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Abstract

In this dissertation we consider homogenization problems and investigate the well-

posedness for nonlinear evolutionary partial differential equations (PDEs for short)

with substantially different effects from classical cases like a nonlocality, especially

Hamilton-Jacobi equations and PDEs with second order degenerate elliptic operators

in principal terms. PDEs considered in this dissertation are deeply involved with real

phenomenology such as optimal control, crystal growth and anomalous diffusion. In

the framework of the theory of viscosity solutions we clarify causes that lead substan-

tial differences from classical results by means of a precise analysis for formulation of a

problem or an extension of the notion of viscosity solutions.

In Chapter 1 we consider a homogenization problem for a Hamilton-Jacobi equa-

tion whose Hamiltonian is not coercive, which is motivated by a certain phenomenon

of crystal growth. Homogenization is a method to estimate macroscopic aspects from

microscopic aspects and it is described mathematically as a kind of singular limit prob-

lems. A homogenization result for coercive Hamiltonians is well-known. However,

a similar proof does not work for non-coercive Hamiltonians and there is no unified

solution.

A cell problem is a key problem for this purpose. This is like an eigenvalue prob-

lem. It reads: for a given vector P find a unique constant such that a certain (stationary)

Hamilton-Jacobi equation admits a continuous viscosity solution. Then the unique con-

stant determined for each P can be regarded as a function of P . Such a function is called

an effective Hamiltonian and plays a role of a Hamiltonian of limit equation in an asso-

ciated homogenization problem. It is known that cell problems are solved for every P if

the Hamiltonian is coercive. Based on this classical fact, we consider an associated cell

problem with a certain coercive Hamiltonians approximating the original Hamiltonian,

and then get an approximate effective Hamiltonian. By introducing a generalized effec-

tive Hamiltonian as a limit of the approximate effective Hamiltonian, we characterize

a set of vectors P such that cell problems are solved. Throughout several examples in

one dimension, we show that the set of P can become R, bounded open interval and

empty set.

By using the solvability result of cell problems and the notion of generalized effec-

tive Hamiltonian we give a sufficient condition in order that there is a homogenized

limit for an associated homogenization problem. We also show that there is a case

when a homogenized limit does not exist and give a sufficient condition to occur such

a situation.

In Chapter 2 we study the well-posedness for the initial-value problem of Hamilton-

Jacobi equations with Caputo’s time-fractional derivative (CTFD for short) whose order
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is less than one. Partial differential equations with CTFDs have many applications to

phenomenon in the real world. Among them, diffusion equations whose time deriva-

tives are replaced by CTFDs which is called anomalous diffusion equations have been

widely considered and a researched by using weak solutions in the sense of distribu-

tion has been begun to study in [Sakamoto-Yamamoto, ’11]. In [Allen, preprint], a

regularity problem for a certain equation with CTFD has been considered in terms of

a viscosity solution. However, the well-posedness was not mentioned in this paper.

Our aim of this research is to construct the synthetic theory of viscosity solutions so

that (fully nonlinear) equations with CTFD mentioned in above papers cane be con-

sidered. Since second-order equations involves some technical issues, we consider for

first-order equations in this chapter, and extend arguments to second-order cases in the

next chapter. This research and results are completely new even for first-order equa-

tions.

CTFD of a function u = u(t, x) is defined as a convolution of the time derivative

∂tu and the function t−α, where α ∈ (0, 1) stands for the derivative’s oder. Hence the

usual definition of viscosity solutions does not apply. The theory of viscosity solutions

for spatial nonlocal PDEs, for example, including the fractional Laplacian has already

been constructed. However, it is not clear whether or not the definition of viscosity

solutions for such an equation is valid for ours since each fractional derivatives are

given by different definitions. Therefore, a main issue of this research is to define a

(viscosity) solution that ensures a unique existence.

A maximum principle for Caputo’s derivatives was established by Luchko. Com-

bining this with a classical maximum principle in the space direction, we get a notion

of weak solutions based on the idea of the theory of viscosity solutions. However, the

doubling variable method does not work for solutions in this sense. Here the doubling

variable method is a standard method used for proofs of comparison principles. To

overcome such a difficulty, we integrate the time derivative by parts. Then, the derived

function does not have any derivatives of unknowns, so we define a viscosity solu-

tion by using it as a substitution of CTFDs. We find that the doubling variable method

does work for viscosity solutions in this sense and thus prove a comparison principle

(hence uniqueness). Also, an existence is proved by Perron’s method similarly as usual.

Totally, we establish a unique existence of the initial value problem.

In this chapter we also consider stability and regularity of a solution. For the stabil-

ity section, in addition to an analogous result of the well-known one for integer-order

cases, we show a stability under a limit operation when a time-derivative’s order is re-

garded as a parameter. For the regularity, we show that a solution is Hölder continuous

with the same order as time derivative’s with respect to time and Lipschitz continuous

with respect to space.
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We emphasize that assumptions on Hamiltonians and initial data throughout this

chapter are standard for an integer-order case. In particular, all results are applicable

to transport equations with CTFD

∂αt u+ ν(t, x) ·Du = 0,

where Du is the spatial gradient of u.

In Chapter 3 we study the well-posedness of second order fully nonlinear PDEs

with a multi-term CTFD based on considerations in Chapter 2. A multi-term CTFD is

a finite sum of CTFDs with positive coefficients and it is often utilized to model more

complicated phenomenon in applied fields. A single-term CTFD is also considered as

a special case of the multi-term.

A viscosity solution is defined similarly as in Chapter 2. Hence an existence by

Perron’s method and a stability result are proved by slightly changing proofs. Here a

construction of barriers required in Perron’s method should be paid attention because

of the multi-term CTFD. We show that they are given by a similar function as a single-

term case, that is, in Chapter 2.

A main issue is to establish a comparison principle. An important step in a proof

of comparison principle is to apply a maximum principle of semicontinuous functions.

However, classical results (Crandall-Ishii lemma, Ishii’s lemma) do not apply directly

due to the nonlocality of Caputo’s derivative. For this reason, we prove a relation of

semijets for PDEs with CTFDs, which is called Ishii’s lemma for integer-order case. The

comparison principle is then proved by ideas for classical results of integer-order cases

and handling the term of CTFD similar as in Chapter 2.

In Chapter 4 we investigate the well-posedness of initial-boundary value problems

of Hamilton-Jacobi equations with CTFD under homogeneous Neumann boundary

conditions. For integer-order case, boundary conditions are interpreted in a special

sense in order to prove a unique existence of a viscosity solution for initial-boundary

value problems. However, a shape of solutions changes depending on time-derivative’s

orders for equation with Caputo’s derivatives. Thus it is not clear at all how to inter-

pret viscosity solutions on boundaries for such equations. In this research we focus on

homogeneous Neumann boundary conditions. We then show that a comparison prin-

ciple and an existence results by Perron’s method are proved by interpreting boundary

conditions similarly as for integer-order cases.

Finally, in Chapter 5, we consider a homogenization problem of evolutionary Hamilton-

Jacobi equations under state-constraint boundary conditions, which is motivated from

optimal control problems. Note that Hamiltonian is coercive and time-derivative is first

order. Homogenization problems for PDEs with state-constraint boundary conditions

were so far considered for perforated domains and for PDEs with divergence forms.
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Here the perforated domain is a domain that has holes periodically in microscopic view

point. Motivated by them, we consider a similar problem for a non-perforated domain.

A difficult point is what cell problems are not found by a simple asymptotic expansion.

By considering carefully a procedure of convergence method, we find an associated

cell problem. It is well-known that such a cell problem is solved, and thus we obtain

a homogenization result. Here the argument for convergence follows the half-relaxed

limit method.

Chapter 1, Chapter 2 and Chapter 5 are based on (2), (1) and (3) below, respectively.

All Sections, formulas and theorems, etc., are cited only in the chapter where they ap-

pear.
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Chapter 1

On cell problems for Hamilton-Jacobi equa-
tions with non-coercive Hamiltonians and their
application to homogenization problems

We study a cell problem arising in homogenization for a Hamilton-Jacobi equation
whose Hamiltonian is not coercive. We introduce a generalized notion of effective
Hamiltonians by approximating the equation and characterize the solvability of the
cell problem in terms of the generalized effective Hamiltonian. Under some sufficient
conditions, the result is applied to the associated homogenization problem. We also
show that homogenization for non-coercive equations fails in general.

Keywords: Cell Problem; Homogenization; Hamilton-Jacobi Equation; Non-coercive
Hamiltonian; Viscosity Solution; Faceted Crystal Growth; Generalized Effective Hamil-
tonian; Solvability Set

1.1 Introduction

We consider a Hamilton-Jacobi equation of the form

(CP) H(x,Du(x) + P ) = a in TN

and study a problem to find, for a given P ∈ RN , a pair of a function u : TN → R

and a constant a ∈ R such that u is a Lipschitz continuous viscosity solution of (CP).
Here, TN := RN/ZN and a function u on TN is regarded as a function defined on RN

with ZN -periodicity, i.e., u(x + z) = u(x) for all x ∈ RN and z ∈ ZN . Moreover, Du
denotes the gradient, i.e., Du = (∂u/∂x1, · · · , ∂u/∂xN ). This kind of problem is called
a cell problem in the theory of homogenization. The constant a satisfying (CP) is called
a critical value if it is uniquely determined.

As a typical example in this paper, we consider the HamiltonianH : TN ×RN → R

in (CP) given by

(1.1.1) H(x, p) = σ(x)m(|p|),

where σ and m satisfy

(H1) σ : TN → (0,∞) is a continuous function,

1
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(H2) m : [0,∞) → (0, 1) is a Lipschitz continuous function,

(H3) m is strictly increasing and m(r) → 1 as r → ∞.

Due to the boundedness of m, our cell problem does not necessarily admit a solution
(u, a), and the solvability depends on P ∈ RN . One of goals in this paper is to charac-
terize the set of P ∈ RN such that the cell problem admits a solution. The other goal is
to apply the result to the associated homogenization problem.

A result for existence of a solution of cell problems for Hamilton-Jacobi equations
was first established by Lions, Papanicolaou and Varadhan [20] under the assumption
that the Hamiltonian is coercive, i.e.,

(1.1.2) lim
r→∞

inf{H(x, p) | x ∈ TN , p ∈ RN , |p| ≥ r} = +∞.

Their method begins with considering the following approximate equation with a pa-
rameter δ > 0:

(1.1.3) δuδ(x) +H(x,Duδ(x) + P ) = 0 in TN .

By a standard argument of viscosity solutions, it turns out that there exists a unique
solution uδ and that a family of functions {δuδ}δ>0 is uniformly bounded. Thus, (for-
mally) {Duδ}δ>0 is uniformly bounded thanks to the coercivity. Therefore, by taking a
subsequence if necessary, δuδ and uδ −minuδ uniformly converge to a constant −a and
a function u as δ → 0, respectively. A stability argument of viscosity solutions shows
that u and a solve (CP). For more details, see [20] and [13]. We point out that the paper
[13] also studies second order uniformly elliptic equations by using a similar argument.

Unfortunately, our Hamiltonian (1.1.1) is not coercive because of the boundedness
of the function m. When a Hamiltonian is not coercive, the method of [20] becomes
very delicate. Cardaliaguet [8] shows, in fact, that δuδ may not converge to a con-
stant; this result does not cover our setting. We also refer the reader to [2] as a related
work to [8]. Homogenization results with non-coercive Hamiltonians can be seen in
[4, 5, 6, 9, 10, 18, 21, 23, 24]. Hamiltonians with some partial coercivity is studied in [4],
and [5] treats equations with u/ε-term. The papers [6, 23, 18] are concerned with ho-
mogenization on spaces with a (sub-Riemannian) geometrical condition. The authors
of [9] study moving interfaces with a sign changing driving force term while [10, 21, 24]
considers G-equations being possibly non-coercive. Homogenization for degenerate
second order equations has been developed by [1, 7]. Our Hamiltonian (1.1.1) has not
been treated yet in the context of homogenization.

