ for this object) and NB := ho- lim←−Np. Here the homotopy

projective limit of a projective system (Bp, φ
p+1
p ) is the third part of the exact

triangle

Σ−1
∏

Bp → ho- lim←−Bp →
∏

Bp
id−S−−−→

∏
Bp

where S :=
∏
φm+1
m . Then, the axiom [TR4] implies that the homotopy projective

limit NB → B → IB → ΣNB of the projective system of exact triangles is also

exact. In fact, it can be checked that IB is in ⟨IJ⟩loc and NB is in NJ and hence

NB and IB gives the left and right approximation of B.

At the end of this section, we review the ABC spectral sequence, introduced in

[Mey08] and named after Adams, Brinkmann and Christensen. Let B be an object

in T, let J be a countable family of homological ideals with a fixed filtration and

let F : T→ Ab be a homological functor. Set

{
D =

⊕
Dp,q, Dp,q := Fp+q+1(Np+1),

E =
⊕

Ep,q, Ep,q := Fp+q+1(Ip+1),


ip,q := (ιp+2

p+1)
∗ : Dp,q → Dp+1,q−1,

jp,q := (εp+1)
∗ : Dp,q → Ep−1,q+1,

kp,q := (πp)
∗ : Ep,q → Dp,q+1,

where Np = A and Ip = 0 for p < 0. Then the diagram

D
i // D

j����
��
��

E
k

\\888888
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forms an exact couple. We call the associated spectral sequence is the ABC spectral

sequence for B and F .

Proposition 2.3 (Proposition 4.3 of [Mey08]). Let B be an object in T and let

F be a homological functor. Set Dpq
r = Dpq

r (B) := ir−1(Dp−r+1,p+r−1) and Epq
r =

Epq
r (B) := k−1(Dp,q

r )/j(Ker ir). Then the following hold:

1.

Dp−1,q
r =


Jr−1Fp+q+1(Np) if p ≥ 0,

Jp+r−1Fp+q+1(B) if −r + 1 ≤ p ≤ 0,

Fp+q+1(B) if p ≤ −r + 1,

where JpF (B) denotes the subgroup {f∗ξ | ξ ∈ F (A), f ∈ Jp(A,B)} of F (B).

2. The E2-page Epq
2 is isomorphic to the right derived functor RpF q(B) :=

Hp(Fq(I∗), (δi)∗).

3. There is an exact sequence

0→ JpFp+q+1(B)

Jp+1Fp+q+1(B)
→ Ep,q

∞ → Badp+1,p+q+1 i−→ Badp,p+q+1

where Badp,q(B) = Badp,q := J∞Fq(Np).

Lemma 2.4. Assume that i : Badp+1,p+q+1(B)→ Badp,p+q+1(B) is injective. Then,

the ABC spectral sequence Er
pq converges to F (B) with the filtration J∗F (B). More-

over, α∗ : F (B)→ F (B̃) induces an isomorphism of graded quotients with respect

to the filtration J∗F .

Proof. The convergence of the ABC spectral sequence follows from Proposition 2.3

(3). By (the dual of) Proposition 3.27 of [Mey08], we have the morphism between

exact couples and hence the commutative diagram

0 // JpFp+q+1(B)

Jp+1Fp+q+1(B)
//

α∗
��

Epq
∞(B)

χ //

α∗

��

Badp+q+1,p(B) i //

α∗

��

Badp,q(B)

α∗

��

0 // JpFp+q+1(B̃)

Jp+1Fp+q+1(B̃)
// Epq

∞(B̃)
χ̃ // Badp+q+1,p(B̃) i // Badp,q(B̃).

Now, by Proposition 2.3 (2), the map α∗ : E
pq
2 (B)→ Epq

2 (B̃) is an isomorphism and

hence so is α∗ : E
pq
∞(B)→ Epq

∞(B̃). Therefore, injectivity of i : Badp+1,p+q+1(B)→
Badp,p+q+1(B) implies χ = 0. Consequently we get χ̃ = 0, which gives the conclu-

sion.



Chapter 3

Equivariant KK-theory for

σ-C∗-algebras

In this chapter, we summarize basic properties of equivariant KK-theory for σ-C∗-

algebras for the convenience of readers. Most of them are obvious generalizations

of equivariant KK-theory for C∗-algebras (a basic reference is [Bla98]) and non-

equivariant KK-theory for σ-C∗-algebras by Bonkat [Bon02]. Throughout this

section we assume that G is a second countable locally compact topological group.

3.1 Generalized operator algebras and Hilbert

C∗-modules

Topological properties of inverse limits of C∗-algebras was studied by Phillips in

[Phi88a, Phi88b, Phi89a, Phi89b]. He introduced the notion of representable K-

theory for σ-C∗-algebras in order to formulate the Atiyah-Segal completion theo-

rem for C∗-algebras.

Definition 3.1. A pro-G-C∗-algebra is a complete locally convex ∗-algebra with

continuous G-action whose topology is determined by its G-invariant continuous

C∗-seminorms. A pro-G-C∗-algebra is a σ-G-C∗-algebra if its topology is generated

by countably many G-invariant C∗-seminorms.

15
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In other words, a pro-G-C∗-algebra is a projective limit of G-C∗-algebras. Actually,

a pro-G-C∗-algebra A is isomorphic to lim←−p∈S(A)
Ap, where S(A) is the net of G-

invariant continuous seminorms and

Ap := A/{x ∈ A | p(x∗x) = 0}

is the completion of A by the seminorm p ∈ S(A). A pro-G-C∗-algebra is separable

if Ap are separable for any p ∈ S(A). If A is a separable σ-G-C∗-algebra, then

it is separable as a topological space. Basic operations (full and reduced tensor

products, free products and crossed products) are also well-defined for pro-C∗-

algebras. When G is compact, any σ-C∗-algebras with continuous G-action are

actually σ-G-C∗-algebras.

We write σG-C∗sep for the category of separable σ-G-C∗-algebras and equivariant

∗-homomorphisms. Then we have the category equivalence

lim←− : ProZ>0G-C
∗sep→ σG-C∗sep

where ProZ>0G-C
∗sep is the category of surjective projective systems of separa-

ble G-C∗-algebras indexed by Z>0 with the morphism set Hom({An}, {Bm}) :=

lim←−n
lim−→m

Hom(An, Bm). Actually, a ∗-homomorphism φ : A → B induces a mor-

phism between projective systems since each composition A
φ−→ B → Bp factors

through some Aq.

Next we introduce the notion of Hilbert module over pro-C∗-algebras.

Definition 3.2. A G-equivariant pre-Hilbert B-module is a locally convex B-

module together with the B-valued inner product ⟨·, ·⟩ : E × E → B and the

continuous G-action with

⟨e1, e2b⟩ = ⟨e1, e2⟩ b, ⟨e1, e2⟩∗ = ⟨e2, e1⟩ ,

g(⟨e1, e2⟩) = ⟨g(e1), g(e2)⟩ , g(eb) = g(e)g(b),

and the topology of E is induced by seminorms pE(e) := p(⟨e, e⟩)1/2 for p ∈ S(B).

A G-equivariant pre-Hilbert B-module is a G-equivariant Hilbert B-module if it is

complete with respect to these seminorms.

Basic operations (direct sums, interior and exterior tensor products and crossed

products) are also well-defined (see Section 1 of [Sch94]).
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As a locally convex space, E is isomorphic to the projective limit lim←−p∈S(B)
Ep

where Ep := E/{e ∈ E | p(⟨e, e⟩) = 0}. A G-equivariant Hilbert B-module E is

countably generated if Ep is countably generated for any p ∈ S(B).

Let L(E) and K(E) be the algebra of adjointable bounded and compact operators

on E respectively. They are actually pro-G-C∗-algebras since we have isomor-

phisms

L(E) ∼= lim←−
p∈S(B)

L(Ep), K(E) ∼= lim←−
p∈S(B)

K(Ep).

In particular, L(E) and K(E) are σ-G-C∗-algebra if so is B. Note that L(E) is not
separable and the canonical G-action on L(E) is not continuous in norm topology.

Kasparov’s stabilization theorem is originally introduced in [Kas80a] and general-

ized by Mingo-Phillips [MP84] and Meyer [Mey00] for equivariant cases. Bonkat [Bon02]

also gives a generalization for σ-C∗-algebras. Let H be a separable infinite dimen-

sional Hilbert space and we write HB, HG,B and KG for H ⊗ B, H ⊗ L2(G)⊗ B
and K(L2G⊗H) respectively.

Theorem 3.3. Let B be a σ-unital σ-G-C∗-algebra and let E be a countably gen-

erated G-equivariant Hilbert B-module together with an essential G-equivariant

∗-homomorphism φ : KG → L(E). Then there is an isomorphism

E ⊕HG,B
∼= HG,B

as G-equivariant Hilbert B-modules.

Proof. In non-equivariant case, the proof is given in Section 1.3 of [Bon02]. In

fact, we have a sequence {ei} in E such that supn ∥ein∥ ≤ 1 and {π(ei)} generates
Ep for any p ∈ S(B) since the projection (Ep)1 → (Eq)1 between unit balls is

surjective for any p ≥ q. Now we obtain the desired unitary U as the unitary

factor in the polar decomposition of the compact operator

T : HB → E ⊕HB; T (ξ
i) = 2−iei ⊕ 4−iξi

where {ξi} is a basis of HB. Actually the range of |T | is dense because T ∗T =

diag(4−2, 4−4, . . .) + (2−i−j ⟨ei, ej⟩)ij is strictly positive.

In equivariant case, we identify E with L2(G,H) ⊗ (L2(G,H)∗ ⊗KG
E) and set

E0 := H ⊗C (L2(G,H)∗ ⊗KG
E). Let U be the (possibly non-equivariant) unitary
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from HB to E0 ⊕HB as above. Then we obtain

Ũ(g) := g(U) : Cc(G,HB)→ Cc(G,E0 ⊕HB)

which extends to a G-equivariant unitary Ũ : HG,B
∼= L2(G,HB) → L2(G,E0 ⊕

HB) ∼= E ⊕HG,B. More detail is found in Section 3 of [Mey00].

A pro-C∗-algebra is σ-unital if there is a strictly positive element h ∈ A. Here, we
say that an element h ∈ A is strictly positive if hA = Ah = A. A pro-C∗-algebra

A is σ-unital if and only if it has a countable approximate unit. A separable σ-

C∗-algebra is σ-unital and moreover has a countable increasing approximate unit

(Lemma 5 of [Hen89]).

Lemma 3.4. Let B be a σ-C∗-algebra with G-action, A ⊂ B a σ-G-C∗-algebra, Y

a σ-compact locally compact space, φ : Y → B a function such that y 7→ [φ(y), a]

are continuous functions which take values in A. Then there is a countable ap-

proximate unit {ui} for A that is quasi-central for φ(Y ) and quasi-invariant, that

is, the sequences [ui, φ(y)] (y ∈ Y ) and g(ui)− ui converge to zero.

Proof. Let {pn}n∈Z>0 be an increasing sequence of invariant C∗-seminorms on B

generating the topology of B and let {vm} be a countable increasing approximate

unit for A and h :=
∑

2−kvk. By induction, we can choose an increasing sequence

{un} given by convex combinations of vi’s such that

1. pn(unh− h) ≤ 1/n,

2. pn([un, φ(y)]) ≤ 1/n for any y ∈ Yn,

3. pn(g(un)− un) ≤ 1/n for any g ∈ Xn.

Each induction step is the same as in Section 1.4 of Kasparov [Kas88].

Theorem 3.5. Let J be a σ-G-C∗-algebra, A1 and A2 σ-unital closed subalgebras

of M(J) where G acts continuously on A1, ∆ a separable subset of M(J) such

that [∆, A1] ⊂ A1 and φ : G→M(J) a function such that supg∈G,p∈S(M(J)) p(φ(g))

is bounded. Moreover we assume that A1 · A2, A1 · φ(G), and φ(G) · A1 are in J

and g 7→ φ(g)a are continuous functions on G for any a ∈ A1 + J . Then, there

are G-continuous even positive elements M1,M2 ∈M(J) such that
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◦ M1 +M2 = 1,

◦ Miai, [Mi, d], M2φ(g), φ(g)M2, g(Mi)−Mi are in J for any ai ∈ Ai, d ∈ ∆,

g ∈ G,

◦ g 7→M2φ(g) and g 7→ φ(g)M2 are continuous.

Proof. The proof is given by the combination of arguments in p.151 of [Kas88]

and in Theorem 10 of [Hen89]. Actually, by Lemma 3.4 we get an approximate

unit {un} for A1 and {vn} for J such that

1. pn(unh1 − h1) ≤ 2−n,

2. pn([un, y]) ≤ 2−n for any y ∈ Y ,

3. pn(g(un)− un) ≤ 2−n for any g ∈ Xn,

4. pn(vnw − w) ≤ 2−2n for any w ∈ Wn,

5. pn([vn, z]) is small enough to pn([bn, z]) ≤ 2−n for any z ∈ {h1, h2} ∪ Y ∪
φ(Xn),

6. pn(g(bn)− bn) ≤ 2−n for any g ∈ Xn,

where h1, h2, k are strictly positive element in A1, A2 and J respectively such that

pn(h1), pn(h2), pn(k) ≤ 1 for any n, Y ⊂ ∆ is a compact subset whose linear span

is dense in ∆, Xn is a increasing sequence of relatively compact open subsets of G

whose union is dense in G, Wn := {k, unh2, un+1h2} ∪ unφ(Xn) ∪ un+1φ(Xn+1) ∪
φ(Xn)un ∪ φ(Xn+1)un+1 and bn := (vn − vn−1)

1/2. Now, it can be checked that

the finite sum
∑
bnunbn converges in the strict topology to the desired element

M2 ∈M(J).

