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0 Introduction

The space-time scaling limit is a widely used method in mathematics and physics to study
the macroscopic behavior of a microscopically described system. On the microscopic level, the
system consists of a huge number of small objects whose time evolutions are govern by basic
physical laws and certain interactions. With the spacial volume growing together with the time
at a proper speed, such dynamics can appear macroscopically as real-wold processes.

Heuristically, consider a stochastic process {Y (t); t ∈ I} evolving with discrete time I = N
or continuous time I = {0} ∪ R+. For each t, Y (t) is a random field on some X, where X is
usually taken as the lattice space, torus or Euclid space. To fix ideas, here we suppose that
X = Rd and I = N. Define a rescaled process Yϵ = {Yϵ(t); t ∈ [0, T ]} for each ϵ > 0 as

Yϵ(t) = Yϵ(t, ·); Yϵ(t, x) = Y ([ϵ−αt], ϵ−1x), ∀t ∈ [0, T ], ∀x ∈ Rd,

where α > 0 is some fixed number. The terminology space-time scaling limit refers to the limit
(in law) of Yϵ when ϵ goes to zero.

The study of scaling limit can go back to Donsker’s invariance principle of simple random
walks. Indeed, consider the simple random walk Sn =

∑n
i=1 Xi on Z, where Xi’s are identical

and independently distributed random variables such that P (X1 = 1) = P (X1 = 0) = 1
2 . For

n ∈ N and x ∈ R define Y (n, x) = 1{Sn=x}. Rescale Y with α = 2 and we obtain that

Yϵ(t, x) = 1{Sϵ
t=x}, where Sϵ

t = ϵS[ϵ−2t], ∀ϵ > 0.

Donsker’s invariance principle yields that Sϵ converges weakly to a one dimensional Brownian
motion as ϵ → 0. More generally, one can derive, under adequate space-time scaling, particular
nonlinear partial differential equation from a large scale interacting particle system by taking
scaling limit of certain physical quantities, which is called hydrodynamics limit. On the other
hand, when the system stays in its local stationary state, of course no evolution can be observed
at the macroscopic level. In this case, the scaling limit of the vibration of the system around
the equilibrium state appears as stochastic differential equations. This procedure is called
equilibrium fluctuation. In this sense, the classical central limit theorem can be viewed as a
special case of the equilibrium fluctuations.

In this thesis we consider two relatively independent models and study their scaling limit
respectively. The first model is stochastic heat equations in random environment, and the
second one is stochastic chains of anharmonic oscillators.

In the first part, we introduce a new model called stochastic partial differential equations
in random environment. Consider a one dimensional stochastic heat equation on [0, 1] driven
by space-time white noise and a random nonlinear term satisfying nice smooth properties. The
homogenization of its mild solution is investigated under the diffusive time scaling. Under the
condition that the distribution of the nonlinear term is stationary and ergodic with respect to
a certain group of transformations, we extend the well-known central limit theorem for finite
dimensional diffusions to this infinite dimensional setting, and prove a central limit theorem
in L1 sense with respect to the randomness of the environment. The limit distribution is a
centered Gaussian law whose covariance operator is explicitly described through the resolvent
equation. It concentrates only on the space of constant functions. Furthermore if the random
environment degenerates to a deterministic, periodic and smooth nonlinear term, we also prove
an invariance principle. This is based on the results in [23], [24] and [25].

This model attracts our interest because of several features. First, stochastic heat equation
is a typical example of infinite dimensional diffusion. To view the environment from the moving
particle, which is the basic approach to the homogenization of stochastic processes in random
medias, has been proved powerful for random walks and finite dimensional diffusions in ergodic
environments ([3], [10]), and our model can be viewed as a natural extension of the latter. To
our knowledge, it is a new attempt of applying this approach to infinite dimensional nonlinear
systems. On the other hand, the Laplacian in the stochastic heat equation makes the system
not translation invariant, which becomes the main obstacle. To overcome this difficulty, a
different strategy to define the transformation group on the path space of the nonlinear term is
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adopted. We modify the general theory on infinite dimensional diffusions to show the ergodicity
and construct the generator of the moving environment, which is the hard part. From a more
physical point of view, the model considered here can be used to describe the evolution of a
flexible Brownian string in a random potential field ([5]), and the periodic case is closely related
to the dynamical sine-Gordon equation ([7]).

