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Preface

In this thesis, we study relevance between the combinatorial structure of a poset
and the geometry of its order complex. The order complex of a poset P is defined
to be the abstract simplicial complex whose vertices are the elements of P , and
whose faces are the finite chains of P . Its geometric realization |P | is called the
classifying space of P . The aim of this study is to reveal the relationship between
combinatorial properties of a poset P and geometric properties of the geometric
realization |P | of the order complex. In this thesis, we discuss two topics. In
Chapter 1, we provide some basic notions and terminology. Chapter 2 and 3 are
devoted to the two topics, respectively.

In Chapter 2, we study homotopy types of Frobenius complexes. Let Λ be an
additive monoid, and assume that the following two conditions hold:

(1) Λ is cancellative, that is, λ+µ = λ+µ′ implies µ = µ′ for any λ, µ, µ′ ∈ Λ.
(2) Λ has no non-zero invertible elements, that is, λ+µ = 0 implies λ = µ = 0

for any λ, µ ∈ Λ.

Such an Λ is said to be poset-like. Indeed, Λ can be equipped with the partial order
defined by λ ≤ λ + µ for λ, µ ∈ Λ. For a non-zero element λ of Λ, the Frobenius
complex F(λ; Λ) is defined to be the geometric realization |(0, λ)Λ| of the order
complex of the open interval in Λ.

Frobenius complexes were introduced by Laudal and Sletsjøe in order to de-

termine the torsion group Tork[Λ]
∗ (k, k) of the monoid algebra k[Λ] over a field k.

They proved the isomorphism

Tor
k[Λ]
i,λ (k, k) ∼= H̃i−2(F(λ; Λ); k).

They derived a formula for the Poincaré series of the torsion group Tork[Λ]
∗ (k, k) in

the case where Λ is a saturated rational submonoid of N2.
Clark and Ehrenborg focused on homotopy types of Frobenius complexes as a

homotopical refinement of the Frobenius coin-exchange problem. They determined
the homotopy types of the Frobenius complexes of Λ in the following two cases:

(1) Λ is generated by two relatively prime positive integers.
(2) Λ is generated by the arithmetic sequence a, a+d, . . . , a+(a− 1)d, where

a and d are relatively prime positive integers.

Their proof is based on discrete Morse theory.
In Section 2.4, we show a broad generalization of the result about the two-

generators case by Clark and Ehrenborg.

Theorem (Theorem 2.4.2). Let Λ1 and Λ2 be finitely generated poset-like ad-
ditive monoids. Let ρ1 and ρ2 be reducible elements of Λ1 and Λ2, respectively. Let
Λ be the additive monoid obtained from the direct sum Λ1 ⊕ Λ2 by identifying ρ1
with ρ2. Let ρ denote the equivalence class of ρ1 and ρ2. Then there is a homotopy
equivalence

F(λ; Λ) ≃
∨

ℓρ+λ1+λ2=λ

S2ℓ ∗ F(λ1; Λ1) ∗ F(λ2; Λ2)

for λ ∈ Λ, where ℓ, λ1 and λ2 run through N,Λ1 and Λ2, respectively.

The proof is based on theory of homotopy colimits of diagrams of topologi-
cal spaces over a finite poset. We provide the definition and basic properties of
homotopy colimits in Section 2.3. As a corollary of the theorem, we derive the
formula

P
k[Λ]
k (t, z) =

P
k[Λ1]
k (t, z) · P

k[Λ2]
k (t, z)

1− t2zρ
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for the multi-graded Poincaré series associated to Λ. In Section 2.5, as an applica-
tion of the theorem, we determine the homotopy types of Frobenius complexes and
the multi-graded Poincaré series for some cases.

In Chapter 3, we discuss CAT(0) properties for orthoscheme complexes. The
CAT(0) property is defined for geodesic metric spaces as a generalization of non-
positive curvature property. Gromov gave a simple combinatorial characterization
for cubical complexes to be a (locally) CAT(0) space. Brady and McCammond de-
fined the orthoscheme metric on the geometric realization |P | of the order complex
of a graded poset P . The aim was to show that the braid groups and other Artin
groups of finite types are CAT(0) groups. The geometric realization of the order
complex equipped with the orthoscheme metric is called the orthoscheme complex.
Orthoscheme complexes can be seen as a generalization of cubical complexes. In-
deed, a cubical complex X is isometric to the orthoscheme complex of the face
poset of X. Brady and McCammond gave a combinatorial characterization for a
bounded graded poset of rank ≤ 4 to have CAT(0) orthoscheme complex. In the
light of the above characterization, they showed that the n-strand braid group is a
CAT(0) group for n ≤ 5.

There were some sufficient conditions for a graded poset P to have CAT(0) or-
thoscheme complex. However, it seems that there were few necessary and sufficient
conditions in a general situation. In Section 3.5, we try to give a characterization
for orthoscheme complexes to be CAT(0) as a generalization of Gromov’s charac-
terization for cubical complexes. We first show the following theorem, which is
equivalent to Gromov’s characterization under some observations.

Theorem (Theorem 3.5.3). Let S be a semilattice of finite height, and assume
that each principal ideal S≤x is a Boolean lattice. Then the orthoscheme complex
|S| is a CAT(0) space if and only if S is a flag semilattice.

A semilattice S is said to be a flag semilattice if any pairwise bounded finite
subset of S is bounded. We can weaken the hypothesis of the previous theorem as
follows.

Theorem (Theorem 3.5.4). Let S be a semilattice of finite height, and assume
that each principal ideal S≤x is a distributive lattice. Then the orthoscheme complex
|S| is a CAT(0) space if and only if S is a flag semilattice.

One of the keys of the proof is a representation theorem for semilattices which
satisfy the hypothesis of Theorem 3.5.4. This is shown in Section 3.3 as an extension
of Birkhoff’s representation theorem for distributive semilattices (Theorem 3.3.4).
Another key is a construction of cubical cone, which is a cubical analogue of the
construction of the cone. We will introduce it in Section 3.4, and show some
properties. In particular, cubical cones can be seen as a partial inverse of cubical
links of cubical complexes.
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CHAPTER 1

Preliminaries

In this chapter, we review the definitions and properties of some basic notions,
which will be used in later chapters.

1.1. Topological spaces

In this section, we will recall some basic notions and properties on topological
spaces. References for the subjects of this section are [Bro], [Hat] and [May].

First, we give notation which will be used in this thesis. We denote the n-
dimensional sphere by Sn for n ≥ 0, the empty space by S−1, and the one-point
space by pt. Let k be a field. We denote the i-th homology group of a topo-
logical space X with coefficients in k by Hi(X; k). Here we adopt the conven-
tion Hi(X; k) = 0 for i < 0. Similarly, we denote the i-th reduced homology

group by H̃i(X; k). Here H̃i(X; k) is defined to be the kernel of the induced map
Hi(X; k) → Hi(pt; k) for a non-empty topological space X. For convenience, we

define H̃i(S
−1; k) to be k for i = −1 and 0 otherwise. This definition can be

seen in [Bjö]. We denote the i-th reduced Betti number by β̃i(X; k), that is,

β̃i(X; k) = dimk H̃i(X; k). We will omit k from the notation if no confusion can
arise.

Let X be a topological space, and A a subspace of X. We say that A is a
deformation retract of X, or the inclusion A →֒ X is a deformation retract, if there
exists a continuous map H : X × [0, 1]→ X such that

(1) H(x, 0) = x for all x ∈ X.
(2) H(a, t) = a for all a ∈ A and t ∈ [0, 1].
(3) H(x, 1) ∈ A for all x ∈ X.

Such an H is called a deformation retraction. If we set r = H(−, 1) : X → A, then
r is a homotopy inverse of the inclusion A →֒ X. We also call r a deformation
retraction.

Deformation retracts are closed under compositions, that is, if both B →֒ A
and A →֒ X are deformation retracts, then so is B →֒ X. Let us note that
deformation retracts are also closed under pushouts. More precisely, if A →֒ X is
a deformation retract, B is a subspace of A, and f : B → Y is a continuous map,
then Y ∪f A →֒ Y ∪f X is again a deformation retract. Here Y ∪f X denotes the
adjunction space, that is, the topological space obtained from the disjoint union of
X and Y by identifying b ∈ B with f(b) ∈ Y .

Let i : A → X be a continuous map. We say i is a Hurewicz cofibration, or
simply a cofibration, if i satisfies the homotopy extension property, that is, for any
topological space Y and continuous maps g : X → Y and F : A × [0, 1] → Y with
g ◦ i = F (−, 0), there exists a continuous map G : X × [0, 1] → Y which satisfies
g = G(−, 0) and G ◦ (i× id[0,1]) = F . For example, the inclusion A →֒ X of a CW
pair (X,A) is a cofibration. A based space (X, b) is said to be well pointed if the
inclusion {b} →֒ X is a cofibration. If X is a CW complex, (X, b) is well pointed
for any b ∈ X.

Lemma 1.1.1. The following hold.
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(1) Cofibrations are closed under compositions, that is, if i : X → Y and
j : Y → Z are cofibrations, then j ◦ i : X → Z is again a cofibration.

(2) Cofibrations are closed under pushouts, that is, if an inclusion i : A →֒ X
is a cofibration, and f : A → Y is a continuous map, then the induced
map Y → Y ∪f X is again a cofibration.

Proof. The proof is straightforward. �

Lemma 1.1.2. Let i : A → X and j : A → Y be cofibrations. Let f : X → Y
is a homotopy equivalence satisfying f ◦ i = j. Then f is a homotopy equivalence
relative to i and j, that is, there are continuous maps g : Y → X, F : X× [0, 1]→ X
and G : Y × [0, 1]→ Y which satisfy the following:

• g ◦ j = i
• F (−, 0) = g ◦ f , F (−, 1) = idX , F (i(−), t) = i (t ∈ [0, 1])
• G(−, 0) = f ◦ g, G(−, 1) = idY , G(j(−), t) = j (t ∈ [0, 1])

Proof. The proof is elementary; see [Hat, Proposition 0.19]. �

Lemma 1.1.3. Let X be a topological space, and A be a subspace of X. If
the inclusion A →֒ X is a cofibration and a homotopy equivalence, then A is a
deformation retract of X.

Proof. Applying the previous lemma to the inclusion A →֒ X, we obtain
a continuous map G : X × [0, 1] → X satisfying G(x, 0) = x, G(a, t) = a and
G(x, 1) ∈ A. �

Let f : X → Y be a continuous map. The mapping cylinder M(f) = M(X
f
−→

Y ) of f is obtained from the disjoint union of X × [0, 1] and Y by identifying
(x, 1) with f(x) for each x ∈ X. There are canonical embeddings i : X → M(f)
and j : Y → M(f), where i(x) = [x, 0] and j(y) = [y]. One can easily check
that i and j are cofibrations. Moreover, Y is a deformation retract of M(f). A
deformation retraction is given by H([x, t], s) = [x,max{t, s}] and H([y], s) = [y].
If we set r = H(−, 1) : M(f) → Y , then we have f = r ◦ i. Thus f is a homotopy
equivalence if and only if so is i. By the previous lemma, we obtain the following:

Lemma 1.1.4. A continuous map f : X → Y is a homotopy equivalence if and
only if i : X →֒M(f) is a deformation retract.

Let f : X → Y and g : X → Z be continuous maps. The double mapping

cylinder DM(f, g) = DM(Y
f
←− X

g
−→ Z) is obtained from the disjoint union of

M(f) and M(g) by identifying two canonically embedded X.

Lemma 1.1.5. Let us consider a commutative diagram

X1
f1

←−−−− X0
f2

−−−−→ X2

h1

y h0

y
yh2

Y1 ←−−−−
g1

Y0 −−−−→
g2

Y2

of topological spaces and continuous maps. If all vertical arrows are homotopy
equivalences, then the induced map DM(f1, f2) → DM(g1, g2) is also a homotopy
equivalence.

Proof. By Lemma 1.1.4, it is enough to show that the canonical embedding
DM(f1, f2) → M(DM(f1, f2) → DM(g1, g2)) is a deformation retract. There is
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canonical homeomorphisms

M(DM(f1, f2)→ DM(g1, g2)) ≈ DM(M(h1)←M(h0)→M(h2))

=M(M(h0)→M(h1)) ∪
M(h0)

M(M(h0)→M(h2))

≈M(M(f1)→M(g1)) ∪
M(h0)

M(M(f2)→M(g2)).

Let us set Zi = M(M(fi) → M(gi)) for i = 1, 2. We now show that M(f1) ∪X0

M(h0) →֒ Z1 is a deformation retract. Since h0 is a homotopy equivalence, X0 →֒
M(h0) is a deformation retract, and thus so is M(f1) →֒M(f1)∪X0

M(h0). In the
commutative diagram

M(f1) −−−−→ X1y
y

Z1 −−−−→ M(h1),

the top, right and bottom arrows are homotopy equivalences, thus so is the left.
Hence, the inclusion M(f1) ∪X0

M(h0)→ Z1 is also a homotopy equivalence. One
can check that this inclusion is a cofibration. By Lemma 1.1.3, the above inclusion
is a deformation retract.

Similarly, we can prove that M(f2) ∪X0
M(h0) →֒ Z2 is a deformation retract.

Thus the inclusion(
M(f1) ∪

X0

M(h0)
)
∪

M(h0)

(
M(f2) ∪

X0

M(h0)
)
→֒ Z1 ∪

M(h0)
Z2

is a deformation retract. Since M(h0) deformation retracts to X0, the left-hand
side of this inclusion deformation retracts to M(f1) ∪X0

M(f2), which is the same
as DM(f1, f2). �

Lemma 1.1.6. Let i : A→ X and j : A→ Y be cofibrations. Then the canoni-
cally induced map DM(i, j) → X ∪A Y is a homotopy equivalence, where X ∪A Y
denotes the space obtained from X and Y by identifying i(a) with j(a) for all a ∈ A.

Proof. Applying Lemma 1.1.2 to the obvious deformation retractionsM(i)→
X and M(j)→ Y , we obtain homotopy inverses and homotopies preserving A. By
attaching them, we can construct a homotopy inverse of DM(i, j)→ X ∪A Y . �

Lemma 1.1.7 ([Bro, 7.4.1]). Let us consider a commutative diagram

X1
i1←−−−− X0

i2−−−−→ X2

f1

y f0

y
yf2

Y1 ←−−−−
j1

Y0 −−−−→
i2

Y2

of topological spaces and continuous maps. If all vertical arrows are homotopy
equivalences, and all horizontal arrows are cofibrations, then the induced map

X1 ∪
X0

X2 → Y1 ∪
Y0

Y2

is a homotopy equivalence.

Proof. Applying Lemma 1.1.5 and Lemma 1.1.6, we obtain the commutative
diagram

DM(i1, i2) −−−−→ X1 ∪
X0

X2

y
y

DM(j1, j2) −−−−→ Y1 ∪
Y0

Y2,
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whose top, left and bottom arrows are homotopy equivalences. Thus the right arrow
is also a homotopy equivalence. �

Let X and Y be topological spaces. The join X ∗Y is defined to be the double

mapping cylinder DM(X
pr1←−− X×Y

pr2−−→ Y ). Here pri denotes the i-th projection.
By definition, we have S−1 ∗X = X = X ∗S−1. The join pt∗X with the one-point
space is called the cone of X, which is obviously contractible. The join S0 ∗X with
the two-point space is called the suspension of X, and denoted by suspX. There
is a well-known formula for the homology of the suspension

H̃i(suspX) ∼= H̃i−1(X).