3.2 Equivariant KK-groups

A generalization of KK-theory for pro-C∗-algebras was first defined by Weid-

ner [Wei89] and was generalized for equivariant case by Schochet [Sch94]. Here the

notion of coherent A-B bimodule is introduced in order to avoid Kasparov’s tech-

nical theorem for pro-C∗-algebras. On the other hand, Bonkat [Bon02] introduced

a new definition of KK-theory for σ-C∗-algebras applying the technical theorem

3.5 for σ-C∗-algebras. In this paper we adopt the latter definition.
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Definition 3.6. Let A and B be σ-unital Z/2-graded σ-G-C∗-algebras. A G-

equivariant Kasparov A-B bimodule is a triplet (E,φ, F ) where

◦ E is a Z/2-graded countably generated G-equivariant Hilbert B-module,

◦ φ : A→ L(E) is a graded G-equivariant ∗-homomorphism,

◦ F ∈ L(E) is an odd self-adjoint operator such that [F, φ(A)], φ(A)(F 2− 1),

φ(A)(g(F )− F ) are in K(E) and φ(a)F, Fφ(a) are G-continuous.

Two G-equivariant Kasparov A-B bimodules (E1, φ1, F1) and (E2, φ2, F2) are uni-

tarily equivalent if there is a unitary u ∈ L(E1, E2) such that uφ1u
∗ = φ2 and

uF1u
∗ = F2. TwoG-equivariant KasparovA-B bimodules (E1, φ1, F1) and (E2, φ2, F2)

are homotopic if there is a Kasparov G-equivariant A-IB bimodule (E,φ, F ) such

that (evi)∗(E,φ, F ) are unitarily equivalent to (Ei, φi, Fi) for i = 0, 1.

Definition 3.7. Let A and B be σ-unital Z/2-graded σ-G-C∗-algebras. The KK-

group KKG(A,B) is the set of homotopy equivalence classes of G-equivariant Kas-

parov A-B bimodules.

It immediately follows from the definition that KKG(C, A) is canonically isomor-

phic to the representable equivariant K-group RKG
0 (A) introduced in [Phi89b].

Definition 3.8. Let (E1, φ1, F1) be a G-equivariant Kasparov A-B bimodule and

(E2, φ2, F2) a G-equivariant Kasparov B-C bimodule. A Kasparov product of

(E1, φ1, F1) and (E2, φ2, F2) is a G-equivariant Kasparov A-C bimodule (E1 ⊗B

E2, φ, F ) that satisfies the following.

1. The operator F ∈ L(E1 ⊗B E2) is an F2-connection. That is, Tx ◦ F2 −
(−1)deg x·degF2F ◦ Tx and F2 ◦ T ∗

x − (−1)deg x·degF2T ∗
x ◦ F are compact for any

x ∈ E1.

2. φ(a)[F1 ⊗ 1, F ]φ(a)∗ ≥ 0 mod K(E).

Theorem 3.9. Let A, B, C and D be σ-unital σ-G-C∗-algebras. Moreover we

assume that A is separable. The Kasparov product gives a well-defined group ho-

momorphism

KKG(A,B)⊗KKG(B,C)→ KKG(A,C)

which is associative, that is, (x⊗B y)⊗C z = x⊗B (y⊗C z) for any x ∈ KKG(A,B),

y ∈ KKG(B,C) and z ∈ KKG(C,D) when B is also separable.
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Proof. What we have to show is existence, uniqueness up to homotopy, well-

definedness of maps between KK-groups and associativity of the Kasparov prod-

uct. All of them are proved in the same way as in Theorem 12 and Theorem 21 of

[Ska84] or Theorem 2.11 and Theorem 2.14 of [Kas88]. Note that we can apply the

Kasparov technical theorem 3.5 since we may assume that supp∈S(L(E)) p(F ) ≤ 1

by a functional calculus and a separable σ-C∗-algebra is separable as a topological

algebra (see also Section 18.3 - 18.6 of [Bla98]).

Moreover, we obtain the Puppe exact sequence (as Theorem 19.4.3 of [Bla98])

for a ∗-homomorphism between σ-C∗-algebras and the six term exact sequences

(Theorem 19.5.7 of [Bla98]) for a semisplit exact sequence of σ-C∗-algebras by the

same proofs.

Next we deal with the Cuntz picture [Cun83] (see also [Mey00]) of KK-theory for

σ-G-C∗-algebras.

Definition 3.10 (Definition 2.2 of [Cun83]). We say that (φ0, φ1) : A⇒ D�J →
B is an equivariant prequasihomomorphism from A to B if D is a σ-unital σ-C∗-

algebra with G-action, φ0 and φ1 are equivariant ∗-homomorphisms from A to

D such that φ0(a) − φ1(a) are in a separable G-invariant ideal J of D such that

the restriction of the G-action on J is continuous, and J → B is an equivariant

∗-homomorphism. Moreover we say that (φ0, φ1) is quasihomomorphism if D is

generated by φ0(A) and φ1(A), J is generated by {φ0(a) − φ1(a) | a ∈ A} and

J → B is injective.

The idea given in [Cun87] is also generalized for σ-G-C∗-algebras.

Definition 3.11. Let A and B be σ-G-C∗-algebras. The full free product A∗B is

the σ-G-C∗-algebra given by the completion of the algebraic free product A ∗alg B
by seminorms

pπA,πB
(a1b1 . . . anbn) = ∥πA(a1)πB(b1) . . . πA(an)πB(bn)∥

where πA and πB are ∗-representations of A and B on the same Hilbert space. In

other words, when A = lim←−An and B = lim←−Bm, the free product A ∗ B is the

projective limit lim←−(An ∗Bm).
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By definition, any ∗-homomorphisms φA : A → D and φB : B → D are uniquely

extended to φA ∗ φB : A ∗ B → D. We denote by QA the free product A ∗ A and

by qA the kernel of the ∗-homomorphism idA ∗ idA : QA→ A.

Since we have the stabilization theorem 3.3 and the technical theorem 3.5 for σ-

G-C∗-algebras, the following properties of quasihomomorphisms and KK-theory is

proved in the same way. We only enumerate their statements and references for

the proofs. Here we write qsA for the G-C∗-algebra q(A⊗KG).

◦ The set of homotopy classes of G-equivariant quasihomomorphisms from

A⊗KG to B ⊗KG is isomorphic to KKG(A,B) (Section 5 of [Cun83]).

◦ The functor

KKG : G-C∗sep×G-C∗sep→ R(G)-Mod

is stable and split exact in both variables (Proposition 2.1 of [Cun87]).

◦ For any σ-G-C∗-algebras A and B, A ∗ B and A ⊕ B are KKG-equivalent

(proof of Proposition 3.1 of [Cun87]).

◦ The element πA := [π0] in KKG(qA,A) where π0 := (idA ∗ 0)|qA : qA→ A is

the KKG-equivalence (Proposition 3.1 of [Cun87]).

◦ There is a one-to-one correspondence between G-equivariant quasihomomor-

phisms from A⊗KG to B ⊗KG and G-equivariant ∗-homomorphisms from

qsA to B ⊗KG (Theorem 5.5 of [Mey00]).

◦ There is a canonical isomorphism KKG(A,B) ∼= [qsA,B ⊗ KG]
G (the stabi-

lization theorem 3.3 and Proposition 1.1 of [Cun87]).

◦ The correspondence

[qsA⊗KG, qsB ⊗KG]
G → KKG(A,B), φ 7→ πB ◦ φ ◦ (πA)−1

induces a natural isomorphism (Theorem 6.5 of [Mey00]).

For a projective system {An, πn} of σ-C∗-algebras, the homotopy projective limit

ho- lim←−An is actually isomorphic to the mapping telescope

TelAn := {f ∈
∏

C([0, 1], An) | fn(1) = πn(f(0))}.
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The following theorem follows from the fact that the functor KKG(A, ) and

KKG( , B) is compatible with direct products when B is a G-C∗-algebra.

Theorem 3.12. The following holds:

1. Let {An}n∈Z>0 be an inductive system of σ-G-C∗-algebras and A := ho- lim−→An.

For a σ-G-C∗-algebra B, there is an exact sequence

0→ lim←−
1KKG

∗+1(An, B)→ KKG(A,B)→ KKG
∗ (An, B)→ 0.

2. Let {Bn}n∈Z>0 be a projective system of σ-G-C∗-algebras and B := ho- lim←−Bn.

For a σ-G-C∗-algebra B, there is an exact sequence

0→ lim←−
1KKG

∗+1(A,Bn)→ KKG(A,B)→ lim←−KKG
∗ (A,Bn)→ 0

3. Let {An}n∈Z>0 be a projective system of σ-G-C∗-algebras and A := ho- lim←−An.

For a G-C∗-algebra B, there is an isomorphism

KKG(A,B) ∼= lim−→KKG(An, B).

Corollary 3.13. Let A = ho- lim←−An and B = ho- lim←−Bm be homotopy projective

limits of C∗-algebras. There is an exact sequence

0→ lim←−
m

1 lim−→
n

KKG
∗+1(An, Bm)→ KKG

∗ (A,B)→ lim←−
m

lim−→
n

KKG(An, Bm)→ 0.

In particular, if two homotopy projective limits A = ho- lim←−An andB = ho- lim←−Bm

ofG-C∗-algebras are KKG-equivalent, then we get a pro-isomorphism of projecctive

systems {An}n → {Bm}m in KKG.

3.3 The Kasparov category

Definition 3.14. We write σKKG for the Kasparov category of σ-G-C∗-algebras

i.e. the additive category whose objects are separable σ-G-C∗-algebras, morphisms

from A to B are KKG(A,B) and composition is given by the Kasparov product.

Note that the inclusion G-C∗sep ⊂ σG-C∗sep induces a full embedding KKG in

σKKG. Additional structures of KKG such as tensor products, crossed products
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and countable direct sums are extended on σKKG. Moreover the category KKG

has countably infinite direct products.

Theorem 3.15 (Theorem 2.2 of [Tho98], Satz 3.5.10 of [Bon02]). The category

σKKG is an additive category that has the following universal property: there is the

canonical functor KKG : σC∗sep→ σKKG such that for any C∗-stable, split-exact,

and homotopy invariant functor F : σC∗sep→ A there is a unique functor F̃ such

that the diagram

σC∗sepG //

��

A

σKKG

;;

commutes.

This follows from the Cuntz picture introduced in the previous subsection.

A structure of the triangulated category on KKG is introduced in [MN06]. Let S

be the suspension functor SA := C0(R) ⊗ A of C∗-algebras. Roughly speaking,

the inverse Σ := S−1 and the mapping cone exact sequence

ΣB → cone(f)→ A
f−→ B

determines a triangulated category structure of KKG. More precisely we need to

replace the category KKG with another one that is equivalent to KKG, whose ob-

jects are pair (A, n) where A is a separable σ-G-C∗-algebra and n ∈ Z, morphisms

from (A, n) to (B,m) are KKn−m(A,B) and composition is given by the Kasparov

product. In this category the functor Σ: (A, n) 7→ (A, n + 1) is an category iso-

morphism (not only an equivalence) and S ◦Σ = Σ◦S are natural equivalent with

the identity functor. A triangle Σ(B,m) → (C, l) → (A, n) → (B,m) is exact if

there is a ∗-homomorphism from A′ to B′ and the isomorphism α, β and γ such

that the diagram

ΣB //

Σβ∼=
��

C //

γ∼=
��

A //

α∼=
��

B

β∼=
��

ΣB′ // cone(f) // A′ f // B′

commutes. For simplicity of notation we use the same letter KKG for this category.

Theorem 3.16. The category σKKG, with the suspension Σ and exact triangles

as above, is a triangulated category.
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We omit the proof. Actually, the same proof as for KKG given in Appendix 1 of

[MN06] works since we have the Cuntz picture of equivariant KK-theory introduced

in the previous subsection.



Chapter 4

Equivariant topology in

KK-theory

In this section we apply the relative homological algebra of the injective class

introduced in Section 2 for equivariant KK-theory and relate it with the Atiyah-

Segal completion theorem. We deal with the Kasparov category σKKG of σ-G-C∗-

algebras, which is closed under countably infinite direct products. The definition

and the basic properties of equivariant KK-theory for σ-G-C∗-algebras are summa-

rized in Appendix 3. In most part of this section we assume that G is a compact

Lie group. We need not to assume that G is either connected or simply connected.

4.1 Semi-orthogonal decomposition in equivari-

ant KK-theory

For a subgroup H ≤ G, consider the homological ideal JH
G := KerResHG of σKKG.

There are only countably many homological ideals of the form JH
G since JH1

G = JH2
G

when H1 and H2 are conjugate and the set of conjugacy classes of subgroups of a

compact Lie group G is countable (Corollary 1.7.27 of [Pal60]),

Definition 4.1. Let F be a family, that is, a set of closed subgroups of a compact

group G that is closed under subconjugacy. We write JF
G for the countable family

of homological ideals {JH
G | H ∈ F}.

26
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In particular, we say that the family T consisting of the trivial subgroup {e} is

the trivial family.

Let us recall that the induction functor IndG
H : σH-C∗sep→ σG-C∗sep is given by

IndG
H A := {f ∈ C(G,A) | αh(f(g · h)) = f(g)}

with the left regular G-action λg(f)(g
′) = f(g−1g′) when H is a cocompact sub-

group of G. By the universal property of the Kasparov category (Theorem 3.15),

it induces the functor between Kasparov categories. An important property of

this functor is the following Frobenius reciprocity.

Proposition 4.2 (Section 3.2 of [MN06]). Let G be a locally compact group and

H ≤ G be a cocompact subgroup. Then the induction functor IndG
H is the right

adjoint of the restriction functor ResHG . That is, for any σ-G-C∗-algebra A and

σ-H-C∗-algebra B we have

KKG(A, IndG
H B) ∼= KKH(ResHG A,B).

Proof. The equivariant KK-cycles induced from the ∗-homomorphisms

εA : ResHG IndG
H A
∼= C(G,A)H → A, f 7→ f(e),

ηB : B → IndG
H ResHG B

∼= C(G/H)⊗B; a 7→ a⊗ 1G/H ,

form a counit and a unit of an adjunction between IndG
H and ResHG . Actually it

directly follows from the definition that the compositions

ResHG A
ResHG ηA−−−−−→ ResHG IndG

H ResHG A
ε
ResH

G
A

−−−−→ ResHG A

IndG
H B

η
IndG

H
B

−−−−→ IndG
H ResHG IndG

H B
IndGH εB−−−−→ IndG

H B

are identities in σKKG.