In the second part, we consider a chain of oscillators with interactions between the nearest
neighbors. Microscopically the chain evolves with a system of Hamilton equations perturbed
stochastically by continuous noises locally preserving the total length, momentum and energy.
We investigate the fluctuation fields of the conserved profiles under the hyperbolic space-time
scaling when the dynamics is in its equilibrium. We show in this part that the macroscopic
dynamics of the conserved profiles evolves deterministically with a linear Euler system, whose
initial condition is randomly distributed as a white noise. To prove the scaling limit, we need
to assume a uniform spectral gap for the infinitesimal generator of the system. We also discuss
such spectral gap estimate for both harmonic and anharmonic chains. This is based on the
joint work [16] with Professor Stefano Olla.

The macroscopic behaviors of the conserved quantities in a microscopic Hamiltonian dynam-
ics disturbed by noises is one of the central topics in statistical mechanics. For the harmonic
case, superdiffusive scaling limits is observed when the noises conserve both energy and mo-
mentum ([8], [11]), otherwise the macroscopic energy profile would evolve diffusively ([2]). On
the other hand, for anharmonic chains few rigorous mathematical results have been obtained
until now, although many numerical experiments and heuristic calculations have been made
and suggest similar phenomenon ([1]). One obstacle lies in the anharmonic models is the diffi-
culty in presenting explicit computation for non quadratic potential functions and non Gaussian
equilibrium measures. We refer to [15] for the diffusive behavior of the equilibrium fluctuation
in an anharmonic stochastic chain with noises conserving only energy. Our aim is to promote
their strategies to momentum and energy-conserving models.

1 Stochastic heat equation in random environment

Homogenization of finite dimensional diffusions in ergodic environments is a well-studied topic,
including periodic and quasi-periodic environments as special cases. In the early works [12] and
[20], central limit theorems are established for diffusions driven by random, self-adjoint operators
of divergence type. Diffusions without drift is considered in [21]. In [17], an invariance principle
in a quenched sense is obtained for diffusions in ergodic, almost surely C2-smooth environment,
through a study on the fundamental solutions corresponding to its generator.

A good review of finite dimensional results can be found in [10, §9]. The simplest example of
their model can be described as follows. Suppose that on a probability space (Σ,A ,Q) there is
a group of stationary and ergodic transformation {τc; c ∈ R}, and for each fixed σ ∈ Σ, Xσ

t ∈ R
is a diffusion process driven by the gradient-type operator

Kσf =
1

2
eV (σ,x) d

dx

(
e−V (σ,x) d

dx
f

)
, ∀f ∈ C∞

0 (R),

where V (σ, x) is the potential function defined as V (σ, x) = V(τxσ) for some good random
variable V on Σ. Let σ be chosen randomly from Σ, and call Xt = X ·

t a diffusion in random
environment. A central limit theorem for Xt is proved by the approach of environment process,
namely, the Σ-valued stochastic process ξt = τ[Xσ

t ]σ which records the environment σ viewed
from Xσ

t . The key fact is that {ξt, t ≥ 0} is a reversible Markov process possessing a stationary
measure which is ergodic and absolutely continuous with respect to Q. Notice that each sample
path of X ·

t can be decomposed into

Xt = X0 +

∫ t

0

V(ξs)ds+Bt.

The general method can be applied to the additive functional
∫ t

0
V′(ξs)ds. Heuristically speak-

ing, denote by K the generator of ξt and consider the cell problem −Kf = V associated with
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K. If it has a solution f which is square integrable with respect to the ergodic measure, with
Itô’s formula one can obtain that

Xt = X0 + f(X0)− f(Xt) +

∫ t

0

(Df(Xs) + 1)dBs,

where D is the derivative operator generated by τc on Σ. Since the functional central limit
theorem for martingales can be applied to the last term above and other terms all vanishes,
we can prove the central limit theorem for Xt easily. If the cell problem does not have such a
square integrable solution, a martingale approximation argument is firstly established in [?] for
reversible process, and is extended later in [18], [19] and [22] to non-reversible process with a
sector condition. We rely on these results in this part.