We now present our main results and briefly explain our approach for the non-
coercive Hamilton-Jacobi equation (CP). Let us consider an approximate equation of
the form

(CPn) Hn(x,Dun(x) + P ) = H̄n(P ) in TN

for each n ∈ N. Here {Hn}n∈N is a family of coercive Hamiltonians which approximate
H . For the detailed assumptions, see (A1)–(A4) in Section 3. By the coercivity of Hn,
the result of [20] ensures that, for each n ∈ N, the approximate equation has a solution
(un, H̄n(P )) for every P ∈ RN . The function H̄n(·) is called an effective Hamiltonian,
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which appears in a limit equation in homogenization problems (see [20]). Our first
main result is that, for each P ∈ RN , there exists a limit H̄∞(P ) of H̄n(P ) as n → ∞
and its value is independent of approximation (Theorem 1.6). In this paper we call
H̄∞(·) a generalized effective Hamiltonian, which is defined on the whole of RN even if
(CP) is not solvable for some P ∈ RN . We now define the solvability set D as the set of
P ∈ RN such that (CP) admits a solution. Our second main result is a characterization
of D in terms of the generalized effective Hamiltonian. We prove that D = {P ∈ RN |
H̄∞(P ) < σ}, where σ := minx∈TN σ(x), and that H̄∞(P ) is equal to the critical value of
(CP) (Theorem 1.7). In the one-dimensional case, it turns out that D has a more explicit
representation (Proposition 1.18).

We next present our homogenization results. Let uε be a viscosity solution of

(HJε)

u
ε
t (x, t) +H

(x
ε
,Duε(x, t)

)
= 0 in RN × (0, T ),

uε(x, 0) = u0(x) in RN .

Here, ε > 0 is a parameter and u0 : RN → R is a bounded and Lipschitz continuous
initial datum. In our homogenization result (Theorem 1.21) we assume either

(1) D = RN or (2) m(Lip[u0]) < σ/σ,

where σ := maxx∈TN σ(x) and Lip[u0] stands for the Lipschitz constant of u0. Then, we
prove that uε converges to the solution u of the following problem locally uniformly in
RN × [0, T ) as ε→ 0:

(HJ)

{
ut(x, t) + H̄∞(Du(x, t)) = 0 in RN × (0, T ),

u(x, 0) = u0(x) in RN .

The assumption (1) guarantees that the cell problem is solvable for every P ∈ RN . The
proof is given by the half-relaxed limit method and the perturbed test function method
provided by Evans [13]. The assumption (2) is a sufficient condition that {uε}ε>0 is
equi-Lipschitz continuous. Since the cell problem may not have a solution for some
P ∈ RN , we are not able to apply the perturbed test function method directly. We prove
the homogenization result by reducing the original equation (CP) to the approximate
equation (CPn) with a coercive Hamiltonian by using the equi-Lipschitz continuity of
{uε}ε>0. We also show that, under the condition σm(0) > σ, the solutions uε do not
converge to any function locally uniformly in RN × [0, T ) as ε→ 0 (Theorem 1.24).

Our non-coercive Hamiltonian (1.1.1) is originally derived by Yokoyama, Giga and
Rybka [25] to study the morphological stability of a faceted crystal. Two functions σ and
m represent the rate of supply of molecules and the dimensionless kinetic coefficient,
respectively. In [16] and [17] the authors study the large time behavior of a viscosity
solution of such non-coercive Hamilton-Jacobi equations.

We conclude this section with the physical explanation of the above homogeniza-
tion problem and its result. In this problem, we find an average growth of the faceted
crystal with a (microscopic) heterogeneous supply of molecules. As we will men-
tion in Subsection 3.3, the cell problem does not have a solution under the condition
σm(0) ≥ σ. Thus, both the assumptions (1) and (2) imply σm(0) < σ. This inequality
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means that the heterogeneity of the supply of molecules is somewhat small. In this
case the growth of the faceted crystal is described by (HJ) in view of Theorem 1.21. We
point out that the condition σm(0) < σ also appears in [17] to ensure the large time
behaviour in the whole space. On the other hand, if σm(0) > σ, i.e., the heterogeneity
is somewhat large, then the growth of the faceted crystal becomes complicated since
homogenization fails (Theorem 1.24).

In this paper, we show main theorems (Theorems 1.6 and 1.7) under (H1)–(H3)
for simplicity, but it is possible to generalize a condition on a Hamiltonian and some
generalizations are given as Remarks 1.10 and 1.14.

This paper is organized as follows. Section 2 is devoted to preparation for the vis-
cosity solutions and the critical values. We study the cell problem in Section 3 and 4. In
Section 3, we present main theorems and prove them. We also give a sufficient condi-
tion for D = RN and some properties of generalized effective Hamiltonians. In Section
4, we focus on the one-dimensional cell problem and give a more explicit representa-
tion of D. Section 5 is concerned with an application to homogenization problems. In
Section 6 we extend the homogenization results for more general equations.

1.2 Preliminaries

In this section let H : TN ×RN → R be a general continuous Hamiltonian.
Let Lip(TN ) denote the set of Lipschitz continuous functions on TN and B(x, r)

denote the closure of an open ball B(x, r) of radius r > 0 centered at a point x.
We consider Hamilton-Jacobi equations of the form

(1.2.1) H(x,Du(x)) = 0 in TN .

In order to define viscosity solutions of (1.2.1), we recall notions of super- and subdif-
ferentials. For a continuous function u : TN → R and x ∈ TN , we set

D+u(x) :=

{
Dϕ(x)

∣∣∣∣ ϕ ∈ C1(TN ), max
TN

(u− ϕ) = (u− ϕ)(x)

}
.

We also define D−u(x) by replacing “max” by “min” in the above.
We call u ∈ C(TN ) a viscosity subsolution (resp. supersolution) of (1.2.1) if H(x̂, p) ≤ 0

(resp. H(x̂, p) ≥ 0) for all x̂ ∈ TN and p ∈ D+u(x̂) (resp. p ∈ D−u(x̂)). If u ∈ C(TN ) is
a viscosity sub- and supersolution of (1.2.1), we call it a viscosity solution of (1.2.1). The
term “viscosity” is often omitted in this paper.

A pair of a function u ∈ Lip(TN ) and a constant a ∈ R satisfying (CP) is called a
solution of (CP). If such a constant a is unique, it is called the critical value of (CP). If
there exists a critical value of the cell problem for every P ∈ RN , then we say that the
cell problem is fully solvable. When the cell problem is fully solvable, we are able to
define a function H̄ : RN → R by setting H̄(P ) as the associated critical value. We call
the function H̄ an effective Hamiltonian of H .

Proposition 1.1 (Comparison principle for the cell problem). Let P ∈ RN and let a, b ∈
R. If there exist a subsolution u ∈ Lip(TN ) of (CP) and a supersolution v ∈ Lip(TN ) of
H(x,Dv(x) + P ) = b in TN , then a ≥ b. In particular, if (u, c), (v, d) ∈ Lip(TN ) ×R are
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solutions of the cell problem (CP), then c = d and moreover

c = inf{a ∈ R | there exists a subsolution of (CP)}
= sup{a ∈ R | there exists a supersolution of (CP)}.

The proof is based on the comparison principle for (1.1.3) with a small δ > 0; see
[20, 13]. Here we do not need an extra continuity assumption on H since u and v are
now Lipschitz continuous.

Proof. Since u and v are bounded, we may assume that u > v by adding a positive
constant to u if necessary. Suppose by contradiction that a < b, i.e.,

H(x,Du+ P ) ≤ a < b ≤ H(x,Dv + P )

in the viscosity sense. We then see that

δu+H(x,Du+ P ) ≤ a+ b

2
≤ δv +H(x,Dv + P ).

The comparison principle implies that u ≤ v, which contradicts to u > v. Therefore,
a ≥ b.

This observation implies

inf{a ∈ R | there exists a subsolution of (CP)} =: c

≥ sup{a ∈ R | there exists a supersolution of (CP)} =: c.

We then see that c = d = c = c since c ≤ c ≤ c and c ≤ d ≤ c by the definitions.

Lemma 1.2 (Estimates of the critical value). Let P ∈ RN and let (u, c) ∈ Lip(TN )×R be
a solution of the cell problem (CP). Then, we have

sup
ϕ∈C1(TN )

inf
x∈TN

H(x,Dϕ(x) + P )

sup
x∈TN

sup
p∈D+u(x)

H(x, p+ P )

 ≤ c ≤


inf

ϕ∈C1(TN )
sup
x∈TN

H(x,Dϕ(x) + P ),

inf
x∈TN

inf
p∈D−u(x)

H(x, p+ P ).

Proof. The inequality c ≤ infx∈TN infp∈D−u(x)H(x, p + P ) is trivial since it is equiv-
alent to the definition of a viscosity supersolution of (CP). Similarly, the inequality
supx∈TN supp∈D+u(x)H(x, p + P ) ≤ c holds since it is equivalent to the definition of a
viscosity subsolution of (CP).

For a fixed ϕ ∈ C1(TN ), since u−ϕ is periodic and (Lipschitz) continuous, we have
Dϕ(x̂) ∈ D−u(x̂) at a minimum point x̂ ∈ TN of u− ϕ. Thus

sup
x∈TN

H(x,Dϕ(x) + P ) ≥ H(x̂,Dϕ(x̂) + P ) ≥ c,

which implies that c ≤ infϕ∈C1(TN ) supx∈TN H(x,Dϕ(x) + P ). In a similar way, we
see that supϕ∈C1(TN ) infx∈TN H(x,Dϕ(x) + P ) ≤ c by choosing a maximum point of
u− ϕ.
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Remark 1.3. It is worth to note that if the Hamiltonian H = H(x, p) is convex in p for
each x ∈ TN and satisfies the coercivity condition (1.1.2), then

inf
ϕ∈Lip(TN )

sup
x∈TN

sup
p∈D+ϕ(x)

H(x, p+ P ) = inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x) + P ).

In particular, we have well-known formulas

c = inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x) + P )

= inf
ϕ∈Lip(TN )

sup
x∈TN

sup
p∈D+ϕ(x)

H(x, p+ P )

= sup
x∈TN

sup
p∈D+u(x)

H(x, p+ P ).

We refer the reader to [11] or [22, Subsection 4.2] for details on such a kind of represen-
tation formulas of the critical value.

We investigate the cell problem with a coercive Hamiltonian.

Proposition 1.4 ([20]). Assume (1.1.2). Then, the cell problem (CP) is fully solvable.

Proposition 1.5 (Properties of the effective Hamiltonian). Assume (1.1.2).

(1) If there exists L > 0 such that |H(x, p)−H(x, q)| ≤ L|p−q| for all x ∈ TN , p, q ∈ RN ,
then H̄ satisfies |H̄(P )− H̄(Q)| ≤ L|P −Q| for all P,Q ∈ RN .

(2) If H(x, p) ≤ H(x, kp) for all x ∈ TN , p ∈ RN and k ≥ 1, then H̄(P ) ≤ H̄(kP ) for all
P ∈ RN and k ≥ 1.

(3) If H(x, p) = H(x,−p) for all x ∈ TN and p ∈ RN , then H̄(P ) = H̄(−P ) for all
P ∈ RN .

Proof. (1) Let (u, H̄(P )) be a solution of (CP). We observe

H(x,Du+Q)− L|P −Q| ≤ H(x,Du+ P ) = H̄(P ).

Thus, u is a subsolution of

H(x,Du+Q) = H̄(P ) + L|P −Q|.

By Proposition 1.1, we obtain that H̄(Q) ≤ H̄(P ) + L|P −Q|.
(2) Let (u, H̄(P )) be a solution of (CP). We then see by the assumption that

H(x,D(ku) + kP ) ≥ H(x,Du+ P ) = H̄(P ),

which means that ku is a supersolution of H(x,Dv + kP ) = H̄(P ). Proposition 1.1
implies H̄(kP ) ≥ H̄(P ).

(3) Let (u, H̄(P )) be a solution of (CP). Then, since H is even in the second variable,
(−u, H̄(P )) is a solution of

H(x,Dv − P ) = H̄(P ) in TN .

Thus, we have H̄(P ) = H̄(−P ).
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1.3 The cell problem

From now on, we study a Hamiltonian H of the form (1.1.1) with (H1)–(H3). Define

σ := sup
x∈TN

σ(x), σ := inf
x∈TN

σ(x), m0 := m(0).