Definition 4.3. Let G be a compact group and let F be a family of G.

1. A separable σ-G-C∗-algebra A is F-induced if A is isomorphic to the induc-

tions IndG
H A0 where A0 is a separable σ-H-C∗-algebra and H ∈ F . We write

FI for the class of F -induced objects.

2. A separable σ-G-C∗-algebraA is F-contractible if ResHG A is KKH-contractible

for any H ∈ F . We write FC for the class of F -contractible objects.
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In particular, when F = T we say that A is trivially induced and trivially con-

tractible respectively.

Theorem 4.4. Let G be a compact group and let F be a family G. The pair

(FC, ⟨FI⟩loc) is complementary in σKKG.

Proof. This is proved in the same way as Proposition 3.21 of [Mey08].

Note that FC = NJFG
and FI ⊂ IJFG

. By Theorem 2.2, it suffices to show that

σKKG has enough JF
G-injectives and all JF

G-injective objects are in ⟨FI⟩loc. The

first assertion follows from the existence of the right adjoint functor of ResHG .

Actually, for any H ∈ F , the morphism A→ I1 := IndG
H ResHG A is JH

G -monic and

I1 is JH
G -injective. Moreover, the morphism A is a direct summand of I1 when A

is JH
G -injective. This implies the second assertion.

In particular, applying Theorem 4.4 for the case of F = T , we immediately get

the following simple but non-trivial application.

Corollary 4.5. Let A be a separable σ-C∗-algebra and let {αt}t∈[0,1] be a homotopy

of G-actions on A. We write At for the σ-G-C
∗-algebra (A,αt). Then, A0 and A1

are equivalent in σKKG/T C. In particular, if A0 and A1 are in ⟨T I⟩loc, then they

are KKG-equivalent.

Proof. Consider the σ-G-C∗-algebra Ã := (A⊗C[0, 1], α̃) where α̃(a)(t) = αt(a(t)).

Since the evaluation maps evt : Ã → At are non-equivariantly homotopy equiva-

lent, they induce equivalences in σKKG/T C. Consequently, ev1◦(ev0)−1 : A0 → A1

is an equivalence in σKKG/T C. The second assertion is obvious.

4.2 The Borel construction

Next we study a canonical model of phantom towers and phantom castles. Ac-

tually, we observe that the cellular approximation tower obtained in the proof of

Theorem 4.4 is nothing but the Milnor construction of the universal F -free (i.e.

every stabilizer subgroups are in F) proper (in the sense of [Pal61]) G-space (see

[Lüc05]). Hereafter, for a compact G-space X, we write CX for the mapping cone

{f ∈ C0([0,∞), C(X)) | f(0) = C · 1X}
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of the ∗-homomorphism C→ C(X) induced from the collapsing map X → pt.

Definition 4.6. Let {Hp}p∈Z>0 be a countable family of subgroups in F such that

any L ∈ F are contained infinitely many Hp’s. We call the phantom tower and

the phantom castle determined inductively by

Ip(B) := IndG
Hp

Res
Hp

G Np(B) ∼= Np(B)⊗ C(G/Hp)

is the Milnor phantom tower and the Milnor phantom castle (associated to {Hp})
respectively.

By definition, Ik and Nk in the Milnor phantom tower are explicitly of the form

Nk
∼= A⊗ CG/H1 ⊗ · · · ⊗ CG/Hk

Ik ∼= A⊗ CG/H1 ⊗ · · · ⊗ CG/Hk−1
⊗ C(G/Hk)

and ιk+1
k is induced from the restriction (evaluation) ∗-homomorphism ev0 : CG/Hk

→
C given by f 7→ f(0).

For G-spaces X1, . . . , Xn, the join ∗nk=1Xk is defined to be the quotient of ∆n ×
(
∏
Xk), where

∆n := {(t1, . . . , tn) ∈ [0, 1]n |
∑

ti = 1},

with the relation

(t1, . . . , tn, x1, . . . , xn) ∼ (t1, . . . , tn, y1, . . . , yn) if xk = yk for any k such that tk ̸= 0.

It is equipped with the G-action induced from the diagonal action on ∆n ×
∏
Xk

(where G acts on ∆n trivially). For n ∈ Z>0, EF ,nG denotes the n-th step of the

Milnor construction [?] ∗nk=1G/Hk.

Lemma 4.7. The n-th step of the cellular approximation C̃n of C is isomorphic

to C(EF ,nG).

Proof. Let f be a function on the Gelfand-Naimark dual of CG/H1 ⊗ · · · ⊗ CG/Hn

given by

f(((x1, t1), . . . , (xn, tn))) = t1 + · · ·+ tn.

Obviously, f−1((0,∞)) is G-homeomorphic to (0,∞)× (∗G/Hk) and f
−1(0) = ∗.

Consequently, CG/H1 ⊗ · · · ⊗ CG/Hn is G-equivariantly isomorphic to the mapping

cone C∗G/Hk
.
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Consequently, it can be seen that the right approximation Ã is nothing but the

tensor product A⊗C(EFG), where EFG is the universal F -free G-space. In other

words, a G-C∗-algebra A is in the full subcategory ⟨FI⟩loc if and only if it is KKG-

equivalent to A⊗C(EFG). It is analogous to the fact in the equivariant topology

that a G-space X is F -free if and only if it is G-equivariantly homotopy equivalent

to X × EFG.

Remark 4.8. In particular, when F = T , the subcategory ⟨T I⟩loc gives a char-

acterization of freeness of group actions on C∗-algebras. In fact, it is compatible

with the previous approach for the definition of freeness of G-actions by Phillips

[Phi87]. In Section 4.4 of [Phi87] (see in particular Proposition 4.4.4), a G-C∗-

algebra A is said to have discrete KK-theory if InGKKG(A,A) = 0 for some n > 0

and be KK-free if all G-invariant ideals I �A has discrete KK-theory. We remark

that a G-C∗-algebra A is Jk
G-injective for some k > 0, then it has discrete KK-

theory, which is obvious from the definition. Moreover, if G is a subgroup of T1 or

KKG
∗ (A,A) (∗ = 0, 1) are finitely generated as R(G)-modules, then the converse

follows from Theorem 4.12 or Theorem 4.16 in the next section.

More generally, let X be a F -free finite G-CW-complex containing a point x whose

stabilizer subgroup is H. By Proposition 2.2 of [Mey08], there is n > 0 such that

C(X) is (JF
G)

n-injective. Moreover, the morphism ev0 : CX → C is in JH
G since

the path of H-equivariant ∗-homomorphisms ev(t,x) : CX → C connects ev0 and

zero. Let {Xi} be a family of F -free compact G-CW-complexes such that for any

H ∈ F there are infinitely many Xi’s such that XH
i ̸= ∅. Then, in the same way

as Theorem 2.2, the exact triangle

SC(
∞∗
i=1

Xi)→
∞⊗
i=1

CXi
→ C→ C(

∞∗
i=1

Xi)

gives the approximations of C with respect to the complementary pair (FC, ⟨FI⟩loc).
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4.3 Comparison of ideals and the Atiyah–Segal

completion theorem

Now we compare the filtration (JF
G)

∗(A,B) with another one;

(IFG )
nKKG(A,B) := {

∑
i

γ1i · · · γni ξi | γki ∈ I
Hk
G , ξi ∈ KKG(A,B), }

where IHG are the augmentation ideals KerResHG of R(G) and {Hi} is the same as

Definition 4.6. Obviously its equivalence class is independent of the choice of such

{Hi}. We also remark that (IFG )
nKKG(A,B) ⊂ (JF

G)
n(A,B).

Example 4.9. We consider the case that G = T1 and F = T . The first triangle in

the Milnor phantom tower is

C

��>
>>

>>
>>

C0(R2)
ι10oo

C(T1)

◦www

;;www

where T1 = U(1) acts on R2 = C canonically. By the Bott periodicity, KKG(N1,C)
is freely generated by the Bott generator β ∈ KKG(N1,C) and JG(N1,C) = IG · β.
Consequently, ι10 is in IGKKG(A,B). More explicitly, ι10 = λ · β where λ :=

[Λ0C]− [Λ1C]. Since ι10 is JG-coversal, JG(A,B) = IGKKG(A,B) holds for any A

and B.

Example 4.10. Let G be a compact connected Lie group such that π1(G) has no

2-torsion element and let T be a maximal torus of G. In this case the following

lemma shows that ι10 = 0 and hence JT
G = ITGKKG = 0.

Lemma 4.11. The morphism π0 ∈ KKG(C, C(G/T )) in the Milnor phantom

tower has a left inverse.

Proof. Let us fix a choice of positive roots P ⊂ ∆ and ρ :=
∑

α∈P α/2. By

the assumption about 2-torsion elements of π1(G), the weight iρ is analytically

integral, that is, ⟨X, iρ⟩ ∈ 2πZ for any X ∈ it such that eX = 1 ∈ T (in terms

of bundles, this means that the flag manifold G/T has a homogeneous Spinc-

structure).

Let λ ∈ it∗ be an analytically integral weight such that λ + ρ is regular i.e.

⟨α, λ+ ρ⟩ ̸= 0 for all α ∈ P . The Borel-Weil-Bott theorem (see for example
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Theorem 8.7 of [BGV04]) says that the equivariant index of the twisted Dirac

operator Dλ on G/T twisted by λ is the highest weight module [Vλ] ∈ R(G). In

particular when λ = 0, the index of the (untwisted) Dirac operator is 1 ∈ R(G).
Therefore, the corresponding K-homology cycle [D] ∈ KKG(C(G/T ),C) satisfies

[π0]⊗C(G/T ) [D] = [IndD] = 1 ∈ R(G) ∼= KKG(C,C)

since π0 is induced from the ∗-homomorphism mapping 1 ∈ C to the identity

element in C(G/T ).

For a group homomorphism L → G and a family F of G, define the pull-back to

be

φ∗F := {φ−1(H) | H ∈ F}.

Then, the functor φ∗ : σKKG → σKKL maps ⟨FI⟩ and FC to ⟨φ∗FI⟩ and φ∗FC
respectively.

Theorem 4.12. Let H ≤ G be compact connected Lie groups without any 2-

torsion in their fundamental groups and rankG− rankH ≤ 1. For a group homo-

morphism φ : L → G, let F := φ∗FH . Then, for any r ∈ Z>0 there is k ∈ Z>0

such that (JF
L )

k(A,B) ⊂ (IFL )
rKKL(A,B) for any A,B ∈ σC∗sepL.

Proof. It suffices to find a compact F -free proper L-space X such that the exact

triangle

CX
ι−→ C π−→ C(X)→ ΣCX

in σKKL satisfies ι ∈ (IFL )
rKKL(CX ,C) because

Im(ι⊗ idB)∗ = Ker(π ⊗ idB)∗ ⊃ (JF
G)

k(A,B),

for any A,B ∈ σC∗sepL and k ∈ Z>0 such that X ⊂ EF ,kL. Since φ
∗IHG ⊂ IML for

any M ∈ F , we can reduce the problem for the case that φ = id.

When rankG = rankH, it immediately follows from Example 4.10 (note that in

this case (JF
G)

k = 0 for some k > 0). To see the case that rankG − rankH = 1,

choose an inclusion of maximal tori TH ⊂ TG. Consider the exact triangle

SC(TG/TH)→ CTG/TH
→ C→ C(TG/TH).
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By Example 4.9, ResTG
G ι10 is in ITH

TG
KKTG(N1,C). Since (ITH

TG
)n ⊂ ITH

G R(TG) for

sufficiently large n > 0 (Lemma 3.4 of [AHJM88]), for any l > 0 there is k > 0

such that

ιk0 = ι10 ⊗ · · · ⊗ ι10 ∈ (IHG )lKKTG(Nk,C)

(note that ITH
G = IHG ). Moreover, ιk0 is actually in (IHG )lKKG(Nk,C) since KKG(Nk,C)

is a direct summand of KKTG(Nk,C) by Example 4.10. Now EF ,kG is the desired

X (recall that C(EF ,kG) ∼= C̃k).

As a corollary, we obtain a generalization of Corollary 1.3 of [AHJM88]. For a

family F of G, we write Fcyc for the family generated by (topologically) cyclic

subgroups in F . In particular, let Z denote the family generated by all cyclic

subgroups. Here, we say that T ≤ G is a cyclic subgroup of G if there is an element

g ∈ T such that {gn} = T . Note that T is cyclic if and only if T ∼= Tm × Z/lZ.

Lemma 4.13. Let F ⊂ F ′ be families of G. If for any H ∈ F ′ there is k ∈ Z>0

such that (J
F|H
H )k = 0, then two filtrations JF

G and JF ′
G are equivalent uniformly,

that is, for any k > 0 there is n > 0 (independent of A and B) such that

(JF
G)

n(A,B) ⊂ (JF ′
G )k(A,B) for any A,B ∈ σC∗sepG.

Proof. Pick H1, . . . , Hk ∈ F ′. By assumption, we can choose Li,1, . . . , Li,ji (i =

1, . . . , k) such that J
Li,1

Hi
◦ · · · ◦ JLi,ji

Hi
= 0. Then, by definition

(J
L1,1

G ◦ · · · ◦ JL1,j1
G ) ◦ · · · ◦ (JLi,1

G ◦ · · · ◦ JLk,jk
G ) ⊂ JH1

G ◦ · · · ◦ J
Hk
G ,

which is the conclusion.

Corollary 4.14. For a compact Lie group G, the following hold:

1. There is n > 0 such that (JZ
G)

n = 0. In particular, the subcategory ZC is

zero in σKKG.

2. For any family F of G, the filtrations (JF
G)

∗ and (J
Fcyc

G )∗ are equivalent.

