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Abstract

This is a resume of the doctoral thesis of the author. In this paper, we summarise
the results on the Fukaya-Seidel categories of PALFs and an application of Fukaya
categories to the theory of the Koszul duality.

In Chapter 2, we study the Fukaya-Seidel categories of PALFs. We study examples
and show that the derived Fukaya-Seidel categories have more information than the
Milnor lattices of the PALFs.

In Chapter 3, we study an application of Fukaya categories to the theory of the
Koszul duality. First, we define A.,-Koszul duals for directed A, -categories in terms
of twists in their A-derived categories. Then, we compute a concrete formula of A.-
Koszul duals for path algebras with directed A,-type Gabriel quivers. The formula
unveils all the ext groups of simple modules of the algebras and their higher composi-
tion structures.

1 Introduction

The results of this paper is based on the symplectic geometry, especially, the theory of
the Fukaya categories. The Fukaya categories are A.-categories defined for symplectic
manifolds [FOOO10,], [FOOO10,]. Those categories are studied in the context of ho-
mological mirror symmetry. The celebrated homological mirror symmetry conjecture
was first proposed by Kontsevich [K0o94] and predicts the equivalence of two triangu-
lated categories D" Fuk(M) and D’coh(X) for certain pairs of Calabi-Yau manifolds
(M, X), called mirror pair. Here the former category D" Fuk(M) is the split closure of
the derived Fukaya category of M as a symplectic manifold [FOOO10,], [FOOO10;]
and the latter category D’coh(X) is the derived category of the category of coherent
sheaves on X as a complex manifold. This conjecture is proved for several pairs of
Calabi-Yau manifolds. See, for example, [PZ01], [Fu02], [Sel5] and so on.

The concept of Fukaya-Seidel categories is defined for exact Lefschetz fibrations.
Here, exact Lefschetz fibrations are, roughly speaking, Lefschetz fibrations with suit-
able exact symplectic structure [Se08]. The Fukaya-Seidel categories appear when
we consider the case that X is a Fano manifold. In this case, the mirror partner of
X is a Landau-Ginzburg model W [HVO00]. Roughly speaking, the Landau-Ginzburg
model is a holomorphic function W on a Kihler manifold, called potential function,
with isolated singularities. The derived Fukaya-Seidel category DF (W)™ is the trian-
gulated category defined by using the data of the singularities, with the techniques of
symplectic geometry [Se08], expected to be equivalent to DPcoh(X).

As is common in mathematics, the theory of Fukaya categories is developed in the
interaction with the other fields. The first one which is relevant to this paper is the
4-dimensional topology. The concept of PALFs is one of the most studied geomet-
ric structure in 4-dimensional topology. It is known that the Lefschetz fibrations are
completely determined in terms of the monodromy operator on a regular fibre, so it
is related to the study of mapping class groups of oriented surfaces. Hence, it has a
combinatorial nature [Ka80]. If a given 4-manifold admits a structure of Lefschetz
fibration, we can compute its homology groups, fundamental groups, and (some part



of) the intersection forms by the data of monodromy. Moreover, if a 4-manifold X
admits a structure of closed Lefschetz fibration, we can compute the signature of X
[ENO5].

There are two very fundamental results which relate the PALFs and symplectic geo-
metry. The first result due to Donaldson shows that every symplectic 4-manifold admits
a structure of Lefschetz fibration after sufficiently many times of blow-ups [D099]. The
second result due to Gompf [Go05] is that every positive Lefschetz fibration admits a
symplectic structure. After those two papers, there are many studies involving tech-
niques of both symplectic geometry and PALFs, see e.g. [DS03], [Au06], [ASOS],
[In15].

Along this context, the author proposes a new method to study the PALFs with a
symplectic technique, the derived Fukaya-Seidel categories. The author proved that
any PALF admits a structure of exact Lefschetz fibration. Thereafter, the author proved
that the derived Fukaya-Seidel category of a PALF is independent of the choice of the
exact symplectic structure attached to the PALF.