We note that (H3) ensures m0 = minr∈[0,∞)m(r).

1.3.1 Main results

For each n ∈ N let Hn : TN × RN → R be an approximating Hamiltonian of H such
that

(A1) Hn is continuous on TN ×RN ,

(A2) Hn satisfies the coercivity condition (1.1.2),

(A3) lim inf
n→∞

inf
TN×B(0,R)

(H −Hn) ≥ 0 for all R > 0,

(A4) lim sup
n→∞

sup
TN×RN

(H −Hn) ≤ 0.

A typical approximation will be given in Remark 1.8. By (A1) and (A2), for each n ∈ N,
the approximation cell problem (CPn) is fully solvable as noted in Proposition 1.4. Let
H̄n(P ) be the critical value of (CPn) for P ∈ RN . We define a solvability set D by

D := {P ∈ RN | (CP) admits a solution (u, c) ∈ Lip(TN )×R}.

We are now in a position to state our main theorems.

Theorem 1.6 (Convergence of H̄n). There exists a unique function H̄∞ : RN → R such
that, for any sequence {Hn}n∈N satisfying (A1)–(A4), the following conditions hold:

lim inf
n→∞

inf
B(0,R)

(H̄∞ − H̄n) ≥ 0 for all R > 0,(1.3.1)

lim sup
n→∞

sup
RN

(H̄∞ − H̄n) ≤ 0.(1.3.2)

We call the function H̄∞ a generalized effective Hamiltonian of H .

Theorem 1.7 (Characterization of the solvability set). We have D = {P ∈ RN | H̄∞(P ) <

σ}. Moreover, if P ∈ D, the critical value of (CP) is equal to H̄∞(P ).

1.3.2 The proof of Theorem 1.6

The proof of Theorem 1.6 consists of five steps. We first prove in Step 1 that {H̄n(P )}n∈N
is a convergent sequence for every P ∈ RN . Then it is shown in Step 2 that the limit
is unique no matter how {Hn}n∈N satisfying (A1)–(A4) is chosen. In Step 3 we shall
derive some properties including continuity of the generalized effective Hamiltonian.
This continuity will improve the convergence of H̄n. In Step 4 we prove that the conver-
gence is locally uniform when {Hn}n∈N is monotone, and finally, in Step 5, we derive
(1.3.1) and (1.3.2) for a general approximation.
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Step 1. Fix any P ∈ RN and let (un, H̄n(P )) ∈ Lip(TN ) ×R be a solution of (CPn)
for each n ∈ N. We first show that {H̄n(P )}n∈N is bounded from below. Indeed, taking
a maximum point xn ∈ TN of un, we have

Hn(xn, P ) ≤ H̄n(P ).

Since Hn uniformly converges to H on TN ×B(0, |P |), we see that

H(xn, P )− 1 ≤ H̄n(P )

for sufficiently large n. Thus(
inf

x∈TN
H(x, P )

)
− 1 ≤ H̄n(P ),

which implies {H̄n(P )}n∈N is bounded from below.
Fix ε > 0. By (A4) there exists some K ∈ N such that

(1.3.3) H − ε

2
≤ Hn on TN ×RN

for all n ≥ K. Fix an arbitrary n ≥ K. Recall that un is a Lipschitz continuous function
and set Ln = |P | + Lip[un]. Then, it follows from (A3) that there exists some M ≥ n

such that

(1.3.4) Hm − ε

2
≤ H on TN ×B(0, Ln)

for all m ≥M . Combining (1.3.3) and (1.3.4), we see that un is a subsolution of

Hm(x,Dw + P ) = H̄n(P ) + ε in TN .

By Proposition 1.1, we have

(1.3.5) H̄m(P ) ≤ H̄n(P ) + ε

for all m ≥ M . This inequality implies that {H̄n(P )}n∈N is bounded from above. By
taking lim supm→∞ and lim infn→∞, where lim supm→∞ should be operated first since
M depends on n, we have

lim sup
m→∞

H̄m(P ) ≤ lim inf
n→∞

H̄n(P ) + ε.

Since ε > 0 is arbitrary, H̄n(P ) converges to some value as n→ ∞.
Step 2. We next prove that the limit of H̄n(P ) is independent of a choice of {Hn}n∈N

satisfying (A1)–(A4). Let {Hn}n∈N and {H ′
n}n∈N be two sequences of Hamiltonians sat-

isfying (A1)–(A4). For each P ∈ RN , let (un, H̄n(P )) and (u′n, H̄
′
n(P )) be, respectively,

solutions of (CPn) and

H ′
n(x,Du

′
n + P ) = H̄ ′

n(P ) in TN .
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Consider a new sequence

H1,H
′
1,H2,H

′
2,H3,H

′
3, · · · .

This satisfies (A3) and (A4), so that

H̄1(P ), H̄
′
1(P ), H̄2(P ), H̄

′
2(P ), H̄3(P ), H̄

′
3(P ), · · ·

has a limit a ∈ R. Therefore

a = lim
n→∞

H̄n(P ) = lim
n→∞

H̄ ′
n(P )

since both {H̄n(P )}n∈N and {H̄ ′
n(P )}n∈N are subsequences. We denote this common

limit by H̄∞(P ).

Remark 1.8. Thanks to the uniqueness of the pointwise limit we are able to take a specific
approximation. Let us take an approximating Hamiltonian Hn of the form

Hn(x, p) = σ(x)Mn(|p|),

where Mn : [0,∞) → [m0,∞) is an approximating function of m such that

(B1) Mn is Lipschitz continuous,

(B2) Mn(r) → ∞ as r → ∞,

(B3) there exists αn ∈ R such that

Mn(r) = m(r) for r ∈ [0, αn], Mn(r) > m(r) for r ∈ (αn,∞),

for each n ∈ N and αn → ∞ as n→ ∞,

(B4) Mn(r) ≥Mn′(r) for all n′ ≥ n and r ∈ [0,∞).

For instance,

(1.3.6) Mn(r) = max{m(r), Lr − n}

satisfies (B1)–(B4), where L is the Lipschitz constant of m.

Step 3. We next derive some properties of the generalized effective Hamiltonian.
Among them the continuity given in (1) will be required in order to improve the con-
vergence of H̄n.

Proposition 1.9 (Properties of the generalized effective Hamiltonian). We have

(1) |H̄∞(P )− H̄∞(Q)| ≤ σL|P −Q| for all P,Q ∈ RN , where L is the Lipschitz constant
of m,

(2) H̄∞(kP ) ≥ H̄∞(P ) for all P ∈ RN and k ≥ 1,

(3) H̄∞(P ) = H̄∞(−P ) for all P ∈ RN ,

(4) max{σm(|P |), σm0} ≤ H̄∞(P ) ≤ σm(|P |) < σ for all P ∈ RN .
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Proof. Take Hn as in Remark 1.8, where we set Mn by (1.3.6). Let H̄n be the effective
Hamiltonian of Hn. We then have

|Hn(x, p)−Hn(x, q)| ≤ σL|p− q| for all x ∈ TN , p, q ∈ RN .

Hence, Proposition 1.5 (1) shows

|H̄n(P )− H̄n(Q)| ≤ σL|P −Q| for all P,Q ∈ RN .

Sending n→ ∞ yields the conclusion (1).
By a similar argument the properties (2)–(3) are verified from Proposition 1.5 since

our coercive Hamiltonians Hn satisfy the assumptions of Proposition 1.5 (2)–(3). The
property (4) is a consequence of Lemma 1.2.

Step 4. Assume that {Hn}n∈N is monotone, i.e., Hn ≥ Hn′ on TN × RN for all
n ≤ n′. By this monotonicity we see that H̄n ≥ H̄n′ if n ≤ n′. Indeed, a solution un of
(CPn) is always a subsolution of

Hn′(x,Dun + P ) = H̄n(P )

for n′ ≥ n. Thus Proposition 1.1 yields H̄n(P ) ≥ H̄n′(P ). Since H̄∞ is continuous
in view of Proposition 1.9 (1), Dini’s lemma implies that H̄n converges to H̄∞ locally
uniformly in RN as n → ∞. (For the proof of Proposition 1.9 (1) we only need a
pointwise convergence of H̄n to H̄∞ and the uniqueness of H̄∞.)

Step 5. We shall show (1.3.1) and (1.3.2) for a general {Hn}n∈N. Sending m→ ∞ in
(1.3.5) of Step 1, we obtain

H̄∞(P ) ≤ H̄n(P ) + ε.

This inequality holds for all ε > 0, n ≥ K and P ∈ RN , whereK does not depend on P .
Accordingly we have supRN (H̄∞ − H̄n) ≤ ε, and thus taking lim supn→∞ yields (1.3.2)
since ε > 0 is arbitrary.

To prove (1.3.1) we define {H ′
n}n∈N byH ′

n(x, p) := supm≥nHm(x, p). Then {H ′
n}n∈N

is monotone and H ′
n ≥ Hn on TN ×RN for all n. Also, {H ′

n}n∈N satisfies (A1)–(A4); it
is easy to see that (A2)–(A4) hold while the continuity condition (A1) is due to Ascoli-
Arzelà theorem, which asserts that, for a compact set K ⊂ RN , a sequence {fn}n∈N ⊂
C(K) is uniformly bounded and equicontinuous if and only if every subsequence of
{fn} has a uniformly convergent subsequence. We apply the if-part of this theorem
to see that {Hn} is equi-continuous on each compact set of TN × RN since Hn → H

uniformly on the set. Therefore the supremumH ′
n is continuous. From Step 4 it follows

that H̄ ′
n converges to H̄∞ locally uniformly. Therefore, using H̄ ′

n ≥ H̄n, we observe

lim inf
n→∞

inf
B(0,R)

(H̄∞ − H̄n) ≥ lim inf
n→∞

inf
B(0,R)

(H̄∞ − H̄ ′
n) = 0.

The proof is now complete.

Remark 1.10. Theorem 1.6 still holds for more general, continuous Hamiltonians which
are not necessarily of the form (1.1.1). Indeed, the above proof works if we require H
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to satisfy

(1.3.7) |H(x, p)−H(x, q)| ≤ L|p− q| for some L > 0,

which is used to guarantee Proposition 1.9 (1).

1.3.3 The proof of Theorem 1.7

We first prepare

Proposition 1.11. Let P ∈ D and let c ∈ R be the critical value of (CP). Then,

σm(|P |)
σm0

}
≤ c ≤ σm(|P |), c < σ.

In particular, we have D = ∅ if σm0 ≥ σ.

Proof. Taking ϕ ≡ 0 in Lemma 1.2 implies

c ≤ inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x) + P ) ≤ sup
x∈TN

H(x, P ) = σm(|P |),

c ≥ sup
ϕ∈C1(TN )

inf
x∈TN

H(x,Dϕ(x) + P ) ≥ inf
x∈TN

H(x, P ) = σm(|P |).

We next show c < σ. Take a solution u ∈ Lip(TN ) of (CP). For every x ∈ A− :=

{x ∈ TN | D−u(x) ̸= ∅}, take p ∈ D−u(x). Since |p| ≤ Lip[u], we have

inf
p∈D−u(x)

H(x, p+ P ) ≤ H(x, p+ P ) ≤ σ(x)m(Lip[u] + |P |).

Therefore, by Lemma 1.2,

c ≤ inf
x∈TN

inf
p∈D−u(x)

H(x, p+ P ) ≤ inf
x∈A−

inf
p∈D−u(x)

H(x, p+ P )

≤ inf
x∈A−

σ(x)m(Lip[u] + |P |).

According to [3, Lemma 1.8 (d)], the set A− is dense in TN . Thus, we obtain c ≤
σm(Lip[u] + |P |) < σ. The proof of the inequality σm0 ≤ c is easier.