In our definition, the above holds even if X is empty. Moreover, there is a formula
for the homology of the join [Mil, Lemma 2.1]. If k is a field, it is simply given by

(1) H̃i(X ∗ Y ; k) ∼=
⊕

p+q=i−1

H̃p(X; k)⊗ H̃q(Y ; k).

By Lemma 1.1.5, the join is homotopy invariant, that is, homotopy equivalences
f : X → X ′ and g : Y → Y ′ induces a homotopy equivalence X ∗ Y → X ′ ∗ Y ′.
The canonical embedding X →֒ X ∗ Y is a cofibration, which is follow from the
construction.

1.2. Simplicial complexes

In this section, we briefly review some basic definitions and properties on sim-
plicial complexes and their geometric realizations. Reference for the subjects of this
section are [Bjö] and [Wal].

An abstract simplicial complex K is a family of finite sets such that any subset
of any element of K is again an element of K. An element of K is said to be a face
of K, and an element of a face of K is said to be a vertex of K. In our definition,
the empty set is a face of K unless K = ∅. The set of the vertices of K is denoted
by V (K). The dimension of a face σ of K is defined to be #σ − 1, and denoted
by dimσ. A face of dimensions d is simply called a d-face. If the dimensions of the
faces of K are bounded above, then K is said to be finite dimensional. In this case,
the dimension of K is defined by

dimK = max
σ∈K

dimσ.

Simplicial maps. Let K and L be abstract simplicial complexes. A simplicial
map from K to L is a map f : V (K)→ V (L) such that the image f(σ) of any face
σ of K is a face of L. A simplicial map f is an isomorphism if f is bijective and
the inverse f−1 is a simplicial map from L to K. If an isomorphism between K
and L exists, then K and L are said to be isomorphic, and we write K ∼= L.

Geometric realizations. For a finite set σ, the standard simplex of vertex
set σ is defined by

∆σ =
{∑

v∈σ

tvv
∣∣∣ tv ≥ 0,

∑

v∈σ

tv = 1
}
⊂ R(σ),

where R(σ) denote the free linear space
⊕

v∈σ Rσ with basis σ. Geometrically, ∆σ

is a point if dimσ = 0, a segment if dimσ = 1, and a triangle if dimσ = 2. For an
abstract simplicial complex K, the geometric realization of K is defined by

|K| =
⋃

σ∈K

∆σ ⊂ R(V (K)).
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Equivalently, |K| can be defined as

|K| =
{
x =

∑

v∈V (K)

tvv
∣∣∣ tv ≥ 0,

∑

v∈V (K)

tv = 1, suppx ∈ K
}
,

where suppx = { v ∈ V (K) | tv 6= 0 }. Usually, we consider |K| as a topological
space with the weak topology with respect to ∆σ for σ ∈ K, that is, the coarsest
topology on |K| such that the inclusion ∆σ →֒ |K| is a continuous map for each
σ ∈ K. In Chapter 2, we focus on homotopy types of geometric realizations with
this topology. In Chapter 3, we consider piecewise Euclidean metrics on geometric
realizations, and study their curvature properties. Such a metric defines another
topology on the geometric realization. This topology coincides with the weak topol-
ogy if and only if K is locally finite, that is, each vertex of K belongs to only finitely
many faces of K. In the rest of this section, we consider the weak topology on the
geometric realization.

Let f : K → L be a simplicial map. The geometric realization |f | : |K| → |L|
is defined by

|f |
( ∑

v∈V (K)

tvv
)
=

∑

v∈V (K)

tvf(v).

Then |f | is a continuous map. It is easily checked that the geometric realization
defines a functor from the category of abstract simplicial complexes with simplicial
maps to the category of topological spaces with continuous maps.

Simplices. Let σ be a finite set. The abstract simplicial complex consisting
of all subsets of σ is called the simplex of vertex set σ, which will be denoted by
σ̃. Then the geometric realization |σ̃| is the same as the standard simplex ∆σ of
vertex set σ.

Joins. Let K and L be abstract simplicial complexes. For simplicity, we as-
sume that V (K) and V (L) are disjoint. Otherwise, we replace v ∈ V (K) with
(1, v), and w ∈ V (L) with (2, w). The join of K and L is defined by

K ∗ L = {σ ∪ τ | σ ∈ K, τ ∈ L }.

The vertex set V (K ∗L) is given by the disjoint union V (K)⊔V (L). The inclusions
induce simplicial maps K →֒ K ∗ L and L →֒ K ∗ L. If K and L are finite
dimensional, then so is K ∗ L, and dim(K ∗ L) = dimK + dimL+ 1 holds.

For disjoint finite sets σ and τ , the obvious map

|σ̃| ∗ |τ̃ | = ∆σ ∗∆τ → ∆σ∪τ = |σ̃ ∗ τ̃ |

is a homeomorphism. Using the inverse of the above map, we obtain a continuous
bijection

|K ∗ L| → |K| ∗ |L| .

This map is a homeomorphism if we consider the compactly generated topology on
the right-hand side [Wal, Section 2].

Links. Let K be an abstract simplicial complexes, and σ a face of K. The link
of σ in K is defined by

lk(σ;K) = { τ ∈ K | σ ∩ τ = ∅, σ ∪ τ ∈ K }.

The link lk(∅,K) of the empty face is the same as K itself. The link lk({v};K) of
a 0-face is simply denoted by lk(v;K). If τ is a face of lk(σ;K), then the iterated
link lk(τ ; lk(σ;K)) coincides with lk(σ ∪ τ ;K).
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1.3. Partially ordered sets

Let X be a set. A partial order ≤ on X is a binary relation on X which satisfies
the following three conditions.

reflexivity: x ≤ x for any x ∈ X.
transitivity: x ≤ y and y ≤ z imply x ≤ z for any x, y, z ∈ X.
anti-symmetry: x ≤ y and y ≤ x imply x = y for any x, y ∈ X.

We write y ≥ x if x ≤ y holds, and x < y if both x ≤ y and x 6= y hold. Similarly,
we write x > y if y < x holds. A partially ordered set (poset for short) is a pair of
a set P and a partial order ≤ on P . We denote a poset (P,≤) simply by P if no
confusion can arise. Let S be a subset of a poset P . Then S can be seen as a poset
by the restriction of the partial order on P . In this case, S is said to be a induced
subposet of P . For a poset P = (P,≤), the poset (P,≥) with the opposite order is
called the opposite poset of P , and denoted by P op.

Let a and b be elements of P . We define intervals of P by

P≥a = {x ∈ P | x ≥ a },

[a, b]P = {x ∈ P | a ≤ x ≤ b },

(a, b)P = {x ∈ P | a < x < b }.

Similarly, we define P>a, P
≤b, P<b, [a, b)P and (a, b]P . Usually, we see intervals of

P as induced subposets of P .
Let P = (P,≤P ) and Q = (Q,≤Q) be posets. A map f : P → Q is order

preserving if x ≤P y implies f(x) ≤Q f(y) for any x, y ∈ P . We say f is strictly
order preserving if x <P y implies f(x) <Q f(y) for any x, y ∈ P .

Order complexes. Let P be a poset. A chain of P is a totally ordered
subset of P , that is, a subset σ of P such that for any x, y ∈ σ, either x ≤ y or
x ≥ y holds. The order complex ∆(P ) of P is defined to be the abstract simplicial
complex whose faces are the finite chains of P . Then V (∆ (P )) = P holds. We
denote the geometric realization |∆(P )| of the order complex simply by |P |, and we
sometimes refer to the geometric realization of the order complex of P simply as the
order complex of P . An order-preserving map f : P → Q induces a simplicial map
between the order complexes. Its geometric realization |P | → |Q| will be denoted
by |f |.

Face posets. Let K be an abstract simplicial complex. The inclusion defines a
partial order on K. The poset (K,⊂) is called the face poset of K, and denoted by
F (K). Unless K = ∅, F (K) has the minimum ∅. The induced subposet F (K)\{∅}
is also called the face poset of K, and denoted by F+(K).

Barycentric subdivisions. Let K be an abstract simplicial complex. The
order complex ∆ (F+(K)) of the face poset of K is called the barycentric subdivision
of K, and denoted by SdK. The affine map from |Sd k| to |K| which sends the
vertex σ of SdK to its barycenter 1

#σ

∑
v∈σ v gives a well-known homeomorphism

|SdK| ≈ |K|. Similarly, the face poset F+(∆ (P )) of the order complex of a poset
P is also called the barycentric subdivision of P , and denoted by SdP . Then we
have

|SdP | = |∆(F+(∆ (P )))| ≈ |∆(P )| = |P | .

Products. Let P = (P,≤P ) and Q = (Q,≤Q) be posets. The product P ×Q
can be equipped with the partial ordered ≤P×Q such that (p, q) ≤P×Q (p′, q′) holds
if and only if both p ≤P p′ and q ≤Q q′ hold. Equivalently, ≤P×Q is the strongest
partial order on P ×Q such that both projections P ×Q→ P and P ×Q→ Q are
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order preserving. The geometric realizations of these projections induces a contin-
uous bijection |P ×Q| → |P | × |Q|. This map is a homeomorphism if we give the
compactly generated topology on the product |P |×|Q| [Qui, (1.2)]. In particular, if
either |P | or |Q| is locally compact, there is a homeomorphism |P ×Q| ≈ |P |× |Q|.
The following lemma plays an important role for a combinatorial approach to ho-
motopy theory.

Proposition 1.3.1 (Quillen [Qui, 1.3]). Let P and Q be posets, and f and g
be order-preserving maps. Let us assume f ≤ g, that is, f(x) ≤ g(x) holds for each
x ∈ P . Then the induced maps |f | and |g| are homotopic.

Proof. Let H : P × {0, 1} → Q be the map defined by H(x, 0) = f(x) and
H(x, 1) = g(x) for x ∈ P . Then H is order preserving, where the order on {0, 1} is
given by 0 < 1. The geometric realization of {0, 1} is homeomorphic to the closed
interval [0, 1] ⊂ R, which is compact. Thus we obtain a homotopy

|P | × [0, 1] ≈ |P × {0, 1}|
|H|
−−→ |Q|

from |f | to |g|. �

Using the above proposition, we obtain some useful lemma to study the homo-
topy types of order complexes.

Lemma 1.3.2. If a poset P has either a minimum or a maximum, then |P | is
contractible.

Proof. The constant map to the minimum (or the maximum) is homotopic
to the identity map on P . �

Lemma 1.3.3. Let S be an induced subposet of a poset P . If S≤x = S ∩ P≤x

has a maximum for each x ∈ P , then |S| is homotopy equivalent to |P |.

Proof. Let i : S →֒ P be the inclusion, and r : P → S the map defined by
r(x) = maxS≤x for x ∈ P . Then r is an order-preserving map satisfying r ◦ i = idS
and i ◦ r ≤ idP . Thus |r| is a homotopy inverse of |i|. �

Walker showed the following:

Proposition 1.3.4 ([Wal, Theorem 5.1(d)]). Let x and x′ be elements of P
with x < x′. Let y and y′ be elements of Q with y < y′. Then there is a homeo-
morphism ∣∣∣

(
(x, y), (x′, y′)

)
P×Q

∣∣∣ ≈ susp
(
|(x, x′)P | ∗ |(y, y

′)Q|
)
,

where the join has the compactly generated topology.
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CHAPTER 2

Frobenius complexes and diagrams over a finite
poset

2.1. Introduction

Let α1, . . . , αg be positive integers with gcd(α1, . . . , αg) = 1. Let Λ be the
submonoid of the additive monoid N generated by α1, . . . , αg. The Frobenius coin-
exchange problem is to determine the largest integer which does not belong to Λ
[BR]. It is a homotopical refinement of this problem to determine the homotopy
types of Frobenius complexes of Λ [CE].

We now define a Frobenius complex in a more general situation (a more precise
definition is given in Section 2.2). Let Λ be an additive monoid. We say that Λ is
poset-like if Λ is cancellative and has no non-zero invertible elements. A poset-like
additive monoid Λ can be equipped with the partial order defined by λ ≤Λ λ+µ for
λ, µ ∈ Λ. For a non-zero element λ of Λ, the Frobenius complex F(λ; Λ) is defined
to be the order complex |(0, λ)Λ| of the open interval of Λ.

Let us fix a field k. Laudal and Sletsjøe [LS] proved that there is an iso-

morphism between the graded component Tor
k[Λ]
i,λ (k, k) of the torsion group over

the monoid algebra k[Λ] and the reduced homology group H̃i−2(F(λ; Λ); k) of the
Frobenius complex with coefficients in k. As an application, they showed that if
Λ is a saturated rational submonoid of N2, then its Poincaré series is given by a
rational function. Moreover, they gave an explicit formula for its denominator. The

multi-graded Poincaré series P
k[Λ]
k (t, z) is defined by

P
k[Λ]
k (t, z) =

∑

i∈N, λ∈Λ

dimk Tor
k[Λ]
i,λ (k, k) · tizλ.

The rationality of the multi-graded Poincaré series was discussed in [PRS].
Clark and Ehrenborg [CE] studied homotopy types of Frobenius complexes,

and they showed the following:

• If Λ is generated by two relatively prime integers, then any Frobenius
complex of Λ is either contractible or homotopy equivalent to a sphere.
• If Λ is generated by the arithmetic sequence a, a + d, . . . , a + (a − 1)d
for relatively prime integers a and d, then any Frobenius complex of Λ is
homotopy equivalent to a wedge of spheres.

In both cases the multi-graded Poincaré series are determined and proved to be
rational. They showed the above statements by discrete Morse theory.

In this chapter, we establish a new method to determine the homotopy types
of Frobenius complexes. Let Λ1 and Λ2 be finitely generated poset-like additive
monoids. Let ρ1 and ρ2 be reducible elements of Λ1 and Λ2, respectively. Let Λ be
the additive monoid obtained from the direct sum Λ1 ⊕ Λ2 by identifying ρ1 with
ρ2. Let ρ denote the equivalence class of ρ1 and ρ2 in Λ. We show the following
homotopy equivalence (Theorem 2.4.2):

F(λ; Λ) ≃
∨

ℓρ+λ1+λ2=λ

S2ℓ ∗ F(λ1; Λ1) ∗ F(λ2; Λ2)
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The proof is done by using homotopy colimits of diagrams over a finite poset. As
a consequence, we derive the formula

P
k[Λ]
k (t, z) =

P
k[Λ1]
k (t, z) · P

k[Λ2]
k (t, z)

1− t2zρ

for the multi-graded Poincaré series (Corollary 2.4.5).
As an application, we determine the homotopy types of the Frobenius complexes

and the multi-graded Poincaré series for some Λ. For example, we show that if Λ
is generated by a finite geometric sequence, then any Frobenius complex of Λ is
homotopy equivalent to a wedge of spheres, and give a formula for the multi-graded
Poincaré series (Proposition 2.5.5). This gives an answer to a question raised by
Clark and Ehrenborg [CE, Question 6.4].

