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Preface

Method of Fundamental Solutions (MFS) is a mesh-free numerical solver for linear homogeneous partial
di↵erential equations, and its idea is very simple. Let us consider the following problem.

(0.0.1)

(

Lu = 0 in ⌦,

Bu = f on @⌦,

where ⌦ is a bounded region in the plane with smooth boundary @⌦, L denotes a linear partial dif-
ferential operator, Bu = f gives boundary condition such as Dirichlet, Neumann, or Robin conditions.
MFS o↵ers an approximate solution for the above problem as in the following procedure.

(i) Take N singular points {yk}Nk=1 “suitably” from the exterior of ⌦.

(ii) Construct an approximate solution u(N) as follows:

u(N)(x) =
N
X

k=1

QkE(x� yk),

where E is the fundamental solution for the operator L. Note that the function u(N) satisfies
the first equation in (0.0.1) exactly, that is, Lu(N) = 0 in ⌦.

(iii) Determine coe�cients {Qk}Nk=1 by the collocation method. Namely, take N collocation points
{xj}Nj=1 “suitably” on @⌦, and impose the following “approximate” boundary conditions.

Bu(N)(xj) = f(xj), j = 1, 2, . . . , N.

This is the algorithm of MFS. Namely, MFS is a truly mesh-free numerical solver for linear homogeneous
partial di↵erential equations. Moreover, if we arrange the singular and collocation points “suitably”,
then the approximation error decays exponentially with respect to N . This is a remarkable property
of MFS compared with popular numerical solver such as finite element method (FEM) and finite
di↵erence method (FDM), in which the approximation error decays polynomially with respect to the
mesh size. Furthermore, implementation and extension to higher dimensional problems of MFS is
easy. Therefore, MFS has been applied to several problems in the field of engineering, science, and
so on. On the other hand, there are no satisfactory mathematical theory for MFS compared with
FEM and FDM, since we cannot apply useful mesh-dependent arguments used in the mathematical
analysis of FEM and FEM to MFS. Hence, although MFS is a numerical solver for PDEs, we cannot
use usual arguments in numerical analysis. Also, we have to clarify what the “suitable” arrangements
of the singular and collocation points in mathematical sense. This is one reason why there are no
adequate mathematical theory for MFS. In contrast, MFS has been applied to several problems (see,
for instance, [20, 44]), however, it is hard to find mathematical result in those results. The author
believes that mathematical analysis of MFS must be done in order to assure the e�ciencies of previous
applied researches. Then, we can state that the aim of this thesis is
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• to develop mathematical theory of MFS, and

• to construct reliable numerical scheme for problems in the field of complex analysis and fluid
mechanics based on MFS.

The contents of this paper are summarized as follows.
Part I is devoted to constructing mathematical theory of MFS. In Chapter 1, several notions are

introduced, which will be used in mathematical analysis of MFS. Particularly, we introduce a family of
Hilbert spaces which contains Sobolev spaces (Section 1.1), the notion of peripheral conformal mapping
which is a conformal mapping in the neighborhood of the region (Section 1.2), fundamental results in
potential theory (Section 1.3), the notion of capacity which measures the size of the region (Section
1.4), a theorem related discrete Fourier transform (Section 1.5), and estimates of Fourier coe�cients
for function which is defined in the direct product of two annular regions (Section 1.6).

In Chapter 2, we develop mathematical theory for MFS applied to potential problems in doubly-
connected regions. Let us state the target problem precisely. Let ⌦ be a nondegenerate doubly-
connected region in the complex plane, that is, there exist two disjoint connected components K1 and
K2 such that Ĉ \ ⌦ = K1 t K2, K1 is unbounded in the sense that 1 2 K̊1 holds, and neither K1

nor K2 is reduced to a single point, where Ĉ denotes the extended complex plane, and K̊⌫ denotes the
interior of K⌫ . Then, we consider the following potential problem:

(0.0.2)

(

4u = 0 in ⌦,

u = fµ on �µ, µ = 1, 2,

where �µ is the boundary @Kµ of Kµ, and fµ is a given function defined on �µ for each µ = 1, 2.
Let  µ be a peripheral conformal mapping of �µ with reference radius ⇢µ for each µ = 1, 2, where
⇢1 > ⇢2 > 0 (see, for the definition of peripheral conformal mapping, Definition 1.2.1). Then, we define
the singular points {y⌫k}k=1,2,...,N

⌫=1,2 and the collocation points {xµj}j=1,2,...,N
µ=1,2 as

(

y⌫k =  ⌫(R⌫!
k�1), ⌫ = 1, 2; k = 1, 2, . . . , N,

xµj =  µ(⇢µ!
j�1), µ = 1, 2; j = 1, 2, . . . , N,

and construct an approximate solution u(N) as follows:

u(N)(x) =
2

X

⌫=1

N
X

k=1

Q⌫kE(x� y⌫k),

where E(x) = (2⇡)�1 log |x| is the fundamental solution for the operator 4, and the coe�cients
{Q⌫k}k=1,2,...,N

⌫=1,2 are determined by the following “approximate” boundary conditions:

u(N)(xµj) = fµ(xµj), µ = 1, 2; j = 1, 2, . . . , N.

Parameters R1 and R2 for the singular points are chosen as R1 2 ]⇢1,⇢1[ and R2 2 ]�1⇢2, ⇢2[, where
 is a constant appeared in the definition of peripheral conformal mapping. Then, we prove that an
approximate solution u(N) actually exists uniquely and an approximation error decays exponentially
with respect to N when the boundary data are analytic (Theorem 2.1.1). The above is the conventional
scheme for MFS applied to potential problems. Incidentally, it is known that u(N) does not satisfy
invariance properties while the exact solution u for (0.0.2) satisfies them. Then, Murota [73] proposed
an invariant scheme for MFS in disk, which satisfies invariance properties. If we apply it to (0.0.2),
then an approximate solution u(N) is given of the form

u(N)(x) = Q0 +
2

X

⌫=1

N
X

k=1

Q⌫kE(x� y⌫k),
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and the coe�cients are determined by the collocation method together with the following invariance
condition:

2
X

⌫=1

N
X

k=1

Q⌫k = 0.

We also prove corresponding results for this invariant scheme (Theorem 2.1.2). This chapter is based
on my paper [85].

In Chapter 3, we consider a variant of MFS, which is called the dipole simulation method (DSM).
When we consider the potential problem, MFS o↵ers an approximate solution as a linear combination
of logarithmic potentials, that is, an approximate solution given by MFS can be regarded as a dis-
cretization of the single-layer potential representation of the exact solution in some sense. On the other
hand, in potential theory, the solution for the potential problem is given using double-layer potential.
Therefore, it is natural to consider a discretization of this double-layer potential representation. Then,
we find the following approximate solution for the potential problem:

(0.0.3) u(N)(x) =
N
X

k=1

QkD(x, yk;nk), D(x, yk;nk) =
�1

2⇡

(nk | x� yk)

kx� ykk2 .

Here the potential problem is considered as a problem in the two-dimensional Euclidean plane, and
nk, which is called the dipole moment, represents the direction of the axis of dipole located at yk.
Hereafter, we identify R2 with C in the usual manner. Although the formulation of DSM looks more
natural than that of MFS for the potential problem, the mathematical analysis has been done only
in [45]. In this chapter, we consider the potential problem in Jordan region. The singular points, the
collocation points, and the dipole moments are defined by using peripheral conformal mapping. Then,
under some conditions, we prove that an approximate solution actually exists uniquely, and that an
approximation error decays exponentially with respect to N (Theorem 3.1.1). This chapter is based
on my paper [84].

In Chapter 4, we consider the boundary value problem for the biharmonic equation. Namely, let
⌦ be a bounded region in the plane with smooth boundary, and consider the following problem.

8

>

>

<

>

>

:

42u = 0 in ⌦,

u = f on @⌦,

@u

@⌫
= g on @⌦,

where 42 =
@4

@x4
+ 2

@4

@x2@y2
+

@4

@x2@y2
is the biharmonic operator in the plane, and @u/@⌫ denotes

the derivative of u along outward normal direction. The conventional scheme for MFS o↵ers an
approximate solution for the above problem as a linear combination of the fundamental solutions of
the biharmonic operator and ones of the Laplace operator. Namely, u(N) is of the form

u(N)(x) =
N
X

k=1

⇣

Q(1)
k E(x� yk) +Q(2)

k F (x� yk)
⌘

,

where F (x) = (8⇡)�1|x|2 log |x| is the fundamental solution for the biharmonic operator. Although the
above is the conventional scheme for MFS applied to biharmonic equation, in this chapter, we consider
the another scheme for MFS based on Almansi-type decomposition of biharmonic function. Namely,
we seek an approximate solution for the above problem having the following form:

u(N)(x) =
N
X

k=1

�

Qp
k +Qq

k|x|2
�

E(x� yk).
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Since there are no mathematical result for MFS applied to biharmonic equation, we consider the
case where ⌦ is a disk as a first step to establish mathematical theory, and then we prove that an
approximate solution actually exists uniquely (Theorem 4.1.2) and that an approximation error decays
exponentially with respect to N (Theorem 4.1.3). This chapter is based on my paper [86].

In Chapter 5, we try to modify the original MFS for the potential problem, by adding the dummy
points and weighted average condition. Namely, we seek an approximate solution u(N) for the potential
problem having the form of

u(N)(x) = Q0 +
N
X

k=1

QkEk(x), Ek(x) = E(x� yk)� E(x� zk).

Here, {zk}Nk=1 are the dummy points, which are taken from the exterior of ⌦. We determine the
coe�cients by the collocation method together with the following weighted average condition:

N
X

k=1

QkHk = 0,

where {Hk}Nk=1 are given weights. Adding the dummy points {zk}Nk=1 and replacing the original kernel
function with the di↵erence of logarithmic potential Ek, u(N) satisfies the invariance condition with
no additional condition. Therefore, we can add one more another condition, which enables us to
construct geometrical variational structure-preserving numerical scheme for the one-phase Hele-Shaw
problem, which will be presented in Chapter 6. Also, in this chapter, we consider the case where ⌦ is
a disk, and establish mathematical theory, unique existence of approximate solution (Theorem 5.1.1)
and exponential convergence (Theorem 5.1.2). This chapter is based on my paper [91].

Part II is devoted to MFS applied to fluid mechanics and complex analysis. In Chapter 6, we
consider applications of MFS to fluid mechanics, especially, one-phase Hele-Shaw problems. The
classical one-phase Hele-Shaw problem describes a motion of viscous fluid in a quasi two-dimensional
space, which was starting from a short paper [32] in 1898 by Henry Selby Hele-Shaw (1854-1941). In
his experiment, viscous fluid is sandwiched by two parallel plates with a narrow gap, and the apparatus
is called Hele-Shaw cell. He succeeded in visualizing streamlines by means of colored water in the cell.
The classical one-phase Hele-Shaw problem is stated as follows:

(0.0.4)

8

>

<

>

:

4p(·, t) = 0 in D(t), t 2 [0, T ),

p(·, t) = �k(·, t) on C (t), t 2 [0, T ),

V (·, t) = �rp(·, t) ·N(·, t) on C (t), t 2 [0, T ),

where D(t) ⇢ R2 is a bounded region occupied by fluid, C (t) is the boundary of D(t) (positively
oriented closed curve), p(·, t) is the pressure function in D(t), � is the surface tension coe�cient, k(·, t)
is the curvature (sing convention is the way that k = 1 if D(t) is a unit disk), N(·, t) is the unit
outward normal vector, and V (·, t) is the normal velocity, on C (t). We have three marked properties
of the classical Hele-Shaw problem (0.0.4): the total length of C (t) is decreasing in time, the enclosed
area of D(t) is preserving, and the barycenter of D(t) is being fixed. These properties are called curve-
shortening (CS), area-preserving (AP), and barycenter-fixed (BF), respectively. Thus it is natural to
consider that the numerical solution should satisfy these geometrical variational structures in some
discrete sense. However, there is no such numerical scheme to our best knowledge. The purpose of
this chapter is to propose a simple numerical scheme by means of MFS with the uniform distribution
method. As a result, we have succeeded to construct numerical scheme which satisfies CS-, AP-, and
BF-properties exactly, in which we have to solve system of “quadratic” equations, and the one which
satisfies CS-, AP-, and BF-properties asymptotically, in which we have to solve system of “linear”
equations. We also apply our scheme to other variations: the one-phase exterior problem, and the
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one-phase interior Hele-Shaw problem with sink/source points. This chapter is based on my papers
[89] and [90].

In Chapter 7, we construct numerical scheme for conformal mapping based on DSM. Conformal
mapping is basic and important notion in complex analysis, and it has wide range of application in
engineering, computational fluid mechanics, and so on. Therefore, it would be required to obtain
“analytic form” of conformal mapping in practical application. However, it is impossible to do so
except for only a few cases. Thus, numerical scheme for conformal mapping has been studied as
an important research topic worldwide. Among numerous methods, Amano [2] o↵ered very simple
numerical scheme for conformal mapping based on MFS. Let ⌦ be a Jordan region in the complex
plane, and consider a problem to find a conformal mapping f of ⌦ onto the unit disk satisfying the
normalized conditions f(z0) = 0 and f 0(z0) > 0, where z0 2 ⌦ is a given point. Then, we can reduce
this problem to find a harmonic function and its conjugate harmonic function as follows:

(i) Find a solution u for the following potential problem:

(0.0.5)

(

4u = 0 in ⌦,

u(z) = � log |z � z0| on @⌦.

(ii) Find a conjugate harmonic function v of u satisfying v(z0) = 0.

(iii) Define a function f as f(z) = (z � z0) exp[u(z) + iv(z)].

Then, the function f thus defined is nothing but the conformal mapping of ⌦ onto the unit disk
satisfying the normalized conditions. Therefore, applying MFS to the above problem, we can obtain
the following numerical scheme for conformal mapping [2]:

(i) Construct an approximate solution u(N) for the problem (0.0.5) by MFS as follows:

u(N)(z) =
N
X

k=1

Qk log |z � ⇣k|,

where {⇣k}Nk=1 are the singular points.

(ii) Construct an approximate function v(N) of v as follows:

v(N)(z) = ṽ(N)(z)� ṽ(N)(z0), ṽ(N)(z) =
N
X

k=1

Qk arg(z � ⇣k).

(iii) Define a function f (N) as f (N)(z) = (z � z0) exp[u(N)(z) + iv(N)(z)].

This is an algorithm for computing conformal mapping numerically. However, in the expression for
v(N), the arg function appears. Mathematically, the branch of the arg function is selected so that v(N)

would be continuous in ⌦. On the other hand, when we implement the above numerical scheme, we
have to deal with the problem to assign appropriate value for arg function, since the existing function
in programing language only outputs the principal value of the arg function. Therefore, the above
scheme is not easy for non-specialist to implement. In this chapter, another numerical scheme for
conformal mapping based on DSM is proposed. As a result, we are able to avoid the issue related to
the arg function, but it o↵ers high-precision numerical results as well as the scheme based on MFS.
Moreover, we investigate the behavior of errors for u(N), v(N), and f (N) mathematically, of which the
results tell us that the behaviors of errors are completely governed by the error for u(N). We show
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several results of numerical experiments in order to verify the e↵ectiveness of our numerical scheme.
This chapter is based on my paper [88].

In Chapter 8, we develop an interpolation method for holomorphic function, the complex dipole
simulation method (CDSM). The idea of CDSM can be explained as follows. DSM o↵ers an approxi-
mate solution for the potential problem as in (0.0.3). We here note that the kernel function D(x, yk;nk)
is a real part of the holomorphic function. Indeed, we have

D(x, yk;nk) = � 1

2⇡
<
✓

nk

z � ⇣k

◆

,

where z, and ⇣k are complex representation of x, and yk, respectively, and the same symbol nk is the
point in the two-dimensional Euclidean plane in the left hand side, and the one in the complex plane
in the right hand side of the above relation. Therefore, we have

u(N)(x) = u(N)(z) = � 1

2⇡
<
 

N
X

k=1

Qknk

z � ⇣k

!

.

This expression suggests a new method for finding approximate function for holomorphic function in
the form

f (N)(z) =
N
X

k=1

QkH(z, ⇣k), H(z, ⇣) =
1

z � ⇣
.

This is a concept of CDSM. Approximate function obtained by CDSM can regarded as a discretization
of Cauchy integral representation in some sense. In this chapter, we develop fundamental mathematical
theory for CDSM in the case where ⌦ is a disk or the exterior domain of a disk. As a result, we prove
that approximate function exists uniquely (Theorems 8.2.2 and 8.2.5), and that an approximation
error decays exponentially with respect to N (Theorems 8.2.3 and 8.2.6). This chapter is based on my
paper [87].

These works were supported by the Program for Leading Graduate Schools, MEXT, Japan.

6



Acknowledgements

I would like to express my gratitude to Professor Norikazu Saito, who is my supervisor, for his valuable
suggestion and encouragement throughout my Doctor’s course in University of Tokyo. I am deeply
grateful to Professor Hiroshi Matano, who is my vice-supervisor, for his several advice and encourage-
ment. I am grateful to Professor Masashi Katsurada for his instruction with patience and tolerance
throughout my Bachelor’s and Master’s course in Meiji University. I would like to express the deep-
est appreciation to Professor Shigetoshi Yazaki who led me to the field of fluid mechanics, especially
Hele-Shaw problem, and discussions and collaborations with him have been illuminating. I would like
to o↵er my special thanks to Professor Michal Beneš for accepting me as a visiting Ph. D student at
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Chapter 1

Preliminaries

Abstract

In this chapter, we collect several mathematical notions which are used to analyze MFS
and DSM mathematically in Chapters 2 and 3.

1.1 Function spaces

When we study MFS and DSM, the following family of Hilbert spaces is used, which was firstly
introduced by Arnold [5], in which a spline-trigonometric Galerkin method is studied.

Let T be the space of finite Fourier series on S1 := R/Z. Namely, an element g of T is expressed
by

g(⌧) =
X

n2Z
ĝ(n)e2⇡in⌧ (⌧ 2 S1),

where {ĝ(n)}n2Z are complex numbers, all but a finite number of which are zeros. For each (✏, s) 2
]0,+1[⇥R, define an inner product (·, ·)✏,s : T ⇥ T ! C and a norm k · k✏,s : T ! R as

(g, h)✏,s =
X

n2Z
ĝ(n)ĥ(n)✏2|n|n2s (g, h 2 T ),

kgk✏,s =
q

(g, g)✏,s =

s

X

n2Z
|ĝ(n)|2✏2|n|n2s (g 2 T ),(1.1.1)

where n := max{2⇡|n|, 1}. Then a space X✏,s is defined as the completion of T with k · k✏,s, which
forms a Hilbert space. The fundamental properties of X✏,s are as follows. Define a relation > on
]0,+1[⇥R as

(✏1, s1) > (✏2, s2)
def() ✏1 > ✏2 _ (✏1 = ✏2 ^ s1 > s2).

Proposition 1.1.1 ([48, Lemma 4.1]). (i) For each n 2 Z, the nth Fourier coe�cient mapping

T 3 g 7�! ĝ(n) =

Z 1

0

g(✓)e�2⇡in✓ d✓

has a unique bounded linear extension to X✏,s. Furthermore, a norm kgk✏,s of g 2 X✏,s is defined
as (1.1.1).

12



Chapter 1 Preliminaries 1.2 Peripheral conformal mapping

(ii) For (✏µ, sµ) 2 ]0,+1[⇥R (µ = 1, 2), if (✏1, s1) > (✏2, s2) then there exists a natural inclusion
i : X✏

1

,s
1

,! X✏
2

,s
2

and it is a compact operator. In particular, the union X :=
S

✏,s X✏,s of all
the spaces X✏,s can be defined.

Here, we list several facts regarding {X✏,s}✏,s, which enable us to gain a strong understanding.
Further details are explained in [5, Section 3]. When ✏ = 1, Hs := X1,s is a periodic Sobolev space
with period 1. Then, for an analytic Jordan curve � in the plane C, Hs(�) can be defined as the set of
functions on � whose composition with an analytic parameterization of � belong to Hs, and the norm
of an element in Hs(�) is given by the Hs norm of the composition. When ✏ > 1, an element in X✏,s is
an analytic function that can be continued complex analytically to the strip {b+i� | b 2 R, |�| < log ✏},
and the trace on the boundary of the strip belongs to Hs. When s > 1/2, an element in X1,s is a
Hölder continuous function on S1. Finally, the dual space of X✏,s is isomorphic to X✏�1,�s, therefore
we identify them as (X✏,s)0 = X✏�1,�s. For example, the Dirac delta function � on S1 can be regarded
as the member of X✏�1,�s for (✏, s) > (1, 1/2) (see also Propositions 2.2.1 (ii), 2.2.2 (ii), and 3.2.1 (ii)).

1.2 Peripheral conformal mapping

In the analysis of MFS for potential problems in doubly-connected region (Chapter 2) and that of
DSM in Jordan region (Chapter 3), we use peripheral conformal mappings to arrange the singular and
collocation points. We here give a definition of peripheral conformal mapping and show its existence.
Set �r := {z 2 C | |z| = r} with r > 0, and Rr

2

,r
1

:= {z 2 C | r2 < |z| < r1} with r1 > r2 > 0.

Definition 1.2.1. For a given Jordan curve � in the complex plane C and a given positive constant
⇢, a map  from a neighborhood of �⇢ to C is called a peripheral conformal mapping of � with the
reference radius ⇢, if the following two conditions are satisfied:

(i)  maps �⇢ onto �;

(ii) there exists some  > 1 such that  : R�1⇢,⇢ ! C is a conformal mapping, that is,  is
holomorphic and injective.

Although it has been pointed out in [48, Remark 3.1] that there exist peripheral conformal mappings
of real analytic regular Jordan curves with arbitrary reference radii, the proof has not given. We here
prove a theorem which verifies the above statement when ⇢ = 1. The other cases can be reduced to
this case by suitable scaling argument.

Theorem 1.2.2. Let � be a real analytic regular Jordan curve in the plane. Then, there exist some
 > 1, some open neighborhood U of �, and a biholomorphic function ' : R�1, ! U such that
'(�1) = � holds.

Proof. Since � is a real analytic regular Jordan curve, there exists a real analytic function ' : R/(2⇡Z) !
C such that the following hold:

• '0(✓) 6= 0 for all ✓ 2 R/(2⇡Z);

• For all ✓1, ✓2 2 R/(2⇡Z) with ✓1 6= ✓2, it holds that '(✓1) 6= '(✓2);

• '([0, 2⇡]) = �.

Since ' is real analytic, there exists some  2 ]1,1[ such that

X

n2Z
|cn||n| < +1,

13



Chapter 1 Preliminaries 1.3 Potential theory

where cn denotes the nth Fourier coe�cient of ':

cn =
1

2⇡

Z ⇡

�⇡

'(✓)e�in✓ d✓, n 2 Z.

Since '0(✓) 6= 0 for all ✓, we have
X

n2Z
incne

in✓ 6= 0, ✓ 2 R/(2⇡Z).

We then define
F (z) =

X

n2Z
cnz

n, �1  |z|  .

The infinite series on the right hand side of the above equation uniformly converges absolutely. There-
fore F is continuous on R�1,, and holomorphic in R�1,. Taking  small if necessary, F could be
injective on R�1,. In the following, we prove this assertion. Note firstly that

F (ein✓) =
X

n2Z
cne

in✓ = '(✓)

holds for all ✓ 2 R/(2⇡Z). We show the existence of  2 ]1,+1[ satisfying the above property
by contradiction. Namely, suppose that for all  2 ]1,+1[, there exist some z1, z2 2 R�1, such
that z1 6= z2 and F (z1) = F (z2). Therefore, for each n 2 Z, by setting  := 1 + 1/n, there exist
z1n, z2n 2 R�1, such that z1n 6= z2n and F (z1n) = F (z2n). Since {z1n} and {z2n} are bounded
sequences, there exist convergent subsequences {z1nk} and {z2nk} of {z1n} and {z2n}, and z1 and z2
such that

z1nk �! z1, z2nk �! z2, as k ! 1.

Since F (z1nk) = F (z2nk) and F is continuous, we obtain F (z1) = F (z2) by taking the limit k ! 1.
The injectivity of ' implies that z1 = z2 because of |z1| = |z2| = 1. Incidentally, for any z0 = ei✓0 2 �1,
we have

F 0(z0) =
X

n2Z
ncnz

n�1
0 =

1

iei✓0

X

n2Z
incne

in✓
0 =

1

iei✓0
'0(✓0) 6= 0.

Therefore, by the inverse function theorem, there exists some neighborhood V of z1 such that F is
injective in V . On the other hand, for su�ciently large k, z1nk and z2nk belong to V and satisfy that
z1nk 6= z2nk and F (z1nk) = F (z2nk), which contradicts the injectivity of F in V .

1.3 Potential theory

1.3.1 single-layer potential

The following propositions play important roles in the proof of Lemma 2.4.6, where we aim to prove that
AC,I, which are some bounded linear extensions of AC,I defined in Section 2.4, are homeomorphisms.
Here and hereafter, the symbol FC,I means FC or FI. Likewise, the symbol FC,I means FC or FI. Details
of the following propositions are given in [33, Theorem 16.6h] and [79, Lemma 7], respectively.

Proposition 1.3.1. Suppose that � is a C2-regular Jordan curve in the plane with Cap(�) 6= 1,
where Cap(�) denotes the capacity of � and is defined in the subsequent section, ⌦ is the interior
simply-connected region of �, ' is a Hölder continuous function on S1, and � : S1 ! C is a C2 regular
parameterization of �. If it holds that

Z 1

0

E(x� �(✓))'(✓) d✓ = 0, x 2 ⌦,
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Chapter 1 Preliminaries 1.3 Potential theory

then ' ⌘ 0.

Proposition 1.3.2. Suppose that � is a C2-regular Jordan curve in the plane, ⌦ is the interior
simply-connected region of �, ' is a Hölder continuous function on S1, � : S1 ! C is a C2 regular
parameterization of �, and ↵ is a constant. If it holds that

↵+

Z 1

0

E(x� �(✓))('(✓)� ↵) d✓ = 0, x 2 ⌦,

then ↵ = 0 and ' ⌘ 0.

Remark 1.3.3. The assumption on the capacity of ⌦ does not appear in Proposition 1.3.2, which
enables us to remove the condition on the capacity of ⌦ from Theorem 2.1.2 concerning the invariant
scheme for MFS, while it appears in Theorem 2.1.1 concerning the conventional scheme for MFS.

1.3.2 double-layer potential

Similar property also holds for double-layer potential.

Proposition 1.3.4. Suppose that � is a C2-regular Jordan curve, ⌦ the interior simply-connected
region of �, and Q a continuous function on �. If it holds that

Z

�

�1

2⇡

(n
y

| x� y)

kx� yk2 Q(y) ds
y

= 0, x 2 ⌦,

then Q ⌘ 0. Here, n
y

denotes the unit outward normal vector of � at y 2 �, and the symbol (· | ·)
denotes the usual two-dimensional Euclidean inner product.

Although this proposition is stated in [81, Theorem 35.1], these authors did not include a rigorous
proof. Therefore, we provide a brief proof for the above proposition using the results in [19].

Proof. Let u be a function in ⌦ defined as

u(x) =

Z

�

�1

2⇡

(n
y

| x� y)

kx� yk2 Q(y) ds
y

, x 2 ⌦.

Because Q is a continuous function on �, owing to [19, Theorem 3.22], u has a continuous extension ũ
to ⌦. Especially, ũ is expressed on � as

ũ(x) =
1

2
Q(x) +

Z

�

�1

2⇡

(n
y

| x� y)

kx� yk2 Q(y) ds
y

, x 2 �.

Because u ⌘ 0 in ⌦ and ũ is a continuous extension of u to ⌦, ũ ⌘ 0 on � holds, which is equivalent to

(1.3.1) Q(x) =

Z

�

1

⇡

(n
y

| x� y)

kx� yk2 Q(y) ds
y

, x 2 �.

The statement of Proposition 1.3.4 can be proved by showing that the integral equation (1.3.1) has
only the trivial solution. Owing to Fredholm’s alternative, the integral equation (1.3.1) has only the
trivial solution if and only if the transposed equation of (1.3.1)

(1.3.2) Q(x) =

Z

�

1

⇡

(n
x

| y � x)

ky � xk2 Q(y) ds
y

, x 2 �

15



Chapter 1 Preliminaries 1.4 Capacity

has only the trivial solution. Let Q be a solution for (1.3.2). Then, we have

(1.3.3)

Z

�

Q(y) ds
y

= 0,

which can be justified as follows:
Z

�

Q(x) ds
x

=

Z

�



�2

Z

�

�1

2⇡

(nx | y � x)

ky � xk2 Q(y) ds
y

�

ds
x

= �2

Z

�

Q(y)



Z

�

�1

2⇡

(nx | y � x)

ky � xk2 ds
x

�

ds
y

= �
Z

�

Q(y) ds
y

.

We here consider the single-layer potential

w(x) =

Z

�

Q(y)
1

2⇡
log |x� y| ds

y

.

Then, we see that w vanishes at a point at infinity, that is, w(x) ! 0 (|x| ! 0), which can be justified
by [19, Lemma 3.31] with (1.3.3). As Q is a solution for (1.3.2), @⌫+w ⌘ 0 on � follows from [19,
Theorem 3.28], where @⌫+ is the exterior normal derivative on � defined as

@⌫+g(x) = lim
⌧#0

⌫(x) ·rg(x+ ⌧⌫(x))

for g 2 C1(R2 \ ⌦) and x 2 �. Here, ⌫ denotes the unit outward normal vector on �. Therefore, w is
a solution for the following Laplace equation with the homogeneous Neumann boundary condition:

(

4w = 0 in R2 \ ⌦,
@⌫+w = 0 on �.

Then, there exists a constant C such that w ⌘ C in R2 \ ⌦, because the solution of the exterior
Neumann problem is determined up to a constant. The constant C is indeed equal to 0 because
w(x) ! 0 (|x| ! 1). Using the continuity of single-layer potential [19, Proposition 3.25], we have
w ⌘ 0 on �. Thus, w ⌘ 0 in ⌦ follows from the maximum principle for harmonic functions, which
yields that @⌫�w(x) = 0 (x 2 �), where @⌫� is defined similarly to @⌫+. Hence, we obtain Q ⌘ 0 on
� by applying [19, Theorem 3.28].

1.4 Capacity

We here define the capacity of the Jordan region in the complex plane, which measures the size of the
region.

Definition 1.4.1. Let � be a Jordan curve in the plane C. Then, there exists a conformal mapping
g of Ĉ \D1 onto Ĉ \ ⌦ with the following Laurent series expansion about 1:

g(z) = c1z + c0 +
c�1

z
+

c�2

z2
+ · · · ,

where ⌦ denotes the interior simply-connected region surrounded by �. The absolute value |c1| of c1 is
a geometrical value determined by � only, and is called the capacity of �. This is denoted by Cap(�).

The following proposition provides a method for evaluating the capacity of a Jordan curve in the
plane C. Roughly speaking, Cap(�) is bounded from below by the radius of a circle enclosed by �,
and bounded from above by that enclosing �.
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Chapter 1 Preliminaries 1.5 Discrete Fourier transform

Proposition 1.4.2. Let � be a Jordan curve in the plane C.
(i) If � is a circle with radius r, then Cap(�) = r.

(ii) If � is enclosed by a circle with radius r, then Cap(�)  r.

(iii) If � encloses a circle with radius r, then Cap(�) � r.

1.5 Discrete Fourier transform

The following proposition, which is used to establish the unique existence of approximate solution for
MFS in annular region, states that the discrete Fourier transform is an isomorphism.

Proposition 1.5.1. Suppose that g 2 L1(S1) and g is Hölder continuous in some neighborhood of
�N . Then, the series

P

m⌘p ĝ(m) is convergent for p 2 ⇤N , and moreover, the following equivalence
holds:

g = 0 on �N ()
X

m⌘p

ĝ(m) = 0 for all p 2 ⇤N .

The details can be found in [6, Lemma 2.1].

1.6 Estimates of Fourier coe�cients of function which is har-
monic in the direct product of annular regions

The following proposition plays a key role in the analysis of MFS for potential problems in doubly-
connected regions.

Proposition 1.6.1. Let u : R�1, ⇥R�1, ! C be continuous, and harmonic in R�1, ⇥R�1,.
Then, u has the following Fourier series expansion:

u(rei✓, ⇢ei⌧ ) =
X

l,m2Z⇤

⇣

almr|l|⇢|m| + blmr|l|⇢�|m| + clmr�|l|⇢|m| + dlmr�|l|⇢�|m|
⌘

ei(l✓+m⌧)

+
X

m2Z⇤

⇣

a0m⇢|m| + b0m⇢�|m| + c0m⇢|m| log r + d0m⇢�|m| log r
⌘

eim⌧

+
X

l2Z⇤

⇣

al0r
|l| + bl0r

|l| log ⇢+ cl0r
�|l| + dl0r

�|l| log ⇢
⌘

eil✓

+ a00 + b00 log ⇢+ c00 log r + d00 log r log ⇢.

The Fourier coe�cients {alm}, {blm}, {clm}, and {dlm} can be bounded as follows:

|a00|  M, |b00|, |c00|  M

log 
, |d00|  M

(log )2
,

|al0|, |bl0|  M

1� �2
�|l|, |cl0|, |dl0|  M

(1� �2) log 
�|l| (l 6= 0),

|a0m|, |c0m|  M

1� �2
�|m|, |b0m|, |d0m|  M

(1� �2) log 
�|m| (m 6= 0),

|alm|, |blm|, |clm|, |dlm|  M

(1� �2)2
�|l|�|m| (l,m 6= 0),

where
M = max

x,y2@R�1,

|u(x, y)|.
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Chapter 1 Preliminaries 1.6 Estimates of Fourier coe�cients

Proof. Define quantities Alm, Blm, Clm, and Dlm as the double Fourier coe�cients for (r, ⇢) = (,),
(,�1), (�1,), and (�1,�1), respectively, that is,

Alm =
1

(2⇡)2

Z 2⇡

0

Z 2⇡

0

u(ei✓,ei⌧ )e�i(l✓+m⌧) d✓ d⌧

=

8

>

>

>

>

<

>

>

>

>

:

a00 + b00 log + c00 log + d00(log )
2 if l = m = 0,

al0
|l| + bl0

|l| log + cl0
�|l| + dl0

�|l| log  if l 6= 0, m = 0,

a0m|m| + b0m�|m| + c0m|m| log + d0m�|m| log  if l = 0, m 6= 0,

alm|l|+|m| + blm|l|�|m| + clm�|l|+|m| + dlm�|l|�|m| if l,m 6= 0,

Blm =
1

(2⇡)2

Z 2⇡

0

Z 2⇡

0

u(ei✓,�1ei⌧ )e�i(l✓+m⌧) d✓ d⌧

=

8

>

>

>

>

<

>

>

>

>

:

a00 � b00 log + c00 log � d00(log )
2 if l = m = 0,

al0
|l| � bl0

|l| log + cl0
�|l| � dl0

�|l| log  if l 6= 0, m = 0,

a0m�|m| + b0m|m| + c0m�|m| log + d0m|m| log  if l = 0, m 6= 0,

alm|l|�|m| + blm|l|+|m| + clm�|l|�|m| + dlm�|l|+|m| if l,m 6= 0

Clm =
1

(2⇡)2

Z 2⇡

0

Z 2⇡

0

u(�1ei✓,ei⌧ )e�i(l✓+m⌧) d✓ d⌧

=

8

>

>

>

>

<

>

>

>

>

:

a00 + b00 log � c00 log � d00(log )
2 if l = m = 0,

al0
�|l| + bl0

�|l| log + cl0
|l| + dl0

|l| log  if l 6= 0, m = 0,

a0m|m| + b0m�|m| � c0m|m| log � d0m�|m| log  if l = 0, m 6= 0,

alm�|l|+|m| + blm�|l|�|m| + clm|l|+|m| + dlm|l|�|m| if l,m 6= 0,

Dlm =
1

(2⇡)2

Z 2⇡

0

Z 2⇡

0

u(�1ei✓,�1e�i⌧ ) d✓ d⌧

=

8

>

>

>

>

<

>

>

>

>

:

a00 � b00 log � c00 log + d00(log )
2 if l = m = 0,

al0
�|l| � bl0

�|l| log + cl0
|l| � dl0

|l| log  if l 6= 0, m = 0,

a0m�|m| + b0m|m| � c0m�|m| log � d0m|m| log  if l = 0, m 6= 0,

alm�|l|�|m| + blm�|l|+|m| + clm|l|�|m| + dlm|l|+|m| if l,m 6= 0.

Then, it clearly holds that

|Alm|, |Blm|, |Clm|, |Dlm|  M.

By definition, {alm}, {blm}, {clm}, and {dlm} can be expressed in terms of {Alm}, {Blm}, {Clm}, and
{Dlm} as follows:

0

B

B

@

A00

B00

C00

D00

1

C

C

A

=

0

B

B

@

1 log  log  (log )2

1 � log  log  �(log )2

1 log  � log  �(log )2

1 � log  � log  (log )2

1

C

C

A

0

B

B

@

a00
b00
c00
d00

1

C

C

A

()

0

B

B

@

a00
b00
c00
d00

1

C

C

A

=
1

4

0

B

B

@

1 1 1 1
(log )�1 �(log )�1 (log )�1 �(log )�1

(log )�1 (log )�1 �(log )�1 �(log )�1

(log )�2 �(log )�2 �(log )�2 (log )�2

1

C

C

A

0

B

B

@

A00

B00

C00

D00

1

C

C

A
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=
1

4

0

B

B

@

A00 +B00 + C00 +D00

(log )�1(A00 �B00 + C00 �D00)
(log )�1(A00 +B00 � C00 �D00)
(log )�2(A00 �B00 � C00 +D00)

1

C

C

A

,

0

B

B

@

Al0

Bl0

Cl0

Dl0

1

C

C

A

=

0

B

B

@

|l| |l| log  �|l| �|l| log 
|l| �|l| log  �|l| ��|l| log 
�|l| �|l| log  |l| |l| log 
�|l| ��|l| log  |l| �|l| log 

1

C

C

A

0

B

B

@

al0
bl0
cl0
dl0

1

C

C

A

()

0

B

B

@

al0
bl0
cl0
dl0

1

C

C

A

=
|l|

2(4|l| � 1)

0

B

B

@

2|l| 2|l| �1 �1
2|l|(log )�1 �2|l|(log )�1 �(log )�1 (log )�1

�1 �1 2|l| 2|l|

�(log )�1 (log )�1 2|l|(log )�1 �2|l|(log )�1

1

C

C

A

0

B

B

@

Al0

Bl0

Cl0

Dl0

1

C

C

A

=
|l|

2(4|l| � 1)

0

B

B

@

(Al0 +Bl0)2|l| � (Cl0 +Dl0)
(log )�1[(Al0 �Bl0)2|l| � Cl0 +Dl0]

�(Al0 +Bl0) + (Cl0 +Dl0)2|l|

(log )�1[�Al0 +Bl0 + (Cl0 �Dl0)2|l|]

1

C

C

A

, l 6= 0,

0

B

B

@

A0m

B0m

C0m

D0m

1

C

C

A

=

0

B

B

@

|m| �|m| |m| log  �|m| log 
�|m| |m| �|m| log  |m| log 
|m| �|m| �|m| log  ��|m| log 
�|m| |m| ��|m| log  �|m| log 

1

C

C

A

0

B

B

@

a0m
b0m
c0m
d0m

1

C

C

A

()

0

B

B

@

a0m
b0m
c0m
d0m

1

C

C

A

=
|m|

2(4|m| � 1)

0

B

B

@

2|m| �1 2|m| �1
�1 2|m| �1 2|m|

2|m|(log )�1 �(log )�1 �2|m|(log )�1 (log )�1

�(log )�1 2|m|(log )�1 (log )�1 �2|m|(log )�1

1

C

C

A

0

B

B

@

A0m

B0m

C0m

D0m

1

C

C

A

=
|m|

2(4|m| � 1)

0

B

B

@

(A0m + C0m)2|m| � (B0m +D0m)
�(A0m + C0m) + (B0m +D0m)2|m|

(log )�1[(A0m � C0m)2|m| �B0m +D0m]
(log )�1[�A0m + C0m + (B0m �D0m)2|m|]

1

C

C

A

, m 6= 0,

0

B

B

@

Alm

Blm

Clm

Dlm

1

C

C

A

=

0

B

B

@

|l|+|m| |l|�|m| �|l|+|m| �|l|�|m|

|l|�|m| |l|+|m| �|l|�|m| �|l|+|m|

�|l|+|m| �|l|�|m| |l|+|m| |l|�|m|

�|l|�|m| �|l|+|m| |l|�|m| |l|+|m|

1

C

C

A

0

B

B

@

alm
blm
clm
dlm

1

C

C

A

()

0

B

B

@

alm
blm
clm
dlm

1

C

C

A

=
|l|+|m|

(4|l| � 1)(4|m| � 1)

0

B

B

@

2(|l|+|m|) �2|l| �2|m| 1
�2|l| 2(|l|+|m|) 1 �2|m|

�2|m| 1 2(|l|+|m|) �2|l|

1 �2|m| �2|l| 2(|l|+|m|)

1

C

C

A

0

B

B

@

Alm

Blm

Clm

Dlm

1

C

C

A

=
|l|+|m|

(4|l| � 1)(4|m| � 1)

0

B

B

@

Alm2(|l|+|m|) �Blm2|l| � Clm2|m| +Dlm

�Alm2|l| +Blm2(|l|+|m|) + Clm �Dlm2|m|

�Alm2|m| +Blm + Clm2(|l|+|m|) �Dlm2|l|

Alm �Blm2|m| � Clm2|l| +Dlm2(|l|+|m|)

1

C

C

A

, l,m 6= 0.
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Hence {alm}, {blm}, {clm}, {dlm} can be evaluated as follows:

|a00|  1

4
(|A00|+ |B00|+ |C00|+ |D00|)  M, |b00|, |c00|  M

log 
, |d00|  M

(log )2
,

|al0|, |cl0|  |l|

2(4|l| � 1)
2M(2|l| + 1) =

M�|l|

1� �2|l| 
M

1� �2
�|l|, |bl0|, |dl0|  M

(1� �2) log 
�|l|,

|a0m|, |b0m|  M

1� �2
�|m|, |c0m|, |d0m|  M

(1� �2) log 
�|m|,

|alm|, |blm|, |clm|, |dlm|  M|l|+|m|

(4|l| � 1)(4|m| � 1)
(2|l| + 1)(2|m| + 1)  M

(1� �2)2
�|l|�|m|,

which are the desired estimates.

1.7 Notations

We conclude this chapter by stating some notations that will be used in Chapters 2 and 3. The relation
(✏1, s1) > (✏2, s2) on ]0,+1[⇥R is defined as ✏1 > ✏2 _ (✏1 = ✏2 ^ s1 > s2), and (✏1, s1) � (✏2, s2) as
(✏1, s1) > (✏2, s2) ^ (✏1, s1) 6= (✏2, s2). For a given N 2 N, define ⇤N = {0, 1, . . . , N � 1}, ⇤0

N = {p 2
Z | �N/2 < p  N/2}, and �N = {j/N 2 S1 | j 2 ⇤N}. For p 2 N, define I(p) = {p+ lN | l 2 Z⇤} =
p+NZ⇤, where Z⇤ = Z \ {0}. For m,n 2 Z, m ⌘ n always means that m ⌘ n (mod N). Finally, for
a vector-valued function v = (v1, v2)T, define v̂(n) := (v̂1(n), v̂2(n))T for n 2 Z.
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Chapter 2

Asymptotic analysis of the
conventional and invariant schemes
for the method of fundamental
solutions applied to potential
problems in doubly-connected
regions

Abstract

The aim of this chapter is to develop mathematical theory of the conventional and invariant
schemes for the method of fundamental solutions used to solve potential problems in doubly-
connected regions. Particularly, we prove that an approximate solution actually exists
uniquely under some conditions, and that the error decays exponentially when the boundary
data are analytic, and algebraically when they are not analytic but belong to some Sobolev
spaces. Moreover, we present results of several numerical experiments in order to show the
sharpness of our error estimate. This chapter is based on the following accepted paper:

• K. Sakakibara, Asymptotic analysis of the conventional and invariant schemes for
the method of fundamental solutions applied to potential problems in doubly-connected
regions, accepted by Japan Journal of Industrial and Applied Mathematics.

2.1 Introduction and main results

Let ⌦ be a nondegenerate doubly-connected region in the complex plane C. That is, assume that there
exist two disjoint connected components K1 and K2 such that Ĉ \ ⌦ = K1 tK2, K1 is unbounded in
a sense that 1 2 K̊1 holds, and neither K1 nor K2 is reduced to a single point, where Ĉ = C [ {1}
denotes the extended complex plane and K̊⌫ denotes the interior ofK⌫ . Then, we consider the following
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potential problem:

(2.1.1)

(

4u = 0 in ⌦,

u = fµ on �µ, µ = 1, 2,

where �µ is the boundary @Kµ of Kµ, and fµ is a given function defined on �µ for each µ = 1, 2. See,
for the geometrical settings, Figure 2.1. In this chapter, assume that each �µ is regular analytic and

Ω

K2

Γ2

K1

Γ1

△u = 0

u = f2

u = f1

Figure 2.1: Graphic representation for the target problem

each boundary datum fµ satisfies the following regularity condition:

(2.1.2) fµ is analytic, or belongs to Sobolev space H�(�µ) for some � > 1/2.

The method of fundamental solutions (MFS) is a mesh-free numerical solver for partial di↵erential
equations that can be applied to the potential problem [64, 1, 22], the Helmholtz equation [16, 69,
14], higher order PDEs [39, 40, 65], the heat equation [59, 63], fluid dynamics [7, 60], the inverse
problem [82, 103, 108, 37, 105], and so on. In addition, see the surveys [20, 44]. In the references
given above, it can be seen that MFS has been investigated numerically by many authors. However,
a satisfactory mathematical analysis has not been performed, because we cannot apply the mesh-
dependent arguments that are used to analyze mesh-dependent numerical solvers such as the finite
element method and finite di↵erence method. The aim of this chapter is to develop a mathematical
theory of MFS for the potential problems in doubly-connected regions.

The conventional scheme for MFS (C-MFS) o↵ers an approximate solution for (2.1.1), as given by
the following procedure.

(I) Take N points {y1k}Nk=1 in K̊1 \ {1} and {y2k}Nk=1 in K̊2. That is, a total of 2N points are
chosen from the exterior of ⌦. In this chapter, these points are called the singular points.

(II) Construct an approximate solution u(N)
C as follows:

(2.1.3) u(N)
C (x) =

2
X

⌫=1

N
X

k=1

Q⌫kE(x� y⌫k),
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where E(x) = �(2⇡)�1 log |x| is the fundamental solution of the operator �4.

(III) Determine the coe�cients {Q⌫k}k=1,2,...,N
⌫=1,2 using the collocation method. That is, take N points

{xµj}Nj=1 on �µ for each µ = 1, 2, i.e., take a total of 2N points on the boundary of ⌦, and
impose the following boundary conditions:

(2.1.4) u(N)
C (xµj) = fµ(xµj), µ = 1, 2; j = 1, 2, . . . , N.

In this chapter, these points are called the collocation points, and the equations (2.1.4) are the
collcocation equations.

The above is one algorithm for C-MFS. We only choose the singular and collocation points, and
solve the system of linear equations. That is, we do not need to perform mesh generation, which is
required for popular numerical solvers such as the finite element method and finite di↵erence method.

Note that it is known that an approximate solution u(N)
C is not invariant under a�ne transformations

of coordinates or an origin shift of the boundary data, while the exact solution for (2.1.1) satisfies
these properties. Murota [73, 74] proposed an invariant scheme for MFS (I-MFS), which gives an

approximate solution u(N)
I of the form

(2.1.5) u(N)
I (x) = Q0 +

2
X

⌫=1

N
X

k=1

Q⌫kE(x� y⌫k),

as an alternative to (2.1.3). The coe�cients are determined by the collocation method:

(2.1.6a) u(N)
I (xµj) = fµ(xµj), µ = 1, 2; j = 1, 2, . . . , N,

with the constraint

(2.1.6b)
2

X

⌫=1

N
X

k=1

Q⌫k = 0.

Such techniques are also applied in several papers (see, for instance, [96, 97]).
MFS has been widely applied in scientific fields. However, a satisfactory mathematical analysis

of this technique has not yet been performed. Restricting to the Dirichlet problem for the Laplace
equation, Katsurada and Okamoto [49] studied C-MFS in the case where ⌦ is a disk D⇢ with radius
⇢, having the origin as its center. The boundary data are assumed to be analytic, and the singular
points {yk}Nk=1 and the collocation points {xj}Nj=1 are chosen as yj = R!j�1 and xj = ⇢!j�1 for
j = 1, 2, . . . , N , respectively, where R > ⇢ and ! = exp(2⇡i/N). Then, it has been proved that there
uniquely exists an approximate solution by C-MFS, except for at most one value of N (cf. [49, Theorem
1]). Furthermore, the error decays exponentially with respect to N (cf. [49, Theorem 2]). Subsequently,
Katsurada [45] extended this result to non-analytic boundary data (cf. [45, Theorem 2.3]), the case
where ⌦ is the exterior of a disk (cf. [45, Theorem 4.1]), the Neumann problem (cf. [45, Theorems 6.1
and 6.2]), and the case where ⌦ is an annular region (cf. [45, Theorem 7.1]). Following these pioneering
works, C-MFS has been comprehensively studied in the case where ⌦ is a Jordan region [46, 47, 50, 48],
an annular region [74], and an elliptic region [76]. In addition to these works, [66] also studied C-MFS
in annular shaped regions based on [13, 68, 17]. However, their work deals with the Tre↵tz method,
rather than the collocation method. I-MFS has also been studied in [73] (⌦ is a disk), [74] (⌦ is an
annular region), [76] (⌦ is an elliptic region), and [79] (⌦ is a Jordan region). Concerning other types
of PDEs see, for example, [67] (biharmonic equation), [10, 78] (Helmholtz equation), [38] (Collocation
method with delta functions for integral equations of the first kind), and [80, 102] (Cauchy problem).
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Among previous studies concerning MFS for potential problems, there does not exists a mathe-
matical result for multiply-connected regions other than in [74]. On the other hand, MFS has been
applied to multiply-connected regions in order to construct conformal mappings numerically, and it
o↵ers satisfactory numerical results (see, for instance, [83, 3]). Therefore, it should be expected that
a mathematical theory of MFS in multiply-connected regions can be established. This chapter aims
to provide mathematical results regarding MFS in doubly-connected regions, as a first step toward a
theory in regions with arbitrary connectivity.

In the unique existence and convergence analysis, the positions of the singular and collocation
points play essential roles. In this chapter, we arrange these using peripheral conformal mappings
(see, for the details of peripheral conformal mapping, Definition 1.2.1). Let  1 and  2 be peripheral
conformal mappings of �1 and �2 with reference radii ⇢1 and ⇢2, respectively, where 0 < ⇢2 < ⇢1. We
suppose that the following two conditions hold:

 1(R�1⇢
1

,⇢
1

) \ 2(R�1⇢
2

,⇢
2

) = ;,(2.1.7a)

 1(z) =  2(z), z 2 R�1⇢
1

,⇢
1

\R�1⇢
2

,⇢
2

.(2.1.7b)

If R�1⇢
1

,⇢
1

\R�1⇢
2

,⇢
2

6= ;, then a map  defined as

 (z) =

(

 1(z) if z 2 R�1⇢
1

,⇢
1

,

 2(z) if z 2 R�1⇢
2

,⇢
2

is a conformal mapping in a neighborhood of ⌦. Thus the assumption (2.1.7b) seems natural. On the
other hand, (2.1.7a) is a very technical assumption, and we do not know the way to remove it. These
assumptions will be used to prove Lemma 2.4.1.

Let R1 2 ]⇢1,⇢1[ and R2 2 ]�1⇢2, ⇢2[. We then arrange the singular points {y⌫k}k=1,2,...,N
⌫=1,2 and

the collocation points {xµj}j=1,2,...,N
µ=1,2 as follows:

(2.1.8)

(

y⌫k =  ⌫(R⌫!
k�1), ⌫ = 1, 2; k = 1, 2, . . . , N,

xµj =  µ(⇢µ!
j�1), µ = 1, 2; j = 1, 2, . . . , N.

See, for geometrical situation, Figure 2.2. Using these selections of the singular and collocation points,
we prove that the unique existence and convergence of MFS.

Using a family of Hilbert spaces which is introduced in Section 1.1, the condition (2.1.2) on reg-
ularity of fµ is equivalent to F = (F1, F2)T 2 X⇠,� for some (⇠,�) > (1, 1/2), where Fµ is defined as
Fµ(⌧) = fµ( µ(⇢µe2⇡i⌧ )) for ⌧ 2 S1.

We are now in a position to state the main results of this chapter.

Theorem 2.1.1 (Unique existence and convergence for C-MFS). Assume that for µ = 1, 2, there exists
a peripheral conformal mapping  µ of �µ with the reference radius ⇢µ, where ⇢1 > ⇢2 > 0, and that

they satisfy (2.1.7). Let R1 2 ]⇢1,
p
⇢1] satisfy R1 6= 1 and Cap(�R

1

) 6= 1, and R2 2 [
p

�1

⇢2, ⇢2[,
where Cap(�) denotes the capacity of a Jordan curve �, which is defined in Definition 1.4.1. Suppose
that F 2 X⇠,� for some (⇠,�) > (1, 1/2), (�, t) satisfies

1  �  min{⇠, r�2,},
if � = 1 then t > 1/2 and s < t; if � =  then t < �1/2; if � = ⇠ then t  �,

and let the singular and collocation points be defined as in (2.1.8), where r is a positive number defined
by r = max{⇢1/R1, R2/⇢2}.
(i) For a su�ciently large N 2 N, there exists a unique {Q⌫k}k=1,2,...,N

⌫=1,2 satisfying (2.1.3) and (2.1.4).
Thus, an approximate solution of C-MFS actually exists uniquely.
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Figure 2.2: Arrangements of singular and collocation points by two peripheral conformal mappings

(ii) The error estimate

ku� u(N)kHs(�1)⇥Hs(�2)  CN P̃ (s,�,t) 1

�N/2
kFkX�,t

holds true for a su�ciently large N 2 N, where C is a constant that is independent of N , and

(2.1.9) P̃ (s, �, t) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max{s� t,�1, s� 1} if � = r�2 ^ (1, s) � (�, 3/2),

max{s� t,�t} if � = 1 ^ (1, s) � (�, 3/2),

s� t if � 2 ]1, r�2[^(1, s) � (�, 3/2),

max{3/2� t, 3/2} if � = r�2 ^ 1 = � ^ s < 3/2,

3/2� t if � 2 [1, r�2[^1 = � ^ s < 3/2,

where � = �1 max{(R1/⇢1)2, (⇢2/R2)2}. This error estimate shows that the error decays ex-
ponentially with respect to N when both of boundary data fµ are analytic, and that it decays
algebraically with respect to N when at least one of boundary data fµ is not analytic but belongs
to some Sobolev space (in particular, they are Hölder continuous).

Theorem 2.1.2 (Unique existence and convergence for I-MFS). Suppose that the same hypotheses as
in Theorem 2.1.1 hold, except that the assumptions that R1 6= 1 and Cap(�R

1

) 6= 1 are removed.

