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Chapter 1

Introduction

This thesis is comprised of this Introduction and the other three main chapters. In each chapter,
we deal with some kind of boundary value problems for the Stokes equations and its numerical
approximation by the finite element method. Well-posedness and error estimates are established
in all cases. Theoretical convergence results are also verified by numerical experiments in every
chapter. Chapter 2 is devoted to a nonlinear boundary value problem at artificial boundaries,
which is proposed by Zhou and Saito [55] as a new mathematical model for the blood flow
problem in arteries. Since this boundary condition is interpreted as an inequality, we introduce
a penalty approximation for computation.

The latter two chapters are devoted to reformulations of an interface condition for the multi-
phase flow problems of viscous incompressible fluids. In Chapter 3, we study the immersed
boundary (IB) method proposed by C. S. Peskin [46] in 1972, where the interface condition is
interpreted as a singular outer force filed using the Dirac delta function. For computation, we
introduce a regularized Dirac delta approximation and study the regularization and discretiza-
tion errors separately. In Chapter 4, we study another reformulation method proposed by Fujita
et. al [21] in 1995. This method is essentially equivalent to the IB method. Only the difference
is an interpretation of the interface condition using a characteristic function instead of the Dirac
delta, which makes analysis somewhat easier. Following the case of IB method, we study the
regularization and discretization errors separately.

1.1 Artificial boundary condition setting

In numerical simulation of real-world flow problems, we often encounter some issues related to
artificial boundary conditions. A typical and important example is the blood flow problem in
the large arteries, where the blood is assumed to be a viscous incompressible fluid (see [20,53]).
The blood vessel is modeled as a branched pipe as illustrated, for example, in Fig. 1.1. In Fig.
1.1, the boundary S2 represents a physical boundary as blood wall, while the boundaries S1

and Γ are artificial boundaries standing for the inflow and outflow boundaries, respectively. In
this domain (denoted by Ω), for T > 0, we consider the Navier–Stokes equations for velocity
v = (v1, . . . , vd) and pressure q with the initial condition v|t=0 = v0 and the boundary condition.
We suppose that we are able to give a velocity profile b = b(x, t) at the inflow boundary S1, and
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Figure 1.1: Example of domain (branched pipe)

that the flow is presumed to be a perfect non-slip flow on the wall S2. That is, we consider

vt + (v · ∇)v = ∇ · σ(v, q) + f, ∇ · v = 0 in Ω× (0, T ), (1.1a)

v = b on S1 × (0, T ), (1.1b)

v = 0 on S2 × (0, T ), (1.1c)

where σ(u, p) = (σij(u, p))1≤i,j≤d = −pI+2νD(u) denotes the stress tensor,D(u) = (Dij(u))1≤i,j≤d =
1
2

(
∇u+∇uT

)
the deformation-rate tensor and I the identity matrix. Then, the blood flow sim-

ulation is highly dependent on the choice of artificial boundary conditions posed on the outflow
boundary Γ.

In mathematics, one of the common boundary conditions is the Dirichlet boundary condition
which poses a prescribed pressure and velocity profiles. However, the flow distribution and
pressure field are unknown themselves and cannot be prescribed at the outflow boundary in
many simulations. Another common boundary condition is a kind of the Neumann boundary
condition named the free-traction condition

τ(v, q) = 0 on Γ, (1.2)

where τ(u, p) = σ(u, p)n denotes the traction vector on ∂Ω with n the outward normal vector
to ∂Ω. In fact, for easy implementation, the free-traction condition is often employed in many
simulations (see [24, 27]). However, the free-traction condition (1.2) may cause a risk of failure
of computation because of the lack of the energy inequality.

1.1.1 Unilateral boundary condition

Recently, Zhou and Saito [55] proposed a new outflow boundary condition as

vn ≥ 0, τn(v, q) ≥ 0, vnτn(v, q) = 0, τT (v) = 0 on Γ. (1.3)

for a generalization of the free-traction condition (1.2). Herein, vn = v · n, τn = τ · n are the
normal components of v, τ and τT = τ − τnn the tangential one of τ . This is an analogy to
Signorini’s unilateral boundary condition in the theory of elasticity (see [32]). A benefit of using
(1.3) is that the Navier–Stokes equations (1.1) admits energy inequality, which is connected with
the stability of numerical schemes from the view-point of numerical computation. The purpose
of Chapter 2 is to establish the well-posedness of a model Stokes problem using (1.3) and study
its numerical calculations by the finite element method. For the numerical treatment of the
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inequality condition (1.3), we use its penalty approximation

τn(v, q) =
1

ε
[vn]−, τT (v) = 0 on Γ, (1.4)

where 0 < ε≪ 1 and

[s]± = max{0,±s}, s = [s]+ − [s]− (s ∈ R). (1.5)

Then, introducing a C1 regularization ϕδ of [·]−, we can solve the Stokes/Navier–Stokes equa-
tions with (1.4) by using, for example, Newton’s iteration.

[Main Result in Chapter 2] The well-posedness and error estimate of
the unilateral problem for the Stokes equations

For theoretical treatment, we introduce a reference flow (g, π) such that

∇ · σ(g, π) = 0, ∇ · g = 0 in Ω, (1.6a)

g = b on S1, g = 0 on S2. (1.6b)

Function g is nothing but a lifting function of inflow b. Using this, we will find (v, q) of the form

v = u+ g, q = p+ π.

Thus, we consider the Stokes equations with homogenius boundary condition on S1 ∪ S2 and
corresponding unilateral boundary condition on Γ

− ν∆u+∇p = f, ∇ · u = 0 in Ω, (1.7a)

u = 0 on S1 ∪ S2, (1.7b)

un + gn ≥ 0, on Γ, (1.7c)

τn(u, p) + αn ≥ 0 on Γ, (1.7d)

(un + gn)(τn(u, p) + αn) = 0 on Γ, (1.7e)

τT (u) + αT = 0 on Γ (1.7f)

where f, g and α(≡ 2νD(g)n) are prescribed functions. We also consider its penalty approxi-
mation

− ν∆u+∇p = f, ∇ · u = 0 in Ω, (1.8a)

u = 0 on S1 ∪ S2, (1.8b)

τn(u, p) + αn =
1

ε
ϕδ(un + gn) on Γ, (1.8c)

τT (u) + αT = 0 on Γ (1.8d)

for penalty parameter ε and regularization parameter δ.
In Chapter 2, we show the well-posedness of (1.7) in terms of variational inequalities.

Theorem 1.1.1. There exists a unique weak solution (u, p) to (1.7) and it holds that

∥u∥H1 + ∥p∥L2 ≤ C∗, (1.9)

where C∗ denotes a positive constant depending only on Ω, ∥f∥L2 , ∥α∥
(H

1/2
00 (Γ)d)′

and ∥g∥H1 .
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We also show the well-posedness of the P1b/P1 (MINI element) finite element approximation
to (1.8) applying the theory of monotone operators.

Theorem 1.1.2. Assume some nonrestrictive assumptions (A1)–(A2) are satisfied. Then, there
exists a unique finite element approximated solution (uh, ph) of (1.8), and we have

∥uh∥H1 + ∥ph∥L2 +

∥∥∥∥1εϕδ(uhn + gn)

∥∥∥∥
M ′

h

≤ C∗; (1.10a)∥∥∥∥1εϕδ(uhn + gn)

∥∥∥∥
H

1/2
00 (Γ)n

′
≤ C∗

(
1 +

h

ε

)
; (1.10b)

1√
ε
∥[uhn + gn]−∥L2(Γ)n ≤ C∗

(
1 +

δ

ε

)
. (1.10c)

where Mh ⊂ H
1/2
00 (Γ)d is a finite element approximated function space.

As a main result in Chapter 2, we derive the following error estimate of optimal order O(h).

Theorem 1.1.3. Assume some nonrestrictive assumptions (A1)–(A2) are satisfied. Let (u, p)
and (uh, ph) be above solutions, respectively, and suppose that (u, p) ∈ H2(Ω)d × H1(Ω) and

τn(u, p) + αn ∈ H
1/2
00 (Γ)d. Moreover, assume that h, ε, δ are sufficiently small such that c2ε ≤

h ≤ c1ε and δ ≤ c3h
3
2 with constants c1 > c2, c3 > 0. Then, we have the optimal-order error

estimate
∥u− uh∥H1 + ∥p− ph∥L2 ≤ C∗∗h.

where C∗∗ denotes a positive constant depending only on c1, c2, c3, Ω, |u|H2 , |p|H1 , ∥τn(u, p) +
αn∥H1/2

00 (Γ)
, ∥f∥L2 , ∥g∥H1 and ∥α∥

(H
1/2
00 (Γ)d)′

.

1.2 Interface problem for viscous incompressible fluids

For latter two chapters, we consider the Navier-Stokes equations with an interface condition

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇π = h(x, t), ∇ · u = 0 in Ω, t > 0, (1.11a)

u = 0 on ∂Ω, t > 0, (1.11b)

[u] = 0, [τ ] = g(x, t) on Γ, t > 0, (1.11c)

u(x, 0) = u(0)(x) in Ω. (1.11d)

for velocity u(x, t) and pressure π(x, t). Herein, Ω denotes a fixed bounded domain in Rd (d =
2, 3) with the boundary ∂Ω, Γ is a surface/curve included in Ω which implies the interface of
two-phase flow. See Fig. 1.2 as an example of Ω and Γ. The coefficients of kinetic viscosity ν and
density ρ are assumed to be a constant for simplicity. The traction (or stress) vector is denoted
by τ . Moreover, [·] stands for a jump across the interface Γ. We assume that h(x, t), g(x, t)
and u(0)(x) are given functions. There are number of literature devoted to numerical methods
for these kinds of interface problems. For the finite element method, for example, you need to
calculate the the (moving) boundary integral term

∫
Γ
g(x, t)v(x) dx and the presence of it makes

discretization somewhat technical. In order to avoid this difficulties, some kind of reformulation
methods are proposed so far.
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Figure 1.2: Example of Ω and Γ; Ω = Ω0 ∪ Ω1.

1.2.1 Immersed boundary method

The IB method is originally proposed by C. S. Peskin [46] for solving a class of fluid-structure
interaction problems [44, 45]. In the IB method, the interface problem (1.11) is equivalently
reformulated to classical partial differential equations as follows. Let Γ(t) be parameterized as
Γ(t) = {X(θ, t) = (X1(θ, t), . . . , Xn(θ, t)) | θ ∈ Θ} for the Lagrangian coordinate θ ∈ Rd−1.
Then, the interface condition (1.11c) is interpreted as an outer force filed f defined on Ω and
putted in the Navier-Stokes equations such that

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇π = h+ f, ∇ · u = 0 in Ω, t > 0, (1.12a)

u = 0 on ∂Ω, t > 0, (1.12b)

u(x, 0) = u(0)(x) in Ω, (1.12c)

f(x, t) =

∫
Θ

F (θ, t)δ(x−X(θ, t)) dθ. (1.12d)

Herein, F denotes the force density distributed along Γ(t), and δ is the Dirac delta function.
Then, the IB formulation (1.12) coincides with (1.11) if F (θ, t) ≡ g(X(θ), t)JX(θ, t) with the
Jacobian JX of X. For numerical computation, we solve (1.12) with the equation of the interface
motion ∂X

∂t = u(X, t) after introducing regularization using a smooth Dirac delta approximation.
The main advantage of this method is that we can use fixed uniform meshes. In contrast to a

huge number of applications, however, it seems that there are only a few results about theoretical
convergence analysis. As previous works, convergences of the finite difference scheme for the
steady Stokes/Poisson equations under periodic boundary condition are studied in [35, 42]. On
the other hand, there is nothing for the finite element scheme. Moreover, convergence analysis
in [35, 42] are based on the explicit formula of the Green function associated with the periodic
boundary condition. Hence, it is difficult to apply those methods to more standard settings. In
Chapter 3, in order to deal with the problem more generally, we take a different approach and
study the convergence of the IB finite element method to the Dirichlet boundary value problem
for the Stokes equations.

[Main Result in Chapter 3] Convergence of the IB finite-element method
for the Stokes problem

For geometry setting of the interface, we assume the following:
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• Γ is a C1 boundary (X(θ) is a C1 function);

• dist(Γ, ∂Ω) > 0;

• JX(θ) ̸= 0 (θ ∈ Θ).

Then, we consider the IB formulation to the Stokes equations for the velocity u and pressure π,

− ν∆u+∇π = f in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω, (1.13a)

f(x) =

∫
Θ

F (θ)δ(x−X(θ)) dθ (1.13b)

and its regularized problem for uε and πε,

− ν∆uε +∇πε = fε in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω, (1.14a)

fε(x) =

∫
Θ

F (θ)δε(x−X(θ)) dθ (1.14b)

where a Dirac delta approximation δε satisfies that, for some K > 0,

δε(x) =
1

εn

n∏
i=1

ϕ
(xi
ε

)
(x = (x1, . . . , xn)); (1.15a)

ϕ is a continuous function in R, suppϕ ⊂ B(0,Kε),

∫
R
ϕ(s) ds = 1. (1.15b)

In Chapter 3, we derive the following error estimates for the IB finite element method of sub-
optimal order in the W 1,q × Lq and Lr norms (1 ≤ q, r < n

n−1 ).

Theorem 1.2.1. Suppose that Ω is a convex polyhedral domain in Rn with n = 2, 3. Assume
that {Th}h is a family of quasi-uniform triangulations. Let F ∈ L∞(Θ). Let (u, π) and (uεh, π

ε
h)

be weak solutions of (1.13) and the P1b/P1 finite element approximation to (1.14) with (1.15),
respectively. Further, let ε = γ1h with a positive constant γ1. Then, for any 0 < α < 1, there
exists a positive constant C depending only on γ1, n, α, Ω, K, ∥ϕ∥L∞(R), ∥JX∥L∞(Θ), meas(Θ),
and ∥F∥L∞(Θ) such that

∥u− uεh∥W 1,q + ∥π − πε
h∥Lq ≤ Ch1−α with any 1 ≤ q ≤ n

n− α
(1.16)

and
∥u− uεh∥Lr ≤ Ch1−α with r =

n

n− α− 1
. (1.17)

1.2.2 Reformulation using the characteristic function

Another reformulation method for (1.11) was proposed by H. Fujita et. al. [21] in 1995. Their
reformulation reads

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇π = h+ g̃(∇χ · ñ), ∇ · u = 0 in Ω, t > 0, (1.18a)

u = 0 on ∂Ω, t > 0, (1.18b)

u(x, 0) = u(0)(x) in Ω. (1.18c)
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Herein, χ denotes the characteristic function of an internal area Ω0 surrounded by Γ(t) in
Ω, and n is the unit normal vector on Γ(t). Function g̃ and ñ stand for smooth extensions
into Ω of g(x, t) and n(x, t). The reformulation (1.18) is discretized by the finite element and
finite difference methods using fixed uniform meshes as well as the IB reformulation. Actually,
formulation (1.18) is essentially equivalent to the IB formulation (1.12), whereas reformulation
(1.18) makes analysis somewhat simpler than the others.

The purpose of Chapter 4 is to study convergence of the finite element approximation to a
model Stokes problem based on the reformulation (1.18). In [21], the derivation of reformulation
and some numerical results are presented; no mathematical analysis including convergence are
given. Since the derivative of characteristic function ∇χ has singularities on Γ, regularization
problem is required again. Following the case of the IB method, the regularization error and
the discretization error are studied separately.

[Main Result in Chapter 4] Numerical analysis of a Stokes interface
problem based on formulation using the characteristic function

We assume that Ω is a convex polyhedral domain in Rd with d = 2, 3, and Γ is a C2 boundary.
Then, we consider a model Stokes problem for the velocity u and pressure π,

−ν∆u+∇π = g̃(∇χ · ñ) in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω, (1.19)

and its regularized problem for uε and πε,

−ν∆uε +∇πε = g̃(∇χε · ñ) in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω, (1.20)

where g ∈W 2− 1
p ,p is a given function for some p > d, and χε is defined by

χε(x) =

{
1 (x ∈ Ω0)

max{0, 1− dist(x,Γ)
ε } (x /∈ Ω0).

(1.21)

In Chapter 4, we derive the following error estimates in the H1 × L2 and L2 norm.

Theorem 1.2.2. Let (u, π) and (uεh, π
ε
h) be respectively the solution to (1.19) and (1.20) with

(1.21). In particular, if ε = c1h with a positive constant c1, then we have

∥u− uεh∥H1 + ∥π − πε
h∥L2 ≤ C

√
h. (1.22)

Else if ε = c1h
2 then we have

∥u− uεh∥L2 ≤ Ch. (1.23)

where C denotes a positive constant depending only on Ω,Γ, ∥g∥
W

2− 1
p
,p and c1.

In this thesis, there are some situations when we want to use some different notations such
as n or d for the number of dimension, p or π for the pressure solution, and so on, which are
suitable for the arguments in each chapter. In order that we want readers to avoid to confuse
the formulations, we explicitly write the definitions in each chapter. Although multiple same
definitions may appear through the thesis, the arguments in each chapter become self contained.
This helps readers understand the detailed content of each chapter separately.
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Chapter 2

Unilateral problem for the Stokes
equations: the well-posedness and
finite element approximation

Abstract

We consider the stationary Stokes equations under a unilateral boundary condition of Signorini’s
type, which is one of artificial boundary conditions in flow problems. Well-posedness is discussed
through its variational inequality formulation. We also consider the finite element approximation
for a regularized penalty problem. The well-posedness, stability and error estimates of optimal
order are established. The lack of a coupled Babuška and Brezzi’s condition makes analysis
difficult. We offer a new method of analysis. Particularly, our device to treat the pressure is
novel and of some interest. Numerical examples are presented to validate our theoretical results.

2.1 Introduction

We suppose that Ω is a bounded domain in Rd with d = 2, 3 and that the boundary ∂Ω is
comprises of three parts S1, S2 and Γ. Those S1, S2 and Γ are assumed to be smooth but the
whole boundary ∂Ω is not necessarily smooth. One might imagine a branched pipe resembling
that depicted in Fig. 2.1. The first purpose of this chapter is to study the well-posedness of the
following unilateral boundary value problem for the Stokes equations

− ν∆u+∇p = f, ∇ · u = 0 in Ω, (2.1a)

u = 0 on S1 ∪ S2, (2.1b)

un + gn ≥ 0, on Γ, (2.1c)

τn(u, p) + αn ≥ 0 on Γ, (2.1d)

(un + gn)(τn(u, p) + αn) = 0 on Γ, (2.1e)

τT (u) + αT = 0 on Γ (2.1f)
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Figure 2.1: Example of Ω (branched pipe)

for velocity u = (u1, . . . , ud) and pressure p with density ρ = 1 and kinematic viscosity ν of the
viscous incompressible fluid under consideration. Therein,

τ(u, p) = σ(u, p)n

denotes the traction vector on ∂Ω, where n is the outward normal vector to ∂Ω, σ(u, p) =
(σij(u, p))1≤i,j≤d = −pI + 2νD(u) the stress tensor, D(u) = (Dij(u))1≤i,j≤d = 1

2

(
∇u+∇uT

)
the deformation-rate tensor and I the identity matrix. For a vector-valued function v on ∂Ω,
its normal and tangential components are denoted, respectively, as

vn = v · n, vT = v − vnn.

Particularly, τn(u, p) = τ(u, p) · n and τT (u) = τ(u, p) − τn(u, p)n respectively denote normal
and tangential traction vectors. Moreover, f , g and α are prescribed functions. We also consider
the finite element approximation for a regularized penalty problem to (2.1) which is given as

− ν∆u+∇p = f, ∇ · u = 0 in Ω, (2.2a)

u = 0 on S1 ∪ S2, (2.2b)

τn(u, p) + αn =
1

ε
ϕδ(un + gn) on Γ, (2.2c)

τT (u) + αT = 0 on Γ (2.2d)

with 0 < ε≪ 1 and 0 < δ ≪ 1. Therein, ϕδ(s) is a C
1 regularization of [s]− = max{0,−s}. We

can take, for example,

ϕδ(s) =

{
0 (s ≥ 0)

(
√
s2 + δ2 − δ) (s < 0).

(2.3)

First, we explain our motivation for studying (2.1) and (2.2). In numerical simulation of real-
world flow problems, we often encounter some issues related to artificial boundary conditions.
A typical and important example is the blood flow problem in the large arteries, where the
blood is assumed to be a viscous incompressible fluid (see [20,53]). The blood vessel is modeled
as a branched pipe as illustrated, for example, in Fig. 2.1. Then, for T > 0, we consider the
Navier–Stokes equations for velocity v = (v1, . . . , vd) and pressure q,

vt + (v · ∇)v = ∇ · σ(v, q) + f, ∇ · v = 0 in Ω× (0, T ), (2.4a)

v = b on S1 × (0, T ), (2.4b)

v = 0 on S2 × (0, T ) (2.4c)
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with the initial condition v|t=0 = v0. We are able to give a velocity profile b = b(x, t) at the
inflow boundary S1. The flow is presumed to be a perfect non-slip flow on the wall S2. Then,
the blood flow simulation is highly dependent on the choice of artificial boundary conditions
posed on the outflow boundary Γ.