The rest of this chapter is organized as follows. In Section 2.2, we give a precise
definition of Frobenius complexes, and show some basic properties. In Section 2.3,
we review homotopy colimits of diagrams of topological spaces over a finite poset,
and give self-contained proofs for the basic properties of homotopy colimits. In
Section 2.4, we show Theorem 2.4.2 and derive its corollaries. In Section 2.5, we
determine homotopy types of Frobenius complexes of some additive monoids by
using the theorem.

2.2. Preliminaries

2.2.1. Notation. For convenience, we introduce a formal symbol S−2, which

is not a topological space. We define its reduced homology H̃i(S
−2; k) to be k

for i = −2 and 0 otherwise. The reduced Betti numbers are similarly defined by

β̃i(S
−2) = δi,−2. Here δi,j denotes the Kronecker delta.
Let X ⊛ Y denote the suspension susp(X ∗ Y ) of the join of topological spaces

X and Y . We also define

S−2
⊛X = X = X ⊛ S−2.

In the light of (1), we have

(2) β̃i−2(X ⊛ Y ) =
∑

p+q=i

β̃p−2(X) · β̃q−2(Y ).

In our definition, the above holds even in the case X = S−2 or Y = S−2.

2.2.2. Frobenius complexes. An additive monoid is a triple Λ = (Λ,+, 0)
of a set Λ, a binary operator + on Λ, and an element 0 of Λ which satisfies the
following three conditions:

associativity: (λ+ µ) + ν = λ+ (µ+ ν) holds for any λ, µ, ν ∈ Λ.
commutativity: λ+ µ = µ+ λ holds for any λ, µ ∈ Λ.
identity element: λ+ 0 = λ holds for any λ ∈ Λ.

For example, the non-negative integers form an additive monoid N. The Cartesian
product Ng is also an additive monoid with the coordinatewise addition.

There is a canonical action of N on an additive monoid Λ. The action is
inductively defined by 0 ·λ = 0 and (n+1) ·λ = n ·λ+λ for n ∈ N and λ ∈ Λ. Then
this action is distributive, that is, (n+m)·λ = n·λ+m·λ and n·(λ+µ) = n·λ+n·µ
hold. We will denote n · λ simply by nλ.

A map ϕ from an additive monoid Λ to another Λ′ is a homomorphism if ϕ
preserves the additions and the zero elements, that is, ϕ(λ + µ) = ϕ(λ) + ϕ(µ)
and ϕ(0) = 0 hold. An isomorphism is a bijective homomorphism. We say a
homomorphism ϕ : Λ → Λ′ is proper if ϕ(λ) = 0 implies λ = 0 for any λ ∈ Λ. Let
us note that a proper homomorphism is not necessarily injective.
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An additive monoid Λ is finitely generated if there exist α1, . . . , αg ∈ Λ such
that the homomorphism π : Ng → Λ defined by

π(x) = x1α1 + · · ·+ xgαg

(
x = (x1, . . . , xg) ∈ Ng

)

is surjective.
Let Λ be an additive monoid. We can associate Λ with the small category

whose objects are the elements of Λ, and whose morphisms from λ to ν are the
elements µ of Λ satisfying λ+ µ = ν. The associated category forms a poset if and
only if the following hold.

• Λ is cancellative, that is, λ+µ = λ+µ′ implies µ = µ′ for any λ, µ, µ′ ∈ Λ.
• Λ has no non-zero invertible elements, that is, λ+µ = 0 implies λ = µ = 0
for any λ, µ ∈ Λ.

In this case, we say that Λ is poset-like.
Let Λ be a poset-like additive monoid. The partial order ≤Λ on Λ is char-

acterized by λ ≤Λ λ + µ for λ, µ ∈ Λ. In the case λ ≤Λ ν, the unique element
µ satisfying λ + µ = ν will be denoted by ν − λ. Let Λ+ denote the set of the
non-zero elements of Λ. For λ ∈ Λ+, the Frobenius complex F(λ; Λ) is defined to
be the order complex |(0, λ)Λ| of the open interval in Λ. In the case λ = 0, we
define F(0; Λ) = S−2 for convenience. Let us note that any open interval (µ, ν)Λ
of Λ is isomorphic to (0, ν − µ)Λ. Thus its order complex is homeomorphic to the
Frobenius complex F(ν − µ; Λ).

A non-zero element λ of Λ is said to be reducible if there exist non-zero elements
σ and τ of Λ satisfying σ + τ = λ. Otherwise, λ is irreducible, which is equivalent
to that λ is a minimal element of Λ+. Thus F(λ; Λ) is empty if and only if λ is
irreducible.

Frobenius complexes were introduced by Laudal and Sletsjøe [LS], and they
showed the following.

Theorem 2.2.1 (Laudal-Sletsjøe [LS, Proposition 1.3]). Let Λ be a poset-like
additive monoid, and k a field. Then there is an isomorphism

Tor
k[Λ]
i,λ (k, k) ∼= H̃i−2(F(λ; Λ); k),

where k[Λ] denotes the monoid algebra of Λ over k. In particular, the multi-graded
Poincaré series is given by

P
k[Λ]
k (t, z) =

∑

i∈N,λ∈Λ

β̃i−2(F(λ; Λ); k) · t
izλ.

Proof. The following proof is based on [PRS]. The monoid algebra k[Λ] is
defined to be the free k-linear space with basis { zλ | λ ∈ Λ }. The multiplication is
given by zλ ·zµ = zλ+µ for λ, µ ∈ Λ. The subspace spanned by zλ for λ ∈ Λ+ forms
an ideal of k[Λ], which will be denoted by k[Λ+]. Moreover, k[Λ+] is a maximal
ideal with quotient k[Λ]/k[Λ+] ∼= k. In this proof, we denote k[Λ] and k[Λ+] by R
and R+, respectively. We see k as an R-module by the isomorphism k ∼= R/R+,
that is, zλ · 1 is defined to be 1 for λ = 0 and 0 otherwise. We also see k as a
k-subalgebra of R by the obvious inclusion k ∼= kz0 →֒ R.

We now construct a left R-free resolution of k, which is known as the bar
resolution. We denote the tensor over R simply by ⊗, and the tensor over k by the
vertical bar |. Let us define

Bn = R |R+ | · · · |R+︸ ︷︷ ︸
n

|R

for n ≥ 0. We see Bn as a left-right R-module by

s · (r0 | r1 | · · · | rn | rn+1) · t = (sr0) | r1 | · · · | rn | (rn+1t)
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for r0 | · · · | rn+1 ∈ Bn and s, t ∈ R. The boundary operator ∂n : Bn → Bn−1 is
defined by

∂n(r0 | · · · | rn+1) =

n∑

i=0

(−1)ir0 | · · · | riri+1 | · · · | rn+1

for n ≥ 1 and r0 | · · · | rn+1 ∈ Bn. The augmentation map ε : B0 → R is defined by

ε(r0 | r1) = r0r1.

We now show that the augmented left-right R-chain complex {Bn, ∂n, ε} is right
R-contractible, that is, there exist right R-homomorphisms hn : Bn → Bn+1, n ≥ 0
and η : R→ B0 such that the following equations hold:

(1) ε ◦ η = idR
(2) η ◦ ε+ ∂1 ◦ h0 = idB0

(3) hn−1 ◦ ∂n + ∂n+1 ◦ hn = idBn
(n ≥ 1)

We define hn and η by

hn(r0 | · · · | rn+1) = 1 | π(r0) | r1 | · · · | rn+1

η(r0) = 1 | r0,

where π denotes the projection R = k ⊕ R+ → R+. Then hn and η are right R-
homomorphisms. We can derive the above equations from definition. For example,

(η ◦ ε+ ∂1 ◦ h0)(r0 | r1) = 1 | r0r1 + π(r0) | r1 − 1 | π(r0)r1

= 1 | (r0 − π(r0))r1 + π(r0) | r1

= (r0 − π(r0)) | r1 + π(r0) | r1

= r0 | r1,

where we use the fact that r0 − π(r0) belongs to k.
Thus we have a left R-resolution {Bn⊗ k, ∂n⊗ idk, ε⊗ idk} of R⊗ k ∼= k. Each

Bn ⊗ k is left R-free since a left R-basis given by
{
1 | zλ1 | · · · | zλn | 1⊗ 1

∣∣∣ λ1, . . . , λn ∈ Λ+

}
.

Hence, the torsion group is given by

TorRi (k, k)
∼= Hi(k ⊗B∗ ⊗ k, idk ⊗ ∂∗ ⊗ idk).

Let us focus on the chain complex {B′
n, ∂

′
n} = {k ⊗ Bn ⊗ k, idk ⊗ ∂n ⊗ idk}.

Then we have

B′
n = k ⊗R |R+ | · · · |R+ |R⊗ k

∼= k |R+ | · · · |R+ | k

∼= R+ | · · · |R+︸ ︷︷ ︸
n

.

Under this identification, B′
n is a free k-linear space generated by zλ1 | · · · | zλn for

λ1, . . . , λn ∈ Λ+. The boundary operator ∂′n is given by

∂′n(r1 | · · · | rn) =
n−1∑

i=1

(−1)ir1 | · · · | riri+1 | · · · | rn.

Each B′
n has an obvious decomposition B′

n =
⊕

λ∈ΛB
′
n,λ, where B

′
n,λ denotes the

k-subspace generated by zλ1 | · · · | zλn with λ1 + · · · + λn = λ. This Λ-grading
comes from the natural Λ-grading on Bn. The boundary operators ∂′n preserve
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the Λ-gradings, that is, ∂′n(B
′
n,λ) ⊂ B′

n−1,λ holds for n ≥ 1 and λ ∈ Λ. Thus the
homology groups also can be decomposed as

Hi(B
′
∗, ∂

′
∗) =

⊕

λ∈Λ

Hi(B
′
∗,λ, ∂

′
∗,λ).

Thus we have TorRi,λ(k, k)
∼= Hi(B

′
∗,λ, ∂

′
∗,λ).

In the case λ = 0, we have B′
0,0 = k and B′

n,0 = 0 for n > 0, which implies the

assertion. In the case where λ is irreducible, we have B′
0,λ = 0, B′

1,λ = kzλ and

B′
n,λ = 0 for n ≥ 2, thus the assertion similarly follows.

Let us assume that λ is reducible, and show that Hi(B
′
∗,λ, ∂

′
∗,λ) is isomorphic to

H̃i−2(F(λ; Λ); k). We have B′
0,λ = 0 and B′

1,λ = kzλ. Let us consider the simplicial

chain complex C∗ = {C∗, ∂∗} associated to F(λ; Λ) with coefficients in k. Then
Hi(F(λ; Λ); k) is isomorphic to Hn(C∗). Here, Cn is a free k-linear space generated
by the chains of (0, λ)Λ of length n. The boundary operator ∂n : Cn → Cn+1 is
given by

∂n({µ0 < · · · < µn}) =
n∑

i=0

(−1)i{µ0 < · · · < µi−1 < µi+1 < · · · < µn}.

For n ≥ 2, there is an isomorphism between B′
n,λ and Cn−2, which sends zλ1 |· · ·|zλn

to {λ1 < λ1+λ2 < · · · < λ1+ · · ·+λn−1}. Moreover, these isomorphisms commute
with the boundary operators up to sign. In the case n = 2, ∂′2,λ : B

′
2,λ → B′

1,λ
∼= k

corresponds to the augmentation map ε : C0 → k. Hence, we have the desired

isomorphism Hi(B
′
∗,Λ, ∂

′
∗,λ)
∼= H̃i−2(F(λ; Λ); k). �

Proposition 2.2.2. There is a homotopy equivalence

F(n;N) ≃





S−2 (n = 0)

S−1 (n = 1)

pt (n ≥ 2),

and the multi-graded Poincaré series is given by

P
k[N]
k (t, z) = 1 + tz.

Proof. In the case n ≥ 2, we have F(n;N) = |[1, n)N| ≃ pt. �

2.2.3. Local finiteness. Let Λ be a finitely generated poset-like additive
monoid.

Proposition 2.2.3. As a poset, Λ is locally finite, that is, Λ≤λ is finite for
each λ ∈ Λ.

Proof. Let us take a finite generating system {α1, . . . , αg} of Λ. We can
assume that each αi is non-zero. Let π : N

g → Λ be the homomorphism defined by

π(x) =

g∑

i=1

xiαi

(
x = (x1, . . . , xg) ∈ Ng

)
.

Then π is a proper surjective homomorphism.
For λ ∈ Λ, we have

Λ≤λ =
⋃

x∈π−1(λ)

π
(
(Ng)≤x

)
.

We can check that π−1(λ) is an antichain of Ng, that is, x ≤Ng y implies x = y for
any x, y ∈ π−1(λ). By Dickson’s lemma, which will be shown below, the antichain
π−1(λ) of Ng is finite. Since each (Ng)≤x is finite, Λ≤λ is also finite. �
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Lemma 2.2.4 (Dickson’s lemma [Dic, Lemma A]). Any antichain of Ng is
finite.

Proof. The proof is done by induction on g. The case g ≤ 1 is trivial. Let us
assume g ≥ 2, and let A be a non-empty antichain of Ng. Set

Xi,n = {x = (x1, . . . , xg) ∈ Ng | xi = n }.

Then A ∩ Xi,n is finite since it is an antichain of Xi,n
∼= Ng−1. Fix an element

a = (a1, . . . , ag) of A. Then we have A =
⋃g

i=1

⋃ai

n=0A∩Xi,n. Thus A is finite. �

Corollary 2.2.5. The Frobenius complex F(λ; Λ) is a finite simplicial complex
for any λ ∈ Λ+.

Lemma 2.2.6. For any ρ ∈ Λ+ and λ ∈ Λ, there uniquely exist ℓ ∈ N and λ̌ ∈ Λ
satisfying λ = ℓρ + λ̌ and λ̌ 6≥Λ ρ. In this case, ℓ is the largest integer satisfying
ℓρ ≤ λ.

Proof. Let A be the set of all ℓ ∈ N satisfying ℓρ ≤Λ λ, and define f : N→ Λ
by f(ℓ) = ℓρ. Then f is injective and the image of A under f is contained in
the finite subset Λ≤λ. Hence A is finite. It is enough to take as ℓ = maxA and
λ̌ = λ− ℓρ. �

2.2.4. Frobenius complexes of a direct sum. Let Λ1 and Λ2 be finitely
generated poset-like additive monoids.

Proposition 2.2.7. There is a homeomorphism

F(λ1 ⊕ λ2; Λ1 ⊕ Λ2) ≈ F(λ1; Λ1)⊛ F(λ2; Λ2)

for λ1 ∈ Λ1 and λ2 ∈ Λ2.

Proof. As a poset, Λ1 ⊕Λ2 is canonically isomorphic to the product Λ1 ×Λ2

of posets. The assertion follows by Proposition 1.3.4 if both λ1 and λ2 are non-zero.
The other cases follow by definition. �

Corollary 2.2.8. The multi-graded Poincaré series is given by

P
k[Λ1⊕Λ2]
k (t, z) = P

k[Λ1]
k (t, z) · P

k[Λ2]
k (t, z).