The aim of this part is to extend these strategies to an infinite dimensional, nonlinear
system. We study the homogenization of a stochastic partial differential equation in random
environment. The equation considered here is a stochastic heat equation on 1 dimensional unit
interval [0, 1], driven by a standard space-time white noise and having a random nonlinear term.
Different from the finite dimensional model, the nonlinear term is supposed to be generated by
a random field with stationary and ergodic law under only constant-shifts, that is, a group of
transformations indexed by R. We adopt this setting because that the Laplacian in the equation
is preserved only by these transformations, which is necessary for obtaining the Markov property
of the environment process.

The nonlinear term in the equation is supposed to be decomposed to a gradient-type part and
a divergence-free part. It can be viewed as the evolution equation of a flexible Brownian string in
some random potential field, see [5]. When the environment degenerates to a periodic nonlinear
term, the model is closely related to the dynamical sine-Gordon equation (see, e.g., [7]), and in
Theorem 1.3 we formulate an invariance principle for it, see also [23]. The divergence-free part
can be preserves the equilibrium state and thus can be added to the model. For homogenization
of finite dimensional diffusions in divergence-free random field, we refer to [14].

To state our model, we introduce some notations here. Throughout this part H stands
for the Hilbert space L2[0, 1], with its inner product and norm denoted by ⟨·, ·⟩H and ∥ · ∥H ,
respectively. Let E be the Banach space C[0, 1] equipped with the uniform topology. Denote
by E0 the subspace of E consisting of functions which vanishes at 0. Denote by µ0 the Wiener
measure on E0 induced by a standard Brownian motion. Since the sample path of a Brownian
motion is almost surely Hölder continuous with any order less than 1

2 , we fix some α ∈ (0, 1
2 )

and introduce Eα as the space consisting of all α-Hölder continuous functions defined on [0, 1].
With the natural embeddings, E, Eα and E0 are treated as subspaces of H.

Now we state our model precisely. Suppose (Σ,A ,Q) and (Ω,F ,P) to be two complete
probability spaces, the latter of which is equipped with a filtration of sub σ-fields {Ft ⊆ F ; t ≥
0} satisfying the usual conditions formulated in [9, pp. 10, Definition 2.25]. Let W (t, x) be a
standard cylindrical Brownian motion defined on (Ω,F ,P) adapted to Ft, and

{(V (σ, u), B(σ, u)) ∈ R×H; (σ, u) ∈ Σ×H}

be an R×H-valued random field over H on (Σ,A ,Q). Assume that V is Fréchet differentiable
in u for almost all σ, and let U be the H-valued random field defined by U = DV + B. For
fixed σ ∈ Σ, consider a 1-dimensional stochastic heat equation with homogeneous Neumann
boundary conditions and initial condition v ∈ E, written as the following:

∂tu(t, x) =
1

2
∂2
xu(t, x)− U(σ, u(t)) + Ẇ (t, x), t > 0, x ∈ (0, 1);

∂xu(t, x)|x=0 = ∂xu(t, x)|x=1 = 0, t > 0;

u(0, x) = v(x), x ∈ [0, 1].

(1.1)

To make sure that for fixed σ, (1.1) has a strong solution in the space of continuous functions,
assume that
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(A1) U(σ, ·) = DV (σ, ·) +B(σ, ·) is a bounded and Lipschitz continuous map from H to H for
Q-almost all σ ∈ Σ.

(A2) supΣ×H {|V |+ ∥DV ∥H + ∥B∥H} < ∞.

For Q-almost every σ (1.1) has a unique solution uσ,v(t, x) which is continuous in t and α-Hölder
continuous in x (see [5, 6]) for any α < 1

2 . Hence {uσ,v(t); t ≥ 0} forms a continuous Markov
process taking values in Eα. To continue, consider the path space

C1,0(H;R×H) ≜
{
ϕ = (v, b) : H → R×H

∣∣ v ∈ C1(H;R), b ∈ C(H;H)
}
.