(i) For a su�ciently large N 2 N, there exists a unique {Q⌫k}k=1,2,...,N
⌫=1,2 satisfying (2.1.5), (2.1.6a),

and (2.1.6b). Thus, an approximate solution of I-MFS actually exists uniquely.

(ii) The error estimate

ku� u(N)
I kHs(�1)⇥Hs(�2)  CN P̃ (s,�,t) 1

�N/2
kFkX�,t

holds true for a su�ciently large N 2 N, where C is a constant that is independent of N , and
P̃ (s, �, t) is defined as in (2.1.9).
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Chapter 2 MFS in doubly-connected region 2.2 Integral operators and approximate function spaces

From the viewpoint of real computation, it is important to measure the errors in terms of L1

norms. Using the embedding relation X1,s ⇢ C(S1) for s > 1/2, we immediately obtain the following
corollaries from Theorems 2.1.1 and 2.1.2. Here, C(S1) denotes the set of all continuous functions on
S1.

Corollary 2.1.3 (L1-error estimate for C-MFS). Under the same conditions as in Theorem 2.1.1,
we have the following error estimate:

ku� u(N)
C kL1(�1)⇥L1(�2)  CN P̃ (s,�,t) 1

�N/2
kFkX�,t ,

for any s > 1/2, where C is a constant that is independent of N .

Corollary 2.1.4 (L1-error estimate for I-MFS). Under the same conditions as in Theorem 2.1.2, we
have the following error estimate:

ku� u(N)
I kL1(�1)⇥L1(�2)  CN P̃ (s,�,t) 1

�N/2
kFkX�,t ,

for any s > 1/2, where C is a constant that is independent of N .

Theorems 2.1.1 and 2.1.2 can be obtained as the corollaries of Theorems 2.4.4 and 2.4.5, respectively,
by setting ✏ = 1 in both cases. Therefore, our aim is to prove Theorems 2.4.4 and 2.4.5, rather than
Theorems 2.1.1 and 2.1.2 themselves. The strategies for the proofs are as follows. First, we consider
the case where ⌦ is an annular region R⇢

2

,⇢
1

with ⇢1 > ⇢2 > 0, and establish the unique existence
(cf. Theorems 2.3.3 and 2.3.5) and convergence (cf. Theorems 2.3.7 and 2.3.8). Next, we consider
the case where ⌦ is a nondegenerate doubly-connected region with boundary that is composed of two
disjoint regular analytic Jordan curves. In fact, we can regard this problem as a compact perturbation
of the problem in an annular region. Thus, we adopt the Riesz-Schauder theory, and analyze MFS
using the results in annular region.

The contents of this chapter are as follows. In Section 2.2, integral operators and approximate
function spaces are introduced, which will be used in the analysis. In Section 2.3, MFS in annular
region is discussed. In Section 2.4, MFS in a nondegenerate doubly-connected region with boundary
that is composed of two disjoint regular analytic Jordan curves is considered, and the most general
versions of main results, Theorems 2.4.4 and 2.4.5, are proved. In Section 2.5, the results of some
numerical experiments are presented, in order to exemplify the sharpness of our error estimate. In
Section 2.6, we conclude the paper by providing some concluding remarks and conjectures describing
future work.

2.2 Integral operators and approximate function spaces

2.2.1 Integral operators

2.2.1.1 Conventional scheme

In order to introduce integral operators for C-MFS, we suppose for the moment that there exists some
function Q defined on �R

1

[ �R
2

such that the boundary datum fµ can be represented as a linear
combination of single-layer potentials, as follows:

fµ(x) =
2

X

⌫=1

Z

�R⌫

E(x� y)Q(y) ds(⌫)y , x 2 �µ

26



Chapter 2 MFS in doubly-connected region 2.2 Integral operators and approximate function spaces

for each µ = 1, 2, where �R⌫ =  ⌫(�R⌫ ), and ds(⌫)y denotes the line element of �R⌫ (⌫ = 1, 2). Then,
the exact solution u for (2.1.1) is represented as

u(x) =
2
X

⌫=1

Z

�R⌫

E(x� y)Q(y) ds(⌫)y , x 2 ⌦.

Considering S1-parameterizations of �µ, �R⌫ , fµ, and Q as

�µ : S1 3 ⌧ 7�!  µ(⇢µe
2⇡i⌧ ) (⌧ 2 S1; µ = 1, 2),

�R⌫ : S
1 3 ✓ 7�!  ⌫(R⌫e

2⇡i✓) (✓ 2 S1; ⌫ = 1, 2),

Fµ(⌧) = fµ( µ(⇢µe
2⇡i⌧ )) (⌧ 2 S1; µ = 1, 2),

q⌫(✓) = Q( ⌫(R⌫e
2⇡i✓))| 0

⌫(R⌫e
2⇡i✓)| (✓ 2 S1; ⌫ = 1, 2),

we have that

Fµ(⌧) =
2
X

⌫=1

Z 1

0

E( µ(⇢µe
2⇡i⌧ )� ⌫(R⌫e

2⇡i✓))Q( ⌫(R⌫e
2⇡i✓))|2⇡iR⌫ 

0
⌫(R⌫e

2⇡i✓)| d✓

=
2
X

⌫=1

AC
µ⌫q⌫(⌧) (⌧ 2 S1; µ = 1, 2),

where AC
µ⌫ are integral operators defined as

AC
µ⌫'(⌧) =

Z 1

0

aµ⌫(⌧, ✓)'(✓) d✓ (⌧ 2 S1; µ, ⌫ = 1, 2),

aµ⌫(⌧, ✓) = 2⇡R⌫E( µ(⇢µe
2⇡i⌧ )� ⌫(R⌫e

2⇡i✓)) (⌧, ✓ 2 S1; µ, ⌫ = 1, 2),

for ' 2 C(S1). Therefore, the boundary condition in (2.1.1) is equivalent to

ACq = F,

where

AC = (AC
µ⌫) =

 

AC
11 AC

12

AC
21 AC

22

!

, q =

✓

q1
q2

◆

, F =

✓

F1

F2

◆

.

Thus, our problem is reduced to finding an approximation for the above q.

2.2.1.2 Invariant scheme

Inspired by [5, Eq. (2.3)] and [79, Eq. (15)], we define the following integral operators for I-MFS:

AI
µ⌫'(⌧) =

1

2
'̂(0) +

Z 1

0

aµ⌫(⌧, ✓)

✓

'(✓)� 1

2
'̂(0)

◆

d✓ � 1

2

Z 1

0

aµ,3�⌫(⌧, ✓)'̂(0) d✓

(⌧ 2 S1; µ, ⌫ = 1, 2)

for ' 2 C(S1). We also define AI := (AI
µ⌫).
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2.2.2 Approximate function space

2.2.2.1 Conventional scheme

We define the following approximate function space D (N)
C for C-MFS:

D (N)
C =

(

N
X

k=1

✓

Q1k

Q2k

◆

�

✓

·� k � 1

N

◆

�

�

�

�

�

Q⌫k 2 C (⌫ = 1, 2; k = 1, 2, . . . , N)

)

,

which is a natural extension of that for C-MFS in a Jordan region (see, for instance, [48, p. 202]),

where � is the Dirac delta function on S1. For any q(N) 2 D (N)
C , we formally have that

2
X

⌫=1

AC
µ⌫q

(N)
⌫ (⌧) =

2
X

⌫=1

N
X

k=1

Q⌫k

Z 1

0

aµ⌫(⌧, ✓)�

✓

✓ � k � 1

N

◆

d✓

=
2

X

⌫=1

N
X

k=1

2⇡R⌫Q⌫kE( µ(⇢µe
2⇡i⌧ )� y⌫k),

which is the same as an approximate solution produced by C-MFS. Thus, we can infer that the

definitions of the integral operators AC
µ⌫ and the approximate function space D (N)

C are suitable for the

analysis of C-MFS. The following proposition describes the fundamental properties of D (N)
C .

Proposition 2.2.1. (i) For v = (v1, v2)T 2 D (N)
C , {v̂(n)}n2Z is a periodic vector sequence with

respect to n with period N . That is, it holds that v̂(n) = v̂(m) if n ⌘ m.

(ii) If (✏µ, sµ) < (1,�1/2) for µ = 1, 2, then it holds that D (N)
C ⇢ X✏

1

,s
1

⇥ X✏
2

,s
2

.

The above proposition can be found, for example, in [48, Lemma 4.3] and [79, Lemma 2].

2.2.2.2 Invariant scheme

We introduce the following approximate function space D (N)
I for I-MFS:

DN(
I :=

8

<

:

Q0

✓

1
1

◆

+
N
X

k=1

✓

Q1k

Q2k

◆

�

✓

·� k � 1

N

◆

�

�

�

�

�

�

Q0, Q⌫k 2 C (⌫ = 1, 2; k = 1, 2, . . . , N)
2
P

⌫=1

N
P

k=1

Q⌫k = 0

9

=

;

.

This seems to be a natural extension of the one for I-MFS in a Jordan region (see, for instance, [79,

p. 238]). For any q(N) 2 D (N)
I , we formally have that

2
X

⌫=1

AI
µ⌫q

(N)
⌫ (⌧)

=
2

X

⌫=1

✓

1

2
q̂(N)
⌫ (0) +

Z 1

0

aµ⌫(⌧, ✓)

✓

q(N)
⌫ (✓)� 1

2
q̂(N)
⌫ (0)

◆

d✓ � 1

2

Z 1

0

aµ,3�⌫(⌧, ✓)q̂
(N)
⌫ (0) d✓

◆

=
1

2
(q̂(N)

1 (0) + q̂(N)
2 (0)) +

2
X

⌫=1

Z 1

0

aµ⌫(⌧, ✓)

✓

q(N)
⌫ (✓)� 1

2
(q̂(N)

1 (0) + q̂(N)
2 (0))

◆

d✓

= Q0 +
2

X

⌫=1

N
X

k=1

Q⌫k

Z 1

0

aµ⌫(⌧, ✓)�

✓

✓ � k � 1

N

◆

d✓

= Q0 +
2

X

⌫=1

N
X

k=1

2⇡R⌫Q⌫kE( µ(⇢µe
2⇡i⌧ )� y⌫k),
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Chapter 2 MFS in doubly-connected region 2.3 MFS in annular regions

which is the same as an approximate solution obtained by I-MFS. Therefore, we can infer that the

definitions of the integral operators AI
µ⌫ and the approximate function space D (N)

I are appropriate for

the analysis of I-MFS. Concerning D (N)
I , the following proposition holds.

Proposition 2.2.2. (i) For all v = (v1, v2)T 2 D (N)
I , {v̂(n)}n2Z⇤ is a periodic vector sequence with

respect to n with period N . That is, v̂(n) = v̂(m) holds if n ⌘ m and n,m 6= 0. Moreover,
v̂2(0) = v̂1(0)� 2v̂1(n) and v̂1(n) + v̂2(n) = 0 hold for n 2 I(0).

(ii) If (✏µ, sµ) < (1,�1/2) for µ = 1, 2, then it holds that D (N)
I ⇢ X✏

1

,s
1

⇥ X✏
2

,s
2

.

Proof. We only prove the latter half of the statement in (i). Concerning the remainder parts, see [79,
Lemma 2].

Direct computation yields that for v = (v1, v2)T 2 D (N)
I , it holds that v̂⌫(n) = 2�1Q0�n0 +

PN
k=1 Q⌫k for ⌫ = 1, 2 and n 2 I(0), where �n0 denotes the Kronecker’s delta. Therefore we obtain

that

v̂1(n) + v̂2(n) =
2

X

⌫=1

N
X

k=1

Q⌫k = 0,

v̂1(0)� 2v̂1(n) =
1

2
Q0 +

N
X

k=1

Q1k � 2
N
X

k=1

Q1k =
1

2
Q0 �

N
X

k=1

Q1k =
1

2
Q0 +

N
X

k=1

Q2k = v̂2(0)

for n 2 I(0).

2.3 MFS in annular regions

In this section, we consider the case where ⌦ is an annular region, defined by ⌦ = R⇢
2

,⇢
1

with
⇢1 > ⇢2 > 0. Although there already exist mathematical results relating to this case (see [45, Section
7] and [74]), the settings of this paper are di↵erent from those. Therefore, we provide a mathematical
analysis of MFS in the case of annular regions here.

Because we can take both of the peripheral conformal mappings 1 and 2 as the identity mappings,
the integral operators AC,I

µ⌫ are reduced to the following:

LC
µ⌫'(⌧) :=

Z 1

0

2⇡R⌫E(⇢µe
2⇡i⌧ �R⌫e

2⇡i✓)'(✓) d✓,

LI
µ⌫'(⌧) :=

1

2
'̂(0) +

Z 1

0

2⇡R⌫E(⇢µe
2⇡i⌧ �R⌫e

2⇡i✓)

✓

'(✓)� 1

2
'̂(0)

◆

d✓

� 1

2

Z 1

0

2⇡R3�⌫E(⇢µe
2⇡i⌧ �R3�⌫e

2⇡i✓)'̂(0) d✓

for ' 2 C(S1), ⌧ 2 S1, and µ, ⌫ = 1, 2. Introducing the functions

Gµ⌫(⌧) := �R⌫ log |⇢µe2⇡i⌧ �R⌫ | (⌧ 2 S1; µ, ⌫ = 1, 2),

we have that

LC
µ⌫' = Gµ⌫ ⇤ ', LI

µ⌫' =
1

2
'̂(0) +Gµ⌫ ⇤

✓

'� 1

2
'̂(0)

◆

� 1

2
Gµ,3�⌫ ⇤ '̂(0).
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Then, it follows that

(LC
µ⌫')

^(n) = Ĝµ⌫(n)'̂(n),

(LI
µ⌫')

^(n) =

8

<

:

1

2
(1 + Ĝµ⌫(0)� Ĝµ,3�⌫(0))'̂(0) if n = 0,

Ĝµ⌫(n)'̂(n) if n 6= 0,

Ĝµ⌫(n) =

8

>

<

>

:

�R⌫ logmax{⇢µ, R⌫} if n = 0,

R⌫

2|n|
✓

min

⇢

⇢µ
R⌫

,
R⌫

⇢µ

�◆|n|
if n 6= 0.

In order to deal with the function spaces D (N)
C and D (N)

I , we need to extend the operators LC,I
µ⌫ and

LC,I := (LC,I
µ⌫ ) to X and Y :=

S

✏,s Y✏,s which can be defined by virtue of Proposition 1.1.1 (ii).

Lemma 2.3.1. (i) Define an operator L C
µ⌫ : X✏⇠(µ,⌫),s�1 ! X✏,s as L C

µ⌫' = Gµ⌫⇤' for each (✏, s) 2
]0,+1[⇥R, where ⇠(µ, ⌫) = min{⇢µ/R⌫ , R⌫/⇢µ}. Then, L C

µ⌫ is a bounded linear extension of
LC
µ⌫ .

(ii) Define an operator L I
µ⌫ : X✏⇠(µ,⌫),s�1 ! X✏,s as L I

µ⌫' =
1

2
'̂(0)+Gµ⌫⇤

✓

'� 1

2
'̂(0)

◆

� 1

2
Gµ,3�⌫⇤

'̂(0) for each (✏, s) 2 ]0,+1[⇥R. Then, L I
µ⌫ is a bounded linear extension of LI

µ⌫ .

(iii) For each (✏, s) 2 ]0,+1[⇥R, define an operator L C : Y✏,s ! X✏,s as L C = (L C
µ⌫). Then, L C

is a bounded linear extension of LC. Moreover, if R1 6= 1, then L C is a homeomorphism. That
is, it is continuous, bijective, and has a bounded inverse.

(iv) For (✏, s) 2 ]0,+1[⇥R, define an operator L I : Y✏,s ! X✏,s as L I = (L I
µ⌫). Then, L I is a

bounded linear extension of LI and a homeomorphism.

Proof. (i) For any ' 2 X⇠(µ,⌫),s�1, we have that

kL C
µ⌫'k2✏,s = |�R⌫ logmax{⇢µ, R⌫}|2|'̂(0)|2 +

X

n2Z⇤

�

�

�

�

�

R⌫

2|n|
✓

min

⇢

⇢µ
R⌫

,
R⌫

⇢µ

�◆|n|
�

�

�

�

�

2

|'̂(n)|2✏2|n|(2⇡|n|)2s

= R2
⌫(logmax{⇢µ, R⌫})2|'̂(0)|2 +R2

⌫⇡
2
X

n2Z⇤

|'̂(n)|2(✏⇠(µ, ⌫))2(2⇡|n|)2(s�1)

 R2
⌫ max{(logmax{⇢µ, R⌫})2,⇡2}k'k2✏⇠(µ,⌫),s�1,

which implies that L C
µ⌫ is a bounded linear extension of LC

µ⌫ .
(ii) For any ' 2 X✏⇠(µ,⌫),s�1, we have that

kL I
µ⌫'k2✏,s

=

�

�

�

�

1

2
(1 + Ĝµ⌫(0)� Ĝµ,3�⌫(0))

�

�

�

�

2

|'̂(0)|2 +
X

n2Z⇤

�

�

�

�

�

R⌫

2|n|
✓

min

⇢

⇢µ
R⌫

,
R⌫

⇢µ

�◆|n|
�

�

�

�

�

2

|'̂(n)|2✏2|n|(2⇡|n|)2s

 max

⇢

3

4
(1 +R2

1(logR1)
2 +R2

2(log ⇢µ)
2), R2

⌫⇡
2

�

k'k2✏⇠(µ,⌫),s�1,

which implies that L I
µ⌫ is a bounded linear extension of LI

µ⌫ .
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(iii) Because L C
µ⌫ are bounded linear extensions of LC

µ⌫ , the boundedness of L C is clear. Suppose that

R1 6= 1. Then, we will show that L C is a homeomorphism. Because {�n}n2Z, �n(⌧) = e2⇡in⌧ ✏�|n|n�s

(⌧ 2 S1, n 2 Z), forms a complete orthonormal basis of X✏,s, ('1,'2)T 2 Y✏,s belongs to KerL C if
and only if it holds that

(2.3.1)

✓

Ĝ11(n) Ĝ12(n)
Ĝ21(n) Ĝ22(n)

◆

| {z }

=:GC(n)

✓

'̂1(n)
'̂2(n)

◆

=

✓

0
0

◆

(8n 2 Z).

The determinants of GC(n) can be computed as

detGC(0) = det

✓�R1 logR1 �R2 log ⇢1
�R1 logR1 �R2 log ⇢2

◆

= R1R2 logR1 log
⇢2
⇢1

and

detGC(n) = det

0

B

B

B

@

R1

2|n|
✓

⇢1
R1

◆|n| R2

2|n|
✓

R2

⇢1

◆|n|
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A
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✓
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R1

◆|n| ⇢2|n|1 � ⇢2|n|2

⇢|n|1 ⇢|n|2

(n 2 Z⇤),

from which we know that the GC(n) are nonsingular. Therefore, (2.3.1) has only the trivial solution.
That is, it follows that '̂(n) = 0 for all n 2 Z, or ' = 0. Namely, L C is injective. Concerning the
surjectivity of L C, take any  = ( 1, 2)T 2 X✏,s, and define ' = ('1,'2)T as

'µ(⌧) =
X

n2Z
'̂µ(n)e

2⇡in⌧ (⌧ 2 S1; µ = 1, 2), '̂(n) = GC(n)�1 ̂(n) (n 2 Z),

that is,
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1

C

C

C
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A

(n 2 Z⇤).

Then, we have that

k'1k2✏⇢
1

/R
1
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1

R2
1(logR1)2(log(⇢2/⇢1))2

|�  ̂1(0) log ⇢2 +  ̂2(0) log ⇢1|2
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X

n2Z⇤
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1
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✓
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⇢1

◆2|n|
| ̂2(n)|2

!

✏2|n|(2⇡|n|)2s
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⇢

2max{(log ⇢1)2, (log ⇢1)2}
(R1 logR1 log(⇢2/⇢1)))2

,
2

(R1⇡(1� (⇢2/⇢1)2))2

�

k k2X✏,s
,

(2.3.2)
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and

k'2k2✏R
2

/⇢
2

=
1

R2
2(log(⇢2/⇢1))

2
| ̂1(0)�  ̂2(0)|2

+
X

n2Z⇤

4|n|2⇢2|n|1 ⇢2|n|2
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✓

✏R2
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⇢

2
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2

R2
2⇡

2(1� (⇢2/⇢1)2)2

�

k k2X✏,s
.

(2.3.3)

Therefore, ' 2 Y✏,s, and by definition L C' =  . The boundedness of (L C)�1 follows from the
inequalities (2.3.2) and (2.3.3).
(iv) The boundedness of L I immediately follows from (ii). ' 2 Y✏,s belongs to KerL I if and only if
it holds that

1

2

✓

1 + Ĝ11(0)� Ĝ12(0) 1 + Ĝ12(0)� Ĝ11(0)
1 + Ĝ21(0)� Ĝ22(0) 1 + Ĝ22(0)� Ĝ21(0)

◆✓
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◆

=

✓

0
0

◆
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GI(n)'̂(n) = 0 (n 2 Z⇤)

hold, where GI(n) = GC(n) for n 2 Z⇤. Because
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✓

1�R1 logR1 1 +R1 logR1

R2 log ⇢2 �R2 log ⇢2

◆

+ det

✓
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1�R1 logR1 1 +R1 logR1

◆�

=
1

2
R2 log

⇢1
⇢2

,

we have that '̂(n) = 0 for all n 2 Z. That is, ' = 0. For any  2 X✏,s, define ' as

'µ(⌧) =
X

n2Z
'̂µ(n)e

2⇡in⌧ (⌧ 2 S1; µ = 1, 2), '̂(n) = GI(n)�1 ̂(n) (n 2 Z),

that is,

✓

'̂1(0)
'̂2(0)

◆

=
2

R2 log(⇢1/⇢2)

✓
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(�1 +R1 logR1 �R2 log ⇢2) ̂1(0) + (1�R1 logR1 +R2 log ⇢1) ̂2(0)

◆

and '̂(n) for n 2 Z⇤ are the same as that for L C; i.e.,

✓

'̂1(n)
'̂2(n)

◆

=

0

B

B

B

B

@

2|n|R|n|�1
1

⇢2|n|1 � ⇢2|n|2

(⇢|n|1  ̂1(n)� ⇢|n|2  ̂2(n))
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1

C

C

C

C

A

(n 2 Z⇤).

Then, we have that

(2.3.4) k'1k2✏⇢
1

/R
1

,s�1, k'2k2✏R
2

/⇢
2

,s�1  Cµk k2X✏,s
(µ = 1, 2),
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which implies that ' 2 Y✏,s, where

Cµ = max

⇢

24

(R2 log(⇢1/⇢2))2
(1 + (R1 logR1)

2 +R2
2 max{(log ⇢1)2, (log ⇢2)2}),

2

(Rµ⇡(1� (⇢2/⇢1)2))2

�

,

for µ = 1, 2. By the definition of ', it holds that L I' =  . The estimates (2.3.4) imply the
boundedness of (L I)�1.

Remark 2.3.2. From the above proof, we can observe that the operator norms kL C,Ik of L C,I and
k(L C,I)�1k of (L C,I)�1 can be bounded by constants depending only on ⇢µ and R⌫ . Therefore, in
the following context, the operator norms kL C,Ik and k(L C,I)�1k do not appear explicitly.

We rewrite the collocation equation (2.1.4) for C-MFS and (2.1.6a) for I-MFS with the constraint

(2.1.6b) in terms of the extended operators L C and L I, respectively. For any q(N) 2 D (N)
C , we have

L C
µ⌫q

(N)
⌫ (⌧) =

N
X

k=1

Q⌫kL
C
µ⌫�

✓

·� k � 1

N

◆

(⌧) =
N
X

k=1

2⇡R⌫Q⌫kE(⇢µe
2⇡i⌧ � y⌫k).

Therefore, the unique solvability of (2.1.4) is equivalent to that of

(2.3.5) L Cq(N) = F on �N

in D (N)
C . Similarly, for any q(N) 2 D (N)

I , we have

2
X

⌫=1

Lµ⌫q
(N)
⌫ (⌧) =

2
X

⌫=1

✓

1

2
q̂(N)
⌫ (0) +Gµ⌫ ⇤

✓
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◆

� 1

2
Gµ,3�⌫ ⇤ q̂(N)

⌫ (0)

◆

=
2
X

⌫=1

✓

1

2
q̂(N)
⌫ (0) +Gµ⌫ ⇤

✓
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(q̂(N)

1 (0) + q̂(N)
2 (0))

◆

(⌧)

◆

= Q0 +
2
X

⌫=1

N
X

k=1

2⇡R⌫Q⌫kE(⇢µe
2⇡i⌧ � y⌫k).

Therefore, the unique solvability of (2.1.6a) with (2.1.6b) is equivalent to that of

(2.3.6) L Iq(N) = F on �N

in D (N)
I . The following theorem guarantees the unique existence of an approximate solution by C-MFS.

Theorem 2.3.3 (Stability of C-MFS in annular regions). Suppose that 0 < R2 < ⇢2 < ⇢1 < R1, and
F 2 X⇠,� for some (⇠,�) > (1, 1/2). Then, for any N 2 N satisfying

(2.3.7) det

 

log |⇢N1 �RN
1 | log |⇢N1 �RN

2 |
log |⇢N2 �RN

1 | log |⇢N2 �RN
2 |

!

6= 0,

there exists a unique solution q(N) 2 D (N)
C for (2.3.5).

Remark 2.3.4. The condition (2.3.7) on N is the same as in [74, Theorem 2.1]. Therefore, it seems
natural for it to appear in this context.
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Proof. Noting that
P2

⌫=1 L C
µ⌫q

(N)
⌫ 2 L1(S1) and it is Hölder continuous in some neighborhood of �N

for each µ = 1, 2, we have that (2.3.5) is equivalent to the following equations, by virtue of Proposition
1.5.1:
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X
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⌫ (m) =
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F̂µ(m) (p 2 ⇤N ; µ = 1, 2).

Because q̂(N)
⌫ (m) are periodic with respect to m with period N (Proposition 2.2.1 (i)), the above are

equivalent to

(2.3.8) �C(p)q̂(N)(p) =
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F̂ (m) (p 2 ⇤N ),
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�C(p) =
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µ⌫(0) = �R⌫ logmax{⇢µ, R⌫}+

X

m2I(0)

R⌫

2|m| (⇠(µ, ⌫))
|m| = �R⌫

N
log |⇢Nµ �RN

⌫ |,

the determinant of �C(p) can be computed as

det�C(0) =
R1R2

N2
det
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!

,

det�C(p) = det
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@
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R1

2|m|
✓
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◆|m|
X
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✓
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X
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✓
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X
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R2

2|l|
✓
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1

C
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C

C
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X
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X
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R1R2

4|ml|
R|l|

2

R|m|
1

⇢|m|+|l|
1 � ⇢|m|+|l|

2

(⇢1⇢2)|l|
> 0 (p 2 ⇤N \ {0}).

Hence it follows that the �C(p) are nonsingular. Therefore, the system (2.3.8) admits a unique solution.

Concerning the unique existence of the approximate solution by I-MFS, the following theorem
holds.

Theorem 2.3.5. Suppose that 0 < R2 < ⇢2 < ⇢1 < R1, and F 2 X⇠,� for some (⇠,�) > (1, 1/2).

Then, for any N 2 N, there exists a unique solution q(N) 2 D (N)
I for (2.3.6).

Remark 2.3.6. The condition (2.3.7) on N in Theorem 2.3.3 for C-MFS is removed in the above
theorem for I-MFS. This is the same as in [74, Theorem 2.3].

Proof. Owing to Proposition 1.5.1, (2.3.6) is equivalent to
8
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F̂µ(m) (p 2 ⇤N \ {0}),
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for µ = 1, 2. Using the relations in Proposition 2.2.2 (i), q̂(N)
⌫ (m) = q̂(N)

⌫ (N) if m ⌘ N and m 6= 0,

q̂(N)
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2 (N) = 0, the above are equivalent to
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1

C

C

A

,

�I(p) = �C(p) (p 2 ⇤N \ {0}).
Because the determinant of �I(0) can be computed explicitly as
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,

which is negative, and det�I(p) = det�C(p) > 0 (p 2 ⇤N \ {0}), the unique existence of a solution for

(2.3.6) in D (N)
I has been shown.

Next, we provide error estimates for C-MFS and I-MFS, which imply that the errors decay expo-
nentially with respect to N when the boundary datum F is analytic, and algebraically when F is not
analytic but belongs to some Sobolev space.

Theorem 2.3.7 (Error estimate for C-MFS in annular regions). Let 0 < R2 < ⇢2 < ⇢1 < R1, R1 6= 1,
and F 2 X⇠,� for some (⇠,�) > (1, 1/2). Take any (�, t) satisfying (1, 1/2) < (�, t)  (⇠,�), and
suppose that (✏, s) satisfies the following conditions:

max

⇢

�r2,
1

�

�

 ✏  min

⇢

1

�r2
, �

�

;(2.3.10)

if ✏ = � then s  t; if ✏ =
1

r
then s < �1

2
.(2.3.11)

Then, there exist some positive constant C = C(✏, s, �, t, ⇢, R) and a real constant P = P (✏, s, �, t) such
that, for all N 2 N satisfying (2.3.7), the following error estimate holds:

kF � L Cq(N)kX✏,s  CNP
⇣ ✏

�

⌘N/2

kFkX�,t ,

where q(N) 2 D (N)
C is the unique solution for (2.3.5), the existence of which is assured by Theorem

2.3.3.
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Theorem 2.3.8. Under the same conditions as in Theorem 2.3.7, with the constraint R1 6= 1 is
removed, there exist some positive constant C = C(✏, s, �, t, ⇢, R) and a real constant P = P (✏, s, �, t)
such that, for all N 2 N, the following error estimate holds:

kF � L Iq(N)kX✏,s  CNP
⇣ ✏

�

⌘N/2

kFkX�,t ,

where q(N) 2 D (N)
I is the unique solution for (2.3.6), the existence of which is assured by Theorem

2.3.5.

Remark 2.3.9. The condition (2.3.10) seems to be rather complicated. We employ a graph to show
the region in which the condition (2.3.10) is satisfied. Define the following:

L1 =

⇢

(�, ✏)

�

�

�

�

1

r
 �  1

r2
, ✏ = �r2

�
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1  �  1

r
, ✏ = �
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�

�

�

�
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r
, ✏ =

1

�

�

, H2 =

⇢

(�, ✏)

�

�

�

�

1

r
 �  1

r2
, ✏ =

1

�r2

�

,

C1 =

✓

1

r
, r

◆

, C2 =

✓

1

r2
, 1

◆

.

Then, we denote by J the closed region surrounded by H1[H2[H2[L2. It follows that (�, ✏) satisfies
the condition (2.3.10) if and only if (�, ✏) 2 J . Moreover, defining I := {(�, ✏) 2 J | �  ⇠}, we have
that (�, ✏) satisfies the conditions (2.3.10) and �  ⇠ if and only if (�, ✏) 2 I. For the shape of I, see
Figure 2.3.

�O

✏

1 r�1 r�2

1
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⇠

✏ = �
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1
�r2
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1
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H1 L1

H2L2

(a)
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r�2

r�1

✏ = �

✏ = �r2

✏ =
1
�r2

✏ =
1
�

⇠

C1

C2
H1 L1

H2L2

(b)

Figure 2.3: Graphic representation of the closed region I when (a) ⇠ < r�2; (b) ⇠ � r�2.

Remark 2.3.10. The exponent P = P (✏, s, �, t) in Theorem 2.3.7 and 2.3.8 can be written explicitly as

P (✏, s, �, t) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max{s� t,�1,�t} ((�, ✏) = C1),

max{s� t,�1, s� 1} ((�, ✏) = C2),

max{s� t,�t} ((�, ✏) 2 H1 \ {C1}),
max{s� t, s� 1} ((�, ✏) 2 H2 \ {C2}),
max{s� t,�1} ((�, ✏) 2 L1 \ {C1, C2}),
s� t (otherwise).

Remark 2.3.11. The indices s and t can take any real values if (�, ✏) is in the interior of I, while they
must satisfy some conditions when (�, ✏) 2 @I. In particular, when we consider the case that ✏ = 1,
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which means that the errors kF �L C,Iq(N)kX✏,s are measured by Hs⇥Hs norm, P (✏, s, �, t) is reduced
to

P (s, �, t) =

8

>

<

>

:

max{s� t,�t} (� = 1),

max{s� t,�1, s� 1} (� = r�2),

s� t (1 < � < r�2).

If ⇠ = 1, then it holds that � > 1/2, � = 1, 1/2 < t  �, and s  t, yielding the error estimates

kF � L C,Iq(N)kHs⇥Hs  CNmax{s�t,�t}kFkHt⇥Ht .

Therefore, the errors decay algebraically when the boundary datum F is not analytic, but belongs to
some Sobolev spaces.

In order to prove the above Theorems 2.3.7 and 2.3.8 we will use the following Lemmas 2.3.12 and
2.3.13, respectively.

Lemma 2.3.12. Under the same hypotheses as in Theorem 2.3.7, there exists some positive constant
C = C(✏, s, �, t, ⇢, R) such that the following estimate holds for q 2 Y⇠,� with L Cq = F , the solution

q(N) 2 D (N)
C for (2.3.5), the unique existence of which is assured by Theorem 2.3.3, and all N 2 N

satisfying (2.3.7):

kq � q(N)kY✏,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqkY�,t .

Lemma 2.3.13. Under the same hypotheses as in Theorem 2.3.8, there exists some positive constant
C = C(✏, s, �, t, ⇢, R) such that the following estimate holds for q 2 Y⇠,� with L Iq = F , the solution

q(N) 2 D (N)
I for (2.3.6), the unique existence of which is assured by Theorem 2.3.5, and all N 2 N:

kq � q(N)kY✏,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqkY�,t .

We defer the proofs of the above two lemmas to Section 2.7 and Section 2.8, and first apply them
here to establish Theorems 2.3.7 and 2.3.8.

Proof of Theorem 2.3.7. For a given F 2 X⇠,�, there exists a unique q 2 Y⇠,� such that F = L Cq,
because L C is a homeomorphism (Lemma 2.3.1 (iii)). Then, by Lemma 2.3.12 we obtain that

kF � L Cq(N)kX✏,s  kL Cq � L Cq(N)kX✏,s  Ckq � q(N)kY✏,s

 CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqkY�,t  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kFkX�,t ,

which is the desire estimate.

Proof of Theorem 2.3.8. This can be proved in the same manner as Theorem 2.3.7.

2.4 MFS in doubly-connected regions

For the purpose of extending AC,I
µ⌫ and AC,I = (AC,I

µ⌫ ), we define perturbation operators KC,I
µ⌫ and KC,I

by

KC,I
µ⌫ := AC,I

µ⌫ � LC,I
µ⌫ , KC,I = (KC,I

µ⌫ ) =

 

KC,I
11 KC,I

12

KC,I
21 KC,I

22

!

.
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If ' 2 C(S1), then we have

KC
µ⌫'(⌧) =

Z 1

0

kµ⌫(⌧, ✓)'(✓) d✓,

KI
µ⌫'(⌧) =

Z 1

0

kµ⌫(⌧, ✓)

✓

'(✓)� 1

2
'̂(0)

◆

d✓ � 1

2

Z 1

0

kµ,3�⌫(⌧, ✓)'̂(0) d✓

for ⌧ 2 S1 and µ, ⌫ = 1, 2, where

kµ⌫(⌧, ✓) = 2⇡R⌫

�

E( µ(⇢µe
2⇡i⌧ )� ⌫(R⌫e

2⇡i✓))� E(⇢µe
2⇡i⌧ �R⌫e

2⇡i✓)
�

= �R⌫ log

�

�

�

�

 µ(⇢µe2⇡i⌧ )� ⌫(R⌫e2⇡i✓)

⇢µe2⇡i⌧ �R⌫e2⇡i✓

�

�

�

�

.

Thus, the lth Fourier coe�cients of KC
µ⌫' and KI

µ⌫' are given as follows:

(KC
µ⌫')

^(l) =

Z 1

0

KC
µ⌫'(⌧)e

�2⇡il⌧ d⌧ =

Z 1

0

Z 1

0

kµ⌫(⌧, ✓)'(✓) d✓ e�2⇡il⌧ d⌧

=

Z 1

0

Z 1

0

kµ⌫(⌧, ✓)
X

m2Z
'̂(�m)e�2⇡i✓ d✓ e�2⇡il⌧ d⌧

=
X

m2Z
'̂(�m)

Z 1

0

Z 1

0

kµ⌫(⌧, ✓)e
�2⇡i(l⌧+m✓) d⌧ d✓ =

X

m2Z
k̂µ⌫(l,m)'̂(�m),

(KI
µ⌫')

^(l) =

Z 1

0

Z 1

0

kµ⌫(⌧, ✓)

 

1

2
'̂(0) +

X

m2Z⇤

'̂(�m)e�2⇡im✓

!

d✓ e�2⇡il⌧ d⌧

� 1

2

Z 1

0

Z 1

0

kµ,3�⌫(⌧, ✓)'̂(0) d✓ e�2⇡il⌧ d⌧

=
1

2
(k̂µ⌫(l, 0)� k̂µ,3�⌫(l, 0))'̂(0) +

X

m2Z⇤

k̂µ⌫(l,m)'̂(�m).

We require the following estimates for k̂µ⌫(l,m) in order to extend KC,I
µ⌫ and KC,I:

Lemma 2.4.1. There exists some positive constant C such that

|k̂µ⌫(l,m)|  C�|l|(⇠(⌫, ⌫))�|m|

holds for all l,m 2 Z.

Proof. Define  µ⌫ : R�1⇢µ,⇢µ
⇥R�1⇢⌫ ,⇢⌫

! C as

 µ⌫(z, w) =

8

<

:

 µ(z)� ⌫(w)

z � w
, z 2 R�1⇢µ,⇢µ

, w 2 R�1⇢⌫ ,⇢⌫
, z 6= w,

 0
µ(w), z 2 R�1⇢µ,⇢µ

, w 2 R�1⇢⌫ ,⇢⌫
, z = w.

Thus,  µ⌫ as defined is holomorphic in R�1⇢µ,⇢µ
⇥R�1⇢⌫ ,⇢⌫

and continuous on its closure. To verify

the above statement, take any w 2 R�1⇢⌫ ,⇢⌫
and fix it. If µ 6= ⌫ and R�1⇢

1

,⇢
1

\R�1⇢
2

,⇢
2

= ;,  µ⌫

is obviously a holomorphic function as a function of z. If not, considering the power series expansion
of  µ around w as  µ(z) =

P1
n=0 an(z � w)n, we have

 µ⌫(z, w) =

P1
n=1 an(z � w)n

z � w
=

1
X

n=1

an(z � w)n�1 �! a1 =  0
µ(w) as z ! w.
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Here, note that we have used the relation  µ(w) =  ⌫(w), which is the assumption (2.1.7). Therefore
w is a removable singularity of  µ⌫(z, w), that is,  µ⌫(z, w) is a holomorphic function as a function
of z for any fixed w. Similarly, for any fixed z 2 R�1⇢µ,⇢µ

,  µ⌫(z, w) is a holomorphic function as
a function of w. Hence, Hartogs’ theorem implies that  µ⌫ is a holomorphic function as a function
of two variables z and w. The continuity of  µ⌫ is clear at this stage. Therefore, < log | µ⌫ | has the
following double Fourier series expansion:

< log | µ⌫(⇢µr1e
2⇡i⌧ , ⇢⌫r2e

2⇡i✓)|
=

X

l,m2Z⇤

⇣

almr|l|1 r|m|
2 + blmr|l|1 r�|m|

2 + clmr�|l|
1 r|m|

2 + dlmr�|l|
1 r�|m|

2

⌘

e2⇡i(l⌧+m✓)

+
X

m2Z⇤

⇣

a0mr|m|
2 + b0mr�|m|

2 + c0mr|m|
2 log r1 + d0mr�|m|

2 log r1
⌘

e2⇡im✓

+
X

l2Z⇤

⇣

al0r
|l|
1 + bl0r

|l|
1 log r2 + cl0r

�|l|
1 + dl0r

�|l|
1 log r2

⌘

e2⇡il⌧

+ a00 + b00 log r2 + c00 log r1 + d00 log r1 log r2

for r1, r2 2 [�1,] and ⌧, ✓ 2 R. Then, by Proposition 1.6.1, there exists some positive constant M
that depends on the supremum of | µ⌫ | on @R�1⇢µ,⇢µ

⇥ @R�1⇢⌫ ,⇢⌫
and  such that alm, blm, clm,

and dlm can be estimated as follows:

|alm|, |blm|, |clm|, |dlm|  M�|l|�|m| (l,m 2 Z).

Because kµ⌫(⌧, ✓) = �R⌫< log | µ⌫(⇢µe2⇡i⌧ , R⌫e2⇡i✓)|, we obtain the desired estimates by applying
those above. Indeed, we have

|k̂µ⌫(l,m)| = R⌫

�

�

�

�

�

alm

✓

R⌫

⇢⌫

◆|m|
+ blm

✓

R⌫

⇢⌫

◆�|m|
+ clm

✓

R⌫

⇢⌫

◆|m|
+ dlm

✓

R⌫

⇢⌫

◆�|m|
�

�

�

�

�

 2MR⌫
�|l|

"

✓

R⌫

⇢⌫

◆|m|
+

✓

⇢⌫
R⌫

◆|m|
#

 4MR⌫
�|l|(⇠(⌫, ⌫))�|m| (l,m 6= 0),

|k̂µ⌫(0,m)|  2MR⌫(⇠(⌫, ⌫))
�|m| (m 6= 0), |k̂µ⌫(l, 0)|  2MR⌫

✓

1 +

�

�

�

�

log
R⌫

⇢⌫

�

�

�

�

◆

�|l| (l 6= 0),

|k̂µ(0, 0)|  MR⌫

✓

1 +

�

�

�

�

log
R⌫

⇢⌫

�

�

�

�

◆

.

Using this lemma, we can extend KC,I
µ⌫ and KC,I = (KC,I

µ⌫ ) as follows:

Lemma 2.4.2. Suppose that (✏⌫ , s⌫) > ((⇠(⌫, ⌫))�1, 1/2) for ⌫ = 1, 2 and (�, t) < (,�1/2).

(i) Define an operator K C
µ⌫ : X✏⌫ ,s⌫ ! X�,t by

(K C
µ⌫')

^(l) =
X

m2Z
k̂µ⌫(l,m)'̂(�m) (m 2 Z).

Then, K C
µ⌫ is a bounded linear extension of KC

µ⌫ .

(ii) Define an operator K I
µ⌫ : X✏⌫ ,s⌫ ! X�,t by

(K I
µ⌫')

^(l) =
1

2
(k̂µ⌫(l, 0)� k̂µ,3�⌫(l, 0))'̂(0) +

X

m2Z⇤

k̂µ⌫(l,m)'̂(�m).

Then, K I
µ⌫ is a bounded linear extension of KI

µ⌫ .
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(iii) Define an operator K C : X✏
1

,s
1

⇥X✏
2

,s
2

! X�,t by K C = (K C
µ⌫). Then, K C is a bounded linear

extension of KC, and is compact.

(iv) Define an operator K I : X✏
1

,s
1

⇥ X✏
2

,s
2

! X�,t by K I = (K I
µ⌫). Then, K I is a bounded linear

extension of KI, and is compact.

Proof. (i) For any ' 2 X✏⌫ ,s⌫ , we have that

kK C
µ⌫'k2�,t =

X

l2Z

�

�

�

�

�

X

m2Z
k̂µ⌫(l,m)'̂(�m)

�

�

�

�

�

2

�2|l|l2t


X

l2Z

 

X

m2Z
|k̂µ⌫(l,m)|2✏�2|m|

⌫ m�2s

! 

X

m2Z
|'̂(�m)|2✏2|m|

⌫ m2s

!

�2|l|l2t

 C
X

l2Z

✓

�



◆2|l|
l2t
X

m2Z
(✏⌫⇠(⌫, ⌫))

�2|m|m�2sk'k2✏⌫ ,s⌫ .

Note that, by assumption, the above infinite sums are convergent. Thus, K C
µ⌫ is a bounded linear

extension of K C
µ⌫ .

(ii) Because we can bound the lth Fourier coe�cient (K I
µ⌫')

^(l) of K I
µ⌫' by

|(K I
µ⌫')

^(l)|  C
X

m2Z
�|l|(⇠(⌫, ⌫))�|m||'̂(�m)|,

we obtain the same estimate for K I
µ⌫'. Namely, K I

µ⌫ is a bounded linear extension of KI
µ⌫ .

(iii) Because each K C
µ⌫ is a bounded linear extension of KC

µ⌫ , it immediately follows that K C is a
bounded linear extension of KC. In order to show the compactness of K C, we choose (�0, t0) arbitrarily
such that it satisfies (�, t) < (�0, t0) < (,�1/2), and we split K C as follows:

K C : X✏
1

,s
1

⇥ X✏
2

,s
2

//

K̃ C

&&

X�,t

X�0,t0

-
� i⇥i

<<

Here, K̃ C : X✏
1

,s
1

⇥X✏
2

,s
2

! X�0,t0 is a bounded linear operator, defined in a similar manner to K C,
and i : X�0,t0 ,! X�,t is the natural inclusion, which is a compact operator by Proposition 1.1.1 (ii). It
is clear that i⇥ i is a compact operator, and K C = (i⇥ i) � K̃ C is also a compact operator.
(iv) It can be proved in a same manner to that in (iii), so we will omit the proof.

Corollary 2.4.3. If (✏, s) satisfies

(2.4.1)

✓

�,
3

2

◆

< (✏, s) <

✓

,�1

2

◆

,

then K C,I : Y✏,s ! X✏,s is a compact operator, where � = �1 max{⇠(⌫, ⌫)�2 | ⌫ = 1, 2}.
Proof. Setting ✏1 = ✏⇢1/R1, ✏2 = ✏R2/⇢2, and s1 = s2 = s�1, the above corollary immediately follows
from Lemma 2.4.2.

When (✏, s) satisfies the condition (2.4.1), we define A C,I : Y✏,s ! X✏,s as A C,I = L C,I + K C,I.
These A C,I are extensions of AC,I.Thus, we are now in a position to state main results of this paper
in their most general forms.
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Theorem 2.4.4 (Unique existence and error estimate for C-MFS). Suppose that R1 2 ]⇢1,⇢1[ satisfies
R1 6= 1 and Cap(�R

1

) 6= 1, R2 2 ]�1⇢2, ⇢2[, F 2 X⇠,� for some (⇠,�) > (1, 1/2), (�, t) satisfies
(1, 1/2) < (�, t) < (,�1/2) and (�, t)  (⇠,�), and (✏, s) satisfies

max

⇢

�r2,
1

�

�

 ✏  min

⇢

1

�r2
, �

�

,

if ✏ = � then s < t; if ✏ =
1

r
then s <

1

2
,

and ✏ � �. Then, the following hold:

(i) For a su�ciently large N 2 N, the equation

A Cq(N) = F on �N

has a unique solution q(N) 2 D (N)
C . Namely, an approximate solution u(N)

C of the form (2.1.3)
satisfying the collocation equations (2.1.4) uniquely exists.

(ii) There exists some positive constant C = C(✏, s, �, t, kA Ck, k(A C)�1k) such that the following
error estimate holds:

kA Cq(N) � FkX✏,s  CN P̃ (✏,s,�,t)
⇣ ✏

�

⌘N/2

kFkX�,t ,

where P̃ (✏, s, �, t) is defined as

P̃ (✏, s, �, t) =

(

P (✏, s, �, t) if (✏, s) � (�, 3/2),

P (✏, 3/2, �, t) if ✏ = � ^ s < 3/2.

Namely, the error decays exponentially when the boundary datum F is analytic, and it decays
algebraically when F is not analytic but belongs to X1,� with � > 1/2, which implies that F is at
least Hölder continuous.

Theorem 2.4.5 (Unique existence and error estimate for I-MFS). Under the same conditions as in
Theorem 2.4.4 where the assumptions R1 6= 1 and Cap(�R

1

) 6= 1 are removed, the following hold:

(i) For a su�ciently large N 2 N, the equation

A Iq(N) = F on �N

has a unique solution q(N) 2 D (N)
I . Namely, an approximate solution u(N)

I of the form (2.1.5)
satisfying the collocation equations (2.1.6a) and the constraint (2.1.6b) uniquely exists.

(ii) There exists some positive constant C = C(✏, s, �, t, kA Ik, k(A I)�1k) such that the following error
estimate holds:

kA Iq(N) � FkX✏,s  CN P̃ (✏,s,�,t)
⇣ ✏

�

⌘N/2

kFkX�,t .

In order to prove the above theorems, we will require the following two lemmas.

Lemma 2.4.6. Suppose that R1 2 ]⇢1,⇢1[, R2 2 ]�1⇢2, ⇢2[, and (✏, s) satisfies (2.4.1). Then, the
operators A C,I are bounded. Moreover, if it holds that R1 6= 1 and Cap(�R

1

) 6= 1, then A C is a home-
omorphism. Concerning A I, without no additional assumption, it holds that A I is a homeomorphism.
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Proof. The boundedness of the operators A C,I are obvious.
Concerning the bijectivity of A C,I, we only have to show that these are injective, because A C,I are

Fredholm operators with indices 0, which can be justified by Lemma 2.3.1 (iii), (iv), from which L C,I

are Fredholm operators with indices 0, and Corollary 2.4.3, from which K C,I are compact operators.
Take q = (q1, q2)T 2 KerA C,I arbitrarily, so A C,Iq = 0. Because each L C,I is a homeomorphism, we
have that A C,Iq = 0 are equivalent to q = �(L C,I)�1K C,Iq. Then, we have that K C,Iq 2 X,t for
all t < �1/2, because K C,I : Y✏,s ! X�,t define bounded linear operators when (✏, s) > (�, 3/2) and
(�, t) < (,�1/2) are satisfied (Lemma 2.4.2). Therefore, we obtain that q = �(L C,I)�1K C,Iq 2 Y,t.
Because it holds that ⇠(⌫, ⌫) > 1 for ⌫ = 1, 2, owing to the assumptions on R⌫ , it follows that q⌫ are
Hölder continuous functions on S1. Then, we have that

A C,Iq = 0 () uC,I(x) = 0 for all x 2 �1 [ �2,

where

uC(x) =
2

X

⌫=1

Z 1

0

2⇡R⌫E(x� ⌫(R⌫e
2⇡i✓))q⌫(✓) d✓,

uI(x) =
q̂1(0) + q̂2(0)

2
+

2
X

⌫=1

Z 1

0

2⇡R⌫E(x� ⌫(R⌫e
2⇡i✓))

✓

q⌫(✓)� q̂1(0) + q̂2(0)

2

◆

d✓.

The functions uC,I are harmonic in C \ (�R
1

[ �R
2

), and continuous on C. By the maximum principle
for harmonic functions, it holds that uC,I = 0 in ⌦. Denote by ⌦0 the interior doubly-connected
region surrounded by �R

1

and �R
2

. Then, using the identity theorem for harmonic functions (see, for
instance, [8, Theorem 1.27]), it holds that uC,I = 0 in ⌦0. By the continuity of uC,I, we have that
uC,I = 0 on �R

1

[ �R
2

. Using the maximum principle for harmonic functions once again, we obtain
that uC,I = 0 in K2. Summarizing the above, we obtain u = 0 in ⌦R

1

, where ⌦R
1

denotes the interior
simply-connected region surrounded by �R

1

. Thus, on �R
2

we have that @⌫+u = @⌫�u = 0, which
yields that q2(✓) = 0 for ✓ 2 S1 in the expression for uC, and q2(✓)� 2�1(q̂1(0)+ q̂2(0)) = 0 for ✓ 2 S1

in that for uI, where @⌫+ and @⌫� are the exterior and interior normal derivatives, respectively. Then,
the functions uC,I are reduced to the following forms:

uC(x) =

Z 1

0

2⇡R1E(x� ⌫(R1e
2⇡i✓))q1(✓) d✓,

uI(x) =
q̂1(0) + q̂2(0)

2
+

Z 1

0

2⇡R1E(x� 1(R1e
2⇡i✓))

✓

q1(✓)� q̂1(0) + q̂2(0)

2

◆

d✓.

Then, we obtain that q1(✓) = 0 for ✓ 2 S1 in the expression for uC, by Proposition 1.3.1, and
2�1(q̂1(0) + q̂2(0)) = 0 and q1(✓) � 2�1(q̂1(0) + q̂2(0)) = 0 for ✓ 2 S1 in the expression for uI, by
Proposition 1.3.2. Hence, we obtain that q ⌘ 0 for uC,I. Namely, A C,I are injective.

Lemma 2.4.7. Suppose that R1 2 ]⇢1,⇢1[ satisfies R1 6= 1 and Cap(�R
1

) 6= 1, R2 2 ]�1⇢2, ⇢2[,
(1, 1/2) < (�, t) < (,�1/2), (✏, s) satisfies (2.3.10), (2.3.11), and (✏, s) > (�, 3/2). When we consider
I-MFS, the conditions that R1 6= 1 and Cap(�R

1

) 6= 1 on R1 are removed. Then, there exist some
positive constants C = C(✏, s, �, t, kA C,Ik, k(A C,I)�1k) such that for all N 2 N, with (2.3.7) when

C-MFS is considered, all q 2 Y�,t, and all q(N) 2 D (N)
C,I satisfying A C,Iq = A C,Iq(N) on �N , the

following estimates hold:

kq � q(N)kY✏,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2 ⇣

kqkY�,t + kq � q(N)kY✏,s

⌘

.
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Proof. Because the operators A C,I : Y✏,s ! X✏,s are homeomorphisms by Lemma 2.4.6, we have that

kq � q(N)kY✏,s  CkA C,Iq � A C,Iq(N)kX✏,s .

Define the following:

wN := q(N), w := q(N) � (L C,I)�1A C,I(q(N) � q).

Then, we can easily verify that

A C,I(q(N) � q) = L C,I(wN � w), L C,Iw = L C,IwN on �N .

Namely, wN is an approximate solution given by C-/I-MFS in the annular region R⇢
2

,⇢
1

with the
boundary data L C,Iw. Therefore, we obtain the following estimates, by virtue of Theorems 2.3.7 and
2.3.8:

kq � q(N)kY✏,s  kL C,Iw � L C,IwNkX✏,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kL C,IwkX�,t .

Moreover, using the relations w = q + (L C,I)�1(L C,I � A C,I)(q(N) � q), we obtain that

kL C,IwkX�,t  CkwkY�,t  C
h

kqkY�,t + C 0k � K C,I(q(N) � q)kX�,t

i

 C
⇣

kqkY�,t + kq � q(N)kY✏,s

⌘

,

where we have used the boundedness of L C,I � A C,I = �K C,I : Y✏,s ! X�,t in the final inequality.
Summarizing the above give us the desired estimates.