Proof. By the previous proposition and the equation (2), we have

β̃i−2(F(λ1 ⊕ λ2; Λ1 ⊕ Λ2)) =
∑

j1+j2=i

β̃j1−2(F(λ1; Λ1)) · β̃j2−2(F(λ2; Λ2)),

which implies the assertion. �

2.2.5. Barycentric subdivisions of Frobenius complexes. Let Λ be a
finitely generated poset-like additive monoid, and λ a non-zero element of Λ. In
this subsection, we consider the barycentric subdivision of the Frobenius complex
F(λ; Λ). A composition of λ in Λ is a tuple ξ = (ξ(1), . . . , ξ(s)) of non-zero elements
of Λ satisfying

∑s
i=1 ξ

(i) = λ. We say ξ is non-trivial if s ≥ 2. Let us define C(λ; Λ)
to be the set of the non-trivial compositions of λ in Λ. Then there is a bijection
Φ: C(λ; Λ) ∼= Sd(0, λ)Λ, which is given by

Φ
(
(ξ(1), . . . , ξ(s))

)
= {ξ(1), ξ(1) + ξ(2), . . . , ξ(1) + · · ·+ ξ(s−1)}.

We see C(λ; Λ) as a poset by using this bijection. Thus we have

F(λ; Λ) = |(0, λ)Λ| ≈ |Sd(0, λ)Λ| ∼= |C(λ; Λ)| .

Let Λ′ be another finitely generated poset-like additive monoid, and ϕ : Λ→ Λ′

a proper homomorphism. Then ϕ induces an order-preserving map from C(λ; Λ)
to C(ϕ(λ); Λ′), which will be denoted by ϕ∗.
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Lemma 2.2.9. For any ξ ∈ C(λ; Λ) and any η ∈ C(ϕ(λ); Λ′) with ϕ∗(ξ) ≥ η,
there uniquely exists ξ′ ∈ C(λ; Λ) satisfying ξ′ ≤ ξ and ϕ∗(ξ

′) = η.

Proof. Since ϕ is proper, ϕ induces a strictly order-preserving map from
(0, λ)Λ to (0, ϕ(λ))Λ′ . It is enough to show that the induced map Sd(0, λ)Λ →
Sd(0, ϕ(λ))Λ′ satisfies the above property. Let σ be a non-empty finite chain of
(0, λ)Λ, and τ a subset of ϕ(σ). Note that the restriction of ϕ on σ is injective.
Thus σ′ = (ϕ|σ)

−1(τ) is the desired element. �

2.3. Diagrams over a finite poset

In this section, we will review the definition of homotopy colimits of diagrams
of topological spaces over a finite poset, and give self-contained proofs for their
basic properties. References for the subjects of this section are [BK] and [ZZ].

Let Q be a finite poset. A diagram over Q (Q-diagram for short) in a category
C is a functor D : Q → C. Here we see Q as a category by the following way. The
objects are the elements of Q. There is a unique morphism q → q′ if q ≤ q′, and
no morphism otherwise. We denote the induced morphism from D(q) to D(q′) by
Dqq′ for q, q

′ ∈ Q with q ≤ q′.
Let D be a Q-diagram of topological spaces, that is, D is a Q-diagram in the

category of topological spaces and continuous maps. The homotopy colimit of D is
defined by

hocolim
Q

D =

∐
q∈QD(q)× |Q≥q|

∼
,

where ∼ denotes the equivalence relation generated by

(x, y) ∼ (Dqq′(x), y)
(
q, q′ ∈ Q, q ≤ q′, x ∈ D(q), y ∈ |Q≥q′ |

)
.

The construction of the homotopy colimit is a generalization of that of the
mapping cylinder. In fact, the following holds.

Lemma 2.3.1. If Q has a maximum m, then the obvious map r : hocolimQD →
D(m) is a homotopy equivalence.

Proof. Here r : hocolimQD → D(m) is defined by

r([x, y]) = Dqm(x) (q ∈ Q, x ∈ D(q), y ∈ |Q≥q|).

Let i : D(m)→ hocolimQD be the canonical embedding, that is,

i(x) = [x,m] (x ∈ D(m)).

Then r is a retraction, and a homotopy H : hocolimQD× [0, 1]→ hocolimQD from
i ◦ r to the identify is given by

H([x, y], t) = [x, ty + (1− t)m] (q ∈ Q, x ∈ D(q), y ∈ |Q≥q|). �

The construction of the homotopy colimits is functorial. Let E be another Q-
diagram of topological spaces, and α a natural transformation from D to E. Then
α induces a continuous map from hocolimQD to hocolimQE. The induced map
will be denoted by hocolimQ α. Let us note that if α is a natural homeomorphism
then the induced map is a homeomorphism. Moreover, the following holds.

Lemma 2.3.2 (Homotopy Lemma [BK, XII.4.2], [ZZ, 1.7]). Let us assume that
α is a natural homotopy equivalence, that is, α is a natural transformation and each
αq : D(q) → E(q) is a homotopy equivalence. Then hocolimQ α : hocolimQD →
hocolimQE is a homotopy equivalence.
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Proof. We first show the case where Q has a maximum m. Let us consider
the commutative diagram

hocolimQD −−−−→ D(m)

hocolimQ α

y
yαq

hocolimQE −−−−→ E(m).

By assumption, the right arrow is a homotopy equivalence. By Lemma 2.3.1, the
horizontal arrows are homotopy equivalences. Thus hocolimQ α is also a homotopy
equivalence.

We next show the general cases by induction on the size of Q. The case Q = ∅
is trivial, so we assume that Q is non-empty. Let us fix a maximal element m of
Q, and consider the following commutative diagram:

hocolimQ≤m D ←−−−− hocolimQ<m D −−−−→ hocolimQ\{m}D

hocolim
Q≤m α

y hocolimQ<m α

y
yhocolimQ\{m} α

hocolimQ≤m E ←−−−− hocolimQ<m E −−−−→ hocolimQ\{m}E

The left vertical arrow is a homotopy equivalence as we show above. The other
vertical arrows are homotopy equivalences by the induction hypotheses. Applying
Lemma 1.1.7, we obtain a homotopy equivalence

hocolim
Q≤m

D ∪
hocolim
Q<m

D
hocolim
Q\{m}

D → hocolim
Q≤m

E ∪
hocolim
Q<m

E
hocolim
Q\{m}

E,

which is the same as hocolimQ α : hocolimQD → hocolimQE up to obvious home-
omorphisms. �

We say a Q-diagram D is cofibrant if the obvious map colimQ<q D → D(q) is a
cofibration for each q ∈ Q. In this case, we can replace the homotopy colimit with
the colimit up to homotopy equivalence.

Lemma 2.3.3 (Projection Lemma [BK, XII.3.1(iv)], [ZZ, 1.6]). If D is a cofi-
brant Q-diagram, then the canonical map

hocolim
Q

D → colim
Q

D

is a homotopy equivalence.

Proof. The proof is similar to that of the Homotopy Lemma. If Q has a
maximum m, then the canonical map

hocolim
Q

D → colim
Q

D ≈ D(m)

is a homotopy equivalence by Lemma 2.3.1.
We now show the general cases by induction on the size of Q. The case Q = ∅

is trivial, so we assume that Q is non-empty. Let us fix a maximal element m of
Q, and consider the following commutative diagram:

hocolimQ≤m D ←−−−− hocolimQ<m D −−−−→ hocolimQ\{m}Dy
y

y

colimQ≤m D ←−−−− colimQ<m D −−−−→ colimQ\{m}D

The left vertical arrow is a homotopy equivalence as we show above. The other
vertical arrows are homotopy equivalences by the induction hypotheses. Since D is
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cofibrant, the lower horizontal arrows are cofibrations. Applying Lemma 1.1.7, we
obtain a homotopy equivalence

hocolim
Q≤m

D ∪
hocolim
Q<m

D
hocolim
Q\{m}

D → colim
Q≤m

D ∪
colim
Q<m

D
colim
Q\{m}

D,

which is the same as the canonical map hocolimQD → colimQD up to obvious
homeomorphisms. �

In a certain situation, the homotopy colimit is homotopically decomposed into
a wedge.

Lemma 2.3.4 (Wedge Lemma [ZZ, 1.8]). Let us assume that for each q ∈ Q
there exists a point cq in D(q) which satisfies the following:

• (D(q), cq) is well pointed.
• the obvious map hocolimQ<q D → D(q) is homotopic to the constant map
to cq.

Then there is a homotopy equivalence

hocolim
Q

D ≃ |Q| ∨
{
D(q) ∗ |Q>q|

∣∣∣ q ∈ Q
}
,

where the wedge is formed by identifying q ∈ |Q| with cq ∈ D(q) ⊂ D(q) ∗ |Q>q| for
each q ∈ Q.

Proof. Let W be the topological space of the right-hand side of the required

homotopy equivalence. Let us define two Q-diagrams D̃ and E by

D̃(q) = hocolim
Q≤q

D ⊂ hocolim
Q

D

E(q) =
∣∣Q≤q

∣∣ ∨
{
D(p) ∗ |(p, q]Q|

∣∣∣ p ∈ Q≤q
}
⊂W.

The induced maps D̃(q)→ D̃(q′) and E(q)→ E(q′) are inclusions. By the Projec-
tion Lemma, we have

hocolim
Q

D̃ ≃ colim
Q

D̃ = hocolim
Q

D

hocolim
Q

E ≃ colim
Q

E =W.

By the Homotopy Lemma, it is enough to construct a natural homotopy equivalence

α : D̃ → E.
By Lemma 2.3.1, the obvious map D̃(q)→ D(q), say γq, is a homotopy equiv-

alence. We now show that the obvious embedding D(q) →֒ E(q) is a deformation
retract. For p ∈ Q<q, we have

D(p) ∗ |(p, q]Q| ≃ D(p) ∗ pt ≃ pt.

Since the composition {cp} →֒ D(p) →֒ D(p)∗|(p, q]Q| is a cofibration, the inclusion
{cp} →֒ D(p) ∗ |(p, q]Q| is a deformation retract. Similarly, {q} →֒

∣∣Q≤q
∣∣ is a

deformation retract. Thus the composition

D(q) →֒
∣∣Q≤q

∣∣ ∨D(q) →֒
∣∣Q≤q

∣∣ ∨
{
D(p) ∗ |(p, q]Q|

∣∣∣ p ∈ Q≤q
}
= E(q)

is a deformation retract. Let rq : E(q) → D(q) be the deformation retraction ob-

tained by the above argument. Let us note that the composition E(p) →֒ E(q)
rq
−→

D(q) is the constant map to cq ∈ D(Q) for each p < q.
Let q1, . . . , qn be a linear extension of a finite poset Q, that is, q1, . . . , qn are

distinct elements of Q such that

• Q = {q1, . . . , qn}.
• qi < qj implies i < j for each 1 ≤ i, j ≤ n.
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We now inductively construct homotopy equivalences {αqi : D̃(qi) → E(qi)}1≤i≤n

such that the diagram

D̃(qi)
αqi

//

_�

��

E(qi)
_�

��

D̃(qj) αqj

// E(qj)

commutes for each qi < qj . Let us assume that we could construct {αqi}1≤i<j

satisfying the commutativity described above. Let us consider the diagram

⋃
qi<qj

D̃(qi)

⋃
qi<qj

αqi
//

_�

��

⋃
qi<qj

E(qi)

_�

��

D̃(qj) γqj

∼
// D(qj)

� � ∼
// E(qj).

Let us note that the composition

⋃

qi<qj

D̃(qi) →֒ D̃(qj)
γqj
−−→ D(qj)

is the same as the canonical map hocolimQ<qj D → D(qj) in the assumption, which
is homotopic to the constant map to cq. As we see above, the composition

⋃

qi<qj

E(qi) →֒ E(qj)
rqj
−−→
∼

D(qj)

is the constant map to cq, and rqj is a deformation retraction. Thus the inclusion⋃
qi<qj

E(qi) →֒ E(qj) is homotopic to the constant map to cq. In particular, the

rectangle in the above diagram commutes up to homotopy. Since the inclusion⋃
qi<qj

D̃(qi) →֒ D̃(qj) is a cofibration, we can take αqj : D(qj) → E(qj) such that

in the diagram

⋃
qi<qj

D̃(qi)

⋃
qi<qj

αqi
//

_�

��

⋃
qi<qj

E(qi)

_�

��

D̃(qj)
αqj

//

γqj

∼

$$
■■

■■
■■

■■
■

E(qj)

D(qj)

,
�

∼

::✉✉✉✉✉✉✉✉✉

,

the upper rectangle commutes, and the lower triangle commutes up to homotopy.
Thus αqj is a homotopy equivalence, and satisfies the required commutativity. �

Let X be a Q-diagram of posets, that is, X is a Q-diagram in the category
of posets and order-preserving maps. Taking the order complexes, we obtain a
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Q-diagram of topological spaces, which will be denoted by |X|. The Grothendieck
construction Q

∫
X is a poset defined by

Q
∫
X = { (q, x) | q ∈ Q, x ∈ X(q) }

(q, x) ≤ (q′, x′) ⇐⇒ q ≤ q′ and Xqq′(x) ≤ x
′.

Theorem 2.3.5 (Thomason [Tho, Theorem 1.2]). There is a homotopy equiv-
alence

hocolim
Q

|X| ≃
∣∣Q
∫
X
∣∣ .

Proof. Let Y be the Q-diagram defined by Y (q) = Q≤q
∫
X. The map

Yqq′ is defined to be the inclusion. Let us define the natural transformation α
from Y to X by αq(q

′, x) = Xq′q(x). Then αq induces a homotopy equivalence,
since the obvious section x 7→ (q, x) gives a homotopy inverse. By the Homotopy
Lemma, we have hocolimQ |X| ≃ hocolimQ |Y |. By the Projection Lemma, we have
hocolimQ |Y | ≃ colimQ |Y | ≈

∣∣Q
∫
X
∣∣. �

Theorem 2.3.6 (Quillen Fiber Lemma [Qui, Proposition 1.6]). Let P and Q
be finite posets, and f : P → Q be an order-preserving map. If the fiber

∣∣f−1(Q≤q)
∣∣

is contractible for each q ∈ Q, then |f | : |P | → |Q| is a homotopy equivalence.

Proof. Let X and Y be the Q-diagrams defined by X(q) = f−1(Q≤q) and
Y (q) = Q≤q. The maps Xqq′ and Yqq′ are defined to be the inclusions. Let α : X →
Y be the natural transformation defined by αq(p) = f(p). Since both |X(q)| and
|Y (q)| are contractible for each q ∈ Q, |α| : |X| → |Y | is a natural homotopy
equivalence. By the Homotopy Lemma, hocolimQ |α| is a homotopy equivalence.
By the Projection Lemma, the canonical maps hocolimQ |X| → colimQ |X| ≈ |P |
and hocolimQ |Y | → colimQ |Y | ≈ |Q| are homotopy equivalences. Then we have
the commutative diagram

hocolimQ |X|
hocolimQ|α|
−−−−−−−−→ hocolimQ |Y |y

y

|P | −−−−→
|f |

|Q| ,

whose top, left and right arrows are homotopy equivalences. Thus |f | is also a
homotopy equivalence. �

Remark. Let us note that the order complex |P op| of the opposite poset is
isomorphic to |P |. Thus the dual statement of the Quillen Fiber Lemma is also
true, that is, if

∣∣f−1(Q≥q)
∣∣ is contractible for each q ∈ Q, then |f | is a homotopy

equivalence.