Due to the regularity of uσ,v(t, ·), the distribution of uσ,v(t) depends only on the law of the
sub-field {Ṽ , B̃} ≜ {V (u), B(u)}u∈Eα . Hence let

Σ0
path ≜

{
ϕ̃ : Eα → R×H

∣∣∣ ∃ϕ ∈ C1,0(H;R×H), s.t. ϕ̃ = ϕ|Eα

}
.

Denote by Σpath the completion of Σ0
path under the Fréchet metric

dΣ(σ1, σ2) =

∞∑
k=1

1

2k
· dΣ,k(σ1, σ2)

1 + dΣ,k(σ1, σ2)
, (1.2)

where for σ1 = (ṽ1, b̃1) and σ2 = (ṽ2, b̃2) ∈ Σ,

dΣ,k(σ1, σ2) = sup
u∈Eα

k

{
|ṽ1(u)− ṽ2(u)|+ ∥Dṽ1(u)−Dṽ2(u)∥H + ∥b̃1(u)− b̃2(u)∥H

}
,

Eα
k =

{
u ∈ Eα, |u(x)| ≤ k,

|u(x)− u(y)|
|x− y|α

≤ k, ∀x, y ∈ [0, 1]

}
.

(Σpath, dΣ) is a Polish metric space. Equip it with the Borel σ-field and adopt it as the path

space of {Ṽ , B̃}. For c ∈ R, let τc be the transformation on Σpath defined by

τc ◦ ϕ̃ = ϕ̃(·+ c1), ∀ϕ̃ ∈ Σpath, (1.3)

where 1 stands for the constant function 1(x) ≡ 1 on [0, 1]. Let PṼ ,B̃ be the distribution of

{Ṽ , B̃} on Σpath and assume further that

(A3) PṼ ,B̃ ◦ (τc)
−1 = PṼ ,B̃, ∀c ∈ R and PṼ ,B̃ is ergodic, i.e., if a measurable set A ⊆ Σpath

satisfies that PṼ ,B̃(A∆τc[A]) = 0, ∀c ∈ R, then PṼ ,B̃(A) = 1 or 0. Moreover,

PṼ ,B̃(τcϕ̃ = ϕ̃, ∀c ∈ R) < 1. (1.4)

(A4) ∃ a measurable set Σ1 such that τc[Σ1] = Σ1, Q(Σ1) = 1 and for all σ ∈ Σ1,∫
E0

e−2V (σ,u)⟨Df(u), B(σ, u)⟩Hµ0(du) = 0 (1.5)

holds for all f on H such that f(u) = f†(⟨u, φ1⟩H , . . . , ⟨u, φM ⟩H) for some M ≥ 1,
f† ∈ C1

b (RM ) and φ1, . . . , φM ∈ H.

(A4) is equivalent to say that δ(e−2V B) = 0 holds for all σ ∈ Σ1, where δ is the divergence
operator adjoint to the Malliavin derivative (see, e.g., [13, pp. 35, Definition 1.3.1]). Our main
result, a central limit theorem for uv(t), is stated as follows.

Theorem 1.1. Under (A1) to (A4), u(t)/
√
t satisfies the central limit theorem in L1 sense

with respect to the environment and the limit distribution concentrates on the space of constant
functions, i.e. for any bounded continuous function f on E,

lim
t→∞

EQ

∣∣∣∣EP

[
f

(
u(t)√

t

)]
−
∫
R
f(y1)Φa(y)dy

∣∣∣∣ = 0, (1.6)

where a is a constant, y1 is the function on [0, 1] taking constant value y ∈ R, and Φa is the
probability density function of a 1-d centered Gaussian law with variance a2. Furthermore there
exists some strictly positive constant C depending only on V such that C ≤ a2 ≤ 1.
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The following example shows that periodic non linear term is included in our model as a
special case.

Example 1.2. Take Σ = [0, 1], A = B(Σ) and Q to be the Lebesgue measure. Suppose V to
be a measurable function on [0, 1]× R such that

V (x, ·) ∈ C1(R), V (x, y) = V (x, y + 1), ∀x ∈ [0, 1], y ∈ R.