Proof of Theorem 2.4.4. First, we note that

NP (✏,s,�,t)
⇣ ✏

�

⌘N/2

= o(1) as N ! 1

holds, by considering the definition of P (✏, s, �, t) (Remark 2.3.10). Therefore, by Lemma 2.4.7 we
obtain that

kq � q(N)kY✏,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqkY�,t

for su�ciently largeN , provided that (✏, s) > (�, 3/2). By using the embedding relation X�,s ,! X�,3/2

for s > 3/2, we obtain the above inequality for (✏, s) = (�, 3/2). By using the embedding relation
X�,3/2 ,! X�,s for s < 3/2, we obtain that

kq � q(N)kY✏,s  CNP (✏,3/2,�,t)
⇣ ✏

�

⌘N/2

kqkY�,t

for ✏ = � and s < 3/2. Therefore, the fact that A Cq(N) = 0 on �N yields that q(N) = 0, because
Lemma 2.4.6 gives that A C is a homeomorphism, which implies that q = 0 is the only possibility
for ACq = 0, that is, kq(N)kY✏,s = 0. Because ACq(N) = F on �N is equivalent to a system of

linear equations, the above result indicates the unique existence of the solution q(N) 2 D (N)
C for the

considered equation.
Because AC is a homeomorphism of Y⇠,� onto X⇠,�, it holds that for a given F 2 X⇠,�, there

uniquely exists q 2 Y⇠,� such that ACq = F . Therefore, we have that

kF � A Cq(N)kX✏,s  Ckq � q(N)kY✏,s  CN P̃ (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqkY�,t  CN P̃ (✏,s,�,t)
⇣ ✏

�

⌘N/2

kFkX�,t ,

which gives the desired estimate.

Proof of Theorem 2.4.5. This can be proved in a similar manner to Theorem 2.4.4, so we omit the
details.
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2.5 Numerical experiments

In this section, we will present the results of some numerical experiments. We choose ⇢1 and ⇢2 as
2 and 1, respectively, throughout this section. In Figures 2.4–2.12, the horizontal and vertical axis
represent N and the common logarithms of errors, respectively, except for in Figure 2.8.

2.5.1 ⌦: annular region

In this subsection, we consider the case where ⌦ is an annular region R⇢
2

,⇢
1

. Then, we can take two
peripheral conformal mappings  1 and  2 as the identity mappings.

2.5.1.1 Boundary data: harmonic polynomial

First, we consider the case that the boundary data fµ are harmonic polynomials. Namely,

(2.5.1) fµ(z) = <zm, µ = 1, 2; m 2 {0, 1, . . . , 5}.
These can be extended analytically to the entire plane. Therefore, the errors can be estimated as

ku� u(N)
C,I kL2(�1)⇥L2(�2) = O(rN ), ku� u(N)

C,I kL1(�1)⇥L1(�2) = O(N1/2rN ),

where r = max{⇢1/R1, R2/⇢2}. We choose R1 = 4 and R2 = 1/2, which yields that r = 1/2. That is,

ku� u(N)
C,I kL2(�1)⇥L2(�2) = O(2�N ), ku� u(N)

C,I kL1(�1)⇥L1(�2) = O(N1/22�N ).

The results of numerical experiments are presented in Figures 2.4 and 2.5. It can be observed that
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(b) L1-error estimate

Figure 2.4: Numerical results of C-MFS in the annular region R1,2 with the boundary data being
harmonic polynomials. The gradient of the hypotenuse of the triangle represents the theoretical order
of convergence.

the theoretical order of convergence describes the behavior of the errors very accurately. However, it
should be noted that the order O(N1/2rN ) for the L1 norm of the error is slightly overestimated,
because of the appearance of the term N1/2. Indeed, in [74, Theorems 2.2 and 2.4], it has been proved
that the errors could be estimated as O(rN ). We also note that there do not exist lines corresponding
to the case m = 0 in Figure 2.5, while there does in Figure 2.4, which can be explained as follows.
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(b) L1-error estimate

Figure 2.5: Numerical results of I-MFS in the annular region R1,2 with the boundary data being
harmonic polynomials. The gradient of the hypotenuse of the triangle represents the theoretical order
of convergence.

When m = 0, the boundary data fµ are equal to 1, and therefore the exact solution u is the constant
function 1. If we use C-MFS, then the constant function 1 is approximated by a linear combination
of logarithmic functions, and therefore there should exist an approximation error. On the other hand,
if we use I-MFS, then the approximate function is given by the linear combination of a constant and

logarithmic functions, u(N)
I (x) = Q0 +

P2
⌫=1

PN
k=1 Q⌫kE(x � y⌫k). Moreover, a direct computation

yields that Q0 = 1 and Q⌫k = 0 for ⌫ = 1, 2 and k = 1, 2, . . . , N . That is, the approximate solution
gives the exact solution in this case, which can be identified as the cause of such phenomena.

2.5.1.2 Boundary data: logarithmic potential

Next, we consider the case that the boundary data fµ are logarithmic potentials. Namely,

(2.5.2) fµ(z) = log |z � z0|, µ = 1, 2,

where z0 = 4⇢1. In this case, there exists a singularity at z0, and therefore the error can be estimated
as

ku� u(N)
C,I kL2(�1)⇥L2(�2) = O

 

max

(

✓

1

2

◆N

, rN
)!

,

ku� u(N)
C,I kL1(�1)⇥L1(�2) = O

 

N1/2 max

(

✓

1

2

◆N

, rN
)!

.

We take R1 and R2 as R1 = (1 + 0.2(m+ 1))⇢1 and R2 = 1/2, respectively. Then, we have that

ku� u(N)
C,I kL2(�1)⇥L2(�2) = O

 

max

(

✓

1

2

◆N

,

✓

1

1 + 0.2(m+ 1)

◆N
)!

,(2.5.3)

ku� u(N)
C,I kL1(�1)⇥L1(�2) = O

 

N1/2 max

(

✓

1

2

◆N

,

✓

1

1 + 0.2(m+ 1)

◆N
)!

.(2.5.4)

The results of the numerical experiments are presented in Figures 2.6 and 2.7.
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(a) L1-error estimate

Figure 2.6: Numerical results of C-MFS in the annular region R1,2 with the boundary data being
logarithmic potentials. The gradients of the broken lines represent the theoretical orders of convergence
for the corresponding solid lines for m = 0, 1, 2, 3, 4, and the hypotenuse of the triangle is that for
m = 5, 6, 7.

�����

�����

�����

����

����

����

����

���

���

� �� �� �� �� �� ��

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

(a) L2-error estimate

�����

�����

�����

����

����

����

����

���

� �� �� �� �� �� ��

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

(b) L1-error estimate

Figure 2.7: Numerical results of I-MFS in the annular region R1,2 with the boundary data being
logarithmic potentials. The gradients of the broken lines represent the theoretical orders of convergence
for the corresponding solid lines for m = 0, 1, 2, 3, 4, and the hypotenuse of the triangle is that for
m = 5, 6, 7.
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2.5.2 ⌦: a doubly-connected region surrounded by polynomial curves

For positive real numbers ↵, �, l, and r, define a function  ↵,�,l,r as

 ↵,�,l,r(z) = �

✓

z

↵
+

(z/↵)l

r

◆

.

Then,  ↵,�,l,r defines a conformal mapping of D↵ l�1

p
r/l to C. Let �1, and �2 be defined as �1 =

 ⇢
1

,3,4,8(�⇢
1

), and �2 =  ⇢
2

,1,6,24(�⇢
2

), respectively, and let ⌦ be the interior doubly-connected region
surrounded by these polynomial curves. The configuration of ⌦ and the locations of the singular and
collocation points are depicted in Figure 2.8. From Figure 2.8, we can easily check that Cap(�R

1

) >

��

��

��

��

��

�

�

�

�

�

�

�� �� �� �� � � � � � �

����������� ������
�������� ������

Figure 2.8: Configuration of the region ⌦ surrounded by two polynomial curves �1 =  ⇢
1

,3,4,8(�⇢
1

) and
�2 =  ⇢

2

,1,6,24(�⇢
2

), and the locations of the singular and collocation points when N = 30, R1 = 1.25,
and R2 = ⇢1⇢2/R1.

1, using Proposition 1.4.2. Therefore, Theorem 2.1.1 and Corollary 2.1.3 for C-MFS hold in this
situation. Note that R1 and R2 can be chosen such that R1 62 ]⇢1,

p
⇢1] and R2 62 [

p

�1

⇢2, ⇢2[,

while R1 2 ]
p
⇢1,⇢1[ and R2 2 ]�1⇢2,

p

�1

⇢2[. Nevertheless, the errors decay exponentially, and
their convergence rates are what we can expect from Theorems 2.1.1 and 2.1.2, and Corollaries 2.1.3
and 2.1.4 (see Figures 2.9, 2.10, 2.11, and 2.12). Therefore, we can conjecture that these would hold
for R1 2 ]⇢1,⇢1[ and R2 2 ]�1⇢2, ⇢2[.
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2.5.2.1 Boundary data: harmonic potential

Here, we consider the harmonic polynomials (2.5.1) as the boundary data fµ, and we define R1 and
R2 as R1 = 1.25 and R2 = ⇢1⇢2/R1, so that ⇢1/R1 = R2/⇢2. In this case,  can be regarded as
3

p
2 ⇡ 1.259921 · · · , and the errors are estimated as follows:

ku� u(N)
C,I kL2(�1)⇥L2(�2) = O(rN ) = O

 

✓

4

5

◆N
!

,

ku� u(N)
C,I kL1(�1)⇥L1(�2) = O(N1/2rN ) = O

 

N1/2

✓

4

5

◆N
!

.

The results of the numerical experiments are depicted in Figures 2.9 and 2.10, which imply that the
above estimates accurately express the behaviar of errors.
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(b) L1-error estimate

Figure 2.9: Numerical results of C-MFS in the region ⌦ surrounded by two polynomial curves with the
boundary data being harmonic polynomials. The gradient of the hypotenuse of the triangle represents
the theoretical order of convergence.

2.5.2.2 Boundary data: logarithmic potential

Now, the boundary data fµ are given by logarithmic potentials as in (2.5.2), at which the singular point
z0 is replaced  ⇢

1

,3,4,8(⇢0), where ⇢0 = 2.3. Here, R1 and R2 are defined as R1 = (1+0.023(m+1))⇢1
for m 2 {0, 1, . . . , 7} and R2 = ⇢1⇢2/R1. Then, the errors can be estimated as

ku� u(N)kL2(�1)⇥L2(�2) = O

 

max

(

✓

2

2.3

◆N/2

,

✓

1

1 + 0.023(m+ 1)

◆N
)!

,

ku� u(N)kL1(�1)⇥L1(�2) = O

 

N1/2 max

(

✓

2

2.3

◆N/2

,

✓

1

1 + 0.023(m+ 1)

◆N
)!

.

The results are shown in Figures 2.11 and 2.12.
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(b) L1-error estimate

Figure 2.10: Numerical results of I-MFS in the region ⌦ surrounded by two polynomial curves with the
boundary data being harmonic polynomials. The gradient of the hypotenuse of the triangle represents
the theoretical order of convergence.
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(b) L1-error estimate

Figure 2.11: Numerical results of C-MFS in the region ⌦ surrounded by two polynomial curves with
the boundary data being logarithmic potentials. The gradients of the broken lines represent the
theoretical orders of convergence for the corresponding solid lines for m = 0, 1, 2, and the gradient of
the hypotenuse of the triangle is that for m = 3, 4, 5, 6, 7.
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Figure 2.12: Numerical results of I-MFS in the region ⌦ surrounded by two polynomial curves with
the boundary data being logarithmic potentials. The gradients of the broken lines represent the
theoretical orders of convergence for the corresponding solid lines for m = 0, 1, 2, and the gradient of
the hypotenuse of the triangle is that for m = 3, 4, 5, 6, 7.

2.6 Concluding remarks

In this chapter, we have built on the work of [48] by using two peripheral conformal mappings to arrange
the singular and collocation points. Furthermore, we have established the stability and convergence
of C-MFS and I-MFS for the potential problem in a nondegenerate doubly-connected region with
boundary that is composed of two disjoint regular analytic Jordan curves. The work presented here
could be regarded as the first step towards extending mathematical theory, unique existence and
convergence, to cover multiply-connected regions.

Possible directions for future work are as follows. First, MFS should be considered for a potential
problem in an n-ly connected region, where n � 3. To the author’s knowledge, there currently exist no
mathematical results concerning this problem. Second, MFS could be applied to a potential problem
with a nonsmooth boundary; for instance, a polygonal curve. It can be extended that desirable posi-
tions for the singular and collocation points could be obtained using the Schwarz-Christo↵el mapping.
However, a mathematical theory regarding this does not exist so far.

2.7 Proof of Lemma 2.3.12

First, we bound the norm kq � q(N)k2Y✏,s
as follows:

kq � q(N)k2Y✏,s


2
X

⌫=1

h

T (⌫)
1 + (2⇡)s�1

⇣

T (⌫)
2 + 2T (⌫)

3 + 2T (⌫)
4

⌘i

,
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where

T (⌫)
1 =

�

�

�

q̂⌫(0)� q̂(N)
⌫ (0)

�

�

�

2

, T (⌫)
2 =

X

n2⇤0
N\{0}

�

�

�

q̂⌫(n)� q̂(N)
⌫

�

�

�

2

(✏⇠(⌫, ⌫))2|n||n|2(s�1),

T (⌫)
3 =

X

Z\⇤0
N

�

�

�

q̂(N)
⌫ (n)

�

�

�

2

(✏⇠(⌫, ⌫))2|n||n|2(s�1), T (⌫)
4 =

X

Z\⇤0
N

|q̂⌫(n)|2 (✏⇠(⌫, ⌫))2|n||n|2(s�1)

for ⌫ = 1, 2. In the following, we provide estimates for T (1)
j for j = 1, 2, 3, 4.

Utilizing the relations (2.3.8), the Fourier coe�cients q̂(N)
⌫ (n) can be obtained explicitly as follows:

 

q̂(N)
1 (n)

q̂(N)
2 (n)

!

=
1

det�C(n)

0

B

B

@

X

l⌘n

Ĝ22(l) �
X

l⌘n

Ĝ12(l)

�
X

l⌘n

Ĝ21(l)
X

l⌘n

Ĝ11(l)

1

C

C

A

0

B

B

@

X

m⌘n

⇣

Ĝ11(m)q̂1(m) + Ĝ12(m)q̂2(m)
⌘

X

m⌘n

⇣

Ĝ21(m)q̂1(m) + Ĝ22(m)q̂2(m)
⌘

1

C

C

A

=
1

det�C(n)

X

m⌘n

X

l⌘n

 

⌥1(m, l)q̂1(m) +⌥2(m, l)q̂2(m)

⌥3(m, l)q̂1(m) +⌥4(m, l)q̂2(m)

!

,

where

⌥1(m, l) = Ĝ11(m)Ĝ22(l)� Ĝ21(m)Ĝ12(l), ⌥2(m, l) = Ĝ12(m)Ĝ22(l)� Ĝ22(m)Ĝ12(l),

⌥3(m, l) = �Ĝ11(m)Ĝ21(l) + Ĝ21(m)Ĝ11(l), ⌥4(m, l) = �Ĝ12(m)Ĝ21(l) + Ĝ22(m)Ĝ11(l).

We will employ the following proposition without proof.

Proposition 2.7.1. (i) There exists some positive constants Cj (j = 1, 2, 3, 4) such that

|⌥1(m, l)|  C1

m · l
✓

⇢1
R1

◆|m|✓R2

⇢2

◆|l|
, |⌥2(m, l)|  C2

m · l
✓

R2

⇢2

◆|m|+|l|
,

|⌥3(m, l)|  C3

m · l
✓

⇢1
R1

◆|m|+|l|
, |⌥4(m, l)|  C4

m · l
✓

R2

⇢2

◆|m|✓ ⇢1
R1

◆|l|
.

(ii) There exists some positive constant C⇢
1

,⇢
2

,R
1

,R
2

such that

1

(det�C(0))2
 C⇢

1

,⇢
2

,R
1

,R
2

holds for all N 2 N.

(iii) There exists some positive constant C⇢
1

,⇢
2

,R
1

,R
2

such that

1

(det�C(n))2
 C⇢

1

,⇢
2

,R
1

,R
2

|n|4
✓

R1

⇢1

◆2|n|✓ ⇢2
R2

◆2|n|

holds for all N 2 N, and all n 2 ⇤0
N \ {0}.

(iv) For all (✏, s) 2 ]0,+1[⇥R with (✏, s) < (1,�1), there exists some positive constant C✏,s such that
X

m2I(p)

|m|s✏|m|  C✏,sN
s✏N�|p|

holds for all N 2 N, and all p 2 ⇤0
N .
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(v) For all (✏, s) 2 ]0,+1[⇥R, there exists some positive constant C✏,s such that

max
p2⇤0

N\{0}

✓

N

|p|
◆s

✏N�2|p|
�

 C✏,s

holds for all N 2 N.

T (1)
1 can be bounded as follows:

T (1)
1 =

1

(det�C(0))2

�

�

�

�

�

X

m⌘0

X

l⌘0

⌥1(m, l)q̂1(0)�
X

m⌘0

X

l⌘0

⌥1(m, l)q̂1(m)�
X

m⌘0

X

l⌘0

⌥2(m, l)q̂2(m)

�

�

�

�

�

2

=
1

(det�C(0))2

�

�

�

�

�

�

X

m2I(0)

X

m⌘0

⌥1(m, l)q̂1(0)�
X

m2I(0)

X

m⌘0

⌥1(m, l)q̂1(m)�
X

m⌘0

X

l⌘0

⌥2(m, l)q̂2(m)

�

�

�

�

�

�

2

 T (1)
11 + T (1)

12 + T (1)
13 ,

where

T (1)
11 =

3

(det�C(0))2

0

@

X

m2I(0)

X

l⌘0

|⌥1(m, l)| |q̂1(0)|
1

A

2

,

T (1)
12 =

3

(det�C(0))2

0

@

X

m2I(0)

X

l⌘0

|⌥1(m, l)| |q̂1(m)|
1

A

2

,

T (1)
13 =

3

(det�C(0))2

 

X

m⌘0

X

l⌘0

|⌥2(m, l)| |q̂2(m)|
!2

.

By using Proposition 2.7.1 (i), (ii), and (iv), we have that

T (1)
11  3C⇢

1

,⇢
2

,R
1

,R
2

0

@

X

m2I(0)

X

l⌘0

C1

m · l
✓

⇢1
R1

◆|m|✓R2

⇢2

◆|l|
|q̂1(0)|

1

A

2

 C(1)
11 N�2

✓

⇢1
R1

◆2N

kq1k2�⇢
1

/R
1

,t�1.

By assumption, we have that �r2  ✏. Therefore, the following inequalities can be obtained:

T (1)
11  C(1)

11 N�2r2Nkq1k2�⇢
1

/R
1

,t�1 

8

>

<

>

:

C(1)
11 N�2

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 if ✏ = �r2 and s� t  �1,

C(1)
11 N2(s�t)

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 otherwise.

By using Proposition 2.7.1 (i), (ii), and (iv), we have that

T (1)
12  3C⇢

1

,⇢
2

,R
1

,R
2

0

@

X

m2I(0)

X

l⌘0

C1

m · l
✓

⇢1
R1

◆|m|✓R2

⇢2

◆|l|
|q̂1(m)|

1

A

2

 C(1)
12

X

m2I(0)

1

�2|m|
1

m2t

X

m2I(0)

|q̂1(m)|2
✓

�⇢1
R1

◆2|m|
m2(t�1)  C(1)

12 N�2t 1

�2N
kq1k2�⇢

1

/R
1

,t�1.
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The assumption that 1/�  ✏ implies that

T (1)
12 

8

>

<

>

:

C(1)
12 N�2t

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 if ✏ = 1/� and s  0,

C(1)
12 N2(s�t)

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 otherwise.

Then, T (1)
13 is bounded by splitting it into the following three terms:

T (1)
13  T (1)

131 + T (1)
132 + T (1)

133,

where

T (1)
131 =

9

(det�C(0))2

0

@

X

l2I(0)

|⌥2(0, l)| |q̂2(0)|
1

A

2

, T (2)
132 =

9

(det�C(0))2

0

@

X

m2I(0)

|⌥2(m, 0)| |q̂2(m)|
1

A

2

,

T (3)
133 =

9

(det�C(0))2

0

@

X

m,l2I(0)

|⌥2(m, l)| |q̂2(m)|
1

A

2

.

In the same manner as in deriving an estimate for T (1)
11 , T (1)

131 can be bounded by Proposition 2.7.1 (i),
(ii), and (iv) as follows:

T (1)
131 

8

>

<

>

:

C(1)
131N

�2
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 if ✏ = �r2 and s� t  �1,

C(1)
131N

2(s�t)
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 otherwise.

In a similar manner as for estimating T (1)
12 , a bound for T (1)

132 can be given by

T (1)
132 

8

>

<

>

:

C(1)
132N

�2t
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 if ✏ = 1/� and s  0,

C(1)
132N

2(s�t)
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 otherwise,

by Proposition 2.7.1 (i), (ii), and (iv). Furthermore, T (1)
133 can be estimated using Proposition 2.7.1 (i),

(ii), and (iv) and the relation ✏/� > (r/�)2, as follows:

T (1)
133  9C⇢

1

,⇢
2

,R
1

,R
2

0

@

X

m,l2I(0)

C2

m · l
✓

R2

⇢2

◆|m|+|l|
|q̂2(m)|

1

A

2

 C(1)
133N

2(s�t)
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1.

Summarizing the above, we can obtain the following bound for T (1)
1 :

T (1)
1 

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

C(1)
1 N�2

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 L1 \ {C1} and s� t  �1,

C(1)
1 N�2t

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H1 \ {C1} and s  0,

C(1)
1 N2max{s�t,�1,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C1,

C(1)
1 N2(s�t)

⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 otherwise.
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Next, we estimate T (1)
2 . Because we can estimate |q̂1(n)� q̂(N)

1 (n)|2 as

|q̂1(n)� q̂(N)
1 (n)|2

=
1

(det�C(n))2

�

�

�

�

�

X

m⌘n

X

l⌘n

⌥1(m, l)q̂1(n)�
X

m⌘n

X

l⌘n

⌥1(m, l)q̂1(m)�
X

m⌘n

X

l⌘n

⌥2(m, l)q̂2(m)

�

�

�

�

�

2

=
1

(det�C(n))2

�

�

�

�

�

�

�

�

X

m2I(n)

X

l⌘n

⌥1(m, l)q̂1(n)�
X

m2I(n)

X

l⌘n

⌥1(m, l)q̂1(m)�
X

m,l⌘n
m 6=l

⌥2(m, l)q̂2(m)

�

�

�

�

�

�

�

�

2

 3

(det�C(n))2

2

6

4

0

@

X

m2I(n)

X

l⌘n

|⌥1(m, l)| |q̂1(n)|
1

A

2

+

0

@

X

m2I(n)

X

l⌘n

|⌥1(m, l)| |q̂1(m)|
1

A

2

+

0

B

B

@

X

m,l⌘n
m 6=l

|⌥2(m, l)| |q̂2(m)|

1

C

C

A

23

7

7

5

,

we have that

T (1)
2  T (1)

21 + T (1)
22 + T (1)

23 ,

where

T (1)
21 =

X

n2⇤0
N\{0}

3

(det�C(n))2

0

@

X

m2I(n)

X

l⌘n

|⌥1(m, l)| |q̂1(n)|
1

A

2
✓

✏⇢1
R1

◆2|n|
|n|2(s�1),

T (1)
22 =

X

n2⇤0
N\{0}

3

(det�C(n))2

0

@

X

m2I(n)

X

l⌘n

|⌥1(m, l)| |q̂1(m)|
1

A

2
✓

✏⇢1
R1

◆2|n|
|n|2(s�1),

T (1)
23 =

X

n2⇤0
N\{0}

3

(det�C(n))2

0

B

B

@

X

m,l⌘n
m 6=l

|⌥2(m, l)| |q̂2(m)|

1

C

C

A

2

✓

✏⇢1
R1

◆2|n|
|n|2(s�1).

Using Proposition 2.7.1 (i), (iii), and (iv), for n 2 ⇤0
N \ {0}, we have that

1

(det�C(n))2

0

@

X

m2I(n)

X

l⌘n

|⌥1(m, l)| |q̂1(n)|
1

A

2

 C⇢
1

,⇢
2

,R
1

,R
2

|n|4
✓

R1

⇢1

◆2|n| ✓ ⇢2
R2

◆2|n|
0

@

X

m2I(n)

X

l⌘n

C1

m · l
✓

⇢1
R1

◆|m| ✓R2

⇢2

◆|l|
1

A

2

|q̂1(n)|2

 C̃(1)
21 |n|2N�2

✓

⇢1
R1

◆2(N�2|n|)
|q̂1(n)|2,
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which yields that

T (1)
21  3C̃(1)

21 N�2
X

n2⇤0
N\{0}

|n|2
✓

⇢1
R1

◆2(N�2|n|)
|q̂1(n)|2

✓

✏⇢1
R1

◆2|n|
|n|2(s�1)

 C(1)
21 N2[�1+max{s�t+1,0}]

⇣ ✏

�

⌘N

⇥
X

n2⇤0
N\{0}

|q̂1(n)|2
✓

�⇢1
R1

◆2|n|
n2(t�1)

✓

�r2

✏

◆N�2|n|

|n|2(s�t+1)N�2max{s�t+1,0}

 C(1)
21 N2[�1+max{s�t+1,0}]

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1A
(1)
21 ,

where

A(1)
21 = sup

⇤0
N\{0}

"

✓

�r2

✏

◆N�2|n|

|n|2(s�t+1)N�2max{s�t+1,0}

#

.

Because this constant can be evaluated using Proposition 2.7.1 (v) as

A(1)
21 

8

>

>

>

>

<

>

>

>

>

:

1 if ✏ = �r2 and s� t  �1,

4�s+t�1 if ✏ = �r2 and s� t > �1,

C�r2/✏,�2(s�t+1)N
2(s�t+1) if ✏ > �r2 and s� t  �1,

C�r2/✏,�2(s�t+1) if ✏ > �r2 and s� t > �1,

we obtain that

T (1)
21 

8

>

<

>

:

C(1)
21 N�2

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 if ✏ = �r2 and s� t  �1,

C(1)
21 N2(s�t)

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 otherwise.

By Proposition 2.7.1 (i), (iii), and (iv), we have that

1

(det�C(n))2

0

@

X

m2I(n)

X

l⌘n

|⌥1(m, l)| |q̂1(m)|
1

A

2

 C⇢
1

,⇢
2

,R
1

,R
2

|n|4
✓

R1

⇢1

◆2|n| ✓ ⇢2
R2

◆2|n|
0

@

X

m2I(n)

X

l⌘n

C1

m · l
✓

⇢1
R1

◆|m| ✓R2

⇢2

◆|l|
|q̂1(m)|

1

A

2

 C̃(2)
21 |n|2N�2t 1

�2(N�|n|)

✓

R1

⇢1

◆2|n|
X

m2I(n)

|q̂1(m)|2
✓

�⇢1
R1

◆2|m|
m2(t�1)
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for n 2 ⇤0
N \ {0}. Therefore, T (1)

22 can be bounded as follows:

T (1)
22  3C̃(1)

22 N�2t
X

n2⇤0
N\{0}

|n|2 1

�2(N�|n|)

✓

R1

⇢1

◆2|n| ✓✏⇢1
R1

◆2|n|
|n|2(s�1)

⇥
X

m2I(n)

|q̂1(m)|2
✓

�⇢1
R1

◆2|m|
m2(t�1)

 C(1)
22 N2[�t+max{s,0}]

⇣ ✏

�

⌘N X

n2⇤0
N\{0}

✓

1

✏�

◆N�2|n|
|n|2sN�2max{s,0}

⇥
X

m2I(n)

|q̂1(m)|2
✓

�⇢1
R1

◆2|m|
m2(t�1)

 C(1)
22 N2[�t+max{s,0}]

⇣ ✏

�

⌘N

A(1)
22 kq1k2�⇢

1

/R
1

,

where

A(1)
22 = sup

n2⇤0
N\{0}

"

✓

1

✏�

◆N�2|n|
|n|2sN�2max{s,0}

#

,

which can be bounded as

A(1)
22 

8

>

>

>

>

<

>

>

>

>

:

1 if ✏ = 1/� and s  0,

4�s if ✏ = 1/� and s > 0,

C1/(✏�),�2sN
2s if ✏ > 1/� and s  0,

C1/(✏�),�2s if ✏ > 1/� and s > 0

by Proposition 2.7.1 (v). Then, we obtain the following estimate for T (1)
22 :

T (1)
22 

8

>

<

>

:

C(1)
22 N�2t

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 if ✏ = 1/� and s  0,

C1
22N

2(s�t)
⇣ ✏

�

⌘N

kq1|2�⇢
1

/R
1

,t�1 otherwise.

Concerning the estimation of T (1)
23 , we use Proposition 2.7.1 (i), (iii), and (iv) to yield that

1

(det�C(n))2

0

B

B

@

X

m,l⌘n
m 6=l

|⌥2(m, l)| |q̂2(m)|

1

C

C

A

2

 C⇢
1

,⇢
2

,R
1

,R
2

|n|4
✓

R1

⇢1

◆2|n| ✓ ⇢2
R2

◆2|n|

0

B

B

@

X

m,l⌘n
m 6=l

C2

m · l
✓

R2

⇢2

◆|m|+|l|
|q̂2(m)|

1

C

C

A

2

 C̃(1)
231|n|2N�2

✓

R1

⇢1

◆2|n| ✓R2

⇢2

◆2(N�|n|)
|q̂2(n)|2

+ C̃(1)
232|n|2

✓

R1

⇢1

◆2|n| 1

�2(N�|n|)N
�2t

X

m2I(n)

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1)
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+ C̃(1)
233|n|4N�2(t+1)

✓

R1

⇢1

◆2|n| ✓R2

⇢2

◆2(N�2|n|) 1

�2(N�|n|)

X

m2I(n)

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1),

which implies that

T (1)
23  T (1)

231 + T (1)
232 + T (1)

233,

where

T (1)
231 = C(1)

231

X

n2⇤0
N\{0}

✏2|n||n|2sN�2

✓

R2

⇢2

◆2(N�|n|)
|q̂2(n)|2,

T (1)
232 = C(1)

232

X

n2⇤0
N\{0}

✏2|n||n|2s 1

�2(N�|n|)N
�2t

X

m2I(n)

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1),

T (1)
233 = C(1)

233

X

n2⇤0
N\{0}

✏2|n||n|2(s+1) 1

�2(N�|n|)N
�2(t+1)

✓

R2

⇢2

◆2(N�2|n|)

⇥
X

m2I(n)

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1).

We estimate each of these quantities below. Concerning T (1)
231, we have that

T (1)
231  C(1)

231N
2[�1+max{s�t+1,0}]

⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1A
(1)
231,

where

A(1)
231 = sup

n2⇤0
N\{0}

"

|n|2(s�t+1)N�2max{s�t+1,0}
✓

�r2

✏

◆N�2|n|#

.

This can be bounded by virtue of Proposition 2.7.1 (v) as follows:

A(1)
231 

8

>

>

>

>

<

>

>

>

>

:

1 if ✏ = �r2 and s� t  �1,

4�s+t�1 if ✏ = �r2 and s� t > �1,

C�r2/✏,�2(s�t+1)N
2(s�t+1) if ✏ > �r2 and s� t  �1,

C�r2/✏,�2(s�t+1) if ✏ > �r2 and s� t > �1.

Therefore, we can determine an estimate for T (1)
231 as

T (1)
231 

8

>

<

>

:

C(1)
231N

�2
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 if ✏ = �r2 and s� t  �1,

C(1)
231N

2(s�t)
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 otherwise.

Concerning T (1)
232, we have that

T (1)
232  C(1)

232N
2[�t+max{s,0}]

⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1A
(1)
232,

where

A(1)
232 = sup

n2⇤0
N\{0}

"

|n|2sN�2max{s,0}
✓

1

�✏

◆N�2|n|
#

.
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The constant A(1)
232 can be bounded by using Proposition 2.7.1 (v), as follows:

A(1)
232 

8

>

>

>

>

<

>

>

>

>

:

1 if ✏ = 1/� and s  0,

4�s if ✏ = 1/� and s > 0,

C1/(�✏),�2sN
2s if ✏ > 1/� and s  0,

C1/(�✏),�2s if ✏ > 1/� and s > 0.

Then, we obtain the following estimate for T (1)
232:

T (1)
232 

8

>

<

>

:

C(1)
232N

�2t
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 if ✏ = 1/� and s  0,

C(1)
232N

2(s�t)
⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 otherwise.

Finally, for T (1)
233 we have that

T (1)
233  C(1)

233N
2(s�t)

⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 sup
n2⇤0

N\{0}

2

4

✓

N

|n|
◆�2(s+1)

(

1

�✏

✓

R2

⇢2

◆2
)N�2|n|

3

5 .

The above supremum can be bounded by some constant, because (�✏)�1(R2/⇢2)2 < 1, and so we obtain
that

T (1)
233  C(1)

233N
2(s�t)

⇣ ✏

�

⌘N

kq2k2✏R
2

/⇢
2

,t�1.

Summarizing the above, we obtain the following estimate for T (1)
2 :

T (1)
2 

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

C(1)
2 N�2

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 L1 \ {C1} and s� t  �1,

C(1)
2 N�2t

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H1 \ {C1} and s  0,

C(1)
2 N2max{s�t,�1,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C1,

C(1)
2 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

Next, we give the estimate for T (1)
3 . We divide T (1)

3 into two parts, as follows:

T (1)
3 = T (1)

31 + T (1)
32 ,

where

T (1)
31 =

X

l2Z\{0}
|lN |2(s�1)

✓

✏⇢1
R1

◆2|lN |
�

�

�

q̂(N)
1 (0)

�

�

�

2

,

T (1)
32 =

X

p2⇤0
N\{0}

0

@

X

l2Z\{0}
|p+ lN |2(s�1)

✓

✏⇢1
R1

◆2|p+lN |
1

A |q̂(N)
1 (p)|2.

First, we consider T (1)
31 . By Proposition 2.7.1 (iv), we have that

X

l2Z\{0}
|lN |2(s�1)

✓

✏⇢1
R1

◆2|lN |
=

X

m2I(0)

|m|2(s�1)

✓

✏⇢1
R1

◆2|m|
 C(✏r)2,2(s�1)N

2(s�1)(✏r)2N

58



Chapter 2 MFS in doubly-connected region 2.7 Proof of Lemma 2.3.12

and by Proposition 2.7.1 (i) and (ii) we have that

|q̂(N)
1 (0)|2  2

(det�C(0))2

2

4

 

X

m⌘0

X

l⌘0

|⌥1(m, l)| |q̂1(m)|
!2

+

 

X

m⌘0

X

l⌘0

|⌥2(m, l)| |q̂2(m)|
!2
3

5

 2C⇢
1

,⇢
2

,R
1

,R
2

2

4

 

X

m⌘0

X

l⌘0

C1

m · l
✓

⇢1
R1

◆|m|✓R2

⇢2

◆|l|
|q̂1(m)|

!2

+

 

X

m⌘0

X

l⌘0

C2

m · l
✓

R2

⇢2

◆|m|+|l|
|q̂2(m)|

!2
3

5

 Ckqk2Y�,t
.

Because it holds by definition that ✏  1/(�r2), we obtain that

T (1)
31 

8

>

<

>

:

C(1)
31 N2(s�1)

⇣ ✏

�

⌘N

kqk2Y�,t
if ✏ = 1/(�r2) and t � 1,

C(1)
31 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

Concerning T (1)
32 , we have by virtue of Proposition 2.7.1 (iv) that

X

l2Z\{0}
|p+ lN |2(s�1)

✓

✏⇢1
R1

◆2|p+lN |
=

X

m2I(p)

|m|2(s�1)

✓

✏⇢1
R1

◆2|m|

 C(✏⇢
1

/R
1

)2,2(s�1)N
2(s�1)

✓

✏⇢1
R1

◆2(N�|p|)

for all p 2 ⇤0
N \ {0}. Furthermore, it follows from Proposition 2.7.1 (i) and (iii) that

|q̂(N)
1 (p)|2  2

(det�C(p))2

2

6

4

0

@

X

m⌘p

X

l⌘p

|⌥1(m, l)| |q̂1(m)|
1

A

2

+

0

@

X

m2I(p)

|⌥2(m, p)| |q̂2(m)|+
X

l2I(p)

|⌥2(p, l)| |q̂2(p)|+
X

m,l2I(p)

|⌥2(m, l)| |q̂2(m)|
1

A

2
3

7

5

 2C⇢
1

,⇢
2

,R
1

,R
2

|p|4
✓

R1

⇢1

◆2|p|✓ ⇢2
R2

◆2|p|
2

6

4

0

@

X

m⌘p

X

l⌘p

C1

m · l
✓

⇢1
R1

◆2|m|✓R2

⇢2

◆|l|
|q̂1(m)|

1

A

2

+

0

@

X

m2I(p)

C2

m · p
✓

R2

⇢2

◆|m|+|p|
|q̂2(m)|+

X

l2I(p)

C2

p · l
✓

R2

⇢2

◆|p|+|l|
|q̂2(p)|

+
X

m,l2I(p)

C2

m · l
✓

R2

⇢2

◆|m|+|l|
|q̂2(m)|

1

A

2
3

7

5

 C|p|4
✓

R1

⇢1

◆2|p|✓ ⇢2
R2

◆2|p|
"

✓

R2

⇢2

◆2|p| 1

|p|2(t+1)

1

�2|p|

X

m⌘p

|q̂1(m)|2
✓

�⇢1
R1

◆2|m|
m2(t�1)
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+

✓

R2

⇢2

◆2|p| 1

|p|2
1

N2t

1

�2(N�|p|)

X

m2I(p)

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1)

+

✓

R2

⇢2

◆2|p| 1

|p|2t
1

N2

1

�2|p|
|q̂2(p)|2

✓

�R2

⇢2

◆2|p|
p2(t�1)

✓

R2

⇢2

◆2(N�2|p|)

+

✓

R2

⇢2

◆2(N�|p|) 1

N2(t+1)

1

�2(N�|p|)

X

m2I(p)

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1)

3

5

 C|p|2
✓

R1

⇢1

◆2|p| ✓ 1

|p|2t
1

�2|p|
+

1

N2t

1

�2(N�|p|)

◆

⇥
"

X

m⌘p

|q̂1(m)|2
✓

�⇢1
R1

◆2|m|
m2(t�1) +

X

m⌘p

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1)

#

.

Therefore, we obtain that

T (1)
32  C(1)

32 N2(s�1)
X

p2⇤0
N\{0}

✓

✏⇢1
R1

◆2(N�|p|)
|p|2

✓

R1

⇢1

◆2|p| ✓ 1

|p|2t
1

�2|p|
+

1

N2t

1

�2(N�|p|)

◆

⇥
"

X

m⌘p

|q̂1(m)|2
✓

�⇢1
R1

◆2|m|
m2(t�1) +

X

m⌘p

|q̂2(m)|2
✓

�R2

⇢2

◆2|m|
m2(t�1)

#

 CN2[s�1+max{�t+1,0}]
⇣ ✏

�

⌘N

kqk2Y�,t
A(1)

32 ,

where

A(1)
32 = sup

p2⇤0
N\{0}

(

N�2max{�t+1,0}

|p|2(t�1)
(✏�r2)N�2|p| + |p|2N�2[t+max{�t+1,0}]

✓

✏r2

�

◆N�2|p|)

.

This supremum can be bounded as follows:

A(1)
32 

(

C 0N2(�t+1) if ✏ = 1/(�r2) and t � 1,

C 0 otherwise.

Then, we obtain the following estimate for T (1)
32 :

T (1)
32 

8

>

<

>

:

C(1)
32 N2(s�1)

⇣ ✏

�

⌘N

kqk2Y�,t
if ✏ = 1/(�r2) and t � 1,

C(1)
32 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

Summarizing the above, we have that

T (1)
3 

8

>

<

>

:

C(1)
3 N2(s�1)

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H2 and t � 1,

C(1)
3 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

Finally, we will establish the estimate for T (1)
4 , which can be obtained by straightforward arguments

60



Chapter 2 MFS in doubly-connected region 2.8 Proof of Lemma 2.3.13

as follows:

T (1)
4 =

X

n2Z\⇤0
N

|q̂1(n)|2
✓

�⇢1
R1

◆2|n|
n2(t�1) · |n|

2(s�1)

n2(t�1)

⇣ ✏

�

⌘2|n|

 C(1)
4 N2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢
1

/R
1

,t�1 sup
n2Z\⇤0

N

(

✓

N

|n|
◆�2(s�t)

⇣ ✏

�

⌘2|n|�N
)

 C(1)
4 N2(s�t)

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1.

Hence, we obtain the following estimate for kq1 � q(N)
1 k2✏⇢

1

/R
1

,s�1:

kq1 � q(N)
1 k2✏⇢

1

/R
1

,s�1  T (1)
1 + (2⇡)2(s�1)(T (1)

2 + 2T (1)
3 + 2T (1)

4 )



8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

C(1)
1 N2max{s�t,�1,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C1,

C(1)
1 N2max{s�t,�1,s�1}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C2,

C(1)
1 N2max{s�t,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H1 \ {C1},

C(1)
1 N2max{s�t,s�1}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H2 \ {C2},

C(1)
1 N2max{s�t,�1}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 L1 \ {C1, C2},

C(1)
1 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

2.8 Proof of Lemma 2.3.13

We require one additional proposition as to the upper bound for (det�I(0))�2, which will be used
without proof.

Proposition 2.8.1. There exists some positive constant C⇢
1

, ⇢
2

, R
1

, R
2

such that

1

(det�I(0))2
 C⇢

1

, ⇢
2

, R
1

, R
2

holds for all N 2 N.

We can represent q̂(N)
1 (0) explicitly from (2.3.9), which yields that

q̂1(0)� q̂(N)
1 (0) =

1

det�I(0)

2

4B1q̂1(0)�B1q̂2(0) +
X

l2I(0)

(B3(l)q̂1(l) +B4(l)q̂2(l))

3

5 ,

where

B1 =
1

2

X

m2I(0)

(�Ĝ11(m) + Ĝ12(m) + Ĝ21(m)� Ĝ22(m)

�⌥1(m, 0) +⌥2(m, 0)�⌥3(m, 0) +⌥4(m, 0)),

B3(l) = Ĝ11(l)� Ĝ21(l) +⌥4(0, l)�⌥3(0, l)�
X

m2I(0)

(⌥3(m, l)�⌥4(m, l)),
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B4(l) = Ĝ12(l)� Ĝ22(l)�⌥2(0, l) +⌥1(0, l)�
X

m2I(0)

(�⌥1(m, l) +⌥2(m, l)).

Each term can be evaluated as follows, by Proposition 2.7.1 (i) and (iv):

|B1q̂1(0)|2  C(1)
11 N�2r2Nkq1k2�⇢

1

/R
1

,t�1, |B1q̂2(0)|2  C(1)
12 N�2r2Nkq2k2�R

2

/⇢
2

,t�1,
�

�

�

�

�

�

X

l2I(0)

B3(l)q̂1(l)

�

�

�

�

�

�

2

 C(1)
13

X

l2I(0)

1

�2|l|
1

l2t
X

l2I(0)

|q̂1(l)|2
✓

�⇢1
R1

◆2|l|
l2t  C(1)

13 N�2t��2Nkq1k2�⇢
1

/R
1

,t�1,

�

�

�

�

�

�

X

l2I(0)

B4(l)q̂2(l)

�

�

�

�

�

�

2

 C(1)
14

X

l2I(0)

1

�2|l|
1

l2t
X

l2I(0)

|q̂2(l)|2
✓

�R2

⇢2

◆2|l|
l2t  C(1)

14 N�2t��2Nkq2k2�R
2

/⇢
2

,t�1.

Therefore, using Proposition 2.8.1 (i), we obtain that

T (1)
1 

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

C(1)
1 N�2

⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1 if (�, ✏) 2 L1 \ {C1} and s� t  �1,

C(1)
1 N�2t

⇣ ✏

�

⌘N

kq2k2�R
2

/⇢
2

,t�1 if (�, ✏) 2 H1 \ {C1} and s  0,

C(1)
1 N2max{s�t,�1,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C1,

C(1)
1 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

Because q̂(N)
1 (n) (n 2 ⇤0

N \ {0}) are the same as for C-MFS, we immediately obtain the estimate

T (1)
2 

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

C(1)
2 N�2

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 L1 \ {C1} and s� t  �1,

C(1)
2 N�2t

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H1 \ {C1} and s  0,

C(1)
2 N2max{s�t,�1,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C1,

C(1)
2 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

Now we consider T (1)
3 , which we decompose as follows:

T (1)
3 = T (1)

31 + T (1)
32 ,

where

T (1)
31 =

X

l2Z\{0}
|lN |2(s�1)

✓

✏⇢1
R1

◆2|lN |
|q̂(N)

1 (N)|2,

T (2)
32 =

X

p2⇤0
N\{0}

0

@

X

l2Z\{0}
|p+ lN |2(s�t)

✓

✏⇢1
R1

◆2|p+lN |
1

A |q̂(N)
1 (p)|2.
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The definition of T (1)
31 is slightly di↵erent from that for C-MFS, while that of T (1)

32 is the same as for

C-MFS. Therefore, we only have to consider the estimate of T (1)
31 . From (2.3.9), we have that

q̂(N)
1 (N) =

1

det�I(0)



1

2
(Ĝ12(0)� Ĝ22(0))q̂1(0) +

1

2
(Ĝ22(0)� Ĝ12(0))q̂2(0)

+
X

l2I(0)

⇣

(Ĝ21(l)� Ĝ11(l))q̂1(l) + (Ĝ22(l)� Ĝ12(l))q̂2(l)
⌘

3

5 ,

from which we can easily obtain by Proposition 2.7.1 (ii) and Proposition 2.8.1 that

|q̂(N)
1 (N)|2  Ckqk2Y�,t

.

By using the results in Section 2.7, we have that

T (1)
3 

8

>

<

>

:

C(1)
3 N2(s�1)

⇣ ✏

�

⌘N

kqk2Y�,t
if ✏ = 1/(�r2) and t � 1,

C(1)
3 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

The estimate of T (1)
4 is the same as for C-MFS. That is,

T (1)
4  C(1)

4 N2(s�t)
⇣ ✏

�

⌘N

kq1k2�⇢
1

/R
1

,t�1.

Summarizing the above, we obtain the following estimate for kq1 � q(N)
1 k2✏⇢

1

/R
1

,s�1:

kq1 � q(N)
1 k2✏⇢

1

/R
1

,s�1 

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

C(1)
1 N2max{s�t,�1,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C1,

C(1)
1 N2max{s�t,�1,s�1}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) = C2,

C(1)
1 N2max{s�t,�t}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H1 \ {C1},

C(1)
1 N2max{s�t,s�1}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 H2 \ {C2},

C(1)
1 N2max{s�t,�1}

⇣ ✏

�

⌘N

kqk2Y�,t
if (�, ✏) 2 L1 \ {C1, C2},

C(1)
1 N2(s�t)

⇣ ✏

�

⌘N

kqk2Y�,t
otherwise.

Then kq2 � q(N)
2 k2✏R

2

/⇢
2

,s�1 can be estimated in a similar manner, and we obtain the desired estimate.
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Chapter 3

Analysis of the dipole simulation
method for two-dimensional
Dirichlet problems in Jordan
regions with analytic boundaries

Abstract

This chapter presents a unique solvability and error estimate of the dipole simulation
method applied to Dirichlet problems in Jordan regions. Specifically, it is proved that the
error decays exponentially when the boundary data is analytic, and it decays algebraically
when the boundary data is not analytic but belongs to some Sobolev space. Moreover, some
numerical results and conjectures are presented. This chapter is based on the following
published paper:

• K. Sakakibara, Analysis of the dipole simulation method for two-dimensional Dirichlet
problems in Jordan regions with analytic boundaries, BIT Numer. Math. 56 (2016),
no. 4, 1369–1400.

3.1 Introduction and main results

Let ⌦ be a Jordan region in the two-dimensional Euclidean space R2. Consider the following Dirichlet
problem for the Laplace equation:

(3.1.1)

(

4u = 0 in ⌦,

u = f on �,

where � denotes the boundary @⌦ of ⌦, and 4 the Laplace operator. Throughout this chapter, suppose
that � is regular analytic and f satisfies the following regularity condition:

(3.1.2) f is analytic or belongs to H�(�) for some � > 1/2,

and we identify R2 with the complex plane C.
As is well known, the Dirichlet problem (3.1.1) appears in many fields in mathematical physics and

engineering. Therefore numerous numerical methods have been developed and studied for (3.1.1) such
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as the boundary integral method (BIM) [104, 75, 30], multipole method (MM) [9, 29, 23], method
of fundamental solutions (MFS) [49, 43, 27], and singular boundary method (SBM) [15, 24, 51]. A
remarkable feature of them is that the error decays exponentially with respect to the number of degrees
of freedom used under some suitable conditions. In the following, we focus on MFS and BIM especially.

MFS is applied to homogeneous linear partial di↵erential equations (PDEs), and o↵ers an approx-
imate solution by using a linear combination of the fundamental solutions of the considered problem.
Especially, an approximate solution for the potential problem (3.1.1) could be found by using a linear
combination of logarithmic potentials in which case the MFS would also be known as the charge sim-
ulation method (CSM). The MFS requires us to choose singular points exterior to the region under
consideration and collocation points on the boundary of this region, to enable us to determine the co-
e�cients of the approximate solution by using an approach that would provide approximate boundary
conditions, for instance, collocation or least-squares methods. This approach would allow us to avoid
having to address problems caused by the existence of singularities and would also obviate the need
for numerical integrations, as opposed to using BIM. This enables us to apply the MFS to various
PDEs, with the advantage that the implementation of the MFS and its extension to 3D problems are
much easier compared to the use of BIM. However, in general, because MFS reduces an ill-conditioned
linear system, the system is hard to solve (cf. Kitagawa [57, 58], Tsai et al. [100], and Barnett and
Betcke [10]). On the other hand, when using BIM, the resulting system is usually well-conditioned;
thus, in this respect BIM has many advantages over MFS. Nonetheless, in view of the simplicity and
extendability of MFS, we adopt MFS in this paper and provide a mathematical analysis.

On account of its simplicity, MFS has been used to solve various problems. However, obtaining
a mathematical result is rather di�cult, especially in terms of ensuring unique existence and con-
vergence of approximate solution. Restricting ourselves to the potential problem, the CSM was first
mathematically analyzed by Katsurada and Okamoto [49]. They considered (3.1.1) for the case where
⌦ is a disk D⇢ with radius ⇢ having the origin as its center, and showed its unique solvability (cf. [49,
Theorem 1]) and exponential convergence (cf. [49, Theorem 2]). Unlike the finite di↵erence or finite
element methods, the unique existence of approximate solution is not as obvious. In fact, when we
select the singular points in a slightly di↵erent manner, an approximate solution cannot exist (cf. [45,
Theorem 8.2]). After this pioneering work, the unique solvability and exponential convergence of CSM
were well established for a Jordan region with an analytic boundary [46, 47, 50, 48], an annular region
[45, 74], and an elliptic region [76]. Furthermore, CSM was also applied to compute numerical confor-
mal mappings in various regions, and o↵ers a high-precision and simple numerical scheme (cf. Amano
et.al [3] and references therein). Besides the above result, several mathematical and numerical results
have been established. See for instance [13, 43, 20, 95, 100, 10, 107, 38, 102, 44, 108] and references
therein.

Note that an approximate solution of CSM can be regarded as a discretization of the single-layer
potential representation of the exact solution. On the other hand, in the usual potential theory, the
exact solution for the potential problem is represented by the double-layer potential. Therefore, it
is natural to consider that the logarithmic potential, which is the basis function of CSM, should be
replaced with the dipole potential. Based on this consideration, Katsurada [45] concentrated on the
case of disk ⌦ = D⇢ and proposed the dipole simulation method (DSM), in which the basis function
E is given as follows:

E(x,y) = � 1

2⇡

(n
y

| x� y)

kx� yk2 ,

where n
y

= y/kyk, and (· | ·) denotes the Euclidean inner product on R2. It has been shown that
there exists an approximate solution for DSM uniquely (cf. [45, Theorem 5.1]) and that exponential
convergence occurs (cf. comments before [45, Theorem 5.2]). Note that the multiple multipole method
was developed by Ballisti and Hafner [9], and has been commonly used in the field of engineering (see
for instance Hafner [29]). Therefore, the idea of using DSM also seems natural from the viewpoint of
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engineering. Recently, Ogata [77] generalized Katsurada’s DSM and examined its e↵ectiveness through
numerical experiments. Thus, he treated (3.1.1) in the case where ⌦ is a Jordan region in R2 and
considered an approximate solution of the form

(3.1.3) u(N)(x) =
N
X

k=1

QkD(x,yk;nk),

where {yk}Nk=1 ⇢ R2 \⌦ are the dipole points, {nk}Nk=1 are the unit vectors, which are known as dipole
moments, and nk represents the direction of the dipole located at yk, and D is defined as

D(x,yk;nk) = � 1

2⇡

(nk | x� yk)

kx� ykk2
.

The coe�cients {Qk}Nk=1 are determined by the collocation method, that is, take the collocation points
{xj}Nj=1 ⇢ � and impose the following boundary conditions:

(3.1.4) u(N)(xj) = f(xj) (j = 1, 2, . . . , N).

In fact, the approximate solution of DSM can be represented as the real part of a holomorphic function:

u(N)(x) = u(N)(z) = <
"

� 1

2⇡

N
X

k=1

Qk
nk

z � ⇣k

#

,

where z = x + iy, ⇣k = ⇠k + i⌘k, and nk = n(1)
k + in(2)

k in which x = (x, y)T, yk = (⇠k, ⌘k)T, and

nk = (n(1)
k , n(2)

k )T. Inspired by the above expression, the complex dipole simulation method, which is
an approximation technique for holomorphic functions, was proposed in our previous paper [87] (see
also Chapter 8 in this thesis).

Moreover, in [77], Ogata applied DSM to compute numerical conformal mappings, which permits
us to remove the di�culty of computing complex arguments; therefore, his method o↵ers a much easier
and simpler scheme for numerical conformal mappings than that obtained by CSM (see also Chapter
7 in this thesis). However, this work of his did not include a mathematical result.

The purpose of this chapter is to suggest ways in which to arrange the dipole points {yk}Nk=1

and collocation points {xj}Nj=1, and to define the dipole moments {nk}Nk=1 that guarantee the unique
solvability and exponential convergence of DSM composed of (3.1.3) and (3.1.4). As a preliminary
step to this end, we first consider the case where � is a circle �⇢ = {z 2 C | |z| = ⇢} with ⇢ > 0.
Introducing the dipole points, collocation points, and dipole moments as yk = R!k�1, xj = ⇢!j�1,
and nk = yk/|yk|, respectively, we establish the unique solvability (cf. Theorem 3.3.3) and exponential
convergence (cf. Theorem 3.3.4), where ! = exp(2⇡i/N) and R > ⇢. We then extend the results to
more general regions by following the approach of Katsurada [48].

Let  be a peripheral conformal mapping of � with a reference radius ⇢. Then, the regularity
condition (3.1.2) on f is equivalent to F 2 X⇠,� for some (⇠,�) > (1, 1/2), where F is defined as
F (⌧) = f( (⇢e2⇡i⌧ )) (⌧ 2 S1). Letting R 2]⇢,⇢[, we propose an arrangement of the dipole and
collocation points and a definition of the dipole moments as

yj =  (R!j�1), xj =  (⇢!
j�1), nj =

!j�1 0(R!j�1)

| 0(R!j�1)| (j = 1, 2, . . . , N).(3.1.5)

We are now in a position to state the main result of this chapter, where the unique solvability
and exponential convergence of DSM under the arrangement and definition (3.1.5) are established by
applying the results for a circle.
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Theorem 3.1.1. Assume that there exists a peripheral conformal mapping  of � with reference radius
⇢. Let R 2 ]⇢,⇢[ and suppose that F 2 X⇠,� for some (⇠,�) > (1, 1/2), (�, t) satisfies

1  �  min

(

µ,

✓

R

⇢

◆2

,

)

,

if � = 1 then t >
1

2
and s < t; if � =  then t < �1

2
; if � = ⇠ then t  �,

and that the dipole, collocation points, and dipole moments are deifned as (3.1.5), where F (⌧) =
f( (⇢e2⇡i⌧ )) for ⌧ 2 S1.