An earlier paper by Zhou and Saito [55] presented discussion of the free-traction condition

τ(v, q) = 0 on Γ, (2.5)

which is one of the common outflow boundary conditions (see [24, 27]), and some nonlinear
energy-preserving boundary conditions (see [4, 9, 10, 13, 14]) from the view-point of energy in-
equality. Moreover, we proposed a new outflow boundary condition as

vn ≥ 0, τn(v, q) ≥ 0, vnτn(v, q) = 0, τT (v) = 0 on Γ. (2.6)

This is an analogy to Signorini’s condition in the theory of elasticity (see [32]). It is indeed a
generalization of the free-traction condition (2.5), as

if vn > 0 on ω ⊂ Γ, then τn(v, q) = 0 on ω;

if vn = 0 on ω ⊂ Γ, then τn(v, q) ≥ 0 on ω.

A benefit of using (2.6) is that (2.4) admits energy inequality, although it is not guaranteed under
(2.5). To describe it more specifically, we take a reference flow (g, π), which is the solution of
the Stokes system

∇ · σ(g, π) = 0, ∇ · g = 0 in Ω, (2.7a)

g = b on S1, g = 0 on S2, g = −g0(x)
∫
S1

b · n dS1 on Γ (2.7b)

for all t ∈ [0, T ], where g0 = g0(x) ∈ C∞
0 (Γ)d is a prescribed function satisfying∫

Γ

g0 · n dΓ = 1, g0 · n ≥ 0 on Γ. (2.8)

(Function g is nothing but a lifting function of b.) Using this, we will find (v, q) of the form

v = u+ g, q = p+ π.

Assuming that (2.4) admits a smooth solution (v, q) = (u+g, p+π) in 0 ≤ t ≤ T and multiplying
both sides of (2.4a) by u, by the integration by parts, we have

d

dt
∥u∥2L2(Ω)d + 2ν

∫
Ω

Dij(u)Dij(u) dx+
1

2

∫
Γ

vn|u|2 dΓ−
∫
Γ

τ(v, q) · u dΓ︸ ︷︷ ︸
=I

=

∫
Ω

[f − gt − (g · ∇)g] · u dx−
∫
Ω

(u · ∇)g · u dx. (2.9)

Using (2.6), we derive I ≥ 0. Consequently,

sup
t∈[0,T ]

∥u∥2L2(Ω)d + 2ν

∫ T

0

Dij(u)Dij(u) ≤ C, (2.10)
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where C denotes a positive constant depending only on f , u0, b and T (see [55, Theorem 4]).
This inequality is useful. It plays a crucial role in the construction of a solution of the Navier–
Stokes equations (see [55]). Moreover, it is connected with the stability of numerical schemes
from the view-point of numerical computation. That is, it is preferred that energy inequality
not be spoiled after discretizations (see [54]). With (2.5), we do not know whether I ≥ 0 or not.
Therefore, energy inequality cannot be derived even for the continuous case.

There are a lot of strategies to treat the inequality condition (2.6) in numerical calculations.
For example, we can use its penalty approximation

τn(v, q) =
1

ε
[vn]−, τT (v) = 0 on Γ, (2.11)

where 0 < ε≪ 1 and

[s]± = max{0,±s}, s = [s]+ − [s]− (s ∈ R). (2.12)

We also obtain energy inequality with (2.11) for a sufficiently small ε (see [55, Theorem 5]).
Moreover, after introducing a C1 regularization ϕδ of [·]−, we can solve (2.4) with (2.11) by
using, for example, Newton’s iteration.

Our ultimate objective is to develop the theory for the initial-boundary value problems for
the Navier–Stokes equations (2.4) with (2.6) or with (2.11) from the dual standpoints of analysis
and numerical computations. As a primary step, we studied the well-posedness of these problems
in Ladyzhenskaya’s class in [55]. That is, we studied the unique existence of a solution of

ut + ((u+ g) · ∇)u+ (u · ∇)g −∇ · σ(u, p) = F, ∇ · u = 0 in Ω,

u = 0 on S1 ∪ S2,

un + gn ≥ 0, τn(u, p) + τn(g, π) ≥ 0 on Γ,

(un + gn)(τn(u, p) + τn(g, π)) = 0, τT (u) + τT (g) ≥ 0 on Γ,

where F = f − gt − (g · ∇)g.
For the analyses described herein, we devote our attention to the discretization of the space

variable. Therefore, we study the finite element approximation using model Stokes problems.
Consequently, we come to consider Problems (2.1) and (2.2).

As a matter of fact, (2.1) and (2.2) themselves are not new problems (see [5, 15, 18, 32]
for example). In a classical monograph [32], Chapter 7 is devoted to similar problems, say
Signorini’s problem for incompressible materials. However, their problem includes the traction
condition τ(u, p) = h. More precisely, they assume that S2 is divided into two parts S21, S22

and consider
u = 0 on S21, τ(u, p) = h on S22

instead of (2.1b). Then, assuming

Γ ∩ (S1 ∪ S21) = ∅, (2.13)

we can prove that there exists a domain constant C > 0 satisfying

C
[
∥q∥L2(Ω) + ∥τ∥

H− 1
2 (Γ)

]
≤ sup

v∈H1(Ω)d,v|S1∪S21
=0

∫
Ω
q(∇ · v) dx+

∫
Γ
τvn dΓ

∥v∥H1(Ω)
(2.14)

for any (q, τ) ∈ L2(Ω) × H− 1
2 (Γ) (see [32, Theorem 7.2]). This inequality is usually desig-

nated as the coupled Babuška-Brezzi condition. The well-posedness and error estimates of the
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corresponding penalty problem (with no regularization) are direct consequences of this result
from the general theory (see [6]). [15, 18] study similar unilateral problems and they also as-
sume S22 ̸= ∅. In contrast, we are interested in establishing a formulation without the traction
boundary condition. Unfortunately, if S22 = ∅, then (2.14) is not available. It makes analysis
somewhat difficult. Moreover, we do not prefer assuming (2.13). Consequently, we must de-
velop a completely new method of analysis in this work. Particularly, we offer a new device
to treat the pressure part. As a result, we succeed in deriving the optimal-order error esimate
for the finite element approximation for the penalty problem using the MINI (P1b/P1) element
(see Thereom 2.6.1). Our method is different from that of [18] in which the optimal-order er-
ror estimates are proved for linear and quadratic finite element approximations for Signorini’s
contact problem (with no penalization). We first derive non-optimal error estimates and then
apply them to improve several estimates. Our error estimates are novel even in the literature of
elasticity theory (see [15]).

Finite element approximation of another class of unilateral boundary value problems for the
Stokes equations, say unilateral problems of friction type, are discussed, for example, in several
reports of the literature [2, 30,33,34].

This chapter is composed of 7 sections. After introducing basic definitions and recalling
some standard results in Section 2.2, we state two variational formulations, (PDE) and (VI),
for (2.1) in Section 2.3. The equivalence of these formulations and well-posedness of (VI) are
also established there (see Theorems 2.3.1 and 2.3.2). Section 2.4 is devoted to presentation
of the finite element approximation for (2.2). We consider only the MINI (P1b/P1) element
approximation. The well-posedness and error estimates are proved, respectively, in Sections
2.5 and 2.6 (see Theorems 2.5.1, 2.5.2 and 2.6.1). Finally, we confirm our results by numerical
experiments in Section 2.7.

2.2 Preliminaries

Geometry We recall that Ω ⊂ Rd, d = 2, 3, is a bounded domain and the boundary ∂Ω
comprised of three parts S1, S2 and Γ. We address the following two cases:

(G1) S1, S2 and Γ are smooth surfaces (curves) and Ω is a Lipschitz domain (see Fig. 2.1);

(G2) S1, S2 are polygon (line segment) and Ω is a polyhedral (polygonal) domain.

For the following, we assume that Ω is given as (G1) or (G2) unless otherwise stated explicitly.
Moreover, we set

S = S1 ∪ S2

and assume that the d− 1 dimensional Lebesgue measure |S| is positive.
Throughout this chapter, C denotes various positive constants depending on Ω.

Remark 2.2.1. Although we mostly address the case presented in Fig. 2.1, our discussion is
also valid for the case in which ∂Ω is smooth with Γ ∩ S2 = ∅, S2 ∩ S1 = ∅, and S1 ∩ Γ = ∅.

Function spaces and forms We use the standard Lebesgue and Sobolev spaces, for example,
L2(Ω), H1(Ω), L2(Γ), H

1
2 (Γ). (We follow the notation of [38] as for function spaces and their

norms. ) The abbreviations

(v, w) = (v, w)Ω = (v, w)L2(Ω), (v, w)Γ = (v, w)0,Γ = (v, w)L2(Γ),

∥v∥ = ∥v∥Ω = ∥v∥0,Ω = ∥v∥L2(Ω), ∥v∥1 = ∥v∥1,Ω = ∥v∥H1(Ω), ∥v∥Γ = ∥v∥0,Γ = ∥v∥L2(Γ)
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will be used. Moreover,

|v|m = |v|m,Ω = |v|Hm(Ω), |v|m,Γ = |v|Hm(Γ)

are the semi-norms of Hm(Ω), Hm(Γ).
For a vector-valued function space, we use the same symbol to denote its norm as

∥v∥ = ∥v∥L2(Ω)d (v ∈ L2(Ω)d), ∥v∥1 = ∥v∥H1(Ω)d (v ∈ H1(Ω)d).

The basic function spaces of our consideration are

V = {v ∈ H1(Ω)d | v = 0 on S} and Q = L2(Ω).

They are, respectively, Hilbert spaces equipped with the norms ∥v∥1 and ∥q∥. We use closed
subspaces of V ,

V σ = {v ∈ V | ∇ · v = 0 in Ω}, V0 = H1
0 (Ω)

d, V σ
0 = {v ∈ V0 | ∇ · v = 0 in Ω},

and that of Q as

Q0 =

{
q ∈ Q |

∫
Ω

q dx = 0

}
.

Convex subsets

K = {v ∈ V | vn + gn ≥ 0 on Γ} and Kσ = {v ∈ V σ | vn + gn ≥ 0 on Γ}

of V and V σ, respectively, play important roles.

We recall the so-called Lions–Magenes space H
1
2
00(Γ). It is defined as (see [38, §11.5, Ch. 1])

H
1
2
00(Γ) = {µ ∈ H

1
2 (Γ) | ρ−1/2µ ∈ L2(Γ)}

which is a Hilbert space equipped with the norm

∥µ∥
H

1
2
00(Γ)

=

(
∥µ∥2

H
1
2 (Γ)

+ ∥ρ−1/2µ∥2Γ
) 1

2

.

Here, ρ ∈ C∞(Γ) denotes any positive function satisfying ρ|∂Γ = 0, and for x0 ∈ ∂Γ,

lim
x→x0

ρ(x)

dist (x, ∂Γ)
= d′ > 0

with some d′ > 0. Moreover, we know (see [38, Theorem 11.7, Ch. 1])

H
1
2
00(Γ) = (H1

0 (Γ), L
2(Γ)) 1

2 ,2
(algebraically and topologically), (2.15)

where the right-hand side denotes the real interpolation space between L2(Γ) and H1
0 (Γ) with

the exponent 1/2 and p = 2. Particularly H
1
2
00(Γ) is strictly included in H

1
2 (Γ).

Below we set
M = H

1
2
00(Γ), ∥µ∥ 1

2 ,Γ
= ∥µ∥

H
1
2
00(Γ)

and

M0 =

{
µ ∈M |

∫
Γ

µ dΓ = 0

}
.
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In general, X ′ denotes the topological dual space of a Banach space X. The norm of X ′ is
defined as

∥φ∥X′ = sup
v∈X,v ̸=0

⟨φ, v⟩X′,X

∥v∥X
,

where ⟨·, ·⟩X′,X is the duality pairing between X ′ and X. For a closed subspace Y of X and
φ ∈ Y ′, we mean by ∥φ∥Y ′

∥φ∥Y ′ = sup
v∈Y, v ̸=0

⟨φ, v⟩X′,X

∥v∥X
.

Set

⟨·, ·⟩ = ⟨·, ·⟩V ′,V = the duality pairing between V ′ and V ,

[·, ·] = [·, ·]M ′,M = the duality pairing between M ′ and M,

[[·, ·]] = [[·, ·]](Md)′,Md = the duality pairing between (Md)′ and Md.

We use the following forms:

a(u, v) = 2ν

∫
Ω

Dij(u)Dij(v) dx (u, v ∈ H1(Ω)d);

b(p, u) = −
∫
Ω

p(∇ · u) dx (p ∈ Q, u ∈ H1(Ω)d).

Trace and lifting operators Let Tr = Tr(Ω,Γ) be a trace operator from H1(Ω) into H
1
2 (Γ).

The meaning of Tr(Ω, S) is the same.

Lemma 2.2.1. The trace operator v 7→ µ = Tr v is linear and continuous of V → Md. Con-
versely, there exists a linear and bounded operator E of Md → V , which is called a lifting
operator, such that Eµ = µ on Γ for all µ ∈Md.

This result follows directly from [25, Theorem 2.5] and [26, Theorem 1.5.2.3]. A partial result
is also reported in [48, Theorems 1.1 and 5.1]. As a consequence of Lemma 2.2.1, we obtain a
lifting operator En :M → V such that

(Enµ)n = µ, (Enµ)T = 0 on Γ, ∥Enµ∥1 ≤ C∥µ∥ 1
2 ,Γ

for any µ ∈M .
Below, we will often write as v|Γ = Tr v if there is no fear of confusion.

Remark 2.2.2. In view of Lemma 2.2.1 and the standard trace/lifting theorem, the zero exten-
sion µ̂ of µ ∈Md into ∂Ω;

µ̂ =

{
µ on Γ,

0 on ∂Ω\Γ

belongs to H
1
2 (∂Ω)d.

Remark 2.2.3. Another definition of H
1
2
00(Γ) is given by Baiocchi and Capelo [3, Page 379].

That is,

H
1
2
00(Γ) = {Tr v | v ∈ H1(Ω), Tr(Ω, S)v = 0}

which is a Hilbert space equipped with the norm

∥µ∥
H

1
2
00(Γ)

= inf{∥v∥1 | v ∈ H1(Ω), Tr(Ω, S)v = 0, Tr v = µ}.
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Redefinition of traction vectors Next we propose the redefinition of τ(u, p). If a smooth
vector field u and scalar field p satisfy the Stokes equation

−ν∆u+∇p = f, ∇ · u = 0 in Ω

for a given f ∈ L2(Ω)d, they satisfy

a(u, v) + b(p, v) +

∫
Γ

τ(u, p) · v = (f, v) (∀v ∈ V ) (2.16)

and
a(u, v) + b(p, v) = (f, v) (∀v ∈ V0). (2.17)

(In (2.16), τ(u, p) is understood as a usual function defined on Γ.) Based on those identities, for
functions (u, p) ∈ V σ×Q satisfying (2.17), we redefine the traction vector τ(u, p) as a functional
over Md by

[[τ(u, p), µ]] = a(u,wµ) + b(p, wµ)− (f, wµ) (µ ∈Md), (2.18)

where wµ = Eµ ∈ V . Actually, the right-hand side of (2.18) is independent of the way of
extension. Therefore, this definition is well-defined. Similarly, we redefine

[[τT (u), µ]] = a(u,wµ) + b(p, wµ)− (f, wµ) (µ ∈Md with µn = 0; wµ = Eµ) (2.19)

and
[τn(u, p), µ] = a(u,wµ) + b(p, wµ)− (f, wµ) (µ ∈M ; wµ = Enµ). (2.20)

Then, we deduce an expression

[[τ(u, p), µ]] = [τn(u, p), µn] + [[τT (u), µT ]] (µ ∈Md). (2.21)

2.3 Variational formulations and well-posedness

From this point forward in our discussion, we always assume

f ∈ Qd, b ∈Md, β ≡ −
∫
S

b · n dS > 0.

We take g ∈ H1(Ω)d satisfying

∇ · g = 0 in Ω, g|S = b, g|C = 0, g|Γ = βg0,

where g0 is the function defined as (2.8). Then, we have

gn ≥ 0 on Γ, gn ∈M, α ≡ 2νD(g)n ∈ (Md)′

Under those assumptions and redefinitions in the previous section, we interpret (2.1) precisely
as follows.

(PDE) Find (u, p) ∈ V ×Q such that

a(u, v) + b(p, v) = (f, v) (∀v ∈ V0), (2.22a)

b(q, u) = 0 (∀q ∈ Q), (2.22b)

un + gn ≥ 0 a.e. on Γ, (2.22c)

[τn(u, p) + αn, µ] ≥ 0 (∀µ ∈M, µ ≥ 0), (2.22d)

[τn(u, p) + αn, un + gn] = 0 (2.22e)

[[τT (u) + αT , µ]] = 0 (∀µ ∈Md, µn = 0). (2.22f)
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If a solution (u, p) of (PDE) is sufficiently smooth, it solves (2.1) in the classical sense.
Actually, (PDE) is equivalent to the following variational inequality.

(VI) Find (u, p) ∈ K ×Q such that

a(u, v − u) + b(p, v − u) ≥ (f, v − u)− [[α, v − u]] (∀v ∈ K), (2.23a)

b(q, u) = 0 (∀q ∈ Q). (2.23b)

In this section, we prove the following two theorems.

Theorem 2.3.1. Problems (VI) and (PDE) are equivalent.

Theorem 2.3.2. There exists a unique solution (u, p) ∈ K ×Q of (VI) and it holds that

∥u∥1 + ∥p∥ ≤ C∗, (2.24)

where C∗ denotes a positive constant depending only on Ω, ∥f∥, ∥α∥(Md)′ and ∥g∥1.

Remark 2.3.1. The boundary condition (2.22f) is nothing but one alternative. One can pose

uT + α′
T = 0 a.e. on Γ (2.25)

with a prescribed α′
T instead of (2.22f). Actually, the discussion presented below remains true if

we re-choose a suitable lifting function g and replace the original V with

V = {v ∈ H1(Ω)d | v = 0 on Γ, vT = 0 on Γ}.

Proof of Theorem 2.3.1. (PDE)⇒(VI). Let (u, p) ∈ V × Q be a solution of (PDE). We verify
(u, p) is a solution of (VI). First, we have u ∈ K by (2.22c) and (2.22b). By using (2.18), (2.21),
and (2.22c)–(2.22f), we have for any v ∈ K

a(u, v − u) + b(p, v − u)− (f, v − u) + [[α, v − u]]

= [[τ(u, p), v − u]] + [[α, v − u]]

= [τn(u, p), vn − un] + [[τT (u) + αT , vT − uT ]]︸ ︷︷ ︸
=0

+[αn, vn − un]

= [τn(u, p) + αn, vn + gn]︸ ︷︷ ︸
≥0

− [τn(u, p) + αn, uh + gn]︸ ︷︷ ︸
=0

≥ 0.

(VI)⇒(PDE). Let (u, p) ∈ K ×Q be a solution of (VI). We now verify (u, p) actually satisfies
(PDE). First, (2.22b) and (2.22c) are obvious.

Let v ∈ V0 be arbitrary. Substituting v = u± v ∈ K into (2.23a), we have (2.22a).
We recall τ(u, p) is defined as (2.18). Consequently, (2.23a) implies

[[τ(u, p), v − u]] ≥ −[[α, v − u]] (∀v ∈ K).

Moreover, by (2.21)

[τn(u, p) + αn, vn − un] + [[τT (u) + αT , vT − uT ]] ≥ 0 (∀v ∈ K). (2.26)

Let ψ ∈ C∞
0 (Γ)d with ψn = 0 on Γ. Substituting v = u ± Eψ ∈ K into (2.26), we have

[[τT (u) + αT , ψ]] = 0. By density, this implies (2.22f).
Next, let ψ ∈ C∞

0 (Γ)d with ψn ≥ 0 and ψT = 0 on Γ. Substituting v = u + Eψ ∈ K into
(2.26), we have [τn(u, p) + αn, ψn] ≥ 0. By density, this implies (2.22d).
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Combining (2.26) and (2.22f), we have

[τn(u, p) + αn, vn − un] ≥ 0 (∀v ∈ K).

At this stage, we introduce w∗ ∈ V satisfying

w∗ = g on Γ, ∥w∗∥1 ≤ C∥g∥1. (2.27)

Since g |Γ∈Md, such w∗ truly exists in view of the trace theorem. However, it does not satisfy
the divergence-free condition. Consequently, w∗ ̸∈ V σ. We now have −w∗

n+gn = −gn+gn ≥ 0
and 2un + w∗

n + gn = 2(un + gn) ≥ 0. Therefore, we can choose as v = −w∗ and v = 2u + w∗

above and obtain (2.22e).