As a generalization of the Quillen Fiber Lemma, Björner, Wachs and Welker
showed the following.

Theorem 2.3.7 (Poset fiber theorem [BWW, Theorem 2.5]). Let P and Q be
finite posets, and f : P → Q be an order-preserving map. Let us assume that for
each q ∈ Q the inclusion

∣∣f−1(Q<q)
∣∣ →֒

∣∣f−1(Q≤q)
∣∣ is homotopic to the constant

map to some point cq in
∣∣f−1(Q≤q)

∣∣. Then there is a homotopy equivalence

|P | ≃ |Q| ∨
{ ∣∣f−1(Q≤q)

∣∣ ∗ |Q>q|
∣∣∣ q ∈ Q

}
,

where the wedge is formed by identifying q ∈ |Q| with cq ∈
∣∣f−1(Q≤q)

∣∣ for each
q ∈ Q.
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Proof. Let us consider the Q-diagram D of topological spaces defined by
D(q) =

∣∣f−1(Q≤q)
∣∣. The induced maps D(q) → D(q′) are inclusions. Since D is

cofibrant, we have

hocolim
Q

D ≃ colim
Q

D = |P | .

We now check that the assumption of the Wedge Lemma for D. Since each D(q) is
a CW complex, (D(q), cq) is well pointed. The obvious map hocolimQ<q D → D(q)
is factored as

hocolim
Q<q

D → colim
Q<q

D =
∣∣f−1(Q<q)

∣∣ →֒
∣∣f−1(Q≤q)

∣∣ = D(q).

By the assumption, this map is homotopic to the constant map to cq. Thus we
obtain the required homotopy equivalence. �

2.4. Frobenius complexes of a sum with one relation

Let Λ1 and Λ2 be finitely generated poset-like additive monoids. Let ρ1 and ρ2
be reducible elements of Λ1 and Λ2, respectively. Let Λ be the quotient additive
monoid of Λ1⊕Λ2 by the equivalence relation generated by ρ1 ∼ ρ2. The equivalence
class of ρ1 and ρ2 will be denoted by ρ. We define

Λ̌i = Λi \ (Λi)≥ρi

for i = 1, 2.

Proposition 2.4.1. The following hold.

(1) Λ is a finitely generated poset-like additive monoid.
(2) Any element λ of Λ can be uniquely written as nρ + λ̌1 + λ̌2 for n ∈ N,

λ̌1 ∈ Λ̌1 and λ̌2 ∈ Λ̌2.
(3) Any element of Λ can be uniquely written as λ̌1 + λ2 for λ̌1 ∈ Λ̌1 and

λ2 ∈ Λ2. Equivalently, for any λ ∈ Λ there uniquely exists λ̃ ∈ Λ1 ⊕ Λ2

satisfying π(λ̃) = λ and λ̃ 6≥ ρ1, where π denotes the canonical projection
Λ1 ⊕ Λ2 → Λ.

Proof. The proof is straightforward. �

Theorem 2.4.2. There is a homotopy equivalence

F(λ; Λ) ≃
∨

ℓρ+λ1+λ2=λ

S2ℓ−2
⊛ F(λ1; Λ1)⊛ F(λ2; Λ2)

for λ ∈ Λ \ {ρ}, where ℓ, λ1 and λ2 run through N, Λ1 and Λ2, respectively. In the
case λ = ρ, there is a homeomorphisms

F(λ; Λ) ≈ F(ρ1; Λ1) ⊔ F(ρ2; Λ2).

We show this theorem in the rest of this section. Let λ be an element of Λ.
Then λ can be uniquely written as λ = nρ + λ̌1 + λ̌2 for n ∈ N, λ̌1 ∈ Λ̌1 and
λ̌2 ∈ Λ̌2. In the case n = 0, the obvious map (0, λ̌1⊕ λ̌2)Λ1⊕Λ2

→ (0, λ)Λ is a poset
isomorphism, which implies the assertion. In the case λ = ρ, the open interval
(0, ρ)Λ is isomorphic to the disjoint union of (0, ρ1)Λ1

and (0, ρ2)Λ2
, which implies

the assertion.
In the rest of proof, we assume λ >Λ ρ. It is enough to show

F(λ; Λ) ≃
∨

ℓ+ℓ1+ℓ2=n

S2ℓ−2
⊛ F(ℓ1ρ1 + λ̌1; Λ1)⊛ F(ℓ2ρ2 + λ̌2; Λ2).

Let Q̂ be the set of all subsets of [n] = {0, 1, . . . , n}. We see Q̂ as a poset by reverse
inclusion, that is, q ≤Q̂ q′ means q ⊃ q′. We denote the minimum [n] and the
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maximum ∅ of Q̂ by 0̂ and 1̂, respectively. Let Q be the induced subposet Q \ {1̂}.

We will construct two Q̂-diagrams of posets. Let us set

Λ̃ = Λ1 ⊕ Nα1 ⊕ · · · ⊕ Nαn ⊕ Λ2

λ̃ = λ̌1 + α1 + · · ·+ αn + λ̌2.

For q ∈ Q̂, let Λq be the quotient additive monoid of Λ̃ by the equivalence relation
∼q generated by αi ∼q αi+1 for i ∈ [n] \ q, where α0 and αn+1 denote ρ1 and

ρ2, respectively. There are canonical isomorphisms Λ0̂
∼= Λ̃ and Λ1̂

∼= Λ. For

q, q′ ∈ Q̂ with q ≤ q′, there is a canonical projection from Λq onto Λq′ , which

will be denoted by ϕqq′ . Then ϕqq′ is a proper homomorphism. For q ∈ Q̂, let us

define λq = ϕ0̂q(λ̃) ∈ Λq. For each q = {q0 < · · · < qs} ∈ Q, the obvious inclusion

Λ1 ⊕ Nαq1 ⊕ · · · ⊕ Nαqs ⊕ Λ2 →֒ Λ̃ induces an isomorphism

(3) Λ1 ⊕ Nαq1 ⊕ · · · ⊕ Nαqs ⊕ Λ2
∼= Λq.

Using Proposition 2.2.7, we have

F(λq; Λq) ≃ F(q0ρ1 + λ̌1; Λ1)⊛ F(q1 − q0;N)⊛ · · ·

· · ·⊛ F(qs − qs−1;N)⊛ F((n− qs)ρ2 + λ̌2; Λ2).

Thus F(λq; Λq) is contractible if qi − qi−1 ≥ 2 for some i = 1, . . . , s. Otherwise, q
can be written as {ℓ1, ℓ1 + 1, . . . , n− ℓ2 − 1, n− ℓ2}. In this case, we have

(4) F(λq; Λq) ≃ S
n−ℓ1−ℓ2−2

⊛ F(ℓ1ρ1 + λ̌1)⊛ F(ℓ2ρ2 + λ̌2).

Let X and Y be the Q-diagrams of poset defined by

X(q) = (0, λq)Λq

Xqq′ = ϕqq′ : X(q)→ X(q′)

Y (q) = C(λq; Λq)

Yqq′ = (ϕqq′)∗ : Y (q)→ Y (q′).

Then |X(q)| and |Y (q)| are homeomorphic to F(λq; Λq). Moreover, two Q-diagrams
|X| and |Y | of spaces are naturally homeomorphic.

The rest of the proof goes as follows. First, we show that
∣∣Q
∫
Y
∣∣ is homotopy

equivalent to F(λ; Λ) by using the Quillen Fiber Lemma. Second, we show that∣∣Q
∫
X
∣∣ is homotopy equivalent to the right-hand side of the theorem by using the

Poset Fiber Theorem. Therefore we can conclude

F(λ; Λ) ≃
∣∣Q
∫
Y
∣∣ ≃ hocolim

Q
|Y | ≈ hocolim

Q
|X| ≃

∣∣Q
∫
X
∣∣ ≃ (RHS).

Lemma 2.4.3. There is a homotopy equivalence
∣∣Q
∫
Y
∣∣ ≃ F(λ; Λ).

Proof. We use the Quillen Fiber Lemma to the map f : Q
∫
Y → C(λ; Λ)

which sends (q, ξ) to (ϕq1̂)∗(ξ). Let us fix an element η = (η(1), . . . , η(s)) of C(λ; Λ).

We now show that the fiber
∣∣f−1(C(λ; Λ)≥η)

∣∣ is contractible. By Lemma 1.3.3 and

Lemma 2.2.9, the fiber is homotopy equivalent to
∣∣f−1(η)

∣∣.
Let rem1 : Λ → Λ̌1 be the map defined by rem1(λ̌1 + λ2) = λ̌1 for λ̌1 ∈ Λ̌1

and λ2 ∈ Λ2. For q ∈ Q, let prq : Λq → Λ1 be the projection via the isomor-
phism (3). We also denote the composition of rem1 after ϕq1̂ by rem1. Then we

have rem1

(
prq(µq)

)
= rem1(µq), and thus µq ≥ rem1(µq) for q ∈ Q and µq ∈ Λq.

By Lemma 2.2.6, we can take the largest integer ℓ1 satisfying

ℓ1ρ1 ≤Λ1

s∑

i=1

rem1(η
(i)).
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Let us set
S = { (q, ξ) ∈ f−1(η) | ℓ1 ∈ q }.

We now show that the inclusion S ⊂ f−1(η) satisfies the hypothesis of Lemma 1.3.3.
Let (q, ξ = (ξ(1), . . . , ξ(s))) be an element of f−1(η). Then we have

λq =

s∑

i=1

ξ(i) ≥
s∑

i=1

rem1(ξ
(i)) =

s∑

i=1

rem1(η
(i)) ≥ ℓ1ρ1.

Thus at least ℓ1 of α1, . . . , αn are identified with ρ1 in Λq, which implies min q ≥ ℓ1.
In the case min q = ℓ1, (q, ξ) itself is the maximum of S≤(q,ξ). Let us assume
min q > ℓ1 and set q̄ = {ℓ1}∪ q. By the same manner of Proposition 2.4.1(3), there
uniquely exists ξ̄(i) ∈ Λq̄ satisfying ϕq̄q(ξ̄

(i)) = ξ(i) and ξ̄(i) 6≥ ρ1, which means

prq̄(ξ̄
(i)) = rem1(η

(i)). Then we have

prq̄

(
s∑

i=1

ξ̄(i)

)
=

s∑

i=1

rem1(η
(i)) = ℓ1ρ1 + λ̌1 = prq̄(λq).

Combining this with

ϕq̄q

(
s∑

i=1

ξ̄(i)

)
=

s∑

i=1

ξ(i) = λq,

we have
∑s

i=1 ξ̄
(i) = λq̄, which implies ξ̄ = (ξ̄(1), . . . , ξ̄(s)) ∈ C(λq̄; Λq̄). Moreover,

(q̄, ξ̄) is the maximum of S≤(q,ξ). Thus
∣∣f−1(η)

∣∣ is homotopy equivalent to |S|.
Similarly, there uniquely exists η̄ ∈ C(λ{ℓ1}; Λ{ℓ1}) satisfying (ϕ{ℓ1}1̂

)∗(η̄) = η.

Then ({ℓ1}, η̄) is the maximum of S. Thus we have
∣∣f−1(C(λ; Λ)≥η)

∣∣ ≃
∣∣f−1(η)

∣∣ ≃ |S| ≃ pt. �

Lemma 2.4.4. There is a homotopy equivalence
∣∣Q
∫
X
∣∣ ≃

∨

ℓ+ℓ1+ℓ2=n

S2ℓ−2
⊛ F(ℓ1ρ1 + λ̌1; Λ1)⊛ F(ℓ2ρ2 + λ̌2; Λ2).

Proof. We use the Poset Fiber Theorem to the map g : Q
∫
X → Q which

sends (q, µ) to q. We first show that g satisfies the hypothesis of the Poset Fiber
Theorem. By definition, we have g−1(Q<q) = Q<q

∫
X and g−1(Q≤q) = Q≤q

∫
X.

By the assumption λ >Λ ρ, X(0̂) is non-empty. The canonical map

Q≤q
∫
X → X(q) ; (p, µ) 7→ ϕpq(µ)

induces a homotopy equivalence, since the obvious section µ 7→ (q, µ) gives a ho-
motopy inverse. Thus it is enough to show that the restriction

h : Q<q
∫
X → X(q) ; (p, µ) 7→ ϕpq(µ)

induces a null-homotopic map. We can assume that q can be written as {ℓ1, ℓ1 +
1, . . . , n − ℓ2}, since otherwise |X(q)| is contractible. Since each ρi is reducible,
we can take σi, τi ∈ (Λi)+ satisfying σi + τi = ρi. For p ∈ Q<q we define the
homomorphism ψpq : Λp → Λq by

ψpq(µ1) = µ1 (µ1 ∈ Λ1)

ψpq(µ2) = µ2 (µ2 ∈ Λ2)

ψpq(αi) =





σ1 (min p < i ≤ ℓ1)

σ2 (n− ℓ2 < i ≤ max p)

αi (otherwise).

Then the following hold.

• ψpq is well-defined.
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• ψpq is a proper homomorphism.
• ψpq ≤ ϕpq holds.
• ψpq ≤ ψp′q ◦ ϕpp′ holds for any p, p′ ∈ Q<q with p ≤ p′.

Let us define h′ : Q<q
∫
X → X(q) by h′(p, µ) = ψpq(µ). Then h

′ is order preserving
and satisfies h′ ≤ h, which implies |h′| ≃ |h|. Next, we show that the image of |h′|
is contained in a contractible subset. The case ℓ1 = ℓ2 = 0 is trivial, since q is
the minimum of Q. In the case ℓ1 = 0 and ℓ2 > 0, we have n − ℓ2 < max p
holds for any p ∈ Q<q. Thus the image of h′ is contained in (0, λq − τ2]Λq

, whose
order complex is contractible. Similarly we can show the case ℓ1 > 0 and ℓ2 = 0.
We assume that both ℓ1 and ℓ2 are positive. Then the image of h′ is contained
in the union (0, λq − τ1]Λq

∪ (0, λq − τ2]Λq
. Then the order complex of the union

is contractible since all order complexes of (0, λq − τ1]Λq
, (0, λq − τ2]Λq

and the
intersection (0, λq − τ1]Λq

∩ (0, λq − τ2]Λq
= (0, λq − τ1 − τ2]Λq

are contractible.
Let us note that ∆ (Q>q) is isomorphic to the barycentric subdivision of the

boundary of (n− ℓ1− ℓ2)-simplex, whose geometric realization is homeomorphic to
Sn−ℓ1−ℓ2−1. By the Poset Fiber Theorem, we have

∣∣Q
∫
X
∣∣ ≃ |Q| ∨

{ ∣∣Q≤q
∫
X
∣∣ ∗ |Q>q|

∣∣∣ q ∈ Q
}

≃
∨

ℓ+ℓ1+ℓ2=n

S2ℓ−2
⊛ F(ℓ1ρ1 + λ̌1; Λ1)⊛ F(ℓ2ρ2 + λ̌2; Λ2). �

Corollary 2.4.5. The multi-graded Poincaré series is given by

P
k[Λ]
k (t, z) =

P
k[Λ1]
k (t, z) · P

k[Λ2]
k (t, z)

1− t2zρ
.