Moreover, FC = FcycC in σKKG.

Note that the second assertion means that for any n > 0 we obtain k > 0 (which

does not depend on A and B) such that (JF
G)

k(A,B) ⊂ (J
Fcyc

G )n(A,B).
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Proof. First, we prove when G is abelian by induction with respect to the order of

G/G0. When G/G0 is cyclic, then the assertion holds because G is also cyclic. Now

we assume that G/G0 is not cyclic (and hence any element in G/G0 is contained

in a proper subgroup). Let P be the family of G generated by pull-backs of proper

subgroups of G/G0. By the induction hypothesis and Lemma 4.13, it suffices to

show that there is a large n > 0 such that (JP
G)

n = 0. Because G is covered by

finitely many subgroups in P , we obtain a large m > 0 such that (IPG )
m = 0.

Since G/G0 is a direct product of finite cyclic groups, there is a nontrivial group

homomorphism f : G/G0 → T1. Applying Theorem 4.12 for compositions of the

quotient G→ G/G0 and f , we get n > 0 such that (JP
G)

n ⊂ (IPG )
mKKG = 0.

Fot general G, let π : G → U(n) be a faithful representation of G. As is pointed

out in the proof of Theorem 4.12 for TU(n) ≤ U(n) and π (in this case F is equal

to the family of all abelian subgroups AB of G), Example 4.10 implies that there

is k ∈ Z>0 such that (JAB
G )k = 0. Now, we get the conclusion by Lemma 4.13 for

Z ⊂ AB.

Now, the assertion (2) immediately follows from (1) and Lemma 4.13.

Remark 4.15. Unfortunately, in contrast to Theorem 4.12, ιk0 ∈ IFGKKG(Nk,C)
does not hold for general compact Lie groups and families. For example, consider

the case that G = T2 and F = T . Computing the six-term exact sequence of the

equivariant K-homology groups associated to the exact triangle

SC(S2n−1 × S2n−1)→ CS2n−1×S2n−1 → C→ C(S2n−1 × S2n−1),

we obtain KKG(CS2n−1×S2n−1 ,C) ∼= R(G)·ιk0 (note that KKG
1 (C(S

2n−1×S2n−1),C) ∼=
K1(CP n × CP n) = 0 by Poincaré duality). By Theorem 3.12 (3), we obtain

KKG(NC,C) ∼= R(G) · ι∞0 and hence ι∞0 is not in IGKKG(NC,C).

Instead of Theorem 4.12, the following theorem holds for general compact Lie

groups and families.

Theorem 4.16. Let G be a compact Lie group and let A, B be σ-C∗-algebras such

that KKG
∗ (A,B) is finitely generated for ∗ = 0, 1. Then the filtrations (JF

G)
∗(A,B)

and (IFG )
∗KKG(A,B) are equivalent.

Note that this is a direct consequence of Lemma 4.7 and Corollary 2.5 of [Uuy12]

when KKH
∗ (A,B) are finitely generated for any H ≤ G and ∗ = 0, 1.
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In order to show Theorem 4.16, we prepare some lemmas.

Lemma 4.17. Let G be a compact Lie group, let X be a compact G-space and let

A, B be σ-G⋉X-C∗-algebras. We assume that KKG⋉X
∗ (A,B) are finitely generated

for ∗ = 0, 1. Then, the following holds:

1. Assume that G satisfies Hodgkin condition and let T be a maximal torus of

G. Then KKT⋉X
∗ (A,B) are finitely generated for ∗ = 0, 1.

2. When G = Tn, KKH⋉X
∗ (A,B) are finitely generated for any H ≤ Tn.

3. For any cyclic subgroup H of G, there is a G-space Y such that C(Y ) is

(JH
G )

k-injective for some k > 0 and KKG⋉X
∗ (A,B ⊗ C(Y )) are finitely gen-

erated for ∗ = 0, 1.

Proof. First, (1) follows from the fact that C(G/T ) is KKG-equivalent to C|WG|

(which is essentially proved in p.31 of [RS86]). To see (2), first we consider the

case that Tn/H is isomorphic to T. Then, the assertion follows from the six-term

exact sequence of the functor KKTn⋉X(A,B ⊗ ) associated to the exact triangle

SC(T1)→ C0(R2)→ C→ C(T1).

In general Tn/H is isomorphic to Tm. By iterating this argument m times, we

immediately obtain the conclusion.

Finally we show (3). Since the space of conjugacy classes of G is homeomorphic to

the quotient of a finite copies of the maximal torus T of G0 by a finite group, there

is a finite family of class functions separating conjugacy classes of G. A moment

of thought will give you a finite faithful family of representations {πi : G→ U(ni)}
such that {χ(πi)} separates the conjugacy classes of G. Then, two elements g1 , g2

in G are conjugate in G if and only if so are in U :=
∏
U(ni) (here G is regarded

as a subgroup of U by
∏
πi). Set F := {L ≤ G ∩ gHg−1 | g ∈ U}. Then G

acts on U/H F -freely and every subgroup in Fcyc is contained in a conjugate of

H. By Corollary 4.14 (2), C(U/H) is (JH
G )

k-injective for some k > 0. Moreover,

KKG
∗ (A,B⊗C(U/H)) are finitely generated R(G)-modules. To see this, choose a

maximal torus T of U containing H. Then U/H is a principal T/H-bundle over

U/T and we can apply the same argument as (2).

Lemma 4.18. Let X be a compact G-space and let X1, . . . , Xn be closed G-subsets

of X such that X1 ∪ · · · ∪Xn = X. Then, in the category σKKG⋉X , the filtration



Contents 36

associated to the family of ideals JX1,...,Xn := {KerResG⋉Xi
G⋉X } is trivial (i.e. there is

k > 0 such that (JX1,...,Xn)
k = 0).

Proof. It suffices to show the following: Let X be a compact G-space and X1, X2

be a closedG-subspaces such thatX = X1∪X2. For separable σ-G⋉X-C∗-algebras

A, B, D and ξ1 ∈ KKG⋉X(A,B), ξ2 ∈ KKG⋉X(B,D) such that ResG⋉X1
G⋉X ξ1 = 0

and ResG⋉X2
G⋉X ξ2 = 0 holds, we have ξ2 ◦ ξ1 = 0.

To see this, we use the Cuntz picture. Let KG := K(L2(G)∞) and let qs,XA be the

kernel of the canonical ∗-homomorphism

((A⊗KG) ∗X (A⊗KG))⊗KG → (A⊗KG)⊗KG

for a G⋉X-C∗-algebra A. Then, KKG⋉X(A,B) is isomorphic to the set of homo-

topy classes of G⋉X-equivariant ∗-homomorphisms from qs,XA to qs,XB and the

Kasparov product is given by the composition.

Let X ′ be the G-space X1 × {0} ∪ (X1 ∩ X2) × [0, 1] ∪ X2 × {1} ⊂ X × [0, 1]

and let p : X ′ → X be the projection. Note that p is a homotopy equivalence.

Let φ1 : qs,XA → qs,XB be a G ⋉ X-equivariant ∗-homomorphism such that

[φ1] = ξ1. By using a homotopy trivializing φ1|X1 , we obtain a G⋉X ′-equivariant

∗-homomorphism φ′
1 : qs,X′p∗A → qs,X′p∗B such that [φ′

1] = ξ1 under the isomor-

phism KKG⋉X(A,B) ∼= KKG⋉X′
(p∗A, p∗B) and φ′

1 = 0 on X ′ ∩X × [0, 1/2]. Simi-

larly, we get φ′
2 : p

∗qsB → p∗qsD such that [φ′
2] = ξ2 and φ

′
2 = 0 onX ′∩X×[1/2, 1].

Then, ξ2 ◦ ξ1 = [φ′
2 ◦ φ′

1] = 0.

Proof of Theorem 4.16. By Corollary 4.14, it suffices to show the theorem for Fcyc.

Hence we may assume that F = Fcyc without loss of generality. When G = Tn,

the conclusion follows from Lemma 4.17 (2) and Corollary 2.5 of [Uuy12].

For general G, let U be the Lie group as in the proof of Lemma 4.17 (3) and let

T be a maximal torus of U . Consider the inclusion

KKG(A,B) ∼= KKU⋉U/G(IndU
GA, Ind

U
GB)

⊂ KKT⋉U/G(IndU
GA, Ind

U
GB).
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Set F̃ and F ′ the family of G and T respectively given by

F̃ := {L ≤ G ∩ gHg−1 | H ∈ F , g ∈ U},

F ′ := {L ≤ T ∩ gHg−1 | H ∈ F , g ∈ U}.

Note that Corollary 4.14 implies that the filtration (JF̃
G)

∗ is equivalent to (JF
G)

∗

since Fcyc = F̃cyc.

Consider the family of homological ideals

JF ′

T⋉U/G := {KerRes
H⋉U/G
T⋉U/G | H ∈ F

′}.

We claim that the restriction of the filtration (JF ′

T⋉U/G)
∗(IndU

GA, Ind
U
GB) on KKG(A,B)

is equivalent to (JF
G)

∗(A,B).

Pick L ∈ F ′. The slice theorem (Theorem 2.4 of [Zun06]) implies that there is a

family of closed L-subspaces X1, . . . , Xn of U/G and xi ∈ Xi such that
∪
Xi =

U/G and the inclusions Lxi → Xi are L-equivariant homotopy equivalences. Now

we have canonical isomorphisms

KKL⋉Xi(IndU
GA|Xi

, IndU
GB|Xi

)
Res

Lxi
Xi−−−−→KKL⋉Lxi(IndU

GA|Lxi
, IndU

GB|Lxi
)

→KKgLg−1∩G(A,B)

such that ResgLg
−1∩G

G = ResL⋉Xi

U⋉U/G under these identifications (here g ∈ U such that

gL = xi ∈ U/L). Now, we have gLg−1 ∩ G ∈ F̃ . Therefore, by Lemma 4.18, we

obtain (JF̃
G)

k ⊂ JF ′

T⋉U/G for some k > 0. Conversely since F = Fcyc, for any L ∈ F̃ ,
we can take g ∈ U such that gLg−1 ∈ F ′. Hence KKG(A,B) ∩ JF ′

T⋊U/G(A,B) ⊂
JF̃
G(A,B).

Similarly, the filtration (IFG )
∗KKG(A,B) is equivalent to the restriction of

(IF
′

T )∗KKT⋉U/G(IndU
GA, Ind

U
GB).

Actually, by Lemma 3.4 of [AHJM88], the IFG -adic and IF
′′

U -adic topologies on

KKG(A,B) (here F ′′ is the smallest family of U containing F ′) coincide and so do

the IF
′

U -adic and IF
′

T -adic topologies on KKT⋉U/G(IndU
GA, Ind

U
GB).

Finally, the assertion is reduced to the case of G = Tn.
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Theorem 4.16 can be regarded as a categorical counterpart of the Atiyah-Segal

completion theorem. Since Theorem 4.16 holds without assuming that KKH
∗ (A,B)

are finitely generated for every H ≤ G, we also obtain a refinement of the Atiyah-

Segal theorem (Corollary 2.5 of [Uuy12]).

Lemma 4.19. Let A,B be separable σ-G-C∗-algebras such that KKG
∗ (A,B) are

finitely generated for ∗ = 0, 1. Then there is a pro-isomorphism

{KKG(A,B)/(JF
G)

p(A,B)}p∈Z>0 → {KKG(A, B̃p)}p∈Z>0 .

Proof. By Lemma 4.17 (3), there are compact G-spaces {Xk}k∈Z>0 such that

KKG
∗ (A,B ⊗ C(Xk)) are finitely generated for ∗ = 0, 1, each C(Xi) is (JF

G)
r-

injective for some r > 0 and for any H ∈ F there are infinitely many Xk’s such

that XH
k ̸= ∅. Set

N′
p := B ⊗

p⊗
i=1

CXi
, I′p := N′

p−1 ⊗ C(Xp), B̃
′
p := B ⊗ C(

p∗
i=1

Xi)

and N′
B := ho- lim←−N

′
p, B̃

′ := ho- lim←− B̃
′
p. By the same argument as Theorem 2.2,

we obtain that

SB̃ → NB → B → B̃

is the approximation of B with respect to (FC, ⟨FI⟩loc). Moreover, by the six-term

exact sequence, we obtain that KKG
∗ (A, B̃

′
p) are finitely generated R(G)-modules.

Consider the long exact sequence of projective systems

{KKG
∗ (A, SB̃

′
p)}p

∂p−→ {KKG
∗ (A,N

′
p)}p

(ιp0)∗−−→ {KKG
∗ (A,B)}

(αp
0)∗−−−→ {KKG

∗ (A, B̃
′
p)}p.

Then, {Im(ιp0)∗}p = {Ker(αp
0)∗}p is pro-isomorphic to (JF

G)
∗(A,B). Actually,

for any p > 0 there is r > 0 such that (JF
G)

r(A,B) ⊂ Ker(αp
0)∗ = Im(ιp0)∗ ⊂

(JF
G)

p(A,B) since B̃′
p is (JF

G)
r-injective for some r > 0.

Therefore, it suffices to show that the boundary map {∂p} is pro-zero. Apply

Theorem 4.16 and the Artin-Rees lemma for finitely generated R(G)-modules

M := KKG(A,N′
p) and L := Im ∂p. Since B̃′

p is (JF
G)

r-injective for some r > 0,

there is k > 0 and l > 0 such that

Im(ιp+l
p )∗ ∩ L = (JF

G)
l(A,N′

p) ∩ L ⊂ (IFG )
kM ∩ L ⊂ (IFG )

rL = 0.
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Consequently, for any p > 0 there is l > 0 such that Im ιp+l
p ◦ ∂p+l = 0.

Remark 4.20. It is also essential for Lemma 4.19 to assume that KKG
∗ (A,B) are

finitely generated. Actually, by Theorem 4.12, the pro-isomorphism in Lemma

4.19 implies the completion theorem when G = T1 and F = T . On the other

hand, since the completion functor is not exact in general, there is a σ-C∗-algebra

A such that the completion theorem fails for KG
∗ (A). For example, let A be the

mapping cone of ⊕∞

n=0
λn :

⊕∞
C→

⊕∞
C.