(i) For a su�ciently large N 2 N, there exists a unique {Qk}Nk=1 satisfying (3.1.3) and (3.1.4).
Thus, an approximate solution of DSM actually exists uniquely.

(ii) There exists a constant C such that the error estimate

ku� u(N)kHs(�)  CN P̃ (s,�,t) 1

�N/2
kFk�,t

holds true for a su�ciently large N 2 N, where C is independent of N , and

P̃ (s, �, t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

max{s� t, 0, s} if � = (R/⇢)2 ^ (
p
⇢, s) � (R, 1/2),

max{s� t,�t} if � = 1 ^ (
p
⇢, s) � (R, 1/2),

s� t if � 2 ]1, (R/⇢)2[^(p⇢, s) � (R, 1/2),

max{1/2� t, 1/2} if � = (R/⇢)2 ^R =
p
⇢ ^ s < 1/2,

1/2� t if � 2 [1, (R/⇢)2[^R =
p
⇢ ^ s < 1/2.

This error estimate shows that the error of the approximate solution u(N)
D decays exponentially

with respect to N when the boundary data f is analytic, but it decays algebraically with respect
to N when f is not analytic but in H�(�) with � > 1/2 (especially, f is Hölder continuous).

In Theorem 3.1.1 and in the following, (⇠,�) denotes the regularity of the datum f , ⇢ the reference
radius of the peripheral conformal mapping  of �,  the parameter for  appearing in Definition
1.2.1, s the index of the Hilbert space Hs in which the norm of the error is measured, (�, t) the index
of the Hilbert space X�,t in which the norm of the boundary datum is measured, and R the parameter
concerning the locations of the dipole points. This theorem is a readily obtainable corollary of Theorem
3.4.4 below. Indeed, putting ✏ = 1 in Theorem 3.4.4 and considering the conditions for R and (�, t),
we reach Theorem 3.1.1. Therefore, hereafter we aim to prove Theorem 3.4.4 instead of Theorem 3.1.1
itself. From the viewpoint of real computations, it is important to measure the error by using L1

norm. If v 2 Hs(�) with s > 1/2, then v 2 C(�) (see the comments after Proposition 1.1.1) and there
exists some positive constant C such that kvk1  CkvkHs(�). Therefore, we immediately obtain the
following corollary from Theorem 3.1.1.

Corollary 3.1.2. Under the hypothesis in Theorem 3.1.1, we have the following error estimate:

ku� u(N)kL1(�)  CN P̃ (s,�,t) 1

�N/2
kFk�,t

for any s > 1/2, where C is a constant independent of N .

The contents of this paper are as follows. In Section 3.2, we introduce integral operators and
approximate function spaces which are used in the analysis below. Section 3.3 is devoted to the
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case where � is a circle for which we prove the unique solvability (cf. Theorem 3.3.3) and exponential
convergence (cf. Theorem 3.3.4). The general case is studied in Section 3.4, where the proof of Theorem
3.4.4 is described. In Section 3.5, results of several numerical experiments are shown. We conclude
this paper with a summary of the results, and some concluding remarks and conjectures in Section
3.6.

3.2 Integral operator and approximate function space

3.2.1 Integral operator

Specify R 2 ]⇢,⇢[ and suppose that there exists some function Q defined on �R =  (�R) such that
the boundary data f of (3.1.1) can be written as a double-layer potential:

(3.2.1) f(x) =

Z

�R

�1

2⇡

(n
y

| x� y)

kx� yk2 Q(y) ds
y

, x 2 �,

where n
y

denotes the unit outward normal vector of �R at y 2 �R and dsy the line element of �R.
Then, the exact solution u of (3.1.1) is as follows:

u(x) =

Z

�R

�1

2⇡

(n
y

| x� y)

kx� yk2 Q(y) ds
y

, x 2 ⌦.

At this moment, our problem is reduced to finding an approximation of Q. If f is not su�ciently
smooth then it cannot be written as in (3.2.1); thus, f must be taken in one of the Hilbert spaces X✏,s

described in Section 1.1.
We introduce an integral operator by providing S1-parameterizations of �, �R, and Q as follows:

� : S1 3 ⌧ 7�!  (⇢e2⇡i⌧ ) 2 C,
�R : S1 3 ✓ 7�!  (Re2⇡i✓) 2 C,
q(✓) := Q( (Re2⇡i✓)), ✓ 2 S1.

Then, we can represent (3.2.1) as

F (⌧) =

Z 1

0

�1

2⇡
<
⇢�i · 2⇡iRe2⇡i✓ 0(Re2⇡i✓)

|2⇡iRe2⇡i✓ 0(Re2⇡i✓)| · 1

 (⇢e2⇡i⌧ )� (Re2⇡i✓)

�

⇥Q( (Re2⇡i✓))|2⇡iR 0(Re2⇡i✓)| d✓

=

Z 1

0

<
✓ �Re2⇡i✓ 0(Re2⇡i✓)

 (⇢e2⇡i⌧ )� (Re2⇡i✓)

◆

q(✓) d✓, ⌧ 2 S1.

Thus if we define an integral operator A as

A'(⌧) =

Z 1

0

a(⌧, ✓)'(✓) d✓ (⌧ 2 S1),(3.2.2)

a(⌧, ✓) = <
✓ �Re2⇡i✓ 0(Re2⇡i✓)

 (⇢e2⇡i⌧ )� (Re2⇡i✓)

◆

(⌧, ✓ 2 S1)

for ' 2 C(S1), then the boundary condition in (3.1.1) is equivalent to F = Aq. Eventually, our
problem is reduced to finding an approximation of the above q.
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3.2.2 Approximate function space

We introduce an approximate function space defined on S1 for q as follows:

D (N) =

(

N
X

k=1

Qk�

✓

·� k � 1

N

◆

�

�

�

�

�

Qk 2 C (k = 1, 2, . . . , N)

)

,

where � is the Dirac delta function on S1. Concerning D (N), the following proposition, which is
described in [48, Lemma 4.3], [79, Lemma 2] for example, is well known.

Proposition 3.2.1. (i) For all v 2 D (N), the sequence {v̂(n)}n2Z is periodic with respect to n with
period N , that is, v̂(n) = v̂(m) (n ⌘ m).

(ii) If (✏, s) < (1,�1/2), then D (N) ⇢ X✏,s.

For any q(N) 2 D (N), formal computation yields that

Aq(N)(⌧) =
N
X

k=1

QkA�

✓

·� k � 1

N

◆

(⌧) =
N
X

k=1

Qk<
✓�Re2⇡i(k�1)/N 0(Re2⇡i(k�1)/N )

 (⇢e2⇡i⌧ )� (Re2⇡i(k�1)/N )

◆

=
N
X

k=1

2⇡R| 0(Re2⇡i(k�1)/N )|Qk
�1

2⇡
<
✓

e2⇡i(k�1)/N 0(Re2⇡i(k�1)/N )/| 0(Re2⇡i(k�1)/N )|
 (⇢e2⇡i⌧ )� (Re2⇡i(k�1)/N )

◆

=
N
X

k=1

2⇡R| 0(R!k�1)|Qk
�1

2⇡
<
✓

nk

 (⇢e2⇡i⌧ )� yk

◆

,

which is nothing but an approximate solution by DSM. Therefore, it is natural to consider that the
integral operator A and the approximate solution D (N) are appropriate for the analysis of DSM.

3.3 DSM in a disk

The unique solvability and exponential convergence of DSM were studied in [45] for the case where
� is a circle. However, the settings in this chapter di↵er from those of [45], which does not seem to
contain the complete proof. Therefore, we state the results and proofs for DSM for the case where �
is a circle in this section.

Let ⌦ be a disk with radius ⇢ with the origin as its center: ⌦ = D⇢. In this case, we can take the
peripheral conformal mapping  as the identity mapping, and the integral operator A is reduced to
an integral operator L defined as

Lq(⌧) =

Z 1

0

<
✓ �Re2⇡i✓

⇢e2⇡i⌧ �Re2⇡i✓

◆

q(✓) d✓ (⌧ 2 S1)

for q 2 C(S1). If we define a function G as

G(⌧) := <
✓ �R

⇢e2⇡i⌧ �R

◆

(⌧ 2 S1),

then Lq can be represented as the convolution of L and q:

(3.3.1) Lq = G ⇤ q.
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By direct calculation, the Fourier series expansion of G is

(3.3.2) G(⌧) = 1 +
1

2

X

n2Z\{0}

⇣ ⇢

R

⌘|n|
e2⇡in⌧ (⌧ 2 S1).

Then, the nth Fourier coe�cient of Lq can be calculated as

(Lq)^(n) = Ĝ(n)q̂(n) (n 2 Z), Ĝ(n) =

8

<

:

1 (n = 0)

1

2

⇣ ⇢

R

⌘|n|
(n 6= 0)

according to (3.3.1) and (3.3.2).
Addressing the problem under consideration on the Hilbert space X✏,s requires us to extend L to

X✏,s.

Lemma 3.3.1. For each (✏, s) 2 ]0,+1[⇥R, we define an operator L : X✏,s ! X✏R/⇢,s as L q = G⇤q.
Then, L is an extension of L to X✏,s and a homeomorphism, that is, L is continuous, bijective, and
has a bounded inverse.

Proof. For all q 2 X✏,s, we have

kL qk2✏R/⇢,s =
X

n2Z
|(L q)^(n)|2

✓

✏R

⇢

◆2|n|
n2s = |q̂(0)|2 + 1

4

X

n2Z\{0}
|q̂(n)|2✏2|n|n2s.

Therefore, we obtain

(3.3.3)
1

4
kqk2✏,s  kL qk2✏R/⇢,s  kqk2✏,s.

The linearity of L is clear, and its continuity follows from the right inequality of (3.3.3). The injectivity
of L follows from the left inequality of (3.3.3). Concerning the surjectivity of L , take  2 X✏R/⇢,s

arbitrarily and define a function ' as

'(⌧) =
X

n2Z
'̂(n)e2⇡in⌧ (⌧ 2 S1), '̂(n) =

1

Ĝ(n)
 ̂(n) (n 2 Z).

Then, we have that

k'k2✏,s = | ̂(0)|2 + 4
X

n2Z\{0}
| ̂(n)|2

✓

✏R

⇢

◆2|n|
n2s  4k k2✏R/⇢,s,

which implies that ' 2 X✏,s, and by definition that L' =  holds. Therefore L is surjective. The
continuity of L �1 follows from the left inequality of (3.3.3).

Remark 3.3.2. Let X and Y be two Banach spaces, and B(X,Y ) be the set of all bounded linear
operators from X into Y . We can compute the operator norms kL k = kL kB(X✏,s,X✏R/⇢,s) and

kL �1k = kL �1kB(X✏R/⇢,s,X✏,s) explicitly. From the inequalities (3.3.3), we have kL k  1 and

kL �1k  2. If we take q ⌘ 1 then kL qk✏R/⇢,s = kqk✏,s holds, and if we take q(⌧) = sin(2⇡⌧) then
kL �1qk✏,s = 2kqk✏R/⇢,s holds. Therefore, kL k = 1 and kL �1k = 2 follow.
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Here, we can rewrite the collocation equations (3.1.4) by the extended operator L . We take
q(N) 2 D (N) arbitrarily and write it as

q(N) =
N
X

k=1

Qk�

✓

·� k � 1

N

◆

.

Then, we have

L q(N)(⌧) =
N
X

k=1

Qk

✓

G ⇤ �
✓

·� k � 1

N

◆◆

(⌧) =
N
X

k=1

Qk<
✓ �R

⇢e2⇡i(⌧�(k�1)/N) �R

◆

=
N
X

k=1

2⇡RQk
�1

2⇡
<
✓

nk

⇢e2⇡i⌧ � yk

◆

.

Therefore, the unique solvability of (3.1.4) is equivalent to that of

(3.3.4) L q(N) = F on �N .

As to the unique solvability of (3.3.4), the following theorem holds, which assures the unique solvability
of DSM when ⌦ is a disk.

Theorem 3.3.3. Let 0 < ⇢ < R and F 2 X⇠,� with some (⇠,�) > (1, 1/2). Then, there exists a
unique q(N) 2 D (N) which satisfies (3.3.4), and its Fourier coe�cients are given by

(3.3.5) q̂(N)(p) =

 

X

m⌘p

F̂ (m)

!

/'(N)
p (⇢) (p 2 ⇤N ),

where

'(N)
p (⇢) =

X

m⌘p

Ĝ(m).

Proof. Note that L q(N) 2 L1(S1) and it is Hölder continuous in some neighborhood of �N . By
Proposition 1.5.1, (3.3.4) is equivalent to

X

m⌘p

Ĝ(m)q̂(m) =
X

m⌘p

F̂ (m) (8p 2 ⇤N ).

Since q(N) is periodic with respect to m with period N because of Proposition 3.2.1 (i), the above
system is equivalent to

(3.3.6) '(N)
p (⇢)q̂(N)(p) =

X

m⌘p

F̂ (m) (8p 2 ⇤N ).

Since '(N)
p (⇢) 6= 0 for all p 2 Z, (3.3.6) is uniquely solvable and its Fourier coe�cients are given by

(3.3.5).

We next give the error estimate of DSM, which asserts the exponential convergence of DSM for
analytic boundary data.
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Theorem 3.3.4. Let 0 < ⇢ < R and F 2 X⇠,� with some (⇠,�) > (1, 1/2). Take any (�, t) satisfying
(1, 1/2) < (�, t)  (⇠,�) and suppose that (✏, s) satisfies the following conditions:

max

⇢

�
⇣ ⇢

R

⌘2

,
1

�

�

 ✏  min

(

1

�

✓

R

⇢

◆2

, �

)

;

if ✏ = � then s  t; if ✏ =
R

⇢
then s < �1

2
.(3.3.7)

Then, there exist some positive constant C = C(✏, s, �, t, ⇢, R) and real constant P = P (✏, s, �, t) such
that the following error estimate holds:

kF � L q(N)k✏,s  CNP
⇣ ✏

�

⌘N/2

kFk�,t,

where q(N) 2 D (N) is the unique solution of L q(N) = F on �N , of which the existence is assured by
Theorem 3.3.3.

Remark 3.3.5. The same as in Remark 2.3.9, we use a graph to understand the conditions on � and ✏
in Theorem 3.3.3. We set

L1 =

(

(�, ✏)

�

�

�

�

�

R

⇢
 � 

✓

R

⇢

◆2

, ✏ = �
⇣ ⇢

R

⌘2
)

, L2 =

⇢

(�, ✏)

�

�

�

�

1  �  R

⇢
, ✏ = �

�

,

H1 =

⇢

(�, ✏)

�

�

�

�

1  �  R

⇢
, ✏ =

1

�

�

, H2 =

(

(�, ✏)

�

�

�

�

�

R

⇢
 � 

✓

R

⇢

◆2

, ✏ =

✓

R

⇢

◆2 1

�

)

,

C1 =

✓

R

⇢
,
⇢

R

◆

, C2 =

 

✓

R

⇢

◆2

, 1

!

,

J as a closed region surrounded by H1 [ L1 [ H2 [ L2 and I := J |�⇠. Then � and ✏ satisfy the
conditions in Theorem 3.3.4 if and only if (�, ✏) 2 I (see Figure 3.1)

�O

✏

1 R/⇢ (R/⇢)2

1

⇢/R

R/⇢

⇠

✏ = �
✏ =

1

�

✓
R

⇢

◆2

✏ =
1

�

✏ = �
⇣ ⇢

R

⌘2

C1

C2

H1 L1

H2L2

(a)

�O

✏

R/⇢

⇢/R

1

1

(R/⇢)2

R/⇢

✏ = �

✏ = �
⇣ ⇢

R

⌘2

✏ =
1

�

✓
R

⇢

◆2

✏ =
1

�
⇠

C1

C2

H1 L1

H2
L2

(b)

Figure 3.1: Graphic representation showing the boundaries of I of (�, ✏). a ⇠ < (R/⇢)2. b ⇠ � (R/⇢)2
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Remark 3.3.6. Exponent P in Theorem 3.3.4 can be defined as follows:

P = P (✏, s, �, t) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

max{s� t, 0,�t} ((�, ✏) = C1),

max{s� t, 0, s} ((�, ✏) = C2),

max{s� t,�t} ((�, ✏) 2 H1 \ {C1}),
max{s� t, s} ((�, ✏) 2 H2 \ {C2}),
max{s� t, 0} ((�, ✏) 2 L1 \ {C1, C2}),
s� t (otherwise).

The appearance of explicit representation of P is similar to that for MFS (see Remark 2.3.10).

Remark 3.3.7. s and t could take any real values if (�, ✏) were in the interior of the region I, whereas
they would have to satisfy some constraints if they were on the boundary. Especially, if we consider
the case where ✏ = 1, the exponent P becomes the following:

P = P (s, �, t) =

8

>

<

>

:

max{s� t, 0, s} (� = (R/⇢)2),

max{s� t,�t} (� = 1),

s� t (1 < � < (R/⇢)2).

If ⇠ = 1 (then � > 1/2), that is, the boundary data f is not analytic but in H�(�) (expecially
Hölder continuous), in which case the exponentially decaying term (✏/�)N is omitted, and the order of
convergence becomes “algebraical”.

Proving Theorem 3.3.4 requires the following lemma.

Lemma 3.3.8. Under the same hypothesis in Theorem 3.3.4, there exists some positive constant C =
C(✏, s, �, t, ⇢, R) such that the following estimate holds for q 2 X⇠⇢/R,� with L q = F and q(N) 2 D (N)

with L q(N) = F on �N , of which the unique existence is assured by Theorem 3.3.3:

kq � q(N)k✏⇢/R,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqk�⇢/R,t.

We include the proof of Lemma 3.3.8 in Section 3.7, and provide the proof of Theorem 3.3.4 by
virtue of Lemma 3.3.8.

Proof of Theorem 3.3.4. Since L is a homeomorphism according to Lemma 3.3.1, there exists a unique
q 2 X⇠⇢/R,� such that F = L q holds. Moreover, we know that kL k = 1 and kL �1k = 2 by Remark
3.3.2. Therefore we obtain

kF � L q(N)k✏,s = kL q � L q(N)k✏,s  kq � q(N)k✏⇢/R,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqk�⇢/R,t

 2CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kL qk�,t = 2CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kFk�,t,

which is the desired estimate.

3.4 DSM in a Jordan region

At first, we extend the integral operator A defined by (3.2.2) to X✏,s. To this end, we define a
perturbation operator K as

K = A� L.
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If q is a continuous function on S1, then we have

Kq(⌧) =

Z 1

0

k(⌧, ✓)q(✓) d✓,

where

k(⌧, ✓) = <
✓

� Re2⇡i✓ 0(Re2⇡i✓)

 (⇢e2⇡i⌧ )� (Re2⇡i✓)
+

Re2⇡i✓

⇢e2⇡i⌧ �Re2⇡i✓

◆

(⌧, ✓ 2 S1).

Thus, the lth Fourier coe�cient of Kq can be calculated as

(Kq)^(l) =
X

m2Z
k̂(l,m)q̂(�m),

where k̂(l,m) is the double Fourier coe�cient defined as

k̂(l,m) =

Z 1

0

Z 1

0

k(⌧, ✓)e�2⇡i(l⌧+m✓) d⌧ d✓.

We require estimates on k̂(l,m) to extend K to X✏,s.

Lemma 3.4.1. There exists some positive constant C such that

|k̂(l,m)|  C�|l|
✓

R

⇢

◆|m|

holds for all l,m 2 Z, where  is the parameter introduced in Definition 1.2.1.

Proof. Define a function  on R�1⇢,⇢ ⇥R�1⇢,⇢ as

 (z, w) =

8

>

>

<

>

>

:

�w 0(w)

 (z)� (w) +
w

z � w
, z, w 2 R�1⇢,⇢, z 6= w,

w 00(w)

2 0(w)
, z = w 2 R�1⇢,⇢.

Then,  is holomorphic in R�1⇢,⇢ ⇥R�1⇢,⇢ and continuous on its closure. Since < is harmonic
in R�1⇢,⇢ ⇥R�1⇢,⇢ and continuous on its closure, it has the following Fourier series expansion:

< (⇢r1e2⇡i⌧ , ⇢r2e2⇡i✓)
=

X

l,m2Z⇤

⇣

almr|l|1 r|m|
2 + blmr|l|1 r�|m|

2 + clmr�|l|
1 r|m|

2 + dlmr�|l|
1 r�|m|

2

⌘

e2⇡i(l⌧+m✓)

+
X

m2Z⇤

⇣

a0mr|m|
2 + b0mr�|m|

2 + c0mr|m|
2 log r1 + d0mr�|m|

2 log r1
⌘

e2⇡im✓

+
X

l2Z⇤

⇣

al0r
|l|
1 + bl0r

|l|
1 log r2 + cl0r

�|l|
1 + dl0r

�|l|
1 log r2

⌘

e2⇡il⌧

+ a00 + b00 log r2 + c00 log r1 + d00 log r1 log r2

for r1, r2 2 [�1,] and ⌧, ✓ 2 R. Then, we can evaluate the Fourier coe�cients alm, blm, clm, and dlm
as follows:

|alm|, |blm|, |clm|, |dlm|  M�|l|�|m| (l,m 2 Z),
whereM is some positive constant depending on  and the supremum of |< | on @R�1⇢,⇢⇥@R�1⇢,⇢.

Since k(⌧, ✓) = < (⇢e2⇡i⌧ , Re2⇡i✓), substituting this into the definition of k̂(l,m) and evaluating it by
using the above estimates for alm, blm, clm, and dlm, we obtain the desired estimates.
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The above estimates enable us to extend K as follows:

Lemma 3.4.2. Suppose that (✏, s) > (R/(⇢), 1/2) and (�, t) < (,�1/2). If we define K : X✏,s !
X�,t as

(K q)^(l) =
X

m2Z
k̂(l,m)q̂(�m), l 2 Z,

then K is a bounded linear extension of K and is compact.

Proof. For all q 2 X✏,s we have

kK qk2�,t =
X

l2Z
|(K q)^(l)|2�2|l|l2t =

X

l2Z

�

�

�

�

�

X

m2Z
k̂(l,m)q̂(�m)

�

�

�

�

�

2

�2|l|l2t


X

l2Z

 

X

m2Z
|k̂(l,m)|2✏�2|m|m�2s

! 

X

m2Z
|q̂(�m)|2✏2|m|m2s

!

�2|l|l2t

 C
X

l2Z

✓

�



◆2|l|
l2t
X

m2Z

✓

1

✏

R

⇢

◆2|m|
m�2skqk2✏,s  Ckqk2✏,s.

This implies that K is a bounded linear operator.
We then verify the compactness of K by taking (�0, t0) 2 ]0,+1[⇥R to satisfy (�, t) < (�0, t0) <

(,�1/2), and decomposing it as follows:

K : X✏,s
//

K̃ ##

X�,t

X�0,t0

-
� i

;;

Here, K̃ : X✏,s ! X�0,t0 is a bounded linear operator defined similarly to K and i is a natural
inclusion, which is compact operator by Proposition 1.1.1 (ii). Since K = i � K̃ , K is compact.

The following corollary immediately follows from the above lemma.

Corollary 3.4.3. If (✏, s) satisfies

(3.4.1)

✓

R

⇢
,
1

2

◆

< (✏, s) <

✓

⇢

R
,�1

2

◆

,

then the operator K : X✏,s ! X✏R/⇢,s is compact.

When (✏, s) satisfies the condition (3.4.1), we define A : X✏,s ! X✏R/⇢,s as A = K + L . Then,
A is an extension of A. We can now state the most general version of Theorem 3.1.1.

Theorem 3.4.4. Suppose that R 2 ]⇢,⇢[, F 2 X⇠,� with some (⇠,�) > (1, 1/2), (�, t) satisfies
(1, 1/2) < (�, t) < (,�1/2) and (�, t)  (⇠,�), and (✏, s) satisfies the conditions

max

⇢

�
⇣ ⇢

R

⌘2

,
1

�

�

 ✏  min

(

1

�

✓

R

⇢

◆2

, �

)

;

if ✏ = � then s  t; if ✏ =
R

⇢
then s < �1

2
,

and ✏ � (R/⇢)2�1. Then the following hold true:
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(i) For su�ciently large N 2 N, there exists a unique q(N) 2 D (N) such that

A q(N)(⌧) = F (⌧), ⌧ 2 �N .

(ii) There exists some positive constant C which depends on ✏, s, �, t, ⇢, R, kA k, and kA �1k such
that

kF � A q(N)k✏,s  CN P̃ (✏,s,�,t)
⇣ ✏

�

⌘N/2

kFk�,t,
where

P̃ (✏, s, �, t) =

(

P (✏, s, �, t) if (✏, s) � ((R/⇢)2�1, 1/2),

P ((R/⇢)2�1, 1/2, �, t) if ✏ = (R/⇢)2�1 ^ s < 1/2.

Note that all the operator norms kA k and kA �1k are the abbreviated forms of kA kB(X✏,s,X✏R/⇢,s)

and kA �1kB(X✏R/⇢,s,X✏,s) for some (✏, s) 2 ]0,+1[⇥R, respectively. We need the following two lemmas
to prove the above theorem.

Lemma 3.4.5. Suppose that R 2 ]⇢,⇢[ and that (✏, s) satisfies (3.4.1). Then, A is a homeomorphism.

Proof. The boundedness of A is clear. Considering that A is bijective, we only have to show that A
is injective, because A is a Fredholm operator with index 0. We take q 2 KerA arbitrarily. Since
L is a homeomorphism, A q = 0 is equivalent to q = �L �1K q. Then, we have K q 2 X,t for all
t < �1/2 since K : X✏,s ! X�,t defines a bounded linear operator when (✏, s) > (R/(⇢), 1/2) and
(�, t) < (,�1/2) are satisfied due to Lemma 3.4.2. Therefore, q = �L �1K q 2 X⇢/R,t. Note that
⇢/R > 1. Defining a function Q on �R as

Q( (Re2⇡i⌧ )) = q(⌧) (⌧ 2 S1),

Q : �R ! C is continuous. Then we have

A q = 0 ()
Z 1

0

<
⇢ �Re2⇡i✓ 0(Re2⇡i✓)

 (⇢e2⇡i⌧ )� (Re2⇡i✓)

�

q(✓) d✓ = 0 (8⌧ 2 S1)

()
Z

�R

�1

2⇡

(n
y

| x� y)

kx� yk2 Q(y) ds
y

| {z }

=:u(x)

= 0 (8x 2 �).

The function u is harmonic in the interior simply-connected region ⌦R of �R, and especially contin-
uous on ⌦. Thus, we have u = 0 in ⌦ because of the maximum principle for harmonic functions.
Furthermore, we have u = 0 in ⌦R because of the identity theorem for real analytic functions. Hence,
Q ⌘ 0 follows from Proposition 1.3.4, and this yields q ⌘ 0. The open mapping theorem determines
that A �1 is bounded.

Lemma 3.4.6. Suppose that R 2 ]⇢,⇢[, (�, t) satisfies (1, 1/2) < (�, t) < (,�1/2) and (�, t)  (⇠,�),
and that (✏, s) satisfies (3.3.7) and (✏, s) > ((R/⇢)2�1, 1/2). Then, there exists some positive constant
C which depends on ✏, s, �, t, ⇢, R, kA k, and kA �1k such that for all N 2 N, all q 2 X�⇢/R,t and

all q(N) 2 D (N) satisfying A q = A q(N) on �N , the following estimate holds:

kq � q(N)k✏⇢/R,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

(kqk�⇢/R,t + kq � q(N)k✏⇢/R,s).

Proof. Since A is a homeomorphism by Lemma 3.4.5, the following estimate holds:

kq � q(N)k✏⇢/R,s  CkA (q(N) � q)k✏,s.
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Here we put
wN = q(N), w = q(N) � L �1A (q(N) � q).

Then, we have

wN 2 D (N), L �1A (q(N) � q) = wN � w, Lw = LwN on �N ,

w = q + L �1(L � A )(q(N) � q).

Therefore, by Theorem 3.3.4, which gives the error estimate of DSM when ⌦ is a disk, we have

kq(N) � qk✏⇢/R,s  CkLwN � Lwk✏,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kLwk�,t

 CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kwk�⇢/R,t.

(3.4.2)

Moreover, we have

kwk�⇢/R,t = kq + L �1(L � A )(q(N) � q)k�⇢/R,t  kqk�⇢/R,t + Ck(L � A )(q(N) � q)k�,t
 kqk�⇢/R,t + Ckq(N) � qk✏⇢/R,s  C

⇣

kqk�⇢/R,t + kq(N) � qk✏⇢/R,s

⌘

,
(3.4.3)

where we use the boundedness of L � A = �K : X✏⇢/R,s ! X�,t. Combining (3.4.2) with (3.4.3),
we obtain the desired estimate.

Proof of Theorem 3.4.4. At first, we remark that

NP (✏,s,�,t)
⇣ ✏

�

⌘N/2

= o(1) as N ! 1

follows from (✏, s) < (�, t) and the value of P in Remark 3.3.6. Therefore, by Lemma 3.4.6, for a
su�ciently large N 2 N and all q(N) 2 D (N) with A q(N) = A q on �N , we have

(3.4.4) kq � q(N)k✏⇢/R,s  CNP (✏,s,�,t)
⇣ ✏

�

⌘N/2

kqk�⇢/R,t

provided that (✏, s) > ((R/⇢)2�1, 1/2). Since this relation holds for ✏ = (R/⇢)2�1 with any s > 1/2,
using the embedding relation X(R/⇢)2�1,s ,! X(R/⇢)2�1,1/2, we obtain the inequality (3.4.4) when
(✏, s) = ((R/⇢)2�1, 1/2). Using the embedding relation X(R/⇢)2�1,1/2 ,! X(R/⇢)2�1,s for s < 1/2
once more, we obtain

(3.4.5) kq � q(N)k✏⇢/R,s  CNP (✏,1/2,�,t)
⇣ ✏

�

⌘N/2

kqk�⇢/R,t

for ✏ = (R/⇢)2�1 and s < 1/2. Therefore, using the fact that A is a homeomorphism, which follows
from Lemma 3.4.5, A q(N) = 0 on �N yields q(N) = 0. Since A q(N) = F on �N is equivalent to a finite
system of linear equations, this shows the unique solvability of the considered functional equation.

Finally, we prove the second statement. For F 2 X⇠,�, there exists a unique q 2 X⇠⇢/R,� that
satisfies A q = F because A is a homeomorphism. Then, we have

kF � A q(N)k✏,s = kA q � A q(N)k✏,s  Ckq � q(N)k✏⇢/R,s

and
kqk�⇢/R,t  CkFk�,t.

Hence, we obtain the desired error estimate by the above two inequalities, (3.4.4), and (3.4.5).
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3.5 Numerical experiments

In this section, we present the results of two numerical experiments. The first considers the case
where ⌦ is a disk D⇢, that is,  is the identity mapping. The other involves the case where ⌦
is the interior simply-connected region surrounded by the curve defined by a polynomial. In each
numerical experiment, we consider two types of boundary conditions: the harmonic polynomial and
the logarithmic potential. The error is measured by the L2 norm (s = 0 in Theorem 3.1.1) and the
L1 norm (Corollary 3.1.2). In each Figures 3.2, 3.3, 3.5, and 3.6, the horizontal and vertical axes
represent N and the common logarithm of the errors, respectively.

3.5.1 The case of the disk D⇢

Since ⌦ is a disk D⇢, the peripheral conformal mapping  can be taken as the identity mapping.
Therefore,  can be regarded as +1. In this case, the values of ⇢ and R are selected as 1 and 2,
respectively.

3.5.1.1 Boundary data f : a harmonic polynomial

Let the boundary data f be a harmonic polynomial. Namely, f is defined as

f(⇢e2⇡i⌧ ) = ⇢m cos(m⌧) (⌧ 2 S1; m 2 {0, 1, . . . , 5}).
Obviously, f can be continued to the whole plane C complex analytically. Hence, the errors can be
estimated as follows:

(3.5.1) ku� u(N)kL2(�) = O

✓

⇣ ⇢

R

⌘N
◆

, ku� u(N)kL1(�) = O

✓

N1/2
⇣ ⇢

R

⌘N
◆

.

The numerical results are depicted in Figure 3.2. The errors are investigated by a Monte-Carlo method,
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Figure 3.2: Numerical results of DSM with the boundary data f(⇢e2⇡i⌧ ) = ⇢m cos(m⌧) (⌧ 2 S1;
m = 0, 1, . . . , 5). The gradient of the hypotenuse of the red colored triangle is the theoretical order of
convergence. a L2-norm estimate. b L1-error estimate

that is, we take a su�ciently large number of points, i.e., a number greater than 10maxN , on the
boundary � and compute the error on them. We found the behavior of the errors to be estimated well
by (3.5.1). In this experiment, the estimation of the L2 norm is optimal; however, the estimation of
the L1 error is “not” optimal because N1/2 appears in the error estimate. Indeed, in the case of a
disk, the power of N does not appear in the error estimate (see for instance [45, Theorem 5.2] and the
comments before it).
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3.5.2 Boundary data f : logarithmic potential

We next consider the following boundary condition:

f(⇢e2⇡i⌧ ) = log |⇢e2⇡i⌧ � p(m)|, p(m) = ⇢+ 0.2(m+ 1) (⌧ 2 S1; m 2 {0, 1, . . . , 10}).
There exists a singularity at p(m); therefore, f can be continued complex analytically to the disk
Dp(m). This means the error can be estimated as

ku� u(N)kL2(�) = O

 

max

(

✓

⇢

p(m)

◆N/2

,
⇣ ⇢

R

⌘N
)!

,

ku� u(N)kL1(�) = O

 

N1/2 max

(

✓

⇢

p(m)

◆N/2

,
⇣ ⇢

R

⌘N
)!

.

The results of the numerical experiments can be found in Figure 3.3.
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Figure 3.3: Numerical results of DSM with the boundary data f(⇢e2⇡i⌧ ) = log |⇢e2⇡i⌧ � p(m)| (⌧ 2 S1;
m = 0, 1, . . . , 10). The gradients of the broken lines are the theoretical orders of convergence for the
corresponding solid lines. a L2-error estimate. b L1-error estimate

3.5.3 The case of a curve defined by a polynomial

The second example considers the case where ⌦ is the region surrounded by the following closed curve:

(3.5.2) � =  l,r(�1),  l,r(z) = z +
zl

r

with r > 0 and l > 0.  l,r is a conformal mapping in D l�1

p
r/l, therefore  could take any value

between 1 and l�1

p

r/l, which enables us to think  to be equal to l�1

p

r/l. In the following numerical
experiments, we take r = 8 and l = 4. The collocation points {xj}Nj=1, the dipole points {yk}Nk=1, and

dipole moments {nk}Nk=1 are defined as in (3.1.5) under ⇢ = 1 and R = 1.2, in which  is replaced
with  l,r. Note that R 2 ]

p
⇢,⇢[. Therefore, although the definitions of the dipole points and dipole

moments in (3.1.5) make sense, the unique existence and covergence are not assured. However, as
we shall see in each Figures 3.5 and 3.6, the exponential convergence is achieved, and the order of
convergence is what we can expect from Theorem 3.1.1 and Corollary 3.1.2. Hence we can conjecture
that the unique existence and convergence hold for R 2 ]⇢,⇢[. The shape of the region ⌦, the
arrangements of the dipole, and collocation points, and the directions of the dipole moments are
depicted in Figure 3.4.
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Figure 3.4: Graphic representation showing the shape of ⌦, the arrangements of the dipole, and
collocation points, and the directions of the dipole moments when N = 60, ⇢ = 1, and R = 1.2.

3.5.3.1 Boundary data f : a harmonic polynomial

Since f can be extended complex analytically to the whole plane C, the errors could be estimated in
a similar way as in (3.5.1). The results are found in Figure 3.5.
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Figure 3.5: Numerical results of DSM with the boundary data f(z) = f( (⇢e2⇡i⌧ )) = <( (⇢e2⇡i⌧ )m)
(z =  (⇢e2⇡i⌧ ) 2 �, ⌧ 2 [0, 1]; m = 0, 1, . . . , 5). The gradient of the hypotenuse of the red colored
triangle is the prospected order of convergence. a L2-error estimate. b L1-error estimate.
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3.5.3.2 Boundary data f : logarithmic potential

Since f can be continued complex analytically to the disk Dp̃(m), this results in the following error
estimate:

ku� u(N)kL2(�) = O

 

max

(

✓

⇢

p̃(m)

◆N/2

,
⇣ ⇢

R

⌘N
)!

,

ku� u(N)kL1(�) = O

 

N1/2 max

(

✓

⇢

p̃(m)

◆N/2

,
⇣ ⇢

R

⌘N
)!

,

where p̃(m) is the positive real number satisfying  (p̃(m)) = p(m), and p(m) = 1.0 + 0.05(m + 3)
(m 2 {0, 1, . . . , 10}) in this experiment. The numerical results are shown in Figure 3.6.
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Figure 3.6: Numerical results of DSM with the boundary data f(z) = f( (⇢e2⇡i⌧ )) = log | (⇢e2⇡i⌧ )�
p(m)| (z =  (⇢e2⇡i⌧ ) 2 �, ⌧ 2 [0, 1]; m = 0, 1, . . . , 10). The gradients of the broken lines are the
prospected orders of convergence for the corresponding solid lines. a L2-error estimate. b L1-error
estimate.

3.6 Concluding remarks

In this chapter, we introduced the concept of peripheral conformal mapping following Katsurada [48],
and used it to arrange the dipole and collocation points and to define the dipole moments. For this
situation, we proved the stability and exponential convergence of DSM. The numerical results in Section
3.5 show that our error estimate provides a good bound but that there is a slight overestimation, and
that our convergence theorem could hold even if R >

p
⇢.

This presents an opportunity for further research, namely to extend this result to a multiply-
connected region. However, it should be considered that it would not be possible to apply the original
DSM to potential problems in a multiply-connected region, which may require some modifications.
Furthermore, the reason for the overestimate needs to be clarified. Finally, the approach in this paper
may be applied to the multipole method; therefore, the mathematical analysis of the multipole method
using the proposed method would be expected to be possible.

3.7 Proof of Lemma 3.3.8

We here prove Lemma 3.3.8. The basic concept is the same as that in [48].
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Firstly, note that q̂(N)(p) can be represented as

q̂(N)(p) =

 

X

m⌘p

Ĝ(m)q̂(m)

!

/'(N)
p (⇢).

We decompose and estimate kq � q(N)k✏⇢/R,s as follows:

kq � q(N)k2✏⇢/R,s = |q̂(0)� q̂(N)(0)|2 +
X

n2Z\{0}
|q̂(n)� q̂(N)(n)|2

⇣✏⇢

R

⌘2

n2s

 T1 + (2⇡)2s{T2 + 2T3 + 2T4},

where

T1 = |q̂(0)� q̂(N)(0)|2, T2 =
X

n2⇤0
N\{0}

|q̂(n)� q̂(N)(n)|2
⇣✏⇢

R

⌘2|n|
|n|2s,

T3 =
X

n2Z\⇤0
N

|q̂(n)|2
⇣✏⇢

R

⌘2|n|
|n|2s, T4 =

X

n2Z\⇤0
N

|q̂(N)(n)|2
⇣✏⇢

R

⌘2|n|
|n|2s.

We frequently use the following proposition without providing proof.

Proposition 3.7.1. (i) For arbitrary N 2 N we have |'(N)
0 (⇢)| � 1.

(ii) For each n 2 ⇤0
N \ {0} we have |'(N)

n (⇢)| � 2�1(⇢/R)|n|.
(iii) For all ✏ 2]0, 1[ and all t 2 R there exists some positive constant C✏,t such that

max
p2⇤0

N\{0}

(

✓

N

|p|
◆t

✏N�2|p|

)

 C✏,t

holds for all N 2 N.
(iv) For all (✏, s) < (1,�1) there exists some positive constant C✏,s such that

X

m2I(p)

|m|s✏|m|  C✏,sN
s✏N�|p|

holds for all N 2 N and all p 2 ⇤0
N .

In the remainder of this section we estimate each Tj (j = 1, 2, 3, 4). Since

q̂(0)� q̂(N)(0) =

2

4

X

m2I(0)

Ĝ(m)q̂(0)�
X

m2I(0)

Ĝ(m)q̂(m)

3

5 /'(N)
0 (⇢)

we have

T1 = |q̂(0)� q̂(N)(0)|2  T11 + T12,

where

T11 =
2

|'(N)
0 (⇢)|2

�

�

�

�

�

�

X

m2I(0)

Ĝ(m)q̂(0)

�

�

�

�

�

�

2

, T12 =
2

|'(N)
0 (⇢)|2

�

�

�

�

�

�

X

m2I(0)

Ĝ(m)q̂(m)

�

�

�

�

�

�

2

.
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From Proposition 3.7.1 (i) and the assumption �(⇢/R)2  ✏ we obtain

T11  2

 1
X

l=1

⇣ ⇢

R

⌘lN
!2

|q̂(0)|2  C11

⇣ ⇢

R

⌘2N

kqk2�⇢/R,t



8

>

<

>

:

C11

⇣ ✏

�

⌘N

kqk2�⇢/R,t if ✏ = �(⇢/R)2 ^ s� t  0,

C11N
2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢/R,t otherwise.

Here and hereafter Csuperscript
subscript denotes some constant independent of N and each symbol may represent

a di↵erent constant. By Proposition 3.7.1 (i) and (iv), we have

T12  2

0

@

X

m2I(0)

1

2

⇣ ⇢

R

⌘|m|
|q̂(m)|

1

A

2

 1

2

0

@

X

m2I(0)

|q̂(m)|2
✓

�⇢

R

◆2|m|
m2t

1

A

0

@

X

m2I(0)

1

�2|m|
1

m2t

1

A

 C12�
�2NN�2tkqk2�⇢/R,t 

8

>

<

>

:

C12N
�2t
⇣ ✏

�

⌘N

kqk2�⇢/R,t if ��1 = ✏ ^ s  0,

C12N
2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢/R,t otherwise.

Here, we use the assumption ��1  ✏.
Next, we estimate T2. For n 2 ⇤0

N \ {0} we have

q̂(n)� q̂(N)(n) =

2

4

X

m2I(n)

Ĝ(m)q̂(n)�
X

m2I(n)

Ĝ(m)q̂(m)

3

5 /'(N)
n (⇢);

therefore,

|q̂(n)� q̂(N)(n)|2  2

|'(N)
n (⇢)|2

2

6

4

�

�

�

�

�

�

X

m2I(n)

Ĝ(m)q̂(n)

�

�

�

�

�

�

2

+

�

�

�

�

�

�

X

m2I(n)

Ĝ(m)q̂(m)

�

�

�

�

�

�

2
3

7

5

holds. Thus, we obtain T2  T21 + T22, where

T21 =
X

n2⇤0
N\{0}

2

|'(N)
n (⇢)|2

�

�

�

�

�

�

X

m2I(n)

Ĝ(m)q̂(n)

�

�

�

�

�

�

2
⇣✏⇢

R

⌘2|n|
|n|2s,

T22 =
X

n2⇤0
N\{0}

2

|'(N)
n (⇢)|2

�

�

�

�

�

�

X

m2I(n)

Ĝ(m)q̂(m)

�

�

�

�

�

�

2
⇣✏⇢

R

⌘2|n|
|n|2s.

As to T21, from Proposition 3.7.1 (ii), we have

1

|'(N)
n (⇢)|2

�

�

�

�

�

�

X

m2I(n)

Ĝ(m)

�

�

�

�

�

�

2

 4

✓

R

⇢

◆2|n|
�

�

�

�

�

�

X

m2I(n)

1

2

⇣ ⇢

R

⌘|m|
�

�

�

�

�

�

2

 C21

⇣ ⇢

R

⌘2(N�2|n|)
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for n 2 ⇤0
N \ {0}; therefore,

T21  C21

X

n2⇤0
N\{0}

|q̂(n)|2
⇣ ⇢

R

⌘2(N�2|n|) ⇣✏⇢

R

⌘2|n|
|n|2s

 C21N
2max{s�t,0}

⇣ ✏

�

⌘N

kqk2�⇢/R,tA21,

where

A21 = sup
n2⇤0

N\{0}

(

|n|2(s�t)N�2max{s�t,0}
⇢

�

✏

⇣ ⇢

R

⌘2
�N�2|n|

)

.

By ensuring that ✏ � �(⇢/R)2, the above supremum A21 is bounded as follows according to Proposition
3.7.1 (iii):

A21 

8

>

>

>

>

<

>

>

>

>

:

1 if ✏ = �(⇢/R)2 ^ s  t,

4�(s�t) if ✏ = �(⇢/R)2 ^ s > t,

C�✏�1(⇢/R)2,�2(s�t)N
2(s�t) if ✏ > �(⇢/R)2 ^ s  t,

C�✏�1(⇢/R)2,�2(s�t) if ✏ > �(⇢/R)2 ^ s > t.

Therefore, we obtain

T21 

8

>

<

>

:

C21

⇣ ✏

�

⌘N

kqk2�⇢/R,t if ✏ = �(⇢/R)2 ^ s  t,

C21N
2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢/R,t otherwise.

For n 2 ⇤0
N \ {0} we have

1

|'(N)
n (⇢)|2

�

�

�

�

�

�

X

m2I(n)

Ĝ(m)q̂(m)

�

�

�

�

�

�

2


✓

R

⇢

◆2|n|
X

m2I(n)

|q̂(m)|2
✓

�⇢

R

◆2|m|
m2t

X

m2I(n)

1

�2|m|
1

m2t

 C22

✓

R

⇢

◆2|n| 1

�2(N�|n|)N
�2t

X

m2I(n)

|q̂(m)|2
✓

�⇢

R

◆2|m|
m2t

by Proposition 3.7.1 (ii) and (iv). Thus, we have

T22  C22

X

n2⇤0
N\{0}

✓

R

⇢

◆2|n| 1

�2(N�|n|)N
�2t

X

m2I(n)

|q̂(m)|2
✓

�⇢

R

◆2|m|
m2t

⇣✏⇢

R

⌘2|n|
|n|2s

 C22kqk2�⇢/R,tN
2[�t+max{s,0}]

⇣ ✏

�

⌘N

sup
n2⇤0

N\{0}

(

✓

1

✏�

◆N�2|n|
|n|2sN�2max{s,0}

)

| {z }

=:A
22

.

Because ✏ � ��1 we have the following estimate on A22 as a consequence of Proposition 3.7.1 (iii):

A22 

8

>

>

>

>

<

>

>

>

>

:

1 if ✏ = ��1 ^ s  0,

4�s if ✏ = ��1 ^ s > 0,

C(✏�)�1,�2sN
2s if ✏ > ��1 ^ s  0,

C(✏�)�1,�2s if ✏ > ��1 ^ s > 0.
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Therefore, we obtain

T22 

8

>

<

>

:

C22N
�2s

⇣ ✏

�

⌘N

kqk2�⇢/R,t if ✏ = ��1 ^ s  0,

C22N
2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢/R,t otherwise.

Concerning T3 we have

T3 
X

n2Z\⇤0
N

|q̂(n)|2
✓

�⇢

R

◆2|n|
|n|2t sup

n2Z\⇤0
N

⇢

⇣ ✏

�

⌘2|n|
|n|2(s�t)

�

 C3kqk2�⇢/R,tN
2(s�t)

⇣ ✏

�

⌘N

sup
n2Z\⇤0

N

(

⇣ ✏

�

⌘2|n|�N
✓ |n|
N

◆2(s�t)
)

| {z }

=:A
3

.

Remarking that (✏, s)  (�, t), A3 can be bounded by some positive constant. Thus, we obtain

T3  C3N
2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢/R,t.

Finally, as to T4 we have

T4 =
X

p2⇤0
N

X

l2Z\{0}
|q̂(N)(p+ lN)|2

⇣✏⇢

R

⌘2|p+lN |
|p+ lN |2s = T41 + T42,

where

T41 =
X

l2Z\{0}
|lN |2s

⇣✏⇢

R

⌘2|lN |
|q̂(N)(0)|2,

T42 =
X

p2⇤0
N\{0}

8

<

:

X

l2Z\{0}
|p+ lN |2s

⇣✏⇢

R

⌘2|p+lN |
|q̂(N)(p)|2

9

=

;

.

Here, note that the infinite series
X

l2Z\{0}
|p+ lN |2s

⇣✏⇢

R

⌘2|p+lN |
(8p 2 ⇤0

N )

is absolutely convergent because of the assumption (✏, s) < (R/⇢,�1/2). By implementing Proposition
3.7.1 (i) we have |q̂(N)(0)|2  Ckqk2�⇢/R,t and from Proposition 3.7.1 (iv) this yields an estimate

T41  C✏⇢/R,2sN
2s
⇣✏⇢

R

⌘2N

· Ckqk2�⇢/R,t



8

>

<

>

:

C41N
2s
⇣ ✏

�

⌘N

kqk2�⇢/R,t if ✏ = ��1(R/⇢)2 ^ t � 0,

C41N
2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢/R,t otherwise.

Concerning T42 we first have an estimate of q̂(N)(p) for p 2 ⇤0
N \ {0}

|q̂(N)(p)|2  1

(2⇡)2t

X

m⌘p

|q̂(m)|2
✓

�⇢

R

◆2|m|
m2t

✓

R

⇢

◆2|p|

⇥
"

1

�2|p|
1

|p|2t + C��2,�2tN
�2t

✓

1

�

◆2(N�|p|)
#

.
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Then, we have

T42 
X

p2⇤0
N\{0}

2

4

0

@

X

l2Z\{0}
|p+ lN |2s

⇣✏⇢

R

⌘2|p+lN |
1

A

⇥ 1

(2⇡)2t

 

X

m⌘p

|q̂(m)|2
✓

�⇢

R

◆2|m|
m2t

✓

R

⇢

◆2|p|
!

⇥
"

1

�2|p|
1

|p|2t + C��2,�2tN
�2t

✓

1

�

◆2(N�|p|)
#

 C✏⇢/R,2sN
2[s+max{�t,0}]

⇣ ✏

�

⌘N

kqk2�⇢/R,tA42,

where

A42 = sup
p2⇤0

N\{0}

"

N�2max{�t,0}

|p|2t
⇢

✏�
⇣ ⇢

R

⌘2
�N�2|p|

+C��2,�2tN
�2[t+max{�t,0}]

⇢

✏

�

⇣ ⇢

R

⌘2
�N�2|p|

#

.

Noting that ✏  ��1(R/⇢)2 we have

A42 
(

C 0N�2t if ✏ = ��1(R/⇢)2 ^ t � 0,

C 0 otherwise

due to Proposition 3.7.1 (iii). Therefore, we obtain

T42 

8

>

<

>

:

C42N
2s
⇣ ✏

�

⌘N

kqk2�⇢/R,t if ✏ = ��1(R/⇢)2 ^ t � 0,

C42N
2(s�t)

⇣ ✏

�

⌘N

kqk2�⇢/R,t otherwise.

Combining the above estimates we obtain

kq � q(N)k2✏⇢/R,s  CN2P (✏,s,�,t)
⇣ ✏

�

⌘N

kqk2�⇢/R,t

as desired.
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Chapter 4

Method of fundamental solutions
for biharmonic equation in disk
based on Almansi-type
decomposition

Abstract

The aim of this chapter is to analyze mathematically the method of fundamental solutions
applied to biharmonic problem. The key idea is to use Almansi-type decomposition of
biharmonic function, which enables us to represent the biharmonic function in terms of two
harmonic functions. Based on this decomposition, we prove that an approximate solution
exists uniquely and that an approximation error decays exponentially with respect to the
number of the singular points. We finally present results of numerical experiments, which
verify that our error estimate is almost optimal. This chapter is based on the following
submitted paper:

• K. Sakakibara Method of fundamental solutions for biharmonic equation based on
Almansi-type decomposition, submitted.

4.1 Introduction and main results

Let ⌦ be a simply-connected region in the plane. We then consider the following boundary value
problem for biharmonic equation:

(4.1.1)

8

>

>

<

>

>

:

42u = 0 in ⌦,

u = f on @⌦,

@u

@⌫
= g on @⌦,

where 42 =
@2

@x4
+

@4

@x2@y2
+

@4

@y4
is the biharmonic operator in the plane, @u/@⌫ denotes the outward

normal derivative of u on @⌦, and f and g are given functions defined on @⌦.
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Chapter 4 Almansi-type MFS 4.1 Introduction and main results

Goursat [28] proved that for a given biharmonic function u, there exist two holomorphic function
' and  in ⌦ such that the following relation holds:

u(x, y) = '(z) + '(z) + z (z) + z (z) = 2<('(z) + z (z)).

Especially, defining �(x, y) = 2<'(z), ↵(x, y) = 2< (z), and �(x, y) = 2= (z), we have

u(x, y) = �(x, y) + x↵(x, y) + y�(x, y).

Namely, the above implies that any biharmonic function can be decomposed into three harmonic
functions, two of which are conjugate harmonic. Moreover, Krakowski and Charnes [61] and Bock and
Gürlebeck [12] showed that the number of harmonic functions are indeed equal to 2, that is, for a given
biharmonic function u in ⌦, there exist harmonic functions p, q, p, q, p, q such that the following hold:

u(x, y) = p(x, y) + (x2 + y2)q(x, y),(4.1.2)

u(x, y) = p(x, y) + xq(x, y),

u(x, y) = p(x, y) + yq(x, y).

Especially, (4.1.2) is a decomposition of Almansi type. Therefore we only have to find suitable approx-
imations of two harmonic functions. We hereafter consider the case of (4.1.2) restricted to the case
where ⌦ is a disk D⇢ with radius ⇢ having the origin as its center.

Based on the Almansi-type decomposition of biharmonic function, the following scheme for MFS
can be obtained [42]. Choose the singular points {yk}nk=1 as yk = R!k�1, 1  k  N , and construct
approximations for p and q as follows:

p(N)(x) =
N
X

k=1

Qp
kE(x� yk), q(N)(x) =

N
X

k=1

Qq
kE(x� yk),

where E(x) = (2⇡)�1 log |x| is the fundamental solution of the Laplace operator 4, R > ⇢, and
! = exp(2⇡i/N). Namely, an approximation u(N) for the solution u of (4.1.1) is given by

(4.1.3) u(N)(x) =
N
X

k=1

(Qp
k + |x|2Qq

k)E(x� yk).

Remark 4.1.1. In the usual formulation of MFS, the approximate solution is given by

(4.1.4) u(N)(x) =
N
X

k=1

(Qp
k + |x� yk|2Qq

k)E(x� yk)

since the function (8⇡)�2|x|2E(x) is the fundamental solution for the biharmonic operator 42. MFS
of the form (4.1.4) has been proposed firstly in Karageorghis and Fairweather [41], but there does not
exist any mathematical result so far.