Proof of Theorem 2.3.2. Since a is a coercive bilinear form in V σ × V σ by virtue of Korn’s
inequality (see [32, Lemma 6.2]), we can apply Stampacchia’s theorem (see [12, Theorem 5.6])
to conclude that there exists a unique u ∈ Kσ satisfying the following:

a(u, v − u) ≥ (f, v − u)− [[α, v − u]] (∀v ∈ Kσ). (2.28)

Taking v = u± φ with φ ∈ V σ
0 in (2.28), we deduce

a(u, φ) = (f, φ) (∀φ ∈ V σ
0 ). (2.29)

Therefore, according to [23, Lemma I.2.1], there exists a unique p̂ ∈ Q0 satisfying

−b(p̂, v) = a(u, v)− (f, v) (∀v ∈ V0). (2.30)

Now we set, for k ∈ R,
pk = p̂+ k (2.31)

and verify, with an appropriate choice of k, that (u, pk) is a solution of (VI). To this end, it
suffices to check that (u, pk) is a solution of (PDE).

We have by (2.18) and (2.28)

[τn(u, pk), vn − un] + [[τT (u), vT − uT ]] ≥ −[[α, v − u]] (v ∈ Kσ). (2.32)

Letting ψ ∈ C∞
0 (Γ)d with ψn = 0 on Γ, then since

∫
Γ
ψn dΓ = 0, there is a function w ∈ V

satisfying w = ψ on Γ, ∇ ·w = 0 in Ω and ∥w∥1 ≤ C∥ψ∥Md . Substituting v = u±w ∈ Kσ into
(2.32), one obtains [[τT (u) + αT , ψT ]] = 0. By density, this implies (2.22f).

Therefore, it follows from (2.32) that

[τn(u, pk) + αn, vn − un] ≥ 0 (v ∈ Kσ). (2.33)

We set
γ = inf

µ∈Y
[τn(u, p̂) + αn, µ],

where

Y =

{
µ ∈M | µ ≥ 0, µ ̸≡ 0,

∫
Γ

µ dΓ = 1

}
. (2.34)

For any µ ∈M with µ ≥ 0 and µ ̸≡ 0, we have

[τn(u, pk) + αn, µ] = [τn(u, p̂) + αn, µ]− k

∫
Γ

µ ≥ γ

∫
Γ

µ− k

∫
Γ

µ
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Therefore, we deduce (2.22d) if k ≤ γ.
For the time being, we admit that

γ =
[τn(u, p̂) + αn, un + gn]

β
, (2.35)

When un + gn = 0 on Γ, we have γ = 0, but this is impossible because un + gn ≥ 0 and∫
Γ
gn dΓ > 0. Therefore, we have by (2.35)

[τn(u, p̂) + αn, un + gn] = γβ = γ

∫
Γ

gn dΓ = γ

∫
Γ

(un + gn) dΓ.

Hence, taking
k = γ,

we obtain

[τn(u, pk) + αn, un + gn] = [τn(u, p̂) + αn, un + gn]− γ

∫
Γ

(un + gn) = 0.

Therefore, we have verified (2.22e).
To show (2.35), we use w∗ ∈ V defined as (2.27) again. From (2.33) with k = 0,

[τn(u, p̂) + αn, vn + w∗
n] ≥ [τn(u, p̂) + αn, un + w∗

n] (v ∈ Kσ).

Since w∗ = g on Γ, this is expressed equivalently as

[τn(u, p̂) + αn, vn + gn] ≥ [τn(u, p̂) + αn, un + gn] (v ∈ Kσ).

Moreover, we obtain[
τn(u, p̂) + αn,

vn + gn
β

]
≥
[
τn(u, p̂) + αn,

un + gn
β

]
(v ∈ Kσ). (2.36)

Now let µ ∈ Y be arbitrary and set µ̃ = βµ − gn ∈ M . Since
∫
Γ
µ̃ dΓ = 0, there exists ṽ ∈ V σ

such that ṽn = µ̃ on Γ according to Remark 2.2.2 and [23, Lemma I.2.2]. Then, the function ṽ
satisfies that ṽn + gn = βµ ≥ 0 on Γ. Consequently, ṽ ∈ Kσ. Therefore, we have by (2.36) that

[τn(u, p̂) + αn, µ] =

[
τn(u, p̂) + αn,

µ̃+ gn
β

]
=

[
τn(u, p̂) + αn,

ṽn + gn
β

]
≥ 1

β
[τn(u, p̂) + αn, un + gn] ,

which implies (2.35).
It remains to derive (2.24). First, from (2.30), we have

∥p̂∥ ≤ C sup
v∈V0

|(f, v)− a(u, v)|
∥v∥1

≤ C(∥f∥+ ∥u∥), (2.37)

where we have used the standard infsup (Babuška and Brezzi’s) condition (see [23, Corollary
I.2.4])

inf
q∈Q0

sup
v∈V0

b(q, v)

∥q∥∥v∥1
≥ C.
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Equation (2.22e), together with (2.20), implies

a(u, u+ g) + b(p, u+ g)− (f, u+ g) + [αn, un + gn] = 0.

Therefore, by virtue of Korn’s inequality (see [32, Lemma 6.2]),

C∥u+ g∥21 ≤ C(∥f∥+ ∥α∥(Md)′ + ∥g∥1)∥u+ g∥1

and, consequently,
∥u+ g∥1 ≤ C∗, ∥u∥1 ≤ C∗. (2.38)

Finally, because of the expression (2.35), we can estimate as

|γ| ≤ 1

β
∥τn(u, p̂) + αn∥M ′∥un + gn∥ 1

2 ,Γ
≤ C(∥u∥1 + ∥p̂∥)∥u+ g∥1. (2.39)

Combining this with (2.37) and (2.38), we obtain (2.24).

2.4 Finite element approximation

While there are a lot of strategies for solving the variational inequality problem (VI), we con-
centrate our attention to its penalty approximation.

As a regularization of [s]−(s ∈ R), we introduce a function ϕδ : R → R that satisfies

ϕδ is a non-increasing C1(R) function; (2.40a)

|ϕδ(s)− [s]−| ≤ Cδ (s ∈ R); (2.40b)

ϕδ(s) = 0 (s ≥ 0), 0 ≤ ϕδ(s) ≤ −s (s < 0); (2.40c)∣∣∣∣ ddsϕδ(s)
∣∣∣∣ ≤ C (s ∈ R), (2.40d)

where δ ∈ (0, 1] is a regularized parameter and C’s are independent of δ. As described in the
Introduction, we can take, for example, the function ϕδ(s) defined as (2.3).

For penalty parameter ε ∈ (0, 1], we consider the following penalty problem,

(PEε,δ) Find (u, p) ∈ V ×Q such that

a(u, v) + b(p, v)− 1

ε

∫
Γ

ϕδ(un + gn)vn dΓ = (f, v)− [[α, v]] (∀v ∈ V ), (2.41a)

b(q, u) = 0 (∀q ∈ Q). (2.41b)

This and the subsequent sections are devoted to the finite element approximation of (PEε,δ).
To avoid unimportant difficulties related to the “curved boundary”, we consider only the case
(G2). Consequently, the unit outer normal vector n to Γ is a constant vector over Γ.

We use the so-called MINI (P1b/P1) elements for discretization. Let {Th}h be a regular
family of triangulations of Ω. As the granularity parameter, we used h = max{hT | T ∈ Th},
where hT denotes the diameter of T . We introduce the following function spaces:

Vh = {vh ∈ C0(Ω) | vh = 0 on S, vh|T ∈ [P(d)
1 ⊕ span{φT }]d (∀T ∈ Th)},

V0h = Vh ∩H1
0 (Ω)

d, V σ
h = {vh ∈ Vh | b(qh, vh) = 0 (∀qh ∈ Qh)} ,

Qh = {qh ∈ C0(Ω) | qh|T ∈ P(d)
1 (∀T ∈ Th)}, Q0h = Qh ∩Q0,

Mh = {µh = vhn|Γ | vh ∈ Vh}, M0h =

{
µh ∈Mh |

∫
Γ

µh dΓ = 0

}
.
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Therein, P(d)
k denotes the set of all polynomials in x1, . . . , xd of degree ≤ k, and φT =

∏d+1
i=1 λT,i,

with λT,1, . . . , λT,d+1 the barycentric coordinates of T .
We denote by Sh the d− 1 dimensional triangulation of Γ inherited from Th. We have

Mh = {µh ∈ C(Γ) | µh|S ∈ P(d−1)
1 (∀S ∈ Sh), µh|∂Γ = 0} (algebraically). (2.42)

Moreover, we introduce a projection operator Λ : Q→ Q0 by

Λq = q −m(q) with m(q) =
1

|Ω|

∫
Ω

q dx (q ∈ Q). (2.43)

It seems readily apparent that ∥Λq∥ ≤ C∥q∥ for q ∈ Q and Λqh ∈ Q0h for qh ∈ Qh.

Then, the finite element approximation for (PEε,δ) reads as follows.

(PEε,δ,h) Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(ph, vh)−
1

ε

∫
Γ

ϕδ(un + gn)vhn dΓ = (f, vh)− [[α, vh]] (∀vh ∈ Vh), (2.44a)

b(qh, uh) = 0 (∀qh ∈ Qh). (2.44b)

Before considering the well-posedness and error estimates, we recall here basic results on the
finite element method.

Babuška-Brezzi condition As is well-known, the Babuška-Bezzi condition is well-known to
hold true in V0h ×Q0h. There is a constant γ′ > 0, which is independent of h, such that

inf
qh∈Q0h

sup
vh∈V0h

b(qh, vh)

∥vh∥1∥qh∥
≥ γ′. (2.45)

Discrete lifting operators and discrete traction vectors The following is a discrete
analogue of Lemma 2.2.1.

Lemma 2.4.1 ( [30, Lemma 2.1]). (i) There is a continuous linear operator Eh from Md
h to Vh

such that Ehµh = µh on Γ and ∥Ehµh∥1 ≤ C∥µh∥ 1
2 ,Γ

for any µh ∈Md
h , where C is independent

of h.
(ii) There is a continuous linear operator Enh from Mh to Vh such that (Enhµh)n = µh and
(Enhµh)T = 0 on Γ and ∥Enhµh∥1 ≤ C∥µh∥ 1

2 ,Γ
for any µh ∈Mh, where C is independent of h.

(iii) For µh ∈M0h, the above wh = Enhµh can be chosen in such way that wh ∈ V σ
h .

As the continuous case, we define traction vectors τ(uh, ph) ∈ (Md
h)

′, τT (uh) ∈ (Md
h)

′ and
τn(uh, ph) ∈M ′

h for a solution (uh, ph) ∈ V σ
h ×Qh of

a(uh, vh) + b(ph, vh) = (f, vh) (vh ∈ V0h) (2.46)

as follows:

[[τ(uh, ph), µh]] = a(uh, wh) + b(ph, wh)− (f, wh) (µh ∈Md
h , wh = Ehµh); (2.47a)

[τT (uh), µh] = a(uh, wh) + b(ph, wh)− (f, wh) (µh ∈Md
h with µhn = 0, wh = Ehµh); (2.47b)

[τn(uh, ph), µh] = a(uh, wh) + b(ph, wh)− (f, wh) (µh ∈Mh, wh = Enhµh) (2.47c)
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These definitions are independent of the way of extensions. In fact, for any µh, let wh ∈ Vh
and w̃h ∈ Vh be both extension of λh; whn = w̃hn = λh on Γ. Set vh = wh − w̃h. Then, since
vh ∈ V0h, we deduce, by (2.46),

a(uh, wh) + b(ph, wh)− (f, wh)− [a(uh, w̃h) + b(ph, w̃h)− (f, w̃h)]

= a(uh, vh) + b(ph, vh)− (f, vh) = 0.

Consequently, (2.47c) is well-defined.

2.5 Well-posedness of (PEε,δ,h)

In this section, we establish the well-posedness of (PEε,δ,h). Thus, we shall prove the following
two theorems. Recall that C∗ denotes a positive constant depending only on Ω, ∥f∥, ∥g∥1 and
∥α∥(Md)′ .

Theorem 2.5.1. There exists a unique solution (uh, ph) ∈ Vh ×Qh of (PEε,δ,h) , and we have

∥uh∥1 + ∥p̂h∥+
∥∥∥∥1εϕδ(uhn + gn) + kh

∥∥∥∥
M ′

h

≤ C∗, (2.48)

where p̂h = Λph and kh = m(ph).

Theorem 2.5.2. Assume

(A1) the family {Sh}h is quasi-uniform;

(A2) there exists Γ1 ⊂ Γ with |Γ1| > 0 which is independent of h, ε, δ and Ω such that uhn+gn >
0 on Γ1.

Then, the solution (uh, ph) ∈ Vh ×Qh of (PEε,δ,h) admits the following estimates:

∥uh∥1 + ∥ph∥+
∥∥∥∥1εϕδ(uhn + gn)

∥∥∥∥
M ′

h

≤ C∗; (2.49a)∥∥∥∥1εϕδ(uhn + gn)

∥∥∥∥
M ′

≤ C∗

(
1 +

h

ε

)
; (2.49b)

1√
ε
∥[uhn + gn]−∥Γ ≤ C∗

(
1 +

δ

ε

)
. (2.49c)

Remark 2.5.1. Condition (A2) is not restrictive. It is natural to presume this condition if β
is sufficiently large and h, ε, δ are suitably small.

Remark 2.5.2. If δ ≤ c0ε with some c0 > 0, we have, from (2.49c), ∥[uhn + gn]−∥Γ → 0 as
ε→ 0.

To prove Theorem 2.5.1, we apply the following fundamental result.

Lemma 2.5.1 ( [36, Theorem 2.1]). Let X be a separable reflexive Banach space and let T :
X → X ′ be a (possibly nonlinear) operator satisfying the following conditions:

1. (boundness) There exist C,C ′,m > 0 s.t. ∥Tu∥X′ ≤ C∥u∥mX + C ′ for all u ∈ X;

2. (monotonicity) ⟨Tu− Tv, u− v⟩X′,X ≥ 0 for all u, v ∈ X;
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3. (hemicontinuity) For any u, v, w ∈ X, the function λ 7→ ⟨T (u+ λv), w⟩X′,X is continuous
on R;

4. (coerciveness)
⟨Tu, u⟩X′,X

∥u∥X
→ ∞ as ∥u∥X → ∞.

Then, for any φ ∈ X ′, there exists u ∈ X such that Tu = φ. Furthermore, if T is strictly
monotone:

⟨Tu− Tv, u− v⟩X′,X > 0 (∀u, v ∈ X,u ̸= v),

then the solution is unique.

We set ρδ : V → V ′ by

⟨ρδ(u), v⟩ = −
∫
Γ

ϕδ(un + gn)vn dΓ (v ∈ V ).

Lemma 2.5.2. ρδ is a bounded, monotone and hemicontinuous operator from V to V ′.

Proof. (boundness) By using (2.40c) and the trace theorem, we have

⟨ρδ(u), v⟩ ≤
∫
Γ

|un + gn| · |vn| dΓ ≤ (∥u∥1 + ∥gn∥Γ)∥v∥1

for u, v ∈ V . Hence,
∥ρδ(u)∥V ′ ≤ ∥u∥1 + ∥gn∥Γ (u ∈ V ).

(monotonicity) Since −ϕδ(s) is non-decreasing function, we have

⟨ρδ(u)− ρδ(v), u− v⟩ = −
∫
Γ

(ϕδ(un + gn)− ϕδ(vn + gn))(un + gn − (vn + gn)) dΓ ≥ 0

for u, v ∈ V .
(hemicontinuity) Let u, v, w ∈ V . Then, a real-valued function

⟨ρδ(u+ λv), w⟩ = −
∫
Γ

ϕδ(un + λvn)wn dΓ

of λ ∈ R is a continuous function, since the function ϕδ is continuous.

Proof of Theorem 2.5.1. It is divided into three steps.
Step 1. First, we prove that there exists a unique uh ∈ V σ

h satisfying

a(uh, vh) +
1

ε
⟨ρδ(uh), vh⟩ = (f, vh)− [[α, vh]] (∀vh ∈ V σ

h ) (2.50)

by using Lemma 2.5.1.
To do this, we introduce a nonlinear operator Aε : Vh → V ′

h by setting

⟨Aεuh, vh⟩ = a(uh, vh) +
1

ε
⟨ρδ(uh), vh⟩ (uh, vh ∈ Vh).

and verify the conditions of Lemma 2.5.1.
(boundness) For uh ∈ V σ

h , we have immediately

∥Aεuh∥(V σ
h )′ ≤

(
∥a∥+ 1

ε

)
∥uh∥1 +

1

ε
∥gn∥Γ.
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(strictly monotonicity) By virtue of Korn’s inequality and monotonicity of ρδ,

⟨Aεuh −Aεvh, uh − vh⟩ = a(uh − vh, uh − vh) +
1

ε
⟨ρδ(uh)− ρδ(vh), uh − vh⟩

≥ C∥uh − vh∥21 > 0

for uh, vh ∈ V σ
h , uh ̸= vh.

(hemicontinuity) Let uh, vh, wh ∈ V σ
h . Then, a real-valued function

⟨Aε(uh + λvh), wh⟩ = a(uh + λvh, wh) +
1

ε
⟨ρδ(uh + λvh), wh⟩

of λ ∈ R is continuous, since a(·, wh) is continuous and ρδ(·) is hemicontinuous.
(coerciveness) For uh ∈ V σ

h , we have by (2.40c)

⟨ρδ(uh), uh⟩ = −
∫
Γ

ϕδ(uhn + gn)uhn dΓ

= −
∫
Γ

ϕδ(uhn + gn) ([uhn + gn]+ − [uhn + gn]− − [gn]+ + [gn]−) dΓ

≥ −
∫
Γ

ϕδ(un + gn)[gn]− dΓ

≥ −C (∥uh∥1 + ∥gn∥Γ) ∥gn∥Γ.

This gives

⟨Aεuh, uh⟩
∥uh∥1

=
a(uh, uh)

∥uh∥1
+

1

ε

⟨ρδ(uh), uh⟩
∥uh∥1

≥ C∥uh∥1 −
C

ε

(∥uh∥1 + ∥gn∥Γ)
∥uh∥1

∥gn∥Γ,

and, hence,
⟨Aεuh, uh⟩

∥uh∥1
→ ∞ as ∥uh∥1 → ∞.

As a consequence, we can apply Lemma 2.5.1 to conclude that there exists a unique uh ∈ V σ
h

satisfying Aεuh = Fh, where Fh ∈ (V σ
h )′ is defined as ⟨F, vh⟩ = (f, vh) − [[α, vh]] for vh ∈ V σ

h .
Therefore, we have proved a unique existence of the solution uh ∈ V σ

h of (2.50).

Step 2. We verify the unique existence of ph ∈ Qh such that (uh, ph) is a solution of (PEε,δ,h).
In view of (2.45), there exists a unique p̂h ∈ Q0h satisfying

a(uh, vh) + b(p̂h, vh) = (f, vh) (vh ∈ V0h). (2.51)

Now, we find a constant kh such that (uh, ph) is a solution of (PEε,δ,h), where ph = p̂h + kh.
(In fact, with any kh ∈ R, (uh, ph) also solves (2.46).) To do this, we first rewrite (2.44a) as by
using (2.47a)–(2.47c),

[τn(uh, ph)− ε−1ϕδ(uhn + gn)− αn, vhn] + [[τT (uh)− αT , vhT ]] = 0 (vh ∈ Vh).

Consequently, in view of Lemma 2.4.1, it suffices to prove the following two equations:

[τn(uh, ph)− ε−1ϕδ(uhn + gn)− αn, µh] = 0 (µh ∈Mh); (2.52a)

[[τT (uh)− αT , µh]] = 0 (µh ∈Md
h with µhn = 0). (2.52b)

It might be readily apparent that vh = Ehµh ∈ Vh belongs to V σ
h for any µh ∈ Md

h with
µhn = 0. Hence, (2.50) and (2.47b) immediately implies (2.52b).
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On the other hand, combining (2.50) and (2.47c), we have

[τn(uh, ph) + αn − ε−1ϕδ(uhn + gn), λh] = 0 (∀λh ∈M0h). (2.53)

At this stage, let us take

µ̃h ∈ Yh =

{
µh ∈Mh | µh ≥ 0, µh ̸≡ 0,

∫
Γ

µh dΓ = 1

}
.

Then, for any µh ∈Mh, the function µh − κhµ̃h belongs to M0h, where κh =
∫
Γ
µh dΓ.