Let D̂ := {P ∈ RN | H̄∞(P ) < σ}. We note that D = D̂ = ∅ when σm0 ≥ σ. Indeed,
Proposition 1.11 implies D = ∅ and it is easy to check D̂ = ∅ since Proposition 3.4 (4)
yields H̄∞(P ) ≥ σm(|P |) ≥ σm0 ≥ σ for all P ∈ RN . We may hereafter assume that
σm0 < σ. Let us take the special approximating Hamiltonian Hn(x, p) = σ(x)Mn(|p|)
with the conditions (B1)–(B4) in Remark 1.8.
Proof of D ⊃ D̂. We define

Dℓ := {P ∈ RN | H̄ℓ(P ) ≤ σm(αℓ)}

for ℓ ∈ N. Note that ∪∞
ℓ=0Dℓ = D̂. It is easy to check this equation since H̄ℓ(P ) →

H̄∞(P ) as ℓ→ ∞ with H̄ℓ(P ) ≥ H̄∞(P ) and σm(αℓ) → σ as ℓ→ ∞ with σm(αℓ) < σ.
Therefore, if D ⊃ Dℓ for every ℓ ∈ N, then we will have D ⊃ ∪∞

ℓ=0Dℓ = D̂.
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Fix any P ∈ Dℓ and let (un, H̄n(P )) be a solution of (CPn). Note that H̄n(P ) is
monotone decreasing with respect to n by (B4) and Proposition 1.1. For each n ∈ N

such that n ≥ ℓ,

Mn(|Dun + P |) = H̄n(P )

σ(x)
≤ H̄ℓ(P )

σ
≤ m(αℓ) in TN

in the viscosity sense. Note that the last inequality follows from P ∈ Dℓ. Since m ≤Mn

on [0,∞) and m is strictly increasing, we have

|Dun(x)| ≤ αℓ + |P | in TN

in the viscosity sense. Thus,

sup
n≥ℓ

Lip[un] ≤ αℓ + |P | <∞.

Set vn(y) := un(y)−minun. Then, {vn}n∈N is uniformly bounded and equi-Lipschitz
continuous in TN . Thus, by taking a subsequence if necessary, Ascoli-Arzelà theorem
implies that vn uniformly converges to some Lipschitz continuous function u in TN as
n → ∞. Since Mn converges to m locally uniformly in [0,∞) by (B3) of Mn, the stabil-
ity of viscosity solutions (see [12]) implies that (u, H̄∞(P )) is a solution of (CP), which
means that P ∈ D. We get the desired inclusion D ⊃ D̂.
Proof of D ⊂ D̂. Fix any P ∈ D and let (u, c) ∈Lip(TN )×R be a solution of (CP). The
condition (B3) of Mn implies

Mn(r) = m(r) for all r ≤ Lip[u] + |P |

for sufficiently large n. Hence, (u, c) is a solution of

σ(x)Mn(|Du+ P |) = c in TN .

Since H̄n(P ) is the critical value of the above problem, we have H̄n(P ) = c. Sending
n→ ∞ yields H̄∞(P ) = c. Since c < σ by Proposition 1.11, we have H̄∞(P ) < σ. Thus,
D ⊂ D̂. The proof of Theorem 1.7 is complete.

Remark 1.12. By the last part of the proof, we see that for every R > 0 there exists
NR ∈ N such that H̄∞(P ) = H̄n(P ) for all P ∈ B(0, R) and n ≥ NR. This is thanks to
the conditions (B1)–(B4).

Remark 1.13. Applying a method in the proof of Proposition 1.11 to the approximating
Hamiltonians Hn above, we see max{σMn(|P |), σMn(0)} ≤ H̄n(P ) ≤ σMn(|P |). Since
Mn(0) = m(0), letting P = 0 gives H̄n(0) = σm0, so that H̄∞(0) = σm0. Thus Theorem
1.7 implies that 0 ∈ D if σm0 < σ. Moreover, from the Lipschitz continuity of H̄∞
(Proposition 1.9 (1)) it follows that B(0, (σ − σm0)/σL) ⊂ D, where L is the Lipschitz
constant of m.

Remark 1.14. A similar proof applies to more general Hamiltonians. Let H be a Hamil-
tonian satisfying (1.3.7). We define

h(ρ) := inf
x∈TN

inf
|p|≥ρ

H(x, p), h∞ := sup
ρ≥0

h(ρ),
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and assume

(H4) inf
x∈TN

sup
|p|≤ρ

H(x, p) < h∞ for all ρ ≥ 0.

Then it turns out that D = {P ∈ RN | H̄∞(P ) < h∞}. We shall give a sketch of the
proof of this generalization.

We first show that the critical value c of (CP) satisfies c < h∞. In a similar way to
the proof of Proposition 1.11, we see

c ≤ inf
x∈A−

inf
p∈D−u(x)

H(x, p+ P ) ≤ inf
x∈A−

sup
|p|≤ρ

H(x, p)

with ρ := Lip[u] + |P |, where u ∈ Lip(TN ) is a solution of (CP) and A− = {x ∈ TN |
D−u(x) ̸= ∅}. Since sup|p|≤ρH(·, p) is continuous by the compactness of B(0, ρ) and
since A− is dense in TN , using (H4), we estimate

c ≤ inf
x∈TN

sup
|p|≤ρ

H(x, p) < h∞.

Next, we see that {p ∈ RN | H(x, p) ≤ τ for some x ∈ TN} is bounded for every
τ < h∞. Indeed, if there were some sequence {(xj , pj)}j∈N such that |pj | → ∞ as
j → ∞, we would have h(|pj |) ≤ H(xj , pj) ≤ τ < h∞, which is a contradiction since
supj∈N h(|pj |) < h∞.

Define D̂ := {P ∈ RN | H̄∞(P ) < h∞}, and take an approximate Hamiltonian Hn

as Hn(x, p) = max{H(x, p), |p| − n}. To prove D ⊃ D̂ we set Dℓ := {P ∈ RN | H̄ℓ(P ) ≤
τℓ}, where {τℓ}ℓ∈N is a sequence such that τℓ < h∞ and τℓ → h∞ as ℓ → ∞. Then∪∞

ℓ=1Dℓ = D̂. Fix ℓ ∈ N. For every P ∈ Dℓ and n ≥ l, a solution (un, H̄n(P )) of (CPn)
satisfies

H(x,Dun + P ) ≤ Hn(x,Dun + P ) = H̄n(P ) ≤ H̄ℓ(P ) ≤ τℓ.

Since τℓ < h∞, we have supn≥ℓ Lip[un] < ∞. Ascoli-Arzelà theorem ensures that un −
minu subsequently converges to some u, and thus (u, H̄∞(P )) solves (CP). The proof
of D ⊂ D̂ is easier. Indeed, by the choice ofHn, a solution (u, c) of (CP) is also a solution
of (CPn) for n sufficiently large, and therefore H̄∞(P ) = H̄n(P ) = c < h∞.

1.3.4 A sufficient condition for the fully solvability

Applying the result in Theorem 1.7, we give a sufficient condition which guarantees
that (CP) is fully solvable, i.e., D = RN .

Theorem 1.15. Assume σm0 < σ. Let P ∈ RN and assume that there exists ψ ∈ C1(TN )

such that Dψ = −P on {σ ̸= σ}. Then P ∈ D.

If there exists such a ψ for every P ∈ RN , then (CP) is fully solvable. A simple
condition for the existence of ψ will be given after the proof; see Remark 1.16.

Proof. We take Hn as in Remark 1.8. By the representation of D obtained in Theorem
1.7, the proof is completed by showing that H̄n(P ) < σ for n ∈ N sufficiently large. To
this end, we use the estimate

H̄n(P ) ≤ inf
ϕ∈C1(TN )

sup
x∈TN

Hn(x,Dϕ(x) + P )
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in Lemma 1.2. Choosing ϕ = ψ, where ψ is the function in our assumption, we see

(1.3.8) H̄n(P ) ≤ sup
x∈TN

Hn(x,Dψ(x) + P ).

On {σ ̸= σ} we compute

Hn(x,Dψ(x) + P ) = Hn(x, 0) = σ(x)m0 ≤ σm0 < σ.

For x ∈ TN such that σ(x) = σ, we have

Hn(x,Dψ(x) + P ) = σMn(|Dψ(x) + P |).

We now set r0 := maxx∈TN |Dψ(x) + P | <∞ and choose n large so that Mn(r) = m(r)

for all r ≤ r0. Then
Hn(x,Dψ(x) + P ) ≤ σm(r0) < σ.

Consequently, (1.3.8) implies H̄n(P ) < σ.

Remark 1.16. If {σ ̸= σ} ⊂ (0, 1)N , then there existsψ in Theorem 1.15 for every P ∈ RN .
Indeed, letting A ⊂ (0, 1)N be an open set such that {σ ̸= σ} ⊂ A and A ⊂ (0, 1)N , we
are able to construct a function ψ ∈ C1(TN ) so that ψ(x) = −⟨P, x⟩ for x ∈ {σ ̸= σ} and
ψ(x) = 0 for x ̸∈ A. The existence of such a ψ is due to Whitney’s extension theorem;
see, e.g., [14, Section 6.5, Theorem 1]. Let us briefly check the assumption in [14]. Let
f : [0, 1]N → R and d : [0, 1]N → RN be continuous functions such that f(x) = −⟨P, x⟩,
d(x) = −P on K1 := {σ ̸= σ} and f(x) = d(x) = 0 on K2 := [0, 1]N \ A. Also, define
K := K1 ∪ K2 and δ0 := dist(K1,K2) > 0. If x, y ∈ K satisfy |x − y| < δ0, we have
x, y ∈ K1 or x, y ∈ K2, and hence R(y, x) := (f(y) − f(x) − ⟨d(x), y − x⟩)/|x − y| = 0.
The theorem is thus applicable.

Remark 1.17. The existence of ψ in Theorem 1.15 is not a necessary condition for P ∈ D.
In Example 1.2 (1), where we consider the one-dimensional case, the cell problem is
fully solvable, but there is no such periodic ψ for P ̸= 0 because σ attains a minimum
at one point.

1.4 One-dimensional cell problem

In this section we investigate the cell problem in one dimension. In this case the solv-
ability set D has a more explicit representation. We first rewrite (CP) as

(1.4.1) |u′(x) + P | = fa(x) in T,

where

fa(x) := m−1

(
a

σ(x)

)
.

Here, m−1 : [m0, 1) → [0,∞) is the inverse function of m, and fa is well-defined as
a [0,∞)-valued function if σm0 ≤ a < σ. We now set m−1(1) = ∞. Then, fσ is a
[0,∞]-valued function. Note that a 7→ fa(x) is increasing for every x ∈ T.
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The authors of [20] consider

(1.4.2) |u′(x) + P |2 − V (x) = a in T,

as an example of the cell problem in one dimension. Here, V is a continuous function
on T such that minT V = 0. According to [20], for each P ∈ R, the critical value c of
(1.4.2) is given by

(1.4.3) c =

{
0 if |P | ≤

∫ 1
0

√
V (z)dz,

a such that |P | =
∫ 1
0

√
V (z) + adz, a ≥ 0, otherwise.

As an analogue of this formula, we establish

Proposition 1.18. (1) If σm0 ≥ σ, then D = ∅.

(2) If σm0 < σ, then

D =

{
(−

∫ 1
0 fσ(z)dz,

∫ 1
0 fσ(z)dz) if fσ ∈ L1(0, 1),

R otherwise.

Moreover, the critical value c is given by

(1.4.4) c =

{
σm0 if |P | ≤

∫ 1
0 fσm0(z)dz,

a such that |P | =
∫ 1
0 fa(z)dz otherwise.

Proof. (1) This is obvious by Proposition 1.11.
(2) We set D̃ = (−

∫ 1
0 fσ(z)dz,

∫ 1
0 fσ(z)dz). When fσ /∈ L1(0, 1), we read D̃ = R. We

first prove D ⊃ D̃. To do this, take P ∈ D̃. What we have to do is to find u ∈ Lip(T)

such that (u, c) is a solution of (1.4.1), where c is the constant in (1.4.4).
When |P | ≤

∫ 1
0 fσm0(z)dz, we set

u(x) =


∫ x

x0

fσm0(z)dz − Px for x ∈ [x0, x1],∫ x0+1

x
fσm0(z)dz + P (1− x) for x ∈ [x1, x0 + 1].