The coe�cients {Qp,q
k }Nk=1 are determined by the collocation method, that is, take the collocation

points {xj}Nj=1 as xj = ⇢!j�1, and impose the following boundary conditions:

(4.1.5) u(N)(xj) = f(xj),
@u(N)

@⌫
(xj) = g(xj), j = 1, 2, . . . , N.

This type of MFS based on Almansi-type decomposition has been investigated in Li et al. [67] and
some mathematical analysis has been done. However, they consider the Tre↵tz method rather than
the collocation method. Thus, the aim of this chapter is to establish mathematical theory of MFS
based on Almansi-type decomposition (4.1.3) together with the collocation method when ⌦ is a disk
as a first step for developing mathematical theory in arbitrary region.

We are now in a position to state the main theorems of this chapter.
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Chapter 4 Almansi-type MFS 4.2 Unique existence

Theorem 4.1.2. An approximate solution u(N) for (4.1.1) satisfying (4.1.5) exists uniquely if and
only if RN � ⇢N 6= 1.

Theorem 4.1.3. Suppose that RN�⇢N 6= 1 and R 6= 1 holds. Also suppose that the Fourier coe�cients
{fn}n2Z and {gn}n2Z of f and g can be estimated as follows:

|fn|, |gn| = O

 

✓

⇢

r0

◆|n|
!

(8n 2 Z),

where r0 > ⇢. Then we have

ku� u(N)kL1(⌦) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

O

 

N

✓

⇢

r0

◆N/2
!

(R2/(⇢r0) > 1),

O

✓

N2
⇣ ⇢

R

⌘N
◆

(R2/(⇢r0) = 1),

O

✓

N
⇣ ⇢

R

⌘N
◆

(R2/(⇢r0) < 1).

The contents of this chapter are as follows. In Section 4.2, we prove Theorem 4.1.2, which assures
the unqiue existence of approximate solution. In Section 4.3, the exponential decay of approximation
error, that is, Theorem 4.3 is proved. In Section 4.4, we present several results of numerical experiments,
which exemplify the sharpness of our error estimate. We also compare the conventional scheme (4.1.4)
with the present scheme (4.1.3) based on Almansi-type decomposition. In Section 4.5, we summarize
this chapter and give some concluding remarks.

4.2 Unique existence

In this section, we establish the unique existence of approximate solution u(N) for (4.1.1) of the form
(4.1.3) satisfying (4.1.5) provided that the singular points {yk}Nk=1 and the collocation points {xj}Nj=1

are given as in the previous section.
Since we have

@

@x1,2
E(x� yk) =

1

2⇡

x1,2 � yk1,k2
|x� yk|2 ,

@

@x1,2
(|x|2E(x� yk)) = 2x1,2E(x� yk) + |x|2 1

2⇡

x1,2 � yk1,k2
|x� yk|2 ,

the normal derivative of u(N) at x = (x1, x2)T 2 @⌦ can be computed as

@u(N)

@⌫
(x) =

N
X

k=1



Qp
k

2⇡|x� yk|2
✓

x1 � yk1
x2 � yk2

◆

· 1

|x|
✓

x1

x2

◆

+Qq
k

⇢

2E(x� yk)

✓

x1

x2

◆

· 1

|x|
✓

x1

x2

◆

+
|x|2

2⇡|x� yk|2
✓

x1 � yk1
x2 � yk2

◆

· 1

|x|
✓

x1

x2

◆��

=
N
X

k=1



Qp
k

2⇡

(x/|x| | x� yk)

|x� yk|2 +Qq
k

⇢

2|x|E(x� yk) +
|x|2
2⇡

(x/|x| | x� yk)

|x� yk|2
��

=
N
X

k=1



Qp
k

2⇡
<
✓

x/|x|
x� yk

◆

+Qq
k

⇢

2|x|E(x� yk) +
|x|2
2⇡

<
✓

x/|x|
x� yk

◆��

.
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Especially, on the collocation point xj = ⇢!j�1, we have

@u(N)

@⌫
(xj) =

N
X

k=1



Qp
k

2⇡
<
✓

!j�1

xj � yk

◆

+Qq
k

⇢

2⇢E(xj � yk) +
⇢2

2⇡
<
✓

!j�1

xj � yk

◆��

.

Therefore the collocation equations (4.1.5) are equivalent to the following system of 2N linear equa-
tions:

GQ = b,

where

G =

✓

G11 G12

G21 G22

◆

2 R2N⇥2N ,

G11 = (E(xj � yk) | j, k = 1, 2, . . . , N) 2 RN⇥N ,

G12 =
�

⇢2E(xj � yk)
�

� j, k = 1, 2, . . . , N
�

= ⇢2G11 2 RN⇥N ,

G21 =

✓

1

2⇡
<
✓

!j�1

xj � yk

◆

�

�

�

�

j, k = 1, 2, . . . , N

◆

2 RN⇥N ,

G22 =

✓

2⇢E(xj � yk) +
⇢2

2⇡
<
✓

!j�1

xj � yk

◆

�

�

�

�

j, k = 1, 2, . . . , N

◆

= 2⇢G11 + ⇢2G21 2 RN⇥N ,

Q =

✓

Qp

Qq

◆

2 R2N , Qp,q = (Qp,q
1 , Qp,q

2 , . . . , Qp,q
N )T 2 RN ,

b =

✓

f
g

◆

2 R2N , f = (f(x1), f(x2), . . . , f(xN ))T 2 RN ,

g = (g(x1), g(x2), . . . , g(xN ))T 2 RN .

We here note that each matrix Gµ⌫ is circulant. Indeed, we have

(G11)jk = E(xj � yk) =
1

2⇡
log |⇢!j�1 �R!k�1| = 1

2⇡
log |⇢�R!k�j |,

(G12)jk = ⇢2(G11)jk =
⇢2

2⇡
log |⇢�R!k�j |,

(G21)jk =
1

2⇡
<
✓

!j�1

xj � yk

◆

=
1

2⇡
<
✓

1

⇢�R!k�j

◆

,

(G22)jk = 2⇢(G11)jk + ⇢2(G21)jk =
⇢

⇡
log |⇢�R!k�j |+ ⇢2

2⇡
<
✓

1

⇢�R!k�j

◆

.

Therefore, using the discrete Fourier transform, these matrices can be diagonalized as follows:

W�1GjkW = diag [�jk0, �jk1, . . . , �jk,N�1] ,

where W =

✓

1p
N

!(j�1)(k�1)

�

�

�

�

j, k = 1, 2, . . . , N

◆

denotes the discrete Fourier transform, and

�11l =
N�1
X

m=0

!ml 1

2⇡
log |⇢�R!m|, �12l = ⇢2�11l = ⇢2

N�1
X

m=0

!ml 1

2⇡
log |⇢�R!m|,

�21l =
N�1
X

m=0

!ml 1

2⇡
<
✓

1

⇢�R!m

◆

,
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�22l = 2⇢�11l + ⇢2�21l = 2⇢
N�1
X

m=0

!ml 1

2⇡
log |⇢�R!m|+ ⇢2

N�1
X

m=0

!ml 1

2⇡
<
✓

1

⇢�R!m

◆

.

Defining two auxiliary functions 'l and  l as

'l(z) =
N�1
X

m=0

!mlE(z �R!m),  l(z) =
N�1
X

m=0

!ml

2⇡
<
✓

z/|z|
z �R!m

◆

for each l = 1, 2, . . . , N , we have

(4.2.1) �11l = 'l(⇢), �12l = ⇢2'l(⇢), �21l =  l(⇢), �22l = 2⇢'l(⇢) + ⇢2 l(⇢).

Consequently, we obtain

W̃�1GW̃ =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�110 �120
�111 �121

. . .
. . .

�11,N�1 �12,N�1

�210 �220
�211 �221

. . .
. . .

�21,N�1 �22,N�1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where

W̃ =

✓

W O
O W

◆

.

Using the permutation matrix

P =
�

e1 eN+1 e2 eN+2 · · · eN e2N
�

,

we have

P�1W̃�1GW̃P = diag (�0,�1, · · · ,�N�1) , �l =

✓

�11l �12l
�21l �22l

◆

,

thus

detG =
N�1
Y

l=0

det�l.

Therefore G is nonsingular if and only if all �l’s are nonsingular. The determinant of �l can be
computed as

det�l = �11l�22l � �12l�21l = 'l(⇢)(2⇢'l(⇢) + ⇢2 l(⇢))� ⇢2'l(⇢) l(⇢) = 2⇢'l(⇢)
2.

Therefore G is nonsingular if and only if all 'l(⇢) are not equal to 0.
In order to see the precise nature of 'l and  l, the following lemma is useful.

Lemma 4.2.1. For all z = rei✓ (r 2 [0, R[ , ✓ 2 R), we have

'l(z) =

8

>

>

<

>

>

:

1

2⇡
log |zN �RN | (l = 0),

�N

4⇡

X

n⌘l

1

|n|
⇣ r

R

⌘|n|
ein✓ (l = 1, . . . , N � 1).
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Also, for all z = rei✓ (r 2 ]0, R[ , ✓ 2 R), we have

 l(z) = � N

4⇡r

X

n⌘l
n2Z\{0}

⇣ r

R

⌘|n|
ein✓.

Proof. We first prove formulae for 'l. When l 6= 0, we have

'l(z) =
N�1
X

m=0

E(z �R!m) =
1

2⇡

N�1
X

m=0

log |z �R!m| = 1

2⇡
log

�

�

�

�

�

N�1
Y

m=0

(z �R!m)

�

�

�

�

�

=
1

2⇡
log |zN �RN |.

When l = 1, . . . , N � 1, using the expansion

log |z �R!m| = log
�

�

�

�R!m
⇣

1� z

R!m

⌘

�

�

�

= logR+ log
�

�

�

1� z

R!m

�

�

�

= logR+ < log
⇣

1� z

R!m

⌘

= logR�<
1
X

n=1

1

n

⇣ z

R!m

⌘n

= logR�<
1
X

n=1

1

n

⇣ r

R

⌘n

ein✓!�mn

= logR�
1
X

n=1

1

n

⇣ r

R

⌘n ein✓!�mn + e�in✓!mn

2

= logR�
X

n2Z\{0}

1

2|n|
⇣ r

R

⌘|n|
ein✓!�mn

for z = rei✓, we have

'l(z) =
N�1
X

m=0

!ml 1

2⇡
log |z �R!m|

=
1

2⇡

N�1
X

m=0

!ml

2

4logR�
X

n2Z\{0}

1

2|n|
⇣ r

R

⌘|n|
ein✓!�mn

3

5

= � 1

4⇡

X

n2Z\{0}

1

|n|
⇣ r

R

⌘|n|
ein✓

N�1
X

m=0

!m(l�n) = �N

4⇡

X

n⌘l

1

|n|
⇣ r

R

⌘|n|
ein✓.

Next we prove a formula for  l. We can expand the kernel function as

<
✓

z/|z|
z �R!m

◆

= <
✓

ei✓

rei✓ �R!m

◆

= <
✓

� 1

R!m

ei✓

1� rei✓/R!m

◆

= <
 

� ei✓

R!m

1
X

n=0

✓

rei✓

R!m

◆n
!

= <
 

�1

r

1
X

n=1

⇣ r

R

⌘n

ein✓!�mn

!

= � 1

2r

X

n2Z\{0}

⇣ r

R

⌘|n|
ein✓!�mn.
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Therefore, we obtain

 l(z) =
N�1
X

m=0

!ml

2⇡

2

4� 1

2r

X

n2Z\{0}

⇣ r

R

⌘|n|
ein✓!�mn

3

5

= � 1

4⇡r

X

n2Z\{0}

⇣ r

R

⌘|n|
ein✓

N�1
X

m=0

!m(l�n) = � N

4⇡r

X

n⌘l
n2Z\{0}

⇣ r

R

⌘|n|
ein✓.

From this lemma, we have

'0(⇢) =
1

2⇡
log |⇢N �RN |, 'l(⇢) = �N

4⇡

X

n⌘l

1

|n|
⇣ ⇢

R

⌘|n|
< 0 (l = 1, . . . , N � 1).

Hence, we can conclude that G is nonsingular if and only if RN �⇢N 6= 1 holds, which proves Theorem
4.1.2.

4.3 Error analysis

In this section, we give estimate for approximation error, which shows that the approximation error
decays exponentially with respect to N when the boundary data f and g are analytic.

4.3.1 Exact solution for (4.1.1)

We here write down the exact solution u for (4.1.1) by virtue of Fourier expansion. Since p and q are
harmonic in the disk D⇢, they have the following complex Fourier expansions:

p(r, ✓) =
X

n2Z
an

✓

r

⇢

◆|n|
ein✓, q(r, ✓) =

X

n2Z
bn

✓

r

⇢

◆|n|
ein✓

for 0  r  ⇢ and ✓ 2 R. Then the exact solution have the following form:

u(r, ✓) = p(r, ✓) + r2q(r, ✓) =
X

n2Z
(an + r2bn)

✓

r

⇢

◆|n|
ein✓

for 0  r  ⇢ and ✓ 2 R. The coe�cients {an}n2Z and {bn}n2Z are determined by the boundary
conditions. From the Dirichlet boundary condition, we have

f(✓) =
X

n2Z
ane

in✓ +
X

n2Z
⇢2bne

in✓,

that is,

an + ⇢2bn =
1

2⇡

Z 2⇡

0

f(✓)e�in✓ d✓ = fn.
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Concerning the Neumann boundary condition, since the normal derivative of u can be computed as

@u

@⌫
=

@u

@r

�

�

�

�

r=⇢

=
@

@r

2

4a0 +
X

n2Z\{0}

an
⇢|n|

r|n|ein✓ +
X

n2Z

bn
⇢|n|

r|n|+2ein✓

3

5

�

�

�

�

�

�

r=⇢

=
1

⇢

X

n2Z\{0}
an|n|ein✓ + ⇢

X

n2Z
bn(|n|+ 2)ein✓

=
1

⇢

X

n2Z
an|n|ein✓ + ⇢

X

n2Z
bn(|n|+ 2)ein✓,

we obtain

an|n|
⇢

+ ⇢bn(|n|+ 2) =
1

2⇡

Z 2⇡

0

g(✓)e�in✓ d✓ = gn (n 2 Z \ {0}).

Using the above relations, we can write down {an}n2Z and {bn}n2Z explicitly in terms of the Fourier
coe�cients of f and g as follows:

an =

✓

1 +
|n|
2

◆

fn � ⇢

2
gn, bn =

1

2⇢2
(⇢gn � |n|fn) (n 2 Z).

4.3.2 Explicit form of the approximate solution

Let G0 = P�1GP and W 0 = P�1W̃P , that is,

W 0 =

0

B

B

B

B

B

@

I I I · · · I
I !I !2I · · · !N�1I
I !2I !4I · · · !2(N�1)I
...

...
...

...
I !(N�1)I !2(N�1)I · · · !(N�1)(N�1)I

1

C

C

C

C

C

A

,

where I denotes the 2⇥ 2 identity matrix. Then we have

P�1W̃�1GW̃P = (W 0)�1G0W 0,

therefore we have

(4.3.1) (W 0)�1G0W 0 = diag (�0,�1, . . . ,�N�1) .

Using these matrices, the linear system GQ = b could be transformed into the following one:

G0Q0 = b0,

where

Q0 = P�1Q = (Qp
1, Q

q
1, Q

p
2, Q

q
2, . . . , Q

p
N , Qq

N )
T
,

b0 = P�1f = (f(x1), g(x1), f(x2), g(x2), . . . , f(xN ), g(xN ))T .

We can represent (G0)�1 explicitly from (4.3.1) as follows:

(G0)�1 =
�

[(G0)�1]kj
�

� k, j = 1, 2, . . . , N
�

, [(G0)�1]kj =
1

N

N
X

l=1

!(k�j)(l�1)��1
l�1 2 R2⇥2.
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If we write the boundary data f and g in the form of Fourier series expansion

f(✓) =
X

n2Z
fne

in✓, g(✓) =
X

n2Z
gne

in✓,

then the coe�cients {Qp,q
k }Nk=1 are given as follows:

 

Qp
k

Qq
k

!

=
N
X

j=1

 

1

N

N
X

l=1

!(k�j)(l�1)��1
l�1

!

X

n2Z

✓

fn
gn

◆

!(j�1)n

=
X

n2Z
!(k�1)n��1

n

✓

fn
gn

◆

.

Therefore the approximate solution can be written as

u(N)(x) =
N
X

k=1

�

Qp
k + |x|2Qq

k

�

E(x� yk) =
N
X

k=1

E(x� yk)
�

1 |x|2�
 

Qp
k

Qq
k

!

=
N
X

k=1

E(x� yk)
�

1 |x|2�
X

n2Z
!(k�1)n��1

n

✓

fn
gn

◆

=
X

n2Z
'n(x)

�

1 |x|2���1
n

✓

fn
gn

◆

=
X

n2Z

'n(x)

det�n

⇥

�22,nfn � �12,ngn + |x|2 (��21,nfn + �11,ngn)
⇤

.

Therefore we can evaluate the error ku� u(N)kL1(⌦) as

ku� u(N)kL1(⌦) = sup
0r<⇢
✓2R

|u(rei✓)� u(N)(rei✓)|

= sup
0r<⇢
✓2R

�

�

�

�

�

X

n2Z

 

an

✓

r

⇢

◆|n|
ein✓ � (�22,nfn � �12,ngn)

'n(rei✓)

det�n

!

+r2
X

n2Z

 

bn

✓

r

⇢

◆|n|
ein✓ � (��21,nfn + �11,ngn)

'n(rei✓)

det�n

!

�

�

�

�

�

= sup
0r<⇢
✓2R

�

�

�

�

�

X

n2Z
fn

 

✓

1 +
|n|
2

◆✓

r

⇢

◆|n|
ein✓ � �22,n

'n(rei✓)

det�n

!

+
X

n2Z
gn

 

�⇢

2

✓

r

⇢

◆|n|
ein✓ + �12,n

'n(rei✓)

det�n

!

+r2
X

n2Z
fn

 

� |n|
2⇢2

✓

r

⇢

◆|n|
ein✓ + �21,n

'n(rei✓)

det�n

!

+r2
X

n2Z
gn

 

1

2⇢

✓

r

⇢

◆|n|
ein✓ � �11,n

'n(rei✓)

det�n

!

�

�

�

�

�

.
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Since the 1st and 2nd terms are harmonic, and the 3rd and 4th terms are of the form r2 ⇥ harmonic,
the above can be bounded by

(4.3.2)
X

n2Z

�|fn|g1n + |gn|g2n + ⇢2|fn|g3n + ⇢2|gn|g4n
�

,

where gjn = sup✓2R ↵jn(✓) and

↵1n(✓) =

�

�

�

�

✓

1 +
|n|
2

◆

ein✓ � �22,n
'n(⇢ei✓)

det�n

�

�

�

�

, ↵2n(✓) =

�

�

�

�

�⇢
2
ein✓ + �12,n

'n(⇢ei✓)

det�n

�

�

�

�

,

↵3n(✓) =

�

�

�

�

� |n|
2⇢2

ein✓ + �21,n
'n(⇢ei✓)

det�n

�

�

�

�

, ↵4n(✓) =

�

�

�

�

1

2⇢
ein✓ � �11,n

'n(⇢ei✓)

det�n

�

�

�

�

Firstly, we give global estimates on gjn.

Lemma 4.3.1. There exists some positive constant C = C(⇢, R) such that

g1n, g3n  C(1 + |n|), g2n, g4n  C

hold for all n 2 Z.

Proof. Note that gjn = gjm holds if n ⌘ m. Therefore we only have to show that the desired inequalities
hold for n 2 ⇤0

N .
We first show the estimate on g1n. By definition we have

|↵1n(✓)|  1 +
|n|
2

+

�

�

�

�

�22n
'n(⇢ei✓)

det�n
v

�

�

�

�

for all ✓ 2 R. Since �22n = 2⇢'n(⇢) + ⇢2 n(⇢) and det�n = 2⇢'n(⇢)2, the 3rd term is bounded as

�

�

�

�

�22n
'n(⇢ei✓)

det�n

�

�

�

�


✓

1 +
⇢

2

| n(⇢)|
|'n(⇢)|

◆ |'n(⇢ei✓)|
|'n(⇢)| .

When n = 0, we evaluate |'0(⇢)|, | 0(⇢)|, |'0(⇢ei✓)| as in the following. As to |'0(⇢)|, we know
that |'0(⇢)| 6= 0 and

|'0(⇢)| =
�

�

�

�

1

2⇡
log(⇢N �RN )

�

�

�

�

=
1

2⇡

�

�

�

�

N logR+ log
⇣

1�
⇣ ⇢

R

⌘⌘N
�

�

�

�

�! 1 as N ! 1,

which implies that there exists some positive constant C 0 such that |'0(⇢)| � C 0 holds. Next, | 0(⇢)|
can be bounded straightforwardly as

| 0(⇢)| =
�

�

�

�

�

� N

4⇡⇢
· 2

1
X

l=1

⇣ ⇢

R

⌘lN
�

�

�

�

�

=

�

�

�

�

� N

2⇡⇢

(⇢/R)N

1� (⇢/R)N

�

�

�

�

 CN
⇣ ⇢

R

⌘N

.

Finally, concerning |'0(⇢ei✓)|, we have

|'0(⇢e
i✓)| =

�

�

�

�

1

2⇡
log |(⇢ei✓)N �RN |

�

�

�

�

 1

2⇡
max

�| log(RN � ⇢N )|, | log(RN + ⇢N )| .

These estimates lead us to

|↵10(✓)|  1 +

✓

1 + CN
⇣ ⇢

R

⌘N
◆

max

⇢

1,
| log(RN + ⇢N )|
| log(RN � ⇢N )|

�

 C.
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When n 2 ⇤0
N \ {0}, we have

| n(⇢)| =
�

�

�

�

�

� N

4⇡⇢

X

m⌘n

⇣ ⇢

R

⌘|m|
�

�

�

�

�

 CN
⇣ ⇢

R

⌘|n|
,

|'n(⇢)| =
�

�

�

�

�

�N

4⇡

X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|
�

�

�

�

�

� N

4⇡|n|
⇣ ⇢

R

⌘|n|
,

|'n(⇢e
i✓)| =

�

�

�

�

�

�N

4⇡

X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|
eim✓

�

�

�

�

�

 N

4⇡

X

m⌘n

1

|m|
⇣⇢

r

⌘|m|
= |'n(⇢)|.

Therefore we obtain

|↵1n(✓)|  1 +
|n|
2

+ (1 + C|n|)  C(1 + |n|).

Using the estimate on g1n and the relations (4.2.1), we have

|↵2n(✓)|  ⇢

2
+
⇢

2

|'n(⇢ei✓)|
|'n(⇢)| , |↵3n(✓)|  |n|

2⇢2
+

1

2⇢

| n(⇢)|
|'n(⇢)|

|'n(⇢ei✓)|
|'n(⇢)| ,

|↵4n(✓)|  1

2⇢
+

1

2⇢

|'0(⇢ei✓)|
|'n(⇢)| .

Hence we have the desired global bounds.

We next give more precise estimates on gjn for 0  n  N/2.

Lemma 4.3.2. There exists some positive constant C = C(⇢, R) such that

g10, g30  C
⇣ ⇢

R

⌘N

, g20, g40  CN�1
⇣ ⇢

R

⌘N

,

and

g1n, g3n  Cn
⇣ ⇢

R

⌘N�2n

, g2n, g4n  Cn

N � n

⇣ ⇢

R

⌘N�2n

hold for 1  n  N/2 with su�ciently large N .

Proof. We first note that if N is su�ciently large then |'0(⇢)|�1  C/(N | logR|) holds.
Firstly, we show estimates on g1n. When n = 0, we have

|↵10(✓)| =
�

�

�

�

1� �220
'0(⇢ei✓)

det�0

�

�

�

�

=
|2⇢'0(⇢)2 � (2⇢'0(⇢) + ⇢2 0(⇢))'0(⇢ei✓)|

2⇢'0(⇢)2

=
|2⇢'0(⇢)('0(⇢)� '0(⇢ei✓))� ⇢2 0(⇢)'0(⇢ei✓)|

2⇢'0(⇢)2

 |'0(⇢)� '0(⇢ei✓)|
|'0(⇢)| +

⇢

2

| 0(⇢)|
|'0(⇢)|

|'0(⇢ei✓)|
|'0(⇢)| .

The previous estimates yields the following bound for the 2nd term:

⇢

2

| 0(⇢)|
|'0(⇢)|

|'0(⇢ei✓)|
|'0(⇢)|  C

⇣ ⇢

R

⌘N

.
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As to the 1st term, we have

|'0(⇢)� '0(⇢e
i✓)| =

�

�

�

�

1

2⇡
log |⇢N �RN |� 1

2⇡
log |(⇢ei✓)N �RN |

�

�

�

�

=
1

2⇡

�

�

�

�

�

�
1
X

l=1

1

l

⇣ ⇢

R

⌘lN

+
1
X

l=1

1

l

⇣ ⇢

R

⌘lN

< �

eilN✓
�

�

�

�

�

�

 1

⇡

1
X

l=1

1

l

⇣ ⇢

R

⌘lN

 C
⇣ ⇢

R

⌘N

.

Therefore we obtain

|↵10(✓)|  C
⇣ ⇢

R

⌘N

, or g10  C
⇣ ⇢

R

⌘N

.

When 1  n  N/2, since �22n = 2⇢'n(⇢) + ⇢2 n(⇢) and det�n = 2⇢'n(⇢)2, we have

✓

1 +
|n|
2

◆

ein✓ � �22n
'n(⇢ei✓)

det�n

=
1

2⇢'n(⇢)2



2⇢'n(⇢)
2

✓

1 +
|n|
2

◆

ein✓ � (2⇢'n(⇢) + ⇢2 n(⇢))'n(⇢e
i✓)

�

=
1

2⇢'n(⇢)2



2⇢'n(⇢)

✓

'n(⇢)

✓

1 +
|n|
2

◆

ein✓ � 'n(⇢e
i✓)

◆

� ⇢2 n(⇢)'n(⇢e
i✓)

| {z }

=:(⇤)

�

The equation (⇤) within the brackets can be computed as follows:

(⇤) = 2⇢ · �N

4⇡

X

l⌘n

1

|l|
⇣ ⇢

R

⌘|l|

| {z }

='n(⇢)

⇥


�N

4⇡

X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|

| {z }

='n(⇢)

✓

1 +
|n|
2

◆

ein✓ � �N

4⇡

X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|
eim✓

| {z }

='n(⇢ei✓)

�

� ⇢2
�N

4⇡⇢

X

l⌘n

⇣ ⇢

R

⌘|l|

| {z }

= n(⇢)

�N

4⇡

X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|
eim✓

| {z }

='n(⇢ei✓)

=
⇢N2

8⇡2

X

l⌘n

1

|l|
⇣ ⇢

R

⌘|l| X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|
(ein✓ � eim✓)

+
⇢N2

16⇡2

X

l⌘n

1

|l|
⇣ ⇢

R

⌘|l| X

m⌘n

|n|
|m|

⇣ ⇢

R

⌘|m|
ein✓ � ⇢N2

16⇡2

X

l⌘n

⇣ ⇢

R

⌘|l| X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|
eim✓

=
⇢N2

8⇡2

X

l⌘n

1

|l|
⇣ ⇢

R

⌘|l| X

m⌘n

1

|m|
⇣ ⇢

R

⌘|m|
(ein✓ � eim✓) · · · · · · 1�

+
⇢N2

16⇡2

X

l,m⌘n
(l,m) 6=(n,n)

1

|m|
⇣ ⇢

R

⌘|l|+|m|
 |n|
|l| e

in✓ � eim✓
�

. · · · · · · 2�
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1� can be bounded as follows:

| 1�|  ⇢N2

8⇡2

X

l⌘n

1

|l|
⇣ ⇢

R

⌘|l|

�

�

�

�

�

�

�

X

m⌘n
m 6=n

1
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⇣ ⇢

R
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�

�

�

�

�

�
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n

⇣ ⇢

R
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�

�
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�

�

1
X
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⇢

1
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⇣ ⇢

R
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+
1
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⇣ ⇢

R
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�

�

�

�

�
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n

⇣ ⇢

R

⌘n 1
X
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⇢

1

tN + n

⇣ ⇢

R

⌘tN+n

+
1

tN � n

⇣ ⇢

R

⌘tN�n
�

 C
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n(N � n)

⇣ ⇢

R

⌘N
✓

1 +
⇣ ⇢

R

⌘2n
◆ 1
X

t=0

⇣ ⇢

R

⌘tN

 C
N2

n(N � n)

⇣ ⇢

R

⌘N

.

2� is decomposed into 3 parts as follows:

2� =
⇢N2

16⇡2

2

4

⇣ ⇢

R

⌘n X

m2I(n)

1

|m|
⇣ ⇢

R

⌘|m|
(ein✓ � eim✓) · · · · · · 3�

1

|n|
⇣ ⇢

R

⌘|n| X

l2I(n)

✓ |n|
|l| � 1

◆

⇣ ⇢

R

⌘|l|
ein✓ · · · · · · 4�

X

l2I(n)

⇣ ⇢

R

⌘|l| X

m2I(n)

1

|m|
⇣ ⇢

R

⌘|m|
 |n|
|l| e

in✓ � eim✓

�

3

5 . · · · · · · 5�

Each term could be estimated as in the following:

| 3�| =
⇣ ⇢

R

⌘n
�

�

�

�

�

1
X

t=1

⇢

1

tN + n

⇣ ⇢

R

⌘tN+n

(ein✓ � ei(tN+n)✓)

+
1

tN � n

⇣ ⇢

R

⌘tN�n

(ein✓ � ei(tN�n)✓)

�

�

�

�

�

 2
⇣ ⇢

R

⌘n 1
X

t=1



1

tN + n

⇣ ⇢

R

⌘tN+n

+
1

tN � n

⇣ ⇢

R

⌘tN�n
�

=
2

N � n

⇣ ⇢

R

⌘n 1
X

t=1



N � n

tN + n

⇣ ⇢

R

⌘tN+n

+
N � n

tN � n

⇣ ⇢

R

⌘tN�n
�

 2

N � n

⇣ ⇢

R

⌘N
✓

1 +
⇣ ⇢

R

⌘2n
◆ 1
X

t=1

⇣ ⇢

R

⌘(t�1)N

 C1

N � n

⇣ ⇢

R

⌘N

,

| 4�| = 1

n

⇣ ⇢

R

⌘n
�

�

�

�

�

1
X

s=1

⇢✓

n

sN + n
� 1

◆

⇣ ⇢

R

⌘sN+n

+

✓

n

sN � n
� 1

◆

⇣ ⇢

R

⌘sN�n
�

�

�

�

�

�

 1

n

⇣ ⇢

R

⌘n 1
X

s=1



⇣ ⇢

R

⌘sN+n

+
⇣ ⇢

R

⌘sN�n
�

 C2

n

⇣ ⇢

R

⌘N

,
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| 5�| =
�

�

�

�

�

�

X

l2I(n)

⇣ ⇢

R

⌘|l|
" 1
X

t=1

⇢

1

tN + n

⇣ ⇢

R

⌘tN+n
✓ |n|
|l| e

in✓ � ei(tN+n)✓

◆

+
1

tN � n

⇣ ⇢

R

⌘tN�n
✓ |n|
|l| e

in✓ � ei(tN�n)✓

◆��

�

�

�

�

 1

N � n

⇣ ⇢

R

⌘N�n X

l2I(n)

⇣ ⇢

R

⌘|l|
✓ |n|
|l| + 1

◆⇢

⇣ ⇢

R

⌘2n

+ 1

� 1
X

t=1

⇣ ⇢

R

⌘(t�1)N

 C3

N � n

⇣ ⇢

R

⌘N�n X

l2I(n)

⇣ ⇢

R

⌘|l|
 C3

N � n

⇣ ⇢

R

⌘2(N�n)

.

Combining the estimates on 3�, 4�, and 5�, we have

2�  ⇢N2

16⇡2



C1

N � n

⇣ ⇢

R

⌘N

+
C2

n

⇣ ⇢

R

⌘N

+
C3

N � n

⇣ ⇢

R

⌘2(N�n)
�

 C



N2

N � n

⇣ ⇢

R

⌘N

+
N2

n

⇣ ⇢

R

⌘N

+
N2

N � n

⇣ ⇢

R

⌘2(N�n)
�

.

Therefore we have

| 1�|+ | 2�|

 C



N2

n(N � n)

⇣ ⇢

R

⌘N

+
N2

N � n

⇣ ⇢

R

⌘N

+
N2

n

⇣ ⇢

R

⌘N

+
N2

N � n

⇣ ⇢

R

⌘2(N�n)
�

.

Hence we obtain

↵1n(✓) 
C



N2

n(N � n)

⇣ ⇢

R

⌘N

+
N2

N � n

⇣ ⇢

R

⌘N

+
N2

n

⇣ ⇢

R

⌘N

+
N2

N � n

⇣ ⇢

R

⌘2(N�n)
�

N2

16n2⇡2

⇣ ⇢

R

⌘2n

 C



n2

n(N � n)

⇣ ⇢

R

⌘N�2n

+
n2

N � n

⇣ ⇢

R

⌘N�2n

+ n
⇣ ⇢

R

⌘N�2n

+
n2

N � n

⇣ ⇢

R

⌘2(N�2n)
�

= C



n2

n(N � n)
+

n2

N � n
+ n+

n2

N � n

⇣ ⇢

R

⌘N�2n
�

⇣ ⇢

R

⌘N�2n

 Cn
⇣ ⇢

R

⌘N�2n

,

that is, we have shown that

g1n = sup
✓2R

↵1n(✓)  Cn
⇣ ⇢

R

⌘N�2n

.

We next show the estimate on g2n. By definition, we have

|↵2n(✓)| =
�

�

�

�

�⇢

2
ein✓ + ⇢2'n(⇢)

'n(⇢ei✓)

2⇢'n(⇢)2

�

�

�

�

=
⇢

2

�

�

�

�

ein✓ � 'n(⇢ei✓)

'n(⇢)

�

�

�

�

=
⇢

2

|'n(⇢)ein✓ � 'n(⇢ei✓)|
|'n(⇢)| .

Therefore we find the following estimate from [49, Lemma 2]:

g20  CN�1
⇣ ⇢

R

⌘N

, g2n  Cn

N � n

⇣ ⇢

R

⌘N�2n
✓

1  n  N

2

◆

.
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By definition, we have

↵3n(✓) =

�

�

�

�

� |n|
2⇢2

ein✓ +  n(⇢)
'n(⇢ei✓)
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�

�

�

=
1

2⇢2'n(⇢)2
�
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When n = 0, we have

↵30(✓) =
1
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R
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.

When 1  n  N/2, we have
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X
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1
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X
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X
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1
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Therefore, we can estimate ↵3n(✓) in the same say for ↵1n(✓) as follows:

↵3n(✓)  Cn
⇣ ⇢

R

⌘N�2n

, or g3n  Cn
⇣ ⇢

R

⌘N�2n

.

We finally show the estimate on g4n. By definition, we have

↵4n(✓) =

�

�

�

�

1

2⇢
ein✓ � 'n(⇢)

'n(⇢ei✓)

2⇢'n(⇢)2
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1

2⇢
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�
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ein✓ � 'n(⇢ei✓)

'n(⇢)

�

�

�
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,

which can be bounded as ↵2n(✓), that is,

↵40(✓)  CN�1
⇣ ⇢

R

⌘N

, ↵4n(✓)  Cn

N � n

⇣ ⇢

R

⌘N�2n
✓

1  n  N

2

◆

.

We then give the error estimate here. Using the symmetricity gjn = gj,�n, we have by (4.3.2) that

ku� u(N)kL1 
X

n2Z

�|fn|g1n + |gn|g2n + ⇢2|fn|g3n + ⇢2|gn|g4n
�

= 2(|f0|g10 + |g0|g20 + ⇢2|f0|g30 + ⇢2|g0|g40) · · · h1i

+ 2

[N/2]
X

n=1

�|fn|g1n + |gn|g2n + ⇢2|fn|g3n + ⇢2|gn|g4n
� · · · h2i

+ 2
1
X

n=[N/2]+1

�|fn|g1n + |gn|g2n + ⇢2|fn|g3n + ⇢2|gn|g4n
�

. · · · h3i

h1i can be estimated as

h1i  C
⇣ ⇢

R

⌘N

.
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h2i is estimated as in the following way:

h2i  C

[N/2]
X
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⇣ ⇢
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⌧m 

8

>

>

>

>

<

>

>

>

>

:

⌧m

⌧ � 1
(if ⌧ > 1),

m (if ⌧ = 1),

1
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for ⌧ = R2/(⇢r0), we have
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CN

✓

⇢

r0
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(R2/⇢r0 > 1),

CN2
⇣ ⇢

R

⌘N

(R2/⇢r0 = 1),

CN
⇣ ⇢

R
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(R2/⇢r0 < 1).

Finally, the last term h3i can be estimated as

h3i = C
1
X

n=[N/2]+1

✓

⇢

r0

◆n

 C

✓

⇢

r0

◆N/2

.

Hence we have shown Theorem 4.1.3.

4.4 Numerical experiments

We here present some results of numerical experiments.

4.4.1 ⌦: disk

We first consider the case where ⌦ is a disk D⇢, where ⇢ = 1. We adopt the following polynomials as
the boundary conditions:

(4.4.1) f(x) = x4
1 � x4

2 (x = (x1, x2)
T), g(x) = 4(x3

1,�x3
2)

T · ⌫.

Then, it can be easily checked that u(x) = x4
1 � x4

2 is the exact solution for (4.1.1). We define R equal
to 2, and the result is depicted in Figure 4.1. It can be observed that our error estimate grasps the
behavior of approximation error very well. Moreover, it can be found that the order of convergence
for the present scheme is higher than that for the conventional scheme, which yields the di↵erence
in accuracy. In order to investigate the reason for such a phenomenon, it would be expected that
backward error analysis should be done in future work.

4.4.2 ⌦: interior simply-connected region surrounded by polynomial curve

We next consider the case where the boundary � is given by a polynomial curve  l,r, where r = 8,
l = 4, and  l,r is defined in (3.5.2). It is natural to expect that theoretical error analysis could be done
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Figure 4.1: Numerical experiment with boundary data f and g are given by (4.4.1), and the parameter
R = 2. The blue colored line and the orange colored one represent numerical solutions obtained by
the conventional scheme (4.1.4) and the present scheme (4.1.3), respectively, and the gradient of the
hypotenuse of the red colored triangle is the theoretical order of convergence.

for the present scheme as we have shown in Chapters 2 and 3. Therefore, we here present numerical
experiment for the case where ⌦ is the interior simply-connected region surrounded by polynomial
curve, and verify numerically that the same error estimate could be obtained. The parameter R is
taken to be equal to 1.2, and the boundary conditions are given by (4.4.1). The result of numerical
experiment is depicted in Figure 4.2. We can also observe in this situation that the accuracy of
approximate solution by present scheme is better than that by conventional scheme. Moreover, its
convergence rate is what we can expect from theoretical analysis of MFS and DSM in Chapters 2 and
3. Therefore, it should be expected that theoretical convergence analysis could be done in the case
where ⌦ is bounded by an regular analytic Jordan curve.

4.5 Concluding remarks

In this chapter, we have considered a typical boundary value problem for the biharmonic equation, and
its approximate solution by MFS based on the Almansi-type decomposition of biharmonic function.
As a result, we have proved that an approximate solution actually exists uniquely except for at most
one value of N , and an approximation error decays exponentially with respect to N . Numerical results
have supported our error analysis.

We here note that Almansi-type decomposition can also hold for polyharmonic function, therefore,
our approach in this chapter can be applied to boundary value problems for the polyharmonic equa-
tions. Possible direction of the future research can be listed as in the following. The first topic is to
extend the results in this chapter to general Jordan regions. Numerical results in section 4.4 strongly
imply that theoretical error estimate such as in Chapters 2 and 3 also hold for present scheme. The
second topic is to compute numerically the stream function for Stokes flow. Since the stream function
for Stokes flow satisfies the biharmonic equation, there exists possibility to apply the present scheme
to Stokes flow, which enables us to understand the aspect in the Stokes fluid.
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Figure 4.2: Numerical experiment with boundary data f and g are given by (4.4.1), and the parameter
R = 1.2. The blue colored line and the orange colored one represent numerical solutions obtained by
the conventional scheme (4.1.4) and the present scheme (4.1.3), respectively, and the gradient of the
hypotenuse of the red colored triangle is the expected order of convergence.
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Chapter 5

Method of fundamental solutions
with weighted average condition
and dummy points

Abstract

The aim of this chapter is to develop the method of fundamental solutions using weighted
average condition and dummy points. We accomplish mathematical analysis, a unique
existence of an approximate solution and an exponential decay of the approximation er-
ror, for potential problem in disk, and show some numerical experiments which exemplify
sharpness of our error estimate. This chapter is based on the following submitted paper:

• K. Sakakibara and S. Yazaki, Method of fundamental solutions with weighted average
condition and dummy points, submitted revised vertion to JSIAM Lett.

5.1 Introduction and main result

Let ⌦ be a Jordan region with smooth boundary @⌦. Then we consider the following potential problem:

(5.1.1)

(

4u = 0 in ⌦,

u = f on @⌦,

where f is a given datum. In this chapter, we develop new formultation of the method of fundamental
solutions (MFS), which is numerical solver for linear homogeneous partial di↵erential equations, by
introducing dummy points and weighted average condition. Namely, we seek an approximate solution
u(N) for the problem (5.1.1) of the form

(5.1.2) u(N)(x) = Q0 +
N
X

j=1

QjEj(x), Ej(x) = E(x� yj)� E(x� zj), E(x) =
1

2⇡
log |x|,

where {yj}Nj=1 and {zj}Nj=1 are the singular and dummy points, which are taken in C \⌦, respectively,
and E is the fundamental solution of the Laplace operator 4. The coe�cients {Q0}Nj=0 are determined
by the collocation method and weighted average condition, that is, choosing the collocation points
{xj}Nj=1, we solve the following linear system:

(5.1.3a) u(N)(xj) = f(xj), j = 1, 2, . . . , N
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with the weighted average condition:

(5.1.3b)
N
X

j=1

QjHj = 0, Hj 2 R (j = 1, 2, . . . , N).

In this chapter, we consider the case where ⌦ is a disk D⇢ with radius ⇢ having the origin as its center,
and choose the collocation, singular and dummy points as follows:

(5.1.4) xj = ⇢!j�1, yj = R!j�1, zj = R�!j�1, j = 1, 2, . . . , N,

where R > ⇢, � > 1 and ! = exp(2⇡i/N). The following are main results of this chapter.

Theorem 5.1.1. Suppose that the collocation, singular and dummy points are chosen as in (5.1.4).
Then, an approximate solution of the form (5.1.2) satisfying the collocation equations (5.1.3a) and

the weighted average condition (5.1.3b) actually exists uniquely if and only if the average
PN

j=1 Hj of

weights {Hj}Nj=1 is not equal to 0.

Theorem 5.1.2. In addition to the hypothesis in Theorem 5.1.1, suppose that the boundary f is real
analytic. Namely, there exists some constant b 2 ]0, 1[ such that the Fourier coe�cients {fn} of the
boundary data f can be estimated as follows:

|fn| = O(b|n|) (n 2 Z).

Then there exists some positive constant C, which depends on
�

�

�

PN
i=1 Hi

�

�

�

, such that the following error

estimate holds:

sup
x2⌦

�

�

�

u(x)� u(N)(x)
�

�

�



8

>

>

>

>

<

>

>

>

>

:

C
⇣ ⇢

R

⌘N

if bR2/⇢2 < 1,

CN
⇣ ⇢

R

⌘N

if bR2/⇢2 = 1,

CbN/2 if bR2/⇢2 > 1.

The contents of this chapter are as follows. We prove the unique existence (Theorem 5.1.1) and
exponential decay of an approximate solution (Theorem 5.1.2) in Sections 5.2 and 5.3, respectively.
In Section 5.4, we show results of numerical experiments together with that of condition numbers,
which imply that we should place the dummy points not so far from the boundary @⌦ of ⌦. We finally
conclude this chapter in Section 5.5 by giving some concluding remarks.

5.2 Unique existence

The collocation equations (5.1.3a) and the weighted average condition (5.1.3b) are equivalent to the
following linear system:

(5.2.1) GQ = f ,

where

G =

✓

0 HT

1 G̃

◆

, G̃ = (Ej(xi)) 2 RN⇥N ,

H = (H1, H2, . . . , HN )T 2 RN , 1 = (1, 1, . . . , 1)T 2 RN ,

Q = (Q0, Q1, . . . , QN )T 2 RN+1, f = (0, f(x1), . . . , f(xN ))T 2 RN+1.
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The (i, j)-element of G̃ can be rewritten as

Ej(xi) =
1

2⇡
log |⇢�R!j�i|� 1

2⇡
log |⇢�R�!j�i|.

Thus G̃ is a circulant matrix, that is, G̃ can be diagonalized by discrete Fourier transform. Indeed,
putting

W̃ =

✓

1p
N

!(i�1)(j�1)

�

�

�

�

i, j = 1, 2, . . . , N

◆

2 CN⇥N ,

we have
W̃�1G̃W̃ = diag

⇣

'(N)
0 (⇢),'(N)

1 (⇢), . . . ,'(N)
N�1(⇢)

⌘

,

where

'(N)
p (z) =

N
X

k=1

!p(k�1)Ek(z).

Therefore, defining

W =

✓

1 0T

0 G̃

◆

,

we obtain

W�1GW =

✓

0 HTW
W�11 W�1GW

◆

=

0

B

B

B

B

B

B

B

B

@

0 N�1/2
N
P

i=1

Hi N�1/2
N
P

i=1

Hi!i�1 · · · N�1/2
N
P

i=1

Hi!(i�1)(N�1)

N1/2 '(N)
0 (⇢) 0 · · · 0

0 0 '(N)
1 (⇢) 0

...
...

. . .
...

0 0 0 · · · '(N)
N�1(⇢)

1

C

C

C

C

C

C

C

C

A

.

(5.2.2)

Therefore detG, the determinant of G, can be explicitly computed as

detG = �
N
X

i=1

Hi

N�1
Y

p=1

'(N)
p (⇢).

The following lemma represents more precise nature of the function '(N)
p .

Lemma 5.2.1. For any z = rei✓, r < R, ✓ 2 R, we have

'(N)
p (z) =

8

>

>

>

<

>

>

>

:

1

2⇡
log

�

�

�

�

zN �RN

zN � (�R)N

�

�

�

�

, if p ⌘ 0 (mod N),

�N

4⇡

X

m⌘p (mod N)

1

|m|
⇣ r

R

⌘|m|


1� 1

�|m|

�

eim✓, otherwise.

The above lemma is a direct consequence of [49, Lemma 1]. Then we can easily verify that

'(N)
p (⇢) < 0, p = 1, 2, . . . , N � 1,

which implies that the coe�cient matrix G in (5.2.1) is nonsingular if and only if
PN

j=1 Hj 6= 0. Thus
Theorem 5.1.1 has been shown.
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5.3 Error estimate

We compute G�1, the inverse matrix of G, explicitly from (5.2.2). Defining

A =

0

B

@

0 N�1/2
N
P

i=1

Hi

N1/2 '(N)
0 (⇢)

1

C

A

,

B =

0

@

N�1/2
N
P

i=1

!i�1Hi · · · N�1/2
N
P

i=1

!(N�1)(i�1)Hi

0 · · · 0

1

A ,

D = diag('(N)
1 (⇢), . . . ,'(N)

N�1(⇢)),

we have

W�1GW =

✓

A B
O D

◆

,

which yields that

W�1G�1W = (W�1GW )�1 =

✓

A�1 �A�1BD�1

O D�1

◆

=: M.

Each component can be easily computed as follows:

A�1 = � 1
N
P

i=1

Hi

0

B

@

'(N)
0 (⇢) �N�1/2

N
P

i=1

Hi

�N�1/2 0

1

C

A

=

0

B

B

B

B

@

�'
(N)

0

(⇢)
NP

i=1

Hi

N�1/2 '
(N)

0

(⇢)

'
(N)

0

(⇢)

NP
i=1

!0(i�1)Hi

NP
i=1

Hi

N1/2

NP
i=1

Hi

0

1

C

C

C

C

A

,

D�1 = diag

 

1

'(N)
1 (⇢)

, . . . ,
1

'(N)
N�1(⇢)

!

,

�A�1BD�1 =

0

B

B

B

B

B

B

@

N�1/2 '
(N)

0

(⇢)

'
(N)

1

(⇢)

NP
i=1

!i�1Hi

NP
i=1

Hi

· · · N�1/2 '
(N)

0

(⇢)

'
(N)

N�1

(⇢)

NP
i=1

!(N�1)(i�1)Hi

NP
i=1

Hi

�
P

i !
i�1Hi

NP
i=1

Hi

1

'
(N)

1

(⇢)
· · · �

NP
i=1

!(N�1)(i�1)Hi

NP
i=1

Hi

1

'
(N)

N�1

(⇢)

1

C

C

C

C

C

C

A

.

From these expressions, we obtain the explicit formulae for coe�cients {Qj}Nj=0 as follows:

Q0 =
N
X

k=0

[G�1]0,k[f ]k =
N
X

k=1

1

N

N
X

l=1

!�(k�1)(l�1)'
(N)
0 (⇢)

'(N)
l�1(⇢)

N
P

i=1

!(l�1)(i�1)Hi

N
P

i=1

Hi

f(xk)

=
X

n⌘0

fn +
1

N
P

j=1

Hj

X

n 6⌘0

'(N)
0 (⇢)

'(N)
n (⇢)

fn

N
X

i=1

!n(i�1)Hi
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and

Qj =
N
X

k=0

[G�1]jk[f ]k

=
N
X

k=1

2

6

6

4

� 1

N

N
X

l=2

!�(k�1)(l�1)

N
P

i=1

!(i�1)(l�1)Hi

N
P

i=1

Hi

1

'(N)
l�1(⇢)

+
1

N

N
X

p=2

!(j�k)(p�1) 1

'(N)
p�1(⇢)

3

7

7

5

f(xk)

=
1

N
P

i=1

Hi

X

n 6⌘0

fn

"

� 1

'(N)
n (⇢)

N
X

i=1

!n(i�1)Hi +
!n(j�1)

'(N)
n (⇢)

N
X

k=1

Hk

#

for j = 1, . . . , N . Therefore we can write down the approximate solution u(N) as follows:

u(N)(x) = Q0 +
N
X

j=1

QjEj(x)

=
X

n⌘0

fn +
1

N
P

i=1

Hi

X

n 6⌘0

'(N)
0 (⇢)

'(N)
n (⇢)

fn

N
X

i=1

!n(i�1)Hi

+
N
X

j=1

2

6

6

4

1
N
P

i=1

Hi

X

n 6⌘0

fn

"

� 1

'(N)
n (⇢)

N
X

i=1

!n(i�1)Hi +
!n(j�1)

'(N)
n (⇢)

N
X

k=1

Hk

#

3

7

7

5

Ej(x)

=
X

n⌘0

fn +
1

N
P

i=1

Hi

X

n 6⌘0

fn

"

'(N)
0 (⇢)

'(N)
n (⇢)

N
X

i=1

!n(i�1)Hi

� 1

'(N)
n (⇢)

N
X

i=1

!n(i�1)Hi

N
X

j=1

Ej(x) +
1

'(N)
n (⇢)

N
X

k=1

Hk

N
X

j=1

!n(j�1)Ej(x)

3

5

=
X

n⌘0

fn +
1

N
P

i=1

Hi

X

n 6⌘0

fn

"

'(N)
0 (⇢)� '(N)

0 (x)

'(N)
n (⇢)

+
N
X

k=1

Hk
'(N)
n (x)

'(N)
n (⇢)

#

.

Since the exact solution u for the problem (5.1.1) is written by the Fourier series as

u(x) = u(rei✓) =
X

n2Z
fn

✓

r

⇢

◆|n|
ein✓,

owing to the maximum principle for harmonic functions, we have

sup
x2⌦

|u(x)� u(N)(x)| = sup
x2@⌦

|u(x)� u(N)(x)|

= sup
✓2R

�

�

�

�

�

�

�

�

X

n2Z
fne

in✓ �

2

6

6

4

X

n⌘0

fn +
1

N
P

i=1

Hi

X

n 6⌘0

fn

 

'(N)
0 (⇢)� '(N)

0 (⇢ei✓)

'(N)
n (⇢)

+
N
X

k=1

Hk
'(N)
n (⇢ei✓)

'(N)
n (⇢)

!

3

7

7

5

�

�

�

�

�

�

�

�
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
X

n⌘0

|fn| sup
✓2R

|ein✓ � 1|

+
X

n 6⌘0

|fn| sup
✓2R

�

�

�

�

�

�

�

�

�

ein✓ � 1
N
P

k=1

Hk

 

'(N)
0 (⇢)� '(N)

0 (⇢ei✓)

'(N)
n (⇢)

+
N
X

k=1

Hk
'(N)
n (⇢ei✓)

'(N)
n (⇢)

!

�

�

�

�

�

�

�

�

�

=
X

n2Z
|fn|g(N)

n ,(5.3.1)

where

g(N)
n =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

sup
✓2R

|ein✓ � 1| if n ⌘ 0,

sup
✓2R

�

�

�

�

�

�

�

�

ein✓ � 1
N
P

i=1

Hi

 

'(N)
0 (⇢)� '(N)

0 (⇢ei✓)

'(N)
n (⇢)

+
N
X

k=1

Hk
'(N)
n (⇢ei✓)

'(N)
n (⇢)

!

�

�

�

�

�

�

�

�

if n 6⌘ 0.

We split the error bound (5.3.1) into three parts as

X

n2Z
|fn|g(N)

n = |f0|g(N)
0 +

[N/2]
X

n=1

(|fn|+ |f�n|)g(N)
n +

1
X

n=[N/2]+1

(|fn|+ |f�n|)g(N)
n ,

and estimate them. We immediately obtain from the definition that g(N)
0 = 0. In order to estimate

the second term we prepare the following lemma.

Lemma 5.3.1. For su�ciently large N so that (⇢/R)N  1/2 is satisfied, there exists some positive

constant C, which depends on
�

�

�

PN
i=1 Hi

�

�

�

such that

g(N)
n  C

⇣ ⇢

R

⌘N�2n

holds for 1  n  N/2.

Proof. We estimate the following equation for ✓:

1
N
P

i=1

Hi'
(N)
n (⇢)

 

N
X

k=1

Hk

⇣

ein✓'(N)
n (⇢)� '(N)

n (⇢ei✓)
⌘

� ('(N)
0 (⇢)� '(N)

0 (⇢ei✓))

!

.

We obtain from Lemma 5.2.1 and [49, Proof of Lemma 2] that

|ein✓'(N)
n (⇢)� '(N)

n (⇢ei✓)|  2N

⇡(N � n)

⇣ ⇢

R

⌘N�n

+
2N

⇡(N � n)

⇣ ⇢

R�

⌘N�n

 4N

⇡(N � n)

⇣ ⇢

R

⌘N�n

.