Define the random field (V,B) for all σ ∈ Σ and u ∈ E as

V (σ, u) =

∫ 1

0

V (x, u(x) + σ)dx

and B(σ, u) ≡ 0. Assume that both V and d
dyV are uniformly bounded, then (A1) to (A4)

are fulfilled. This gives us the periodic model.

For the deterministic periodic environment defined in Example 1.2, with a little more effort
one is able to derive a limit theorem stronger than (1.6). Let uσ,v(t) be the solution to (1.1)
with V and B defined in Example 1.2, then uv(t, x) ≜ uσ,v−σ(t, x) + σ solves the following
stochastic heat equation with a periodic, gradient-type nonlinear term:

∂tu(t, x) =
1

2
∂2
xu(t, x)−

d

dy
V (x, u(t, x)) + Ẇ (t, x), t > 0, x ∈ (0, 1),

∂xu(t, 0) = ∂xu(t, 1) = 0, t > 0,

u(0, x) = v(x), x ∈ [0, 1].

(1.7)

For any ϵ > 0, consider the E-valued process{
u(ϵ)(t) = ϵu(ϵ−2t); t ∈ [0, T ]

}
. (1.8)

In view of Theorem 1.1, the law of u(ϵ)(t) converges weakly to a normal distribution as ϵ → 0
for any fixed t ∈ [0, T ]. By showing the tightness, one can prove further an invariance principle,
stating that u(ϵ)(·) as a process, converges weakly to a Brownian motion.

Theorem 1.3. Suppose that the initial distribution of u(t) is absolutely continuous with respect
to µ, which is the infinite measure on E such that u(0) subjects to the Lebesgue measure on R
and u(·)−u(0) subjects to µ0. Then {u(ϵ)(t), t ∈ [0, T ]} converges weakly to a Gaussian process
{σ1 · Bt, t ∈ [0, T ]} as ϵ → 0, where Bt is a 1-dimensional Brownian motion on [0, T ] and the
coefficient σ is the same as in Theorem 1.1.

2 Chain of oscillators with conservative noise

The macroscopic scaling limit in Hamiltonian systems defined on lattice spaces is an important
topic in the study of stochastic mechanics. One simple and useful example is the 1 dimensional
chain of coupled oscillators. It is clear that in Hamiltonian system with nonlinear interactions,
the local ergodicity given by certain stochastic perturbation is crucial for rigorous mathemat-
ical approach to macroscopic dynamics. In particular, the ballistic, superdiffusive or diffusive
behaviors in 1 dimensional chain of oscillators with different kinds of stochastic perturbations
are considered in many articles. Here to present a mathematical discussion, we first introduce
some notations.

Consider an infinite particle system, where each particle is numbered with x ∈ Z and is
described by its momentum px ∈ R and position qz ∈ R. The mass of each particle is set to
be 1. The particle x and its nearest neighbor x + 1 is connected by an spring with potential
V (qx+1−qx). To avoid technical difficulties, we assume that V is smooth, non-negative, strictly
convex and

∫
R exp(−V (r) + λr)dr < ∞ holds for all λ ∈ R. When V is quadratic, the model is

called a harmonic chain, otherwise it is called anharmonic.
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Define the inter-particle distances {rx = qx − qx−1;x ∈ Z} and consider a deterministic
Hamiltonian H formally defined as the total energy of the system

H =
∑
x∈Z

ex, where ex =
p2x
2

+ V (rx), ∀x ∈ Z. (2.1)

The macroscopic dynamics of {(px(t), rx(t))}x∈Z is given by the Hamiltonian system{
p′x(t) = V ′(rx+1(t))− V ′(rx(t)), x ∈ Z;
r′x(t) = px(x)− px−1(t), x ∈ Z.

(2.2)

The dynamics (2.2) has three (locally) conserved physical quantities: the total length
∑

rx, the
total momentum

∑
px and the total energy H =

∑
ex. Both mathematicians and physicians

are interested in the macroscopic behavior of the conserved profile in (2.2). Generally speaking,
for chains with nonlinear interactions, if only energy is preserved by the noise, the equilibrium
fluctuation evolves diffusively ([4], [15]). To see other macroscopic scaling, we need to adopt
momentum-conservative noise ([8]).