Here, x0 ∈ [0, 1] and x1 ∈ [x0, x0 + 1] are points such that

fσm0(x0) = 0,

∫ x1

x0

fσm0(z)dz =

∫ x0+1

x1

fσm0(z)dz + P.

We regard u as a function on T by extending it periodically. Then, it is easy to see that
u is a solution of (1.4.1).

When |P | ≥
∫ 1
0 fσm0(z)dz, for c chosen by (1.4.4), we set

u(x) = sign(P )

∫ x

0
fc(z)dz − Px for x ∈ R.
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Note that u is a Z-periodic function since, by the definition of c,

sign(P )

∫ 1

0
fc(z)dz − P = 0.

Then, it is easy to see that u is a solution of (1.4.1). Therefore, we have obtained D ⊃ D̃.
We next show the reverse inclusion D ⊂ D̃. Let P ∈ D and take a solution (u, c) of

(1.4.1), then

|P | =
∣∣∣∣∫ 1

0
(u′(z) + P )dz

∣∣∣∣ ≤ ∫ 1

0
|u′(z) + P |dz ≤

∫ 1

0
fc(z)dz <

∫ 1

0
fσ(z)dz.

The first equality follows from the periodicity of u. Thus, P ∈ D̃ and so the proof is
complete.

Remark 1.19. The representation of the critical value (1.4.4) is also obtained via the for-
mula (1.4.3) given in [20]. In fact, a is a critical value of (CP) if and only if the critical
value ca of

|u′(x) + P | = fa(x) + ca in T

is equal to 0. It is easily seen that the condition ca = 0 yields (1.4.4).

When σ attains a minimum on some interval [a, b] with a < b, it is easily seen that
fσ is not integrable since fσ = +∞ on [a, b]. Consequently, (1.4.1) is fully solvable by
Proposition 1.18. If σ(x) = σ at only one point x ∈ T, the integrability of fσ depends
on σ and m as the next examples indicate.

Example 1.1. Let us consider (1.4.1) with

m(r) =
1

2

r

1 + r
+

1

2
(r ∈ [0,∞)), σ(x) = xα(1− x)α + β (x ∈ [0, 1]),

where α, β > 0. We note that σm0 < σ holds when β > 1/4α. Since

fσ(x) =
σ

2

1

σ(x)− σ
− 1 =

σ

2

1

xα(1− x)α
− 1,

the integrability of fσ is determined by the choice of α > 0.

Example 1.2. Set

σ(x) =

{
x+ 3

2 (0 ≤ x < 1
2),

−x+ 5
2 (12 ≤ x < 1).

(1) We let
m(r) =

1

2

r

1 + r
+

1

2
.

We extend σ periodically to R and still denote it by σ. Note that σm0 < σ holds. Since

fσ(x) =
σ

2

1

σ(x)− σ
− 1

2
,
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we observe that ∫ 1

0
fσ(z)dz = 2

∫ 1/2

0
fσ(z)dz = σ

∫ 1/2

0

1

z
dz − 1

2
= ∞.

Thus, D = R, i.e., the cell problem is fully solvable.
(2) We next study

m(r) =
1

2
tanh r +

1

2
(r ∈ [0,∞)).

Note that σm0 < σ. Since

fσ(x) =
1

2
log

(
σ

σ(x)− σ

)
=

1

2
{log σ − log(σ(x)− σ)},

we observe that ∫ 1

0
fσ(z)dz = 2

∫ 1/2

0
fσ(z)dz = 1 +

1

2
log 6.

Therefore, D =
(
−1− 1

2 log 6, 1 +
1
2 log 6

)
.

Proposition 1.20. We have

H̄∞(P ) > H̄∞(Q) for all P,Q ∈ D such that |P | > |Q| ≥
∫ 1

0
fσm0(z)dz.

Proof. By (1.4.4), we observe∫ 1

0
{fH̄∞(P )(z)− fH̄∞(Q)(z)}dz = |P | − |Q| > 0,

which implies that H̄∞(P ) > H̄∞(Q).

1.5 Application to homogenization problems

We present our homogenization result for the equation (HJε) with the Hamiltonian
(1.1.1) satisfying (H1)–(H3). Here, u0 : RN → R is a bounded and Lipschitz continuous
initial datum. We remark that there exists a unique bounded solution uε ∈ C(RN ×
[0, T )) of (HJε). Similarly, there exists a unique bounded solution u ∈ C(RN × [0, T ))

of (HJ). Indeed, the comparison principle holds for a viscosity sub- and supersolution
(see [12]). This yields uniqueness of solutions. Existence is a consequence of Perron’s
method (see [19]).

Theorem 1.21 (Homogenization result). Assume either

(1) D = RN or (2) m(Lip[u0]) < σ/σ.

Then the solution uε of (HJε) converges to the solution u of (HJ) locally uniformly in RN×[0, T )

as ε→ 0.

Proof of Theorem 1.21 under the assumption (1). Recall that, for each P ∈ D, H̄∞(P ) is the
critical value of (CP) from Theorem 1.7. As we mentioned in Introduction the assump-
tion (1) means that the cell problem is fully solvable, and so the conclusion follows
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from the same argument as in [13] involving the perturbed test function method. Here
we do not need equi-Lipschitz continuity of {uε} since the half-relaxed limit method
works for our equation; see [13, Proof of Theorem 4.4]. To be more precise, it turns out
that the upper- and lower half-relaxed limits

u(x, t) := lim
δ→0

sup{uε(y, s) | (y, s) ∈ B(x, δ)× (t− δ, t+ δ), ε < δ},

u(x, t) := lim
δ→0

inf{uε(y, s) | (y, s) ∈ B(x, δ)× (t− δ, t+ δ), ε < δ}

are, respectively, a sub- and supersolution of (HJ), so that the comparison principle
ensures that these two limits are equal to the solution u. This implies locally uniform
convergence to u.

We shall hereafter prove Theorem 1.21 under the assumption (2).

Proposition 1.22 (Regularity of the solution of (HJε)). Assume (2) in Theorem 1.21. Then,
the solutions uε of (HJε) satisfy

|uε(x, t)− uε(x, s)| ≤ L|t− s|, |uε(x, t)− uε(y, t)| ≤ K|x− y|

for all x, y ∈ RN , t, s ∈ [0, T ) with the constants

L := σm(Lip[u0]) <∞, K := m−1

(
σ

σ
m(Lip[u0])

)
<∞.

We omit the proof since this proposition is verified by the same argument as in
[15, Appendix A]. We point out that [15, Proposition 3.17] holds under the assumption
R+(m) <∞ even if the Hamiltonian does not satisfy the coercivity condition (HR+).

We give two different proofs of Theorem 1.21 under the assumption (2).

Proof I of Theorem 1.21 under the assumption (2). By Proposition 1.22, Ascoli-Arzelà the-
orem implies that uε subsequently converges to some Lipschitz continuous function u
locally uniformly in RN × [0, T ) as ε→ 0.

We prove that u is a supersolution of (HJ). The proof is based on the perturbed test
function method (see [13]). Let (x0, t0) ∈ RN × (0, T ) and ϕ ∈ C1(RN × (0, T )) such
that u− ϕ has a strict local minimum at (x0, t0). Suppose that

ϕt(x0, t0) + H̄∞(Dϕ(x0, t0)) =: −θ < 0.

We take {Hn}n∈N as in Remark 1.8 and let H̄n be the effective Hamiltonian of (CPn).
Since H̄n converges to H̄∞, we have

(1.5.1) ϕt(x0, t0) + H̄n(Dϕ(x0, t0)) ≤ −θ
2

for sufficiently large n. On the other hand, by the Lipschitz continuity of uε and (B3),
we see that it is a solution of

(1.5.2) wt(x, t) +Hn

(x
ε
,Dw(x, t)

)
= 0
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in RN × (0, T ) for sufficiently large n. We hereafter fix n satisfying the above two
conditions.

Set
ϕεn(x, t) := ϕ(x, t) + εvn

(x
ε

)
,

where vn is a solution of (CPn). By the same argument as in [13], we see that ϕεn is a
subsolution of (1.5.2) in B(x0, r)× (t0 − r, t0 + r) for sufficiently small r > 0. The com-
parison principle for (HJε) implies a contradiction (see [13]) and so u is a supersolution
of (HJ).

Similarly, it is proved that u is a subsolution of (HJ), and therefore, u is a unique
solution of (HJ). Consequently, uε converges to u locally uniformly in RN × [0, T ) as
ε→ 0 without taking subsequences.

Proof II of Theorem 1.21 under the assumption (2). Recall that {uε}ε>0 is equi-Lipschitz con-
tinuous in view of Proposition 1.22 and therefore subsequently converges to some u
locally uniformly in RN × [0, T ) as ε→ 0. Take {Hn}n∈N as in Remark 1.8. By (B3) and
the equi-Lipschitz continuity of {uε}ε>0, we have

uεt (x, t) +Hn

(x
ε
,Duε(x, t)

)
= 0 in RN × (0, T )

for all n ∈ N large enough and all ε > 0. We now apply the homogenization result for
coercive Hamiltonians [13] to see that uε converges to the solution wn of{

wt(x, t) + H̄n (Dw(x, t)) = 0 in RN × (0, T ),

w(x, 0) = u0(x) in RN

locally uniformly in RN × [0, T ). Since u is a limit of a subsequence, it turns out that
wn ≡ u. Since H̄n converges to H̄∞ locally uniformly, the stability result for viscosity
solutions yields the conclusion that u is a viscosity solution of (HJ).

Remark 1.23. The main difference between two proofs is the order of limits of ε and
n. We point out that Proof I does not require the locally uniform convergence of H̄n.
However, we need the equi-Lipschitz continuity of {uε}ε>0 in both proofs in order to
ensure that uε is a solution of the approximate equation.

Theorem 1.24 (Non-homogenization result). Assume that σm0 > σ. Let uε be the solutions
of (HJε). Then, uε does not have a locally uniformly convergent limit in RN × [0, T ) as ε→ 0.

Proof. Set

uε−(x, t) := u0(x)− σ
(x
ε

)
t, uε+(x, t) := u0(x)− σ

(x
ε

)
m0t

for (x, t) ∈ RN × [0, T ). Then, we see that uε− and uε+ are a subsolution and a superso-
lution of (HJε) respectively. By the comparison principle, the solution uε satisfies

(1.5.3) uε−(x, t) ≤ uε(x, t) ≤ uε+(x, t)

for all (x, t) ∈ RN × [0, T ) and ε > 0.
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Let u and u be the upper half-relaxed limit and the lower half-relaxed limit of uε,
respectively. Moreover, let u− and u+ be the upper half-relaxed limit of uε− and the
lower half-relaxed limit of uε+, respectively. Then, we have

u−(x, t) = u0(x)− σt and u+(x, t) = u0(x)− σm0t.

Thus, by (1.5.3) and the assumption σm0 > σ, we have

(1.5.4) u(x, t) ≤ u+(x, t) < u−(x, t) ≤ u(x, t)

for all (x, t) ∈ RN × [0, T ). Therefore, u and u are different and so we conclude that uε

does not converge to any functions locally uniformly as ε→ 0.

Remark 1.25. When σm0 = σ, we do not know whether or not uε has a limit as ε → 0.
However, by (1.5.4), we see that the limit of uε should be u0(x)− σt(= u0(x)− σm0t) if
it exists.

1.6 Generalization

Our homogenization results can be extended for more general equations of the form

(1.6.1) uεt (x, t) +H
(
x,
x

ε
, uε(x, t), Duε(x, t)

)
= 0 in RN × (0, T ).

Here H = H(x, y, u, p) : RN × TN × R × RN → R is Lipschitz continuous in RN ×
TN × (−L,L) × B(0, L) for every L > 0 and non-decreasing in u. They guarantee the
comparison principle; similar assumptions can be seen in [13]. The corresponding cell
problem is

(1.6.2) H (x, y, u,Dv(y) + P ) = a in TN ,

where the unknown is (v, a) ∈ Lip(TN )×R and (x, u) ∈ RN ×R is fixed. Define Dx,u

as the set of P ∈ RN such that (1.6.2) admits a solution (v, a) for a given (x, u). For
homogenization of (1.6.1) we assume either

(1) Dx,u = RN for all (x, u) ∈ RN ×R or (2) sup
ε>0

Lip[uε] <∞.