Proof. By the previous theorem and equation (2), we have

β̃i−2(F(λ; Λ)) =
∑

ℓρ+λ1+λ2=λ
2ℓ+j1+j2=i

β̃j1−2(F(λ1; Λ1)) · β̃j2−2(F(λ2; Λ2)).

Combining this with Theorem 2.2.1, we obtain the assertion. �

We say that X has homotopy type of a wedge of spheres if X is S−2 or a
topological space which is homotopy equivalent to

c∐

i=1

wi∨

j=1

Sdij

for some non-negative integers c, {wi}1≤i≤c and {dij}
1≤i≤c
1≤j≤wi

. In this case, the
reduced Betti numbers of X is independent of the choice of a field. Moreover,
the homotopy type of X is determined only by the reduced Betti numbers of X if

β̃0(X) = 0.

Corollary 2.4.6. Let us assume that any Frobenius complex of Λi has homo-
topy type of a wedge of spheres for i = 1, 2. Then any Frobenius complex of Λ has
homotopy types of a wedge of spheres.

2.5. Examples

Let A be an additive group, and α1, . . . , αg elements of A. Let Λ be the
submonoid of A generated by α1, . . . , αg, that is,

Λ = 〈α1, . . . , αg〉N = {n1α1 + · · ·+ ngαg | n1, . . . , ng ∈ N }.

In this case, Λ is poset-like if and only if Λ ∩ (−Λ) = {0} holds. We denote the
smallest additive subgroup of A containing Λ by Λ, that is,

Λ = {λ− µ | λ, µ ∈ Λ }.
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The following is a convenient form of Theorem 2.4.2.

Theorem 2.5.1. Let Λ1 and Λ2 be finitely generated poset-like submonoids of
an additive group A, and ρ a non-zero element of Λ1 ∩ Λ2. Let us assume the
following.

(1) Λ1 ∩ Λ2 = Zρ holds.
(2) ρ is an reducible element of Λi for i = 1, 2.
(3) Any Frobenius complex of Λi has homotopy type of a wedge of spheres for

i = 1, 2.

Then any Frobenius complex of the sum Λ1+Λ2 in A has homotopy type of a wedge
of spheres, and the multi-graded Poincaré series is given by

P
k[Λ1+Λ2]
k (t, z) =

P
k[Λ1]
k (t, z) · P

k[Λ2]
k (t, z)

1− t2zρ
.

Proof. Let Λ be the additive monoid obtained from Λ1 ⊕ Λ2 by identifying
ρ⊕ 0 with 0⊕ ρ. Clearly, the map

ϕ̃ : Λ1 ⊕ Λ2 → Λ1 + Λ2 ; λ1 ⊕ λ2 7→ λ1 + λ2

induces a surjective homomorphism ϕ : Λ → Λ1 + Λ2. We now show that ϕ is
injective. If λ1 + λ2 = λ′1 + λ′2 holds in A for λ1, λ

′
1 ∈ Λ1 and λ2, λ

′
2 ∈ Λ2, then we

have λ1 − λ
′
1 = λ′2 − λ2 ∈ Λ1 ∩ Λ2 = Zρ. Let us assume λ1 − λ

′
1 = nρ for n ≥ 0.

Then we have

λ1 ⊕ λ2 = (λ′1 + nρ)⊕ λ2 ∼ λ
′
1 ⊕ (λ2 + nρ) = λ′1 ⊕ λ

′
2.

The case n ≤ 0 is similarly proved. Thus we can apply Theorem 2.4.2 to Λ1+Λ2. �

Proposition 2.5.2. Let A be a torsion-free additive group, and Λ a finitely
generated poset-like submonoid of A. Let us fix a positive integer p. Then there is a
canonical homeomorphism F(pλ; pΛ) ≈ F (λ; Λ) for λ ∈ Λ+, and the multi-graded
Poincaré series is given by

P
k[pΛ]
k (t, z) = P

k[Λ]
k (t, zp).

Proof. The proof is straightforward. �

The following is an alternative proof for [CE, Theorem 4.1]

Proposition 2.5.3 (Clark-Ehrenborg). Let a and b be integers with 1 < a < b,
and assume that b is not a multiple of a. Then any Frobenius complex of 〈a, b〉

N
⊂ N

has homotopy type of a wedge of spheres, and the multi-graded Poincaré series is
given by

P
k[〈a,b〉

N
]

k (t, z) =
(1 + tza)(1 + tzb)

1− t2zm
,

where m is the least common multiple of a and b.

Proof. We can easily check that 〈a, b〉
N
= 〈a〉

N
+ 〈b〉

N
satisfies all hypotheses

of Theorem 2.5.1 with ρ = m. Thus we have

P
k[〈a,b〉

N
]

k (t, z) =
P

k[〈a〉
N
]

k (t, z) · P
k[〈b〉

N
]

k (t, z)

1− t2zm
=

(1 + tza)(1 + tzb)

1− t2zm
. �

Proposition 2.5.4. Let a be a positive even number, and d a positive odd
number. Let us assume that a+2d is not a multiple of a. Let Λ be the submonoid of
N generated by the arithmetic sequence a, a+d, a+2d. Then each Frobenius complex
of Λ has homotopy types of a wedge of spheres, and the multi-graded Poincaré series
is given by

P
k[Λ]
k (t, z) =

(1 + tza)(1 + tza+2d)

(1− t2zm)(1− tza+d)
,
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where m is the least common multiple of a and a+ 2d.

Proof. We can easily check that Λ = 〈a, a+ 2d〉
N
+ 〈a+ d〉

N
satisfies all hy-

potheses of Theorem 2.5.1 with ρ = a+ (a+ 2d) = 2(a+ d). Thus we have

P
k[Λ]
k (t, z) =

P
k[〈a,a+2d〉

N
]

k (t, z) · P
k[〈a+d〉

N
]

k (t, z)

1− t2z2(a+d)
=

(1 + tza)(1 + tza+2d)

(1− t2zm)(1− tza+d)
. �

The following gives an answer to a question raised by Clark and Ehrenborg [CE,
Question 6.4].

Proposition 2.5.5. Let p and q be relatively prime integers with 1 < p < q,
and n a positive integer. Let Λn be the submonoid of N generated by the geometric
sequence pn, pn−1q, . . . , pqn−1, qn. Then each Frobenius complex of Λn has homo-
topy type of a wedge of spheres, and the multi-graded Poincaré series is given by

P
k[Λn]
k (t, z) =

n∏
i=0

(1 + tzp
n−iqi)

n∏
i=1

(1− t2zpn−i+1qi)
.

In particular, in the case p = 2,

P
k[Λn]
k (t, z) =

1 + tz2
n

n∏
i=1

(1− tz2n−iqi)
.

Proof. We show the assertion by induction on n. The case n = 1 follows
from Proposition 2.5.3. Let us assume n ≥ 2. By the induction hypothesis, Λn =
pΛn−1 + 〈q

n〉
N
satisfies all hypotheses of Theorem 2.5.1 with ρ = q · pqn−1 = p · qn.

Thus we have

P
k[Λn]
k (t, z) =

P
k[pΛn−1]
k (t, z) · P

k[〈qn〉
N
]

k (t, z)

1− t2zpqn

=

n∏
i=0

(1 + tzp
n−iqi)

n∏
i=1

(1− t2zpn−i+1qi)
. �

Proposition 2.5.6. Let p1, . . . , pn (n ≥ 1) be mutually relatively prime integers
with 1 < p1 < · · · < pn. Let Λn be the submonoid of Q generated by 1/p1, . . . , 1/pn.
Then any Frobenius complex of Λn has homotopy type of a wedge of spheres, and
the multi-graded Poincaré series is given by

P
k[Λn]
k (t, z) =

n∏
i=1

(1 + tz1/pi)

(1− t2z)n−1
.

Proof. We show the assertion by induction on n. The case n = 1 follows
from Proposition 2.2.2. Let us assume n ≥ 2. By the induction hypothesis, Λn =
Λn−1+ 〈1/pn〉N satisfies all hypotheses of Theorem 2.5.1 with ρ = 1. Thus we have

P
k[Λn]
k (t, z) =

P
k[Λn−1]
k (t, z) · P

k[〈1/pn〉N]
k (t, z)

1− t2z
=

n∏
i=1

(1 + tz1/pi)

(1− t2z)n−1
. �

Proposition 2.5.7. Let a, b, c and d be integers greater than 1, and assume
gcd(a, b) = gcd(c, d) = gcd(a+ b, c+d) = 1. Let Λ be the submonoid of N generated
by a(c+ d), b(c+ d), (a+ b)c and (a+ b)d. Then each Frobenius complex of Λ has
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homotopy type of a wedge of spheres, and the multi-graded Poincaré series is given
by

P
k[Λ]
k (t, z) =

(1 + tza(c+d))(1 + tzb(c+d))(1 + tz(a+b)c)(1 + tz(a+b)d)

(1− t2zab(c+d))(1− t2z(a+b)cd)(1− t2z(a+b)(c+d))
.

Proof. We can easily check that Λ = (c + d) 〈a, b〉
N
+ (a + b) 〈c, d〉

N
satisfies

all hypotheses of Theorem 2.5.1 with ρ = (a+ b)(c+ d). Thus we have

P
k[Λ]
k (t, z) =

P
k[(c+d)〈a,b〉

N
]

k (t, z) · P
k[(a+b)〈c,d〉

N
]

k (t, z)

1− t2zρ

=
(1 + tza(c+d))(1 + tzb(c+d))(1 + tz(a+b)c)(1 + tz(a+b)d)

(1− t2zab(c+d))(1− t2z(a+b)cd)(1− t2z(a+b)(c+d))
. �
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CHAPTER 3

An extension of Gromov’s characterization for
orthoscheme complexes

3.1. Introduction

Gromov [Gro] showed that a cubical complex has non-positive curvature if
and only if the link of each vertex is a flag complex. This theorem has a lot of
applications. A typical example is the proof that any right-angled Artin group is
a CAT(0) group, which goes as follows (see [CD] for more details). For a right-
angled Artin group AΓ, one can construct a cubical complex SΓ with fundamental
group AΓ, which is called the Salvetti complex associated to AΓ. Using Gromov’s
characterization, one can check that SΓ have non-positive curvature. Thus AΓ acts
properly, cocompactly by isometries on the universal cover of SΓ, which is a CAT(0)
geodesic space.

It is, however, still open whether all Artin groups are CAT(0) groups. Brady
and McCammond [BM] introduced orthoscheme complexes as a generalization of
cubical complexes. Orthoschemes are Euclidean simplices which appear in the
barycentric subdivision of the cube [−1, 1]d. The orthoscheme complex of a graded
poset P is a piecewise Euclidean complex obtained by gluing orthoschemes along
the chains of P . A precise definition will be given in Section 3.5. Brady and
McCammond showed the following.

(1) If the orthoscheme complex of the poset NPCn of the non-crossing parti-
tions is a CAT(0) space, then the n-string braid group is a CAT(0) group.

(2) For n ≤ 5, the orthoscheme complex of NPCn is a CAT(0) space.

Thus the n-string braid group is a CAT(0) group for n ≤ 5. They conjectured that
(2) holds for arbitrary n. Haettel, Kielak and Schwer showed that (2) holds for
n ≤ 6 [HKS].

Now, it seems to be important to develop criteria for a graded poset to have
CAT(0) orthoscheme complex. Chalopin et al. [CCHO] established some sufficient
conditions. For example, they showed the following.

(1) The orthoscheme complex of a modular lattice is a CAT(0) space.
(2) The orthoscheme complex of a locally distributive flag semilattice is a

CAT(0) space.

Relevance between the CAT(0) properties of orthoscheme complexes and the com-
putational complexity of the 0-extension problem was pointed out (see [CCHO]
for more details).

It seems, however, that there were few necessary and sufficient conditions for
a graded poset to have CAT(0) orthoscheme complex. In this chapter, we discuss
a translation and an extension of Gromov’s characterization for orthoscheme com-
plexes. We say a semilattice S is a flag semilattice if any pairwise bounded finite
subset of S is again bounded. As a translation, we show that the orthoscheme
complex of a locally Boolean semilattice S is a CAT(0) space if and only if S is a
flag semilattice (Theorem 3.5.3). As an extension, we show that the orthoscheme
complex of a locally distributive semilattice S is a CAT(0) space if and only if S is
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a flag semilattice (Theorem 3.5.4). We also show that the orthoscheme complex of
any locally distributive semilattice can be embedded in that of some locally Boolean
semilattice as a convex subset.

The rest of this chapter is organized as follows. In Section 3.2, we introduce
some notions and terminology. In Section 3.3, we establish a representation theorem
for locally distributive semilattices. In Section 3.4, we review some notions concern-
ing CAT(0) geodesic spaces and Euclidean polyhedral complexes. In Section 3.5,
we discuss an extension of Gromov’s characterization for orthoscheme complexes.

3.2. Preliminaries

An abstract simplicial complex K is said to be a flag complex if the following
condition holds for any finite subset σ of vertices: if any two-element subset of σ
forms a face of K, then σ itself is also a face of K.

Proposition 3.2.1. The following hold.

(1) An abstract simplicial complex K is a flag complex if and only if the
following condition holds for any faces σ1, σ2, σ3 of K: if all of σ1 ∪ σ2,
σ1 ∪ σ3 and σ2 ∪ σ3 are faces of K, then σ1 ∪ σ2 ∪ σ is also a face of K.

(2) The simplex σ̃ is a flag complex for any finite set σ.
(3) If K is a flag complex, then the link lk(σ;K) is a flag complex for any

face σ of K.
(4) For abstract simplicial complexes K and L, the join K∗L is a flag complex

if and only if both K and L are flag complexes.

Proof. The proof is straightforward. �

Let P be a poset. A chain of P is a totally ordered subset of P . The length
of a chain C is defined to be #C − 1. The height ht(P ) of P is defined to be the
least upper bound of the lengths of all chains of P , which might be ∞. The height
htP (x) of an element x of P is defined to be ht(P≤x). We say that P has locally
finite height if the height of any elements of P is finite. Let us note that P has
finite height if and only if the order complex of P is finite dimensional. In this case,
ht(P ) = dim∆(P ) holds. A subset A of P is said to be bounded above, or simply
bounded, if there exists u ∈ P satisfying A ⊂ P≤u.

A lattice is a poset L such that any pair x, y ∈ L has the greatest lower bound
and the least upper bound, which will be denoted by x ∧ y and x ∨ y, respectively.
We say L is modular if the modular law

(x ∨ y) ∧ z = x ∨ (y ∧ z)

holds for any x, y, z ∈ L with x ≤ z. We say L is distributive if the distributive law

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

holds for any x, y, z ∈ L. We say L is bounded if L has a minimum and a maximum,
which will be denoted by 0 and 1, respectively. A bounded lattice L is said to be
complemented if for any x ∈ L there exists y ∈ L satisfying x∧y = 0 and x∨y = 1.
A complemented distributive lattice is called a Boolean lattice.