We also have from Lemma 5.2.1 that

|'(N)
n (⇢)| =

�

�

�

�

�

�

�

�

�N

4⇡

X

m⌘n (mod N)
m2Z

1

|m|
⇣ ⇢

R

⌘|m|
✓

1� 1

�|m|

◆

�

�

�

�

�

�

�

�

� N

4⇡
· 1
n

⇣ ⇢

R

⌘n
✓

1� 1

�n

◆

� N

4⇡n

⇣ ⇢

R

⌘n
✓

1� 1

�

◆

.
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Concerning the term '(N)
0 (⇢)� '(N)

0 (⇢ei✓), we have

�

�

�

�

1

2⇡
log |⇢N �RN |� 1

2⇡
log |(⇢ei✓)N �RN |

�

�

�

�

=

�

�

�

�

�

1

2⇡

"

log

�

�

�

�

RN

✓

1�
⇣ ⇢

R

⌘N
◆

�

�

�

�

� log

�

�

�

�

�

RN

 

1�
✓

⇢ei✓

R

◆N
!

�

�

�

�

�

#

�

�

�

�

�

=
1

2⇡

�

�

�

�

�

�
1
X

n=1

1

n

⇣ ⇢

R

⌘nN

+ <
1
X

n=1

1

n

✓

⇢ei✓

R

◆nN
�

�

�

�

�

=
1

4⇡

�

�

�

�

�

�

�

X

n2Z
n 6=0

1

|n|
⇣ ⇢

R

⌘|n|N
(einN✓ � 1)

�

�

�

�

�

�

�

 1

2⇡

X

n2Z
n 6=0

1

|n|
⇣ ⇢

R

⌘|n|N
 1

⇡

1
X

n=1

1

n

⇣ ⇢

R

⌘nN

 1

⇡
· (⇢/R)N

1� (⇢/R)N
 2

⇡

⇣ ⇢

R

⌘N

,

which yields that

|'(N)
0 (⇢)� '(N)

0 (⇢ei✓)|  2

⇡

⇣ ⇢

R

⌘N
✓

1 +
1

�N

◆

 4

⇡

⇣ ⇢

R

⌘N

.

Summarizing the above, we obtain

g(N)
n  1

�

�

�

�

N
P

i=1

Hi

�

�

�

�

4⇡n

N(1� ��1)

✓

R

⇢

◆n
 

�

�

�

�

�

N
X

k=1

Hk

�

�

�

�

�

· 4N

⇡(N � n)

⇣ ⇢

R

⌘N�n

+
4

⇡

⇣ ⇢

R

⌘N
!

 8
�

�

�

�

N
P

i=1

Hi

�

�

�

�

(1� ��1)

 

2

�

�

�

�

�

N
X

k=1

Hk

�

�

�

�

�

+ 1

!

⇣ ⇢

R

⌘N�2n

,

which is the desired estimate.

Concerning the third term we need the following lemma.

Lemma 5.3.2. Suppose that N is taken large enough to satisfy (⇢/R)N  1/2. Then there exists

some positive constant C, which depends on
�

�

�

PN
i=1 Hi

�

�

�

, such that the following estimate holds for all

n 2 Z:

g(N)
n  C.

Proof. Note firstly that the function '(N)
n satisfies the following relations:

(5.3.2) '(N)
n = '(N)

m (n ⌘ m (mod N)), '(N)
n (⇢) = '(N)

N�n(⇢) (n = 1, 2, . . . , N � 1).

When n = 0, it is clear that g(N)
0 = 0. When n 2 I(0), using the periodicity of '(N)

n with respect to
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n, we have

g(N)
n = sup

✓2R
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�

�

�

�

�
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�

ein✓ � 1
N
P

i=1

Hi

 

'(N)
0 (⇢)� '(N)

0 (⇢ei✓)
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X
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�
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�

�

N
P
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�

�

�

�

0

B

@
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|'(N)
0 (⇢ei✓)|
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+

�

�

�

�
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�
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�

�

�
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1
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�

�
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�

�
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�

�

N
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�

�

�

�

�

!

,

where we have used an inequality sup✓2R |'(N)
0 (⇢ei✓)|  |'(N)

0 (⇢)|, which can be proved as follows:
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0 (⇢ei✓)| =
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�

1
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1
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✓

N log � � log

�

�

�

�

1�
⇣ ⇢

R

⌘N
�

�

�

�

+ log

�

�

�

�

1�
⇣ ⇢

R�

⌘N
�

�

�

�

◆

=
1

2⇡

�

N log � +N logR� log |RN � ⇢N |�N log(R�) + log |(R�)N � ⇢N |�

=
1

2⇡
log

(R�)N � ⇢N

RN � ⇢N
=

�

�

�

�

1

2⇡
log

�

�

�

�

⇢N �RN

⇢N � (R�)N

�

�

�

�

�

�

�

�

= |'(N)
0 (⇢)|.

When n 6⌘ 0, we only need to consider the case where 1  n  N/2 owing to the periodicity (5.3.2).
As we have already written in the proof of Lemma 5.3.1, we have

|'(N)
0 (⇢)� '(N)

0 (⇢ei✓)|
|'(N)

n (⇢)|
 4/⇡(⇢/R)N

N/(4⇡n)(⇢/R)n
=

16n

N

⇣ ⇢

R

⌘N�n

 8.

Since sup✓2R |'(N)
n (⇢ei✓)|  |'(N)

n (⇢)| holds, which can be proved in similar way that for '(N)
0 , we
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obtain

g(N)
n  1 +

1
�

�

�

�

N
P

i=1
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�

�
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8 +

�

�

�

�

�

N
X

k=1
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�

�

�

�

�

!

.

Hence, defining a constant C as right hand side in the above inequality, we obtain the desired estimate.

Proof of Theorem 5.1.2. Using the estimate (5.3.1), Lemmas 5.3.1 and 5.3.2, and the assumption on
the decay of Fourier coe�cients of f , we have

sup
x2⌦

�

�

�

u(x)� u(N)(x)
�

�
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 2C
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X
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⇣ ⇢
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⇣ ⇢
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1
X
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bn.

The summation part in the first term in the right hand side can be estimated as follows:

• When bR2/⇢2 < 1, we have
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⇣ ⇢
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R
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;
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

N

2
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;

• When bR2/⇢2 > 1, we have
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⇣ ⇢

R
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2
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1

bR2/⇢2 � 1

 2CbN/2 · 1

1� ⇢2/(bR2)
.

The second term can be estimated by straightforward computation as follows:

(2nd term) = 2Cb[N/2]+1 · 1

1� b
 2C

1� b
bN/2.

Summarizing the above, we obtain

sup
x2⌦

�

�

�

u(x)� u(N)(x)
�

�

�



8

>

>

>

>

<

>

>

>

>

:

C
⇣ ⇢

R

⌘N

if bR2/⇢2 < 1,

CN
⇣ ⇢

R

⌘N

if bR2/⇢2 = 1,

CbN/2 if bR2/⇢2 > 1,

which concludes the proof of Theorem 5.1.2.

113



Chapter 5 MFS with weighted average condition and dummy points 5.4 Numerical experiments

5.4 Numerical experiments

In this section, we present some results of numerical experiments in order to examine the sharpness of
our error estimate. Throughout these experiments, we only consider the case where ⇢ = 1, which is
the radius of the problem region ⌦.

Example 5.4.1. We first adopt harmonic polynomials as the boundary data, that is,

f(x) = <xm (x 2 @⌦), m = 0, 1, . . . , 5.

Parameters are taken as follows:

• R = 2 (the parameter for singular points);

• � = 2 (the parameter for dummy points);

• Hj = 1 + ✏ cos(2⇡j/N) for j = 1, 2, . . . , N (the weights), where ✏ = 0, 1.

The result is depicted in Figure 5.1, in which the horizontal and vertical axes represent N and common
logarithms of errors, respectively, here and hereafter. We can observe that the errors decay exponen-
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Figure 5.1: Numerical experiment with boundary data being harmonic polynomials, and the parame-
ters R = 2 and � = 2. The solid lines and dots represent numerical solutions where ✏ = 0 and ✏ = 1,
respectively, and the gradient of the hypotenuse of the red colored triangle is the theoretical order of
convergence.

tially with respect to N , and their convergence rates agree well with the theoretical error estimate
Theorem 5.1.2, which tells us that ku� u(N)kL1(⌦) = O((1/2)N ). We can also see that di↵erences of
weights a↵ect very little behavior of errors. Note that lines corresponding to the case m = 0 do not
appear in Figure 5.1, since the numerical solution coincides with the exact solution in this case.

Example 5.4.2. We next consider the case where the boundary data are logarithmic potentials:

f(x) = log |x� x0| (x 2 @⌦),

where x0 is the singularity of f , which is located outside ⌦. In this case, the approximation error is
estimated by Theorem 5.1.2 as follows:

ku� u(N)kL1(⌦) = O

 

max

(

⇣ ⇢

R

⌘N

,

✓

⇢

|x0|
◆N/2

)!

.
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The parameters R and x0 are taken as R = (1 + 0.1m)⇢ (m = 1, 2, . . . , 7) and x0 = 2⇢, respectively,
which yields for m = 1, 2, . . . , 7 that

ku� u(N)kL1(⌦) = O

 

max

(

✓

1

1 + 0.1m

◆N

,

✓

1

2

◆N
)!

.

The results are depicted in Figure 5.2, which represents the sharpness of our error estimate.
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Figure 5.2: Numerical experiment with boundary data being logarithmic potentials, and the parameters
R = (1 + 0.1m)⇢ (m = 1, 2, . . . , 7) and � = 2. The solid lines and dots represent numerical solutions
where ✏ = 0 and ✏ = 1, respectively, and the gradients of broken lines and that of the hypotenuse
of the red colored triangle are the theoretical order of convergence for m = 1, 2, 3 and m = 4, 5, 6, 7,
respectively.

Example 5.4.3. We also compute condition number of coe�cient matrix numerically. Results in Figure
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Figure 5.3: Numerical computation of condition numbers of coe�cient matrices

5.3 imply that the linear system (5.2.1) would be ill-conditioned, and the condition number of coe�cient
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matrix becomes large if � is large, that is, the parameter � should not be taken large in vain. Note
also in this case that the weights {Hj}Nj=1 do not a↵ect condition numbers.

5.5 Concluding remarks

In this chapter, we studied MFS with weighted average condition and dummy points for potential
problem in disk, and established that an approximate solution actually exists uniquely if and only if
the average of weights is not equal to 0, and that the error decays exponentially with respect to N when
the boundary datum is real analytic. We showed numerical results with boundary data being harmonic
polynomials and logarithmic potentials, which exemplified the sharpness of our error estimate. We also
computed the condition number of coe�cient matrix numerically, which told us that the parameter �
for dummy points should not be taken so large.
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Chapter 6

Structure-preserving numerical
scheme for the one-phase
Hele-Shaw problems by the method
of fundamental solutions

Abstract

The solutions to the one-phase interior or the classical Hele-Shaw problem are discretized
in space by means of the method of fundamental solutions combined with the uniform
distribution method, and then a system of ordinary di↵erential equations is obtained, which
is solved by the usual fourth order Runge-Kutta method. The one-phase interior Hele-
Shaw problem has curve-shortening (CS), area-preserving (AP), and barycenter-fixed (BF)
properties. Under our numerical scheme, discrete versions of CS-, AP-, and BF-properties
hold, while simple boundary element method does not satisfy these properties in general.
The one-phase exterior Hele-Shaw problem and the one-phase interior Hele-Shaw problem
with sink/source points can also be treated. In each problem, a non-trivial exact solution
is constructed and an experimental order of convergence is shown. This chapter is based
on the following submitted paper:

• K. Sakakibara and S. Yazaki, Structure-preserving numerical scheme for the one-phase
Hele-Shaw problems by the method of fundamental solutions, submitted revised version
to Numer. Math.

6.1 Introduction

The classical Hele-Shaw problems is description of a motion of viscous fluid in a quasi two-dimensional
space, which was starting from a short paper [32] in 1898 by Henry Selby Hele-Shaw (1854–1941). In
his experiment, viscous fluid is sandwiched between two parallel plates with a narrow gap, and the
apparatus is called Hele-Shaw cell. He succeeded to visualize stream lines by means of colored water
in the cell. The classical or the one-phase interior Hele-Shaw problem is stated as follows (see Lamb
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Chapter 6 MFS for Hele-Shaw problem 6.1 Introduction

[62] or Gustafsson and Vasil’ev [26] in detail):

(6.1.1)

8

>

<

>

:

4p(·, t) = 0 in D(t), t 2 [0, T ),

p(·, t) = �k(·, t) on C (t), t 2 [0, T ),

V (·, t) = �rp(·, t) ·N(·, t) on C (t), t 2 [0, T ),

where 4 = @2/@x2 + @2/@y2 is the Laplace operator and r = (@/@x, @/@y)T is the gradient in R2,
D(t) ⇢ R2 is a bounded region occupied by fluid, C (t) is the boundary of D(t) (positively oriented
closed curve), p(·, t) is the pressure function in D(t), � is the surface tension coe�cient, k(x, t) is the
curvature (sing convention is the way that k = 1 if D(t) is a unit disk), N(x, t) is the unit outward
normal vector defined by N(x, t) = �T (x, t)?, and V (x, t) is the normal velocity, of C (t) at x 2 C (t).
See Figure 6.1(a) (in the figure, x is the position vector and T is the unit tangent vector). Here

T
N

x

D(t)

C (t)

k > 0 k < 0

T

N

x

D(t)

eD(t)�C (t)

k < 0 k > 0

T

N

x

D(t)

C (t)

k > 0 k < 0

⇠1

⇠2
⇠m

(a) (b) (c)

Figure 6.1: One-phase interior Hele-Shaw problem (a) and its variations: (b) one-phase exterior Hele-
Shaw problem and (c) one-phase interior Hele-Shaw problem with sink/source points {⇠i}mi=1.

and hereafter, a · b represents the usual two-dimensional Euclidean inner product for a, b 2 R2 and
a? = (�b, a)? for a = (a, b)T.

We have three marked properties of the one-phase interior Hele-Shaw problem (6.1.1): the total
length of C (t) is decreasing in time, the enclosed area of D(t) is preserving and the barycenter of
D(t) is being fixed. These properties are called curve-shortening (CS), area-preserving (AP) and
barycenter-fixed (BF), respectively. See Proposition 6.2.2.

The purpose of this chapter is that for (6.1.1) we propose a simple numerical scheme by means of
the method of fundamental solutions combined with the uniform distribution method. Our scheme
can be applied for two variations: the one-phase exterior problem (see Figure 6.1(b) and the problem
(6.2.1) below) and the one-phase interior problem with sink/source points (see Figure 6.1(b) and the
problem (6.2.2) below).

This chapter is organized as follows. In Section 6.2, two variations of one-phase interior Hele-Shaw
problem (6.1.1) will be stated and variational structures and several properties of Hele-Shaw problems
such as CS-, AP- and BF-properties will be given. In Sections 6.3, 6.4 and 6.5, we will propose
numerical schemes for the problems (6.1.1), (6.2.1) and (6.2.2), respectively. In Section 6.6, numerical
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Chapter 6 MFS for Hele-Shaw problem 6.2 Variational structures

experiments will be shown with the results of numerical CS- and AP-properties and an experimental
order of convergence (EOC) compared with a non-trivial exact solution, and we will remark some
future works in the final Section 6.7.

A feature of our scheme is to realize the CS-, AP- and BF-properties asymptotically in a discrete
sense by means of the normal velocity determined by a modified invariant scheme of MFS, so-called
Murota’s invariant scheme [73, 74], and the tangential velocity determined by MFS and the uniform
distribution method (UDM) [93]. Note that under UDM, we have stable numerical computation. Of
course, there are many ways to solve the Hele-Shaw problem numerically (see selected just a few
papers or a monograph [53, 94, 26, 106]). However, many of known schemes did not focus on making
schemes which preserve a variational structure of the Hele-Shaw problems such as CS-, AP- and BF-
properties. Note that one can find polygonal Hele-Shaw flow [56] which satisfies discrete CS-, AP- and
BF-properties, and can be regarded as semi-discretization scheme from a numerical point of view.

6.2 Variational structures

6.2.1 Two variations of the one-phase interior Hele-Shaw problem (6.1.1)

Besides the interior problem, an exterior problem is also interested. The first variation is the one-phase
exterior Hele-Shaw problem which is stated as follows:

(6.2.1)

8

>

>

>

<

>

>

>

:

4p(·, t) = 0 in eD(t), t 2 [0, T ),

p(·, t) = �k(·, t) on �C (t), t 2 [0, T ),

p(x, t) = qE(x) +O(1) as |x| ! 1, t 2 [0, T ),

V (·, t) = �rp(·, t) ·N(·, t) on �C (t), t 2 [0, T ),

where eD(t) := R2 \ D(t) is an unbounded region occupied by fluid with a bounded region D(t), q is a
given real number, |x| = p

x · x for x 2 R2 and

E(x) =
1

2⇡
log |x|

is a fundamental solution of the Laplace operator 4. Here and hereafter we use the notations that
k and N denote the curvature and the unit outward normal vector of �C (t), respectively, when the
exterior problem is considered, where �C (t) is the boundary of D(t) (negatively oriented closed curve).
See Figure 6.1(b).

If q is positive, then changing speed of the enclosed area of D(t) is negative �q, which corresponds
to existence of source at the infinity |x| = 1. Conversely, the case q < 0 corresponds to existence of
sink at the infinity. See Proposition 6.2.3.

The second variation is referred as the one-phase interior Hele-Shaw problem with sink/source
points, which is stated as follows.

(6.2.2)

8

>

>

>

>

<

>

>

>

>

:

4p(·, t) =
m
X

i=1

qi�(·� ⇠i) in D(t), t 2 [0, T ),

p(·, t) = �k(·, t) on C (t), t 2 [0, T ),

V (·, t) = �rp(·, t) ·N(·, t) on C (t), t 2 [0, T ),

where �(·) denotes the Dirac delta function with the singularity at the origin, {qi}mi=1 are given real
numbers, and {⇠i}mi=1 denote the positions of sink or source points located in a bounded fluid region
D(t) ⇢ R2. See Figure 6.1(c).

If qi > 0 (resp. qi < 0), then ⇠i is a sink (resp. source) point. Hence we have area-decreasing or
area-increasing property depending on sign of sum of all qi’s. See Proposition 6.2.4.
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6.2.2 Moving boundary problem

Let {C (t)}t�0 be a family of closed embedded C2,1-curves, parameterized as [0, 1] 3 u 7! x(u, t) 2 R2

for each time t, governed its motion by the evolution law:

(6.2.3) @tx(u, t) = ↵(u, t)T (u, t) + V (u, t)N(u, t)

for u 2 [0, 1] and t � 0, where @t = @/@t is the time derivative, and T (u, t) and N(u, t) = �T (u, t)?

denote the unit tangent and the unit outward normal vectors of C (t) at x(u, t) 2 C (t), respectively.
Then ↵(u, t) and V (u, t) denote the tangential and normal velocities of C (t) at x(u, t) 2 C (t), re-
spectively. In general, it is known that the shape of C (t) does not depend on the tangential velocity
↵(·, t) [18, Proposition 2.4]. Then one can take ↵ = 0, but it causes numerical instability in general.
Therefore a nontrivial ↵ has been utilized from a numerical point of view [34, 52, 53, 70, 71, 72, 92, 93].
See Section 6.3.5 for our choice ↵. On the other hand, the normal velocity V (·, t) determines the shape
of C (t), and in this chapter, V is given by the one-phase Hele-Shaw problems (6.1.1), (6.2.1) or (6.2.2).
Here and hereafter we abbreviate a notation for function F(u, t) as F unless there is confusion.

Let D(t) be a bounded region surrounded by C (t). The total length L(t) of C (t), the enclosed area
A(t) of D(t) and the barycenter G(t) of D(t) are respectively defined as follows:

L(t) =
Z

C (t)

ds, A(t) =

Z

D(t)

dS, G(t) = 1

A(t)

Z

D(t)

x dS.

Here ds is the line element of C (t) and dS the area element of D(t). Note that D(t) is a bounded region
surrounded by an unbounded fluid region for Problem (6.2.1), and so A(t) and G(t) are respectively
the area and the barycenter of D(t) in the geometric sense. Their time evolution under the evolution
law (6.2.3) can be computed as follows (see e.g. Gurtin [25, (2E) Transport theorem for area and total
length] and Kimura [54, Theorem 6.4]).

Theorem 6.2.1. Let {C (t)}t�0 be a family of closed embedded C2,1-curves, governed its motion by
the evolution law (6.2.3). Then we have

L̇(t) =
Z

C (t)

kV ds, Ȧ(t) =

Z

C (t)

V ds, Ġ(t) = � Ȧ(t)

A(t)
G(t) + 1

A(t)

Z

C (t)

xV ds.

Here and hereafter, Ḟ denotes the time derivative dF/dt.
Using this theorem, we can derive the variational structures for the one-phase Hele-Shaw problems

as follows.

Proposition 6.2.2 (One-phase interior Hele-Shaw problem (6.1.1)). In addition to the hypothesis in
Theorem 6.2.1, suppose that the normal velocity V is computed by (6.1.1). Then we have

L̇(t)  0, Ȧ(t) = 0, Ġ(t) = 0.

Namely, CS-, AP- and BF-properties hold.

Proposition 6.2.3 (One-phase exterior Hele-Shaw problem (6.2.1)). In addition to the hypothesis in
Theorem 6.2.1, suppose that the normal velocity V is computed by (6.2.1). Then we have

Ȧ(t) = �q.

Namely, D(t) shrinks if q > 0 and enlarges if q < 0.
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Proposition 6.2.4 (One-phase interior Hele-Shaw problems with sink/source points (6.2.2)). In ad-
dition to the hypothesis in Theorem 6.2.1, suppose that the normal velocity V is computed by (6.2.2).
Then we have

Ȧ(t) = �
m
X

i=1

qi.

Namely, ⇠i is a sink point if qi > 0 and a source point if qi < 0.

Proof of Proposition 6.2.2. Let p be the solution for the one-phase interior Hele-Shaw problem (6.1.1).
Then the time derivative of the total length can be estimated using Theorem 6.2.1, (6.1.1) and the
divergence theorem as follows:

L̇(t) = � 1

�

Z

C (t)

prp ·N ds = � 1

�

Z

D(t)

div(prp) dS = � 1

�

Z

D(t)

(|rp|2 + p4p) dS

= � 1

�

Z

D(t)

|rp|2 dS  0.

Especially, the length decreases strictly monotonically unless D(t) is a disk. In similar way, the time
derivative of the enclosed area can be computed as

Ȧ(t) = �
Z

C (t)

rp ·N ds = �
Z

D(t)

div(rp) dS = �
Z

D(t)

4p dS = 0.

Finally, using the divergence theorem repeatedly, the time derivative of the barycenter can be computed
as follows:

Ġ(t) = � 1

A(t)

Z

C (t)

xrp ·N ds = � 1

A(t)

Z

D(t)

✓

div(xrp)
div(yrp)

◆

dS = � 1

A(t)

Z

D(t)

(rp+ x4p) dS

= � 1

A(t)

Z

D(t)

✓

div(p, 0)T

div(0, p)T

◆

dS = � 1

A(t)

Z

C (t)

pN ds = � �

A(t)

Z

C (t)

kN ds

=
�

A(t)

Z

C (t)

@sT ds = 0,

where we have used the Frenet formula.

Proof of Proposition 6.2.3. Take R large enough so that a circle CR = {x 2 R2 | |x| = R} encloses
D(t). Let DR(t) be the doubly-connected region surrounded by CR and �C (t). Denote the enclosed
area of DR(t) by AR(t). Then we have

ȦR(t) =

Z

@DR(t)

V ds =

Z

�C (t)

V ds = �
Z

�C (t)

rp ·N ds.

Here we have used the fact that V = 0 on CR because CR is a fixed boundary. On the other hand, we
obtain

0 =

Z

DR(t)

4p dS =

Z

@DR(t)

rp ·N ds =

Z

CR

rp ·N ds+

Z

�C (t)

rp ·N ds

Therefore we have

ȦR(t) =

Z

CR

rp ·N ds.

Here, note that for the fundamental solution E of the Laplace operator, we have
Z

CR

r(qE) ·N ds =
q

2⇡

Z

CR

x

R2
· x
R

ds =
q

2⇡R

Z

CR

ds = q.
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Then we can prove that
Z

CR

rp ·N ds �! q as R ! 1.

Since A(t) = |DR|�AR(t), we obtain Ȧ(t) = �q.

Proof of Proposition 6.2.4. For simplicity, we prove the case m = 1, and denote ⇠ = ⇠1 and q = q1.
Take su�ciently small positive number ✏ so that the disk B(⇠, ✏) = {x 2 R2 | |x� ⇠| < ✏} is contained
in D(t), and denote the doubly-connected region surrounded by C (t) and �@B(⇠, ✏) by D✏(t). Then
we have

0 =

Z

D✏(t)

4p dS =

Z

C (t)

rp ·N ds+

Z

�@B(⇠,✏)

rp ·N ds.

Denoting the pressure function p as the sum of qE(x� ⇠) and a harmonic function p̃, we obtain

Ȧ(t) =

Z

C (t)

V ds =

Z

�@B(⇠,✏)

rp ·N ds =

Z

�@B(⇠,✏)

✓

rp̃ ·N +
q(x� ⇠) ·N
2⇡|x� ⇠|2

◆

ds

= �
Z

B(⇠,✏)

4p̃ dS +

Z

�@B(x,✏)

q(x� ⇠)

2⇡|x� ⇠|2 · �(x� ⇠)

|x� ⇠| ds = �q.

6.3 Numerical scheme for the one-phase interior Hele-Shaw
problem (6.1.1)

We approximate the boundary curve C (t) by polygonal curve, say �(t), and consider the evolution of
it.

Let �(t) =
Sn

i=1 �i(t) be an n-sided closed polygonal Jordan curve, where �i(t) is the i-th edge of
�(t) defined as

�i(t) = [xi�1(t),xi(t)] := {(1� �)xi�1(t) + �xi(t) | � 2 [0, 1]}
and xi(t) the i-th vertex of �(t) (i = 1, 2, . . . , n; x0(t) = xn(t), xn+1(t) = x1(t); t � 0). See Figure
6.2. �(t) moves according the following evolution law, the polygonal version of (6.2.3):

(6.3.1) ẋi(t) = ↵i(t)T i(t) + Vi(t)N i(t) (i = 1, 2, . . . , n),

where T i(t) and N i(t) = �T i(t)? denote the unit tangent and the unit outward normal vectors of
�(t) at the i-th vertex xi(t), respectively. The tangent vector T i(t) is not well-defined at this stage,
and its definition will be given later. Hereafter we abbreviate a notation for function F(t) as F unless
there is confusion.

6.3.1 Algorithm

Since N i = �T?
i , we can rewrite the evolution law (6.3.1) as follows:

(6.3.2) ẋi = ↵iT i � ViT
?
i (i = 1, 2, . . . , N).

As we will see in the following sections, the all quantities {T i}ni=1, {↵i}ni=1 and {Vi}ni=1 in the right
hand side can be expressed as functions of {xi}ni=1. Therefore the time evolution equations (6.3.2) can
be rewritten as a system of ordinary di↵erential equations:

Ẋ = F (X(t)),

(

X(t) = (xi(t))
n
i=1 = (x1(t),x2(t), . . . ,xn(t)) 2 R2⇥n,

F = (f1,f2, . . . ,fn) : R2⇥n ! R2⇥n; X 7! F (X),
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xi�1

xi

xi+1

xn�1

x

⇤
i

xn = x0

x1 = xn+1

ri

�i

�i+1

ti
ni

Ti

Ni

'i

'i�1

✓i

�

⌦

Notation

ri = |xi � xi�1|

ti =
xi � xi�1

ri
=

✓
cos ✓i
sin ✓i

◆

Ti =

✓
cos ✓⇤i
sin ✓⇤i

◆

✓⇤i =

✓i + ✓i+1

2

= ✓i +
'i

2

x

⇤
i =

xi�1 + xi

2

r⇤i =

ri + ri+1

2

ci = cos

'i

2

, si = sin

'i

2

ki =
tan('i�1/2) + tan('i/2)

ri

Figure 6.2: Description of the symbols

where fi(X(t)) = ↵i(t)T i(t) � Vi(t)T i(t)?, in which T i(t) = T i(X(t)) = (cos ✓⇤i , sin ✓
⇤
i )

T is defined
by the following Step 1 and in the subsequent subsection, Vi(t) = Vi(X(t)) is defined by (6.3.3) and
(6.3.13) via the solution P of (6.3.15) and (6.3.16), which is the structure-preserving scheme (see
Section 6.3.4.1), or the one P of (6.3.18) and (6.3.20), which is the practical computational scheme
(see Section 6.3.4.3), and ↵i(t) = ↵i(X(t)) defined by (6.3.21) (see the following Step 3 and Section
6.3.5). In our numerical computation, we use the usual fourth order Runge-Kutta method to solve it.
Namely, denoting by Xm

⌧ the solution at the m-th step with time increment ⌧ (Xm
⌧ ⇡ X(m⌧)), then

the solutions at the next time step can be obtained as follows:

Xm+1
⌧ = Xm

⌧ +
1

6
(K1 + 2K2 + 2K3 +K4), X0

⌧ = X(0),

where

K1 = F (Xm
⌧ ), K2 = F (Xm

⌧ +K1/2), K3 = F (Xm
⌧ +K2/2), K4 = F (Xm

⌧ +K3).

As mentioned above, the quantities {T i}ni=1, {↵i}ni=1 and {Vi}ni=1 are computed as in the following
way.

Step 1: Let ✓i be the i-th tangent angle on the i-th edge �i, that is, ✓i satisfies the relation (xi �
xi�1)/ri = (cos ✓i, sin ✓i)T, where ri = |xi � xi�1| is the length of the i-th edge �i. Then we
define T i as follows:

T i =

✓

cos ✓⇤i
sin ✓⇤i

◆

, ✓⇤i =
✓i + ✓i+1

2
.

See Section 6.3.2.

Step 2: The i-th normal velocity Vi is computed by MFS. Namely, when we consider the one-phase
interior Hele-Shaw problem, the approximation of the pressure p at x 2 ⌦ is given by

Q0 +
n
X

j=1

QjEj(x), Ej(x) = E(x� yj)� E(x� zj),

124



Chapter 6 MFS for Hele-Shaw problem 6.3 Numerical scheme for (6.1.1)

where {yj}nj=1 and {zj}nj=1 are the singular and dummy points located in R2 \⌦, in which ⌦ de-
notes the bounded n-polygonal region surrounded by � here and hereafter. Coe�cients {Qj}nj=0

are determined by solving some system of linear, or quadratic, equations. See Section 6.3.4.

Step 3: The i-th tangential velocity ↵i is computed by UDM. Indeed, the tangential velocities can be
represented by some linear relations in which the normal velocities obtained in Step 2 appear.
See Section 6.3.5.

6.3.2 Step 1: Compute {T i}ni=1

Let ri be the length of the i-th edge �i, that is, ri = |xi � xi�1|. Then the i-th tangent vector ti of
� on the i-th edge �i can be computed as ti = (xi � xi�1)/ri. Let ✓i be the i-th tangent angle of �;
ti = (cos ✓i, sin ✓i)T. From these relations, we compute {✓i}n+1

i=0 as in the following procedure: Firstly,
from t1 = (t11, t12)T, we have ✓1 = � arccos t11 if t12 < 0; ✓1 = arccos t11 if t12 � 0. Secondly, for
i = 1, 2, . . . , n we successively compute ✓i+1 from ✓i as follows:

✓i+1 = ✓i + (sgnD) arccos I,

where D = det(ti, ti+1) and I = ti · ti+1. Note that the sgn function is defined as follows:

sgn a =

8

>

<

>

:

1 if a > 0,

0 if a = 0,

�1 if a < 0.

Finally, we obtain ✓0 = ✓1 � (✓n+1 � ✓n), since ✓n = ✓0 + 2⇡ and ✓n+1 = ✓1 + 2⇡ hold.
Let us introduce the i-th “dual” edge �⇤

i of the i-th edge �i as �⇤
i = [x⇤

i ,xi] [ [xi,x⇤
i+1], where

x⇤
i = (xi�1+xi)/2 is the mid point of �i. The length r⇤i of the i-th dual edge �⇤

i is r⇤i = (ri+ ri+1)/2.
We define the i-th dual tangent angle ✓⇤i by the following relation: ✓⇤i = (✓i + ✓i+1)/2 = ✓i + 'i/2,
where 'i = ✓i+1 � ✓i is the angle between adjacent two edges �i and �i+1. Thus the i-th dual unit
tangent vector T i is defined as in Step 1. See Figure 6.2 for geometrical descriptions.

6.3.3 Time evolution of the total length, the enclosed area and the barycen-
ter

The total length L of � is

L =
n
X

i=1

ri.

The enclosed area A of ⌦ can be computed as

A =
1

2

n
X

i=1

(xi · ni)ri =
1

2

n
X

i=1

✓

xi · �(xi � xi�1)?

ri

◆

ri =
1

2

n
X

i=1

x?
i�1 · xi.

The barycenter G of ⌦ can be computed as

G =
1

3A

n
X

i=1

(x?
i�1 · xi)x

⇤
i .
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Indeed, direct computation yields that

G =
1

A

Z

⌦

x dS =
1

3A

Z

⌦

✓

div(xx)
div(yx)

◆

dS =
1

3A

n
X

i=1

Z

�i

x(x · ni) ds =
1

3A

n
X

i=1

(xi�1 · ni)rix
⇤
i

=
1

3A

n
X

i=1

(x?
i�1 · xi)x

⇤
i .

Hereafter we use the following abbreviations:

ci = cos
'i

2
, si = sin

'i

2
.

Let ni = �t?i be the i-th unit outward normal vector of � on the i-th edge �i. Then we can easily
derive the following relations between the unit tangent and the unit outward normal vectors of � on
the edges and the ones on the dual edges by virtue of addition theorem of trigonometric functions:

ti = ciT i + siN i, ti+1 = ciT i � siN i, ni = �siT i + ciN i, ni+1 = siT i + ciN i.

Now we are ready to show a polygonal version of Theorem 6.2.1. For smooth curve C the curvature
k can be defined from the first equation in Theorem 6.2.1: L̇ =

R

C kV ds, rather than the Frenet type
definition @sT = �kN . In the same manner, for polygonal curve � the discrete curvature ki on �i

can be defined from

L̇ =
n
X

i=1

ṙi =
n
X

i=1

1

ri
(ẋi � ẋi�1) · (xi � xi�1) =

n
X

i=1

(ẋi � ẋi�1) · ti =
n
X

i=1

ẋi · (ti � ti+1)

=
n
X

i=1

(↵iT i + ViN i) · 2siN i = 2
n
X

i=1

Visi = 2
n
X

i=1

vi
⇣

tan
'i

2
+ tan

'i�1

2

⌘

=
n
X

i=1

kiviri,

when the normal velocity Vi is defined by

(6.3.3) Vi =
vi + vi+1

2ci
, i = 1, 2, . . . , n,

where vi will be defined later as the constant normal velocity �i (see (6.3.13) or (6.3.19)) and, as a
result, ki is defined by

(6.3.4) ki =
tan('i�1/2) + tan('i/2)

ri
, i = 1, 2, . . . , n.

This is so-called the polygonal curvature when �i is in an equivalent class [11, 56], and the crystalline
curvature when � is in an admissible class [4, 99].

The following proposition, a polygonal analogue of Theorem 6.2.1, o↵ers us explicit formulae for
the time derivatives of the length L, the area A and the barycenter G.

Proposition 6.3.1. We have

L̇ =
n
X

i=1

kiviri,(6.3.5)

Ȧ =
n
X

i=1

viri + errA,(6.3.6)

Ġ = � Ȧ

A
G+

1

A

n
X

i=1

x⇤
i viri + err

G

,(6.3.7)
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where errA and err
G

:= err1
G

+ err2
G

are the error terms:

errA =
n
X

i=1

✓

↵isi � vi+1 � vi
2

◆

ri+1 � ri
2

,(6.3.8)

err1
G

=
1

6A

n
X

i=1

✓

↵isi � vi+1 � vi
2

◆

ci(r
2
i + r2i+1)T i,(6.3.9)

err2
G

=
1

6A

n
X

i=1

✓

↵isi � vi+1 � vi
2

◆

(3xi � 2sir
⇤
iN i)(ri+1 � ri).(6.3.10)

Proof. (6.3.5) is clear since the discrete curvatures {ki}ni=1 are defined to satisfy (6.3.5).
By direct calculation, we obtain

Ȧ =
1

2

n
X

i=1

⇣

(ẋi�1)
? · xi + x?

i�1 · ẋi

⌘

=
1

2

n
X

i=1

(xi�1 � xi+1)
? · ẋi

=
1

2

n
X

i=1

[(xi � ri(ciT i + siN i))� (xi + ri+1(ciT i � siN i))]
? · (↵iT i + ViN i)

=
1

2

n
X

i=1

((ri+1 � ri)siT i + (ri+1 + ri)ciN i) ·
✓

↵iT i +
vi + vi+1

2ci
N i

◆

=
1

4

n
X

i=1

(vi + vi+1)(ri+1 + ri) +
n
X

i=1

↵isi
ri+1 � ri

2

=
1

2

n
X

i=1

viri +
1

4

n
X

i=1

(viri+1 + vi+1ri) +
n
X

i=1

↵isi
ri+1 � ri

2

=
n
X

i=1

viri +
n
X

i=1

↵isi
ri+1 � ri

2
+

1

4

n
X

i=1

(viri+1 + vi+1ri)� 1

4

n
X

i=1

(viri + vi+1ri+1)

=
n
X

i=1

viri +
n
X

i=1

↵isi
ri+1 � ri

2
�

n
X

i=1

vi+1 � vi
2

ri+1 � ri
2

=
n
X

i=1

viri +
n
X

i=1

✓

↵isi � vi+1 � vi
2

◆

ri+1 � ri
2

,

which is nothing but (6.3.6).
Concerning the time derivative of the barycenter, we have

Ġ = � Ȧ

3A2

n
X

i=1

(x?
i�1 · xi)x

⇤
i +

1

3A

d

dt

 

n
X

i=1

(x?
i�1 · xi)x

⇤
i

!

= � Ȧ

A
G+

1

3A

d

dt

 

n
X

i=1

(x?
i�1 · xi)x

⇤
i

!

,

therefore

6A

 

Ġ+
Ȧ

A
G

!

= 2
d

dt

 

n
X

i=1

(x?
i�1 · xi)x

⇤
i

!

holds. In the following, we compute the right hand side in the above equality. Using the evolution
equation (6.3.1) and the relation (6.3.3), we have

2
d

dt

 

n
X

i=1

(x?
i�1 · xi)x

⇤
i

!
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= 2
n
X

i=1

⇣

ẋ?
i�1 · xi + x?

i�1 · ẋi

⌘

x⇤
i +

n
X

i=1

(x?
i�1 · xi)(ẋi�1 + ẋi)

= 2
n
X

i=1

(ẋ?
i · xi+1)x

⇤
i+1 + 2

n
X

i=1

(x?
i�1 · ẋi)x

⇤
i +

n
X

i=1

ẋi

�

x?
i�1 · xi + x?

i · xi+1

�

= 2
n
X

i=1

⇣

ẋ?
i · (xi + ri+1ti+1)

⌘

x⇤
i+1 + 2

n
X

i=1

[ẋi · (xi � riti)
?]x⇤

i

+
n
X

i=1

ẋi[xi · (xi � riti)
?] +

n
X

i=1

ẋi[x
?
i · (xi + ri+1ti+1)]

= 2
n
X

i=1

(ẋ?
i · xi)x

⇤
i+1 + 2

n
X

i=1

[(ViT i � ↵iN i) · ri+1(ciT i � siN i)]x
⇤
i+1 + 2

n
X

i=1

(ẋi · x?
i )x

⇤
i

+ 2
n
X

i=1

[(↵iT i + ViN i) · ri(�siT i + ciN i)]x
⇤
i +

n
X

i=1

ẋi(xi · rini) +
n
X

i=1

ẋi(x
?
i · ri+1ti+1)

= �2
n
X

i=1

(ẋi · x?
i )x

⇤
i+1 + 2

n
X

i=1

(↵isi + Vici)ri+1x
⇤
i+1 + 2

n
X

i=1

(ẋi · x?
i )x

⇤
i

+ 2
n
X

i=1

(�↵isi + Vici)rix
⇤
i +

n
X

i=1

ẋi(xi · ni)ri +
n
X

i=1

ẋi(xi · ni+1)ri+1

= �2
n
X

i=1

(ẋi · x?
i )(x

⇤
i+1 � x⇤

i ) + 2
n
X

i=1

Vici(ri+1x
⇤
i+1 + rix

⇤
i ) + 2

n
X

i=1

↵isi(ri+1x
⇤
i+1 � rix

⇤
i )

+
n
X

i=1

ẋi[xi · (rini + ri+1ni+1)].

Using the relations

2(x⇤
i+1 � x⇤

i ) = xi + xi+1 � (xi�1 + xi) = xi+1 � xi�1 = riti + ri+1ti+1

= ri(ciT i + siN i) + ri+1(ciT i � siN i) = (ri + ri+1)ciT i + (ri � ri+1)siN i

and

rini + ri+1ni+1 = ri(�siT i + ciN i) + ri+1(siT i + ciN i) = (ri+1 � ri)siT i + (ri + ri+1)ciN i,

we have

2
d

dt

 

n
X

i=1

(x?
i�1 · xi)x

⇤
i

!

=
n
X

i=1

(ẋ?
i · xi)[ci(ri + ri+1)T i + (ri � ri+1)siN i]

+
n
X

i=1

ẋi[si(ri+1 � ri)(xi · T i) + ci(ri + ri+1)(xi ·N i)]

+
n
X

i=1

(viri+1x
⇤
i+1 + virix

⇤
i + vi+1ri+1x

⇤
i+1 + vi+1rix

⇤
i )

+
n
X

i=1

↵isi[ri+1(xi + xi+1)� ri(xi�1 + xi)]
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=
n
X

i=1

[Vici(ri + ri+1)(xi · T i)T i + Visi(ri � ri+1)(xi · T i)N i

� ↵ici(ri + ri+1)(xi ·N i)T i � ↵isi(ri � ri+1)(xi ·N i)N i]

+
n
X

i=1

[↵isi(ri+1 � ri)(xi · T i)T i + ↵ici(ri + ri+1)(xi ·N i)T i

+ Visi(ri+1 � ri)(xi · T i)N i + Vici(ri + ri+1)(xi ·N i)N i]

+ 2
n
X

i=1

x⇤
i viri +

n
X

i=1

[(vi+1 � vi)rix
⇤
i + virix

⇤
i + viri+1x

⇤
i+1]

+
n
X

i=1

↵isi(ri+1 � ri)xi +
n
X

i=1

↵isi[ri+1(xi + ri+1ti+1)� ri(xi � riti)]

= 2
n
X

i=1

Vicir
⇤
i xi +

n
X

i=1

↵isi(ri+1 � ri)xi + 3
n
X

i=1

x⇤
i viri +

n
X

i=1

(vi+1 � vi)rixi

�
n
X

i=1

vi+1 � vi
2

r2i ti +
n
X

i=1

viri+1xi +
1

2

n
X

i=1

vir
2
i+1ti+1 + 2

n
X

i=1

↵isi(ri+1 � ri)xi

+
n
X

i=1

↵isi[ci(r
2
i+1 + r2i )T i � si(r

2
i+1 � r2i )N i]

=
n
X

i=1

(vi + vi+1)
ri + ri+1

2
xi + 3

n
X

i=1

↵isi(ri+1 � ri)xi + 3
n
X

i=1

x⇤
i viri +

n
X

i=1

(vi+1 � vi)rixi

�
n
X

i=1

vi+1 � vi
2

r2i (ciT i + siN i) +
n
X

i=1

[vi+1 � (vi+1 � vi)]ri+1xi

+
1

2

n
X

i=1

[(vi � vi+1) + vi+1]r
2
i+1(ciT i � siN i) +

n
X

i=1

↵isici(r
2
i+1 + r2i )T i

� 2
n
X

i=1

↵is
2
i r

⇤
i (ri+1 � ri)N i.

The underlined part, say 1�, can be computed as follows:

1� = �
n
X

i=1

vi+1 � vi
2

(r2i + r2i+1)ciT i +
n
X

i=1

vi+1 � vi
2

(r2i+1 � r2i )siN i +
n
X

i=1

virix
⇤
i

+
1

2

n
X

i=1

(viri+1 + vi+1ri)xi + 3
n
X

i=1

x⇤
i viri +

n
X

i=1

(vi+1 � vi)(ri � ri+1)xi

+
n
X

i=1

vi+1ri+1xi +
1

2

n
X

i=1

vi+1r
2
i+1(ciT i � siN i)

= �
n
X

i=1

vi+1 � vi
2

(r2i + r2i+1)ciT i +
n
X

i=1

vi+1 � vi
2

(r2i+1 � r2i )siN i + 6
n
X

i=1

x⇤
i viri

�
n
X

i=1

(xi�1 + xi)viri +
1

2

n
X

i=1

(viri+1 + vi+1ri + 2vi+1ri+1)xi
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+
n
X

i=1

vi+1 � vi
2

(ri � ri+1)3xi�
n
X

i=1

vi+1 � vi
2

(ri � ri+1)xi +
1

2

n
X

i=1

vi+1r
2
i+1ti+1

The underlined part, say 2�, is equal to 0. Indeed, we have

2� = �
n
X

i=1

xiviri �
n
X

i=1

(xi � riti)viri � 2
n
X

i=1

vir
2
i+1ti

+
1

2

n
X

i=1

(viri+1 + vi+1ri + 2viri � vi+1ri + vi+1ri+1 + viri � viri+1)xi

= �2
n
X

i�1

xiviri +
n
X

i=1

vir
2
i ti +

3

2

n
X

i=1

xivi+1ri+1 +
1

2

n
X

i=1

xiviri +
1

2

n
X

i=1

vir
2
i ti

=
3

2

n
X

i=1

(vir
2
i ti + virixi�1 � virixi) = 0.

Summarizing the above relations, we obtain

6A

 

Ġ+
Ȧ

A
G

!

= 3
n
X

i=1

↵isi(ri+1 � ri)xi +
n
X

i=1

↵isici(r
2
i+1 + r2i )T i � 2

n
X

i�1

↵is
2
i r

⇤
i (ri+1 � ri)N i

�
n
X

i=1

vi+1 � vi
2

ci(r
2
i + r2i+1)T i +

n
X

i=1

vi+1 � vi
2

2sir
⇤
i (ri+1 � ri)N i

+ 6
n
X

i=1

x⇤
i viri �

n
X

i=1

vi+1 � vi
2

(ri+1 � ri)3xi

=
n
X

i=1

✓

↵isi � vi+1 � vi
2

◆

ci(r
2
i + r2i+1)T i

+
n
X

i=1

✓

↵isi � vi+1 � vi
2

◆

(3xi � 2sir
⇤
iN i)(ri+1 � ri) + 6

n
X

i=1

x⇤
i viri,

which completes the proof of Proposition 6.3.1.

Remark 6.3.2. Note that under UDM, ri ⌘ L/n holds for all i, then we have errA = 0 and err2
G

= 0,
and if Ȧ = 0, then we have Ġ = 0 by MFS (see Section 6.3.4.1). We also note that if ↵i = (vi+1 �
vi)/(2si), then errA = 0 and err

G

= 0 simultaneously [11, 56]. In this case, � is restricted in the
equivalent class, since vi = ẋi · ni = ẋi�1 · ni hold. Indeed, by the evolution law (6.2.3), we have

ẋi · ni = (↵iT i + ViN i) · (�siT i + ciN i) = �↵isi + Vici = �vi+1 � vi
2si

si +
vi + vi+1

2ci
ci = vi,

ẋi�1 · ni = (↵i�1T i + Vi�1N i�1) · (si�1T i�1 + ci�1N i�1) = ↵i�1si�1 + Vi�1si�1

=
vi � vi�1

2si�1
si�1 +

vi�1 + vi
2ci�1

ci�1 = vi.
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Direct computation yields

ṫi =
d

dt

✓

xi � xi�1

ri

◆

= � 1

r2i
[(ẋi � ẋi�1) · ti] (xi � xi�1) +

1

ri
(ẋi � ẋi�1)

= � 1

ri
[(↵iT i + ViN i) · (ciT i + siN i)� (↵i�1T i�1 + Vi�1N i�1) · (ci�1T i�1 � si�1N i�1)] ti

+
1

ri
(↵iT i + ViN i � (↵i�1T i�1 + Vi�1N i�1))

= � 1

ri
(↵ici + Visi � ↵i�1ci�1 + Vi�1si�1) ti +

1

ri
(↵iT i + ViN i � ↵i�1T i�1 � Vi�1N i�1) .

The underlined part, say 1�, can be computed as

1� = (↵ici + Visi)(ciT i + siN i)� (↵i�1ci�1 � Vi�1si�1)(ci�1T i�1 � si�1N i�1)

= ↵i(1� s2i )T i + ↵icisiN i + VicisiN i + Vi(1� c2i )N i

� ↵i�1(1� s2i�1)T i + ↵i�1ci�1si�1N i + Vi�1ci�1si�1T i�1 � Vi�1(1� c2i�1)N i�1.

Therefore we have

ṫi =
1

ri

�

↵is
2
iT i � ↵icisiN i � VicisiT i + Vic

2
iN i � ↵i�1s

2
i�1T i�1 � ↵i�1ci�1si�1N i�1

�Vi�1ci�1si�1T i�1 � Vi�1c
2
i�1N i�1

�

=
1

ri



si

✓

vi+1 � vi
2si

si � vi + vi+1

2ci
ci

◆

T i + ci

✓

�vi+1 � vi
2si

si +
vi + vi+1

2ci
ci

◆

N i

�si�1

✓

vi � vi�1

2si�1
si�1 +

vi�1 + vi
2ci�1

ci�1

◆

T i�1 � ci�1

✓

vi � vi�1

2si�1
si�1 +

vi�1 + vi
2ci�1

ci�1

◆

N i�1

�

=
1

ri
(�visiT i + viciN i � visi�1T i�1 � vici�1N i�1)

=
vi
ri

[�siT i + ciN i � (si�1T i�1 + ci�1N i�1)] = 0,

which concludes that � is restricted in the equivalent class.

6.3.4 Step 2: Compute {Vi}ni=1 by MFS

Fix the time t and give the approximation of the pressure function p(·, t) by using the method of
fundamental solutions.

6.3.4.1 Structure-preserving scheme

Let ⌦(t) be the region surrounded by �(t). Under MFS, the solution of (6.1.1) is approximated by P
such as

P(x) = Q0 +
n
X

j=1

QjEj(x), Ej(x) = E(x� yj)� E(x� zj), x 2 ⌦(t),(6.3.11)

h(P � �ki)rPii · ni = 0, i = 1, 2, . . . , n,(6.3.12)

vi = �hrPii · ni, i = 1, 2, . . . , n,(6.3.13)

where {Qj}nj=0 are unknown coe�cients, yj ’s are the singular points defined as

(6.3.14) yj = x⇤
j + dnj , j = 1, 2, . . . , n,
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d > 0 is a parameter controlling accuracy of MFS, and {zj}nj=1 are “dummy” points located in R2\⌦(t)
which are not equal to the singular points {yj}nj=1. Here hFii = r�1

i

R

�i
F ds is the average of F on

�i. Te normal velocities {Vi}ni=1 are determined by (6.3.3) and the above {vi}ni=1. Note that 4P = 0
holds in ⌦(t) and we have direct calculation such as rP =

Pn
j=1 QjrEj . Note also that if we put

[P]i = hPrPi · ni/ hrPii · ni, then (6.3.12) can be expressed as [P]i = �ki when hrPii · ni 6= 0.
We can see that the conditions (6.3.12) are weak forms of the original boundary condition in some
sense.

The coe�cients {Qj}nj=0 are determined from (n+1)’s quadratic equations: n’s quadratic equations
(6.3.12) expressed by

(6.3.15) (Q0 � �ki)
n
X

j=1

aijQj +
n
X

j=1

n
X

l=1

ailjQlQj = 0, i = 1, 2, . . . , n,

where aij = hrEjii ·ni, ailj = hElrEjii ·ni, and one more equation derived from the second term in
(6.3.7) and the first error term (6.3.9):

�

�

�

�

�

1

A

n
X

i=1

x⇤
i viri + err1

G

�

�

�

�

�

= 0,

which is the same as the following quadratic equation

(6.3.16)
n
X

j=1

n
X

l=1

bl · bjQlQj + 2
n
X

j=1

b · bjQj + |b|2 = 0.

Here vectors b and {bj}nj=1 are calculated from (6.3.21) as follows:

b =
n
X

i=2

µi

 

i� 1

n
L�

i
X

l=2

rl

!

!, bj = �j +
n
X

i=2

µi

i
X

l=2

blj , ⌧ i =
r2i + r2i+1

6
T i,

µi = si⌧ i � 1

ci

0

@

n
X

j=1

1

cj

1

A

�1
 

n
X

l=1

sl⌧ l

!

, �j =
n
X

i=1

✓

�aijx
⇤
i ri +

ai+1,j � aij
2

ci⌧ i

◆

,

blj =
tan('l/2)

2
al+1,j +

klrl
2

alj +
tan('l�1/2)

2
al�1,j � 1

n

n
X

i=1

kiaijri, l = 1, 2, . . . , n,

for i, j = 1, 2, . . . , n. Using these normal velocities, we will see in Proposition 6.3.3 that CS-, AP- and
BF-properties are satisfied, however, it is hard to compute aij and ailj analytically so that we have
to do some numerical integration. Moreover, we have to solve (n+ 1)’s nonlinear equations, and it is
hard to discuss the existence of solutions of (6.3.15) and (6.3.16). Hence we propose simpler scheme
we only have to solve (n + 1)’s linear equations. Using this scheme, we will see in Proposition 6.3.4
that CS-, AP- and BF-properties hold asymptotically, and in section 6.6 that it o↵ers satisfactory
numerical results.
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6.3.4.2 Derivation of the equations (6.3.15) and (6.3.16)

Direct computation yields

hPrPii · ni =
1

ri

Z

�i

PrP ds · ni =
1

ri

Z

�i

 

Q0 +
n
X

l=1

QlEl(x)

!

n
X

j=1

QjrEj(x) ds · ni

= Q0

n
X

j=1

Qj
1

ri

Z

�i

rEj(x) ds · ni +
n
X

l=1

n
X

j=1

QlQj
1

ri

Z

�i

El(x)rEj(x) ds · ni

= Q0

n
X

j=1

Qj hrEjii · ni +
n
X

l=1

n
X

j=1

QlQj hElrEjii · ni

= Q0

n
X

j=1

aijQj +
n
X

l=1

n
X

j=1

ailjQlQj ,

hrPii · ni =
1

ri

Z

�i

n
X

j=1

QjrEj(x) ds · ni =
n
X

j=1

Qj hrEjii · ni =
n
X

j=1

aijQj .

Hence we obtain

h(P � �ki)rPii · ni = hPrPii · ni � �ki hrPii · ni

= Q0

n
X

j=1

aijQj +
n
X

l=1

n
X

j=1

ailjQlQj � �ki

n
X

j=1

aijQj

= (Q0 � �ki)
n
X

j=1

aijQj +
n
X

l=1

n
X

j=1

ailjQlQj .

As to the expression (6.3.16), we firstly have

�

�

�

�

�

1

A

n
X

i=1

x⇤
i viri + err1

G

�

�

�

�

�

2

=

�

�

�

�

�

1

A

n
X

i=1

x⇤
i viri

�

�

�

�

�

2

+
2

A

n
X

i=1

x⇤
i viri · err1G + |err1

G

|2.

We hereafter expand and tidy up the above expression.