Choose Hn(x, y, u, p) = max{H(x, y, u, p), |p| − n}, which is a coercive Hamiltonian
approximating H . Since (x, u) is fixed in cell problems, a similar method in this pa-
per gives a generalized effective Hamiltonian H̄∞(x, u, P ) as the limit of H̄n(x, u, P ).
(Here we do not pursue generalization of approximation to H and study only a ho-
mogenization problem. Also, in this case H̄∞ is just the infimum of H̄n.) According to
[13, Lemma 2.2], H̄n possesses the same regularity and monotonicity properties as Hn,
and thus so is H̄∞. Moreover, since H̄n is monotone in n, Dini’s lemma ensures that H̄n

converges to H̄∞ locally uniformly. One is now able to show homogenization results
for (1.6.1) with the same argument as in three proofs of Theorem 1.21 above.
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Chapter 2

Well-posedness of Hamilton-Jacobi equations
with Caputo’s time-fractional derivative

In this chapter a notion of a viscosity solution for the initial value problem of a Hamilton-
Jacobi equation with Caputo’s time-fractional derivative of order less than one under
periodic boundary conditions is introduced. By using the notion of a solution, a unique
existence is proved. For this purpose the comparison principle as well as Perron’s
method is established. Stability with respect to the order of derivative as well as the
standard one is also studied and a regularity of a solution is discussed. Our results
does not require the coercivity for Hamiltonians and thus apply to a linear transport
equation with time-fractional derivatives with variable coefficients.

23



Chapter 3

Second order fully nonlinear multi-term time-
fractional PDEs with positive constant coeffi-
cients

In this chapter second order fully nonlinear PDEs with multi-term Caputo’s time-fractional
derivative (CTFD) whose orders are less than one are considered. A notion of a weak
solution introduced in Chapter 2 for (first order) Hamilton-Jacobi equations, which is
based on the idea of viscosity solutions, is extended. A unique existence and some sta-
bilities including the vanishing viscosity are proved. In order to establish a comparison
principle, a relation of semijets is proved for PDEs with CTFD, which is called Ishii’s
lemma for an integer-order case. The existence is proved via the Perron’s method. In
particular, all results apply to anomalous diffusion equations which is allowed to be
degenerate.
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Chapter 4

Hamilton-Jacobi equations with Caputo’s time-
fractional derivative under homogeneous Neu-
mann boundary conditions

The inital-boundary-value problem of a Hamilton-Jacobi equation with Caputo’s time-
fractional derivative whose order is less than one is considered under homogeneous
Neumann boundary conditions. A notion of viscosity solutions is introduced based
on the idea for the initial-value problem of a Hamilton-Jacobi equation with Caputo’s
time-fractional derivative, which was given by Giga and the author, and for integer-
order cases. In particular, boundary conditions are interpreted similarly as for integer-
order cases. In order to prove a unique existence, a comparison principle as well as
Perron’s method are established.

Keywords: Homogeneous Neumann boundary condition; Caputo’s time-fractional
derivatives; Hamilton-Jacobi equations; Viscosity solutions

4.1 Introduction

Let T > 0 and α ∈ (0, 1] be given constants, Ω be a bounded C1-domain in Rd and
ν(·) be an outer unit normal vector on ∂Ω. We study the well-posedness of the initial-
boundary value problem

∂αt u+H(x,Du) = 0 in (0, T )× Ω =: ΩT ,(4.1.1)

Du · ν(x) = 0 on [0, T ]× ∂Ω,(4.1.2)

u|t=0 = u0 in Ω..(4.1.3)

Here Du is the spatial gradient and ∂αt denotes Caputo’s time-fractional derivative
(CTFD for short), which is defined by

(∂αt f)(t) =


1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds for α ∈ (0, 1),

f ′(t) for α = 1.

Here Γ(·) is the usual Gamma function. The function H is continuous on Ω×R and the
initial data u0 is continuous on Ω.
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Partial differential equations (PDEs for short) with fractional derivatives or nonlocal
terms have been attracted by motivations from various physical phenomena. Among
them, the number of literatures for PDEs with time-fractional derivatives is growing
rapidly in recent years. A typical example of such PDEs is an anomalous diffusion equa-
tion, which is a diffusion equation whose time-derivative is replaced by CTFDs. For a
diffusion phenomenon in a complex region like a fractal, say, for example a rock with
many fractures, anomalous diffusion equations rather fit observational data by putting
an appropriate α ([9], [10] and [27]). Luchko ([20] and [21]) and Sakamoto and Ya-
mamoto ([25]) proved, respectively, a unique existence of classical solutions and weak
solutions in the sense of distribution for the initial-boundary problem of

∂αt u− div(p(x)Du) + q(x) = f.

Here typically p is smooth and uniformly positive with nonnegative continuous q. We
refer the reader to [8], [14], [15], [24], [26], [28] and [29] for further topics of the above
works and other examples of PDEs with CTFDs.

In the very recent past, PDEs with CTFDs have started to be researched in the frame-
work of the theory of viscosity solutions, which is a theory for generalized solutions
that ensures a unique existence of continuous solutions introduced by Crandall and
Lions in [7]. To the best of our knowledge, Allen ([2]) first introduced a notion of a
viscosity solution for such PDEs. More precisely, he introduced a notion of a viscosity
solution for

(4.1.4) ∂αt u− sup
i

inf
j

(∫
Rd

u(x+ y)− u(x)

|y|d+2σ
aij(t, x, y)dy

)
= f

and studied regularity problems of solution. Here aij is positive, bounded function
that is symmetric with respect to the third variable and f is a given function. It was not
clear whether or not his viscosity solution exactly exists since the well-posedness was
not mentioned in [2]. The well-posedness was studied by Giga and the author ([12]) for
first order equations and by the author ([23] ) for second order equations although they
do not cover rigorously the equation (4.1.4) Allen considered. In [12] they extended the
notion of viscosity solutions to the Hamilton-Jacobi equation with CTFD of the form

∂αt u+H(t, x, u,Du) = 0.

They proved a unique existence for the initial-value problem under natural assump-
tions onH and initial data for α = 1 and also studied stability and regularity problems.
In [23] this notion of a viscosity solution was extended to the second order equation of
the form

∂αt u+ F (t, x, u,Du,D2u) = 0.

Here D2u is the Hesse matrix of u and the function F is continuous and degenerate
elliptic. He proved a unique existence for the initial-value problem also with no special
assumptions on F and initial data. See also [17] and [18] for a significance to develop
the theory of viscosity solutions to PDEs with CTFDs.

In this chapter we extend the notion of a viscosity solution introduced in [12] to an
initial-boundary value problem. For viscosity solutions for α = 1, boundary conditions
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are interpreted in a special sense which is often said “in the viscosity sense”. As an
example, let us consider the problem

(4.1.5)

{
∂tu+H(x,Du) = 0 in (0, T ]× Ω,

ν(x) ·Du = g on [0, T ]× ∂Ω.

Here the function g = g(x) is continuous. We now ignore the initial condition. Then a
(upper semicontinuous) viscosity subsolution u of (4.1.5) is defined as follows: for any
point (t̂, x̂) ∈ (0, T ]×Ω and any test function ϕ ∈ C1((0, T ]×Ω) such that maxΩT

(u−ϕ) =
(u− ϕ)(t̂, x̂),

∂tϕ(t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0

if x̂ ∈ Ω and

min{∂tϕ(t̂, x̂) +H(x̂,Dϕ(t̂, x̂)), ν(x̂) ·Dϕ(t̂, x̂)− g(x̂)} ≤ 0

if x̂ ∈ ∂Ω. A (lower semicontinuous) viscosity supersolution of (4.1.5) is similarly de-
fined and a viscosity solution is defined as being a viscosity sub- and supersolution of
(4.1.5). A reason why such a definition is useful is made clear for example by seeking a
problem that a (classical) solution uε of{

−εu′′ + u′ + u = x+ 1 in (0, 1),

u′(0) = u′(1) = 0

satisfies as ε → 0. See [6] for more detail. For the above definition, the well-posedness
is well studied ([1], [3], [4], [5], [6], [11], [13], [16] and [19]).

In an extension of a definition of viscosity solutions to the initial-boundary value
problem of (4.1.1), we should pay attention to what a shape of solution may change
depending on α. In fact, Mainardi, Mura and Pagnini ([22]) showed that a solution of
the initial-value problem of the transport equation of the form

∂αt u+ ∂xu = 0 in (0,∞)× R

is given as

(4.1.6) u(t, x) =
1

tα

∫ ∞

0
W−α,1−α

(
− z

tα

)
u0(x− z)dz

with different motivations. Here W−α,1−α is Wright function and u0 is a continuous
initial data. The function u given by (4.1.6) is obviously different from the case α = 1.
For this reason it is not clear whether or not we may interpret boundary conditions for
(4.1.1) similarly as the case α = 1.

We will show that the same interpretation can be applied to (4.1.1)-(4.1.3). Then
a comparison principle and an existence by Perron’s method are proved by handling
CTFDs similarly to [12] and [23] and dealing with terms of Hamiltonian similarly to
classical way. We note that Hamiltonians may depend on t and u although we restrict
ourselves to the case H = H(x, p) for simplicity of arguments. In fact, all results are
proved with appropriate modifications. In addition, Caputo’s derivatives are allowed
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to be multi-term, that is, a finite sum of Caputo’s derivative with positive coefficients.
A treatment of such derivatives is similar as in [23].

This chapter is organized as follows: In Section 2, we give a definition of a viscosity
solution. In Section 3 we prove a comparison principle and, in Section 4, an existence
result through Perron’s method.

4.2 Definition of solutions and properties

In this section we assume that Hamiltonians H are merely continuous on Ω×Rd and Ω

is a general domain with boundary in Rd. For constants a, b ∈ R such that a < b and a
locally compact set O in Rℓ (ℓ ≥ 1) we define

C1([a, b]×O)

= {ϕ ∈ C1((a, b]×O) ∩ C([a, b]×O) | ∂tϕ(·, x) ∈ L1(a, b) for every x ∈ O}.

Here L1(a, b) is a set of Lebesugue integrable functions in (a, b). We also define two
functions Jr[f ],Kr[f ] : (0, T ] → R for a measurable function f : [0, T ] → R by

Jα
r [f ](t) =

α

Γ(1− α)

∫ r

0
(f(t)− f(t− τ))

dτ

τα+1

and

Kα
r [f ](t) =

f(t)− f(0)

tαΓ(1− α)
+

α

Γ(1− α)

∫ t

r
(f(t)− f(t− τ))

dτ

τα+1
,

where r > 0 is a parameter such that 0 < r < t. Note that ∂αt f = Jr[f ] +Kr[f ] for all
r ∈ (0, t) if f ∈ C1((0, T ]) ∩C([0, T ]) and f ′ ∈ L1(0, T ). This is easily derived by apply-
ing integration by parts and changing a variable of integration; see [12]. For a locally
compact set E ⊂ Rl with l ≥ 1, let USC(E) and LSC(E) be sets of real-valued up-
per and lower semicontinuous functions on E, respectively. Note that semicontinuous
functions are (Borel-)measurable.

Definition 4.1 (Viscosity solutions). A function u ∈ USC(ΩT ) (resp. LSC(ΩT )) is called
a viscosity subsolution (resp. viscosity supersolution) of (4.1.1)-(4.1.2) if, for any a, b ∈ [0, T ]

with a < b and any open ball B(z) centered at z ∈ Ω in Rd, the following holds: for any
(t̂, x̂) ∈ (a, b]×(Ω∩B(z)) and ϕ ∈ C1(ΩT ) such that max

[a,b]×Ω∩B(z)
(u−ϕ) = (u−ϕ)(t̂, x̂)

(resp. min
[a,b]×Ω∩B(z)

(u− ϕ) = (u− ϕ)(t̂, x̂)),

• if x̂ ∈ Ω,

Jt̂−a[ϕ](t̂, x̂) +Kt−a[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0 (resp. ≥ 0)

• if x̂ ∈ ∂Ω,

min{Jt̂−a[ϕ](t̂, x̂) +Kt−a[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)), ν(x̂) ·Dϕ(t̂, x̂)} ≤ 0,

(resp. max{Jt̂−a[ϕ](t̂, x̂) +Kt−a[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)), ν(x̂) ·Dϕ(t̂, x̂)} ≥ 0.)

