
博士論文（要約）

論文題目 　 Meta-continuation Semantics
via Meta-lambda Calculus

(メタラムダ計算を用いたメタ継続意味論)

氏　　名 戸澤　一成

1

Delimited continuation is an abstract of continuation. Continuation is a
notion representing “the rest of computation at some time,” and using it as first-
class objects enables us to represent kinds of control flows. By adding control
delimiter we obtain a notion of delimited continuation that makes representation
of control flows more effective and enables us to represent more computation
effects. The call-by-value λµt̂p-calculus is introduced in order to characterize
the expressibility of delimited continuation [AHS09]. It can operate delimited
continuations as first-class objects. It is an extension of the call-by-value λµ-
calculus. The difference from λµ-calculus is only the existence of a special
continuation variable t̂p.

Since the variable t̂p has the dynamic nature unlike the other variables, it
is called a dynamically-scoped variable. The dynamic nature is explained as
follows:

let x := (λy.µδ.[α]y) in µα.[α]x → µβ.[β](λy.µδ.[α]y)

let x := (λy.µδ.[t̂p]y) in µt̂p.[t̂p]x → µt̂p.[t̂p](λy.µδ.[t̂p]y)

Substitutions in the lambda calculus are performed in a capture-avoiding man-
ner. On the other hand, Substitutions for the variable t̂p contradict the variable-
renaming rule. Therefore the binding structure about t̂p is determined dynam-
ically.

A CPS translation based on meta-continuation semantics is commonly used
to give a semantics for the call-by-value λµt̂p-calculus [DF90]. CPS translation
is a method to give a semantics for a system, and its main role is to determine
an evaluation strategy of the system. The CPS translation for the call-by-value
λµt̂p-calculus is seen as a two-fold translation, and therefore, it is called a CPS2
translation. The CPS2 translation has another role “to determine the dynamic
nature of t̂p.” Since the CPS2 translation plays the two roles simultaneously,
it is difficult to consider the dynamic nature of delimited control separately. In
order to discuss the dynamic nature separately from the call-by-value strategy,
some kinds of decompositions of the CPS2 translation are proposed in previous
studies, such as a decomposition of Kameyama for giving a CPS translation for
higher-order delimited control [Kam07], one of Downen and Ariola for giving a
semantics for an extension of λµt̂p-calculus with multiple names of dynamically-
scoped variables [DA12], and one of Ariola, Herbelin and Sabry for analyzing the
structure of the type system for delimited control that is complicated because
of control delimiter [AHS09].

The aim of this study is to separate the two roles of the CPS2 translation for
the call-by-value λµt̂p-calculus. In order to formulate it, we give two translations
C and D whose composite is equal to the CPS2 translation. Each translation
is designed to play only one role of the two roles respectively. In order to use
each translation independently, we need to give a theory of the intermediate
language of the decomposition.

We propose thatmeta-lambda calculus is useful as the intermediate system of
the decomposition. Meta-lambda calculus is an extension of the lambda calculus
with meta-variables and textual substitutions. Compared to usual substitutions,

2

textual substitution is executed as follows:

(λx.λy.x)(xy) → λz.xy

(λX.λy.X)(xy) → λy.xy

While a variable renaming occurs during the substitution for the ordinary vari-
able x, the substitution for the meta-variable X is executed textually. With
respect to presence of renaming, textual substitutions are similar to substitu-
tions for the dynamically-scoped variable t̂p. By observing this similarity, we
construct a new translation C. The translation C is an extension of the CPS
translation for the call-by-value λµ-calculus with a meta-level structure in meta-
lambda calculus. Therefore the translation C plays only the role of giving an
evaluation strategy.

The key idea is to take a meta-lambda calculus supporting cross-level com-
putation as the target of the translation C. The translation C makes an un-
conventional use of meta-lambda calculus. Since variables at a higher level that
occur in translated terms are regarded as object-level, we need to evaluate terms
containing meta-variables, that is, we need the ability cross-level computation.
Tobisawa introduced a meta-lambda calculus λ∗ supporting cross-level compu-
tation [Tob15]. Cross-level computation enables us to define the translation C
as an independent translation.

In Section 3, we define a target calculus λd̂∗ of the translation C. Since we
need to consider cross-level computation of translated terms, λd̂∗ is based on
Tobisawa’s meta-lambda calculus λ∗. In order to be a target of the transla-
tion C, the meta-lambda calculus λd̂∗ need to contain the ordinary extensional
lambda calculus at the level-2 layer. Since λ∗ does not have mechanisms for
variable renaming and η-reduction, we give α-conversion and η-reduction for
level-2 variables. Moreover, since λd̂∗ need to have only a name d̂ for level-1
variables that is a counterpart of the dynamically-scoped variable t̂p, and since
λd̂∗ is too detailed for our purpose, we give a suitable class of terms to equate
more terms than λ∗. At the end of Section 3, we show the confluence of λd̂∗.