Therefore, for any µh ∈Mh,

[τn(uh, ph) + αn − ε−1ϕδ(uhn + gn), µh] = [τn(uh, ph) + αn − ε−1ϕδ(uhn + gn), µh − κhµ̃h]

+ [τn(uh, ph) + αn − ε−1ϕδ(uhn + gn), κhµ̃h]

= κh[τn(uh, ph) + αn − ε−1ϕδ(uhn + gn), µ̃h] (2.54)

Now, choosing
kh = [τn(uh, p̂h)− ε−1ϕδ(uhn + gn), µ̃h], (2.55)

we have

[τn(uh, ph) + αn − ε−1ϕδ(uhn + gn), µ̃h] = [τn(uh, p̂h) + αn − ε−1ϕδ(uhn + gn), µ̃h]− kh

= 0.

Hence, we get (2.52a) by (2.54).
It remains to be verified that (2.55) is independent of the choice of µ̃h. We let µ̃h, µ̃

′
h ∈ Yh

with µ̃h ̸= µ̃′
h and let the corresponding kh be denoted by k̃h, k̃

′
h, respectively. Then, since

λh = µh − µ′
h satisfies

∫
Γ
λh dΓ = 0, we have by (2.53),

k̃h − k̃′h = [τn(uh, p̂h) + αn − ε−1ϕδ(uhn + gn), λh] = 0,

which means that kh is uniquely determined by (2.55).

Step 3. Finally, we derive the stability result (2.48). Substituting vh = uh ∈ V σ
h into (2.50),

we obtain,

a(uh, uh)−
1

ε

∫
Γ

ϕδ(uhn + gn)uhn dΓ = (f, uh)− [[α, uh]]. (2.56)

Noting that, by (2.40c)

−1

ε

∫
Γ

ϕδ(uhn + gn)uhn dΓ = −1

ε

∫
Γ

ϕδ(uhn + gn)(uhn + gn) dΓ +
1

ε

∫
Γ

ϕδ(uhn + gn)gn dΓ

≥ 1

ε

∫
Γ

ϕδ(uhn + gn)[uhn + gn]− dΓ ≥ 0, (2.57)

we get
a(uh, uh) ≤ (f, uh)− [[α, uh]].

Hence, by virtue of Korn’s inequality ( [32, Lemma 6.2]),

∥uh∥1 ≤ C(∥f∥+ ∥α∥(Md)′). (2.58)

Moreover, according to (2.45) and (2.51),

∥p̂h∥ ≤ sup
vh∈V0h

b(p̂h, vh)

∥vh∥1
= sup

vh∈V0h

(f, vh)− a(uh, vh)

∥vh∥1
≤ C(∥f∥+ ∥uh∥1). (2.59)
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Since (2.44a) is expressed as∫
Γ

(ε−1ϕδ(uhn + gn) + kh)µh dΓ

= a(uh, vh) + b(p̂h, vh)− (f, vh) + [[α, vh]] (∀µh ∈Mh, vh = Enhµh ∈ Vh),

we deduce ∥∥∥∥1εϕδ(uhn + gn) + kh

∥∥∥∥
M ′

h

≤ C(∥uh∥1 + ∥p̂h∥+ ∥f∥+ ∥α∥(Md)′). (2.60)

Summing up (2.58), (2.59) and (2.60), we obtain (2.48).

We proceed to the proof of Theorem 2.5.2. We use the standard Lagrange interpolation
operator ih : C(Γ) →Mh defined by

ihµ(P ) = µ(P ) (every node P of Sh) (2.61)

and the L2 projection operator πh : L2(Γ) →Mh defined by∫
Γ

(πhµ− µ)µh dΓ = 0 (µh ∈Mh). (2.62)

The following results are well-known.

µ ≥ 0 ⇒ ihµ ≥ 0, (2.63a)

∥ihµ− µ∥Γ + h∥ihµ− µ∥1,Γ ≤ Ch2|µ|2,Γ (µ ∈ H2(Γ) ∩H1
0 (Γ)), (2.63b)

∥πhµ∥Γ ≤ C∥µ∥Γ (µ ∈ L2(Γ)), (2.63c)

∥πhµ∥1,Γ ≤ C∥µ∥1,Γ (µ ∈ H1
0 (Γ)), (2.63d)

∥πhµ− µ∥Γ ≤ Ch∥µ∥1,Γ (µ ∈ H1
0 (Γ)). (2.63e)

In fact, (2.63a), (2.63b), (2.63c), (2.63e) are standard. On the other hand, (2.63d) holds true if
{Sh}h is quasi-uniform (see [8, 16,29]).

Remark 2.5.3. According to (2.63b), ∥ihµ∥1,Γ is bounded by a positive constant depending only
on µ if µ ∈ C∞

0 (Γ).

Lemma 2.5.3. ∥πhµ− µ∥M ′ ≤ Ch∥µ∥ 1
2 ,Γ

for any µ ∈M .

Proof. It follows from (2.63c) that ∥πhµ − µ∥Γ ≤ C∥µ∥Γ. Combining this with (2.63e), (2.15)
and applying the interpolation theorem (see [38, Theorem 5.1, Ch. 1]), we obtain

∥πhµ− µ∥Γ ≤ Ch
1
2 ∥µ∥ 1

2 ,Γ
(µ ∈M).

We can use this in the following way. That is, noting (2.62),

∥πhµ− µ∥M ′ = sup
λ∈M

[πhµ− µ, λ]

∥λ∥ 1
2 ,Γ

= sup
λ∈M

[πhµ− µ, πhλ− λ]

∥λ∥ 1
2 ,Γ

≤ sup
λ∈M

∥πhµ− µ∥Γ∥πhλ− λ∥Γ
∥λ∥ 1

2 ,Γ

≤ Ch∥µ∥ 1
2 ,Γ
.
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Lemma 2.5.4. ∥ϕδ(µ)∥ 1
2 ,Γ

≤ C∥µ∥ 1
2 ,Γ

for any µ ∈M .

Proof. Using (2.40c) and (2.40d), we have ∥ϕδ(µ)∥Γ ≤ C∥µ∥Γ for µ ∈ Q and ∥ϕδ(µ)∥1,Γ ≤
C∥µ∥1,Γ for µ ∈ H1

0 (Γ). Hence, we can apply the (nonlinear) interpolation theorem (see [37,
Theorem 3.1]) and (2.15) to get the desired result.

Proof of Theorem 2.5.2. First, we derive an estimation for kh. We take µ̃ ∈ C∞
0 (Γ) satisfying

µ̃ ≥ 0, µ̃ ̸≡ 0 in Γ, supp µ̃ ⊂ Γ1.

Then, setting µ̃h = ihµ ∈Mh, we have

µ̃h ≥ 0, µ̃ ̸≡ 0 in Γ, µ̃h = 0 in Γ\Γ1, ∥µ̃h∥M ≤ C,

∣∣∣∣∫
Γ

µ̃h dΓ−
∫
Γ

µ̃ dΓ

∣∣∣∣ ≤ Ch2, (2.64)

where those C’s depend on µ.
Since (A2) gives

ϕδ(uhn + gn) = 0 on Γ1,

we deduce from (2.44a) and (2.64)

kh

∫
Γ

µ̃h dΓ = a(uh, ṽh) + b(p̂h, ṽh)−
1

ε

∫
Γ

ϕδ(uhn + gn)µ̃h dΓ− (f, ṽh) + [[α, ṽh]]

= a(uh, ṽh) + b(p̂h, ṽh)− (f, ṽh) + [[α, ṽh]], (2.65)

where ṽh = Enhµ̃h ∈ Vh.
This leads to

|kh| ≤ C∗, ∥ph∥ ≤ C∗. (2.66)

Hence, we have proved (2.49a).
Using (2.62) and (2.44a), we can make the following calculation.∫
Γ

ε−1πhϕδ(uhn + gn)µh dΓ =

∫
Γ

ε−1ϕδ(uhn + gn)µh dΓ

= a(uh, vh) + b(ph, vh)− (f, vh) + [[α, vh]] (∀µh ∈Mh, vh = Enhµh ∈ Vh).

Therefore,

∥ε−1πhϕδ(uhn + gn)∥M ′
h
≤ (∥uh∥1 + ∥p̂h∥+ ∥f∥+ ∥α∥(Md)′ + ∥g∥1). (2.67)

We write as

sup
µ∈M

[ε−1ϕδ(uhn + gn), µ]

∥µ∥ 1
2 ,Γ

=
1

ε
sup
µ∈M

[ϕδ(uhn + gn)− πhϕδ(uhn + gn), µ]

∥µ∥ 1
2 ,Γ︸ ︷︷ ︸

=I1

+ sup
µ∈M

[ε−1πhϕδ(uhn + gn), µ]

∥µ∥ 1
2 ,Γ︸ ︷︷ ︸

=I2

.

Using Lemmas 2.5.3 and 2.5.4,

∥πhϕδ(uhn + gn)− ϕδ(uhn + gn)∥M ′ ≤ Ch∥ϕδ(uhn + gn)∥ 1
2 ,Γ

≤ Ch∥uhn + gn∥ 1
2 ,Γ

≤ Ch(∥uh∥1 + ∥g∥1).
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Consequently,

|I1| ≤ C
h

ε
(∥uh∥1 + ∥g∥1).

On the other hand, by virtue of (2.62), (2.63d) and (2.67), we have

I2 = sup
µ∈M

[ε−1πhϕδ(uhn + gn), µ]

∥µ∥ 1
2 ,Γ

≤ C sup
µ∈M

[ε−1πhϕδ(uhn + gn), πh]

∥πhµ∥ 1
2 ,Γ

≤ C sup
µh∈Mh

[ε−1πhϕδ(uhn + gn), µh]

∥µh∥ 1
2 ,Γ

Therefore, from (2.67),

|I2| ≤ C(∥uh∥1 + ∥ph∥+ ∥f∥+ ∥α∥(Md)′ + ∥g∥1)

Summing up those estimates, we get (2.49b).
Finally, using (2.40b),

−1

ε

∫
Γ

ϕδ(uhn + gn)uhn dΓ ≥ 1

ε

∫
Γ

ϕδ(uhn + gn)[uhn + gn]− dΓ ≥ 0

≥ 1

ε

∫
Γ

([uhn + gn]
2
− − Cδ[uhn + gn]−) dΓ ≥ 0.

We apply this to (2.56) and obtain

1

ε

∫
Γ

[uhn + gn]
2
− dΓ ≤ (f, uh)− [[α, uh]] + C

δ

ε

∫
Γ

[uhn + gn]− dΓ

≤ ∥f∥ · ∥uh∥1 + ∥α∥(Md)′∥uh∥1 + C
δ

ε
(∥uh∥1 + ∥g∥1),

which implies (2.49c).

2.6 Error estimate

We are now ready to state the error estimates between (PDE) and (PEε,δ,h).

Theorem 2.6.1. Assume that (A1) and (A2) are satisfied. Let (u, p) and (uh, ph) be solutions of
(PDE) and (PEε,δ,h), respectively, and suppose that (u, p) ∈ H2(Ω)d×H1(Ω) and τn(u, p)+αn ∈
M . Moreover, assume that h, ε, δ are sufficiently small and h ≤ c1ε with a constant c1 > 0, then
we have

∥u− uh∥1 + ∥p− ph∥ ≤ C∗∗

(
h+ ε+

√
δ2

ε

)
(2.68)

and∥∥∥∥τn(u, p) + αn − 1

ε
ϕδ(uhn + gn)

∥∥∥∥
M ′

+
√
ε

∥∥∥∥τn(u, p) + αn − 1

ε
ϕδ(uhn + gn)

∥∥∥∥
Γ

≤ C∗∗

(
h+ ε+

√
δ2

ε

)
, (2.69)
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where C∗∗ denotes a positive constant depending only on c1, Ω, |u|2, |p|1, ∥τn(u, p) +αn∥M ,
∥f∥, ∥g∥1 and ∥α∥(Md)′ .

Particularly, if taking as c2ε ≤ h and δ ≤ c3h
3
2 with constants (c1 >)c2, c3 > 0, we have the

optimal-order error estimate

∥u− uh∥1 + ∥p− ph∥ ≤ C∗∗h.

We use the standard Lagrange interpolation operator Ih : C(Ω)d → Vh and the L2 projection
operator Πh : Q→ Qh. Actually, the following are well known.

∥v − Ihv∥1 ≤ Ch|v|2 (v ∈ [H2(Ω) ∩H1
0 (Ω)]

d), (2.70a)

∥q −Πhq∥ ≤ Ch|q|1 (q ∈ H1(Ω)). (2.70b)

Proof of Theorem 2.6.1. It is divided into three steps.
Step 1. Let us show that the following non-optimal error estimate holds true:

∥u− uh∥1 + ∥p̂− p̂h∥ ≤ C∗∗

(√
ε+

√
δ +

√
h
)
, (2.71)

where p̂ = Λp, p̂h = Λph.
We recall that (2.22) together with (2.20) give

a(u, v) + b(p, v)− [τn(u, p), vn] = (f, v)− [[αT , vT ]] (v ∈ V ). (2.72)

Hence, errors u− uh and p− ph satisfy

a(u− uh, vh) + b(p− ph, vh)− [τn(u, p) + αn − ε−1ϕδ(uhn + gn), vhn] = 0 (vh ∈ Vh).

Setting p̂ = Λp, p̂h = Λph, k = m(p) and kh = m(ph), we can write as

a(u− uh, vh) = −b(p̂− p̂h, vh)︸ ︷︷ ︸
=J1(vh)

+[τn(u, p) + αn − ε−1ϕδ(uhn + gn) + k − kh, vhn]︸ ︷︷ ︸
=J2(vh)

(vh ∈ Vh).
(2.73)

Particularly we have

b(Λqh − p̂h, vh) = −a(u− uh, vh)− b(p̂− Λqh, vh) (vh ∈ V0h, qh ∈ Qh).

and, by application of (2.45),

∥Λqh − p̂h∥ ≤ C sup
vh∈V0h

−a(u− uh, vh)− b(p̂− Λqh, vh)

∥vh∥1
≤ C(∥u− uh∥1 + ∥p̂− Λqh∥)
≤ C(∥u− uh∥1 + ∥p− qh∥) (qh ∈ Qh). (2.74)

At this stage, we set

vh = Ihu− uh ∈ Vh, qh = Πhp ∈ Qh, q̂h = Λqh ∈ Q0h.

Then,

∥p̂− p̂h∥ ≤ ∥p̂− q̂h∥+ ∥q̂h − p̂h∥
≤ ∥p−Πhp∥+ C(∥u− uh∥1 + ∥p−Πhp∥)
≤ C∗∗h+ C∥u− uh∥1. (2.75)
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Using (2.70), (2.74) and ∥p̂− q̂h∥ ≤ C∥p− qh∥, we estimate as

|J1(Ihu− uh)| ≤ |b(p̂− p̂h, Ihu− u)|+ |b(p̂− q̂h, u− uh)|+ |b(q̂ − p̂h, u− uh)|
≤ ∥b∥ · ∥p̂− p̂h∥ · ∥Ihu− u∥1 + ∥b∥ · ∥p̂− q̂h∥ · ∥u− uh∥1 + 0

≤ C(C∗∗h+ ∥u− uh∥1) · h|u|2 + Ch|p|1∥u− uh∥1
≤ C∗∗h

2 + C∗∗h∥u− uh∥1
≤ C∗∗h

2 + C∗∗h∥Ihu− uh∥1. (2.76)

To perform an estimation for J2, we divide it as

J2(Ihu− uh) = [τn(u, p) + αn − ε−1ϕδ(uhn + gn) + k − kh, (Ihu)n − un]︸ ︷︷ ︸
=J21

+[τn(u, p) + αn − ε−1ϕδ(uhn + gn) + k − kh, un − uhn]︸ ︷︷ ︸
=J22

. (2.77)

According to stability results (2.48) and (2.49b), we deduce

|J21| ≤ (∥τn(u, p̂)∥M ′ + ∥ε−1ϕδ(uhn + gn)∥M ′ + ∥αn∥M ′ + |kh|)∥(Ihu)n − un∥ 1
2 ,Γ

≤ C∗∥Ihu− u∥1 ≤ C∗∗h.

Noting ∫
Γ

(un − uhn) dΓ =

∫
Ω

∇ · (u− uh) dx = 0

and using (2.22c), (2.22d), (2.22e), (2.40b), (2.40c) and (2.49b), we can calculate as:

J22 = [τn(u, p) + αn − ε−1ϕδ(uhn + gn), un + gn − (uhn + gn)]

= −[ε−1ϕδ(uhn + gn), un + gn]− [τn(u, p) + αn, uhn + gn]

+ [ε−1ϕδ(uhn + gn), uhn + gn]

= −[ε−1ϕδ(uhn + gn), un + gn]︸ ︷︷ ︸
≤0

−[τn(u, p) + αn, [uhn + gn]+]︸ ︷︷ ︸
≤0

+ [τn(u, p) + αn, [uhn + gn]−]−[ε−1ϕδ(uhn + gn), [uhn + gn]−]︸ ︷︷ ︸
≤0

≤ [τn(u, p) + αn, [uhn + gn]− − ϕδ(uhn + gn)] + ε[τn(u, p) + αn, ε
−1ϕδ(uhn + gn)]

≤ ∥τn(u, p) + αn∥Γ∥[uhn + gn]− − ϕδ(uhn + gn)∥Γ
+ ε∥τn(u, p) + αn∥M∥ε−1ϕδ(uhn + gn)∥M ′

≤ C∗

[
δ + ε

(
1 +

h

ε

)]
≤ C∗(δ + ε+ h). (2.78)

Summing up those estimates, we obtain

C∥Ihu− uh∥21 ≤ a(Ihu− uh, Ihu− uh)

= a(Ihu− u, Ihu− uh) + a(u− uh, Ihu− uh)

= a(Ihu− u, Ihu− uh) + J1(Ihu− uh) + J2(Ihu− uh)

≤ C∗∗h∥Ihu− uh∥1 + C∗∗h
2 + C∗∗h∥Ihu− uh∥1 + C∗∗h+ C∗(δ + ε+ h).

(2.79)
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Therefore, we deduce

∥Ihu− uh∥1 ≤ C∗∗

(√
h+

√
ε+

√
δ
)

and
∥u− uh∥1 ≤ ∥u− Ihu∥1 + ∥Ihu− uh∥1 ≤ C∗∗

(√
h+

√
ε+

√
δ
)
.

This, together with (2.75), implies (2.71).

Step 2. We derive an estimation for |kh − k| by using (2.71). For sufficiently small ε, h, δ with
h ≤ c1ε, according to (2.71) and (A2), there exists Γ0 ⊂ Γ with |Γ0| > 0 such that un + gn > 0
and uhn + gn > 0 on Γ0. As in the proof of Theorem 2.5.2 (see (2.64)), we take µ̃ ∈ C∞

0 (Γ)
satisfying µ̃ ≥ 0, µ̃ ̸≡ 0 in Γ and supp µ̃ ⊂ Γ0. Then, setting µ̃h = ihµ ∈Mh, we have

µ̃h ≥ 0, µ̃h ̸≡ 0 in Γ, µ̃h = 0 in Γ\(Γ0), ∥µ̃h∥M ≤ C,

∣∣∣∣∫
Γ

µ̃h dΓ−
∫
Γ

µ̃ dΓ

∣∣∣∣ ≤ Ch2.

Since un + gn > 0 on Γ0, we have τn(u, p) + αn = 0 on Γ0 in view of (2.22e). Substituting
ṽh = Enhµ̃h ∈ Vh ⊂ V into (2.72) and using (2.22d), we have

k

∫
Γ

µ̃h dΓ = a(u, ṽh) + b(p̂, ṽh)− (f, ṽh) + [[α, ṽh]]−
∫
Γ

(τn(u, p) + αn)µ̃h dΓ

= a(u, ṽh) + b(p̂, ṽh)− (f, ṽh) + [[α, ṽh]].

This, together with (2.65) and (2.75), gives

|kh − k| ≤ |a(uh − u, ṽh)|+ |b(p̂h − p̂, ṽh)|
≤ C(∥uh − u∥1 + ∥p̂h − p̂∥) ≤ C∗∗(∥Ihu− uh∥1 + h). (2.80)

Step 3. We proceed to the proof of (2.68) and (2.69). We will prove

J2(Ihu− uh) +
ε

2
∥λ∥2Γ ≤ C∗∗

[
h2 +

h3

ε
+ εh+

δ2

ε
+ (ε+ h)∥Ihu− uh∥1

]
, (2.81)

where

λ = τn(u, p) + αn − 1

ε
ϕδ(uhn + gn).