Then, the completion functor for the exact sequence 0 → R(G)∞ → R(G)∞ →
KG

0 (A)→ 0 is not exact in the middle (cf. Example 8 of [Sta15, Chapter 86] ).

Lemma 4.21. Let A,B be separable σ-G-C∗-algebras such that KKG
∗ (A,B) are

finitely generated for ∗ = 0, 1. Then, the ABC spectral sequence for KKG(A, )

and B converges toward KKG(A,B) with the filtration (JF
G)

∗(A,B).

Proof. According to Lemma 2.4, it suffices to show that i : Badp+1,p+q+1 → Badp,p+q+1

is injective. As is proved in Lemma 4.19, the boundary map ∂p is pro-zero ho-

momorphism and hence the projective system {Ker ιp0} = {Im ∂p} is pro-zero.

Therefore, for any p > 0 there is a large q > 0 such that

Ker ι10 ∩ (JF
G)

∞(A,Np) ⊂ Ker ιp0 ∩ (JF
G)

q(A,Np) = Ker ιp0 ∩ Im ιp+q
p = 0.

Theorem 4.22. Let A and B be separable σ-G-C∗-algebras such that KKG
∗ (A,B)

are finitely generated R(G)-modules (∗ = 0, 1). Then, the morphisms

◦ KKG(A,B)→ KKG(A, B̃),

◦ KKG(A,B)→ RKKG(EFG;A,B),

◦ KKG(A,B)→ σKKG/FC(A,B)

induce the isomorphism of graded quotients with respect to the filtration (JF
G)

∗(A,B).

In particular, we obtain isomorphisms

KKG(A,B)̂IFG
∼= KKG(A, B̃) ∼= RKKG(EFG;A,B) ∼= σKKG/FC(A,B).
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Proof. This is a direct consequence of Lemma 4.19 and Lemma 4.21. Note that

Lemma 4.19 implies that the projective system {KKG(A, B̃p)} satisfies the Mittag-

Leffler condition and hence the lim←−
1-term vanishes.

Corollary 4.23. Let A be a separable σ-C∗-algebra and let βt be a homotopy of

continuous actions of a compact Lie group G on a σ-C∗-algebra B. We write Bt

for σ-G-C∗-algebras (B, βt). If KKG
∗ (A,B0) and KKG

∗ (A,B1) are finitely generated

for ∗ = 0, 1, there is an isomorphism

KKG(A,B0)̂ITG
→ KKG(A,B1)̂ITG

.

We also weaken the assumption of Theorem 0.1 of Uuye [Uuy12], a generalization

of McClure’s restriction map theorem (Theorem A and Corollary C of [McC86])

for KK-theory.

Corollary 4.24. Let G be a compact Lie group and let A and B separable G-C∗-

algebras. We assume that KKG
∗ (A,B) are finitely generated for ∗ = 0, 1. Then the

following hold:

1. If KKH(A,B) = 0 holds for any finite cyclic subgroup H of G, then KKG(A,B) =

0.

2. If ξ ∈ KKG(A,B) satisfies ResHG ξ = 0 for any elementary finite subgroup H

of G, then ξ = 0.

Proof. It is proved in Theorem 0.1 of [Uuy12] under a stronger assumption that

KKH(A,B) are finitely generated R(G)-modules for any closed subgroup H ≤ G.

Applying Theorem 4.22, the same proof shows the conclusion.

4.4 The Baum-Connes conjecture for group ex-

tensions

In this section we apply Corollary 4.14 for the study of the complementary pair

(⟨CI⟩loc , CC) of the Kasparov category σKKG when G is a Lie group. As a con-

sequence, we refine the theory of Chabert, Echterhoff and Oyono-Oyono [OO01,
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CE01b, CE01a] on permanence property of the Baum-Connes conjecture under

extensions of groups.

Let G be a second countable locally compact group such that any compact sub-

group of G is a Lie group. We bear the case that G is a real Lie group in mind.

We write C and CZ for the family of compact and compact cyclic subgroups of G

respectively.

Corollary 4.25. We have CC = CZC and ⟨CI⟩loc = ⟨CZI⟩loc.

Proof. Since CZ ⊂ C, we have CZI ⊂ CI and CC ⊂ CZC. Hence it suffices to

show CC = CZC, which immediately follows from Corollary 4.14 (2).

Corollary 4.26 (cf. Theorem 1.1 of [MM04]). The canonical map f : ECZG →
ECG induces the KKG-equivalence f ∗ : C(ECZG)→ C(ECG).

Note that the topological K-homology group Ktop
∗ (G;A) is isomorphic to the KK-

group KKG(C(ECG), A) of σ-C
∗-algebras for any G-C∗-algebra A.

Proof. Since f is a T -equivariant homotopy equivalence between ECG and ECZG

for any T ∈ CZ, f ∗ is an equivalence in σKKG/CZC. The conclusion follows from

Corollary 4.25 because C(ECZG) and C(ECG) are in ⟨CI⟩loc = ⟨CZI⟩loc.

Next we review the Baum-Connes conjecture for extensions of groups. Let 1 →
N → G→ G/N → 1 be an extension of second countable locally compact groups.

We assume that any compact subgroup of G/N is a Lie group. As in Subsection

5.2 of [EM07], we say that a subgroup H of G is N-compact if π(H) is compact in

G/N . We write CN for the family of N -compact subgroups of G. Then, we have

the complementary pair (⟨CNI⟩loc , CNC). It is checked as following. First, in the

same way as Lemma 3.3 of [MN06], for a large compact subgroup H of G/N we

have

KKG(IndG
H̃
A,B) ∼= KKH̃(ResH̃

ŨH
IndŨH

H̃
A,ResH̃G B)

where H̃ := π−1(H) for any H ≤ G/N and UH is as Section 3 of [MN06]. Hence

KKG(Q,M) = 0 for any Q ∈ CNI and M ∈ CNC. Let SM→ Q→ C→ M be the

approximation exact triangle of C in σKKG/N with respect to (⟨CI⟩loc , CC). Since
the functor π∗ : σKKG/N → σKKG maps CI to CNI and CC to CNC respectively,

Sπ∗M → π∗Q → C → π∗M gives the approximation of C in σKKG with respect
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to (⟨CNI⟩loc , CNC). Hereafter, for simplicity of notations we omit π∗ for σ-(G/N)-

C∗-algebras which are regarded as σ-G-C∗-algebras.

Since CI ⊂ CNI and CNC ⊂ CC, we obtain the diagram of semi-orthogonal de-

compositions

⟨CI⟩loc

��

⟨CI⟩loc //

��

0

��
⟨CNI⟩loc //

��

KKG //

��

CNC

⟨CNI⟩loc ∩ CC // CC // CNC,

P

D
G/N
G

��

P //

DG

��

0

��
Q

DG/N //

��

C //

��

M

Q⊗ N // N // M.

(4.27)

For a σ-G-C∗-algebra A, the (full or reduced) crossed product N ⋉A is a twisted

σ-G/N -C∗-algebra (Definition 2.1 of [PR89]). By the Packer-Raeburn stabilization

trick (Theorem 1 of [Ech94]), it is Morita equivalent to the untwisted G/N -C∗-

algebra

N ⋉PR A := C0(G/N,N ⋉ A)⋊α̃,τ̃ (G/N)

where α̃ and τ̃ are induced from the canonical G-action on C0(G/N,N ⋉A). The

Packer-Raeburn crossed product N⋉PR is a functor from G-C∗sep to G/N -C∗sep,

which induces the partial descent functor (Section 4 of [CE01b])

j
G/N
G : σKKG → σKKG/N

by universality of σKKG (Theorem 3.15).

Lemma 4.28. The functor j
G/N
G maps ⟨CNI⟩loc to ⟨CI⟩loc and CNC to CC.

Proof. Let H be a N -compact subgroup of G and let A be a σ-H-C∗-algebra.

Then, N ⋉PR IndG
H A admits a canonical σ-G/N ⋉ ((G/N ×H\G)/G)-C∗-algebra

structure. Since the G/N -action on (G/N ×H\G)/G is proper, N ⋉PR IndG
H A is

in ⟨CI⟩loc. Consequently we obtain jQG(⟨CNI⟩loc) ⊂ ⟨CI⟩loc.

Let A be a CN -contractible σ-C∗-algebra. Then, for any compact subgroup H of

G/N , ResHG/N(N⋉PRA) = N⋉Res
π−1(K)
G A is KKH-contractible. Hence we obtain

j
G/N
G (CNC) ⊂ CC.
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Consider the partial assembly map

µ
G/N
G,A : Ktop

∗ (G;A)→ Ktop
∗ (G/N ;N ⋉ A)

constructed in Definition 5.14 of [CE01a]. Then, in the same way as Theorem 5.2

of [MN04], we have the commutative diagram

Ktop
∗ (G;P⊗ A)

∼=
��

∼= // Ktop
∗ (G;Q⊗ A)

∼= //

��

Ktop
∗ (G;A)

µ
G/N
G,A

��
Ktop

∗ (G/N ;N ⋉PR (P⊗ A)) //

∼=
��

Ktop
∗ (Q;N ⋉PR (Q⊗ A))

∼= //

∼=
��

Ktop
∗ (G/N ;N ⋉PR A)

µ
G/N,N⋉PRA

��
K∗(G⋉ (P⊗ A))

jG(D
G/N
G )

// K∗(G⋉ (Q⊗ A))
jG(DG/N )

// K∗(G⋉ A)

and hence the composition of partial assembly maps

µG,A = µG/N,N⋉PRA ◦ µ
G/N
G,A : Ktop

∗ (G;A)→ Ktop
∗ (G/N ;N ⋉PR A)→ K∗(G⋉ A)

is isomorphic to the canonical map K∗(G ⋉ (P ⊗ A)) → K∗(G ⋉ (Q ⊗ A)) →
K∗(G ⋉ A). In other words, the partial assembly map µ

G/N
G,A is isomorphic to the

assembly map µG,Q⊗A for Q⊗ A.

We say that a separable σ-G-C∗-algebra A satisfies the (resp. strong) Baum-Connes

conjecture (BCC) if jG(DG) induces the isomorphism of K-groups (resp. the KK-

equivalence).

Theorem 4.29. Let 1→ N → G→ G/N → 1 be an extension of second countable

groups such that all compact subgroups of G/N are Lie groups and let A be a

separable σ-G-C∗-algebra. Then the following holds.

1. If π−1(H) satisfies the (resp. strong) BCC for A for any H ∈ CZ, then G

satisfies the (resp. strong) BCC for A if and only if G/N satisfies the (resp.

strong) BCC for N ⋉PR
r A.

2. If π−1(H) for any H ∈ CZ and G/N have the γ-element, then so does G.

Moreover, in that case γπ−1(H) = 1 for any H ∈ CZ and γG/N = 1 if and

only if γG = 1.

Proof. To see (1), it suffices to show that G satisfies the (resp. strong) BCC for

Q ⊗ A. Consider the full subcategory N of σKKG consisting of objects D such
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that G satisfies the (resp./ strong) BCC for D⊗A. Set CZI1 be the family of all

G-C∗-algebras of the form C0((G/N)/H) for H ∈ CZ. By assumption, N contains

π∗CZI1. Since N is localizing and colocalizing, N contains π∗ ⟨CZI1⟩locloc, which is

equal to π∗ ⟨CI1⟩locloc because C0(G/N)/H) are KKG-equivalent to C0((G/N)/H)⊗
C(ECZH) ∈ π∗ ⟨CZI1⟩loc. By Proposition 9.2 of [MN06], we obtain Q ∈ N.

The assertion (2) is proved in the same way as Theorem 33 of [EM07]. Actually,

since we may assume without loss of generality that G/N is totally disconnected

by Corollary 34 of [EM07], the homomorphism

D∗
G : KKG(A,P)→ KKG(P⊗ A,P)

is an isomorphism if A ∈ π∗ ⟨CZI⟩loc and in particular when A = Q (note that

any compact subgroup is contained in an open compact subgroup which is also a

Lie group by assumption). Consequently we obtain a left inverse η
G/N
G : Q→ P of

D
G/N
G . Now, the composition η

G/N
G ◦ π∗ηG/N : C→ P is a dual Dirac morphism of

G. Of course ηG ◦ DG = idC if η
G/N
G ◦ DG/N

G = idQ and ηG/N ◦ DG/N = idC.
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Chapter 5

Continuous Rokhlin property

5.1 Definition and Examples

Let G be a second countable compact group and let (A,α) be a unital G-C∗-

algebra. Set

TαA := {a = (at) ∈ Cb([0,∞), A) : g 7→ αg(a) is norm continuous},

AαA := TαA/C0([0,∞), A), CαA := AαA ∩ A′.

They are equipped with the canonical G-C∗-algebra structure. We say the (non-

separable) C∗-algebra CαA is the central path algebra of (A,α).

Definition 5.1. Let G be a compact group, let X be a compact G-space and let

(A,α) be a unital G-C∗-algebra.

1. We say that (A,α) has the continuous Rokhlin property if there is a G-

equivariant unital ∗-homomorphism φ : C(G)→ CαA.

2. We say that (A,α) has the continuous X-Rokhlin property if there is a G-

equivariant unital ∗-homomorphism φ : C(X)→ CαA.

3. We say that (A,α) has continuous Rokhlin dimension with commuting tow-

ers at most d, and write as dimc
cRok(A,α) ≤ d, if there are G-equivariant

completely positive contractive order zero maps

φ(0), . . . , φ(d) : C(G)→ CαA

46
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with commuting ranges such that φ(0)(1) + · · ·+ φ(d)(1) = 1.

These are variations of the Rokhlin property (Definition 3.1 of [Izu04a]) and the

Rokhlin dimension (Definition 2.3 of [HWZ15]), which are defined by using Z>0

instead of [0,∞).