In this part we deal with the energy and momentum-conservative noise for harmonic or
anharmonic chains. We adopt continuous type noises involving both the momentum {px} and
the positions {rx}, since it gives us better mixing property. It is easy to see that the way to
define such a conservative noise between two oscillators is unique, see (2.3). With these noises
we can define a stochastic dynamics satisfying all the three conservation laws of (2.2). In this
sense, our model is nearer to the Hamiltonian system than the models in [4] and [15].

To state the model, we introduce some basic notations. Let C∞
0 (R) and S(R) be the class

of compactly supported smooth functions and Schwartz functions on R, the latter of which
is equipped with the Fréchet metric. Denote by S′(R) the dual space of S(R). Given any
metric space M , let C([0, T ];M) and C([0,∞);M) denote the the collections of all continuous
trajectories on M with finite and infinite time interval respectively.

Now we describe our model precisely. Consider a stochastic particle system consisting of
infinite many particles in 1-dimensional space. Its configuration space is denoted by Ω = (R2)Z.
For a specific configuration ω = {(px, rx)}x∈Z, px stands for the velocity of the particle numbered
with x, and rx stands for the distance between the particles x and x− 1. Consider the Markov
process in the configuration space, formally given by the infinitesimal generator

Lγ = A+ γS.

Here A is the Liouville generator

A =
∑
x∈Z

(px − px−1)∂rx + (V ′(rx+1)− V ′(rx))∂px ,

γ > 0 is the strength of noise and S = 1
2

∑
x∈Z X 2

x,x+1 where

Xx,y = (py − px)(∂ry − ∂rx)− (V ′(ry)− V ′(rx))(∂py − ∂px), (2.3)

with some potential function V . Throughout this part we assume that

(A1) V is a smooth, non-negative function on R and V (0) = 0.

(A2) δ− ≜ infr∈R V ′′(r) > 0 and δ+ ≜ supr∈R V ′′(r) < ∞.

An easy observation from (A1) and (A2) is that δ−r
2 < 2V (r) < δ+r

2 for all r ∈ R.
Define the energy associated to the particle x to be

ex =
p2x
2

+ V (rx), ∀x ∈ Z.
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Formally, the dynamics generated by Lγ conserves three physical quantities: the total momen-
tum

∑
px, total length

∑
rx and total energy

∑
ex. For a given parameter c = (β, µ, λ) ∈

R+ × R2, define the grand canonical Gibbs measure πc on the configuration space Ω as

πc(dp⃗dr⃗) =
∏
x∈Z

[
exp(−µ2(2β)−1)√

2πβ−1Zβ,λ

e−βex+µpx+λrxdpxdrx

]
,

where the normalization constant Zβ,λ is

Zβ,λ =

∫
R
e−βV (r)+λrdr < ∞.

Denote by Ec the expectation corresponding to πc. For a fixed c = (β, µ, λ), let (H, ⟨·, ·⟩) be
the Hilbert space L2(Ω, πc), and denote by ∥ · ∥ the corresponding norm. The measure πc is
invariant for the dynamics generated by Lγ for all c ∈ R+ × R2. It is easy to observe that

⟨−Lγf, f⟩ = γ⟨−Sf, f⟩ = γ

2

∑
x∈Z

Ec
[
(Xx,x+1f)

2
]
, (2.4)

which is the Dirichlet form associated with the generator Lγ .
Denote by {ω(t) = (p⃗(t), r⃗(t))}[0,∞) the Markov process generated by Lγ . The existence

of the infinite dynamics can be proved for a wide class of initial conditions, in particular for
a set of configurations that has measure one for any Gibbs measure πc defined above. The
probability measure on the path space C([0,∞); Ω) induced by ω(·) with the initial condition
ω(0) subjecting to πc is denoted by Pπc . Let Eπc be the expectations corresponding to Pπc .