Recall that J2(Ihu − uh) is divided into J21 + J22 as in (2.77). We have, by (2.80) and the
standard trace theorem,

J21 ≤ (∥λ∥M ′ + |k − kh|)∥(Ihu)n − un∥ 1
2 ,Γ

≤ C∗∗h(∥λ∥M ′ + h+ ∥Ihu− uh∥1). (2.82)

We derive an estimation for ∥λ∥M ′ . First,

∥λ∥M ′ = sup
µ∈M

(
[λ, µ− µh]

∥µ∥ 1
2 ,Γ

+
[λ, µh]

∥µ∥ 1
2 ,Γ

)
≤ C∥λ∥Γ sup

µ∈M

∥µ− µh∥Γ
∥µ∥ 1

2 ,Γ

+ sup
µ∈M

[λ, µh]

∥µ∥ 1
2 ,Γ

, (2.83)

where µh is an arbitrary element of Mh.
In order to set µh appropriately, we use Scott and Zhang’s projection Π̃h : H1(Ω)d → Qd

h

( [51]). The projection Π̃h satisfies the same stability and interpolation error estimates as Πh.
For example, we have ∥Π̃hv∥ ≤ C∥v∥, ∥Π̃hv∥1 ≤ C∥v∥1 and ∥v−Π̃hv∥ ≤ Ch∥v∥1 (see [11, §4.8]).
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Particularly, we have ∥v − Π̃hv∥
H

1
2 (Ω)

≤ Ch
1
2 ∥v∥1 by the interpolation. Furthermore, Π̃h

preserves the boundary condition; Π̃hv ∈ Vh for v ∈ V . At this stage, for µ ∈M , we set

µh = (wh · n)|Γ, wh = Π̃hEnµ.

Then, again by the standard trace theorem,

∥µ− µh∥Γ ≤ C∥Enµ− Π̃hEnµ∥1 ≤ Ch
1
2 ∥Enµ∥1 ≤ Ch

1
2 ∥µ∥ 1

2 ,Γ
.

In view of (2.73),

[λ, µh] = a(u− uh, wh) + b(p̂− p̂h, wh)− (k − kh)

∫
Γ

µh dΓ

and, by (2.75) and (2.80),

[λ, µh] ≤ C(∥u− uh∥1 + ∥p̂− p̂h∥+ |k − kh|)∥wh∥1
≤ C∗∗(h+ ∥Ihu− uh∥1)∥µ∥ 1

2 ,Γ
.

Putting those estimates together in (2.83), we obtain

∥λ∥M ′ ≤ C∗∗(h
1
2 ∥λ∥Γ + h+ ∥Ihu− uh∥1). (2.84)

Substituting this into (2.82) and applying Schwarz’s inequality, we deduce

J21 ≤ C∗∗(h
2 + Ch

3
2 ∥λ∥Γ + h∥Ihu− uh∥1)

≤ C∗∗

(
h2 +

h3

ε
+ h∥Ihu− uh∥1

)
+
ε

6
∥λ∥2Γ. (2.85)

Next, we derive a sharp estimate for J22. According to the third equality of (2.78), we have

J22 ≤ [λ, [uhn + gn]−] = [λ, [uhn + gn]− − ϕδ(uhn + gn)]︸ ︷︷ ︸
=J221

−ε[λ, λ] + ε[λ, τn(u, p) + αn]︸ ︷︷ ︸
=J222

.

From (2.40b),

J221 ≤ ∥λ∥Γ∥[uhn + gn]− − ϕδ(uhn + gn)∥Γ ≤ Cδ∥λ∥Γ ≤ C
δ2

ε
+
ε

6
∥λ∥2Γ.

Using (2.84), we get the estimation of J222 as follows:

J222 ≤ ε∥λ∥M ′∥τn(u, p) + αn∥ 1
2 ,Γ

≤ C∗∗ε(h
1
2 ∥λ∥Γ + h+ ∥Ihu− uh∥1) ≤ C∗∗(εh+ ε∥Ihu− uh∥1) +

ε

6
∥λ∥2Γ.

Summing up those estimates, we obtain

J22 ≤ C∗∗

(
εh+

δ2

ε
+ ε∥Ihu− uh∥1

)
− 2ε

3
∥λ∥2Γ.

Combing this with (2.85), we deduce (2.81).
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Now, instead of (2.79), we have by (2.76) and (2.81)

C∥Ihu− uh∥21 ≤ a(Ihu− u, Ihu− uh) + J1(Ihu− uh) + J2(Ihu− uh)

≤ C∗∗(h+ ε)∥Ihu− uh∥1 + C

(
h2 +

h3

ε
+ εh+

δ2

ε

)
− ε

2
∥λ∥2Γ.

This yields

∥Ihu− uh∥1 ≤ C∗∗

(
h+

√
h3

ε
+
√
εh+

√
δ2

ε

)
≤ C∗∗

(
h+ ε+

√
δ2

ε

)
,

since we chose as h ≤ c1ε.
Finally, we obtain (2.68) and (2.69) by combining (2.75), (2.80), (2.81) and (2.84). This

completes the proof of Theorem 2.6.1.

Remark 2.6.1. In addition to the basic assumption of Theorem 2.6.1, we suppose that

uhn + gn > 0 on Γ. (2.86)

Then, for sufficiently small h, ε, δ with c2ε ≤ h ≤ c1ε, we have

∥u− uh∥1 + ∥p− ph∥ ≤ C∗∗h. (2.87)

In particular, we do not need to choose as δ ≤ c3h
3
2 . Inequality (2.87) is derived by noting

J22 = 0 under (2.86).

2.7 Numerical examples

In this section, we present some results of numerical experiments to confirm our theoretical
results. We prefer the original setting (2.4) with (2.6), (2.11) to (2.1) and (2.2). Therefore, we
consider a model Stokes problem with a nonlinear Robin condition as

− ν∆v +∇q = f, ∇ · v = 0 in Ω, (2.88a)

v = b on S1, (2.88b)

v = 0 on S2, (2.88c)

τn(v, q) =
1

ε
ϕδ(vn), vT = 0 on Γ, (2.88d)

where ϕδ represents the regularized function defined as (2.3).

Remark 2.7.1. As described in Introduction, we are interested in computing v and q in (2.4).
The unknown functions u and p in (2.1) and (2.2) are introduced as “perturbations” of those
target variables. They clarify analysis. Moreover, the reference flow (g, π) plays an important
role in theoretical considerations, although it is not readily apparent that it is always available
in actual computations.

Remark 2.7.2. In (2.88), we take vT = 0 instead of τT (u) = 0 as a boundary condition for the
tangential component of v on Γ. See Remark 2.3.1.
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The finite element approximation for (2.88) reads as follows.

(PE′
ε,δ,h) Find (vh, qh) ∈Wh ×Qh such that vh = ihb on S1 and

a(vh, wh) + b(qh, wh)−
1

ε

∫
Γ

ϕδ(vn)whn dΓ = (f, wh) (∀wh ∈ Vh),

b(rh, vh) = 0 (∀rh ∈ Qh),

where

Wh = {vh ∈ C0(Ω) | vh = 0 on S2, vhT = 0 on Γ, vh|T ∈
[
P(d)
1 ⊕ span{φT }

]d
(∀T ∈ Th)}.

First, we deal with a simple example, setting Ω = {(x, y) | 0 ≤ x ≤ L,−R ≤ y ≤ R},
S1 = {0} × [−R,R], and Γ = {L} × [−R,R], we impose

b(x, y) = (C0(R
2 − y2), 0), f ≡ 0 (2.89)

with C0 > 0. Then, (2.88) has the exact solution, which is given explicitly as

v(x, y) =
(
C0(R

2 − y2), 0
)
, q(x, y) = 2νC0L

(
1− x

L

)
. (2.90)

This is the well-known Poiseuille flow.
Details of our computation are the following. Set L = 15, R = 5, ν = 1/50, and C0 = 5/(νL).

For the triangulation of Ω, we use a uniform mesh composed of 12N2 congruent right-angle
triangles; The rectangle is divided into 3N×2N squares. Then, each small square is decomposed
into two equal triangles by a diagonal. Consequently, h =

√
2/N . Since we have employed the C1

regularization ϕδ, Newton’s method is available for computing the nonlinear equation (PE′
ε,δ,h).

Penalty parameters are chosen as ε = δ = h/20. Hence, it is ensured by Theorem 2.6.1 and
Remark 2.6.1 that

∥v − vh∥1 + ∥q − qh∥ ≤ Ch. (2.91)

To verify this point, we set

E
(1)
h = ∥v − vh∥, E

(2)
h = ∥v − vh∥1, E

(3)
h = ∥q − qh∥,

and observe that

ρ
(i)
h =

logE
(i)
h′ − logE

(i)
h

log h′ − log h
(i = 1, 2, 3)

with h′ ≈ 2h.
The result is reported in Tab. 2.1 and support our theoretical result (2.91). We were unable

to derive the L2 error for vh. From Tab. 2.1, we observe that second-order convergence actually
occurs.

Next, we consider a two-dimensional branched pipe as portrayed in Fig. 2.2. Since this
Ω is not a polygon, we approximate it by a polygon Ωh with vertices located on ∂Ω. On S1,
we impose a parabolic inflow similarly to (2.89). Fig. 2.3 shows the state of a numerical flow
velocity vh.

As before, we observe ρ
(1)
h , ρ

(2)
h and ρ

(3)
h . Since, in this case, we are unable to obtain the

(explicit) exact solution, we use numerical solutions with extra fine mesh. Tab. 2.2 presents
the results. We observe that convergence rates of the H1 error for vh and the L2 error for qh
are close to unity even in the curved domain. Moreover, that of the L2 error for vh is close to 2.
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h E
(1)
h ρ

(1)
h E

(2)
h ρ

(2)
h E

(3)
h ρ

(3)
h

1.0743 13.9 − 1.20 · 102 − 2.07 · 10−1 −
0.5371 3.47 2.001 5.96 · 101 1.010 6.57 · 10−2 1.656
0.2685 0.87 2.000 2.97 · 101 1.003 2.18 · 10−2 1.594
0.1342 0.21 2.000 1.48 · 101 1.001 7.42 · 10−3 1.553
0.0665 0.052 2.000 7.17 1.000 2.56 · 10−3 1.527

Table 2.1: Numerical convergence rates of (PE′
ε,δ,h) for (2.90).

Figure 2.2: A branched pipe and an example of triangulation.

Finally, we examine the convergence in terms of the penalty parameter ε. We now consider
a non-trivial external force f and the resulting flow velocity is showed in 2.4.

Letting δ = ε
3
2 (see Theorem 2.6.1), we set

E(1)
ε = ∥v − vh∥, E(2)

ε = ∥v − vh∥1, E(3)
ε = ∥q − qh∥,

and observe

ρ(i)ε =
logE

(i)
ε′ − logE

(i)
ε

log ε′ − log ε
(i = 1, 2, 3),

where ε′ ≈ 2ε and (v, q) is the numerical solution with extra small ε.

Figure 2.3: Velocity and pressure field in branched pipe.
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h E
(1)
h ρ

(1)
h E

(2)
h ρ

(2)
h E

(3)
h ρ

(3)
h

0.69279 2.497 · 10−1 — 5.941 — 1.786 · 10−1 —
0.33353 7.767 · 10−2 1.552 3.359 0.780 5.909 · 10−2 1.513
0.17571 2.044 · 10−2 2.083 1.768 1.001 3.069 · 10−2 1.022

Table 2.2: Numerical convergence rates of (PE′
ε,δ,h) for branched pipe.

Results are reported in Tab. 2.3 and 2.4, respectively, for h = 0.6928 and h = 0.1757. We
observe from these tables that the first order convergence with respect to ε actually occurs.

Figure 2.4: Velocity and pressure fields.

ε E
(1)
ε ρ

(1)
ε E

(2)
ε ρ

(2)
ε E

(3)
ε ρ

(3)
ε

0.034639 7.315 — 22.400 — 9.359 —
0.017319 3.649 1.003 11.177 1.002 4.668 1.003
0.008659 1.749 1.060 5.358 1.060 2.238 1.060

Table 2.3: Numerical convergence rate of (PE′
ε,δ,h) for h = 0.6928.
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ε E
(1)
ε ρ

(1)
ε E

(2)
ε ρ

(2)
ε E

(3)
ε ρ

(3)
ε

0.0087854 2.088 — 6.421 — 2.469 —
0.0043927 1.024 1.028 3.149 1.027 1.210 1.028
0.0021964 0.486 1.073 1.497 1.072 0.575 1.073

Table 2.4: Numerical convergence rate of (PE′
ε,δ,h) for h = 0.1757.
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Chapter 3

Convergence of the immersed-
boundary finite-element method
for the Stokes problem

Abstract

Convergence results for the immersed boundary method applied to a model Stokes problem with
the homogeneous Dirichlet boundary condition are presented. As a discretization method, we
deal with the finite element method. First, the immersed force field is approximated using a
regularized delta function and its error in the W−1,p norm is examined for 1 ≤ p < n/(n − 1),
n being the space dimension. Then, we consider the immersed boundary discretization of the
Stokes problem and study the regularization and discretization errors separately. Consequently,
error estimate of order h1−α in the W 1,1 × L1 norm for the velocity and pressure is derived,
where α is an arbitrarily small positive number. Error estimate of order h1−α in the Lr norm
for the velocity is also derived with r = n/(n− 1− α). The validity of those theoretical results
are confirmed by numerical examples.

3.1 Introduction

The immersed boundary (IB) method is a powerful method for solving a class of fluid-structure
interaction problems originally proposed by Peskin [44, 45] to simulate the blood flow through
artificial heart valves. For later developments, see [46]. The IB method is also successfully
applied to multi-phase flow problems, elliptic interface problems, and so on.

In contrast to a huge number of applications, it seems that there are only a few results
about theoretical convergence analysis. The pioneering work was done by Y. Mori in 2008
(see [42]). He studied a model (stationary) Stokes problem for the velocity u and pressure q in
an n dimensional torus U = [R/(2πZ)]n ⊂ Rn,

−∆u+∇q = f − g in U, ∇ · u = 0 in U, (3.0)
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with

f(x) =

∫
Ξ

F (θ)δ(x−X(θ)) dθ, g =
1

(2π)n

∫
Θ

F (θ) dθ.

Herein, the immersed boundary Γ ⊂ U , which is assumed to be a hypersurface of Rn, is param-
eterizaed as

Γ = {X(θ) = (X1(θ), . . . , Xn(θ)) | θ ∈ Θ},

where Θ denotes a subset of Rn−1; see Figure 3.1. The function F = F (θ) denotes the force
distributed along Γ and δ = δ(x) the (scalar-valued) Dirac delta function. (In [42], the case
n = 2 was explicitly mentioned.) Introducing the regularized delta function δh ≈ δ with a
parameter h > 0, he considered the regularized Stokes problem

−∆ũ+∇q̃ =
∫
Ξ

F (θ)δh(x−X(θ)) dθ − g in U, ∇ · ũ = 0 in U.

The regularized problem was discretized by the finite difference method using a uniform Eulerian
grid with grid size h. Then, he succeeded in deriving the maximum norm error estimate for the
velocity of the form

∥u− ũh∥L∞(U) ≤ C(h+ hα)| log h| (α > 0 suitable constant)

under regularity assumptions on Γ and F together with structural assumptions on δh. Herein,
ũh denotes the finite difference solution. After that, the method and results were extended
to several directions (see [39, 40]). For example, several Lp-error estimates, 1 ≤ p ≤ ∞, were
obtained in [40]. A typical result is given as

∥u− ũh∥Lp(U) + h∥q − q̃h∥Lp(U) ≤ Ch2| log h|η (η > 0 suitable constant).

Similar results for the Poisson interface problem was presented in [35]. On the other hand,
we observe from numerical experiments that the IB method has a first order accuracy for the
velocity in the L∞ norm. Therefore, those estimates are only sub-optimal and the proof of
optimal-order error estimate is still open at present. Moreover, the explicit formula of the
Green function associated with (3.0) was used to derive error estimates in [39, 40, 42]. Hence,
it is difficult to apply those methods to more standard settings, for example, to the Dirichlet
boundary value problem.

Ω
Ω

Γ
０

１

Figure 3.1: Ω = Ω0 ∪ Ω1, Ω0, Ω1 and Γ.

In this work, we take a different approach. We consider the Dirichlet boundary value problem
for the Stokes equations (3.5) below and study the regularization error and discretized error
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separately in Sections 3.2 and 3.3. To this end, we first give interpretations of the immersed outer
force f above as an Rn-Lebesgue measure and as a functional over W 1,p

0 (Ω)n; see Propositions
3.2.1 and 3.2.2. (The meaning of mathematical symbols will be mentioned in Paragraph 3.2.1.)
Then, we introduce a regularized delta function δε with a parameter ε > 0 and examine the
error between f and its regularization

fε(x) =

∫
Ξ

F (θ)δε(x−X(θ)) dθ

in the W−1,p(Ω)n norm for 1 ≤ p < n
n−1 ; see Proposition 3.2.3. Estimate for the regularization

error (see Proposition 3.2.4) is a direct consequence of Proposition 3.2.3 and the stability result
of [41] (or (A1p) below). After introducing structural assumptions on δε,

δε(x) =
1

εn

n∏
i=1

ϕ
(xi
ε

)
,

that is essentially the same as that of [39,40,42], we show that the W 1,p ×Lp error estimate for
the velocity and pressure is of order ε1−n+n

p if 1 ≤ p < n
n−1 ; see Proposition 3.2.5.

Then, we proceed to the study of discretization in Section 3.3 . We are concerned with the
finite element method rather than the finite difference method. This enable us to apply several
sharp W 1,p × Lp stability and error estimates due to [22] (or (A2p) below). Finally, we obtain
several (still sub-optimal but nearly-optimal) error estimates in several norms; see Theorem
3.3.1 which is the main result of this chapter. The effect of numerical integration for computing
fε is discussed in Section 3.4. Actually, a simple numerical integration formula does not spoil
the accuracy of the IB method (see Proposition 3.4.1 and Theorem 3.4.1). The validity of those
theoretical results are confirmed by numerical examples in Section 3.5.

We only assume that ϕ is a continuous function in R with compact support and with the
unit mean value (see (3.12)). On the other hand, several conditions on moment and smoothing
orders of ϕ were assumed in [39,40,42]; we are able to remove those restrictions.

It should be kept in mind that our aim is to reveal the accuracy of the regularization and
discretization procedures and is not to propose a new computational method; see also Remark
3.2.2. We consider the finite element method only as a model discretization method.

3.2 Immersed boundary formulation

3.2.1 Geometry and notation

Suppose that Ω is a polyhedral domain in Rn, n = 2, 3, with the boundary ∂Ω. The domain Ω
is divided into two disjoint components Ω0 and Ω1 by a simple closed curve (n = 2) or surface
(n = 3) which is designated by Γ. The curve (surface) Γ is called the immersed boundary and is
supposed to be parametrized as Γ = {X(θ) = (X1(θ), . . . , Xn(θ)) | θ ∈ Θ} where Θ is a bounded
subset of Rn−1 for the Lagrangian coordinate. See Fig. 3.1 for example. We set

JX(θ) =


√∣∣∂X1

∂θ

∣∣2 + ∣∣∂X2

∂θ

∣∣2 if n = 2,√∣∣∣∂(X2,X3)
∂(θ1,θ2)

∣∣∣2 + ∣∣∣∂(X3,X1)
∂(θ1,θ2)

∣∣∣2 + ∣∣∣∂(X1,X2)
∂(θ1,θ2)

∣∣∣2 if n = 3.

Throughout this chapter, we assume the following:

• Γ is a C1 boundary (X(θ) is a C1 function);
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• dist(Γ, ∂Ω) > 0;

• JX(θ) ̸= 0 (θ ∈ Θ).

We collect here the notation used in this chapter. We follow the notation of [1] for function
spaces and their norms. For a function space X, the space Xn stands for a product space
X × · · · ×X. For abbreviations, we write as, for example,

∥u∥W 1,p = ∥u∥W 1,p(Ω)n , ∥π∥Lp = ∥π∥Lp(Ω).

We set W 1,p
0 (Ω) = {v ∈ W 1,p(Ω) | v|∂Ω = 0} and W−1,p(Ω) the topological dual of W 1,p

0 (Ω).
The dual product between W−1,p(Ω)n and W 1,p

0 (Ω)n is denoted by ⟨·, ·⟩W−1,p,W 1,p
0

. We let

Lp
0(Ω) = {q ∈ Lp(Ω) |

∫
Ω
q dx = 0}. Set B(a, r) = {x ∈ Rn | |x− a| < r} for a ∈ Rn and r > 0.

For 1 ≤ p ≤ ∞, let p′ be the conjugate exponent of p; 1 ≤ p′ ≤ ∞ and 1
p + 1

p′ = 1.

For vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, let us denote by a · b = a1b1 + · · ·+ anbn
the scalar product.

3.2.2 Immersed boundary force

We set (formally at this stage) the immersed boundary force field f : Ω → Rn as

f =

∫
Θ

F (θ)δX(θ) dθ (3.1)

for F ∈ L1(Θ)n. Hereinafter, we set δa(x) = δ(x− a) for a ∈ Rn. We have (still formally)∫
Ω

f(x) · φ(x) dx =

∫
Θ

F (θ) · φ(X(θ)) dθ (φ ∈ C∞
0 (Ω)n). (3.2)

We state two interpretations of (3.2).