A meet-semilattices, or simply a semilattice, is a poset S such that any pair
x, y ∈ S has the greatest lower bound, which will be denoted by x ∧ y.

Lemma 3.2.2. Let S be a semilattice of locally finite height, and A a non-
empty subset of S closed under ∧, that is, x, y ∈ A implies x ∧ y ∈ A. Then A has
a minimum.
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Proof. First, we show that A has a minimal element. Otherwise, we can take
an infinite strictly decreasing sequence a0 > a1 > · · · of A. Thus we obtain

∞ > htS(a0) > htS(a1) > · · · ,

but htS(x) is non-negative by definition, which is a contradiction.
Thus A has a minimal element m. Then m is the minimum of A, since we have

x ≥ x ∧m = m for any x ∈ A. �

Proposition 3.2.3. Let S be a non-empty semilattice of locally finite height.
Then the following hold.

(1) S has a minimum, which will be denoted by 0.
(2) Any bounded pair of elements of S has the least upper bound.
(3) S≤x is a bounded lattice for any x ∈ S.

Proof. To show (1), apply the previous lemma to S itself. To show (2),
similarly consider S≤x ∩ S≤y. (3) follows from (1) and (2). �

Let S be a non-empty semilattice of locally finite height. For a bounded pair
x, y ∈ S, we denote their least upper bound by x ∨ y. We can see ∨ as a partial
binary operator on S. For a property (Φ) for bounded lattices, we say S is locally
(Φ) if S≤x satisfies (Φ) for any x ∈ S. For example, a locally distributive semilattice
is a semilattice S such that S≤x is a distributive lattice for any x ∈ S. We say that
S is a flag semilattice if any pairwise bounded finite subset of S is bounded. By
the similar way in Proposition 3.2.1, a semilattice S is a flag semilattice if and only
if any pairwise bounded triple of elements of S is bounded.

3.3. A representation theorem for locally distributive semilattices

It is well-known that any distributive lattice of finite height is isomorphic to the
poset of the down sets of a finite poset, which is known as Birkhoff’s representation
theorem for distributive lattices (see [Grä, Theorem 107]). In this section, we
discuss its extension for locally distributive semilattices. The basic idea of this
extension can be seen in [CCHO, Proposition 7.6].

Let S be a non-empty locally distributive semilattice of locally finite height.
An element x of S is said to be join-reducible, or simply reducible, if there exist
y, z ∈ S<x satisfying x = y ∨ z. An element x of S is said to be join-irreducible,
or simply irreducible, if x is neither reducible nor equal to 0. Let IrrS denote the
induced subposet of all irreducible elements of S.

Proposition 3.3.1. Let x be an element of S. Then the following are equiva-
lent.

• x is irreducible.
• For any finite subset F of S≤x,

∨
F = x implies x ∈ F .

Proof. The proof is done by induction on #F . �

Lemma 3.3.2. If a subset A of IrrS is bounded in S, then A is finite.

Proof. Let us take u ∈ S satisfying A ⊂ S≤u. We now show #A ≤ htS(u).
Otherwise, we can take n > htS(u) and distinct n elements a1, . . . , an of A. By
permutation, we can assume that ai ≤ aj implies i ≤ j. Set bj =

∨
i≤j ai for

j = 0, . . . , n. Clearly, the sequence b0, . . . , bn is weakly increasing. If the equation
bj−1 = bj holds, then we have

aj = bj ∧ aj = bj−1 ∧ aj =
(∨

i<j

ai

)
∧ aj =

∨

i<j

(ai ∧ aj).
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Since aj is irreducible, there exists i < j satisfying ai ∧ aj = aj , which implies
ai ≥ aj . This contradicts the assumption for a1, . . . , an. Hence the sequence
b0, . . . , bn is strictly increasing, and thus forms a chain in S≤u of length n, which
contradicts the assumption n > htS(u). �

A down set of a poset P is a subset I of P such that x ≤ y and y ∈ I imply
x ∈ I for any x, y ∈ P . Let DownP denote the set of all down sets of P . For a
subset σ of P , we define the closure of σ by

σ =
⋃

x∈σ

P≤x.

Then σ is the smallest down set of P which contains σ.
Let K be an abstract simplicial complex, and fix a partial order ≤ on V (K).

A face of K is said to be a down face if it is a down set of V (K) with respect to
this order. Let DF (K) denote the set of all down faces of K. We see DF (K) as an
induced subposet of F (K). A partial order ≤ on V (K) is said to be a compatible
order on K if any face of K is contained in some down face of K. Equivalently, σ
is a face of K for any face σ of K.

Proposition 3.3.3. Let K be an abstract simplicial complex, and fix a partial
order on V (K). Then F (K) is a locally Boolean semilattice of locally finite height,
and DF (K) is a locally distributive semilattice of locally finite height. Moreover,
the meets, the joins and the heights in DF (K) coincide with the restrictions of
those in F (K).

Proof. The meet is given by the intersection, the join by the union if exists,
and the height by the size of a face, which is finite. �

Theorem 3.3.4. Let S be a locally distributive semilattice of locally finite
height. Then there exist an abstract simplicial complex K and a compatible or-
der on K such that DF (K) is isomorphic to S.

Proof. Let K be the abstract simplicial complex whose faces are the subsets
σ of IrrS bounded in S. The finiteness of faces of K follows from Lemma 3.3.2.
The induced order on V (K) = IrrS is a compatible order on K, since σ ⊂ S≤u

implies σ ⊂ S≤u.
Let ϕ : S → DF (K) and ψ : DF (K)→ S be the maps defined by

ϕ(x) = (IrrS)≤x (x ∈ S)

ψ(σ) =
∨
σ (σ ∈ DF (K)).

Clearly, ϕ and ψ are well-defined and order-preserving. We will show these maps
are inverses of each other.

It is clear that ψ ◦ ϕ(x) ≤ x holds for any x ∈ S. We now show the other
direction by induction on htS(x). The case either x = 0 or x ∈ IrrS is trivial.
Let us assume that x is reducible, that is, x = y ∨ z for some y, z ∈ S<x. By the
induction hypothesis, we have

ψ ◦ ϕ(x) = ψ ◦ ϕ(y ∨ z) ≥ ψ ◦ ϕ(y) ∨ ψ ◦ ϕ(z) = y ∨ z = x.

It is clear that ϕ ◦ψ(σ) ⊃ σ holds for any σ ∈ DF (K). Let x be an element of
ϕ ◦ ψ(σ) = (IrrS)≤

∨
σ. Then we have

x = x ∧
(∨

σ
)
=
∨

y∈σ

(x ∧ y).

Since x is irreducible, there exists y ∈ σ satisfying x = x ∧ y, which implies x ≤ y.
Since σ is a down set, x belongs to σ. �
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Corollary 3.3.5. Let S be a locally Boolean semilattice of locally finite height.
Then there exists an abstract simplicial complex K such that F (K) is isomorphic
to S.

Proof. It is enough to show that IrrS is an antichain, that is, there is no
non-trivial ordering in S. Otherwise, there exist x, y ∈ IrrS satisfying x > y. Since
S≤x is a Boolean lattice, there exists z ∈ S≤x satisfying y ∧ z = 0 and y ∨ z = x.
Since x is irreducible and y < x, we have z = x. Thus we have

0 = y ∧ z = y ∧ x = y,

which contradicts to the assumption that y is irreducible. �

Proposition 3.3.6. Let K be an abstract simplicial complex, and fix a com-
patible order on K. Then the following are equivalent.

(1) K is a flag complex.
(2) F (K) is a flag semilattice.
(3) DF (K) is a flag semilattice.

Proof. (1) ⇔ (2) and (2) ⇒ (3) are trivial. We now show (3) ⇒ (2). Let
us assume that DF (K) is a flag semilattice. Let σ1, σ2, σ3 be pairwise bounded
elements of F (K). Then σ1, σ2, σ3 are pairwise bounded in DF (K), since an upper
bound of σi and σj is given by σi ∪ σj . Thus there exists an upper bound of
{σ1, σ2, σ3} in DF (K), which is also an upper bound of {σ1, σ2, σ3} in F (K). �

3.4. Metric spaces

In this section, we first review some notions concerning CAT(0) geodesic spaces
and Euclidean polyhedral complexes. References for these subjects are [BH] and
[Gro]. Second, we construct the cubical cone from an abstract simplicial complex,
and show some properties of cubical cones.

A pseudo-metric on a set X is a binary function d : X × X → [0,∞] which
satisfies the following conditions:

• d(x, x) = 0 holds for any x ∈ X.
• d(x, y) = d(y, x) holds for any x, y ∈ X.
• d(x, z) ≤ d(x, y) + d(y, z) holds for any x, y, z ∈ X.

A metric on a set X is a pseudo-metric d on X which satisfy

• d(x, y) = 0 implies x = y for any x, y ∈ X.

A metric space is a set X equipped with a metric dX on X. Similarly, we define
a pseudo-metric space. The metric on Rn defined by d(x, y) =

√∑n
i=1(xi − yi)

2

is called the Euclidean metric, and Rn with the Euclidean metric is called the
Euclidean space, which will be denoted by En. A metric space X is said to be
complete if any Cauchy sequence in X converges. For a metric space (X, dX) and
a subset A of X, the restriction of dX on A × A is called the induced metric on
A. For two pseudo-metric spaces X and Y , a map f : X → Y is non-expanding if
dY (f(x), f(x

′)) ≤ dX(x, x′) holds for any x, x′ ∈ X, and f is distance preserving if
dY (f(x), f(x

′)) = dX(x, x′) holds for any x, x′ ∈ X. Clearly, a distance-preserving
map from a metric space is injective. A bijective distance-preserving map is called
an isometry. Two metric spaces are called isometric if an isometry between them
exists. For a metric space X and x, y ∈ X, a geodesic path from x to y in X is
a distance-preserving map γ : [0, ℓ] → X which sends the endpoints 0 and ℓ to x
and y, respectively. Here [0, ℓ] denotes the closed interval of R with the standard
metric, that is, d[0,ℓ](s, t) = |s − t|. In this case, we have dX(x, y) = ℓ. A metric
space X is said to be geodesic if for any x, y ∈ X there exists a geodesic path from
x to y in X.
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CAT(0) properties. A geodesic metric space X is said to be CAT(0) if for
any x, y, z ∈ X and any geodesic path γ : [0, ℓ]→ X from x to y in X, the inequality

dX(γ(tℓ), z)2 ≤ t · dX(y, z)2 + (1− t) · dX(x, z)2 − t(1− t) · dX(x, y)2

holds for all t ∈ [0, 1]. Roughly speaking, this inequality means that the any triangle
in X whose edges are geodesic paths is at least as thin as the comparison triangle
of the same side lengths in the Euclidean space. We say a metric space X has
non-positive curvature, or is locally CAT(0), if for any x ∈ X there exists r > 0
such that the open ball { y ∈ X | dX(x, y) < r } of radius r centered at x is a
CAT(0) geodesic space with the induced metric.

Let us note that if a geodesic space X is CAT(0), then X is uniquely geodesic,
that is, for any pair of points in X there uniquely exists a geodesic path between
them. Since the unique geodesic path can be taken continuously with respect to
the end points, any non-empty CAT(0) geodesic space must be contractible.

Theorem 3.4.1 (The Cartan-Hadamard Theorem [BH, II.4.1(2)]). Let X be
a complete metric space. Then the following are equivalent.

(1) X has non-positive curvature, and is simply connected.
(2) X is a CAT(0) geodesic space.

Euclidean polyhedral complexes. In this subsection, we review the defini-
tion and basic properties of Euclidean polyhedral complexes. Roughly speaking,
Euclidean polyhedral complexes are obtained from Euclidean polytopes by gluing
them along isometric faces. We are interested in conditions for Euclidean polyhedral
complexes to have (locally) CAT(0) metric.

A Euclidean polytope is a polytope in a Euclidean space with the induced metric.
A Euclidean polyhedral complex is a set X equipped with a family {(Pλ, iλ)}λ∈Λ of
pairs of a Euclidean polytope Pλ and an injection iλ : Pλ → X which satisfies the
following conditions:

• The images of iλ cover X, that is, X =
⋃

λ∈Λ iλ(Pλ).
• If iλ(Pλ) and iµ(Pµ) have non-empty intersection, then the inverse image
of the intersection under iλ is a face of Pλ, similarly the inverse image
under iµ is a face of Pµ, and the induced bijection

i−1
µ ◦ iλ : i

−1
λ (iλ(Pλ) ∩ iµ(Pµ))→ i−1

µ (iλ(Pλ) ∩ iµ(Pµ))

is an isometry with respect to the induced metrics.

The maps {iλ}λ∈Λ are called face maps of X, and their images are called faces
of X. The restriction of iλ on a face of Pλ is also called a face map of X, and its
image is also called a face of X.

By definition, our Euclidean polyhedral complexes are regular, that is, all face
maps are injective. Moreover, our Euclidean polyhedral complexes are simple, that
is, any two faces intersect in at most one face of them.

For x, y ∈ X, a string from x to y in X is a finite sequence Σ = {(λi, xi, yi)}
m
i=1

of triples which satisfies the following conditions:

• λi ∈ Λi for i = 1, . . . ,m
• xi, yi ∈ Pλi

for i = 1, . . . ,m
• x = iλ1

(x1)
• iλi

(yi) = iλi+1
(xi+1) for i = 1, . . . ,m− 1

• iλm
(ym) = y

The length of a string Σ = {(λi, xi, yi)}
m
i=1 is defined by

ℓ(Σ) =
m∑

i=1

dPλi
(xi, yi).
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The intrinsic pseudo-metric on X is defined by

dX(x, y) = inf{ ℓ(Σ) | Σ is a string from x to y in X }.

If there is no string from x to y in X, we define dX(x, y) =∞. The intrinsic pseudo-
metric can be characterized as follows: for any pseudo-metric space Z and any map
f : X → Z, f is non-expanding if and only if f ◦ iλ : Pλ → Z is non-expanding for
each λ ∈ Λ. Equivalently, the intrinsic pseudo-metric is the largest pseudo-metric
such that all face maps iλ : Pλ → X are non-expanding. Let us note that a string
Σ = {(λi, xi, yi)}

m
i=1 induces a path in X by concatenating the line segments [xi, yi]

in Pλi
. We say X is connected if any pair of points in X can be connected by a

string in X. We say that X has finite shapes if the number of isometry types of
{Pλ | λ ∈ Λ } is finite. Bridson showed the following.

Theorem 3.4.2 ([BH, I.7]). If X is a connected Euclidean polyhedral complex
of finite shapes, then the intrinsic pseudo-metric is a metric, and X is a complete
geodesic metric space. Moreover, any geodesic path in X is obtained from a string.