1

A

n
X

i=1

x⇤
i viri = � 1

A

n
X

i=1

x⇤
i hrP ii · niri = � 1

A

n
X

i=1

x⇤
i

0

@

n
X

j=1

aijQj

1

A ri

=
1

A

n
X

j=1

 

n
X

i=1

�aijx
⇤
i ri

!

Qj ,

err1
G

=
1

6A

n
X

i=1

✓

↵isi � vi+1 � vi
2

◆

ci(r
2
i + r2i+1)T i

=
1

6A

n
X

i=1

↵isici(r
2
i + r2i+1)T i � 1

6A

n
X

i=1

vi+1 � vi
2

ci(r
2
i + r2i+1)T i
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The underlined and doubly-underlined parts, say 1� and 2�, respectively, can be computed as follows:

1� = ↵1s1c1(r
2
1 + r22)T 1 +

n
X

i=2

↵isici(r
2
i + r2i+1)T i

= ↵1c1

n
X

i=1

si(r
2
i + r2i+1)T i +

n
X

i=2

 isi(r
2
i + r2i+1)⌧ i

= �6

Pn
i=2 i/ci

c1
Pn

l=1 1/cl
c1

n
X

i=1

si⌧ i + 6
n
X

i=2

 isi⌧ i = 6
n
X

i=2

2

6

4

si⌧ i � 1

ci

0

@

n
X

j=1

1

cj

1

A

�1
 

n
X

l=1

sl⌧ l

!

3

7

5

.

Here  i =
Pi

l=2  l for i = 2, 3, . . . , n, and  l can be written concretely by their definitions as follows:

 l = �Vlsl � Vl�1sl�1 +
L̇

n
+

✓

L

n
� rl

◆

!

= �vl + vl+1

2cl
sl � vl�1 + vl

2cl�1
sl�1 +

1

n

n
X

i=1

kiviri +

✓

L

n
� rl

◆

!

= � tan('l/2)

2

0

@�
n
X

j=1

aljQj �
n
X

j=1

al+1,jQj

1

A� tan('l�1/2)

2

0

@�
n
X

j=1

al�1,jQj �
n
X

j=1

aljQj

1

A

+
1

n

n
X

i=1

ki

0

@�
n
X

j=1

aijQj

1

A ri +

✓

L

n
� rl

◆

!

=
n
X

j=1

✓

tan('l/2)

2
al+1,j +

1

2

tan('l/2) + tan('l�1/2)

rl
aljrl +

tan('l�1/2)

2
al�1,j

� 1

n

n
X

i=1

kiaijri

!

Qj +

✓

L

n
� rl

◆

!

=
n
X

j=1

bljQj +

✓

L

n
� rl

◆

!,

therefore we obtain that

1� = 6
n
X

i=2

 iµi = 6
n
X

i=2

i
X

l=2

2

4

n
X

j=1

bljQj +

✓

L

n
� rl

◆

!

3

5µi

= 6
n
X

i=2

2

4

i
X

l=2

n
X

j=1

bljµiQj +

 

i� 1

n
L�

i
X

l=2

rl

!

!µi

3

5 .

We also have that

2� =
n
X

i=1

1

2

0

@�
n
X

j=1

ai+1,jQj +
n
X

j=1

aijQj

1

A ci(r
2
i + r2i+1)T i = �6

n
X

j=1

 

n
X

i=1

ai+1,j � aij
2

ci⌧ i

!

Qj .
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Summarizing the above relations, we reach

err1
G

=
1

A

n
X

j=1

 

n
X

i=2

µi

i
X

l=2

blj +
n
X

i=1

ai+1,j � aij
2

ci⌧ i

!

Qj +
1

A

n
X

i=2

µi

 

i� 1

n
L�

i
X

l=2

rl

!

!

=
1

A

n
X

j=1

 

n
X

i=2

µi

i
X

l=2

blj +
n
X

i=1

ai+1,j � aij
2

ci⌧ i

!

Qj + b.

Thus we have
�

�

�

�

�

1

A

n
X

i=1

x⇤
i viri

�

�

�

�

�

2

=
1

A2

n
X

l=1

n
X

j=1

 

n
X

i=1

�ailx
⇤
i ri

!

·
 

n
X

i=1

�aijx
⇤
i ri

!

QlQj ,

2

A

n
X

i=1

x⇤
i viri · err1G

=
2

A2

"

n
X

l=1

 

n
X

i=1

�ailx
⇤
i ri

!

Ql

#

·
2

4

n
X

j=1

 

n
X

i=2

µi

i
X

l=2

blj +
n
X

i=1

ai+1,j � aij
2

ci⌧ i

!

Qj + b

3

5

=
2

A2

2

4

n
X

l=1

n
X

j=1

 

n
X

i=1

�ailx
⇤
i ri

!

·
 

n
X

i=2

µi

i
X

l0=2

bl0j +
n
X

i=1

ai+1,j � aij
2

ci⌧ i

!

QlQj

+
n
X

j=1

 

n
X

i=1

�aijx
⇤
i ri

!

· bQj

3

5

|err1
G

|2 =
1

A2

n
X

l=1

n
X

j=1

 

n
X

i=2

µi

i
X

l0=2

bl0l +
n
X

i=1

ai+1,l � ail
2

ci⌧ i

!

·
 

n
X

i=2

µi

i
X

l00=2

bl00j +
n
X

i=1

ai+1,j � aij
2

ci⌧ i

!

QlQj

+
2

A2

n
X

j=1

 

n
X

i=2

µi

i
X

l=2

blj +
n
X

i=1

ai+1,j � aij

2
ci⌧ i

!

· bQj +
|b|2
A2

.

Hence we finally obtain
�

�

�

�

�

1

A

n
X

i=1

x⇤
i viri + err1

G

�

�

�

�

�

2

=
1

A2

n
X

l=1

n
X

j=1

" 

n
X

i=1

�ailx
⇤
i ri

!

·
 

n
X

i=1

�aijx
⇤
i ri

!

+2

 

n
X

i=1

�ailx
⇤
i ri

!

·
 

n
X

i=2

µi

i
X

l0=2

bl0j +
n
X

i=1

ai+1,j � aij
2

ci⌧ i

!

+

 

n
X

i=2

µi

i
X

l0=2

bl0l +
n
X

i=1

ai+1,l � ail
2

ci⌧ i

!

·
 

n
X

i=2

µi

i
X

l00=2

bl0j +
n
X

i=1

ai+1,j � aij
2

ci⌧ i

!#

QlQj
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+
2

A2

n
X

j=1

"

n
X

i=1

✓

�aijx
⇤
i ri +

ai+1,j � aij
2

ci⌧ i

◆

+
n
X

i=2

µi

i
X

l=2

blj

#

· bQj +
|b|2
A2

=
1

A2

0

@

n
X

l=1

n
X

j=1

bl · bjQlQj + 2
n
X

j=1

b · bjQj + |b|2
1

A ,

which is nothing but the equation (6.3.16).

6.3.4.3 Practical computational scheme

The approximate solution P has of the form

(6.3.17) P (x) = Q0 +
n
X

j=1

QjEj(x), Ej(x) = E(x� yj)� E(x� zj), x 2 ⌦(t).

The boundary condition and the normal velocity are approximated as follows:

P (x⇤
i ) = �ki, i = 1, 2, . . . , n,(6.3.18)

vi = �rP (x⇤
i ) · ni, i = 1, 2, . . . , n.(6.3.19)

Then the normal velocities {Vi}ni=1 are determined by the same manner as before. The above equations
(6.3.18) and (6.3.19) can be obtained by approximating the average hFii in (6.3.12) and (6.3.13) as the
mid-point value F(x⇤

i ) of F on �i, respectively.
The coe�cients {Qj}nj=0 are determined from (n+1)’s linear equations: n’s linear equations (6.3.18)

expressed by

Q0 +
n
X

j=1

QjEj(x
⇤
i ) = �ki, i = 1, 2, . . . , n,

and one linear equation given by

(6.3.20)
n
X

j=1

QjHj = 0, Hj = �
n
X

i=1

rEj(x
⇤
i ) · niri, j = 1, 2, . . . , n,

which means
Pn

i=1 viri =
Pn

j=1 QjHj = 0 with vi = �Pn
j=1 QjrEj(x⇤

i ) · ni. The existence of
solutions of (6.3.18) and (6.3.19) are discussed in Chapter 5.

Note that our approximation is a kind of Murota’s invariant scheme [73, 74], in which zero-average
condition

Pn
j=1 Qj = 0 was utilized instead of (6.3.20). We, however, use (6.3.20) since this means

Pn
i=1 viri = 0 and Ȧ = 0 holds if errA = 0 in (6.3.6).
To realize errA = 0, we use UDM in the next Step 3.

6.3.5 Step 3: Compute {↵i}ni=1 by UDM

Under the following UDM, tangential velocities {↵i}ni=1 are computed by

↵i =
 i + ↵1c1

ci
,  i =

i
X

l=2

 l, i = 2, 3, . . . , n,

 l = �Vlsl � Vl�1sl�1 +
L̇

n
+

✓

L

n
� rl

◆

!, l = 2, 3, . . . , n,

↵1 = �
Pn

i=2 i/ci
c1

Pn
l=1 1/cl

,

(6.3.21)
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where ! = !(n, t) is a relaxation term defined by !(n, t) = @tf(n, t), and if we assume limt!T
max

f(n, t) =

1 with the final computation time Tmax, then
R T

max

0
!(n, t) dt = 1 is satisfied. When Tmax = 1, !

can be taken a constant. In our numerical computation, we take f(n, t) = 10nt, that is, ! = 10n (see
Section 6.6).

Tangential velocities (6.3.21) are derived from the following criterion [93]:

(6.3.22) ri(t)� L(t)

n
= ⌘i exp(�f(n, t)), i = 1, 2, . . . , n,

where f(n, t) satisfies limt!T
max

f(n, t) = 1 and one can add the assumption limn!1 f(n, t) = 1,
and {⌘i}ni=1 satisfies

Pn
i=1 ⌘i = 0 and |⌘i|  1 for all i. Di↵erentiating (6.3.22) with respect to time,

we obtain

ṙi(t)� L̇(t)

n
=

✓

L(t)

n
� ri(t)

◆

!(n, t).(6.3.23)

On the other hand, we obtain from the evolution equation (6.3.1) that

(6.3.24) ṙi = (ẋi � ẋi�1) · ti = Visi + Vi�1si�1 + ↵ici � ↵i�1ci�1.

Combining the relations (6.3.23) and (6.3.24) with the zero-average condition
Pn

i=1 ↵i = 0, the tan-
gential velocities {↵i}ni=1 can be determined. See also [34, 52, 70, 71, 72] for utilization of nontrivial
tangential velocities.

As we can see from (6.3.23), if ! ⌘ 0, then ṙi(t)� L̇(t)/n = 0 holds, which yields that

ri(t)� L(t)

n
= ri(0)� L(0)

n
, i = 1, 2, . . . , n; t 2 [0, Tmax).

Thus, if the distribution of initial vertices are “completely” uniform, then it will be kept theoretically
in all time. However, in the real numerical computation, uniformness would be broken since numerical
error accumulate. From this point of view, it would be preferred to use this type of technique, known
as the asymptotic uniform distribution method:

ri(t)� L(t)

n
�! 0, i = 1, 2, . . . , n; as t ! Tmax.

It can also be examined in similar way that (6.3.23) keeps ri(t) = ri+1(t) for all i and all time t if
uniform distribution is achieved at initial time.

6.3.6 CS-, AP- and BF-properties

Under our algorithm in Section 6.3.1, it can be shown that discrete analogue of Proposition 6.2.2,
that is, CS-, AP- and BF-properties hold when the normal velocities are computed by structure-
preserving scheme (see Section 6.3.4.1), and that they hold asymptotically when the normal velocities
are computed by practical computational scheme (see Section 6.3.4.3) as follows.

Proposition 6.3.3 (CS-, AP- and BF-properties). Suppose that there exists an approximate solution
P of the form (6.3.11) satisfying (6.3.15) and (6.3.16) for each time t, and that the distribution of
the initia vertices is uniform, that is, ri(0) ⌘ L(0)/n holds for all i. The normal velocities {vi}ni=0 on
edges are computed by (6.3.13). Then we have

L̇ = � 1

�
krPk2L2(⌦)  0, Ȧ = 0, Ġ = 0.
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Namely, CS-, AP- and BF-properties hold.

Proof. Using the expression (6.3.5) for L̇ and the condition (6.3.12), we have

L̇ = �
n
X

i=1

ki hrPii · niri = � 1

�

n
X

i=1

hPrPii · niri = � 1

�

n
X

i=1

Z

�i

PrP · ni ds

= � 1

�

Z

⌦

div(PrP) dS = � 1

�

Z

⌦

�|rP|2 + P4P
�

dS  0,

where we have used the fact that P is smooth in some neighborhood of ⌦ and harmonic in ⌦. As to
the enclosed area, we have

Ȧ = �
n
X

i=1

hrPii · niri = �
n
X

i=1

Z

�i

rP · ni ds = �
Z

⌦

div(rP) dS = 0

from the expression (6.3.6) for Ȧ. Here errA vanishes since the distribution of vertices is uniform. The
barycenter G of ⌦ does not move since Ȧ = 0, (6.3.16) and err2

G

= 0 (by UDM) hold.

Proposition 6.3.4 (AP-, and asymptotic CS- and BF-properties). Suppose that supt2[0,T
max

) L(t) <
+1 holds, that there exists an approximate solution P of the form (6.3.17) satisfying (6.3.18) and
(6.3.20) for each time t, that the distribution of the initial vertices is uniform, that is, ri(0) ⌘ L(0)/n
holds for all i, and that the following angle condition (AC) and non self-intersection condition (NSIC)
hold:

(AC) there exists some (small) positive constant � such that |'i|  ⇡ � � holds for all i = 1, 2, . . . , n;

(NSIC) there exists some positive constant �̃ such that dist(�i,�j) � �̃ holds for all i, j = 1, 2, . . . , n
with |i� j| � 2.

The normal velocities {vi}ni=1 on edges are computed by (6.3.19). Then

L̇  � 1

�
krPk2L2(⌦) +

C1

n
, Ȧ = 0, |Ġ|  C2

n

hold for su�ciently small d and su�ciently large d̃, where d̃ is a parameter to arrange the dummy
points {zj}nj=1 as

zj = x⇤
j + d̃nj , j = 1, 2, . . . , n,

where the constants C1 and C2 are defined as

C1 =
L2

⇡�d2

0

@

n
X

j=1

|Qj |
1

A

2
v

u

u

t

2

⇡2
+ 5

 

log
L+ d̃

d

!2

,

C2 =
L2

A⇡d

0

@

n
X

j=1

|Qj |
1

A

 p
2(C̃2 + 1)

3
+

r

2 +
5kxkL1(�)

d2
+

1p
2

!

,

in which

C̃2 = max

(

1

c1
Pn

l=1 1/cl

n
X

m=2

C 0
2m

cm
, max
i=1,2,...,n

1

ci

 

C 0
2i +

1
Pn

l=1 1/cl

n
X

m=2

C 0
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!)

,

C 0
2i =

i
X

l=2

0

@
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�
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tan
'l

2

�

�
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+
�

�

�

tan
'l�1

2

�
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�

+ 2
n
X

j=1

�
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tan
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2
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�

�

1

A .
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Namely, AP-property holds, and CS- and BF-properties hold asymptotically.

Remark 6.3.5. We conjecture that the sum
Pn

j=0 |Qj | of the absolute values of coe�cients Qj is order
of 1, that is, it can be bounded by some constant which is independent of n. Indeed, when we consider
the case where � is a regular n-gon, then we obtain the following numerical results (see Figure 6.3),
which enable us to present the above conjecture. In the numerical experiment, � is a regular n-gon

�

����

����

����

����

����

����

� �� �� �� �� �� �� �� �� �� ���

��� � �� � � ���
��� � �� � � ���
��� � �� � � ���
��� � �� � � ���
��� � �� � � ���
��� � �� � � ���
��� � �� � � ���
��� � �� � � ���
��� � �� � � ���
��� � �� � � ���

Figure 6.3: Numerical computation of the sum of the coe�cients in the case where � is a regular n-gon.

with radius of inscribed circle being equal to 1, which means that the collocation points {x⇤
i }ni=1 are

expressed by x⇤
i = !i, and the singular and dummy points are distributed as follows:

yj = x⇤
j + dyj = R!j , zj = R0!j , !j =

✓

cos(2⇡(j � 1)/n)
sin(2⇡(j � 1)/n)

◆

, j = 1, 2, . . . , n,

in which R0 = 1000 and R = 1.1, 1.2, . . . , 2.

In order to prove the above proposition, we need the following lemma which gives bounds for
L1(�i) norms of P , rP , rPx and rPy.

Lemma 6.3.6. Suppose that the same hypothesis in Proposition 6.3.4 hold except for the uniform
distribution of the initial vertices. Then we have following estimates:

kPkL1(�i) 
0

@

n
X

j=0

|Qj |
1

A log
L+ d̃

d
, krPk2L1(�i)

 2

⇡2

0

@

n
X

j=1

|Qj |
1

A

2

1

d2
,

krPxk2L1(�i)
, krPyk2L1(�i)

 5

⇡2

0

@

n
X

j=1

|Qj |
1

A

2

1

d4
.

Here kfkL1(�i) is defined by kfkL1(�i) = kf1k2L1(�i)
+ kf2k2L1(�i)

for vector-valued function f =

(f1, f2)T (or f = (f1, f2)).

Proof. Note that d  |x� yj | holds as d ! 0 for all j = 1, 2, . . . , n and all x 2 �i, and

|x� zj | = |x� (x⇤
j + d̃nj)|  |x� x⇤

j |+ d̃  L+ d̃.
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Then we have

kPkL1(�i)  |Q0|+
n
X

j=1

|Qj |kEjkL1(�i)  |Q0|+ 1

2⇡

n
X

j=1

|Qj | log
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x2�i
|x� zj |

inf
x2�i |x� yj |


0

@

n
X

j=0

|Qj |
1

A log
L+ d̃

d

for su�ciently small d and su�ciently large d̃. Next, direct computation yields that

rP (x) =
1

2⇡

n
X

j=1

Qj

✓

x� yj

|x� yj |2
� x� zj

|x� zj |2
◆

.

Thus we obtain
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2
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|Qj | sup
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+
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5
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1
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We again have by direct computation that

Pxx =
1

2⇡

n
X

j=1

Qj

✓�(x1 � yj1)2 + (x2 � yj2)2

|x� yj |4
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|x� zj |4
◆

,

Pxy = � 1

⇡

n
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Qj
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(x1 � yj1)(x2 � yj2)

|x� yj |4
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|x� zj |4
◆

,

therefore we obtain

krPxk2L1(�i)


2

4

1

2⇡

n
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|Qj | sup
x2�i

✓
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|x� yj |4
+
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|x� zj |4
◆
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2

+
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4� 1
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n
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|Qj | sup
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The estimate on krPyk2L1(�i)
can be obtained in similar way.

Proof of Proposition 6.3.4. Put f1,i(a) = P (a)rP (a) ·ni. Note that f1,i is smooth in some neighbor-
hood of ⌦(t) since P is so. Then we have

f1,i(x)� f1,i(x
⇤
i ) =

Z 1

0

@f1,i
@a

((1� µ)x⇤
i + µx) dµ (x� x⇤

i )

140



Chapter 6 MFS for Hele-Shaw problem 6.3 Numerical scheme for (6.1.1)

for all x 2 �i. Therefore

|f1,i(x)� f1,i(x
⇤
i )| 

Z 1

0

�

�

�

�

@f1,i
@a

((1� µ)x⇤
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i | 
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L1(�i)

· L

2n

holds for all x 2 �i. Owing to Lemma 6.3.6, k@f/@akL1(�i) can be bounded as follows:
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= krP (x)(rP (x) · ni) + P (x)(HessP (x))nikL1(�i)

=
q

kPxrP · ni + PrPx · nik2L1(�i)
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Using a relation

L̇ =
n
X

i=1

kiviri = � 1

�

n
X
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P (x⇤
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i ) · niri,

we obtain
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Hence we obtain the desired estimate for L̇.
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Since we use UDM, we obtain errA = 0.
Pn

i=1 viri is equal to 0 because of the constraint (6.3.20).
Hence we obtain AP-property.

As to the barycenter, since we use UDM, Ȧ = 0 and err2
G

= 0 hold. err1
G

can be evaluated as
follows:

|err1
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|  1
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3An
,

where ↵ = (↵1,↵2, . . . ,↵n)T and v = (v1, v2, . . . , vn)T. By definition of tangential velocities, we have
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Therefore we obtain estimates
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Summarizing the above, we obtain
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The normal velocities {vi}ni=1 can be estimated as

|vi| = |�rP (x⇤
i ) · ni|  krPkL1(�i), that is, kvk1  krPkL1(�i).

Therefore we obtain
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The second term in the expression (6.3.7) for Ġ can be evaluated as follows:
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(6.3.25)

where we have used the relations
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We evaluate (6.3.25) by similar procedures for evaluating L̇, and obtain
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Indeed, putting f2,i(a) := arP (a)Tni and f3(a) := P (a), we obtain for x 2 �i that
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which yield that
�

�

�

�

�

1

A

n
X

i=1

Z

�i

�

xrP (x)Tni � x⇤
irP (x⇤

i )
Tni

�

ds

�

�

�

�

�

=

�

�

�

�

�

1

A

n
X

i=1

Z

�i

�

f2,i(x)� f2,i(x
⇤
i )
�

ds

�

�

�

�

�

=
1

A

�

�

�

�

�

n
X

i=1

Z

�i

Z 1

0

@f2,i

@a
((1� µ)x⇤

i + µx) dµ (x� x⇤
i )

�

�

�

�

�

 1

A

n
X

i=1

Z

�i

�

�

�

�

@f2,i

@a

�

�

�

�

M,L1(�i)

· L

2n
ds

 1

A

n
X

i=1

Z

�i

2

⇡

0

@

n
X

j=1

|Qj |
1

A

s

2 +
5kxk2L1(�)

d2
1

d
· L

2n
ds =

C22

n

and
�

�

�

�

�

� 1

A

n
X

i=1

Z

�i

(P (x)� P (x⇤
i ))ni ds

�

�

�

�

�

=
1

A

�

�

�

�

�

n
X

i=1

Z

�i

(f3(x)� f3(x
⇤
i ))ni ds

�

�

�

�

�

 1

A

n
X

i=1

Z

�i

p
2

⇡

0

@

n
X

j=1

|Qj |
1

A

1

d
· L

2n
ds =

C23

n
,

where

C22 =
L2

A⇡d

0

@

n
X

j=1

|Qj |
1

A

r

2 +
5kxkL1(�)

d2
, C23 =

L2

p
2A⇡d

0

@

n
X

j=1

|Qj |
1

A .

Here for matrix-valued function A = (Aij) 2 R2⇥2, its L1(�i)-spectral norm kAkM,L1(�i) is defined

as kAkM,L1(�i) =
⇣

P2
i=1

P2
j=1 kAijk2L1(�i)

⌘1/2

. Combining the above estimates, we obtain

|Ġ|  C2

n
,

where

C2 = C21 + C22 + C23 =
L2

A⇡d

0

@

n
X

j=1

|Qj |
1

A

 p
2(C̃2 + 1)

3
+

r

2 +
5kxkL1(�)

d2
+

1p
2

!

as desired.

6.4 Numerical scheme for the one-phase exterior Hele-Shaw
problem (6.2.1)

Using the clockwise-indexed notation in contrast to the interior problem, we can write down numerical
scheme in almost similar way. Therefore we only state how to compute the normal velocities, in which
essential di↵erence exists.

The problem to be solved is as follows:

8

>

<

>

:

4p = 0 in e⌦(t),

p = �ki on �i(t), i = 1, 2, . . . , n,

p(x) = qE(x) +O(1) as |x| ! 1,
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where e⌦(t) = R2 \⌦(t), and ⌦(t) is a bounded region surrounded by �(t). For the above problem, we
construct the approximate solution P as

(6.4.1) P (x) = Q0 +
n
X

j=1

QjEj(x) + qE(x� z), Ej(x) = E(x� yj)�E(x� zj), x 2 e⌦(t)[�(t),

where {zj}nj=1 and z are dummy points located in ⌦(t) and yj ’s are the singular points given by
(6.3.14), in which nj denotes the unit “inward” normal vector of � on the j-th edge �j . Coe�cients
{Qj}nj=0 are determined by solving the linear equations (6.3.18) with the following constraint:

n
X

j=1

QjHj �
n
X

i=1

qrE(x⇤
i � z) = q.

Then the speed of time variation of A(t), the area of ⌦(t), is constant �q as follows:

Proposition 6.4.1 (Prescribed area-speed property). Assuming the uniform distribution of initial
vertices, under our practical scheme, we obtain the prescribed area-speed property, that is, Ȧ(t) = �q.

6.5 Numerical scheme for the one-phase interior Hele-Shaw
problem with sink/source points (6.2.2)

The only di↵erence between the one-phase interior Hele-Shaw problem and the one-phase interior
Hele-Shaw problem with sink/source points is a problem to be solved:

8

>

<

>

:

4p =
m
X

i=1

qi�(x� ⇠i) for x 2 ⌦(t),

p = �ki on �i(t), i = 1, 2, . . . , n.

We approximate the solution p for the above problem by P which is defined as

(6.5.1) P (x) = Q0 +
n
X

j=1

QjE
1
j (x) +

m
X

j=1

qjE
2
j (x),

where

E1
j (x) = E(x� yj)� E(x� zj), E2

j (x) = E(x� ⇠j)� E(x� z),

in which {zj}nj=1 and z are dummy points located at a su�ciently far position in R2\⌦(t). Coe�cients
{Qj}nj=0 are determined by solving the linear equations (6.3.18) with the following constraint:

n
X

j=1

QjHj �
n
X

i=1

m
X

j=1

qjrE2
j (x

⇤
i ) · niri = �

m
X

j=1

qj .

Then for A(t) the area of ⌦(t), we obtain the following prescribed area-speed property:

Proposition 6.5.1 (Prescribed area-speed property). Assuming the uniform distribution of initial
vertices, under our practical numerical scheme, the prescribed area-speed property, that is, Ȧ(t) =
�Pm

j=1 qj holds.
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6.6 Numerical experiments

In this section, we show some results of our numerical computation. In all numerical computation
shown below, we make distribution of the initial vertices into uniform one. For instance, for a given
initial closed polygonal curve �(0) which is not necessarily distributed uniformly, we may use a closed
polygonal curve which can be obtained by using Algorithm in Section 6.3.1 with all normal velocities
Vi being equal to 0 until uniform distribution is realized. (It can be done within one second.)

6.6.1 One-phase interior Hele-Shaw problem (6.1.1)

Exact solution

Example 6.6.1. When the initial curve C (0) is a circle with radius R, the Dirichlet problem to be
solved at the initial time becomes

8

<

:

4p(x, 0) = 0 for x 2 D(0),

p(x, 0) =
�

R
for x 2 C (0).

By the maximum principle for harmonic functions, the solution is the constant function p = �/R,
therefore the normal velocity V is equal to 0. Hence the solution curve C (t) does not change from
the initial curve C (0). This is the only known exact solution for the one-phase interior Hele-Shaw
problem. Similarly, we only know a trivial solution P = Q0 for the polygonal problem, therefore the
normal velocities vi on the i-th edge �i are equal to 0 for all i. Moreover, we can easily verify that the
MFS solution coincides with the exact solution in this case, that is, the following proposition holds:

Proposition 6.6.2. If �(0) is a regular n-polygon, then the solution P of (6.3.18) and (6.3.20) is
given by a constant function P = �/R. Namely, P coincides with the exact solution p.

Thus we do not compare our numerical scheme with this exact solution but compare with a result
where the normal velocity is computed by using the boundary element method (BEM) instead of
MFS, since in the previous work [106], one of the authors o↵ered a scheme for the one-phase interior
Hele-Shaw problem with a time-dependent gap, where the normal velocity is computed by BEM.

Numerical results

The parameters are taken as follows:

• n = 100 (the number of grid points);

• � = 1 (the surface tension coe�cient);

• zj = 1000yj (the dummy points in MFS approximation (6.3.17));

• ⌧ = 1/(10n2) (the time-mesh size);

• ! = 10n (the relaxation term);

• d = n�1/2 (the parameter controlling accuracy of MFS);

• Tmax = 0.9 (the final computation time).

The initial curve C (0) : [0, 1] 3 u 7! x(u) = (x1(u), x2(u))T 2 R2 is given by

(6.6.1) x1(u) = 1.8 cos(2⇡u), x2(u) = 0.5 sin(2⇡u) + sin a1(u) + a2(u) sin(2⇡u)
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Figure 6.4: Results of numerical computation: (a) the initial curve; time evolution of boundary curves
(b) MFS; (c) BEM; (d) time evolution of total length; (e) time evolution of area; (f) the accuracy of
area.
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where a2(u) = 0.2 + sin(⇡u) sin(6⇡u) sin(2a1(u)) for u 2 [0, 1]. In Figure 6.4(a), the black points
represent vertices of polygon, and the solid lines are contour lines of pressure computed by MFS. The
numbers indicate the values of pressure. We summarize the results of our numerical computation for
the one-phase interior Hele-Shaw problem.

• Time evolutions of boundary curves are indicated in Figure 6.4(b) and (c), when the normal
velocity is computed by MFS and BEM, respectively. The boundary curves converge to circles
in both cases, and their size seem to be coincide.

• Figure 6.4(d) shows the time evolution of the total length L(t) of the boundary curve �(t), where
the horizontal axis and the vertical axis represent the time and the total length L, respectively. It
can be observed that the total length decreases monotonically for both methods: MFS and BEM
(their graphs are overlapped with each other). As we have seen Proposition 6.3.4 in section
6.3.6, when the normal velocity is computed by MFS, we can prove that L̇ takes a negative
value plus a small error for a large n, since the approximate solution by MFS is smooth in a
neighborhood of ⌦. On the other hand, when the normal velocity is computed by BEM, there
exist singularities on the boundary curve �, therefore we cannot use a useful mathematical tool
such as the divergence theorem, and this makes it di�cult to analyze the evolution of the total
length. However, CS-property is observed numerically.

• Figure 6.4(e) shows the time evolution of the enclosed area A(t) of the region ⌦(t) bounded
by �(t), where the horizontal axis and the vertical axis represent the time t and the area A,
respectively. Concerning the time evolution of the area, there is a big di↵erence. In both methods
of MFS and BEM, the tangential velocity is computed by UDM, therefore errA converges to 0
exponentially as t " Tmax or n ! 1. When we compute the normal velocity by MFS, AP-
property is achieved in maximal accuracy in double-precision arithmetic. On the other hand,
when the normal velocity is computed by BEM, AP-property does not hold. Indeed, the area
increases in time.

• Figure 6.4(f) shows the accuracy of area, where the horizontal axis and the vertical axis represent
the number of grid points n and the error err(n), respectively. The error is measured by

err(n) = max
1mM

�

�

�

�

�

A(n)
m �A(n)

0

A(n)
0

�

�

�

�

�

, n = 4k (k = 5, 6, . . . , 47),

where A(n)
m denotes the enclosed area of n-polygon at the m-th step, and M = 1000 denotes the

maximum number of time steps. It can be observed that there are di↵erences of accuracy about
9-12 digits between in two methods, and this implies that our proposal scheme computing the
normal velocity by MFS is much better than that by BEM.

Since the pressure function is approximated by MFS as (6.3.17), we can easily visualize the contour
lines of pressure. Indeed, we can draw the contour lines of pressure as in Figure 6.5.

Example 6.6.2. We show one more toy example for our numerical scheme. We take the initial curve
as “⇡-like curve”, which is given by some one-parameter functions (see for details the web page of
Wolfram Alpha). The parameters are taken as follows:

• n = 100 (the number of grid points);

• � = 1 (the surface tension coe�cient);

• zj = 1000yj (the dummy points in MFS approximation (6.3.17));

• ⌧ = 1/(10n2) (the time-mesh size);
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Figure 6.5: Contour lines of pressure corresponding to Figure 6.4.
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• ! = 10n (the relaxation term);

• d = n�1/2 (the parameter controlling accuracy of MFS);

• Tmax = 3.0 (the final computation time).

The results are shown in Figure 6.5, where the white circles represent the positions of the singular
points.
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(c) Total length L and area A

Figure 6.6: Results of numerical computation in which the initial curve is taken as the ⇡-like curve:
(a) initial curve; (b) the evolution of boundary curves; (c) time evolution of length; (d) time evolution
of area.

6.6.2 One-phase exterior Hele-Shaw problem (6.2.1)

Exact solution

Example 6.6.3. We can construct a nontrivial exact solution for the one-phase exterior Hele-Shaw
problem when the initial curve is a circle, especially we seek a self-similar solution for (6.2.1). Let C (t)
be a circle with radius R(t) having the origin as its center: C (t) = BR(t) := {|x| = R(t)}. Then our
problem is to find a self-similar solution p and a radius R(t) for (6.2.1), that is, we seek a solution p
of the form

p(r, t) = C +
q

2⇡
log r (R(t)  r < +1),

where C is a constant. Since the curvature k is equal to �1/R(t), the boundary condition becomes

p(R(t), t) = � �

R(t)
.

Then we can determine the constant C, and obtain

p(r, t) = � �

R(t)
+

q

2⇡
log

r

R(t)
(R(t)  r < +1).

The normal velocity V of the curve C (t) can be computed as

V = ẋ ·N = �Ṙ(t) = �rp ·N = @rp(R(t), t).

Therefore we obtain the initial-value problem for ordinary di↵erential equation:

Ṙ(t) = � q

2⇡R(t)
, R(0) is given.
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Solving this problem yields

R(t) =

r

R(0)2 � q

⇡
t.

These p and R(t) are the exact solutions for (6.2.1).
On the other hand, for polygonal problem, we can seek the solution by using MFS. Let �(t) be a

circumscribed regular n-polygon of Ba(t). We take the singular points {yj}nj=1 as follows:

yj = µx⇤
j , j = 1, 2, . . . , n,

where µ 2 ]0, 1[. See for settings Figure 6.7. Since the length ri of the i-th edge �i and the angle 'i

O

xi xi�1

a(t)

x

⇤
i

yi

x

⇤
i�1x

⇤
i+1

yi�1yi+1

'i�1

'i

Figure 6.7: Our settings for the polygonal exterior problem.

between adjacent two edges �i and �i+1 are calculated as ri(t) = 2a(t) tan(⇡/N) and 'i = �2⇡/N for
all i, respectively, we have

ki =
tan('i�1/2) + tan('i/2)

ri
= � 1

a(t)
.

Therefore the problem is written as follows:
8

>

>

>

<

>

>

>

:

4p(x, t) = 0 for x 2 ⌦̃(t), t 2 [0, T [,

p(x, t) = � �

a(t)
for x 2 �(t),

p(x, t) = qE(x) +O(1) as |x| ! 1, t 2 [0, T [.

We seek the approximate solution P by MFS, that is, P at time t has of the form

P (x) = Q0 +
n
X

j=1

Qj

2⇡
log

|x� yj |
|x| +

q

2⇡
log |x|,

where the dummy points {zj}nj=0 and z are taken as the origin. The boundary condition (6.3.18) is

P (x⇤
i ) = � �

a(t)
, i = 1, 2, . . . , n.

Taking into account of the symmetry, we can take Qj , j = 1, 2, . . . , n as the same value C, and can
determine Q0. After taking C = 0, and similar procedure for smooth curve yields

(6.6.2) P (x) = � �

a(t)
+

q

2⇡
log

|x|
a(t)

, a(t) =

r

a(0)2 � q

⇡
t.
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We can observe that this solution for polygonal curve coincides with that for smooth curve. As you
can see from the above argument, if the initial curve is a circle, where we can write down the exact
solution, then the corresponding solution for polygonal problem can be constructed by using MFS,
that is, MFS is a numerical solver which contains the exact solution. Namely, the following proposition
holds:

Proposition 6.6.5. If �(t) is a circumscribed regular n-polygon of Ba(t), then the solution P of
(6.3.18) and (6.3.20) is given by (6.6.2). Namely, P coincides with the exact solution p when a(0) =
R(0).

Numerical results

Example 6.6.4. Taking the initial curve as the same for the interior problem (6.6.1), we perform a
numerical computation using our numerical scheme, where the parameters are taken as follows:

• n = 100 (the number of grid points);

• � = 1 (the surface tension coe�cient);

• z = zj = n�1
Pn

i=1 yi (the dummy points in MFS approximation (6.4.1));

• ⌧ = 1/(10n2) (the time-mesh size);

• ! = 10n (the relaxation term);

• d = n�1/2 (the parameter controlling accuracy of MFS);

• q = 1 (Ȧ(t) = �q);

• Tmax = 0.9 (the final computation time).

The results are depicted in Figure 6.8 and Figure 6.9.
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(c) Total length L and area A

Figure 6.8: Results of numerical computation: (a) the initial curve; (b) the evolution of boundary
curves; (c) time evolution of total length and area.

Example 6.6.5. Another toy example is the exterior Hele-Shaw problem with “dolphin-like curve” as
its initial curve (see for details the web page of Wolfram Alpha). The parameters are taken as follows:

• n = 100 (the number of grid points);

• � = 1 (the surface tension coe�cient);
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Figure 6.9: Contour lines of pressure corresponding to Figure 6.8.
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• z = zj = n�1
Pn

i=1 yi (the dummy points in MFS approximation (6.4.1));

• ⌧ = 1/(10n2) (the time-mesh size);

• ! = 10n (the relaxation term);

• d = n�1/2 (the parameter controlling accuracy of MFS);

• q = 1 (Ȧ(t) = �q);

• Tmax = 4.8 (the final computation time).

The results are depicted in Figure 6.10.
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(c) Total length L and area A

Figure 6.10: Results of numerical computation in which the initial curve is take as the dolphin-like
curve: (a) the initial curve; (b) the evolution of boundary curves; (c) time evolution of total length
and area.

6.6.3 One-phase interior Hele-Shaw problem with sink/source points (6.2.2)

Exact solution

Example 6.6.6. Let the initial curve C (0) surround the origin and there exists one sink/source point
at the origin, that is, we consider the following problem:

8

>

<

>

:

4p(x, t) = q1�(x) for x 2 D(t), t 2 [0, T [,

p(x, t) = 0 for x 2 C (t), t 2 [0, T [,

V (x, t) = �rp(x, t) ·N(x, t) for x 2 C (t), t 2 [0, T [.

Note that the surface tension coe�cient � is equal to 0 and that the origin is a suction point if q1 > 0
and an injection point if q1 < 0.

For the above problem, we can construct nontrivial exact solution as follows. Riemann’s mapping
theorem assures the unique existence of conformal mapping f(·, t) : B(0, 1) ! ⌦(t) satisfying f(0, t) = 0
and f⇣(0, t) > 0. Then there exists some holomorphic function '(⇣, t) such that f(⇣, t) = ⇣'(⇣, t) and
'(0, t) 6= 0. Moreover, we know that '(⇣, t) 6= 0 for all ⇣ 2 B(0, 1) at each time t 2 [0, T [ since f
is conformal. Since the solution p(x, t) for the above problem can be expressed as the sum of the
logarithmic potential q/(2⇡) log |x| and some harmonic function p̃(x, t), we have

p(f(⇣, t), t) =
q

2⇡
log |f(⇣, t)|+ p̃(f(⇣, t), t) =

q

2⇡
log |⇣|+ q

2⇡
log |'(⇣, t)|+ p̃(f(⇣, t), t).
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Note that the last two terms p(⇣, t) := q/(2⇡) log |'(⇣, t)|+ p̃(f(⇣, t), t) is a harmonic function since '
is a holomorphic function. In view of the boundary condition, p(⇣, t) = 0 for |⇣| = 1, therefore by the
maximum principle for harmonic functions, we have p(⇣, t) = 0 for ⇣ 2 B(0, 1), that is,

p(f(⇣, t), t) =
q

2⇡
log |⇣|, ⇣ 2 B(0, 1).

Let w(·, t) = u(·, t)� iv(·, t) be complex representation of velocity field and g(·, t) := f�1(·, t). Then
we have

p(z, t) = p(f(g(z, t), t), t) =
q

2⇡
log |g(z, t)| = q

2⇡
< log g(z, t).

Owing to Darcy’s law u = �rp, we obtain

u(z, t) = � q

2⇡
<gz(z, t)

g(z, t)
, v(z, t) =

q

2⇡
=gz(z, t)

g(z, t)
,

that is,

w(z, t) = u(z, t)� iv(z, t) = � q

2⇡

gz(z, t)

g(z, t)
.

Since g(f(⇣, t), t) = ⇣, we clearly have gz(f(⇣, t), t)f⇣(⇣, t) = 1, that is,

w(f(⇣, t), t) = � q

2⇡

1

⇣f⇣(⇣, t)
.

Let N(z, t) be the complex representation of the unit outward normal vector of C (t), that is,

N(f(⇣, t), t) =
⇣f⇣(⇣, t)

|f⇣(⇣, t)| , |⇣| = 1.

Using a relation
@p

@N
= N ·rp = �N · u = �<(Nw),

we obtain
@p

@N
(f(⇣, t), t) =

q

2⇡

1

|f⇣(⇣, t)| , |⇣| = 1.

Since the normal velocity V is represented in two ways as V = �@p/@N and V = <((@tf)N), we
finally obtain the so-called Polubarinova-Galin equation:

<
✓

@f

@t
⇣
@f

@⇣

◆

= � q

2⇡
, |⇣| = 1.

Particularly, if we seek quadratic conformal mapping f(⇣, t) = a(t)⇣ + b(t)⇣2, we obtain from the
Polubarinova-Galin equation that

a(t)2b(t) = a(0)2b(0), a(t)2 + 2b(t)2 + a(0)2 + 2b(0)2 � Q

⇡
t.

Solving this yields the solution curve

C (t) : [0, 1] 3 u 7! x(u, t) = (x1(u, t), x2(u, t))
T 2 R2;

x1(u, t) = a(t) cos(2⇡u) + b(t) cos(4⇡u), x2(u, t) = a(t) sin(2⇡u) + b(t) sin(4⇡u).

for each time t 2 [0, Tmax[. See for details Gustafsson and Vasil’ev [26, p. 28] and Varchenko and
Etingof [101, p. 62].
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Numerical results

Example 6.6.7. We compare a result of our numerical computation with the exact solution. The
settings of parameters are as follows:

• n = 100 (the number of grid points);

• � = 0 (the surface tension coe�cient);

• z = (1000, 0)T, zj = 1000yj (the dummy points in MFS approximation (6.5.1));

• m = 1 (the number of sink/source points), then we have Ȧ(t) = �q;

• ⇠1 = (0, 0)T (the position of sink/source point);

• q1 = 1 (z1 is a sink point);

• ⌧ = 1/(10n2) (the time-mesh size);

• ! = 10n (the relaxation term);

• d = n�1/2 (the parameter controlling accuracy of MFS);

• Tmax = 3.0 (the final computation time).

The initial curve C (0) : [0, 1] 3 u 7! x(u) = (x1(u), x2(u))T 2 R2 is given by

x1(u) = a cos(2⇡u) + b cos(4⇡u), x2(u) = a sin(2⇡u) + b sin(4⇡u)

where a = a(0) = 2 and b = b(0) = 1/3. The results of our numerical computation can be found in
Figure 6.11 and Figure 6.12, where the velocity field is added in Figure 6.12. In Figure 6.11(a), the
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Figure 6.11: Results of numerical computation for the one-phase interior Hele-Shaw problem with
sink/source points: (a) the evolution of boundary curves; (b) time evolution of total length; (c) time
evolution of area.

solid and dashed lines are the exact solutions, the points are the numerical solutions and the circle
denotes the position of sink point. We can see that the numerical solution matches well with the exact
solution. In [53], the similar numerical computation is doen, where the origin is a source point. See
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Figure 6.12: Velocity field corresponding to Figure 6.11.

[53, Figure 11]. Furthermore, we compute the error between the exact solution and the numerical
solution by using a discrete Hausdor↵ distance as follows.

Let C (t) : x(u, t) (u 2 [0, 1], t 2 [0, Tmax[) be the exact solution with the given initial curve. We
divide the parameter interval [0, 1] intom equal sections, that is, [0, 1] =

Sm
i=1[ui�1, ui], where ui = i/m

(i = 0, 1, . . . ,m). We then measure the error between C (t) and �(t) by the following quantity:

d(n,m)
H (C (t),�(t)) = max

n

D(n,m)
1 (t), D(n,m)

2 (t)
o

,

where

D(n,m)
1 (t) = max

i=1,2,...,n
min

j=1,2,...,m
|x(uj , t)� xi(t)|,

D(n,m)
2 (t) = max

j=1,2,...,n
min

i=1,2,...,n
|x(uj , t)� xi(t)|.

Take m su�ciently large and fix it. Moreover we define the time-mesh size ⌧ a priori, and define
the following quantity:

E(⇤)
r (n) =

8

>

>

>

<

>

>

>

:

max
l=1,2,...,⇤

d(n,m)
H (C (tl),�(tl)) if r = 1,

 

1

⇤

⇤
X

l=1

d(n,m)
H (C (tl),�(tl))

r⌧

!1/r

if 1  r < 1,

where ⇤ is a positive integer and tl = l⌧ . It can be seen that E(⇤)
r (n) corresponds to the time `r

norm of the discrete Hausdor↵ distance d(n,m)
H (C (t),�(t)). In our numerical scheme, the pressure

p is approximated by MFS, therefore the error for approximation of p can be expected to decay
exponentially with respect to n. On the other hand, the time discretization is done by the usual fourth

order Runge-Kutta method. Therefore we can expect that the error E(⇤)
r (n) decays algebraically with

respect to n. If we assume that E(⇤)
r (n) = Cn�ar (ar > 0) holds, then we have

ar = log2
E(⇤)

r (n)

E(⇤)
r (2n)

=: EOCr(n),

in which the right hand side EOCr(n) is the experimental order of convergence.
We show the results of our numerical computation. The settings for parameters are as follows:

157



Chapter 6 MFS for Hele-Shaw problem 6.6 Numerical experiments

• n = 10, 20, . . . , 200 (the number of grid points);

• ⌧ = 1/(10 · (200)2) = 2.5 · 10�6 (the time-mesh size);

• d = n�1/2 (the parameter controlling accuracy of MFS);

• m = 1000 (the number of divisions of parameter interval [0, 1]);

• ⇤ = 0.001/⌧ = 400 (the number of steps of computation).

In the previous numerical computation, the time-mesh size ⌧ depended on n, more precisely, it was
defined as ⌧ = (10n2)�1. However, we here define ⌧ as the case where n = 200, and compute the same

number of steps ⇤, and compute E(⇤)
1 (n), E(⇤)

1 (n) and E(⇤)
2 (n) (see Table 6.1). We can see in Table

n EOC1(n) EOC1(n) EOC2(n)

20 1.004146 1.004411 1.004411
30 0.998665 0.998819 0.998816
40 0.999435 0.999709 0.999710
50 0.997245 0.997025 0.997032
60 0.999651 0.999914 0.999915
70 0.999844 1.000614 1.000624
80 0.994698 0.994774 0.994775
90 0.997119 0.998162 0.998164
100 1.004909 1.006235 1.006227

Table 6.1: Experimental order of convergence

6.1 that E(⇤)
1 (n), E(⇤)

1 (n) and E(⇤)
2 (n) are of order n�1. In the previous work, Kimura and Notsu [55]

computed the one-phase exterior Hele-Shaw problem with the use of signed distance function, and the
experimental order was almost equal to 1, which agrees with our numerical results. Then we can say
that our proposal scheme has good accuracy, together with asymptotic structure preserving properties.
Furthermore, its implementation and computation are easier than other known numerical schemes.

Example 6.6.8. We show two more results of our numerical experiments. The one is the case where
the initial curve C (0) : [0, 1] 3 u 7! x(u) = (x1(u), x2(u))T 2 R2 is an ellipse

x1(u) = a cos(2⇡u), x2(u) = b sin(2⇡u),

where a = 1 and b = 2, which was studied in [53]. The parameters are taken as follows:

• n = 50 (the number of grid points);

• � = 0.2 (the surface tension coe�cient);

• z = (1000, 0)T, zj = 1000yj (the dummy points in MFS approximation (6.5.1));

• m = 1 (the number of sink/source points), then we have Ȧ(t) = �q1;

• ⇠1 = (0, 0)T (the position of sink/source point);

• q1 = 2 (z1 is a sink point);

• ⌧ = 1/(10n2) (the time-mesh size);

• ! = 10n (the relaxation term);
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• d = n�1/2 (the parameter controlling accuracy of MFS);

• Tmax = 2.1 (the final computation time).

The results are shown in Figure 6.13 and Figure 6.14. We can say that our result agrees with the one
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Figure 6.13: Results of numerical computation for the one-phase interior Hele-Shaw problem with
sink/source points: (a) the evolution of boundary curves; (b) time evolution of total length; (c) time
evolution of area.

obtained in [53] (see Figure 9 and Figure 10 in [53]).

Example 6.6.9. The other one is the case where the initial curve C (0) : [0, 1] 3 u 7! x(u) = (x1(u), x2(u))T 2
R2 is given by

x1(u) = 2 cos(2⇡u), x2(u) = 4 sin(2⇡u)� 3.98 sin3(2⇡u).

The parameters are taken as follows:

• n = 100 (the number of grid points);

• � = 1 (the surface tension coe�cient);

• z = (1000, 0)T, zj = 1000yj (the dummy points in MFS approximation (6.5.1));

• m = 2 (the number of sink/source points), then we have Ȧ(t) = �q1 � q2;

• ⇠ = (1.2, 0)T, ⇠2 = (�1.2, 0)T;

• q1 = �1, q2 = 1 (z1 is a source point and z2 is a sink point);

• ⌧ = 1/(10n2) (the time-mesh size);

• ! = 10n (the relaxation term);
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Figure 6.14: Velocity field corresponding to Figure 6.13.

• d = n�1/2 (the parameter controlling accuracy of MFS);

• Tmax = 0.9 (the final computation time).

The results are shown in Figure 6.15 and Figure 6.16.
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Figure 6.15: Results of numerical computation for the one-phase interior Hele-Shaw problem with
sink/source points: (a) initial curve; (b) the evolution of boundary curves; (c) time evolution of total
length and area.

6.7 Concluding remarks

In this chapter, solutions to the several one-phase Hele-Shaw problems are discretized in space by
means of MFS combined with UDM, and our scheme satisfies variational structures such as CS-,
AP- and BF-properties under some ideal situations, and asymptotically under practical computational
situations, in a discrete sense. As we have seen in Section 6.6, it is easy to make pressure field and
vector field without generating mesh in the fluid region in each computational step. This is one of
powerful and useful feature of MFS. Application of MFS to moving boundary problems has been done
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Figure 6.16: Velocity field corresponding to Figure 6.15.

in quite a few papers, but our present attempt will open up a new strategy in numerical computation
for moving boundary problems. In this sense, we have many future works. The following are selected
future works directly connected to the present paper: (1) to analyze the value of EOC (why it takes
“around” 1 and does not “converge” to 1 as n tends to infinity), (2) to treat two-phase Hele-Shaw and
other potential problems, (3) to track the exact solution curve (Figure 6.11(a)) of one-phase Hele-Shaw
problem with sink until it forms cusp singularity.
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Chapter 7

Numerical conformal mapping
based on the dipole simulation
method

Abstract

In this chapter, we propose a method for numerical conformal mapping based on the dipole
simulation method. The proposed method o↵ers us simpler numerical scheme compared
with Amano’s method based on the method of fundamental solutions, in which we have to
compute suitable branch of complex logarithmic function. Several numerical experiments
exemplify the e↵ectiveness of our proposed method. This chapter is based on the following
paper in preparation:

• K. Sakakibara and M. Katsurada, Numerical conformal mapping based on the dipole
simulation method, in preparation.

7.1 Introduction

Conformal mapping is a fundamental and important concepts in the field of complex analysis, and it
has been applied to science and engineering. Therefore, it is preferable to obtain “analytic expression”
of conformal mapping. However, it is impossible to do it except for some simple region, so we have
to compute conformal mapping “numerically” in general. Thus, numerical computation of conformal
mapping is a hot research topic in numerical analysis. Among several numerical methods, Symm
[98] o↵ered an e�cient numerical scheme, in which we have to solve first kind of Fredholm integral
equation. Afterward, several techniques based on spline function, FFT, and so on, to solve it have been
developed (see, for instance, [31, 35, 36]). As a result, high precision numerical conformal mapping
could be obtained. On the other hand, their numerical procedures are complex, and their applicable
region is so limited. In view of the a↵airs stated above, Amano [2] o↵ered very simple and accurate
numerical scheme based on the method of fundamental solutions. Hereafter, we explain the concept
of his method.

Mathematical formulation

Let ⌦ be a Jordan region in the complex plane C. Riemann mapping theorem assures the existence of
conformal mapping f of ⌦ onto D1. Taking z0 2 ⌦ arbitrarily, fixing it, and imposing the normalized
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condition

(7.1.1) f(z0) = 0, f 0(z0) > 0,

a conformal mapping f is determined uniquely. Since the boundary @⌦ of ⌦ is a Jordan curve, f can
be continued to an isomorphism of ⌦ onto D1 by virtue of Osgood-Carathéodory theorem. We here
consider a function g defined as

g(z) =
f(z)

z � z0
.

According to the normalized condition (7.1.1), g(z) 6= 0 for all z 2 ⌦. Since ⌦ is simply-connected,
there exists a single-valued branch of log g(z). Denote its real, and imaginary parts by u, and v,
respectively:

u(z) = < log
f(z)

z � z0
, v(z) = = log

f(z)

z � z0
.

Namely, we obtain an expression f(z) = (z � z0) exp[u(z) + iv(z)]. Since @⌦ is mapped onto @B1, the
function u can be characterized as the solution for the following boundary value problem:

(7.1.2)

(

4u = 0 in ⌦,

u(z) = � log |z � z0| on @⌦.

The function v is a conjugate harmonic function of u, and satisfies a condition v(z0) ⌘ 0 (mod 2⇡)
since f 0(z0) > 0, the second equation in (7.1.1), is assumed. Summarizing the above, we can construct
the conformal mapping f by solving the boundary value problem (7.1.2), which yields u, and compute
the conjugate harmonic function v of u satisfying v(z0) = 0.

Amano’s method

Amano [2] o↵ered a simple numerical method for computing conformal mapping based on MFS, which
does not require any numerical integration. Namely, taking singular points {⇣k}Nk=1 ⇢ C\⌦ “suitably”,
an approximation u(N) of u is given by

u(N)(z) =
N
X

k=1

log |z � ⇣k|.

Coe�cients {Qk}Nk=1 are determined by collocation method, that is, take the collocation points {zj}j=1 ⇢
@⌦ “suitably”, and impose the following approximate boundary conditions, which are termed the col-
location equations:

u(N)(zj) = � log |zj � z0|, j = 1, 2, . . . , N.

Solving the above system yields u(N). Then, we can obtain v(N), which is an approximation of v, as
follows:

v(N)(z) = ṽ(N)(z)� ṽ(N)(z0), ṽ(N)(z) =
N
X

k=1

Qk arg(z � ⇣k).