Proposition 3.2.1. Let F ∈ L1(Θ)n. Then, f defined as (3.1) is a finitely signed measure on
Ω, with which the integration is defined for any (vector-valued) measurable function φ on Ω. In
particular, if F ∈ Lp(Θ)n for 1 ≤ p ≤ ∞, the integrant is given by

⟨f, φ⟩ =
∫
Ω

φ df =

∫
Θ

F (θ) · φ(X(θ)) dθ

for any φ ∈ W 1,p′
(Ω)n. Moreover, f is a singular measure against the Lebesgue measure on Ω

and, consequently, f /∈ L1(Ω)n.

Proof. We identify δa(x) = δ(x− a) with the Dirac measure concentrated at a ∈ Rn. Then, for
any measurable set B ⊂ Rn and θ ∈ Θ, we have

δX(θ)(B) = 1X−1(B)(θ) =

{
1 (X(θ) ∈ B)

0 (X(θ) /∈ B),

where 1X−1(B) denotes the indicator function of X−1(B) on Θ. By virtue of Lebesgue’s domi-
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nated convergence theorem, we derive for any disjoint measurable sets {Bn}n

f

( ∞∪
n=1

Bn

)
=

∫
Θ

F (θ)
∞∑

n=1

δX(θ)(Bn) dθ =

∫
Θ

F (θ)

∞∑
n=1

1X−1(Bn)(θ) dθ

=

∞∑
n=1

∫
Θ

F (θ)1X−1(Bn)(θ) dθ =

∞∑
n=1

∫
Θ

F (θ)δX(θ)(Bn) dθ

=

∞∑
n=1

f(Bn).

Herein, note that F (θ)
∑N

n=1 1X−1(Bn)(θ) is integrable for any N ∈ N since F ∈ L1(Θ)n and Bn

is disjoint. It follows f(∅) = 0 from δa(∅) = 0 for all a ∈ Rn. Thus, f is a finitely signed measure
on Ω so that the integral

∫
Ω
φ df is well-defined for all measurable function φ. According to an

integral with the Dirac measure, we have∫
Ω

φ df =

∫
Θ

F (θ) · φ(X(θ)) dθ,

where the right hand side is meaningful for F ∈ Lp(Θ)n and φ ∈W 1,p′
(Ω)n. Although the Rn-

Lebesgue measure m(Γ) of Γ vanishes (note that Γ is “very thin”), we have f(Γ) ̸= 0. Hence,
f is singular against m. Finally, the fact f /∈ L1(Ω) follows from the Lebesgue decomposition
theorem.

Although f does not belong to any Lp(Ω) spaces as is mentioned in Proposition 3.2.1, it is
well-defined as a functional on W 1,p(Ω)n.

Proposition 3.2.2. Let 1 ≤ p <∞ and F ∈ Lp(Θ)n. Then, the functional

⟨f, φ⟩ =
∫
Θ

F (θ) · φ(X(θ)) dθ (φ ∈ C∞
0 (Ω)n)

is extended by continuity to a bounded linear functional on W 1,p
0 (Ω)n, which will be denoted by

⟨f, ·⟩W−1,p,W 1,p
0

below. That is, we have f ∈W−1,p(Ω)n.

Proof. Let φ ∈ C∞
0 (Ω)n. Since∫

Γ

| φ|Γ |p
′
dΓ =

∫
Θ

| φ(X(θ)) |p
′
|JX(θ)| dθ,

we have by the trace theorem

⟨f, φ⟩ ≤ ∥F∥Lp(Θ)

(∫
Θ

| φ(X(θ)) |p
′
dθ

) 1
p′

≤ ∥F∥Lp(Θ)∥JX∥
− 1

p′

L∞(Θ)∥φ∥Lp′ (Γ) ≤ C∥F∥Lp(Θ)∥φ∥W 1,p′ (Ω).

Let ε > 0 be a regularized parameter. Take a continuous function δε = δε(x) satisfying

supp δε ⊂ B(0,Kε) (3.3)

with K > 0.
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Setting δεa(x) = δε(x− a) for a ∈ Rn, we introduce the regularized immersed force field as

fε =

∫
Θ

F (θ)δεX(θ) dθ. (3.4)

Since δεa ∈ L∞(Ω), we have fε ∈ L∞(Ω) for F ∈ L1(Θ). The following result plays the most
crucial role in this study.

Proposition 3.2.3. Suppose that we are given a continuous function δε satisfying (3.3). Then,
for 1 ≤ p < n

n−1 and F ∈ Lp(Θ), we have

∥f − fε∥W−1,p ≤ C0∥F∥Lp(Θ)

[∣∣∣∣1− ∫
Rn

δε(y) dy

∣∣∣∣+ ∥ρδε∥Lp(Rn)

]
,

where ρ(x) = x and C0 denotes a positive constant depending only on n, p and ∥JX∥L∞(Θ).

Proof. Let φ ∈ C∞
0 (Ω)n and express it as

φ(x) = φ(X(θ)) + (x−X(θ)) ·
∫ 1

0

∇φ(t(x−X(θ)) +X(θ)) dt (x ∈ Rn).

Then, applying Fubini’s lemma, we have

⟨f − fε, φ⟩ =
∫
Θ

F (θ)φ(X(θ))

(
1−

∫
Ω

δεX(θ)(x) dx

)
dθ︸ ︷︷ ︸

=I1

−
∫ 1

0

∫
Θ

F (θ)

∫
Ω

δεX(θ)(x)(x−X(θ)) · ∇φ(t(x−X(θ)) +X(θ)) dxdθdt︸ ︷︷ ︸
=I2

.

For a sufficiently small ε, we have B(X(θ),Kε) ⊂ Ω and∫
Ω

δεX(θ) dx =

∫
B(X(θ),Kε)

δεX(θ)(x) dx =

∫
B(0,Kε)

δε(y) dy =

∫
Rn

δε(y) dy.

Hence,

|I1| ≤
∣∣∣∣1− ∫

Rn

δε(y) dy

∣∣∣∣ ∫
Θ

|F (θ)| · |φ(X(θ))| dθ

≤ ∥F∥Lp(Θ)

(∫
Θ

|φ(X(θ))|p
′
dθ

) 1
p′
∣∣∣∣1− ∫

Rn

δε(y) dy

∣∣∣∣
≤

∥F∥Lp(Θ)

∥JX∥1/p
′

L∞(Θ)

∥φ∥Lp′ (Γ)

∣∣∣∣1− ∫
Rn

δε(y) dy

∣∣∣∣
≤ C∥F∥Lp(Θ)

∣∣∣∣1− ∫
Rn

δε(y) dy

∣∣∣∣ ∥φ∥W 1,p′ (Ω).
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By virtue of Hölder’s inequality, we have

|I2| ≤
∫ 1

0

∫
Θ

|F (θ)| · ∥(x−X(θ))δεX(θ)∥Lp(Ω)·

·
[∫

Ω

|∇φ(t(x−X(θ)) +X(θ))|p
′
dx

] 1
p′

dθdt

≤ ∥ρδε∥Lp(Rn)

∫ 1

0

∫
Θ

|F (θ)|
[∫

Rn

|∇φ̃(t(x−X(θ)) +X(θ))|p
′
dx

] 1
p′

dθ

≤ ∥ρδε∥Lp(Rn)

∫ 1

0

∫
Θ

|F (θ)| dθ
[
1

tn

∫
Rn

|∇φ̃(z)|p
′
dz

] 1
p′

≤ ∥ρδε∥Lp(Rn)∥F∥L1(Θ)

(∫ 1

0

t
− n

p′ dt

)
∥φ̃∥W 1,p′ (Rn)

≤ p′

p′ − n
∥F∥L1(Θ)∥ρδε∥Lp(Rn)∥φ∥W 1,p′ ,

where φ̃ denotes the zero extension of φ into Rn and z = t(x − X(θ)) + X(θ). (Note that
n < p′ ≤ ∞ by 1 ≤ p < n

n−1 .)

Remark 3.2.1. We take φ0 ∈ C∞
0 (Ω) satisfying

φ0(x) = 1 if x ∈ Γ(ε) = {x ∈ Ω | dist(x,Γ) < ε} ∪ Ω0.

Then, I2 in the proof above vanishes and

∥f − fε∥W−1,p ≥ ⟨f − fε, φ0⟩
∥φ0∥W 1,p′

=
1

∥φ0∥W 1,p′

∫
Θ

F (θ) dθ

[
1−

∫
Rn

δε(x) dx

]
.

Hence, ∫
Rn

δε(x) dx→ 1 (ε→ 0)

is a necessary condition for ∥f − fε∥W−1,p → 0 to hold.

3.2.3 Target and regularized problems

We proceed to the formulation of the immersed boundary method. Using f and fε defined
by (3.1) and (3.4), we consider, respectively, the immersed boundary formulation to the Stokes
equations for the velocity u and pressure π,

−ν∆u+∇π = f in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω (3.5)

and its regularized problem for uε and πε,

−ν∆uε +∇πε = fε in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω. (3.6)

By a weak solution (u, π) ∈ W 1,p
0 (Ω)n × Lp

0(Ω) of (3.5) for example, we mean a solution of
the following variational equations: Find (u, π) ∈W 1,p

0 (Ω)n × Lp
0(Ω) such that

a(u, v) + b(π, v) = ⟨f, v⟩W−1,p,W 1,p
0

(∀v ∈W 1,p′

0 (Ω)n), (3.7a)

b(q, u) = 0 (∀q ∈ Lp′

0 (Ω)), (3.7b)
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where

a(u, v) =
ν

2

∫
Ω

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂vj
∂xi

+
∂vi
∂xj

)
dx, (3.8a)

b(π, u) = −
∫
Ω

π(∇ · u) dx. (3.8b)

Remark 3.2.2. Problem (3.7) can be directly discretized by the finite element method with no
regularization of f . Such methods were studied in [7,52] for nonstationary Navier-Stokes equa-
tions. However, our aim here is to reveal the accuracy of the regularization and discretization
procedures as is mentioned in Introduction.

Remark 3.2.3. The bilinear form a defined by (3.8a) is based on the deformation-rate tensor
[(1/2)(ui,j + uj,i)]1≤i,j≤n. Another definition

a(u, v) = ν

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx

is also available. However, with (3.8a), our problem is (essentially) equivalent to a two-phase
Stokes problem considered in [52] for example.

We make the following assumption for 1 ≤ p <∞:

(A1p) For a given g ∈W−1,p(Ω)n, there exists a unique weak solution (w, r) ∈W 1,p
0 (Ω)×Lp

0(Ω)
of the Stokes problem,

−ν∆w +∇r = g in Ω, ∇ · w = 0 in Ω, w = 0 on ∂Ω (3.9)

satisfying
∥w∥W 1,p + ∥r∥Lp ≤ C1∥g∥W−1,p . (3.10)

Moreover, if g ∈W−1,2(Ω)n ∩ Lp(Ω), we have (w, r) ∈W 2,p(Ω)×W 1,p(Ω) and

∥w∥W 2,p + ∥r∥W 1,p ≤ C2∥g∥Lp . (3.11)

Herein, C1 and C2 denote positive constants depending only on p and Ω.

Remark 3.2.4. If Ω is a convex Lipschitz domain and 1 < p ≤ 2, (A1p) is satisfied in view
of [41, Example 5.5] and Lemma 3.2.2. However, we directly assume (A1p) instead of the shape
condition on Ω. Below, p will be restricted as p < n/(n− 1).

The following result is a direct consequence of Lemma 3.2.3 and (A1p).

Proposition 3.2.4. Let 1 ≤ p < n
n−1 and suppose that (A1p) is satisfied. Let F ∈ Lp(Θ). Let

(u, π) and (uε, πε) be the weak solutions of (3.5) and (3.6), respectively. Then, we have

∥u− uε∥W 1,p + ∥π − πε∥Lp ≤ C0C1∥F∥Lp(Θ)

[∣∣∣∣1− ∫
Rn

δε(y) dy

∣∣∣∣+ ∥ρδε∥Lp(Rn)

]
.

The most familiar choice of δε is given by a product of one variable functions:

δε(x) =
1

εn

n∏
i=1

ϕ
(xi
ε

)
(x = (x1, . . . , xn)); (3.12a)

ϕ is continuous in R, suppϕ ⊂ B(0,Kε),

∫
R
ϕ(s) ds = 1 (3.12b)
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with K > 0. In (3.12a), the function (1/ε)ϕ(xi/ε) is an approximation of the one-dimensional
Dirac delta. Then, we can calculate as:∫

Rn

δε(y) dy = 1; (3.13a)∫
Rn

|y|p|δε(y)|p dy ≤ C3ε
p−pn+n; (3.13b)∫

Rn

|δε(y)|p dy ≤ C ′
3ε

−pn+n, (3.13c)

where C3 and C ′
3 denote positive constants depending only on p, n, K and ∥ϕ∥L∞(R). For

example, if n = 3, ∫
Rn

|y|p|δε(y)|p dy

≤ εp−pn+n

∫ √
nK

0

∫ 2π

0

∫ π

0

sp+n−1|ϕ(s cosφ sin θ)|p·

· |ϕ(s sinφ sin θ)|p|ϕ(s cos θ)|p sin θ dsdφdθ

≤ 4π

p+ n
(
√
3K)p+n∥ϕ∥3pL∞(R)ε

p−pn+n.

Similarly, we can take C3 = 2π
p+2 (

√
2K)p+2∥ϕ∥2pL∞(R) if n = 2.

Therefore, our error estimate for the regularized problem is given as follows.

Proposition 3.2.5. Let 1 ≤ p < n
n−1 and suppose that (A1p) is satisfied. Let F ∈ Lp(Θ). Let

(u, p) and (uε, pε), respectively, be the weak solutions of (3.5) and (3.6) with (3.12). Then, we
have

∥u− uε∥W 1,p + ∥p− pε∥Lp ≤ C∥F∥Lp(Θ)ε
1−n+n

p , (3.14)

where C denotes a positive constant depending only on n, p, ∥JX∥L∞(Θ), K, ∥ϕ∥L∞(R) and Ω.

Remark 3.2.5. Proposition 3.2.5 remains valid for a bounded Lipschitz domain Ω.

3.3 Discretization by finite element method

This section is devoted to a study of the finite element approximation applied to (3.6). We
introduce a family of regular triangulations {Th}h of Ω (see [11, (4.4.16)]). Hereinafter, we
set h = max{hT | T ∈ Th}, where hT denotes the diameter of T . For any T ∈ Th, let
P1(T ) be the set of all polynomials defined on T of degree ≤ 1, and let B(T ) = [P1(T ) ⊕
span{λ1λ2 · · ·λn+1}]n, where λi are the barycentric coordinates of T . Below, we consider the
P1-b/P1 element (MINI element) approximation. That is, set

Vh = {vh ∈ C(Ω)n ∩W 1,2
0 (Ω)n | vh|T ∈ B(T ) (∀T ∈ Th)},

Qh = {qh ∈ C(Ω) ∩ L2
0(Ω) | qh|T ∈ P1(T ) (∀T ∈ Th)}.

It is well-known that (see [23, Lemma II.4.1]) a pair of Vh and Qh satisfies the uniform Babuška–
Brezzi (inf–sup) condition

sup
vh∈Vh

b(vh, qh)

∥vh∥W 1,2

≥ β∥qh∥L2 (qh ∈ Qh),

where β > 0 is independent of h.
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Remark 3.3.1. We deal with the P1-b/P1 element only for the sake of simple presentation. An
arbitrary pair of conforming finite element spaces Vh ⊂ W 1,2

0 (Ω)n and Qh ⊂ L2
0(Ω) satisfying

the uniform Babuška–Brezzi condition is available.

We state the finite element approximation to (3.6): Find (uεh, π
ε
h) ∈ Vh ×Qh such that

a(uεh, vh) + b(πε
h, vh) = (fε, vh)L2 (∀vh ∈ Vh), (3.15a)

b(qh, u
ε
h) = 0 (∀qh ∈ Qh). (3.15b)

The finite element approximation (wh, rh) ∈ Vh ×Qh of (3.9) is defined similarly.
We make the following assumption:

(A2p) For a given g ∈ Lp(Ω)n, the finite element approximation (wh, rh) ∈ Vh × Qh of (3.9)
admits

∥w − wh∥W 1,p + ∥r − rh∥Lp ≤ C4 inf
(vh,qh)∈Vh×Qh

(∥w − vh∥W 1,p + ∥r − qh∥Lp) ,

where C4 denotes a positive constant depending only on p and Ω, and (w, r) ∈W 1,p
0 (Ω)n×Lp

0(Ω)
the weak solution of (3.9).

Remark 3.3.2. If Ω is a convex polyhedral domain in Rn with n = 2, 3 and {Th}h is quasi-
uniform (see [11, (4.4.15)]), then (A2p) is actually satisfied for 1 < p ≤ ∞; see Corollaries 4,
5, 6 and Remark 4 of a sophisticated paper [22]. However, we directly assume (A2p) instead of
the shape condition on Ω as before.

Applying the standard interpolation/projection error estimates, we obtain the following.

Proposition 3.3.1. Let 1 ≤ p <∞ and suppose that (A1p) and (A2p) are satisfied. Let (uε, πε)
and (uεh, π

ε
h) be solutions of (3.6) and (3.15), respectively. Then, we have

∥uε − uεh∥W 1,p + ∥πε − πε
h∥Lp ≤ Ch∥fε∥Lp , (3.16)

where C denotes a positive constant depending only on p and Ω.

Putting together those results, we deduce the following error estimate.

Proposition 3.3.2. Let 1 ≤ p < n
n−1 and suppose that (A1p) and (A2p) are satisfied. Assume

F ∈ Lp′
(Θ). Let (u, π) and (uεh, π

ε
h) be solutions of (3.5) and (3.15) with (3.12), respectively.

Then, we have
∥u− uεh∥W 1,p + ∥π − πε

h∥Lp ≤ Cε−n+n
p (ε+ h), (3.17)

where C denotes a positive constant depending only on n, p, ∥JX∥L∞(Θ), meas(Θ), K, ∥ϕ∥L∞(R),
∥F∥Lp(Θ), ∥F∥Lp′ (Θ) and Ω.

Proof. Since fε is defined in terms of δε given by (3.12), we have by (3.13c)

∥fε∥Lp ≤ meas(Θ)1/p∥F∥Lp′ (Θ)∥δ
ε∥Lp(Rn)

≤ Cmeas(Θ)1/p∥F∥Lp′ (Θ)ε
−n+n

p ,

where C > 0 is a constant depending only on p, n, K, and ∥ϕ∥L∞(R). Hence, in view of Lemmas
3.2.5 and 3.3.1,

∥u− uεh∥W 1,p + ∥π − πε
h∥Lp ≤ ∥u− uε∥W 1,p + ∥π − πε∥Lp

+ ∥uε − uεh∥W 1,p + ∥πε − πε
h∥Lp

≤ Cε1−n+n
p + Ch · Cε−n+n

p .
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We usually take as ε = h in the immersed boundary method. Therefore, applying Proposition
3.3.2 with p = 1, we obtain the optimal order error estimate

∥u− uεh∥W 1,1 + ∥π − πε
h∥L1 ≤ Ch. (3.18)

It should be kept in mind that this estimate is available only if (A1p) and (A2p) are true.
However, the case p = 1 is excluded both in [41] and [22] (see Remarks 3.2.4 and 3.3.2). In
conclusion, we offer the following theorem as the final error estimate in this chapter.

Theorem 3.3.1. Suppose that Ω is a convex polyhedral domain in Rn with n = 2, 3. Assume
that {Th}h is a family of quasi-uniform triangulations. Let F ∈ L∞(Θ). Let (u, π) and (uεh, π

ε
h)

be solutions of (3.5) and (3.15) with (3.12), respectively. Further, let ε = γ1h with a positive
constant γ1. Then, for any 0 < α < 1, there exists a positive constant C depending only on γ1,
n, α, Ω, K, ∥ϕ∥L∞(R), ∥JX∥L∞(Θ), meas(Θ), and ∥F∥L∞(Θ) such that

∥u− uεh∥W 1,q + ∥π − πε
h∥Lq ≤ Ch1−α with any 1 ≤ q ≤ n

n− α
(3.19)

and
∥u− uεh∥Lr ≤ Ch1−α with r =

n

n− α− 1
. (3.20)

Proof. As was pointed out in Remarks 3.2.4 and 3.3.2, (A1p) and (A2p) are true for a convex
polyhedral domain. Setting α = n(1−1/p) in (3.17) and applying an obvious inequality ∥ψ∥Lq ≤
C∥ψ∥Lp for 1 ≤ q ≤ n/(n − α), we deduce (3.19). Inequality (3.20) is a consequence of (3.17)
and the Sobolev embedding theorem (see [1, Theorem 4.12, Part I, Case C]).