If u is both a viscosity sub- and supersolution of (4.1.1), then u is called a viscosity
solution of (4.1.1).
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Remark 4.2. In Definition 4.1, Jt̂−a[ϕ](t̂, x̂) exists and Kt̂−a[u](t̂, x̂) makes sense, where
both are in the sense given in [12].

If a viscosity subsolution (resp. viscosity supersolution) u of (4.1.1)-(4.1.2) satisfies
u(0, ·) ≤ u0 (resp. u(0, ·) ≥ u0) on Ω, then u is called a viscosity subsolution (resp. vis-
cosity supersolution) of (4.1.1)-(4.1.3). We suppress the word “viscosity” since viscosity
solutions are only considered in this chapter.

The following equivalence for the definition of solutions was utilized in [12] when
there is no boundary conditions in the viscosity sense.

Lemma 4.3 (Equivalence). A function u ∈ USC(ΩT ) (resp. LSC(ΩT )) is a subsolution
(resp. supersolution) of (4.1.1)-(4.1.2) if and only if, for any (t̂, x̂) ∈ (0, T ]×Ω and ϕ ∈ C1(ΩT )

such that maxΩT
(u− ϕ) = (u− ϕ)(t̂, x̂), K0[u](t̂, x̂) exists and

• if x̂ ∈ Ω,
K0[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0

• if x̂ ∈ ∂Ω,

min{K0[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)), ν(x̂) ·Dϕ(t̂, x̂)} ≤ 0,

(resp. max{K0[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)), ν(x̂) ·Dϕ(t̂, x̂)} ≥ 0.)

Proof. We first prove the ‘only if’ part. We may assume that x̂ ∈ ∂Ω since the case of
x̂ ∈ Ω was proved already in [12]. Then, for each small r > 0, (t̂, x̂) ∈ (t̂− r, t̂+ r]× (Ω∩
B(x̂; r)) and it is a maximum point of u−ϕ over [t̂−r, t̂+r]×(Ω ∩B(x̂; r)). HereB(x̂; r)

and B(x̂; r) are a open ball with radius r > 0 centered at x̂ and its closure, respectively.
By the definition of viscosity subsolution, either

(4.2.1) Jr[ϕ](t̂, x̂) +Kr[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0

or ν(x̂) ·Dϕ(t̂, x̂) ≤ 0 holds. Handling (4.2.1) as r → 0 similarly as in the case that x̂ ∈ Ω,
we see that K0[u](t̂, x̂) exists and that

K0[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0.

Consequently, we have

min{K0[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0, ν(x̂) ·Dϕ(t̂, x̂)} ≤ 0,

which is a conclusion.
We next prove the ‘if’ part. Fix any a, b ∈ [0, T ] with a < b and any open ball B(z)

centered at z ∈ Ω in Rd. Assume that u − ϕ attains a maximum at (t̂, x̂) ∈ (a, b] × (Ω ∩
B(z)) over [a, b]×Ω ∩B(z) for ϕ ∈ C1(ΩT ). We may assume that x̂ ∈ ∂Ω. By re-defining
ϕ appropriately, there is a function ψ ∈ C1(ΩT ) such that ψ = ϕ near (t̂, x̂) and u − ψ

attains a maximum at (t̂, x̂) over ΩT ; see [12, ]. Thus K0[u](t̂, x̂) exists and it holds that

(4.2.2) min{K0[u](t̂, x̂) +H(x̂,Dϕ(t̂, x̂)) ≤ 0, ν(x̂) ·Dϕ(t̂, x̂)} ≤ 0.
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Since K0[u](t̂, x̂) = Jt̂−a[u](t̂, x̂)+Kt̂−a[u](t̂, x̂) and since (u−ϕ)(t̂, x̂) ≥ (u−ϕ)(t̂− τ, x̂)
for all τ ∈ [0, t̂ − a], we see that K0[u](t̂, x̂) ≥ Jt̂−a[ϕ](t̂, x̂) + Kt̂−a[u](t̂, x̂). Combining
this with (4.2.2) we get the desired inequality.

4.3 Comparison principle

In order to get a comparison principle we impose the following assumptions:

(A1) Ω is bounded domain in Rd and of class C1,

(A2) H ∈ C(Ω× Rd),

(A3) there is a modulus ω1 : [0,∞) → [0,∞) such that

|H(x, p)−H(y, p)| ≤ ω1(|x− y|(1 + |p|))

for all x, y ∈ Ω and p ∈ Rd,

(A4) there is a modulus ω2 : [0,∞) → [0,∞) such that

|H(x, p)−H(x, q)| ≤ ω2(|p− q|)

for all x ∈ Ω and p, q ∈ Rd.

Here we say for Ω to be of class C1 if there is a function ρ ∈ C1(Rd) which satisfies

Ω = {x ∈ Rd | ρ(x) < 0}, Dρ(x) ̸= 0 for all x ∈ ∂Ω.

Such a function ρ is called a defining function of Ω. Note that ν(x) = Dρ(x)/|Dρ(x)| at
x ∈ ∂Ω, where ν is an outer unit normal vector on ∂Ω.

Theorem 4.4 (Comparison principle). Assume (A1)-(A4). Let u and v be a subsolution and
supersolution of (4.1.1)-(4.1.2). If u(0, ·) ≤ v(0, ·) on Ω, then u ≤ v on ΩT .

Proof. Suppose that the conclusion were false: supΩT
(u − v) = (u − v)(t̂, x̂) =: θ > 0.

When x̂ ∈ Ω, the argument is quite similar as in [12, ], so we may assume that x̂ ∈ ∂Ω.
For a parameter ε > 0 we consider the function

Φ(t, x, s, y) = u(t, x)− v(s, y)− |t− s|2 + |x− y|2

ε
− δ(ρ(x) + ρ(y) + 2 + |x− x̂|2)

on ([0, T ]×Ω)2, where δ > 0 is a small constant. Let (tε, xε, sε, yε) be a maximum point
of Φ. From the inequality Φ(tε, xε, sε, yε) ≥ Φ(t̂, x̂, t̂, x̂) = θ, that is,

|tε − sε|2 + |xε − yε|2

ε
+ δ|xε − x̂|2 ≤ u(tε, xε)− v(sε, yε)− θ,

it follows that 
(tε, xε, sε, yε) → (t̃, x̂, t̃, x̂),

|xε − yε|2/ε→ 0,

u(tε, xε) → u(t̃, x̂), v(sε, yε) → v(t̃, x̂)
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as ε → 0 (by taking a subsequence if necessary) for some t̃ ∈ [0, T ] such that (u −
v)(t̃, x̂) = θ. Notice that t̃ > 0.

By the viscosity property of u, it holds either

(4.3.1) K0[u](tε, xε) +H(xε, pε + δ(Dρ(xε) + 2(xε − x̂))) ≤ 0

if xε ∈ Ω or
(4.3.2)
min{K0[u](tε, xε)+H(xε, pε+δ(Dρ(xε)+2(xε−x̂))), ν(xε)·(pε+δ(Dρ(xε)+2(xε−x̂)))} ≤ 0

if xε ∈ ∂Ω, where pε = (xε − yε)/ε. If xε ∈ ∂Ω, since ν(xε) ·Dρ(xε) = |Dρ(xε)| > 0,

ν(xε) · (pε + δ(Dρ(xε) + 2(xε − x̂))) ≥ −|xε − yε|2

r̂ε
+ δ(1− 2|xε − x̂|) ≥ δ

2
> 0

for suitable small ε. Thus (4.3.2) is rewritten by the same form as (4.3.1). Similarly, by
the viscosity property of v, we have

K0[v](xε, yε) +H(yε, pε − δDρ(yε)) ≥ 0.

Applying (A4), we obtain

(4.3.3) K0[u](tε, xε)−K0[v](sε, yε) +H(xε, pε)−H(yε, pε) ≤ ω2(δC1)− ω2(δC2),

where C1 =: supx∈Ω |Dρ(x) + 2(x− x̂)| and C2 := supx∈Ω |Dρ(x)|.
Let us divide the term K0[u](tε, xε)−K0[v](sε, yε) into three parts as follows:

I1,ε =
u(tε, xε)− u(0, xε)

tαε
− v(sε, yε)− v(0, yε)

sαε
,

I2,ε =

∫ r

0
(u(tε, xε)− u(tε − τ, xε)− v(sε, yε) + v(sε − τ, yε))

dτ

τα+1

and

I3,ε =

∫ tε

r
(u(tε, xε)− u(tε − τ, xε))

dτ

τα+1
−

∫ sε

r
(v(sε, yε)− v(sε − τ, yε))

dτ

τα+1
.

Here r > 0 is a constant such that 0 < r < min{t̃, tε}, which exists by considering only
small ε if necessary since t̄→ t̃ > 0 as ε→ 0. It is not hard to see that

lim inf
ε→0

I1,ε ≥
u(t̃, x̂)− v(t̃, x̂)− (u(0, x̂)− v(0, x̂))

t̃α
.

It follows immediately from the inequality Φ(tε, xε, sε, yε) ≥ θ > 0 that the integrand of
I2,ε is nonnegative. Hence lim infε→0 I2,ε ≥ 0. Since limε→0 u(tε, xε) = u(t̃, x̂), for some
constant C > 0, it holds that u(tε, xε) ≥ u(t̃, x̂)− C for suitably small ε. On the another
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hand, u(tε − τ, xε) ≤ max[0,T ]×Ω u by the upper semicontinuity of u. Totally we have

(u(tε, xε)− u(tε − τ, xε))1(r,tε)(τ) ≥ (u(t̃, x̂)− C − max
[0,T ]×Ω

u)1(r,t̂)(τ)

≥ −|u(t̃, x̂)− C − max
[0,T ]×Ω

u|1(r,T )(τ),

where 1I is the indicator funcdtion on an interval I . The right-hand side multiplied by
τ−α−1 is integrable on (0, T ), so Fatou’s lemma yields

lim inf
ε→0

∫ tε

r
(u(tε, xε)− u(tε − τ, xε))

dτ

τα+1
≥

∫ t̃

r
(u(t̃, x̂)− u(t̃− τ, x̂))

dτ

τα+1
.

Similarly,

lim sup
ε→0

∫ sε

r
(v(sε, yε)− v(sε − τ, yε))

dτ

τα+1
≤

∫ t̃

r
(v(t̃, x̂)− v(t̃− τ, x̂))

dτ

τα+1
.

Recalling that (u − v)(t̃, x̂) = θ = sup[0,T ]×Ω(u − v), we find that (u − v)(t̃, x̂) ≥ (u −
v)(t̃− τ, x̂) for all τ ∈ (r, t̃). This implies that lim infε→0 I3,ε ≥ 0.

Applying (A3) to (4.3.3) and then taking a limit inferior ε→ 0 yields

(u− v)(t̃, x̂)− (u− v)(0, x̂)

t̃αΓ(1− α)
≤ ω2(δC1)− ω2(δC2).

This is a contradiction for sufficiently small δ since (u − v)(t̃, x̂) = θ > 0 and (u −
v)(0, x̂) ≤ 0.

4.4 Existence

Proposition 4.5 (Barriers). There are a subsolution u− ∈ USC(ΩT ) and a supersolution
u+ ∈ LSC(ΩT ) of (4.1.1)-(4.1.3) such that u−(t, x) ≤ u0(x) ≤ u+(t, x) for all (t, x) ∈ ΩT

and
lim
t→0

u±(t, x) = u±(0, x) = u0(x)

for all x ∈ Ω.

Proof. For each ε ∈ (0, 1), we choose u0,ε ∈ C1(Ω) so that |u0(x) − u0,ε(x)| < ε for all
x ∈ Ω.