It is known that the concept of Fukaya-Seidel categories is a “categorification” of
the Milnor lattices i.e. the K-groups of the derived Fukaya-Seidel categories coincide
with the Milnor lattices. Thus, we naturally expect that the derived Fukaya-Seidel cat-
egories catch sensitive information that we cannot capture it by the Milnor lattices. In
Section 2, we study examples showing that this is true (Theorem 2.2), i.e. the Fukaya-
Seidel categories do have more information than the Milnor lattices. In this theorem,
we distinguish three PALFs which share the same Milnor lattice by their Hochschild
cohomology groups of Fukaya-Seidel categories. Hence, we have a new method to
distinguish PALFs.

The second field which is relevant to this paper is the theory of the Koszul duality.
Let us review the fundamental results about Koszul duality in [L686]. (The results
presented here is a simplified version.) Let Ay = k be a field, A| be a finite dimensional
vector space and / be a subspace of A;®A;. Define A := T(A;)/I as the quotient algebra
of the tensor algebra of A; over Ay = k. Then, we have E := Exty(k, k) = T(A})/I*,
where (—)* is the linear dual over k and /* C A} ® A7 is the annihilating submodule of
I c Ay ® Ay (we use the natural isomorphism between A} ® A} and (A} ® A;)*). Let
us fix an isomorphism between A; and Aj. Then, / and /* are mutually complemental.
Hence, we can say that the products and relations interchange between A and E. By
the above computation, Extg(k, k) is naturally isomorphic to A. This is what we call
Koszul duality and we can say that Koszul duality is a duality between products and
relations represented by the Yoneda Ext algebra. Moreover, it is known that the certain
derived categories of A and E are equivalent [BGS96].

Nowadays, many phenomena related to the Koszul duality are widely observed, for
example, the Koszul duality for Koszul algebras [Pr70], [L686], [BGS96], its gener-
alisation to augumented-A., algebras [LPWZ04], a generalisation to Koszul operads
[GK94], [Va07], [LV12], and its relation to mirror symmetry [AKOO8]. The concept
of Fukaya categories emerges in the context of Koszul duality in the paper of A. J.
Blumberg, R. L. Cohen, and C. Teleman [BCT09] and the paper of T. Etgii and Y.
Lekili [EL16]. These papers state that End A.-algebras of two certain objects in some
Fukaya categories are Koszul dual to each other.

In this paper, we are interested in the case that there exist higher degree (homogen-



ous) relation, i.. for the algebra A = T4 (A1)/I with I(¢ A%?) c @, A?. Here,
Ay =k®dk®---®k, A is a finitely generated Ap-module, and ® is taken over Ay. In
general, there is no easy description of E. Moreover, the ext algebra Extg(Ag, Ag) and
A are no longer isomorphic. However, we can overcome this difficulty by referring the
results in [LPWZ04]. They generalise the concept of Koszul dual to the augmented
Ac-algebras. After that, they prove that the twice dual is quasi-isomorphic to the ori-
ginal augmented A -algebra and their derived categories are equivalent (under some
finiteness condition). The above algebra A is an example of an augmented A.,-algebra
when Ay = k, so we have its dual. But the description is too complicated and we can
not interpret the Koszul dual as the duality between products and relations.

The results appear in section 3 gives a new expression of A.,-Koszul duals of cer-
tain path algebras with relations (Theorem 3.5). We use the technique of the Fukaya
categories and Dehn twists to compute A,-Koszul duals. Our expression of As,-Koszul
duals does not contain anything new in the standpoint of the abstract theory of Koszul
duality. However, we show that the technique of the Fukaya categories can be used for
a concrete computation of an algebraic problem. Moreover, our description computed
via the Fukaya categories provides a new way of understanding of Koszul duality as a
duality between higher products and relations. Namely, we present an explicit descrip-
tion of A,,-Koszul dual of certain class of path algebras with relations (Theorem 3.5)
which enable us to understand the Koszul duality as a duality between higher products
and relations. The notion of A.-Koszul dual is a natural generalisation. This is sup-
ported by the following two corollaries: an A,-Koszul dual C of 8B is naturally quasi-
isomorphic to A (Corollary 3.3); A and its Koszul dual 8 are A.-derived equivalent,
ie. TwA = Tw8B (hence, in particular, they are derived equivalent ,i.e. DA = DB)
(Corollary 3.2).