Remark 3.3.3. The exponent r in (3.20) is included in 2 < r <∞ if n = 2 and in 3/2 < r < 3
if n = 3.

3.4 Numerical integration

In this section, we study the error caused by numerical integrations for computing fε. As will be
stated below, a simple numerical integration formula does not spoil the accuracy of the immersed
boundary method described in Theorem 3.3.1.

First, we deal with the case n = 2. Suppose that we are given a continuous function F (θ)
in Θ = (c1, d1) with c1 < d1. Let us introduce a partition c1 = θ0 < θ1 < · · · < θM = d1.
Moreover, letting θ− 1

2
= θ0, θi− 1

2
= (θi + θi−1)/2 for 1 ≤ i ≤ M , and θM+ 1

2
= θM , we set

ζi = θi+ 1
2
− θi− 1

2
for 0 ≤ i ≤M . Further, set ζ = max0≤i≤M ζi. Then, we employ the midpoint

rule to compute fε, that is,

fε,ζ(x) =

M∑
i=0

F (θi)δ
ε
X(θi)

(x)ζi =

M∑
i=0

F (θi)δ
ε(x−X(θi))ζi. (3.21)

It is useful to express fε,ζ as

fε,ζ(x) =

∫
Θ

F̂ ζ(θ)δε(x− X̂ζ(θ)) dθ, (3.22)

where F̂ ζ(θ) and X̂ζ(θ) = (X̂ζ
1 (θ), X̂

ζ
2 (θ)) are piecewise constant functions such that

F̂ ζ(θ) = F (θi), X̂ζ(θ) = X(θi) (θi− 1
2
< θ ≤ θi+ 1

2
, 0 ≤ i ≤M).
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From the standard theory, we know

∥F − F̂ ζ∥L∞(Θ) ≤ Cζ|F |W 1,∞(Θ), (3.23a)

∥X − X̂ζ∥L∞(Θ)n ≤ Cζ|X|W 1,∞(Θ)n , (3.23b)

where |F |W 1,∞(Θ) denotes the seminorm in W 1,∞(Θ) for example.

For the case of n = 3, fε,ζ is defined similary. We introduce a suitable partition of Θ =
(c1, d1)× (c2, d2) with cl < dl, l = 1, 2, and the size parameter ζ > 0. Let F̂ ζ(θ) and X̂ζ(θ) be
piecewise constant interpolations of F (θ) and X(θ), respectively. Then, fε is approximated by
fε,ζ defined as (3.22). For the partition of Θ, we only assume so that (3.23) hold true.

Remark 3.4.1. Let n = 2. If F (θ) is a periodic function, F (c1) = F (d1), and the partition is
uniform, fε,ζ is coincide with the trapezoidal rule for F (θ)δε(x −X(θ)). However, we here do
not explicitly assume the periodicity for F (θ).

Proposition 3.4.1. Let δε be a continuous function satisfying (3.3). Suppose that F ∈ C1(Θ).
Then, for 1 ≤ p < n

n−1 , we have

∥f − fε,ζ∥W−1,p ≤ C

[∣∣∣∣1− ∫
Rn

δε(y) dy

∣∣∣∣+ ∥ρδε∥Lp(Rn) + ζ + ζ1−n+n
p

]
,

where ρ(x) = x and C denotes a positive constant depending only on n, p, ∥JX∥L∞(Θ), |F |W 1,∞(Θ)

and |X|W 1,∞(Θ)n .

Proof. It is a just modification of the proof of Proposition 3.2.3. Let φ ∈ C∞
0 (Ω)n and express

it as

φ(x) = φ(X̂ζ(θ)) + (x− X̂ζ(θ)) ·
∫ 1

0

∇φ(t(x− X̂ζ(θ)) + X̂ζ(θ)) dt

for x ∈ Rn. Using this, we have

⟨f − fε,ζ , φ⟩W−1,p,W 1,p
0

=

∫
Θ

F (θ)φ(X(θ)) dθ −
∫
Θ

F (θ)φ(X̂ζ(θ))

(∫
Ω

δε(x− X̂ζ(θ)) dx

)
dθ︸ ︷︷ ︸

=I1

−
∫ 1

0

∫
Θ

F̂ ζ(θ)

∫
Ω

δε
X̂ζ(θ)

(x)(x− X̂ζ(θ)) · ∇φ(t(x− X̂ζ(θ)) + X̂ζ(θ)) dxdθdt︸ ︷︷ ︸
=I2

.

To estimate |I1|, we further divide it as follows:

I1 =

∫
Θ

[F (θ)− F̂ ζ(θ)]φ(X(θ)) dθ︸ ︷︷ ︸
=I11

+

∫
Θ

F̂ ζ(θ)[φ(X(θ))− φ(X̂ζ(θ))] dθ︸ ︷︷ ︸
=I12

+

∫
Θ

F̂ ζ(θ)φ(X̂ζ(θ))

(
1−

∫
Ω

δε(x− X̂ζ(θ)) dx

)
dθ︸ ︷︷ ︸

=I13

.

As in the proof of Proposition 3.2.3, we derive

|I13| ≤ C∥F̂ ζ∥Lp(Θ)

∣∣∣∣1− ∫
Rn

δε(y) dy

∣∣∣∣ ∥φ∥W 1,p′ (Ω).
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By (3.23), we have

|I11| ≤ C∥F − F̂ ζ∥Lp(Θ)∥φ∥Lp′ (Θ)

≤ Cζ|F |W 1,∞(Θ)∥φ∥W 1,p′ (Ω).

We apply Morrey’s inequality to obtain

|I12| ≤ C

∫
Θ

|F̂ ζ(θ)| · |X(θ)− X̂ζ(θ)|1−n/p′
· ∥φ∥W 1,p′ dθ

≤ Cζ1−n/p′
∥F̂ ζ∥L1(Θ)|X|W 1,∞(Θ)n∥φ∥W 1,p′ .

Estimation for |I2| is done in exactly the way as the proof of Proposition 3.2.3, that is, we
deduce

|I2| ≤ C∥F̂ ζ∥L1(Θ)∥ρδε∥Lp(Rn)∥φ∥W 1,p′ .

Finally, noting ∥F̂ ζ∥L1(Θ) ≤ C∥F∥L∞(Θ), we get the disired inequality.

Applying Proposition 3.4.1 instead of Proposition 3.2.3, we obtain the following result.

Theorem 3.4.1. Let (u, π) and (uεh, π
ε
h) be solutions of (3.5) and (3.15) with (3.12), respectively,

where fε is replaced by fε,ζ defined as (3.22). In addition to assumptions of Theorem 3.3.1, we
assume that F ∈ C1(Θ). Further, let ζ = γ2h with a positive constant γ2. Then, error estimates
(3.19) and (3.20) remain true.

3.5 Numerical experiments

Throughout this section, we let Ω = (−1, 1)2 ⊂ R2 and Γ = B(0, 1/2). We consider the
stationary Stokes problem

−ν∆u+∇π = f + g in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω.

Herein, we have added an extra outer force g = (1, 0) in order to illustrate a pressure jump
across Γ. We also set Θ = [0, 2π] and

X(θ) =
1

2
(cos(θ), sin(θ)).

In accordance to the simplest elasticity modeling (see [7, 46]), we take F (θ) = κ∂2X/∂θ2 with
κ is a suitable positive constant. Specifically, taking κ = 2, we set

F (θ) = − (cos(θ), sin(θ)) .

We deal with the following problem: Find (uεh, p
ε
h) ∈ Vh ×Qh such that

a(uεh, vh) + b(pεh, vh) = (fε,ζ + g, vh)L2 (∀vh ∈ Vh),

b(qh, u
ε
h) = 0 (∀q ∈ Qh).

Herein, fε,ζ is defined as (3.22) and ζ = 2π/M , θi = iζ, 0 ≤ i ≤ M . As a choice of δε, we
examine the following discrete delta function

ϕ(s) =

{
1
2 (1 + cos(πs)) (|s| ≤ 1)

0 (otherwise).
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For discretization, we take Th as a uniform mesh composed of 2N2 congruent right-angle
triangles; each side of Ω is divided into N intervals of the same length. Then each small square
is decomposed into two equal triangles by a diagonal. Each parameters are set as follows:

h =

√
2

N
, ε = h, M = N, and ζ =

2π

M
=

√
2πε.

To confirm convergence results described in Theorems 3.3.1 and 3.4.1, we compute the fol-
lowing quantities:

E
r(0)
h = ∥ũ− uh∥Lr , E

r(1)
h = ∥ũ− uh∥W 1,r , and E

r(3)
h = ∥π̃ − πh∥Lr ,

where (ũ, π̃) ∈ Vh′×Qh′ denotes the numerical solution using a finer triangulation Th′ . Moreover,
we compute

ρ
r(i)
h =

logE
r(i)
2h − logE

r(i)
h

log 2h− log h
(i = 1, 2, 3).

The result is reported in Table 3.1–3.3. We observe from Table 3.1 that convergence rates of
the W 1,1-error for velocity is first-order while that of the L1-error for pressure is larger than 1.
It is also observed that as p becomes larger, each convergence rate becomes worse. Nevertheless,
the rate of the L2-error for velocity is still larger than 1; see Table 3.3. All of those numerical
results support our theoretical results. From those numerical observations, we infer that the
following optimal-order error estimate,

∥uε − uεh∥W 1,r + h∥uε − uεh∥Lr ≤ Ch1−α

actually holds true. However, we postpone the proof of this conjecture for future study.

Figure 3.2: Profile of pressure πε
h for N = 80. A jump of pressure is observed across Γ so that

πε
h becomes a discontinuous function.
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h E
1(1)
h ρ

1(1)
h E

1(2)
h ρ

1(2)
h E

1(3)
h ρ

1(3)
h

0.2828 0.000436582 — 0.0104959 — 0.0508396 —
0.1414 0.00010817 2.0129 0.00525413 0.9983 0.0195045 1.382
0.0707 2.61239e-05 2.0498 0.00262956 0.9986 0.00892026 1.128
0.0353 7.315e-06 1.8364 0.0012387 1.086 0.00269059 1.729

Table 3.1: Convergence rates in W 1,r × Lr with r = 1.

h E
1.5(1)
h ρ

1.5(1)
h E

1.5(2)
h ρ

1.5(2)
h E

1.5(3)
h ρ

1.5(3)
h

0.2828 5.92276e-06 — 0.000648725 — 0.00932687 —
0.1414 9.07843e-07 1.803 0.000298948 0.745 0.00291411 1.118
0.0707 1.51842e-07 1.719 0.000150538 0.659 0.00113506 0.906
0.0353 2.37657e-08 1.783 7.14263e-05 0.717 0.000222016 1.569

Table 3.2: Convergence rates in W 1,r × Lr with r = 3/2.

h E
2(1)
h ρ

2(1)
h E

2(2)
h ρ

2(2)
h E

2(3)
h ρ

2(3)
h

0.2828 8.89239e-08 — 4.5878e-05 — 0.00196196 —
0.1414 8.78242e-09 1.669 1.98618e-05 0.60390 0.000535873 0.9361
0.0707 1.03983e-09 1.539 1.02922e-05 0.47422 0.000176548 0.8009
0.0353 1.05306e-10 1.651 5.33301e-06 0.47426 2.25745e-05 1.4836

Table 3.3: Convergence rates in W 1,r × Lr with r = 2.
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Chapter 4

Numerical analysis of a Stokes
interface problem based on
formulation using the
characteristic function

Abstract

Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet bound-
ary condition is considered. The interface condition is interpreted as an additional singular
force field to the Stokes equations using characteristic function. As a discretization method, the
finite element method is applied after introducing regularization of the singular source term.
Consequently, the error is divided into the regularization and discretization parts which will be
studied separately. As results, error estimates of order h

1
2 in H1 ×L2 norm for the velocity and

pressure, and of order h in L2 norm for the velocity are derived. Those theoretical results are
also verified by numerical examples.

4.1 Introduction

In study of multi-phase flow problems of viscous incompressible fluids, we often encounter the
Navier-Stokes equations with an interface condition

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇p = h(x, t), ∇ · u = 0 in Ω, t > 0, (4.1a)

u = 0 on ∂Ω, t > 0, (4.1b)

[u] = 0, [τ ] = g(x, t) on Γ, t > 0, (4.1c)

u(x, 0) = u(0)(x) in Ω. (4.1d)

for velocity u(x, t) and pressure p(x, t). Herein, Ω denotes a fixed bounded domain in Rd (d =
2, 3) with the boundary ∂Ω, Γ is a surface/curve included in Ω which implies the interface.
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The coefficient of kinetic viscosity ν is assumed to be a piecewise constant function (ν = ν1
inside Γ and ν = ν2 outside Γ for example). The traction (or stress) vector is denoted by τ ;
see Section 4.2 for the precise definition. Moreover, [·] stands for a jump across the interface Γ.
We assume that h(x, t), g(x, t) and u(0)(x) are given functions. There are number of literature
devoted to numerical methods for these kinds of interface problems (see [19,28,50]) for example.
In particular, the variational formulation of (4.1) is directly discretized by the finite element
method (see [7] and [52]). However, the variational formulation could not be applied to the
finite difference and finite volume methods because of the presence of the boundary integral term∫
Γ
g(x, t)v(x) dx. Even if we use the finite element method, the approximation of the boundary

integral term is quite technical. In order to avoid those difficulties, the immersed boundary (IB)
method is frequently applied in many applications. It is the method proposed by C. S. Peskin [46]
originally for solving a class of fluid-structure interaction problems [44, 45]. In the IB method,
the interface problem (4.1) is equivalently reformulated to classical partial differential equations
as follows. Let Γ(t) be parameterized as Γ(t) = {X(θ, t) = (X1(θ, t), . . . , Xn(θ, t)) | θ ∈ Θ} for
the Lagrangian coordinate θ ∈ Rd−1. Then, the interface condition (4.1c) is interpreted as an
outer force filed f defined on Ω and putted in the Navier-Stokes equations such that

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = h+ f, ∇ · u = 0 in Ω, t > 0, (4.2a)

u = 0 on ∂Ω, t > 0, (4.2b)

u(x, 0) = u(0)(x) in Ω, (4.2c)

f(x, t) =

∫
Θ

F (θ, t)δ(x−X(θ, t)) dθ. (4.2d)

Herein, F denotes the force density distributed along Γ(t), and δ is the Dirac delta function.
For computation, we solve (4.2) with the equation of the interface motion ∂X

∂t = u(X, t). The
main advantage of this method is that we can use fixed uniform meshes. Consequently, the
equation is discretized not only by the finite element method but also the finite difference
method. Moreover, f(x, t) is replaced by a regularized outer force fε(x, t) which is defined using
a smooth delta approximation. Then, the value of fε(x, t) is calculated by simple quadrature
formulas. Actually, the IB method is recognized to be one of most powerful methods for the
interface problems and it is widely applied at present. However, it seems that there are only a
few results about theoretical convergence analysis in contrast to a huge number of applications.
In a previous paper, Saito and Sugitani [49], we have studied the convergence of the IB method
for a model stationary Stokes problem. That is, the immersed force field is approximated using
a regularized delta function and its error in the W−1,p norm is examined for 1 ≤ p ≤ d/(d− 1).
Then, we consider the immersed boundary discretization of the Stokes problem and study the
regularization and discretization errors separately. Consequently, error estimate of order h1−α

in the W 1,1 × L1 norm for the velocity and pressure is derived, where α is an arbitrarily small
positive number. Error estimate of order h1−α in the Lr norm for the velocity is also derived
with r = d/(d−1−α). However, optimal order and L2 error estimates are still open at present.

At this stage, it is worth recalling that a simpler reformulation method for (4.1) was proposed
by H. Fujita et. al. [21] in 1995. Their reformulation reads

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = h+ g̃(∇χ · ñ), ∇ · u = 0 in Ω, t > 0, (4.3a)

u = 0 on ∂Ω, t > 0, (4.3b)

u(x, 0) = u(0)(x) in Ω. (4.3c)

Herein, χ denotes the characteristic function of an internal area surrounded by Γ(t) in Ω, and n is
the unit normal vector on Γ(t). Function g̃ and ñ stand for smooth extensions into Ω of g(x, t)
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and n(x, t). The reformulation (4.3) is discretized by the finite element and finite difference
methods using fixed uniform meshes as well as the IB reformulation. Actually, formulation (4.3)
is essentially equivalent to the IB formulation (4.2), whereas (4.3) seems to be easier to deal
with both mathematically and practically since there are no Lagrangian coordinate and no need
to generate lots of meshes along Γ(t) for each time step like moving mesh. In [21], the derivation
of reformulation and some numerical results are presented; no mathematical analysis including
convergence are given.

The purpose of this chapter is to study convergence of reformulation using the characteristic
function. To this end, following [49], we consider a model interface problem for the stationary
Stokes equations (Stokes interface problem) and study the regularization and discretization
errors separately. We state our model problem in the classical form and its weak formulation
in Section 4.2. Then, since the derivative of characteristic function ∇χ has singularities on
Γ, regularization is required. We sate our regularization procedure and examine its error in
Section 4.3. As a matter of fact, the H1 × L2 error estimate between regularized and original
problems is estimated of order ε

1
2 (see Proposition 4.3.2). Section 4.4 is devoted to the finite

element approximation by MINI (P1b/P1) finite elements. Theorem 4.4.1, the main result of
this chapter, offers the error estimates for discretization parameter h > 0. That is, the H1 ×L2

error for velocity and pressure converges at order h
1
2 , while the L2 error for velocity has a first

order convergence. Finally, we confirm our results by numerical experiments in Section 4.5. We
verify that desired convergence rates are obtained with uniform mesh.

4.2 Stokes interface problem

4.2.1 Geometry and Notation

Let Ω be a polyhedral domain in Rd(d = 2, 3) with the boundary ∂Ω. We suppose that Ω is
divided into two disjoint subdomains Ω0 and Ω1 by a simple Lipschitz curve (d = 2) or surface
(d = 3) denoted by Γ. We assume that the interface Γ is closed (∂Ω ∩ Γ̄ = ∅), or goes across
Ω (∂Ω ∩ Γ̄ ̸= ∅). For example, see Fig. 4.1. In both cases, the boundaries ∂Ωi(i = 0, 1)
are Lipschitz boundaries. As for function spaces and their norms, we follow the notation of

Figure 4.1: Example of Ω as ∂Ω ∩ Γ̄ = ∅ (left) and ∂Ω ∩ Γ̄ ̸= ∅ (right).

[1]. The standard Lebesgue and Sobolev spaces such as L2(Ω),H1(Ω),W 1,∞(Ω), L2(Γ), and

W 2− 1
p ,p(Γ) with some p > d will be used. We set H1

0 = {v ∈ H1(Ω) | v = 0 on ∂Ω} and
L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω
q dx = 0}. For a function space X, the space Xd denotes a product
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space X × · · · ×X. The norms are denoted by

∥u∥H1 = ∥u∥H1(Ω)d , ∥p∥L2 = ∥p∥L2(Ω) (4.4)

for abbreviations. H−1 stands for the dual space of H1
0 (Ω) and the dual product between

H−1(Ω)d and H1
0 (Ω)

d is written as ⟨·, ·⟩ = ⟨·, ·⟩H−1,H1
0
. Also, the inner product of L2(Ω)d is

denoted by (·, ·)L2 .

4.2.2 Model Stokes interface problem and equivalent formulations

We consider the following model Stokes interface problem

− ν∆ui +∇pi = 0, ∇ · ui = 0 in Ωi, (4.5a)

ui = 0 on ∂Ωi \ Γ (i = 0, 1), (4.5b)

u0 = u1, τ0 + τ1 = g on Γ, (4.5c)

for velocity ui and pressure pi with density ρ = 1 and kinetic viscosity ν > 0, respectively, in
Ωi(t) (i = 0, 1). Herein, τi denotes the traction vector defined by

τi = σ(ui, pi)ni (4.6)

where σ(u, p) = (σjk(u, p))1≤j,k≤n = −pI + ν(∇u + ∇uT) is called the stress tensor, I the
identity matrix, and ni the outward normal vector to ∂Ωi. Moreover, g is a prescribed function
standing for a jump of tractions across Γ. We assume g ∈ L2(Γ)d for the time being.