Remark 5.2. Here we claim that a unital G-C∗-algebra (A,α) has continuous

Rokhlin dimension with commuting towers at most d − 1 if and only if it has

the continuous EdG-Rokhlin property (cf. Lemma 1.7 of [HP15] and Lemma 4.4 of

[Gar14e]). To see this, recall that a completely positive contractive map of order

zero from A to B is of the form φ(ta), where t ∈ C0(0, 1] is the identity function

and φ is a ∗-homomorphism from the cone CA := C0(0, 1]⊗A to B (Corollary 4.1

of [WZ09]). We remark that φ(ta) is G-equivariant if and only if so is φ. Hence

we get a unital G-equivariant ∗-homomorphism

CC(G)+ ⊗ · · · ⊗ CC(G)+ → CαA.

On the other hand, by the same argument as the proof of Lemma 4.7, we get an

isomorphism

CC(X ∗ Y )+ ∼= C(X)+ ⊗ CC(Y )+

for anyG-spacesX and Y . In particular, we get CC(G)+⊗. . .CC(G)∗ ∼= CC(EdG)
+.

Now, the relation φ(1)(1) + · · · + φ(n)(1) = 1 implies that the ∗-homomorphism

CC(EdG)
+ → CαA factors through the restriction CC(EdG)

+ → C(EdG).

Conversely, if (A,α) has the X-Rokhlin property for some compact free G-space

X which is proper in the sense of Palais [Pal61] (in other words X → X/G is a

principal G-bundle), then A has finite continuous Rokhlin dimension since there is

a continuous G-map X → EdG for some d by universality of EG and compactness

of X.

Proposition 5.3. For a unital G-C∗-algebra (A,α), we have

dimc
Rok(A,α) ≤ dimc

cRok(A,α) ≤ 2 dimc
Rok(A,α) + 1.

In particular, we have dimc
cRok(A,α) ≤ 1 if (A,α) has the Rokhlin property.

Proof. We write Fα(A) := ℓ∞α (N, A)/c0(N, A)∩A′ as in [Gar14c]. Let φ(i) : C(G)→
Fα(A) (i = 0, . . . , d) be completely positive contractive maps of order zero such
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that φ(0)(1) + · · · + φ(d)(1) = 1 and choose completely positive contractive lifts

(φ
(i)
n )n∈N by applying the Choi-Effros lifting theorem [CE76]. Let Fn be an in-

creasing sequence of finite subsets of C(G) such that
∪
Fn = C(G) and choose

φn inductively such that ∥[φ(i)
n (f), φ

(i)
m (f)]∥ ≤ 2−n−m for any m ≥ n, f ∈ Fn and

i = 0, . . . , d.

Then, we obtain (2d + 2) G-equivariant completely positive contractive maps of

order zero from C(G) to CαA of order zero given by

φ̃
(i.j)
2n+j+t(f) = (1− |t|)φ(i)

n (f) for t ∈ [−1, 1]

for i = 0, . . . , d and j = 0, 1. By definition, the images in CαA commute and∑
φ̃
(i,j)
t (1) = 1.

Remark 5.4. The continuous Rokhlin property is actually strictly stronger than

the Rokhlin property. See Subsection 6.4 for more details.

Example 5.5. The following examples are pointed out to us by Eusebio Gardella.

Let G be a finite group. The UHF algebra M|G|∞ with the G-action αg :=⊗∞ Adλg has the continuous Rokhlin property. Actually, we obtain an asymptot-

ically central path of mutually orthogonal projections {pgt}g∈G satisfying αh(p
g
t ) =

phgt given by

pgt := 1⊗ · · · ⊗ 1⊗ ut−n(pg ⊗ 1)u∗t−n ⊗ 1⊗ · · ·

for t ∈ [n, n + 1]. Here pg ∈ M|G| ∼= B(ℓ2G) is the projection onto Cδg for g ∈ G
and ut is a homotopy of G-invariant unitaries in M⊗2

|G| such that u0 = 1 and u1 is

the flip on C|G| ⊗ C|G|.

Since On ⊗Mn∞ ∼= On, we obtain an example of a continuous Rokhlin action on

the Cuntz algebras O|G|. On the other hand, since any automorphism on O|G|

is approximately inner (Theorem 3.6 of [Rør93]), Theorem 3.5 of [Izu04a] implies

that every Rokhlin action on O|G| is conjugate to the above action and hence

has the continuous Rokhlin property. In particular, the quasi-free action with

respect to the left regular representation has the continuous Rokhlin property

(Proposition 5.6 of [Izu04a]). Similarly, by the above example and Kirchberg’s

absorption theorem (Theorem 3.2 of [KP00]), the unique Rokhlin action of G on

O2 (Theorem 4.2 of [Izu04a]) has the continuous Rokhlin property.

Example 5.6. Fix θ, ω ∈ R \ Q such that θ − ω ∈ R \ Q. Let us consider the Z-
actions αθ and αω on C(T) induced by the rotation by e2πiθ and e2πiω respectively.
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Let

B := Z αω⋉ C(T), A := Z αθ
⋉B = Z αθ

⋉ (Z αω⋉ C(T))

be noncommutative tori (here we use the same letter αθ for the automorphism

Z ⋉ αθ on B). Then, the automorphism αθ on B is approximately representable.

Actually, by choosing a subsequence {nk} of Z>0 such that nkω → θ, we get a

sequence of unitaries (unk) in B approximating αθ where u denotes the canonical

unitary implementing αω in the crossed product B. Hence the dual action α̂θ of

T on A has the Rokhlin property (Proposition 3.6 of [Gar14a]).

It will be seen in Remark 6.6 and Example 6.14 that (A, α̂) does not have the

contionuous Rokhlin property although (A ⊗ O∞, α̂ ⊗ id∞) has the contionuous

Rokhlin property.

5.2 Averaging technique via equivariant KK-theory

A fundamental technique for C∗-dynamical systems with the (continuous) Rokhlin

property is an averaging process.

Let G be a second countable compact group, let X be a compact G-space. Let A

be a separable unital G-C∗-algebra with the continuous X-Rokhlin property. Take

a completely positive contractive lift of φ using the Choi-Effros lifting theorem,

which is a path of completely positive contractive maps φt : C(X)→ A.

Let us choose an increasing sequence Fn of finite subsets of A⊗C(X) ∼= C(X,A)

such that
∪
Fn = A⊗C(X) and a sequence of open coverings {Un,i}i∈In such that

∥a(x)− a(y)∥ < 2−n for all a ∈ Fn and x, y ∈ Un,i.

Let us choose points xn,i ∈ Ux,i and partition of unities ({fn,i}i∈In)n associated to

{Un,i}i∈In . Then, for any a ∈ Fn, we have∥∥∥a(x)−∑
i∈In

a(xn,i)fn,i(x)
∥∥∥ <∑

i∈In
fn,i(x) ∥a(x)− a(xn,i)∥ < 2−n

uniformly on x ∈ X.
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Now, we construct a path of completely positive maps ψt : A ⊗ C(X) → A

parametrized by t ∈ [0,∞) as

ψt(a) :=(t− n)
∑
i∈In

φχ(t)(fn,i)
1/2a(xn,i)φχ(t)(fn,i)

1/2 (5.7)

+ (n+ 1− t)
∑

i∈In+1

φχ(t)(fn+1,i)
1/2a(xn+1,i)φχ(t)(fn+1,i)

1/2

for t ∈ [n, n+ 1], where χ : R≥0 → R≥0 is a homeomorphism such that

∥[φt(fn), a(xn,i)]∥ < 2−n|In|−1 for any t ≥ χ(n) and a ∈ Fn.

Since π(ψt(a)), where π : TαA→ AαA is the quotient map, coincides with (idA ⊗
φχ)(a) in AαA for any a ∈ A⊗C(X), this ψ determines a G-equivariant completely

positive asymptotic morphism in the sense of [Tho99].

This averaging map is compatible with the picture of KK-theory given in [HLT99,

Tho99] using completely positive asymptotic morphisms. Actually, we have the

isomorphism

KKG(A,B) ∼= [[SA⊗KG, SB ⊗KG]]
G
cp, (5.8)

where [[A,B]]Gcp is the set of homotopy classes of completely positive G-equivariant

asymptotic morphisms from A to B. Moreover the Kasparov product is given by

the composition of asymptotic morphisms. Hence ψ gives an element KKG(A ⊗
C(X), A). Let ιX : C→ C(X) denote the inclusion (we simply write it as ι when

X = G) and ιX,A := idA ⊗ ιX . Then, the KKG-cycle represented by ψ is a left

inverse of [ιX,A].

As an immediate consequence of the above construction, Lemma 4.7 and Remark

5.2, we get the following theorem.

Theorem 5.9. Let G be a second countable compact group and let A be a sep-

arable unital G-C∗-algebra. If A has the continuous Rokhlin property, then A is

JG-injective. Moreover, if A has continuous Rokhlin dimension with commuting

towers at most d− 1, then A is Jd
G-injective.

Corollary 5.10. Let A and B be separable unital G-C∗-algebras with finite Rokhlin

dimension with commuting towers. For ϕ ∈ KKG(A,B), ϕ is a KKG-equivalence

if and only if ResG ϕ is a KK-equivalence. Moreover, if A and B are in the UCT
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class, ϕ is a KKG-equivalence if and only if (ResG ϕ)∗ : K∗(A) → K∗(B) is an

isomorphism.

Proof. It follows from Theorem 5.9, Proposition 5.3, Theorem 4.4 and the universal

coefficient theorem (Proposition 7.3 of [RS87]).

Lemma 5.11. Let (A,α) be a separable unital G-C∗-algebra with the Rokhlin

property and let p ∈ C∗
λ(G) = G ⋉ C ⊂ G ⋉ A be the projection corresponding to

the trivial representation. Then, p is a full projection in G⋉A such that the map

j : Aα → p(G⋉ A)p, j(a) := pa = pap

is an isomorphism. In particular, G⋉A is Morita equivalent to Aα and j induces

the KK-equivalence.

Proof. It is proved in [Ros79] that j is isomorphic for arbitrary action α. We

remark that p corresponds to the constant function 1 ∈ L1(G,A, α) ⊂ G ⋉ A.

According to Proposition 2.6 of [Gar14c], α is saturated in the sense of Definition

7.1.4 of [Phi87]. Now, fullness of p is shown in the proof of Proposition 7.1.8 of

[Phi87].

Corollary 5.12. Let A be a C∗-algebra and let {αt}t∈[0,1] be a homotopy of G-

actions on A such that α0 and α1 have finite Rokhlin dimension with commuting

towers. Then (A,α0) and (A,α1) are KKG-equivalent. Moreover, if α0 and α1 have

the Rokhlin property, the fixed point subalgebras Aα0 and Aα1 are KK-equivalent.

Proof. It follows from Theorem 5.9, Proposition 5.3, Proposition 5.11 and Corol-

lary 4.5.



Chapter 6

Classification results

In this chapter, we focus on G-C∗-algebras with the continuous Rokhlin prop-

erty and present the results on the classification. Our main result is a complete

classification of unital Kirchberg G-algebras (i.e. unital Kirchberg algebras with

G-actions) with the continuous Rokhlin property up to G-equivariant isomorphism

in terms of (equivariant) KK-theory.

6.1 Equivariant KK classification

In this section, we focus on the case that G is a compact Lie group with the

Hodgkin condition, that is, G is connected and π1(G) is torsion-free. An important

feature of Hodgkin Lie groups is that the dual quantum group Ĝ is torsion-free

in the sense of Section 7.2 of [Mey08]. Together with the strong Baum-Connes

conjecture for Ĝ (proved in Corollary 3.4 of [MN07] and rephrased in terms of

crossed products in Section 7.2 of [Mey08]), we obtain the following.

Proposition 6.1. Let G be a Hodgkin Lie group. A KKG-morphism ξ ∈ KKG(A,B)

is a KKG-equivalence if and only if G⋉ξ ∈ KK(G⋉A,G⋉B) is a KK-equivalence.

Remark 6.2. A typical use of Proposition 6.1 is the KK-equivalence of noncommu-

tative tori. More strongly, here we show that At := Z αt⋉C(T) (where αt is as in

Example 5.6) with the dual T-action are KKT-equivalent.

Let α̃ be the automorphism on C([0, 1], C(T)) given by α̃(x)(t) := αt(x(t)) for

x ∈ C([0, 1], C(T)) and t ∈ [0, 1]. Set Ã := Z α̃⋉ (C([0, 1], C(T))). Then, the

52
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equivariant ∗-homomorphisms evt : Ã → At induce KKT-equivalences since T ⋉
(evt) are homotopy equivalences by the Takesaki-Takai duality. We remark that

the KKT-equivalence constructed here preserves the unit classes in the K0-groups.

Theorem 6.3. Let G be a compact Lie group with the Hodgkin condition. Then,

for any separable unital G-C∗-algebra (A,α) with the continuous Rokhlin prop-

erty, there is a KKG-equivalence from A to Aα ⊗ C(G) mapping [1A] ∈ KG
0 (A) to

[1Aα⊗C(G)].

Proof. Let ψ be as in (5.7). By Proposition 6.1, it suffices to show that G ⋉ ξ is

a KK-equivalence for

ξ := [ψ|Aα⊗C(G)] ∈ KKG(Aα ⊗ C(G), A).

Let i1 : A
α⊗C→ Aα⊗C(G) and i2 : Aα → A be canonical inclusions. Since ψ ◦ i1

is asymptotically equivalent to i2, we obtain

(G⋉ ξ) ◦ (G⋉ [i1]) = G⋉ [i2] ∈ KK(C∗
λ(G)⊗ Aα, G⋉ A). (6.4)

Let p be the projection in C∗
λ(G) corresponding to the trivial representation and

let j : Aα → C∗
λ(G)⊗Aα be the inclusion given by j(a) := p⊗a. Then, by Lemma

5.11, both (G ⋉ i1) ◦ j and (G ⋉ i2) ◦ j induce KK-equivalences. Now we obtain

the conclusion by composing [j] with the left and right hand sides of (6.4) from

the right.