Proposition 1. →βη is confluent.

In Section 4, we show that the translation C is sound and complete with
respect to the CPS2 theory. The proof is based on the technique introduced in
[SF92]. Since translated terms are independent of an evaluation order in the
target calculus as the CPS2 translation, we can regard the translation C as a
CPS translation whose target is a meta-lambda calculus. By the translation
C, the dynamic nature of t̂p is derived naturally from the level structure on
meta-lambda calculus. The results in Section 4 indicate that the translation
C is another method to get the meta-continuation semantics, and gives a sim-
pler understanding for the axioms regarding the dynamic nature of t̂p by using
mechanisms for dynamic binding in meta-lambda calculus.

Proposition 2. The CPS2 theory is sound and complete with respect to the
translation C.

3

λµt̂p
C !!

CPS2
""❉

❉❉
❉❉

❉❉
❉❉

λd̂∗s
! "

conservative
!!

extension
D
##

λd̂∗

λ

Figure 1: The relation to the CPS2 translation

In Section 5, we give a decomposition of the CPS2 translation into the trans-
lation C, as shown in Figure 1. It is a modified decomposition of Downen and
Ariola in the sense that we correct some errors in theirs and we give an axiom-
atization of the intermediate system. We define a translation D and show that
the composite of the translations C and D is equal to the CPS2 translation.
Moreover, we show that the translation D is sound and complete with respect
to the equational theory =βη of the meta-lambda calculus λd̂∗. It indicates that
the decomposition separates the two roles of the CPS2 translation.

Proposition 3. Let M be a term, and J a jump of the call-by-value λµt̂p-
calculus. Then the following hold:

D[[C[[M]]v]] = [[M]]v

D[[C[[J]]v]] = [[J]]v

Proposition 4. The equational theory =s is sound and complete with respect
to the translation D.

In Section 6, we establish a correspondence between the type systems of the
call-by-value λµt̂p-calculus and the meta-lambda calculus λd̂∗. Danvy and Filin-
ski’s type system of the call-by-value λµt̂p-calculus has parameterized structure
[DF89]. Typing judgements in this system are of the form:

Γ\S1 ⊢ M : T\S2|∆,

The difference from simple type theory is the existence of type parameters S1

and S2. Similarly, function types become of the form [A\S1 → B\S2]. These
parameters contribute the ability of each occurrence of control delimiter to have
its type. Therefore the type system is said to support answer-type modification.
On the other hand, it is known that modal type theory is useful for meta-lambda
calculus. By using modal operators we can add information about the context of
a term, so that the type system is called contextual modal type theory [NPP08]．
The information enables us to prevent the textual substitutions that may raise
a type mismatch error. In order to establish the correspondence between the
type systems, we present a type theory of the meta-lambda calculus λd̂∗ based
on contextual modal type theory, and show the subject reduction property of
this system. By defining properly a translation of types, the translation C is
extended to the type systems so that parameterized structure is translated into

4

the modality in contextual modal type theory. We prove the type soundness of
the translation C, which means that the dynamic nature of t̂p is explained in
terms of contextual validity.

Proposition 5. Suppose that

∆; d̂ : S ⊢ M : T,

and suppose that M →βη N . Then

∆; d̂ : S ⊢ N : T.

Proposition 6. Let M be a term and J a jump of the call-by-value λµt̂p-
calculus. Then the following hold:

1. If Γ\S1 ⊢ M : A\S2|∆ then Γ∗,∆+; d̂ : KS1 ⊢ C[[M]]v : CA\S2
.

2. If Γ\S1 ⊢ J : ⊥⊥ |∆ then Γ∗,∆+; d̂ : KS1 ⊢ C[[J]]v : R.

Bibliography

[AHS09] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A type-theoretic
foundation of delimited continuations. Higher-Order and Symbolic
Computation, 22(3):233–273, 2009.

[DA12] Paul Downen and Zena M. Ariola. A systematic approach to delim-
ited control with multiple prompts. In Proceedings of Programming
Languages and Systems - 21st European Symposium on Programming
(ESOP 2012), pages 234–253, 2012.

[DF89] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed
contexts. Technical Report DIKU-89/12, University of Copenhagen,
1989.

[DF90] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceed-
ings of the 1990 ACM Conference on LISP and Functional Program-
ming (LFP ’90), pages 151–160, 1990.

[Kam07] Yukiyoshi Kameyama. Axioms for control operators in the cps hierar-
chy. Higher-Order and Symbolic Computation, 20(4):339–369, 2007.

[NPP08] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contex-
tual modal type theory. ACM Transactions on Computational Logic,
9(3):23:1–23:49, 2008.

[SF92] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In Proceedings of the 1992 ACM conference
on LISP and functional programming (LFP ’92), pages 288–298, 1992.

[Tob15] Kazunori Tobisawa. A meta lambda calculus with cross-level compu-
tation. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2015),
pages 383–393, 2015.

5