The computation of the A-Koszul dual takes place in the Fukaya categories of
exact Riemann surfaces. In general, the Koszul dual can be computed by the operation
in the derived category called the twist. Seidel proved in [SeO8] that the twists are
“quasi-isomorphic” to the Dehn twists in the Fukaya category. Thus, we first find
a directed subcategory of the Fukaya category Fuk(M) which is isomorphic to our
directed A.-category A = A(R). Then, we compute the Dehn twists of the objects
which are lying in a directed subcategory of Fuk(M) which is A,-derived equivalent
to the category of modules of the algebra which is in our consideration. Finally, we
investigate how the resulting curves intersect and encircle polygons to compute the
morphism spaces and their higher compositions. After that, we find that there is a
(d + 1)-gon in M corresponding to a degree d relation, and the (d + 1)-gon generates the
d-th higher composition u?. This is our geometric explanation of the duality between
higher products and relations. Some typical example is presented in Corollary 3.7.

Here, we fix some notations and assumptions we often use. In this paper, k is a
fixed field; all categories are of over k; all graded vector spaces are assumed to have
the property that their total dimensions are finite; modules are always right modules;
manifolds are oriented; all the additional structures on manifolds are assumed to be
compatible with their orientations; the support of any auto-diffeomorphism is away
from the boundary of the manifold; the character # always stands for the Fukaya cat-
egory Fuk(M) of M where M is “the” exact symplectic manifold we consider in each
paragraph; unless otherwise stated.
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2 Results on the Fukaya-Seidel categories of surface
Lefschetz fibrations

The whole definitions and proofs can be found in [Sul6].

In this subsection, we consider three Lefschetz fibrations 7y, 7, and 3 with regular
fibre X3 ;. Those Lefschetz fibrations are defined by specifying their vanishing cycles
Ly, Ly, and L; as in Figure 1.

Figure 1: Vanishing cycles of 7;



These three Lefschetz fibrations have isomorphic Milnor lattices, namely M, = 73,
([L;], [L;D) = 0, and ([L;], [L;]) = £1 for j # I (the sign depends on the orientations of
the vanishing cycles which we do not define them here).

Lemma 2.1 The above three PALFs n;: E; — D satisfy the condition of vanishing of
the two-fold first Chern class, i.e. 2¢c1(E;) = 0.

From the above lemma, we can define the Fukaya-Seidel category of m;. These
three PALFs can be distinguished by Hochschild cohomology groups as follows.

Theorem 2.2 The above three Lefschetz fibrations can be distinguished in terms of
Fukaya-Seidel categories. Namely, their Hochschild cohomology groups are as fol-
lows:

HH(F(m)7) =k, HH'(F(m)7) =k,
HH(F(m)7) = k, HH'(F (7)) =0,
HH(F(m3)7) = k2, HH'(F(m3)7) = k.

The Milnor lattices of the above three Lefschetz fibrations all agree, so this is an
example that the Fukaya-Seidel categories do have more information than the Milnor
lattices. But in fact, the total space of m, 7, 13 are not homeomorphic each other, so
there leave a lot to be desired. So, there emerges a natural question:

Problem 2.3 [s there two PALF's rty, my with vanishing of the two-fold first Chern class
such that the total spaces are homeomorphic (or diffeomorphic), the Milnor lattices
are isomorphic, but their category of twisted complexes of Fukaya-Seidel categories
are not equivalent?

The category of twisted complexes has more information than the derived cat-
egory of a given A-category. Namely, Kajiura [Kaj13] proved that there are two
Ac-categories Cy and C; in such that DCy = DC but TwCy ¥ TwC;. So there emerges
another question:

Problem 2.4 Is there a geometric example of this? This asks that whether there ex-
ist two Lefschetz fibrations mty,mty such that DF ()~ = DF (my)~ but Tw¥ (1)~ #
TwF (7).

3 Results on the Koszul duality theory
The whole definitions and proofs can be found in [Sul7]. This paper is under review

of the Journal of Symplectic Geometry.
The first theorem gives us a method to compute A.-Koszul duals.