Here, the value of arg function should be determined so that it would be continuous in ⌦. If ⌦ is
starlike with respect to z0, then we have

v(N)(z) =
N
X

k=1

Qk Arg

✓

z � ⇣k
z0 � ⇣k

◆

,
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where Arg is a principal value of arg. Therefore, it is easy to program the above scheme. However,
if ⌦ is not starlike with respect to z0, then it would be a hard task to choose suitable branch of arg
function. In order to resolve this di�culty, the following “continuous scheme” has been developed in
[3]. An approximation u(N) of u is given by invariant scheme for MFS:

u(N)(z) = Q0 +
N
X

k=1

Qk log |z � ⇣k|,
N
X

k=1

Qk = 0.

We here rewrite u(N) by using Abel transformation, which yields the following expression.

u(N)(z) = Q0 +
N�1
X

k=1

Q(k) log

�

�

�

�

z � ⇣k
z � ⇣k+1

�

�

�

�

, Q(k) :=
k

X

l=1

Ql.

Since the function z 7! Arg((z � ⇣k)/(z � ⇣k+1)) is a harmonic function defined in C \ [⇣k, ⇣k+1], if
[⇣k, ⇣k+1] is contained in C \ ⌦ for all k = 1, 2, . . . , N , then

ṽ(N)(z) =
N�1
X

k=1

Q(k) Arg

✓

z � ⇣k
z � ⇣k+1

◆

is a conjugate harmonic function of u(N). Hence, defining v(N) := ṽ(N) � ṽ(N)(z0), we obtain the
desired approximation.

Based on the idea described above, simple and high-precision numerical conformal mappings have
been studied in several regions. Nevertheless, we always keep in mind that the singular points {⇣k}Nk=1

should be chosen so that all the line segment [⇣k, ⇣k+1] are in the exterior of ⌦, in which some crafts-
manship would be required. The aim of this chapter is to construct numerical conformal mapping
with same accuracy and without any di�culty in implementation. Concretely speaking, we adopt
DSM instead of MFS. This is the only but essential idea of our numerical scheme. The contents of this
chapter are as follows. In Section 7.2, we briefly explain our method for numerical conformal mapping.
In Section 7.3, we investigate the accuracies of our method and Amano’s method by using Hilbert
transform. In 7.4, we extend our numerical scheme to multiply-connected region. The e�ciency of our
numerical scheme will be verified in Section 7.5. We finally summarize this chapter and present future
works in Section 7.6.

7.2 Numerical conformal mapping based on DSM

In Amano’s method, approximation u(N) of u is given by MFS. If we use DSM instead of MFS, u(N)

has of the form

u(N)(z) =
N
X

k=1

Qk<
✓

nk

z � ⇣k

◆

.

The most important fact is that the following function ṽ(N) becomes a conjugate harmonic function
of u(N).

ṽ(N)(z) =
N
X

k=1

Qk=
✓

nk

z � ⇣k

◆

.

Therefore, defining v(N)(z) := ṽ(N)(z) � ṽ(N)(z0) and f (N)(z) = (z � z0) exp[u(N)(z) + iv(N)(z)], we
obtain the desired numerical conformal mapping. A noteworthy point of this method is that arg
function does not appear in the expression for v(N). This implies that we can compute numerical
conformal mapping easier than Amano’s method.
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7.3 Accuracy

In both Amano’s method and our method, approximation u(N) of u is given by MFS and DSM,
respectively, and approximation v(N) of v is given by the conjugate harmonic function of u(N) satisfying
v(N)(z0) = 0. In this section, we investigate the accuracy of such approximations.

7.3.1 Accuracy of u(N)

It has been studied in previous studies [49, 45, 46, 47, 50, 48, 79, 84] and in this thesis, Chapters 2
and 3, that if we define the singular points, the collocation points, and the dipole moments suitably,
then the approximation error decays exponentially with respect to the number of the singular points.
Therefore, we do not turn attention to the accuracy of real part, and we next study the approximation
error of imaginary part.

7.3.2 Accuracy of v(N)

In previous studies, the behavior of approximation error of imaginary part have not been studied
theoretically. The following theorem tells us that it will be completely dominated by the approximation
error of real part.

Theorem 7.3.1. Let ⌦ be a Jordan region in the complex plane, whose boundary @⌦ is analytic, and
denote its analytic parameteziation by  : [0, 1] ! C. Let u be a solution for the following boundary
value problem:

(7.3.1)

(

4u = 0 in ⌦,

u = f on @⌦,

where f is a given data, which satisfies the regularity condition f � 2 X⇠,� for (⇠,�) > (1, 1/2). Let
v be a conjugate harmonic function of u satisfying v(z0) = 0. Denote by u(N) an approximation of u
by MFS or DSM, and by v(N) the conjugate harmonic function of u(N) satisfying v(N)(z0) = 0. Then,
there exists some positive constant C such that the following estimate holds for all s 2 R:

kv � v(N)kHs(@⌦)  Cku� u(N)kHs(@⌦).

Proof. We only consider the case where ⌦ is a unit disk D1, in which the constant C is indeed equal
to 1. The general case can be shown via the conformal mapping of ⌦ onto the unit disk.

Define F (⌧) = f(e2⇡i⌧ ) for ⌧ 2 S1. Then, using the Fourier coe�cients {F̂ (n)}n2Z of F , we can
explicitly write the exact solution u for (7.3.1) as follows:

u(z) =
1
X

n=�1
F̂ (n)r|n|e2⇡in✓ (z = re2⇡i✓).

Let u(N) be an approximation of u by MFS or DSM, and define �(N)(⌧) := u(N)(e2⇡i⌧ ) for ⌧ 2 S1.
Then, �(N) can expanded into Fourier series as follows:

�(N)(⌧) =
1
X

n=�1
�̂(N)(n)e2⇡in⌧ .

Then, we have

kF � �(N)k2X✏,s
= |F̂ (0)� �̂(N)(0)|2 +

X

n2Z⇤

|F̂ (n)� �̂(N)(n)|2✏2|n|(2⇡|n|)2s.
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We here define the Hilbert transform G of F , that is, G is defined as

G(⌧) =
1
X

n=�1
�nF̂ (n)e2⇡in⌧ , ⌧ 2 S1,

where �n is a signum function, which is defined as

�n =

8

>

<

>

:

1 if n > 0,

0 if n = 0,

�1 otherwise.

Similarly, the Hilbert transfor  (N) of �(N) can be defined as

 (N)(⌧) =
1
X

n=�1
�n�̂

(N)(n)e2⇡in⌧ , ⌧ 2 S1.

Hence, we obtain

kG�  (N)k2✏,s =
X

n2Z⇤

|�nF̂ (n)� �n�̂
(N)(n)|2✏2|n|(2⇡|n|)2s

=
X

n2Z⇤

|F̂ (n)� �̂(N)(n)|2✏2|n|(2⇡|n|)2s  kF � �(N)k2✏,s,

which implies the desired estimate.

7.3.3 Accuracy of f (N)

Using the above theorem, we immediately obtain the following estimate.

Theorem 7.3.2. Under the same condition in Theorem 7.3.1, there exists some positive constant C
such that the following estimate holds for all s 2 R:

�

�

�

�

log
f(z)

f (N)(z)

�

�

�

�

Hs(@⌦)

 2ku� u(N)kHs(@⌦).

Note that we can observe from the numerical experiments in Section 7.5 that the behavior of the
error for f (N) is almost the same as that for u(N). Therefore, it can be conjectured that

(7.3.2) kf � f (N)kHs(@⌦) = ku� u(N)kHs(@⌦)

holds.

7.4 Numerical conformal mapping in multiply-connected re-
gions

In the above sections, we have considered the case where ⌦ is a simply-connected region. However,
numerical conformal mapping in multiply-connected region is actively used in practical applications,
for instance, computation of potential flow. Thus, in this section, we aim to extend our method to
multiply-connected region.
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7.4.1 Doubly-connected region

Let ⌦ be a nondegenerate doubly-connected region. Namely, assume that there exist two disjoint
connected components K1 and K2 such that Ĉ \ ⌦ = K1 tK2, K1 is unbounded, and neither K1 nor
K2 is reduced to a single point. Then, the following theorem holds, which assures the existence of
conformal mapping in doubly-connected region.

Theorem 7.4.1 (Henrici [33, Theorem 17.1a]). There uniquely exists µ 2 ]0, 1[, which is called the
modulus of ⌦, such that there exists a conformal mapping f of ⌦ onto the annular region Rµ,1.

If both C1 = @K1 and C2 = @K2 are Jordan curves, f can be extended to isomorphism of ⌦ onto
Rµ,1 by virtue of Osgood-Carathéodory theorem. Hereafter, assume that 0 2 K2 just for simplicity.

We are also able to assume that the conformal mapping f has of the form

f(z) = z exp[u(z) + iv(z)],

which is the same for the case where ⌦ is a Jordan region. Since f(C1) = �1 and f(C2) = �µ holds,
following boundary conditions for u are derived.

u(z) = � log |z| for z 2 C1,

u(z)� logµ = � log |z| for z 2 C2.

When ⌦ is a simply-connected region, the existence of conjugate harmonic function v of u can be
assured easily. On the other hand, when ⌦ is not a simply-connected region, it is not easy to ensure
the existence of the conjugate harmonic function. However, in general, the following theorem is well
known.

Theorem 7.4.2 (Henrici [33, Theorem 15.1d]). A harmonic function u in a finitely connected region ⌦
has a conjugate harmonic function in ⌦ if and only if the conjugate periods with respect to all bounded
components of the complement of ⌦ are equal to zero.

We hereafter construct numerical scheme for numerical conformal mapping with keeping the above
theorem in mind. We give approximation u(N) of u by MFS or DSM, that is,

u(N)(z) =
2

X

⌫=1

N
X

k=1

Q⌫k log |z � ⇣⌫k| or u(N)(z) =
2

X

⌫=1

N
X

k=1

Q⌫k<
✓

n⌫k

z � ⇣⌫k

◆

,

where {⇣⌫k}Nk=1 ⇢ K̊⌫ are singular points, and {n⌫k}Nk=1 are dipole moments for ⌫ = 1, 2. Coe�-

cients {Q⌫k}k=1,2,...,N
⌫=1,2 are determined by the collocation method, that is, take the collocation points

{zµj}Nj=1 ⇢ Cµ for µ = 1, 2, and impose the following collocation equations.

u(N)(z1j) = � log |z1j | (j = 1, 2, . . . , N),(7.4.1a)

u(N)(z2j)� logM = � log |z2j | (j = 1, 2, . . . , N).(7.4.1b)

Here, note that the modulus µ of ⌦ cannot be obtained analytically in general. Therefore, we regard
it as the unknown quantity, say M , and obtain it together with u, and v. In order to derive one more
equation, we recall Theorem 7.4.2. When we consider the case where an approximation u(N) of u is
given by MFS, a conjugate harmonic function v(N) has of the form if it exists:

v(N)(z) =
2

X

⌫=1

N
X

k=1

Q⌫k arg(z � ⇣⌫k) + c,
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where c is an arbitrary constant. Defining f (N) as f (N)(z) := z exp[u(N)(z) + iv(N)(z)], we have

Z

C
2

✓

(f (N))0(z)

f(z)
� 1

z

◆

dz =

Z

C
2

2
X

⌫=1

N
X

k=1

Q⌫k

z � ⇣⌫k
dz = 2⇡i

N
X

k=1

Q2k,

which implies that the conjugate period of u(N) with respect to K2 is equal to 2⇡
PN

k=1 Q2k. Therefore,
if we impose the condition

(7.4.1c)
N
X

k=1

Q2k = 0,

then the existence of v(N) is assured. Therefore, solving the linear system (7.4.1a), (7.4.1b), (7.4.1c),
we can obtain numerical conformal mapping and approximation M of the modulus µ. We here also
note that it would be required to choose suitable branch of arg function in programming. On the other
hand, if we use DSM, then

Z

C
2

✓

(f (N))0(z)

f(z)
� 1

z

◆

dz =

Z

C
2

2
X

⌫=1

N
X

k=1

�Q⌫kn⌫k

(z � ⇣⌫k)2
dz = 0,

which implies that the conjugate period of u(N) with respect to K2 is always equal zero. Therefore
there exists possibility to obtain better numerical conformal mapping than Amano’s method, and it
would be expected that this advantage could be used e↵ectively when we apply our method to potential
flow problem, and so on. However, we here adopt the same condition (7.4.1c) just for simplicity. Since
there does not appear arg function in v(N) obtained by DSM, it is easy to implement our method.

7.4.2 nly-connected region, where n � 3

We here consider more general situation, which appears in practical application. Let ⌦ be an n-ly
connected region in the complex plane C, where n � 3. Namely, there exist n disjoint connected
components Kj (j = 1, 2, . . . , n) such that Ĉ \⌦ = K1 tK2 t · · ·tKn, K1 is unbounded, and none of
them is reduced to a single point. Then, the following theorem holds.

Theorem 7.4.3 (Henrici [33, Theorem 17.1b]). Under the above hypothesis, there exist n � 1 real
numbers µj, j = 1, 2, . . . , n� 1, such that 0 < µn�1 < µj < 1, j = 1, 2, . . . , n� 2, such that there exists
a conformal mapping f of ⌦ onto the annulus Rµn�1

,1, cut along n�2 mutually disjoint arcs ⇤j located
on the circles |w| = µj, j = 1, 2, . . . , n�2. The mapping function f can be extended analytically to the
curves @Kj bounding ⌦. The images of @K1 and @Kn are circles ⇤1 : |w| = 1 and ⇤n : |w| = µn�1,
respectively. The images of the curves @Kj are the arcs ⇤j, j = 1, 2, . . . , n� 2.

We can also obtain numerical conformal mapping in this case by similar procedures in Section 7.4.1.
We also here assume that 0 2 Kn just for simplicity.

We construct an approximation u(N) of u by I-MFS or DSM, that is,

u(N)(z) = Q0 +
n
X

⌫=1

N
X

k=1

Q⌫k log |z � ⇣⌫k| or u(N)(z) =
n
X

⌫=1

N
X

k=1

Q⌫k<
✓

n⌫k

z � ⇣⌫k

◆

.

Using the collocation method, we obtain the following collocation equations.

u(N)(z1j) = � log |z1j | (j = 1, 2, . . . , N),

u(N)(zµj)� logMµ = � log |zµj | (µ = 2, . . . , n; j = 1, 2, . . . , N).
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We first consider the case where u(N) is computed by MFS. Since

Z

@Kj

✓

(f (N))0(z)

f(z)
� 1

z

◆

dz =

Z

@Kj

 

n
X

⌫=1

N
X

k=1

Q⌫k

z � ⇣⌫k

!

= 2⇡i
N
X

k=1

Qjk,

the conjugate period of u(N) with respect to Kj is equal to 2⇡
PN

k=1 Qjk for each j = 2, 3, . . . , n.
Therefore, we impose the following conditions.

(7.4.2)
N
X

k=1

Qjk = 0, j = 2, 3, . . . , n.

In order to derive one more condition, we focus on the scaling invariance of conformal mapping.
Here, the scaling invariance means that for arbitrary given positive constant ↵, define a region ⌦↵ as

⌦↵ = {w 2 C | w = ↵z, z 2 ⌦} = ↵⌦.

Then, the conformal mapping f↵ of ⌦↵ onto Rµn�1

,1 \
Sn�2

j=1 ⇤j is given by f↵(w) = f(z), w = ↵z. We

would like to require numerical conformal mapping f (N) to satisfy the above property. Since

f (N)(z) = f (N)(z; ⇣11, . . . , ⇣nN , z11, . . . , znN ) = z exp

"

Q0 +
n
X

⌫=1

N
X

k=1

Qjk log(z � ⇣⌫k)

#

,

the approximation of f↵ is given by

f (N)
↵ (w) = F (w;↵⇣11, . . . ,↵⇣nN , z11, . . . , znN ).

Using the condition (7.4.2), we have

f (N)
↵ (w) = ↵z exp

"

Q0 +
n
X

⌫=1

N
X

k=1

Q⌫k log(↵(z � ⇣⌫k))

#

= ↵z exp

"

Q0 +
n
X

⌫=1

N
X

k=1

Q⌫k log↵+
n
X

⌫=1

N
X

k=1

Q⌫k log(z � ⇣⌫k)

#

= F (z)↵ exp

"

N
X

k=1

Q1k log↵

#

.

Therefore, if we impose the condition

(7.4.3)
N
X

k=1

Q1k = �1

the numerical conformal mapping f (N) satisfies the scaling invariance property.
If we use DSM, numerical conformal mapping f (N) satisfies the above properties naturally. There-

fore, there are several possibilities of constructing better numerical conformal mapping to meet a
request for the considered problem. We here adopt the conditions (7.4.2) and (7.4.3).

7.5 Numerical experiments

In this section, we show results of numerical experiments.
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7.5.1 Collocation points, singular points, and dipole moments

We arrange the singular points, the collocation points, and the dipole moments as in the following
procedure, which is influenced by Amano’s method [3]. For the sake of simplicity, let ⌦ be a Jordan
region with analytic boundary curve @⌦. Denote the analytic parameterization of @⌦ by  : [0, 1] ! C.
Then, we arrange the collocation points {zj}Nj=1 as follows:

(7.5.1) zj =  (j/N), j = 1, 2, . . . , N.

Then, the singular points {⇣k}Nk=1 and the dipole moments {nk}Nk=1 are defined automatically from
the collocation points {zj}Nj=1. Namely, they are defined as follows:

(7.5.2) ⇣k = zk � irz
2
(⇣k+1 � ⇣k�1), nk = �i

⇣k+1 � ⇣k�1

|⇣k+1 � ⇣k�1| , k = 1, 2, . . . , N,

where rz = rN , and r is a positive parameter. It can be observed that the singular points {⇣k}Nk=1 and
the dipole moments {nk}Nk=1 thus defined are approximations of those obtained by using conformal
mappings. Therefore, the above methods o↵er simple and good arrangements of the collocation points,
the singular points, and the dipole moments.

7.5.2 ⌦: Cassini’s oval

We firstly consider the case where ⌦ is a Cassini’s oval, which is defined as

{(x, y) 2 R2 | {(x+ 1)2 + y2}{(x� 1)2 + y2} < a4},

where a is a parameter greater thatn 1. It is known that the explicit form of the conformal mapping
f is given by

f(z) =
azp

a4 � 1 + z2
,

where z0 = 0. The boundary @⌦ can be parameterized as follows:

@⌦ = {r(✓) exp(i✓) | ✓ 2 [0, 2⇡]}, r(✓) =
q

cos(2✓) +
p

cos2(2✓) + a4 � 1.

Therefore, we determine the collocation points {zj}Nj=1 by (7.5.1), and the singular points {⇣k}Nk=1

and the dipole moments {nk}Nk=1 by (7.5.2). The configurations of the region ⌦, the collocation
points {zj}Nj=1, and the singular points {⇣k}Nk=1 are depicted in Figure 7.1 (a), and the images of
numerical conformal mapping are in Figure 7.1 (b). The behavior of the error can be found in Figure
7.2. It can be observed that the error kv � v(N)kL1(@⌦) of v(N) is a little bit smaller than the error

ku� u(N)kL1(@⌦) of u
(N). Moreover, it can be found that the error kf � f (N)kL1(@⌦) of f

(N) agrees

with ku� u(N)kL1(@⌦), which implies that the relation (7.3.2) might hold.

7.5.3 ⌦: doubly-connected region surrounded by two ellipses

We next show numerical results for the case where ⌦ is a doubly-connected region surrounded by two
ellipses. More precisely, define two curves Cµ (µ = 1, 2) as

Cµ =

⇢

(x, y) 2 R2

�

�

�

�

x2

a2µ
+

y2

b2µ
< 1

�

(µ = 1, 2; a1 > a2, b1 > b2, aµ > bµ),
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Figure 7.1: Numerical conformal mapping from Cassini’s oval onto the unit disk, where a = 1.1 and
N = 60. a Configurations and the preimage of numerical conformal mapping. b Image of numerical
conformal mapping.
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Figure 7.2: N -log10(error) plots, where ⌦ is Cassini’s oval. The lines correspond to the case where
r = 0.01, 0.02, 0.03, and 0.04 from the above.
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and define ⌦ as the interior doubly-connected region surrounded by C1 and C2, which we call doubly-
elliptic region hereafter. If two ellipses Cµ (µ = 1, 2) has the same foci, which means that a21 � b21 =
a22 � b22 hold, then the exact conformal mapping can be represented by the following formula:

f(z) =
z +

p

z2 � (a21 + b21)

a1 + b1
,

where the values of square roots
p

z2 � (a21 + b21) should be chosen so that
p

z2 � (a21 + b21) is contin-
uous in ⌦. Also, the exact value of the modulus µ is given by

µ =
a2 + b2
a1 + b1

.

We have taken the parameters a1, b1, a2, and b2 as 7, 5, 5, 1, respectively. The configurations of the
region ⌦, the collocation points {zj}Nj=1, the singular points {⇣k}Nk=1, and the dipole moments {nk}Nk=1

are depicted in Figure 7.3 (a). Images of numerical conformal mapping can be found in Figure 7.3 (b),
and the behaviors of errors are shown in Figure 7.4.
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Figure 7.3: Numerical conformal mapping from doubly-elliptic region onto the annulus, where a1 = 7,
b1 = 5, a2 = 5, b2 = 1, and N = 30. a Configurations and the preimage of numerical conformal
mapping. b Image of numerical conformal mapping.

7.6 Concluding remarks

In this chapter, we have developed scheme for numerical conformal mapping based on DSM, and
proved that approximation errors of v and f are completely governed by that of u. Results of numerical
experiments in Section 7.5 verify the e↵ectiveness of our proposed numerical scheme. Although we have
omitted the details of the application for another multiply-connected regions, we just comment here
that our present scheme works well for such regions. Namely, we could construct numerical scheme
for conformal mapping which does not require any special techniques in computation but o↵ers us
high-precision results.
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Figure 7.4: N � log10(error) plots, where ⌦ is doubly-elliptic region, and the parameters are a1 = 7,
b1 = 5, a2 = 5, and b2 = 1.

There are possibilities for our numerical scheme to apply several problems. The first thing is to
construct numerical scheme for Poisson equation in arbitrary Jordan region. Since the exact solution
can be obtained by using Green function and it can be represented by using conformal mapping, it can
be expected that another numerical scheme for solving Poisson equation can be obtained by combining
our numerical conformal mapping and some quadrature rule, such as the double exponential formula.
We also expect that numerical scheme for moving boundary problem can be obtained by applying our
method. For instance, if we consider water wave problem in bounded region in the plane, its motion
can be represented by using conformal mapping. Therefore, our numerical conformal mapping may
develop new numerical scheme for such a kind of moving boundary problems.
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Chapter 8

A mathematical analysis of the
complex dipole simulation method

Abstract

We propose the complex dipole simulation method (CDSM) which approximates a holo-
morphic function by linear combination of 1/(z�⇣) with the use of its boundary values. In
this chapter, we deal with a function f which is holomorphic in ⌦ and continuous on ⌦ in
the case where ⌦ is a disk or the exterior region of a disk. Then, we establish the following
fact: if f is holomorphic in some neighborhood of ⌦, the error of an approximate function
f (N) decays exponentially with respect to N , where N is the number of the singular points.
This chapter is based on the following published paper:

• K. Sakakibara and M. Katsurada, A mathematical analysis of the complex dipole sim-
ulation method, Tokyo J. Math. 38 (2015), no. 2, 309–326.

8.1 Introduction

The objectives of this chapter are to propose the complex dipole simulation method (CDSM) which
is an approximation technique for holomorphic function f by using its boundary values, to prove the
unique existence of the approximate function f (N) and the exponential decay of the error of f (N), and
to exemplify the e↵ectiveness of CDSM by numerical experiments.

As we have explained in Chapter 3, DSM o↵ers an approximate solution for the potential problem
in the following form.

u(N)(x) =
N
X

k=1

QkD(x,yk;nk), D(x,yk;nk) =
1

2⇡

(nk | x� yk)

kx� ykk2
.

We here rewrite the DSM approximate solutions in terms of the real part of the holomorphic function:

u(N)(x) = <
 

N
X

k=1

�1

2⇡

Qk

z � ⇣k

!

,

where
Qk = pk + iqk, z = x+ iy, ⇣k = ⇠k + i⌘k,
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in which
Qknk = (pk, qk)

T, x = (x, y)T, yk = (⇠k, ⌘k)
T.

In view of this expression, we propose CDSM for approximating holomorphic functions. In detail, let
⌦ be a region in the complex plane and f be a function which is holomorphic in ⌦ and continuous on
⌦. CDSM gives an approximate function for f as

(8.1.1) f (N)(z) =
N
X

k=1

Qk

z � ⇣k
,

where {⇣k}Nk=1 are taken from the exterior of ⌦ and the complex coe�cients {Qk}Nk=1 are determined
by the collocation method, that is, we take N points {zj}Nj=1 on @⌦ and determine {Qk}Nk=1 by the
equations below:

(8.1.2) f (N)(zj) = f(zj), j = 1, 2, . . . , N.

This is an algorithm of CDSM. We call {⇣k}Nk=1, {zj}Nj=1, and the equations (8.1.2) the singular points,
the collocation points, and the collocation equations, respectively.

The readers may think that a holomorphic function can be approximated by DSM by considering
its real part and imaginary part separately. Indeed, when we write the boundary values of f = u+ iv
as f |@⌦ = �+ i , then u and v are characterized by two Dirichlet problems:

4u = 0 in ⌦, u = � on @⌦,

4v = 0 in ⌦, v =  on @⌦.

Although the collocation equations

f (N)(zj) = f(zj), j = 1, 2, . . . , N

are solvable, the collocation equations

<f (N)(zj) = f(zj), j = 1, 2, . . . , N

are not solvable. Furthermore, since the error of CDSM’s approximate function f (N) is evaluated as

sup
z2⌦

�

�

�

f(z)� f (N)(z)
�

�

�

 C
⇣ ⇢

R

⌘N

+ C 0
✓

⇢

r0

◆N

,

(we will show details in Theorems 8.2.3 and 8.2.6), where C and C 0 are constants independent of N ,
comparing (8.1) with the error estimate for DSM, we see that the convergence rates are di↵erent from
each other. Therefore the theory of CDSM are not followed from the one of DSM.

This chapter consists of six sections. In Section 8.2, we state theorems on the convergence and
error estimates and we prove them in Section 8.3. In Section 8.4, we calculate the condition number of
the coe�cient matrix for the linear system (8.1.2) explicitly. In Section 8.5, we show some numerical
experiments in the case where ⌦ is a disk, and moreover we compare the results for CDSM with DSM.
In Section 8.6, we summarize this chapter and give some concluding remarks.

8.2 Main results

We prepare some notations in advance.
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Notations 8.2.1. For a positive number r, we define

Dr := {z 2 C | |z| < r}, �r := {z 2 C | |z| = r}, D⇤
r := {z 2 C | |z| > r}.

We first consider the case where ⌦ = D⇢, where ⇢ is a positive number. The singular points {⇣k}Nk=1,
and the collocation points {zj}Nj=1 are located at R!k�1 (k = 1, 2, . . . , N), and ⇢!j�1 (j = 1, 2, . . . , N),
respectively, where R > ⇢ and ! = exp(2⇡i/N). We assume that a function f is holomorphic in ⌦ and
continuous on ⌦.

We seek an approximate function f (N) within the function space X (N) which is defined as follows:

X (N) = X (N)({⇣k}Nk=1) =

(

N
X

k=1

QkH(·, ⇣k)
�

�

�

�

�

(Q1, Q2, . . . , QN )T 2 CN

)

,

where

H(z, ⇣) =
1

z � ⇣
.

We introduce a norm k · kr : X ! R for each r 2 ]0,+1[ as follows:

kfkr =
1
X

n=0

|an|rn,

where X is a function space whose elements are holomorphic functions in D⇢ and

f(z) =
1
X

n=0

anz
n (f 2 X; z 2 D⇢).

We are now in a position to state the theorems:

Theorem 8.2.2. We can determine f (N) 2 X (N) by (8.1.2) uniquely.

Theorem 8.2.3. Assume that f is holomorphic in some neighborhood of ⌦. If we choose r0 > ⇢ so
that kfkr

0

< +1, then we have the inequality

�

�

�

f � f (N)
�

�

�

L1(⌦)
 2kfk⇢

1� (⇢/R)N

⇣ ⇢

R

⌘N

+ 2kfkr
0

✓

⇢

r0

◆N

for the approximate function f (N) in Theorem 8.2.2.

We next consider the case ⌦ = D⇤
⇢, where ⇢ is a positive number. We take the singular points

{⇣k}Nk=1, and the collocation points {zj}Nj=1 similarly in the case ⌦ = D⇢, where 0 < R < ⇢. We

assume that a function f is holomorphic and bounded in ⌦ and continuous in ⌦.
We seek an approximate function f (N) within the function space Y (N) which is defined as follows:

Y (N) = Y (N)({⇣k}Nk=1) =

(

N
X

k=1

Qk�(·, ⇣k)
�

�

�

�

�

(Q1, Q2, . . . , QN )T 2 CN

)

,

where
�(z, ⇣) =

z

z � ⇣
.

Remark 8.2.4. We cannot use H(·, ·) as a substitute for �(·, ·) in Y (N) since if we use H(·, ·), then the
value at the point at infinity becomes zero. Inversely we cannot use �(·, ·) instead of H(·, ·) in X (N)

since if we use �(·, ·), then the value at the origin becomes zero. However, we can useH(z, ⇣) = ⇣/(z�⇣)
in place of H(z, ⇣) in X (N) and obtain similar theorems with Theorems 8.2.2 and 8.2.3.
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We introduce the norm k · kr : Y ! R for each r 2 ]0,+1[ as follows:

kfkr =
1
X

n=0

|b�n|r�n,

where Y is a function space whose elements are holomorphic and bounded in ⌦ and

f(z) =
1
X

n=0

b�nz
�n (f 2 Y ; z 2 D⇤

⇢).

We can state the theorems:

Theorem 8.2.5. We can determine f (N) 2 Y (N) by (8.1.2) uniquely.

Theorem 8.2.6. Assume that f is holomorphic in some neighborhood of ⌦. If we choose 0 < r0 < ⇢
so that kfkr

0

< +1, then we have the inequality

�

�

�

f � f (N)
�

�

�

L1(⌦)
 2kfk⇢

1� (R/⇢)N

✓

R

⇢

◆N

+ 2kfkr
0

✓

r0
⇢

◆N

for the approximate function f (N) in Theorem 8.2.5.

8.3 Proofs of theorems

The proof techniques employed here are based on the ones due to [49].

8.3.1 Proof of Theorem 8.2.2

We rewrite the collocation equations (8.1.2) as follows:

N
X

k=1

1

!j�1

Qk

%R!k�j
= f(zj), j = 1, 2, . . . , N,

therefore (8.1.2) is equivalent to the linear system

(8.3.1) GQ = f ,

where Q = (Q1, Q2, . . . , QN )T 2 CN , f = (f(z1),!f(z2), . . . ,!N�1f(zN ))T 2 CN , and G is an
N ⇥ N complex matrix with the entries gjk = 1/(⇢ � R!k�j) (j, k = 1, 2, . . . , N). Let W =
(Wjk | j, k = 1, 2, . . . , N) be an N -dimensional discrete Fourier transform, that is,

Wjk =
1

N1/2
!(j�1)(k�1), j, k = 1, 2, . . . , N.

Note that G is a circulant matrix whose (j, k) entry depends on k � j (mod N). In general, circulant
matrices can be diagonalized by discrete Fourier transform, indeed we see

(8.3.2) W�1GW = diag
⇣

'(N)
0 (⇢),'(N)

1 (⇢), . . . ,'(N)
N�1(⇢)

⌘

,

where

(8.3.3) '(N)
p (z) =

N
X

k=1

!p(k�1)H(z, ⇣k) (z 2 C \ {⇣k}Nk=1; p 2 Z).

The function '(N)
p plays a fundamental role in the following analysis. We first prove the following

lemma.
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Lemma 8.3.1. (i) '(N)
p is periodic with respect to p with period N .

(ii) We have

'(N)
p (z) = �N

R

⇣ z

R

⌘p�1 1

1� (z/R)N
(z 2 DR)

for all p 2 {1, 2, . . . , N}.
Proof. (i) '(N)

p = '(N)
q follows from (8.3.3) if p ⌘ q (mod N) since !N = 1.

(ii) To begin with, we expand H(z, ⇣k) as

H(z, ⇣k) =
�1

R!k�1

1

1� z/(R!k�1)
= � 1

R

1
X

n=0

⇣ z

R

⌘n

!�(k�1)(n+1) (z 2 DR).

Hence we have

'(N)
p (z) =

N
X

k=1

!p(k�1)H(z, ⇣k) =
N
X

k=1

!p(k�1)

"

� 1

R

1
X

n=0

⇣ z

R

⌘n

!�(k�1)(n+1)

#

= � 1

R

1
X

n=0

⇣ z

R

⌘n N
X

k=1

!�(n�(p�1))(k�1) = �N

R

X

n⌘p�1 (mod N)
n�0

⇣ z

R

⌘N

= �N

R

⇣ z

R

⌘p�1 1

1� (z/R)N

for all p 2 {1, 2, . . . , N}.
Proof of Theorem 8.2.2. By (8.3.2) and Lemma 8.3.1, we can compute the determinant of G as

detG =
N�1
Y

p=0

'(N)
p (⇢) =

N
Y

p=1

'(N)
p (⇢).

By Lemma 8.3.1 (ii), we know '(N)
p (⇢) < 0 (p = 1, 2, . . . , N). Hence detG 6= 0 follows and this

completes the proof of Theorem 8.2.2.

8.3.2 Proof of Theorem 8.2.3

By (8.3.2), the inverse matrix of G is as follows:

G�1 = W diag

 

1

'(N)
0 (⇢)

,
1

'(N)
1 (⇢)

, . . . ,
1

'(N)
N�1(⇢)

!

W�1.

A direct calculation yields

[G�1]kj =
1

N

N
X

p=1

!(k�j)(p�1)

'(N)
p�1(⇢)

(j, k = 1, 2, . . . , N),

where [G�1]kj denotes the (k, j) element of G�1. This makes it possible to solve (8.3.1) as

Qk =
N
X

j=1

[G�1]kj [f ]j =
N
X

j=1

 

1

N

N
X

p=1

!(k�j)(p�1)

'(N)
p�1(⇢)

!

!j�1f(zj)

=
1

N

N
X

j,p=1

!(k�1)(p�1)�(j�1)(p�2)

'(N)
p�1(⇢)

f(zj).
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Hence we have

f (N)(z) =
N
X

k=1

QkH(z, ⇣k) =
N
X

k=1

0

@

1

N

N
X

j,p=1

!(k�1)(p�1)�(j�1)(p�2)

'(N)
p�1(⇢)

f(zj)

1

AH(z, ⇣k)

=
1

N

N
X

j,p=1

!�(j�1)(p�2)
'(N)
p�1(z)

'(N)
p�1(⇢)

1
X

n=0

an⇢
n!(j�1)n

=
1

N

N
X

p=1

'(N)
p�1(z)

'(N)
p�1(⇢)

1
X

n=0

an⇢
n

0

@

N
X

j=1

!(n�(p�2))(j�1)

1

A

=
N
X

p=1

'(N)
p�1(z)

'(N)
p�1(⇢)

X

n⌘p�2 (mod N)
n�0

an⇢
n =

1
X

n=0

an⇢
n'

(N)
n+1(z)

'(N)
n+1(⇢)

.

Consequently we can write the error function e(N) = f � f (N) as

e(N)(z) =
1
X

n=0

an⇢
n

"

✓

z

⇢

◆n

� '(N)
n+1(z)

'(N)
n+1(⇢)

#

.

Since e(N) is holomorphic in ⌦ and continuous on ⌦, we obtain by the maximum modulus principle
for holomorphic functions

(8.3.4) ke(N)kL1(⌦) 
1
X

n=0

|an|⇢ng(N)
n,⇢ ,

where

g(N)
n,⇢ := sup

z2�⇢

�

�

�

�

�

✓

z

⇢

◆n

� '(N)
n+1(z)

'(N)
n+1(⇢)

�

�

�

�

�

.

At this stage, we claim the following Lemma 8.3.2 concerning g(N)
n,⇢ .

Lemma 8.3.2. (i) For all n 2 N [ {0}, we have

(8.3.5) g(N)
n,⇢  2.

(ii) For all p 2 {0, 1, . . . , N � 1}, we have

(8.3.6) g(N)
p,⇢  2(⇢/R)N

1� (⇢/R)N
.

Proof. (i) We know by Lemma 8.3.1 that the inequality

|'(N)
p (z)|  |'(N)

p (|z|)|
holds for all p 2 Z and for all z 2 DR. Therefore we see

�

�

�

�

�

✓

z

⇢

◆n

� '(N)
n+1(z)

'(N)
n+1(⇢)

�

�

�

�

�


✓ |z|

⇢

◆n

+
|'(N)

n+1(z)|
|'(N)

n+1(⇢)|
 2

for all z 2 �⇢. This establishes (8.3.5).
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(ii) By Lemma 8.3.1, we have
�

�

�

�

�

✓

z

⇢

◆p

� '(N)
p+1(z)

'(N)
p+1(⇢)

�

�

�

�

�

=

�

�

�

�

✓

z

⇢

◆p (⇢/R)N � (z/R)N

1� (z/R)N

�

�

�

�

 2(⇢/R)N

1� (⇢/R)N

for all z 2 �⇢. Thus (8.3.6) is shown and this completes the proof of Lemma 8.3.2.

Proof. By (8.3.4) and Lemma 8.3.2, we have

kf � f (N)kL1(⌦) 
"

N�1
X

n=0

+
1
X

n=N

#

|an|⇢ng(N)
n,⇢ 

N�1
X

n=0

|an|⇢n 2(⇢/R)N

1� (⇢/R)N
+

1
X

n=N

|an|⇢n · 2


1
X

n=0

|an|⇢n 2(⇢/R)N

1� (⇢/R)N
+ 2

1
X

n=N

|an|rn0
✓

⇢

r0

◆n

 2kfk⇢
1� (⇢/R)N

⇣ ⇢

R

⌘N

+ 2kfkr
0

✓

⇢

r0

◆N

.

8.3.3 Proofs of Theorems 8.2.5 and 8.2.6

Theorems 8.2.5 and 8.2.6 are proved as well as Theorems 8.2.2 and 8.2.3, respectively. Therefore we
only sketch out the proofs of them.

We rewrite the collocation equations (8.1.2) into (8.3.1) similarly, where Q = (Q1, Q2, . . . , QN )T 2
CN , f = (f(z1), f(z2), . . . , f(zN ))T 2 CN , and G is an N ⇥ N complex matrix with the entries
gjk = �(zj , ⇣k) (j, k = 1, 2, . . . , N). G is a circulant matrix whose (j, k) entry depends on k � j
(mod N). Therefore we see

(8.3.7) W�1GW = diag
⇣

 (N)
0 (⇢), (N)

1 (⇢), . . . , (N)
N�1(⇢)

⌘

,

where

 (N)
p (z) :=

N
X

k=1

!p(k�1)�(z, ⇣k) (z 2 C \ {⇣k}Nk=1; p 2 Z).

We have the following Lemma 8.3.3 as to the function  (N)
p .

Lemma 8.3.3. (i)  (N)
p is periodic with respect to p with period N .

(ii) We have

 (N)
p (z) = N

✓

R

z

◆N�p 1

1� (R/z)N
(z 2 D⇤

R)

for all p 2 {1, 2, . . . , N}.
By (8.3.7), G�1 can be represented as follows:

G�1 = W diag

 

1

 (N)
0 (⇢)

,
1

 (N)
1 (⇢)

, . . . ,
1

 (N)
N�1(⇢)

!

W�1.

A direct calculation yields

[G�1]kj =
1

N

N
X

p=1

!(k�j)(p�1)

 (N)
p�1(⇢)

(j, k = 1, 2, . . . , N).
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This makes it possible to solve (8.3.1) for Qk (k = 1, 2, . . . , N) as

Qk =
1

N

N
X

j,p=1

!(k�1)(p�1)�(j�1)(p�1)

 (N)
p�1(⇢)

f(zj).

Hence we have

f (N)(z) =
1
X

n=0

b�n⇢
�n 

(N)
�n (z)

 (N)
�n (⇢)

.

Consequently we can write the error function e(N) = f � f (N) as

e(N)(z) =
1
X

n=0

b�n⇢
�n

"

⇣⇢

z

⌘n

�  (N)
�n (z)

 (N)
�n (⇢)

#

.

We obtain by the maximum modulus principle for holomorphic functions

(8.3.8) sup
z2⌦

|e(N)(z)| 
1
X

n=0

|b�n|⇢�ng(N)
n,⇢ ,

where

g(N)
n,⇢ = sup

z2�⇢

�

�

�

�

�

⇣⇢

z

⌘n

�  (N)
�n (z)

 (N)
�n (⇢)

�

�

�

�

�

.

At this stage we claim the following Lemma 8.3.4 concerning g(N)
n,⇢ .

Lemma 8.3.4. (i) For all n 2 N [ {0}, we have

g(N)
n,⇢  2.

(ii) For all p 2 {0, 1, . . . , N � 1}, we have

g(N)
p,⇢  2(R/⇢)N

1� (R/⇢)N
.

By (8.3.8) and Lemma 8.3.4, we complete a proof of Theorem 8.2.6.

8.4 Condition numbers

In this section, we calculate the condition number of the coe�cient matrix G for the linear system
(8.3.1).

(I) In the case ⌦ = D⇢. Since the coe�cient matrix G is an Hermitian matrix, if we take a norm
for N -dimensional vectors as

kxk :=

v

u

u

t

N
X

j=1

|xj |2 (x = (x1, x2, . . . , xN )T),

we can calculate the condition number of G as

condG = kGk · kG�1k =
maxp=1,2,...,N |'(N)

p (⇢)|
minp=1,2,...,N |'(N)

p (⇢)|
=

|'(N)
1 (⇢)|

|'(N)
N (⇢)|

=

✓

R

⇢

◆N�1

.
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(II) In the case ⌦ = D⇤
⇢. We can calculate condG similarly in the case (I) as

condG =
⇣ ⇢

R

⌘N�1

.

We know from (I) and (II) that condG increases exponentially with respect to N . Therefore,
the linear system (8.3.1) is ill-conditioned. Nevertheless, as we shall see in Section 8.5, numerical
computations perform well.

On the other hand, in MFS, condG = O((R/⇢)N/2) or O((⇢/R)N/2) in the case ⌦ = D⇢ or ⌦ = D⇤
⇢,

respectively. Therefore, the linear system for Qks is ill-conditioned, too. There are results abount the
numerical stability of CSM by Kitagawa [57, 58]. Studying the numerical stability of CDSM will be
expected, too.

8.5 Numerical experiments

In this section, we present results for our numerical experiments in the case ⌦ = D⇢. Since errors of
MFS and DSM show almost similar behavior, we show results for DSM, and compare it with that for
CDSM. A corresponding Dirichlet problem which is solved numerically by DSM is as follows:

4u = 0, in ⌦,

u = <f, on @⌦.

The singular points {⇣k}Nk=1 and the collocation points {zj}Nj=1 are defined by

⇣k = R!k�1 (k = 1, 2, . . . , N) zj = ⇢!j�1 (j = 1, 2, . . . , N),

where R is a parameter which satisfies R > ⇢. In order to estimate the error kf � f (N)kL1(⌦)

numerically, we use the Monte Carlo method. In other words, we adopt the following quantity as an
approximation of the error:

ẽ(N) := max
z2⇤

�

�

�

f(z)� f (N)(z)
�

�

�

,

where ⇤ is a set of points chosen from �⇢. To be more concrete, we prepare a set ⇥ := {✓k}Mk=1 ⇢ [0, 1[
(M is equal to 10 ·maxN) by using pseudo-random numbers, and put

⇤ := {⇢e2⇡i✓ | ✓ 2 ⇥}.

Likewise, we set up

ẽ(N)
D := max

z2⇤

�

�

�

u(z)� u(N)(z)
�

�

�

as an approximation of the error for DSM. Test 1, 2-(i), 3, and 4-(i) were performed by using MATLAB,
and Test 2-(ii), and 4-(ii) by C++ programs using the multiple-precision arithmetic library “exflib”
(see Fujiwara [21]).

In each numerical experiment, we compute ẽ(N) and ẽ(N)
D , and plot graphs whose horizontal axis

represents N and vertical axis log10 ẽ
(N) or log10 ẽ

(N)
D .

Test 1. In this test we deal with the case where f is a power function whose exponent is a non-
negative integer:

f(z) = zm,

where m 2 {0, 1, . . . , 5} is a parameter. In Figure 8.1, we find these graphs are almost linear. This
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Figure 8.1: f(z) = zm, where m 2 {0, 1, . . . , 5}, N 2 {2, 3, . . . , 60}, ⇢ = 1, and R = 2

implies that ẽ(N) and ẽ(N)
D behave as

(8.5.1) ẽ(N) ⇠ C⌧N , ẽ(N)
D ⇠ C 0⌧ 0

N
(N ! 1).

We know that ⌧ and ⌧ 0 are almost equal to ⇢/R in this case since f is holomorphic and u harmonic in
the entire plane.
Test 2. In this test we deal with the case where f is an exponential function composed with a
power function whose exponent is a non-negative integer:

f(z) = exp(zm),

where m 2 {0, 1, . . . , 5} is a parameter.

(i) We compute ẽ(N) and ẽ(N)
D for allN 2 {2, 3, . . . , 60} when (⇢, R) = (1, 2), andN 2 {2, 3, . . . , 100}

when (⇢, R) = (1, 1.5) (see Figure 8.2).
Since f is holomorphic and u harmonic in the entire plane, ⌧ and ⌧ 0 are both almost equal to ⇢/R as

well as Test 1. However, we cannot see from Figures 8.2 (a) and (b) that ẽ(N) and ẽ(N)
D behave as (8.5.1).

On the other hand, from Figure 8.2 (c), ẽ(N) behaves as (8.5.1) for m 2 {0, 1, 2, 3, 4}. Simultaneously,

from Figure 8.2 (d), ẽ(N)
D behaves as (8.5.1) for m 2 {0, 1, 2, 3}. Hence we can investigate that ẽ(N)

and ẽ(N)
D behave as (8.5.1) for su�ciently large N .

In order to clear up this investigation, we compute ẽ(N) with (⇢, R) = (1, 2) and ẽ(N)
D with (⇢, R)

for large N using multiple-precision arithmetic.

(ii) We compute ẽ(N) and ẽ(N)
D for all N 2 {2, 3, . . . , 400} in 120 digits by C++ programs using

exflib (see Figure 8.3). We can see from Figure 8.3 that ẽ(N) and ẽ(N)
D behave as (8.5.1).

Test 3. In this test we deal with the case where f is a rational function:

f(z) =
1

z � p(m)
, p(m) = ⇢+ 0.1 + 0.2m,

wherem 2 {0, 1, . . . , 10} is a parameter. f has a simple pole at p(m). We find from Figure 8.4 that ẽ(N)

and ẽ(N)
D behave as (8.5.1), and ⌧ and ⌧ 0 are equal to max{⇢/R, ⇢/p(m)} and max{⇢/R,

p

⇢/p(m)},
respectively.
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Figure 8.2: f(z) = exp(zm) where m 2 {0, 1, . . . , 5}, in double-precision: (a), (b) N 2 {2, 3, . . . , 060},
⇢ = 1, and R = 2; (c), (d) N 2 {2, 3, . . . , 100}, ⇢ = 1, and R = 1.5
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Figure 8.3: f(z) = exp(zm) where m 2 {0, 1, . . . , 5}, N 2 {2, 3, . . . , 400}, in multiple-precision (120
digits): (a) ⇢ = 1 and R = 2; (b) ⇢ = 1 and R = 1.5
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Figure 8.4: f(z) = 1/(z � p(m)) where m 2 {0, 1, . . . , 10}, N 2 {2, 3, . . . , 60}, ⇢ = 1 and R = 2

Test 4. In this test we deal with the case where f is an exponential function composed with a
rational function:

f(z) = exp

✓

1

z � p(m)

◆

, p(m) = ⇢+ 0.1 + 0.2m,

where m 2 {0, 1, . . . , 10} is a parameter. f has an essential singularity at p(m).

(i) We compute ẽ(N) and ẽ(N)
D for all N 2 {2, 3, . . . , 60}. See Figure 8.5.
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Figure 8.5: f(z) = exp(1/(z�p(m))) where m 2 {0, 1, . . . , 10}, N 2 {2, 3, . . . , 60}, in double-precision:
⇢ = 1 and R = 2

(ii) In order to elucidate the same investigation of Test 2, we compute ẽ(N) and ẽ(N)
D for al N 2

{2, 3, . . . , 400} in 120 digits precision by C++ programs using exflib. We find from Figure 8.6 that ẽ(N)

and ẽ(N)
D behave as (8.5.1), and † and ⌧ 0 are equal to max{⇢/R, ⇢/p(m)} and max{⇢/R,

p

⇢/p(m)},
respectively, in this case.

We summarize the results of our numerical experiments.

• The behaviors of ẽ(N) and ẽ(N)
D are what we can expect from the error estimate.
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Figure 8.6: f(z) = exp(1/(z � p(m))) where m 2 {0, 1, . . . , 10}, N 2 {2, 3, . . . , 400}, in multiple-
precision (120 digits), ⇢ = 1, and R = 2

• ẽ(N) decays exponentially with respect toN , and the gradient of the straight section ofN -log10 ẽ
(N)

curve is almost equal to

max

⇢

log10
⇢

R
, log10

⇢

r0

�

.

Simultaneously, ẽ(N)
D decays exponentially with respect to N , and the gradient of the straight

section of N -log10 ẽ
(N)
D curve is almost equal to

max

⇢

log10
⇢

R
,
1

2
log10

⇢

r0

�

.

• Best selection of Rs for CDSM and DSM is R = r0 and R =
p
⇢r0, respectively. Hence, the

fastest decaying speed of the error for CDSM and DSM is (⇢/r0)N and (⇢/r0)N/2, respectively.
In the light of this fact, the convergence rate for CDSM is faster than that for DSM, and to
incarnate it, we have to choose largish R, but we can achieve the smallest error for smaller N .

8.6 Concluding remarks

In the previous sections, we proposed CDSM which approximates a holomorphic function f by a linear
combination of 1/(z � ⇣) of the form (8.1.1) using boundary values of f . A mathematical analysis
showed the exponential convergence of the approximate function which is constructed by CDSM, and
the result of our numerical experiments exemplified the e↵ectiveness of CDSM.
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[11] M. Beneš, M. Kimura and S. Yazaki, Second order numerical scheme for motion of polygonal
curves with constant area speed, Interfaces Free Bound. 11 (2009), no. 4, 515–536.

[12] S. Bock and K. Gürlebeck, On a spatial generalization of the Kolosov-Muskhelishvili formulae,
Math. Methods Appl. Sci. 32 (2009), no. 2, 223–240.

[13] A. Bogomolny, Fundamental solutions method for ellitic boundary value problems, SIAM J. Nu-
mer. Anal. 22 (1985), no. 4, 644–669.

[14] C. S. Chen, X. Jiang, W. Chen and G. Yao, Fast solution for solving the modified Helmholtz
equation with the method of fundamental solutions, Commun. Comput. Phys. 17 (2015), no. 3,
867–886.

187



BIBLIOGRAPHY BIBLIOGRAPHY

[15] W. Chen and F. Z. Wang, A method of fundamental solutions without fictitious boundary, Eng.
Anal. Bound. Elem. 34 (2010), no. 5, 530–532.

[16] W. Chen, J. Lin and C. S. Chen, The method of fundamental solutions for solving exterior
axisymmetric Helmholtz Problems with high wave-number, Adv. Appl. Math. Mech. 5 (2013),
no. 4, 477–493.

[17] M. I. Comodi and R. Mathon, A boundary approximation method for fourth order problems,
Math. Models Methods Appl. Sci. 1 (1991), no. 4, 437–445.

[18] C. L. Epstein and M. Gage, The curve shortening flow, Math. Sci. Res. Inst. Publ. 7 (1987),
15–59.

[19] G. B. Folland, Introduction to partial di↵erential equations, 2nd edn., Princeton University Press,
Princeton (1995).

[20] G. Fairweather and A. Karageorghis, The method of fundamental solutions for elliptic boundary
value problems, Adv. Comput. Math. 9 (1998), no. 1–2, 69–95.

[21] H. Fujiwara, http://www-an.acs.i.kyoto-u.ac.jp/
~

fujiwara/exflib/
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Notes 4, Matfyzpress (2008), 39–93.

[55] M. Kimura and H. Notsu, A level set method using the signed distance function, Jan. J. Indust.
Appl. Math. 19 (2002), no. 2, 415–446.

[56] M. Kimura, D. Tagami and S. Yazaki, Polygonal Hele-Shaw problem with surface tension, Inter-
faces and Free Boundaries 15 (2013), no. 1, 77–93.

[57] T. Kitagawa, On the numerical stability of the method of fundamental solutions applied to the
Dirichlet problem, Japan. J. Appl. Math. 5 (1988), no. 1, 123–133.

[58] T. Kitagawa, Asymptotic stability of the fundamental solution method, Proceedings of the In-
ternational Symposium on Computational Mathematics (Matsuyama 1990), J. Comput. Appl.
Math. 38 (1991), no. 1–3, 263–269.

[59] J. A. Ko lodziej and M. Mierzwiczak, Transient heat conduction by di↵erent version of the method
of fundamental solutions — a comparison study, Comput. Assist. Mech. Eng. Sci. 17 (2010),
no. 1, 75–88.

[60] J. A. Ko lodziej and J. K. Grabski, Application of the method of fundamental solutions and the
radial basis functions for viscous laminar flow in wavy channel, Eng. Anal. Bound. Elem. 57
(2015), 58–65.

[61] M. Krakowski and A. Charnes, Stokes’ paradox and biharmonic flows, Report 37, Carnegie
Institute of Technology, Department of Mathematics, Pittsuburgh, PA (1953).

[62] H. Lamb, Hydrodynamics, 6th edition, Dover Publications, 1945.

[63] M. Li, C. S. Chen, C. C. Chu and D. L. Young, Transient 3D heat conduction in functionally
graded materials by the method of fundamental solutions, Eng. Anal. Bound. Elem. 45 (2014),
62–67.

[64] M. Li, C. S. Chen and A. Karageorghis, The MFS for the solution of harmonic boundary value
problems with non-harmonic boundary conditions, Comput. Math. Appl. 66 (2013), no. 11,
2400–2424.

[65] W. Li, M. Li, C. S. Chen and X. Lu, Compactly supported radial basis functions for solving high
order partial di↵erential equations in 3D, Eng. Anal. Bound. Elem. 55 (2015), 2–9.

[66] Z.-C. Li, The method of fundamental solutions for annluar shaped domains, J. Comput. Appl.
Math. 228 (2009), no. 1, 355–372.

[67] Z.-C. Li, M.-G. Lee, J. Y. Chiang and Y. P. Liu, The Tre↵tz method using fundamental solutions
for biharmonic equations, J. Comput. Appl. Math. 235 (2011), no. 15, 4350–4367.

[68] Z.-C. Li, R. Mathon and . Sermer, Boundary methods for solving elliptic problems with singular-
ities and interfaces, SIAM J. Numer. Anal. 24 (1987), no. 3, 487–498.

[69] J. Lin, W. Chen and C. S. Chen, A new scheme for the solution of reaction di↵usion and wave
propagation problems, Appl. Math. Model. 38 (2014), no. 23, 5651–5664.

190



BIBLIOGRAPHY BIBLIOGRAPHY
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