To deal with the problem precisely, we introduce a weak solution. By a weak solution to (4.5),
we mean a solution of the following variational equations are: Find (u, p) ∈ H1

0 (Ω)
d × L2

0(Ω)
such that

a(u, v) + b(p, v) =

∫
Γ

g · v dΓ (∀v ∈ H1
0 (Ω)

d), (4.7a)

b(q, u) = 0 (∀q ∈ L2
0(Ω)), (4.7b)

where

a(u, v) =
ν

2

∫
Ω

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂vj
∂xi

+
∂vi
∂xj

)
dx, (4.8a)

b(p, u) = −
∫
Ω

p (∇ · u) dx. (4.8b)

Indeed, if there exists a smooth solution (ui, pi) to (4.5), then (ui, pi) satisfies (4.7) as

u =

{
u0 in Ω0

u1 in Ω1

and p =

{
p0 in Ω0

p1 in Ω1.
. (4.9)

Proof. It is obvious that (u, p) defined by (4.9) belongs to H1
0 (Ω)

d×L2(Ω) since u is continuous
on Γ and vanishes on ∂Ω. Further, since ∇ · ui = 0 in Ωi, u satisfies (4.7b). In order to derive
(4.7a), multiply (4.5a) by v ∈ C∞

0 (Ω)d and integrate over Ωi, respectively. Then we have

−ν
∫
Ωi

∆ui · v|Ωi
dx+

∫
Ωi

∇pi · v|Ωi
dx = 0 ∀v ∈ C∞

0 (Ω)d, (i = 0, 1). (4.10)
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Using density result C∞
0 (Ω)d ⊂ H1

0 (Ω)
d, Green’s formula, and summing up both equations, we

obtain

a(u, v) + b(p, v) =

∫
Γ

(σ(u0, p0)n0 + σ(u1, p1)n1) · v dΓ, ∀v ∈ H1
0 (Ω)

d. (4.11)

Because of the jump condition (4.5c), the right hand side equals to
∫
Γ
g · v dΓ. This discussion

remains true if pi is replaced by pi + c with some c ∈ R. Finally, we can choose c ∈ R such that∫
Ω
(p+ c) dx = 0.

Since v 7→
∫
Ω
g · v dΓ by g ∈ L2(Γ)d is a bounded linear functional on H1

0 (Ω)
d, the well-

posedness of (4.7) is proved by the standard theory. Actually, we recall the following result.

Lemma 4.2.1 (cf. [31] and [17]). Let Ω be a connected, bounded, convex polyhedral domain of
Rd, and let h be in H−1(Ω)d. Then, there exists a unique weak solution (w, r) ∈ H1

0 (Ω)
d×L2

0(Ω)
of the Stokes problem

−ν∆w +∇r = h in Ω, ∇ · w = 0 in Ω, w = 0 on ∂Ω (4.12)

satisfying
∥w∥H1 + ∥r∥L2 ≤ C1∥h∥H−1 . (4.13)

Moreover, if h ∈ L2(Ω)d, we have (w, r) ∈ H2(Ω)d ×H1(Ω) and

∥w∥H2 + ∥r∥H1 ≤ C2∥h∥L2 . (4.14)

Herein, C1 and C2 denote positive constants depending only on Ω.

Now we proceed to derive an equivalent formulation to (4.7). To this end, we assume

Γ is of class C2, (4.15)

g ∈W 2− 1
p ,p(Γ)d with some p > d. (4.16)

According to [21, (1.17)], we have∫
Γ

g · φ dΓ = ⟨g̃(∇χ · ñ), φ⟩ ∀φ ∈ C∞
0 (Ω)d (4.17)

where χ is the characteristic function of Ω0 in Ω;

χ(x) =

{
1 x ∈ Ω0,

0 x /∈ Ω0.
(4.18)

Moreover, ñ is a C1 extension of n1 into Ω and g̃ is the extension of g given by the following
lemma. For the reader’s convenience, we recall the proof of (4.17) in Appendix.

Lemma 4.2.2. Suppose that (4.15) and (4.16) are satisfied. Then, there exists g̃ ∈W 2,p(Ω)d ∩
W 1,∞(Ω)d such that

∥g̃∥W 1,∞(Ω)d ≤ C0∥g∥
W

2− 1
p
,p
(Γ)d

(4.19)

where C0 denotes a positive constant depending only on Γ and Ω.
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The proof is a consequence of the lifting-extension theorem (see [43, Theorem 2-5.8. and
Theorem 2-3.9.]), and Sobolev embedding theorem (cf. [1, Theorem 4.12]).

At this stage, we set
f = g̃(∇χ · ñ). (4.20)

Then, we still have f ∈ H−1(Ω)d and state an equivalent formulation to (4.7): Find (u, p) ∈
H1

0 (Ω)
d × L2

0(Ω) such that

a(u, v) + b(p, v) = ⟨f, v⟩H−1,H1
0

(∀v ∈ H1
0 (Ω)

d), (4.21a)

b(q, u) = 0 (∀q ∈ L2
0(Ω)). (4.21b)

Finally, writing down the strong form of (4.21), we obtain the Stokes equations with singular
source term defined by (4.20):

−ν∆u+∇p = f in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω. (4.22)

which is equivalent to our problem (4.5) in the distribution sense.

Remark 4.2.1. Problem (4.7) can be directly discretized by the finite element method using the
boundary integral on Γ. Such methods were studied in [7], [52] for nonstationary Navier-Stokes
equations. However, in order to avoid moving mesh problem, we study the formulation (4.21)
and apply the finite element method to it using uniform mesh.

4.3 Regularization to the distribution form with charac-
teristic function

As explained in Introduction, for computation using uniform mesh, we introduce a regularized
force field fε ∈ L2(Ω)d as

fε = g̃ (∇χε · ñ) . (4.23)

Herein, ε > 0 is a regularization parameter and χε is an appropriate approximation to the
characteristic function χ. We assume that χε is a Lipschitz function. For fε given as (4.23), let
us consider

−ν∆uε +∇pε = fε in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω. (4.24)

Since fε ∈ L2, there exists a unique weak solution (uε, pε) ∈ H1
0 (Ω)

d × L2
0(Ω) for all ε > 0.

Then, the error of regularization is estimated using Lemma 4.2.1.

Proposition 4.3.1. Let (u, p) and (uε, pε) be the weak solution of (4.22) and (4.24), respectively.
Then we have

∥u− uε∥H1 + ∥p− pε∥L2 ≤ C∗∥χ− χε∥L2 (4.25)

where C∗ > 0 is a positive constant depending only on Ω,Γ, and ∥g∥
W

2− 1
p
,p .

Proof. By virtue of Lemma 4.2.1, we have

∥u− uε∥H1 + ∥p− pε∥L2 ≤ C1∥f − fε∥H−1

It remains to bound ∥f − fε∥H−1 by ∥χ− χε∥L2 . Indeed, we obtain for all v ∈ H1
0 (Ω)

d

⟨f − fε, v⟩H−1,H1
0

= ⟨g̃∇(χ− χε) · ñ, v⟩H−1,H1
0

= −(χ− χε,∇ · (ñ(g̃ · v)))L2

≤ ∥χ− χε∥L2∥ñ(g̃ · v))∥H1

≤ ∥ñ∥W 1,∞∥g̃∥W 1,∞∥χ− χε∥L2∥v∥H1 .

Hence, desired result holds as C∗ = C0C1∥ñ∥W 1,∞∥g∥
W

2− 1
p
,p .
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4.3.1 Construction of χε

Now we choose χε, for example, as a polyline for outward direction to Γ

χε(x) =

{
1 (x ∈ Ω0)

max{0, 1− dist(x,Γ)
ε } (x /∈ Ω0).

(4.26)

Then, χε is a Lipschitz function on Ω, i.e. χ ∈W 1,∞(Ω) and satisfies that

∥χ− χε∥L2(Ω) ≤ C3

√
ε (4.27)

where C3 is a positive constant depending only on Γ. To verify this, we set Γε = {x ∈ Ω1 |
dist(x,Γ) ≤ ε} and calculate as (noting that χ− χε equals to χε in Γε and vanishes outside)

∥χ− χε∥L2(Ω) = ∥χε∥L2(Γε)

≤ ∥χε∥L∞︸ ︷︷ ︸
≤1

meas(Γε)
1
2 ≤ C3

√
ε.

Therefore, we obtain the regularization error estimate as follows.

Proposition 4.3.2. Let (u, p) and (uε, pε) be respectively the weak solution of (4.22) and (4.24)
with (4.26). Then we have

∥u− uε∥H1 + ∥p− pε∥L2 ≤ C
√
ε. (4.28)

Remark 4.3.1. Any other choices of χε, such as C1 approximation, are of course possible for
implementation. For our error estimates, however, it is enough to suppose χε ∈ W 1,∞. The
order of error is independent of χε.

4.4 Discretization by finite element method

This section is dedicated to a study of the finite element approximation to (4.24). Let {Th}h
be a family of regular triangulations of Ω, i.e., there exists κ > 0 satisfying hT ≤ κρT for all
T ∈ Th. Herein, hT denotes the diameter of T , ρT the diameter of the inscribed ball of T , and
h = max{hK | K ∈ Th}.

We employ the P1-b/P1 (MINI) element for discretization as setting

Vh = {vh ∈ C(Ω)d ∩H1
0 (Ω)

d | vh|T ∈ [P1(T )⊕ B(T )}]d (∀T ∈ Th)},
Qh = {qh ∈ C(Ω) ∩ L2

0(Ω) | qh|T ∈ P1(T ) (∀T ∈ Th)}.

Therein, Pk(T ) is the set of all polynomials defined on T ∈ Th of degree ≤ k, and B(T ) =
span{λ1λ2 · · ·λd+1} is so-called bubble function with λi the barycentric coordinates of T . It is
well-known that a pair of Vh and Qh satisfies the uniform Babuška–Brezzi (inf–sup) condition

sup
vh∈Vh

b(vh, qh)

∥vh∥H1

≥ κ2∥qh∥L2 (qh ∈ Qh),

where κ2 > 0 is independent of h.

Remark 4.4.1. We deal with the P1-b/P1 element only for the sake of simple presentation.
An arbitrary pair of conforming finite element spaces Vh ⊂ H1(Ω)d and Qh ⊂ L2

0(Ω) satisfying
the uniform Babuška–Brezzi condition is available.
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The finite element approximation to (4.24) is given as follows: Find (uεh, p
ε
h) ∈ Vh ×Qh such

that

a(uεh, vh) + b(pεh, v) = (fε, vh)L2 (∀vh ∈ Vh), (4.29a)

b(qh, u
ε
h) = 0 (∀qh ∈ Qh). (4.29b)

The well-posedness of (4.29) is a standard result, for example, refer to [47, Theorem 15.3.].

4.4.1 Error estimate

We are now ready to state the error estimates. First, discretization error is bounded by the
following.

Proposition 4.4.1. Let (uε, pε) and (uεh, p
ε
h) be the solution to (4.24) and (4.29), respectively.

Then, we have

∥uε − uεh∥H1 + ∥pε − pεh∥L2 ≤ C∗∗h∥χε∥H1 , (4.30a)

∥uε − uεh∥L2 ≤ C∗∗h2∥χε∥H1 . (4.30b)

where C∗∗ denotes a positive constant depending only on Ω,Γ, ∥g∥
W

2− 1
p
,p . Moreover, if χε is

given by (4.26), then we derive

∥uε − uεh∥H1 + ∥pε − pεh∥L2 ≤ C∗∗ h√
ε
, (4.31a)

∥uε − uεh∥L2 ≤ C∗∗ h
2

√
ε
. (4.31b)

Proof. It is well known that the finite element approximation makes the optimal approximation.
That is,

∥uε − uεh∥H1 + ∥pε − pεh∥L2 ≤ C4 inf
(vh,qh)∈Vh×Qh

(∥uε − vh∥H1 + ∥pε − qh∥L2) ,

where C4 > 0 depends only on Ω. Refer to [47, Theorem 15.3], for example. Applying the
standard interpolation error estimates and stability result (4.14), we obtain that

∥uε − uεh∥H1 + ∥pε − pεh∥L2 ≤ C5h∥fε∥L2 .

Furthermore, by virtue of the duality technique in [23, Theorem 1.9. §1. Chapter II], we have

∥uε − uεh∥L2 ≤ C5h
2∥fε∥L2 .

Therein, C5 depends only on Ω. Then, estimates (4.30) is consequently obtained as C∗∗ =
C0C5∥g̃∥

W
2− 1

p
,p∥ñ∥L∞ since ∥fε∥L2 = ∥g̃(∇χε · ñ)∥L2 ≤ ∥g̃∥L∞∥ñ∥L∞∥∇χε∥L2 . When χε is

given by (4.26), we continue to calculate as

∥∇χε∥L2(Ω) =

∥∥∥∥∇dist(x,Γ)

ε

∥∥∥∥
L2(Γε)

≤ 1

ε
meas(Γε)

1
2 ∥dist(x,Γ)∥W 1,∞ =

1√
ε
∥dist(x,Γ)∥W 1,∞ .
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At this stage, we apply Propositions 4.3.2 and 4.4.1 to deduce the total error estimate which
is the main theorem in this chapter.

Theorem 4.4.1. Let (u, p) and (uεh, p
ε
h) be respectively the solution to (4.22) and (4.29) with

(4.26). Then we have

∥u− uεh∥H1 + ∥p− pεh∥L2 ≤ C

(√
ε+

h√
ε

)
, (4.32a)

∥u− uεh∥L2 ≤ C

(√
ε+

h2√
ε

)
. (4.32b)

where C denotes a positive constant depending only on Ω,Γ, ∥g∥
W

2− 1
p
,p . In particular, if ε = c1h

with a positive constant c1, then

∥u− uεh∥H1 + ∥p− pεh∥L2 ≤ C
√
h. (4.33)

Else if ε = c1h
2 then

∥u− uεh∥L2 ≤ Ch. (4.34)

where C denotes a positive constant depending only on Ω,Γ, ∥g∥
W

2− 1
p
,p and c1.

Remark 4.4.2. As will be observed in next section, we infer that

∥u− uεh∥L2 ≤ Ch

actually holds true both as ε = h and ε = h2. In order to prove this, there are some difficulties
in constructing appropriate duality problem to the regularized equations (4.24).

4.5 Numerical examples

In this section, we show some results of numerical experiments to verify our theoretical results.
We consider the following Stokes interface problem

− ν∆ui +∇pi = ι, ∇ · ui = 0 in Ωi (i = 0, 1), (4.35a)

ui = 0 on ∂Ωi \ Γ, (4.35b)

u0 = u1, τ0 + τ1 = g on Γ, (4.35c)

for ν > 0. Here, ι is a an extra outer force field added in order to illustrate a pressure jump
across Γ. We want to obtain the solution of (4.35) numerically. To do this, for fε given as
(4.23), we consider the stationary Stokes problem

−ν∆uε +∇pε = fε + ι in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω, (4.36)

and its regularized problem

−ν∆uε +∇pε = fε + ι in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω. (4.37)

Then, we solve the following finite element approximation

a(uεh, vh) + b(pεh, vh) = (fε + ι, vh)L2 (∀vh ∈ Vh), (4.38a)

b(qh, u
ε
h) = 0 (∀qh ∈ Qh). (4.38b)
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First example corresponds to the case ∂Ω ∩ Γ = ∅. Setting as Ω = (−1, 1)2 ⊂ R2 and

Γ = {(x, y) ∈ Ω | r = (x2 + y2)
1
2 = 1/2}, we impose ν = 1 and

g = n = −
(x
r
,
y

r

)
and ι = (1, 0).

Then, g, n ∈ C∞(Γ)2 have canonical extension to C∞(Ω\{0})2. Indeed, we have g̃, ñ ∈
W 1,∞(Ω)2. We simply use χε as described in (4.25). For discretization, we employ the uni-
form triangulation over Ω, which is divided into N2 isosceles right triangles with h =

√
2/N .

Hence, it is ensured by Theorem 4.4.1 that

• if ε = h then ∥uε − uεh∥H1 + ∥pε − pεh∥L2 ≤ C
√
h,

• if ε = h2 then ∥u− uεh∥L2 ≤ Ch.

To verify this point, we compute the following quantities:

E
(1)
h = ∥û− uε1h ∥L2 , E

(2)
h = ∥û− uε1h ∥H1 , E

(3)
h = ∥p̂− pε1h ∥L2 ,

G
(1)
h = ∥û− uε2h ∥L2 , G

(2)
h = ∥û− uε2h ∥H1 , G

(3)
h = ∥p̂− pε2h ∥L2 .

Herein, εi is chosen as εi = hi (i = 1, 2) and (û, p̂) ∈ Vĥ × Qĥ denotes the numerical solution
using a finer triangulation Tĥ. Then, we observe

ρ
(i)
h =

logE
(i)
2h − logE

(i)
h

log 2h− log h
, and µ

(i)
h =

logG
(i)
2h − logG

(i)
h

log 2h− log h
(i = 1, 2, 3).

The results are reported in Table 4.1-4.2. It is showed in Table 4.1 that H1 × L2 error of
(u, p) is of order more than 1/2, and in Table 4.2 that L2 error of u is of order more than 1.
These numerical results support our theoretical results. Note that every order of error with
ε = h is higher than with ε = h2.

h E
(1)
h ρ

(1)
h E

(2)
h ρ

(2)
h E

(3)
h ρ

(3)
h

0.1414 1.422e-03 — 0.0316202 — 0.246641 —
0.0707 5.056e-04 1.492 0.0174619 0.856 0.170653 0.531
0.0353 1.462e-04 1.790 0.0092711 0.913 0.093534 0.867
0.0176 3.601e-05 2.021 0.0051765 0.840 0.022952 2.026

Table 4.1: Convergence rates of example 1 as ε = h.

h G
(1)
h µ

(1)
h G

(2)
h µ

(2)
h G

(3)
h µ

(3)
h

0.1414 1.509e-03 — 3.771e-02 — 1.508e-01 —
0.0707 6.081e-04 1.312 2.524e-02 0.579 8.616e-02 0.807
0.0353 2.261e-04 1.427 1.843e-02 0.453 5.234e-02 0.718
0.0176 9.610e-05 1.234 1.230e-02 0.583 2.432e-02 1.105

Table 4.2: Convergence rates of example 1 as ε = h2.

Second example corresponds to the case ∂Ω ∩ Γ ̸= ∅. We set Ω = (−1, 1)× (0, 1) ⊂ R2 and
Γ equal to y axis. In this simple case, we have a exact solution

u = (0, 0) and p =

{
y − 1 (x > 0)

y (x ≤ 0)
in Ω
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Figure 4.2: Magnitude of pressure pε1h of example 1 for N = 160. The pressure solution becomes
discontinuous function across interface Γ.

to (4.35) for ι = (0, 1) and g = n = (−1, 0). Therefore, the numerical error is measured precisely.
We compute same quantities in example 1 and reports in Table 4.3-4.4. In this case, we observe
there are almost no differences between ε = h and ε = h2. H1 × L2 error of (u, p) is of order
1/2, and L2 error of u is of order 1.5, which suggests that the optimal-order error estimate

∥u− uεh∥H1 + ∥u− uεh∥L2 ≤ C
√
h.

holds true when ε = c1h
α with α ≥ 1. The proof of this conjecture remains for future study.

h E
(1)
h ρ

(1)
h E

(2)
h ρ

(2)
h E

(3)
h ρ

(3)
h

0.0707 2.94849e-05 — 2.824e-03 — 4.853e-02 —
0.0353 1.07469e-05 1.456 2.028e-03 0.477 3.341e-02 0.538
0.0176 3.85533e-06 1.478 1.445e-03 0.489 2.329e-02 0.520
0.0088 1.37281e-06 1.489 1.025e-03 0.494 1.635e-02 0.510

Table 4.3: Convergence rates of example 2 as ε = h.

h G
(1)
h µ

(1)
h G

(2)
h µ

(2)
h G

(3)
h µ

(3)
h

0.0707 1.250e-04 — 1.198e-02 — 5.491e-02 —
0.0353 4.559e-05 1.456 8.606e-03 0.477 3.816e-02 0.525
0.0176 1.635e-05 1.478 6.131e-03 0.489 2.674e-02 0.512
0.0088 5.824e-06 1.489 4.351e-03 0.494 1.882e-02 0.506

Table 4.4: Convergence rates of example 2 as ε = h2.
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Appendix A. Proof of (4.17)

In this appendix, we prove the equation∫
Γ

g · φ dΓ = ⟨g̃(∇χ · ñ), φ⟩ ∀φ ∈ C∞
0 (Ω)d. (4.17)

Proof. First, we note that the assumptions (4.15) and (4.16) imply g̃ ∈ W 1,∞(Ω)d and ñ ∈
H1(Ω)d. Then, we have g̃(∇χ · ñ) ∈ H−1(Ω)d by the representation

g̃(∇χ · ñ) =
d∑

i=0

∂

∂xi
(g̃χñi)−

d∑
i=0

χ
∂

∂xi
(g̃ñi).

Furthermore, for all φ ∈ C∞
0 (Ω)d, the function (g̃ · φ)ñ belongs to H1

0 (Ω)
d. Thus, we have

⟨g̃(∇χ · ñ), φ⟩ = ⟨∇χ, (g̃ · φ)ñ⟩ = −⟨χ,div((g̃ · φ)ñ)⟩

= −
∫
Ω0

div((g̃ · φ)ñ) dx = −
∫
Γ

(g · φ)n1 · (−n1) dΓ.
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