Cubical complexes. A cubical complex is a Euclidean polyhedral complex X
such that each face of X is isometric to a unit cube Id = [0, 1]d ⊂ Ed for some
d ≥ 0. Let us note that a cubical complex has finite shapes if and only if it is finite
dimensional. A face of X isometric to I0 is called a vertex of X. Since a vertex
v of X is a one-point subspace of X, we identify v as a point in X. A face of X
isometric to I1 is called an edge of X. Two distinct vertices v and w of X is said
to be adjacent if there exists an edge of X which contains both v and w. Let v
be a vertex of X. The cubical link, or simply the link, lk�(v;X) of v in X is an
abstract simplicial complex whose vertices are the vertices of X adjacent to v. A
finite subset σ of such vertices forms a face of lk�(v;X) if and only if there exists
a face of X containing both v and σ.

Gromov characterized the condition for cubical complexes to have non-positive
curvature.

Theorem 3.4.3 (Gromov [Gro, 4.2.C], [BH, Theorem II.5.20]). Let X be a
finite-dimensional cubical complex. Then X has non-positive curvature if and only
if lk�(v;X) is a flag complex for any vertex v of X.

Cubical cones. We will discuss a translation and an extension of this char-
acterization by Gromov in the next section. In order to do this, we now introduce
cubical cones, which behave as a partial inverse of cubical links. Let K be a finite-
dimensional abstract simplicial complex. The cubical cone C�(K) of K is the
cubical complex defined by

C�(K) =
⋃

σ∈K

Iσ ⊂ E(V (K)),

where

Iσ =
{∑

v∈σ

tvv
∣∣∣ tv ∈ [0, 1]

}
⊂ E(σ) ⊂ E(V (K)).

Here E(A) denotes the direct sum
⊕

a∈A Ra with the Euclidean metric with respect

to A, that is, dE(A)(
∑

a taa,
∑

a saa) =
√∑

a(ta − sa)
2. Equivalently, C�(K) can

be defined as

C�(K) =
{
x =

∑

v∈V (K)

tvv
∣∣∣ tv ∈ [0, 1], suppx ∈ K

}
,

where suppx = { v ∈ V (K) | tv 6= 0 }. Face maps of C�(K) are the inclusions
Iσ →֒ C�(K) for σ ∈ K. Here we see Iσ as a Euclidean polytope in E(σ). By
definition, Iσ is isometric to the unit cube I#σ.
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Proposition 3.4.4. Any vertex of C�(K) has form χσ =
∑

v∈σ v for some
σ ∈ F (K). Moreover, the link lk�(χσ;C�(K)) is isomorphic to σ̃ ∗ lk(σ;K). In
particular, the link lk�(0;C�(K)) at the origin 0 = χ∅ is isomorphic to K itself.

Proof. The first assertion is obvious. We now show the second. A vertex
adjacent to χσ has form either χσ\{v} for v ∈ σ or χσ∪{w} for w ∈ V (lk(σ;K)).
The obvious bijection

V (σ̃ ∗ lk(σ;K)) = V (σ̃) ⊔ V (lk(σ;K))→ V (lk�(χσ;C�(K)))

gives an isomorphism between abstract simplicial complexes. �

Proposition 3.4.5. The cubical cone C�(K) is a CAT(0) space if and only if
K is a flag complex.

Proof. By Theorem 3.4.2, C�(K) is a complete metric space. Since C�(K)
is star-shaped at the origin, C�(K) is contractible, and thus simply connected. By
Theorem 3.4.1, C�(K) is CAT(0) if and only if it has non-positive curvature. By
Theorem 3.4.3, this is equivalent to that the link of each vertex in C�(K) is a flag
complex. Combining the previous proposition and Proposition 3.2.1, we have the
assertion. �

Proposition 3.4.6. The inclusion i : C�(K) →֒ E(V (K)) is a non-expanding
map. Moreover, if a pair ξ, η ∈ C�(K) satisfies the equation

dC�(K)(ξ, η) = dE(V (K))(ξ, η),

then the line segment between ξ and η in E(V (K)) is contained in C�(K).

Proof. The first assertion follows from that the composition

Iσ →֒ C�(K) →֒ E(V (K))

is distance preserving, and thus non-expanding for σ ∈ F (K). We now show the
second. Let us assume ξ, η ∈ C�(K) satisfies dC�(K)(ξ, η) = dE(V (K))(ξ, η). Let
us take a geodesic path γ : [0, ℓ] → C�(K) from ξ to η in C�(K). Then i ◦ γ
is a geodesic path from ξ to η in the Euclidean space E(V (K)), which implies the
assertion. �

3.5. Orthoscheme complexes

In this section, we consider the orthoscheme complex of a poset, which is the
order complex equipped with a certain Euclidean polyhedral complex structure.

For positive real numbers ℓ1, . . . , ℓd, the orthoscheme O(ℓ1, . . . , ℓd) is defined

to be the Euclidean polytope in Ed spanned by vi =
∑i

j=1 ℓjej for i = 0, . . . , d.

Here e1, . . . , ed denote the standard orthonormal basis of Ed. Then the orthoscheme
O(ℓ1, . . . , ℓd) is a d-dimensional Euclidean simplex satisfying the following proper-
ties:

• The edge vivj is orthogonal to vjvk for 0 ≤ i ≤ j ≤ k ≤ d.
• The edge vi−1vi has length ℓi for 1 ≤ i ≤ d.

• The edge vivj has length
√∑j

k=i+1 ℓ
2
k for 0 ≤ i ≤ j ≤ d.

Let us note that the unit d-orthoscheme O(1, . . . , 1) is isometric to the facet of the
barycentric subdivision of the cube [−1, 1]d.

Let P be a poset, and r : P → R be a strictly order-preserving map. We now
construct a Euclidean polyhedral complex structure on the order complex |P | by
using r. For a finite chain σ = {x0 < · · · < xd} of P , Let us define

Oσ = O(
√
r(x1)− r(x0),

√
r(x2)− r(x1), . . . ,

√
r(xd)− r(xd−1)),
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and define iσ : Oσ → |P | to be the affine map which sends vi to xi for i = 0, . . . , d.
Then iσ is an injection onto ∆σ. We can see that iσ gives a Euclidean metric on
∆σ satisfying d∆σ (xi, xj) =

√
r(xj)− r(xi) for 0 ≤ i ≤ j ≤ d. The orthoscheme

complex of P with respect to r is defined to be the Euclidean polyhedral complex
on the geometric realization |P | whose face maps are iσ : O

σ → |P | for σ ∈ ∆(P ).
We say that a poset P is connected if for any x, y ∈ P there exists a finite sequence
x0, . . . , x2n in P satisfying

x = x0 ≤ x1 ≥ x2 ≤ · · · ≥ x2n = y.

Let us note that P is connected if and only if the orthoscheme complex |P | is
connected. By using Theorem 3.4.2 we have the following.

Proposition 3.5.1. If P is connected and the image of r : P → R is finite,
then the orthoscheme complex |P | of P with respect to r is a complete geodesic
metric space.

A poset P is said to be graded if there exists a strictly order-preserving map
r : P → Z such that the equation ht[x, y]P = r(y)− r(x) holds for any pair x, y ∈ P
with x ≤ y. Such an r is called a rank function on P . If P is a poset of finite
height with a minimum, a rank function on P is given by the height function
htP : P → {0, 1, . . . , htP} if exists. In the rest of this chapter, we treat only graded
posets of finite height, and discuss their orthoscheme complexes with respect to rank
functions. Clearly, the orthoscheme complex of a graded poset P with respect to a
rank function is independent of the choice of a rank function. Let us note that any
locally distributive semilattice of locally finite height is graded by Theorem 3.3.4.

Lemma 3.5.2. Let K be a finite-dimensional abstract simplicial complex. Then
the orthoscheme complex |F (K)| is isometric to the cubical cone C�(K).

Proof. Let us define ϕ : |F (K)| → C�(K) by

ϕ
( d∑

i=0

tiσi

)
=

d∑

i=0

tiχσi
.

We now construct the inverse ψ of ϕ. Let ξ =
∑

v∈V (K) tvv be an element of

C�(K). Let us note that { v ∈ V (K) | tv > 0 } is finite and forms a face of K. Let
us take a descending sequence 1 = s0 > s1 > · · · > sd+1 = 0 such that

{ tv | v ∈ V (K) } ∪ {0, 1} = {s0, s1, . . . , sd+1},

and let
σi = { v ∈ V (K) | tv ≥ si}

for i = 0, . . . , d. Then σ0 ( σ1 ( · · · ( σd is a finite chain of F (K). We define

ψ(ξ) =
d∑

i=0

(si − si+1)σi.

We can easily check that ψ is the inverse of ϕ.
We next show that ϕ is distance preserving. By definition we can check that

the restriction of ϕ on ∆C is distance preserving for any finite chain C of F (K).
Using the characterization of the intrinsic metric on |F (K)|, it follows that ϕ is
non-expanding. Moreover, a string in C�(K) can be decomposed via ψ into a
string in F (K) of the same length, which implies that ϕ is distance preserving. �

The following gives a translation of Theorem 3.4.3 for orthoscheme complex.

Theorem 3.5.3. Let S be a locally Boolean semilattice of finite height. Then
the orthoscheme complex |S| is a CAT(0) space if and only if S is a flag semilattice.
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Proof. By Corollary 3.3.5, it is enough to show the case S = F (K) for a
finite-dimensional abstract simplicial complex K. Let us note that F (K) is a flag
semilattice if and only if K is a flag complex. The assertion follows from Proposi-
tion 3.4.5 and the previous lemma. �

The following is an extension of the previous theorem.

Theorem 3.5.4. Let S be a locally distributive semilattice of finite height. Then
the orthoscheme complex |S| is a CAT(0) space if and only if S is a flag semilattice.

To show this theorem, we first show the following.

Lemma 3.5.5. Let K be a finite-dimensional abstract simplicial complex, and
fix a compatible order on K. Then |DF (K)| is a convex subset of |F (K)|, that is,
any geodesic path in |F (K)| between points in |DF (K)| is contained in |DF (K)|. In
particular, the induced metric on |DF (K)| from |F (K)| coincides with the intrinsic
metric of its own.

Proof. Let ϕ : |F (K)| → C�(K) be the isometry defined in the proof of
Lemma 3.5.2. Let X be the image of |DF (K)| under ϕ. By the definition of ϕ and
the construction of its inverse, we have

X =
{ ∑

u∈V (K)

tuu ∈ C�(K)
∣∣∣ tv ≥ tw for v ≤ w in V (K)

}
.

It is enough to show that X is convex in C�(K). Set

Ỹvw =
{ ∑

u∈V (K)

tuu ∈ E(V (K))
∣∣∣ tv ≥ tw

}

and Yvw = C�(K) ∩ Ỹvw for v < w in V (K). Then we have X =
⋂

v<w Yvw.
Thus it is enough to show that Yvw is convex in C�(K) for v < w. We now define

ψ̃vw : E(V (K)) → Ỹvw as follows. Let ξ be an element of E(V (K)). Let us define

ψ̃vw(ξ) ∈ Ỹvw to be the unique point satisfying

dE(V (K))(ξ, ψ̃vw(ξ)) = inf
η∈Ỹvw

dE(V (K))(ξ, η).

Indeed, ψ̃vw is given by

ψ̃vw

( ∑

u∈V (K)

tuu
)
= max

{
tv,

tv + tw
2

}
v +min

{
tw,

tv + tw
2

}
w +

∑

u6=v,w

tuu

Let us note that if σ is a face of K and w ∈ σ, then σ ∪ {v} ⊂ σ is also a face

of K. Thus the image of C�(K) under ψ̃vw is contained in C�(K). We define

ψvw : C�(K) → Yvw to be the restriction of ψ̃vw. Since ψ̃vw is non-expanding,
ψvw is non-expanding on each face, and thus entirely on C�(K). Moreover, ψvw

is a retraction. Let us assume that Yvw is not a convex subset of C�(K). Then
there exist ξ, η, ζ ∈ C�(K) satisfying ξ, ζ ∈ Yvw, η /∈ Yvw, and dC�(K)(ξ, η) +
dC�(K)(η, ζ) = dC�(K)(ξ, ζ). Let us take a shortest string Σ = {(σi, xi, yi)}

m
i=1

from ξ to η. Then there exists i = 1, . . . ,m such that xi ∈ Yvw but yi /∈ Yvw.
For such xi and yi, ψvw strictly shortens their distance. Thus the resulting string
Σ′ = {(σi, ψvw(xi), ψvw(yi))}

m
i=1 from ξ to ψvw(η) has length less than that of Σ.

Hence we have

dC�(K)(ξ, ζ) ≤ dC�(K)(ξ, ψvw(η)) + dC�(K)(ψvw(η), ζ)

< dC�(K)(ξ, η) + dC�(K)(η, ζ)

= dC�(K)(ξ, ζ),

which is a contradiction. �
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Proof of Theorem 3.5.4. By Theorem 3.3.4, we can assume S = DF (K)
for some finite-dimensional abstract simplicial complex K with a fixed compatible
order on K. If DF (K) is a flag semilattice, then K is a flag complex, and thus
|F (K)| ∼= C�(K) is a CAT(0) space. Hence its convex subset |DF (K)| is also a
CAT(0) space.

We now show the converse. Let us assume that |DF (K)| is a CAT(0) space. Let
σi (i = 1, 2, 3) be pairwise bounded elements of DF (K), that is, σi ∪ σj ∈ DF (K)
holds for i, j ∈ {1, 2, 3}. Let X be the image of |DF (K)| under the isometry
ϕ : |F (K)| → C�(K) in the proof of Lemma 3.5.2. Then X is isometric to |DF (K)|
with the induced metric from C�(K), and thus X is a CAT(0) space. Since the
line segments [χσi

, χσj
] in E(V (K)) are contained in X, we have

dX(χσi
, χσj

) = dE(V (K))(χσi
, χσj

)

for i, j ∈ {1, 2, 3}. By the CAT(0) inequality, we have

dX(
χσ1

+ χσ2

2
, χσ3

) ≤ dE(V (K))(
χσ1

+ χσ2

2
, χσ3

).

This is possible only if the line segment [
χσ1

+χσ2

2 , χσ3
] is contained in X, which

implies σ1 ∪ σ2 ∪ σ3 ∈ F (K), and thus σ1 ∪ σ2 ∪ σ3 ∈ DF (K). �

Chalopin et al. conjectured that a locally modular flag semilattice of finite
height has CAT(0) orthoscheme complex [CCHO, Conjecture 7.3]. We suggest the
following stronger form.

Conjecture 3.5.6. Let S be a locally modular semilattice of finite height. Then
the orthoscheme complex |S| is a CAT(0) space if and only if S is a flag semilattice.

The following gives a criterion for a graded poset of finite height to have locally
CAT(0) orthoscheme complex.

Proposition 3.5.7. Let P be a graded poset of finite height. Then the or-
thoscheme complex |P | has non-positive curvature if and only if the intervals P≤x

and P≥x have CAT(0) orthoscheme complexes for each x ∈ P .

Proof. The assertion follows from [BM, Proposition 3.11, Proposition 5.7]
and [BH, Theorem II.5.2]. �

Corollary 3.5.8. Let P be a graded poset of finite height, and assume that
the intervals (P≤x)

op
and P≥x are locally distributive semilattices for each x ∈ P .

Then the orthoscheme complex |P | is a CAT(0) space if and only if the intervals
(P≤x)

op
and P≥x are flag semilattices.

Proof. The assertion immediately follows from Theorem 3.5.4 and the previ-
ous proposition. �
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