Theorem 3.1 Let A be a directed A« -category with the object set Ob(A) = {Xy <
X, < -+ < X,,}. Suppose that there exist an exact Riemann surface M and a collec-
tion of Lagrangian branes L* = (L, L’f, <oy LYy such that A and F (L") are quasi-
isomorphic. Then, F(S") is an Aw-Koszul dual of A, where st = (Sff, Sﬁ_l, ey Sg

is a collection of objects defined by the iteration of Dehn twists S’; =TTy Ty lL’j.
i

The proof heavily use Theorem 17.16 in [Se08] which states that some equivalence
between algebraic twists and Dehn twists in the Fukaya categories.

Thanks to the above theorem, we can compute an A.-Koszul dual via the Fukaya
categories and Dehn twists. Moreover, we obtain the following corollaries.

Corollary 3.2 Let A and F~(S") be as in Theorem 3.1. Then, there exists a quasi-
isomorphism between TwA and TW(?H(S#)), hence there exists a equivalence of de-
rived categories between DA and D(F ~(S")) as triangulated categories.

Corollary 3.3 Let A and F(S*) be as in Theorem 3.1. Then, A is an Aw-Koszul
dual of F~(S").

3.1 Combinatorial setup

In this subsection, we prepare notations to describe A.-Koszul duals of path algebras

ﬁ
with relations whose Gabriel quiver is the directed A,-quiver A,,,

@) @ @3 @y,
L] [ ] [ ] e o

Let R be a path algebra with relations R = k—A)/ 1,02, - - -, Pm), Where each relation
)= @1 isapath from s;to¢; fors;,¢; € [0,n]z :={0,1,...,n}. Wecall s;
and ¢; a source point and a target point of p; respectively. We assume that the length of
any relation is greater or equal to two, i.e. t;—s; > 2. We call p; a relation corresponds
to [s;,¢;]z. We will sometimes identify relations and such subsets of [0,n]z. Now,
we can assume that [s;, %]z ¢ [sj,tjlz fori # jand sy < so < --- < s, (hence
H <t <---<ty,),s0weassume them. We write S = {s1,52,...5,},T ={t1,t2,...,tn}
and write R = Rs 7 to emphasise S and T. We write the associated directed Ae-
category as Ag . From now, we fix n,S,and T'.

We define key items to describe an A,,-Koszul dual of Ay 7. First, we define a map
d: [0,n]z — [0, n]zU{-o0} by d(p) = max{s;|t; < p} = max{s|s < p,homg (s, p) =
0}. This is the nearest point s smaller than p such that hom . (s, p) vanishes. We define

a finite decreasing sequence {al(.p )}Osislp as follows. First, we set a(()o) =0and/y = 0.

For p > 1, we define af)p) =p, a(lp) = p — 1. Suppose we have defined afip) forg <i. If

d(af.f)z) # d(agf)l), then we set ag”) = d(agf)z). If d(al(.f)z) = d(agf)l), then we set [, = i— 1
and finish the definition. Then, we have the following basic property by the elementary
proof.

Lemma 3.4 The sequences {agp)}ogslp are strictly decreasing and non-negative, i.e.
() ()
0<a"” <a’).



3.2 A.-Koszul duals of path algebras

For n,S,T, we define a new directed A-category By 7 as follows. Define Ob(B) =
{B(n) < B(n—1) < --- < BO)}, homiy_ (B(p), B(@)) = k-, (where 17, is a formal
symbol), and other hom’s are zero. Let us write nlp = ﬁp’aﬁp). Then, we have that
f1p.q € homgg, (B(p), B(g)). Finally, we define u’s as follows:

(_1)(|ﬁj‘“""" +1) iﬁ.zo-/;,|

d,~ - - _ i if it can be non-zero
H (njd—lsjd’ Njszjaars ™" s nj()’j]) = Mio-ja ( . )
(otherwise).

Here, “it can be non-zero” means that homg; . (B(jo), B(ja)) is non-zero and the
relevant morphisms satisfy the degree condition |ﬁjli»jd| = |7”7j[,,j, |+ |f7j,,j2|+- . '+|7~7jd_|,jd| +
(2 — d), where |x| stands for the degree of x. Then, this defines a directed A-category.

Now, the following theorem is the main theorem of this chapter:

Theorem 3.5 B 7 is an As-Koszul dual of Ag r.