To introduce the condition of spectral gap, we also consider the system of finite chain. For
N ≥ 1, let ΩN = (R2)N , and πc

N be the probability measure on ΩN which coincides with the
marginal distribution of πc on {(px, rx); 1 ≤ x ≤ N}. Denote the expectation with respect to
πc
N by Ec

N . For a deterministic vector w = (p, r, e) ∈ R2 × R+, we define

Σw
N =

{
(px, rx)1≤x≤N ∈ ΩN

∣∣∣∣∣ 1

N

N∑
x=1

(px, rx, ex) = w

}
. (2.5)

Due to the conditions on V , Σw
N is not empty if and only if e ≥ p2/2+V (r). Denote by πw

N the
uniform measure on Σw

N , and let Ew
N be the expectation with respect to πw

N . The model is said
to posses a uniform spectral gap if the following condition holds.

(SP) For each N ≥ 3, there is a constant CN independent of w such that

Ew
N

[
(f − Ew

N [f ])2
]
≤ CN

N−1∑
x=1

Ew
N

[
(Xx,x+1f)

2
]

(2.6)

holds for every bounded and smooth function f on ΩN .

To define the equilibrium fluctuation field of the conserved quantities, let wx = wx(ω) =
(px, rx, ex) be a random vector on Ω. For each N ≥ 1 and test function G ∈ S(R), define a
random vector YN (t, G) ∈ R3 by

YN (t, G) =
1√
N

∑
x∈Z

G
( x

N

)
(wx(ω(Nt))− Ec[w0]). (2.7)

Observe that when ω(·) is in its stationary state Pπc ,

YN (t, G) ⇒ N
(
0, χc

∫
R
G2(y)dy

)
, ∀G ∈ S(R), ∀t ≥ 0,
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where the limit is a 3 dimensional centered Gaussian law, and χc is the covariance of w0:

χc ≜ Ec [(w0 − Ec[w0]) · (w0 − Ec[w0])
′] . (2.8)

To investigate the macroscopic dynamics of the equilibrium fluctuation defined in (2.7), we
introduce the thermodynamic entropy of the system as follows. Rewrite the marginal density
of πc as exp{−βex + µpx + λrx − g(β, µ, λ)}, where

g(β, µ, λ) =
µ2

2β
+

1

2
ln

(
2π

β

)
+ lnZβ,λ.

Given (p, r, e) ∈ R2 × R+, the thermodynamic entropy S(p, r, e) is defined as

S(p, r, e) = sup
c=(β,µ,λ)

{−βe+ µp+ λr − g(β, µ, λ)} , (2.9)

where the superior is taken for all c ∈ R+ × R2. It is not hard to observe from (A1) and (A2)
that S(p, r, e) < ∞ and the superior can be reached at some unique c = (β, µ, λ). Define

A(p, r, e) =

(
λ(p, r, e)

β(p, r, e)
, p,

pλ(p, r, e)

β(p, r, e)

)
.

Now we define {w(t, ·) = (p(t, ·), r(t, ·), e(t, ·)); t ∈ [0, T ]} to be the stochastic process taking
values in (S′(R))3 with the initial distribution

w(0, y) = χ1/2
c Ḃy, ∀ y ∈ R, (2.10)

where {Ḃy} stands for the three dimensional standard white noise on R, and satisfying the
deterministic evolution equation written as

∂tw(t, y) = D∂yw(t, y), (2.11)

where D = DA(w̄) is the Jacobin matrix of A = A(p, r, e) at w̄ = Ec[w0].
Denote by QN the probability distribution induced by YN (t) in (2.7) on C([0, T ]; (S′(R))3)

when ω(t) starts from one of its equilibrium measure πc. Denote by Q the probability measure
determined by the process w(t, ·) defined through (2.10) and (2.11) on the same space. Now we
are prepared to state our main result, concerning the hyperbolic scaling limit of the equilibrium
fluctuation field of the conserved quantities of ω(t).

Theorem 2.1. Suppose that (A1), (A2) and (SP) hold. Then QN converges weakly to Q.

Concerning the condition (SP), we have the following result.

Theorem 2.2. Suppose that (A1) and (A2) hold. There exists ϵ > 0 such that if V satisfies
that δ+/δ− ∈ [1, 1 + ϵ), then the uniform spectral gap estimate (SP) holds with CN = CN2,
where C is some constant depending only on V .
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