Remark 6.5. In fact, KKG-equivalence of A with B⊗C(G) for some B holds under

weaker assumptions for the action. As in [Yam11], we can apply the Baum-Connes

conjecture for duals of Hodgkin Lie groups to the path of cocycle actions using

the duality [VV03] and we obtain that any G-C∗-algebra is KKG-equivalent to

B ⊗ C(G) for some B if its dual action is asymptotically inner.

Remark 6.6. It is remarkable that the isomorphism

ξ∗ : K0(A
α ⊗ C(G))→ K0(A)

is actually an ordered map. It is because an asymptotic morphism maps projection

to projection. This fact gives a stronger obstruction for a G-C∗-algebra to have

the continuous Rokhlin property.
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For example, let (A,α) be as in 5.6. Let τ be the unique trace on B whose image

is Z+ ωZ. If A has the continuous Rokhlin property, the composition

K0(A)
ξ∗−→ K0(B ⊗ C(T))

ev∗−−→ K0(B)
τ∗−→ Z+ ωZ ⊂ R

is an ordered map, where ev : B ⊗C(T)→ B is the evaluation at a point in T. It
contradicts with the fact that there is a unique ordered map from (K0(A),K0(A)+)

to (R,R≥0) and its image is Z+ θZ+ ωZ.

The following corollary is an analogue of Theorem 5.5 of [Gar14a] for T-C∗-

dynamical systems.

Corollary 6.7. Let G be a Hodgkin Lie group and let (A,α) be a separable unital

G-C∗-algebra with the continuous Rokhlin property. Set n := 2rankG−1, where

rankG is the dimension of the maximal torus of G. Then, there is a countable

abelian group M such that Ki(A) is isomorphic to Mn for i = 0, 1. Moreover, in

this case M ∼= K0(A
α)⊕K1(A

α).

Proof. It follows from Theorem 6.3. Note that C(G) is KK-equivalent to Ck ⊕
C0(R)l for some k, l ∈ Z>0 by the universal coefficient theorem [RS87] because

K∗(G) is torsion-free (Theorem A (i) of [Hod67]). By taking tensor product with

Q and using the Chern character isomorphism, we conclude that k = l = n (Hopf’s

theorem, see for example Theorem 1.34 of [FOT08]).

Corollary 6.8. Let G be a Hodgkin Lie group. Two separable unital G-C∗-algebras

with the continuous Rokhlin property are KKG-equivalent if and only if their fixed

point algebras are KK-equivalent. In particular, when these C∗-algebras are in the

UCT-class, then they are KKG-equivalent if and only if the K∗-groups of fixed point

algebras are isomorphic.

Proof. It follows from Theorem 6.3 and Proposition 5.11. Note that for a separable

unital G-C∗-algebra (A,α) with the continuous Rokhlin property, A is in the UCT

class if and only if so is Aα because C(G) is KK-equivalent to Cn ⊕ C0(R)n.

6.2 Model actions

Theorem 6.9. Let X be a G-space. Assume that for any x, y ∈ X there is a G-

equivariant continuous map F : X → X with F (x) = y. Then, there is a Kirchberg
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G-algebra O(X) with the X-Rokhlin property which is KKG-equivalent to C(X).

Moreover, if such F can be taken to be homotopic to the identity, O(X) has the

continuous Rokhlin property.

Proof. The construction is in the same way as Lemma 5.2 of [Izu04b].

Let us fix a dense subset {x1, x2, . . . } of X and a sequence of continuous maps

{Fn : X → X}n∈N such that {Fn(xm) | n ∈ N} is dense in X. For each n > 0,

choose a family of mutually orthogonal projections {pn,i}ni=0 inO∞ with
∑n

i=0 pn,i =

1 such that

[pn,0] = [1], [pn,i] = 0 ∈ K0(O∞).

Let us consider the following G-equivariant ∗-homomorphism

ιn : C(X,O⊗n
∞ )→ C(X,O⊗n

∞ )⊗O∞ ∼= C(X,O⊗(n+1)
∞ ),

φn(f) := f ⊗ pn,0 +
n∑

i=1

F ∗
i (f)⊗ pn,i

and set O(X) := lim−→(C(X,O⊗n
∞ ), ιn). Obviously the compositions

φn : C(X) ↪→ C(X,O⊗n
∞ ) ↪→ O(X)

form aX-Rokhlin map. Therefore, a non-equivariant KK-equivalence φ1 : C(X)→
O(X) is actually an equivariant KK-equivalence by Corollary 5.10.

To see thatO(X) is simple and purely infinite, fix a nonzero element f ∈ C(X,O⊗n
∞ ).

Then, we can choose an open subset U ⊂ X and h, k ∈ C(X,O⊗n
∞ ) such that

hxk|U = 1. By assumption, there is a large m such that
∪m

i=1 F
−1
i (U) = X. By

choosing a partition of unity {ϕi}mi=1 of X with respect to this covering and a

family of isometries v1, . . . , vm ∈ O⊗(m−n)
∞ with

viv
∗
i ≤ pn+1,0 ⊗ · · · ⊗ pm−1,0 ⊗ pm,i,

we get

(
∑

ϕ
1/2
i F ∗

i h⊗ v∗i )(φm−1 · · · ◦ φn(f))(
∑

ϕ
1/2
i F ∗

i k ⊗ vi) = 1 ∈ C(X,O⊗m
∞ ).



Contents 56

Assume that there are pathes Fn,t : X → X of continuous maps with Fn,0 = Fn

and Fn,1 = id. Then, for t ∈ [n, n+ 1] we get a path of ∗-homomorphisms

φt : C(X)→ C(X,O⊗(n+1)
∞ ) ↪→ O(X),

φt(f) := f ⊗ pn,0 +
n∑

i=1

F ∗
i,t−n(f)⊗ pn,i

connecting φn and φn+1. By construction (φt)t∈[0,∞) forms a continuousX-Rokhlin

map.

Corollary 6.10. Let G be a compact second countable group.

1. For any n ≥ 1, dimc
cRok(O(En+1G)) = n.

2. If G is path-connected, O(G) has the continuous Rokhlin property.

Proof. First we show (1). By Theorem 5.9 and Theorem 6.9, it suffices to show

that for any x, y ∈ EnG there is a G-equivariant continuous map F : EnG→ EnG

with F (x) = y which is homotopic to the identity.

Fix x, y ∈ EnG. We may assume that s1 ≥ (n + 1)−1 when we write as x =

[s1, . . . , sn, h1, . . . , hn]. Choose a homotopy γ : [0, 1]→ EnG with

γ(0) = [1, 0, . . . , 0, e, . . . , e], γ(1) = h−1
1 · y.

(Note that EnG is connected.) Then, the path of continuous maps

Fs([t1, . . . , tn, g1, . . . , gn]) =

{
[ t1−s+1

s
, t2

s
, . . . , tn

s
, g1, . . . , gn] 0 ≤ t1 ≤ s

g1 · γ((t1 − s)/(1− (n+ 1)−1)) s ≤ t1 ≤ 1

is well-defined. Since it satisfies F1−(n+1)−1(x) = y and F1 = id, we get the

conclusion.

For (2), the multiplications of g ∈ G from the right are desired G-equivariant

continuous maps. Since there is a path connecting g with e, they are homotopic

to the identity.

In Section 4.2 of [AK17], another construction ofO(G) for path-connected compact

groups is given by using the crossed product by the dual discrete quantum group

Ĝ.
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We also remark that O(G) has the continuous Rokhlin property. It is a conse-

quence of Theorem 6.15.

6.3 Classification of Kirchberg G-algebras

An important feature of Kirchberg algebras is the Kirchberg-Phillips classifica-

tion: two unital Kirchberg algebras are isomorphic if and only if there is a KK-

equivalence between them preserving unit classes (Theorem 4.2.4 of [Phi00]). It is

generalized to the equivariant setting when the actions have the Rokhlin property.

Lemma 6.11. Let G be a compact group and let (A,α) and (B, β) be unital

separable G-C∗-algebras. Assume β has the Rokhlin property and there exists a

∗-homomorphism φ : A→ B such that there exists a sequence of unitaries (un)n∈N

in B ⊗ C(G) such that

(Ad(un(g)) ◦ φ)(x)→ (βg ◦ φ ◦ α−1
g )(x) as n→∞.

Then, there exists a G-equivariant ∗-homomorphism ψ : A→ B which is approxi-

mately unitarily equivalent to φ. Moreover, if φ is an isomorphism and α also has

the Rokhlin property, then ψ can be taken to be an isomorphism.

Proof. Put θ : A→ B⊗C(G) as θ(x)(g) := (βg ◦φ ◦α−1
g )(x) for g ∈ G and x ∈ A

by identifying B ⊗ C(G) with the space of continuous B-valued functions on G.

Then θ is a G-equivariant ∗-homomorphism. Fix a G-invariant compact set F ⊂ A

and ε > 0. By assumption, we may take a unitary u ∈ B ⊗ C(G) such that

∥u(φ(x)⊗ 1)u∗ − θ(x)∥ < ε

for x ∈ F .

Let φ : C(G)→ Fα(B) be a Rokhlin map. Let us construct a completely positive

lift of φ⊗ idB : C(G)⊗B → ℓ∞β (N, B)/c0(N, B) in the same way as ψt in (5.7) (see

also the proof of Theorem 2.11 in [Gar14c]). Then we get a completely positive

map χ : B ⊗ C(G)→ B such that

◦ ∥χ(u)∗χ(u)− 1∥ < ε, ∥χ(u)χ(u)∗ − 1∥ < ε,

◦ ∥χ(u)χ(φ(x)⊗ 1)χ(u)∗ − χ ◦ θ(x)∥ < ε for x ∈ F ,
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◦ ∥χ(φ(x)⊗ 1)− φ(x)∥ < ε for x ∈ F ,

◦ ∥βg(χ(x))− χ((βg ⊗ λg)(x))∥ < ε for g ∈ G and x ∈ F ∪ {u}.

The last condition can be replaced with a stronger one:

◦ χ is G-equivariant,

by replacing χ with

x 7→
∫
G

βg−1(χ((βg ⊗ λg)(x)))dg.

Take the unitary v := χ(u)|χ(u)|−1. Then we have ∥χ(u)− v∥ < ε/2 and hence

∥vφ(x)v∗ − χ ◦ θ(x)∥ < 3

2
ε.

Since χ ◦ θ is G-equivariant, we get

∥vφ(αg(x))v
∗ − βg(vφ(x)v∗)∥ < 3ε.

Moreover since

∥θ(x)− φ(x)⊗ 1∥ = sup
g∈G
∥(βg ◦ φ ◦ α−1

g )(x)− x∥,

we get

∥(χ ◦ θ)(x)− φ(x)∥ < sup
g∈G
∥(βg ◦ φ ◦ α−1

g )(x)− x∥+ ε.

Therefore, the intertwining argument in Theorem 3.5 of [Izu04a] and Lemma 5.1

of [Izu04b] works for this situation and we obtain the conclusion.

Proposition 6.12. Let G be a second countable compact group and let (A,α)

and (B, β) be unital Kirchberg G-algebras with the Rokhlin property. If there is a

KKG-equivalence from A to B mapping [1A] to [1B], then they are conjugate.

Proof. First, we observe that a ∗-homomorphism φ : A → B satisfies [φ ◦ α] =
[β ◦ φ] ∈ KK(A,B ⊗ C(G)) if [φ] is in the image of the functor ResG. To see

this, take a G-equivariant quasihomomorphism [φ′
0, φ

′
1] : A → B ⊗ KG such that

ResG[ψ0, ψ1] = [φ]. Then, we get

[φ] ◦ [α] = [φ′
0, φ

′
1] ◦ [α] = [φ′

0 ◦ α, φ′
1 ◦ α] = [β ◦ φ′

0, β ◦ φ′
1] = [β] ◦ [φ].



Contents 59

Now, take a KKG-equivalence ξ ∈ KKG(A,B) preserving unit classes and a ∗-
isomorphism φ : A → B such that [φ] = ResG ξ. Then, φ ◦ α and β ◦ φ are

equivalent in KK(A,B⊗C(G)) by the above argument, and hence asymptotically

unitarily equivalent thanks to Theorem 4.1.1 of [Phi00]. Now we get the conclusion

by Lemma 6.11.

Theorem 6.13. Let G be a Hodgkin Lie group.

◦ A unital Kirchberg G-algebra (A,α) with the continuous Rokhlin property is

G-equivariantly isomorphic to Aα ⊗O(G).

◦ Two unital Kirchberg G-algebras (A,α) and (B, β) with the continuous Rokhlin

property are isomorphic if and only if the fixed point algebras Aα and Bβ are

isomorphic. Moreover, if the underlying C∗-algerbas A and B are in the

UCT class, then (A,α) and (B, β) are conjugate if and only if

(K0(A
α), [1Aα ],K1(A

α)) ∼= (K0(B
β), [1Bβ ],K1(B

β)).

◦ A unital UCT-Kirchberg algebra (A,α) in the Cuntz standard form (i.e.

[1A] = 0 ∈ K0(A)) admits a G-action with the continuous Rokhlin prop-

erty if and only if there is a countable abelian group M such that Ki(A)

(i = 0, 1) are isomorphic to M⊕n, where n = 2rankG−1. In this case,

M ∼= K0(A
α)⊕K1(A

α).

Proof. By Theorem 6.3, for every G-C∗-algebra (A,α) with the continuous Rokhlin

property, there is a KKG-equivalence from Aα ⊗ O(G) to A preserving unit ele-

ments. Moreover, as is shown in Corollary 6.10 (2), both (Aα⊗O(G), idAα⊗γ) and
(A,α) have the continuous Rokhlin property. Since the fixed point algebra Aα of

a (continuous) Rokhlin action on Kirchberg algebras is again a Kirchberg algebra

(Corollary 3.20 of [Gar14c]), A and Aα⊗O(G) are G-equivariantly isomorphic by

Proposition 6.12.