Corollary 3.6 An A.-algebra Bsr = EBM. homg, , (B(i), B(j)) is quasi-isomorphic to
(RS,T)ijg~

The outline is as follows: first, we find an exact Riemann surface M and a collection
of Lagrangian branes L” such that As 7 and ¥ (L") are quasi-isomorphic; next, we
compute the Dehn twists and obtain an A.-Koszul dual as 7~ (S*).

Now, we see the structure of our A-Koszul dual Bg 7 with some concrete ex-
amples. First, we see the case when R = Ry 7 is a quadratic algebra, i.e. all the relations
are of the form [i, 7 + 2]z. By easy calculation, we can show that homg(B(p), B(q)) for
p = q is non-zero only when {g,q + 1,--- ,p — 2} € §. Moreover, when this is the
case, the degree of the non-zero morphism is p — g. By the condition of degree, we can
show that ¢ = 0 except for d = 2. Finally, we can conclude that 8 is isomorphic to
A((Rgee)°P), where € :={0,1,...,n=2}\ S and T¢ = {2,3,...,n}\ T.

For example, if aj;; € homg(j, j + 1) and @2 € homgz(j + 1, j + 2) satisfy that
(@2, @je1) = po(@2,@je1) = @jajy # 0, then we have p?(7ja1,j, fjs2je1) =
,ué(f]ﬂ],j, fj+2,j+1) = 0. Conversely, if aj,1 € homg(j, j+1) and @j» € homz(j+1, j+
2) satisfy that g*(@js2, @js1) = p5(@ji2, @js1) = 0, then we have (7 j1,j, fjs2,j+1) =
,u%(f] j+1,js 11j+2,j+1) = T1j+2,; # 0. Thus, we can observe that the products and relations
of A and B are “reversed” as we have already seen.

Next, we see the case that n = 3 and we have only one relation corresponding to
[0,3]z. The algebra R = Rgr is no longer quadratic. For this algebra, the duality
emerges as the following form. In this case, the formula defines 8 as follows: hom
spaces are all zero but hom%(B(j), B(j)) = k - ij; ;, homg(B(j + 1), B(j)) = k - 141,
hom%(B(3), B(0)) = fj30; 1’s are all zero but ,u3(f71,0,772,1, f132) = f30. This is nothing
but the duality between product and relation. This phenomenon cannot be captured in
the dg settings because the dg-structure lacks the structure of higher composition maps.

Let us see the general cases of Rg 7. We can show [, > 2 & p € T and when
(P)
2

this is the case, there exists a relation corresponding to [a; ', p]z. We can see that the



relation corresponds to [s;, 7]z in Rs 7 emerges in the structure of B as the degree two
morphism 7, ;, with nontrivial higher composition p"/=%.
These are the typical examples:

Corollary 3.7 Define S, and Tpy forn > kby S, = {0,1,--- ,n—k} and {k, k +
1,---,n}. Let us write Apy '= As,,, T,0o Ank = As 1,0 and By = Bg, 1., Then, we
have the following:

1. For B, we have

k-fpq (d=0isevenand p—q =kl ford =2l)
homdBmk(B(p), B(q)) =3k -7, (d=0isoddandp—q=ki+1ford=2l+1)

0 (otherwise)
d k(' n! 1 _ 2. o# # 3
and u (77p”7p—1"-"'7p7k+1) =1, Sp - Spfk[Z]. (There are many other col
lections of morphisms with non-vanishing higher compositions, but we omit to

write.)

2. Especially, for n = k, our category B, := B, is described as follows: Ob(8B,) =
{B(n) > B(n—1) > --- > B(0)},

k-n (d=0,p=gq)
k-m, (d=1,p-q=1)
k-m: (d=2p=nq=0)

0 (otherwise),

hom, (B(p), B(@)) =

and p’s are all zero but y* with identity morphisms and W"(ny,n_,....n}) =

ni: St - st

It is remarkable that the whole information of relations of Rg 7 can be recovered
(by hand) by the morphisms of 8 with degree less than or equal to two and relevant
higher compositions. Thus, there emerges a natural question.

Problem 3.8 Find the properties of directed A-categories that determine B from its
objects, morphisms with degree less than or equals to 2, and u’s between such a morph-
isms.
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