The second assertion follows from Theorem 4.2.4 of [Phi00], Corollary 6.8 and

Proposition 6.12. The third assertion follows from the KK-equivalence C(G) ∼
Cn ⊕ C0(R)n as in the proof of Corollary 6.7.

Example 6.14. Let (A, α̂) be as in Example 5.6 and let us consider the tensor

product (A ⊗ O∞, α̂ ⊗ idO∞). It is a unital Kirchberg algebra since A is simple
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(this is because A is the crossed product of C(T) by Z2 by a free minimal action

[AS94]).

It is shown in Remark 6.2 that there is a KKT-equivalence between A and B⊗C(T)
(on which T acts by idB⊗λ where λ is the regular action) preserving the unit classes

in the K0-groups. Therefore, we can apply Proposition 6.12 to see that A⊗O∞ is

T-equivariantly isomorphic to O(T)⊗D, where D is the UCT-Kirchberg algebra

with K0(D) ∼= Z2 ∼= K1(D). In particular, A ⊗ O∞ has the continuous Rokhlin

property.

6.4 Rokhlin property vs. continuous Rokhlin prop-

erty

We conclude the article by comparing the Rokhlin and continuous Rokhlin prop-

erties.

Theorem 6.15. Let G be a second countable compact group and let A be a unital

UCT-Kirchberg G-algebra with the Rokhlin property. Then, A has the continuous

Rokhlin property if (and only if) it is JG-injective.

For the proof, it suffices to prove that there exists a G-equivariant asymptotic

morphism ψt : A ⊗ C(G) → A such that ψt ◦ ιA is asymptotically equal to idA

(recall that ι : C → C(G) is the canonical inclusion and ιA := ι ⊗ idA), so that

f 7→ ψt(1 ⊗ f) gives the desired continuous Rokhlin approximation. Now, by

assumption of JG-injectivity, there exists a left inverse ξ ∈ KKG(A⊗C(G), A) of
ιA in the level of KK-theory. In order to construct such ψt starting from this ξ,

first we prepare some lemmas.

Lemma 6.16. For any second countable compact group G, there is a unital UCT-

Kirchberg G-algebra D with a unital G-equivariant ∗-homomorphism j : C(G)→ D

inducing a KKG-equivalence.

Proof. Let us define D to be the Cuntz–Pimsner construction [Pim97,Kum04] for

the Hilbert C(G)-bimodule HG ⊗ C(G), where HG is the Hilbert space L2(G)∞

together with the natural C(G)-action from the left. Now, it is shown in Proposi-

tion 2.1 of [Kum04] that D is a unital Kirchberg algebra. Moreover, the canonical
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inclusion j : C(G) → D induces a KKG-equivalence by Theorem 4.4 of [Pim97],

whose proof also works for the equivariant setting.

We write ι′ for the canonical inclusion C → D (in other words, ι′ := j ◦ ι) and

ι′A := ι′ ⊗ idA.

Lemma 6.17. Let A be a JG-injective unital UCT-Kirchberg G-algebra with the

Rokhlin property and let j : C(G) → D be as in Lemma 6.16. Then, there is a

G-equivariant ∗-homomorphism θ : A⊗D → A such that [θ] ∈ KKG(A⊗D,A) is
the left inverse of [ι′A].

Proof. Set ξ′ := ξ ◦ (idA⊗ [j]−1), which is a left inverse of [ι′A]. Thanks to Theorem

4.1.1 of [Phi00], we can take a unital ∗-homomorphism ϕ : A ⊗ D → A with

[ϕ] = ResG ξ (note that ξ∗[1A⊗D] = ξ∗i∗[1A] = [1A]). Let β denote the G-action

on A ⊗ D. Then, by the same argument as the proof of Lemma 6.12, we get

[ϕ ◦ β] = [α ◦ ϕ] ∈ KK(A ⊗ D,A ⊗ C(G)). Applying Lemma 6.11, we get a

G-equivariant unital ∗-homomorphism ϕ′ : A ⊗ D → A approximately unitarily

equivalent to ϕ.

Since [ϕ′◦ ι′A] ∈ KKG(A,A) induces the identity on K∗(A), it is a KKG-equivalence

by Corollary 5.10. Now, we observe that [ϕ′ ◦ ι′A]−1 ⊗ idD is represented by a G-

equivariant ∗-homomorphism. To see this, recall that there is an isomorphism

IndG : KK(A⊗D,A) ∼= KKG(A⊗D,A⊗ C(G))

(see for example Proposition 3.2 of [AK15]), which is compatible with the isomor-

phism between the spaces of ∗-homomorphisms

IndG : Hom(A⊗D,A) ∼= HomG(A⊗D,A⊗ C(G)),

defined by ((IndG(φ))(x))(g) := αg(φ(x)) for any x ∈ A⊗D and g ∈ G. Now, let
σ : A⊗D → A be a unital ∗-homomorphism representing

((idA ⊗ j)∗ ◦ IndG)−1([ϕ′ ◦ ι′A]−1 ⊗ idD) ∈ KK(A⊗D,A).

Then, the ∗-homomorphism σ̃ := (idA⊗j)∗◦IndG(σ) satisfies [σ̃] = [ϕ′◦ι′A]−1⊗idD.
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Now, θ := ϕ′ ◦ σ̃ is the desired ∗-homomorphism because

[σ̃] ◦ [ι′A] = ([ϕ′ ◦ ι′A]−1 ⊗ idD) ◦ (idA ⊗ [ι′]) = [ι′A] ◦ [ϕ′ ◦ ι′A]−1.

Proof of Theorem 6.15. Let θ be the G-equivariant ∗-homomorphism constructed

in Lemma 6.17. Thanks to Theorem 4.1.1 of [Phi00], there is a path of unitaries

(ut) ∈ A such that

utθ(a⊗ 1)u∗t → a

for any a ∈ A.

Choose an increasing sequence {Fn} of self-adjoint compact G-invariant subset of

A which satisfies

◦ A =
∪

n Fn,

◦ A⊗D =
∪

n θ
−1(Fn) and

◦ {us : s ≤ n− 1} ⊂ Fn.

By an inductive reparametrization, we may assume for any n ∈ N,

∥utθ(a⊗ 1)u∗t − a∥ < 2−n∥a∥

for any t ≥ n and a ∈ Fn. Note that we also get

(i) ∥α(ut)(θ(a⊗ 1)⊗ 1)α(ut)
∗ − a⊗ 1∥A⊗C(G) < 2−n∥a∥ for a ∈ Fn,

(ii) ∥Ad((un+1 ⊗ 1)α(un+1)
∗)α(un)− α(un)∥ < 2−n,

since

∥α(ut)(θ(a⊗ 1)⊗ 1)α(ut)
∗ − a⊗ 1∥A⊗C(G)

=sup
g∈G
∥αg(ut)θ(a⊗ 1)αg(ut)

∗ − a∥

=sup
g∈G
∥utθ(αg−1(a)⊗ 1)u∗t − αg−1(a)∥ ≤ 2−n∥a∥,
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and

∥Ad(u∗n)(a)− θ(a⊗ 1)∥ ≤ ∥Ad(u∗n)(a− unθ(a⊗ 1)u∗n)∥ ≤ 2−n∥a∥

for any a ∈ Fn (now the second inequality follows from them).

Thanks to the inequalities (i) and (ii), again by an induction, in the same way

as the proof of Lemma 6.11 we may take G-equivariant averaging maps χk : A ⊗
C(G)→ A such that

1. ∥χn(α(ut))θ(a⊗ 1)χn(α(ut))
∗ − a∥ < 2−n∥a∥,

2. ∥Ad(un+1χn(α(un+1))
∗)(χn(α(un)))− χn(α(un))∥ < 2−n,

3. ∥Ad(χn(α(un))χn−1(α(un))
∗)(χn−1(α(un−1)))− χn−1(α(un−1))∥ < 2−n+1,

4. ∥χn(α(ut))
∗χn(α(ut))− 1∥, ∥χn(α(ut))

∗χn(α(ut))− 1∥ < 2−n.

for n ≤ t ≤ n+ 1 and a ∈ Fn. (Note that for (3), we use (2) in the previous step.

Actually we do not need (2) for the later argument, but we put this to get (3) in

the induction.) Then due to the condition (4), for n ≤ t ≤ n+ 1,

vn,t := χn(α(ut))|χn(α(ut))|−1

are G-invariant unitaries such that

∥vn,t − χn(α(ut))∥ < 2−n−1.

Hence we rewrite (1) and (3) as

(1’) ∥vn,tθ(a⊗ 1)v∗n,t − a∥ < 2−n+1∥a∥,

(3’) ∥Ad(vn+1,n+1v
∗
n,n+1)(vn,n)− vn,n∥ < 2−n+2,

for any n ≤ t ≤ n + 1, a ∈ Fn. Note that we can check in the same way as (ii)

that (1’) implies ∥Ad(vn,tv∗n+1,t)(a)− a∥ < 2−n+2 ∥a∥ for any a ∈ Fn.

Now, for n ∈ Z>0 and t ∈ [0, 1], set

w
(n)
t := vn+1,n+1v

∗
n,n+1vn,t−n
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(in particular, w
(n)
0 = vn,n and w2n = vn+1,n+1v

∗
n,n+1vn,t−n). We construct a desired

path ψt to be

ψ2n+t(x) :=

tAd(w
(n)
0 )θ(x) + (1− t)Ad(w(n−1)

1 )θ(x) for t ∈ [0, 1],

Ad(w
(n)
t )θ(x) for t ∈ [1, 2].

Indeed, from (1’) and (3’), ψt is a G-equivariant asymptotic morphism since

∥Ad((vn+1,n+1v
∗
n,n+1)vn,n) ◦ θ(x)− Ad(vn,n) ◦ θ(x)∥

<∥Ad(vn,n(vn+1,n+1v
∗
n,n+1)) ◦ θ(x)− Ad(vn,n) ◦ θ(x)∥+ 2−n+3 < 2−n+4

for any x ∈ θ−1(Fn). Moreover again from (1’) and (3’), ∥ψt(a ⊗ 1) − a∥ → 0 as

t→∞, as desired.

We remark that Theorem 6.15 holds for general second countable compact groups,

in particular for finite groups. As a concluding remark, we discuss on the connec-

tion of our results with Izumi’s classification of finite group actions on unital

UCT-Kirchberg algebras with the Rokhlin property [Izu04b]. For any finite group

G, a G-module (i.e., a Z[G]-module) is called relatively projective if it is a di-

rect summand of the module of the form M ⊗Z Z[G] for some countable abelian

group M . The class of G-modules which is isomorphic to an inductive limit of

relatively projective modules is characterized by its cohomology groups and called

CCT G-modules (Theorem 3.15 of [Izu04b]). A complete classification of unital

UCT-Kirchberg G-algebras with the Rokhlin property is given in Corollary 5.4 of

[Izu04b] by their K∗-groups as CCT G-modules and [1A] ∈ K0(A)
G.

In fact, it is an immediate consequence of Theorem 5.9 that the K∗-group of G-C∗-

algebras with the continuous Rokhlin property is relatively projective. The class

of relatively projective modules is strictly smaller than the class of CCT modules

although they coincide under some reasonable assumptions. Actually, Katsura

[Kat07] shows that every CCT module is given by the third term of a pure exact

sequence whose first and second terms are relatively projective (in other words,

its “relatively projective dimension” is at most 1, cf. Proposition 5.3). Hence we

obtain a unital UCT-Kirchberg G-algebra with the Rokhlin property which does

not have the continuous Rokhlin property. Moreover, relative projectivity is also

a sufficient condition for the continuous Rokhlin property.
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Lemma 6.18. Let G be a finite group and let A be a unital UCT-Kirchberg

G-algebra such that K∗(A) is a relatively projective G-module. Then, A is JG-

injective.

Proof. LetO(G) denote the model action in Theorem 6.9, which is KKG-equivalent

to C(G) by the inclusion. Choose an isomorphism M∗ ⊕M ′
∗
∼= N∗ ⊗Z Z[G] where

N∗ are abelian groups. Let A, A′ be the unital UCT-Kirchberg G-algebras in

the Cuntz standard form with the Rokhlin property corresponding to M∗, M
′
∗

respectively and let B be the unital UCT-Kirchberg algebra in the Cuntz standard

form corresponding to N∗. By Lemma 5.1 of [Izu04b], we obtain G-equivariant ∗-
homomorphisms φ : A→ B⊗O(G) and φ′ : A′ → B⊗O(G) such that [φ]⊕ [φ′] ∈
KKG(A⊕A′, B⊗O(G)) induces an isomorphism of K∗-groups and hence a KKG-

equivalence by Corollary 5.10. Since B ⊗ O(G) is JG-injective, so are the direct

summands A and A′.

Corollary 6.19. Let G be a finite group. Under the one-to-one correspondence

given in Corollary 5.4 of [Izu04b], any triplet (M0, x,M1) such that M0 and M1

are relatively projective corresponds to a unital UCT-Kirchberg G-algebra with the

continuous Rokhlin property.

Proof. This follows from Lemma 6.18 and Theorem 6.15.

Corollary 6.20. Let G be a finite group and let A be a unital UCT-Kirchberg

G-algebra with the Rokhlin property. If both K0(A) and K1(A) are either finitely

generated groups or bounded p-groups, then A has the continuous Rokhlin property.

Proof. This follows from the above corollary and Lemma 3.12 and Lemma 3.13 of

[Izu04b].
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Grundlehren Text Editions, Springer-Verlag, Berlin, ISBN 3-540-20062-2, (2004).

Corrected reprint of the 1992 original.

[Bla98] Bruce Blackadar. K-theory for operator algebras, Second, Mathematical Sciences Re-

search Institute Publications, vol. 5, Cambridge University Press, Cambridge, ISBN

0-521-63532-2, (1998).

[Bon02] A. Bonkat, Bivariante k-theorie für kategorien projektiver systeme von c∗-algebren,

Ph.D. Thesis, 2002. Preprintreihe SFB 478, heft 319.
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