Let ρ be a defining function of Ω. Since Dρ(z) = |Dρ(z)|ν(z) for z ∈ ∂Ω, there is a
large constant Cε > 0 such that

Cεν(z) ·Dρ(z) ≥ max
∂Ω

|ν ·Du0,ε|

for all z ∈ ∂Ω.
Define the function

u±ε (t, x) = u0,ε(x)±
(
ε arctan

(
Cερ(x)

ε

)
+ 2ε

)
± Mεt

α

Γ(1 + α)
,
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where Mε > 0 is a large constant. Then u−ε and u+ε are a viscosity subsolution and
supersolution of (4.1.1)-(4.1.2), respectively. To see this we first note that u±ε ∈ C1(ΩT ).
It is easy to see that ν(x) ·Du+ε (x) ≥ 0 and ν(x) ·Du−ε (x) ≤ 0 for all x ∈ ∂Ω. We note that
|Du±ε | is bounded on ΩT and ∂αt u±ε = ±Mε. For latter equality we used the well-known
formula [24, (2.56)]. Hence if Mε is taken sufficiently large, then we see that u±ε satisfy
the desired inequalities. Thus the assertion is immediately made clear.

Set u−(t, x) = (sup{u−ε (t, x) | ε ∈ (0, 1)})∗ and u+(t, x) = (inf{u+ε (t, x) | ε ∈
(0, 1)})∗. Here, for a real-valued function h defined on a set L in Rℓ (ℓ ∈ N), h∗ and h∗
denote, respectively, the upper semicontinuous envelope and the lower semicontinu-
ous envelope, which are defined by

h∗(z) = lim
r↘0

sup{h(ξ) | ξ ∈ L ∩B(z; r)}

and
h∗(z) = lim

r↘0
inf{h(ξ) | ξ ∈ L ∩B(z; r)}

for z ∈ L. Then u− and u+ are respectively a subolution and supersolution of (4.1.1)-
(4.1.2). In fact, the closedness under supremum operator proved in [12] is easily ex-
tended to the current situation.

Since −1 ≤ arctan r ≤ 0 for all r ≥ 0, we see that

u−ε (t, x) ≤ u0,ε(x)− ε ≤ u0(x)

for all x ∈ Ω. Hence u− ≤ u0 on ΩT . Moreover, from the definition, we observe that
u−(0, x) ≥ sup{u0,ε(x) − 2ε | ε ∈ (0, 1)} ≥ u0(x) for all x ∈ Ω. Thus u−(0, ·) = u0
on Ω. Simiarly, it follows that u+ ≥ u0 on ΩT and that u+(0, x) ≤ u0 on Ω, so that
u+(0, x) = u0 on Ω.

Theorem 4.6. Assume (A1)-(A4) and that u0 ∈ C(Ω). Then there exists at most one solution
of (4.1.1)-(4.1.3).

Proof. Let u± be functions constructed in Proposition 4.5. We denote by X a set of
subsolutions v of (4.1.1)-(4.1.3) such that v ≤ u+ on ΩT . Notice that X ̸= ∅ since
u− ∈ X . We define

u(t, x) = sup{v(t, x) | v ∈ X}.

Then it turns out by the closedness under supremum (cf; [12]) that u is a subsolution
of (4.1.1)-(4.1.2). Also, if u were not a supersolution of (4.1.1)-(4.1.2), then there would
exist a subsolution U ∈ X of (4.1.1)-(4.1.2) such that U > u at some point, which is
a contradiction to the maximality of u. An existence of such U is easily checked from
an analogous result of [12]. Accordingly, u is a supersolution of (4.1.1)-(4.1.2). Since
u− ≤ u ≤ u+ on ΩT and u−(0, ·) = u+(0, ·) = u0 on Ω, we see that u(0, ·) = u0 on Ω.
Therefore u is a solution of (4.1.1)-(4.1.3).
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Chapter 5

Homogenization for Hamilton-Jacobi equations
with State-Constraint Boundary Conditions

A homogenization problem for a Hamilton-Jacobi equation with state-constraint bound-
ary condition on non-perforated domain is considered. To find a cell problem, the pro-
cedure of convergence is analyzed carefully.

Keywords: Hamilton-Jacobi equations; Homogenization; Non-perforated domain; State-
constraint boundary conditions; Viscosity solutions

5.1 Introduction

In this chapter we consider the initial boundary value problem for Hamilton-Jacobi
equations of the form

(SC)ε


∂tu

ε +H
(
t, x,

x

ε
,Duε

)
= 0 in (0, T )× Ω,(5.1.1)

∂tu
ε +H

(
t, x,

x

ε
,Duε

)
≥ 0 on (0, T )× ∂Ω,(5.1.2)

u|t=0 = u0 in Ω.(5.1.3)

Here ε > 0, T > 0 are given constants, Ω is a bounded domain in Rd, H : [0, T ) × Ω ×
Rd × Rd → R is a given function called a Hamiltonian and u0 : Ω → R is a given initial
data. Also, Du denotes a spatial gradient of an unknown function u : (0, T ] × Ω → R,
i.e., Du = (∂u/∂x1, · · · , ∂u/∂xd). The goal in this chapter is to clarify that a viscosity
solution of (SC)ε converges to a viscosity solution of a proper limit equation as ε→ 0.

A boundary condition of the type of (5.1.2) is called a state-constraint boundary con-
dition. Soner ([12]) first gave a definition of viscosity solutions for Hamilton-Jacobi
equations with state-constraint boundary conditions and researched their properties;
see also [?]. Such solutions are sometimes called a constrained viscosity solutions; see [2,
Section IV.5]. Here let us recall the definition of constrained viscosity solutions for (SC)ε
without the third variable of H , say (SC)∗, for the reader’s convenience.

Definition 5.1 (Constrained viscosity solutions). 1. An upper semicontinuous function
u : [0, T ) × Ω → R is called a viscosity subsolution of (SC)∗ if u(0, ·) ≤ u0 on Ω and it
holds that

∂tϕ(t̂, x̂) +H(t̂, x̂, Dϕ(t̂, x̂)) ≤ 0

whenever u− ϕ attains a maximum at (t̂, x̂) ∈ (0, T )× Ω for ϕ ∈ C1((0, T )× Ω).
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2. An lower semicontinuous function u : [0, T )×Ω → R is called a viscosity superso-
lution of (SC)∗ if u(0, ·) ≥ u0 on Ω and it holds that

∂tϕ(t̂, x̂) +H(t̂, x̂, Dϕ(t̂, x̂)) ≥ 0

whenever u− ϕ attains a minimum at (t̂, x̂) ∈ (0, T )× Ω for ϕ ∈ C1((0, T )× Ω).
3. If u ∈ C([0, T ) × Ω) is a both viscosity sub- and supersolution of (SC)∗, then u is

called a viscosity solution of (SC)∗.

Throughout this chapter we only deal with constrained or usual viscosity solu-
tions as a notion of solutions, so words “constrained” and “viscosity” are hereafter
suppressed.

Hamilton-Jacobi equations with state-constraint boundary conditions arise in con-
trol problems under a special situation. More precisely, they are derived as a dynamic
programming equation for an optimization problem with a control as a parameter of a
given cost functional which states/dynamics are restricted in a given region. In more
realistic situation there are much possibilities that dynamics can oscillate frequently by
some external factors such as a heterogeneity of (restricted) region for instance. Our
equation (SC)ε reflects such effects by including a small parameter ε > 0 or an oscil-
lating variable x/ε. An interesting problem is what an optimal control for dynamics
when ε → 0 is. The problem to find an optimal control unfortunately may be difficult
in general, so we focus on behavior of solutions of (SC)ε as ε → 0. Such a problem is
called a homogenization problem.

Homogenization problems for Hamilton-Jacobi equations was considered firstly by
Lions, Papanicolaou and Varadhan ([11]). Since they established a homogenization
result under quite general assumptions, their results have been referred in many liter-
atures although it is unpublished paper. After that, Evans ([6]) improved it partially
by using a perturbed test function method he suggested. There are few studies for pdes
with state-constraints as far as we know. Kesavan and Muthukumar ([?]) considered
the homogenization problem for equations of divergence form with state-constraint on
both of a perforated domain and a non-perforated domain. Here the perforated domain
means a domain with holes periodically. Although Horie and Ishii ([7]) considered for
Hamilton-Jacobi equations, their result is only on the perforated domain.

In contract with these works our equation (SC)ε is considered on non-perforated
domain. As with usual we need to consider a stationary equation called a cell prob-
lem but there occurs a difficulty to find it. Such a difficulty is similar for boundary
value problems except for the Dirichlet problem, so let us share it now. For simplicity
and explanation of a difficulty let us consider stationry Hamilton-Jacobi equations with
Dirichlet boundary conditions

(DP)ε

{
uε +H

(
x,
x

ε
,Duε

)
= 0 in Ω,(5.1.4)

uε = 0 on ∂Ω.(5.1.5)

To derive a cell problem let uε expand with respect to ε as follows:

(5.1.6) uε(x) = u(x) + εv
(
x,
x

ε

)
+ o(ε2).
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Here v is a certain function mentioned later such that y 7→ v(·, y) is Zd-periodic, i.e.,
v(·, y + z) = v(·, y) for all y ∈ Rd and z ∈ Zd. Plugging (5.1.4) to (5.1.6) and identifying
the terms in front of powers of ε, it follows formally that

u(x) +H(x, y,Dxu(x) +Dyv(x, y)) = 0 for (t, y) ∈ Ω× Rd.

Therefore we are led to the cell problem for (DP)ε

H(x, y,Dv(y) + P ) = H̄(x, P ) in Td.

Here Td := Rd/Zd is a d-dimensional torus and a function v on Td is regarded as a
function defined on Rd with Zd-periodicity. The cell problem precisely consists with
problems that is, for given (x, P ) ∈ Ω×Rd, to find a unique constant H̄(x, P ) ∈ R such
that the above equation admits a (viscosity) solution v ∈ C(Td). Such a solution v is
often called a corrector. Also, if we can solve the cell problem, then H̄(x, P ) is regarded
as a function corresponding to a variable (x, P ) and such a function is often called an
effective Hamiltonian. Under our assumptions, it is well-known that (CP) is solvable; see
[?]. Moreover, the perturbed test function works well and hence a solution uε of (DP)ε
converges to a solution u of the following equation uniformly in Ω as ε→ 0:{

u(x) + H̄(x,Du(x)) = 0 in Ω,

u(x) = 0 on ∂Ω.

A situation for (SC)ε is different a little. Arguing such as above, we have to han-
dle also the implicit boundary condition (5.1.2). This means that the cell problem for
(SC)ε may not does is not have a simpler form as (CP). However, in fact, such a special
form for the cell problem is not needed. By focusing on this point, we will establish a
homogenization result for (SC)ε under the following standard assumptions:

(A1) H : [0, T )× Ω× Td × Rd is a continuous function,

(A2) H is coercive in p, i.e.,

lim
r→∞

inf{H(x, y, p) | x ∈ Ω, y ∈ Rd, |p| ≥ r} = +∞,

(A3) for some constant L > 0

|H(x, y, p)−H(x′, y′, p′)| ≤ L(|x− x′|+ |y − y′|+ |p− p′|)

for all (x, x′, y, y′, p, p′) ∈ Ω
2 × R4d,

(A4) Ω is a bounded, connected open set in Rd and, for z ∈ ∂Ω, there exists a unit
vector η ∈ Rd and a constant c ∈ (0, 1) such that

B(x+ δη, δc) ⊂ Ω for all x ∈ Ω ∩B(z, 2c) and 0 < δ ≤ c,

(A4) u0 : Ω → R is a Lipschitz continuous function,

(A5) there exists a unique solution uε ∈ C([0, T )× Ω) of (SC)ε.
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This chapter is organized as follows: In Section 6.2 we state main result and prove
it.

5.2 Homogenization result

A main theorem in this chapter is

Theorem 5.2 (Homogenization result for (SC)ε). Assume that (A1)-(A5). Then the solution
uε of (SC)ε converges to the solution u of the following equation (SC) uniformly in Ω as ε→ 0.

(SC)


∂tu+ H̄(t, x,Du) = 0 in (0, T )× Ω,(5.2.1)

∂tu+ H̄(t, x,Du) ≥ 0 on (0, T )× ∂Ω,(5.2.2)

u|t=0 = u0 in Ω.(5.2.3)

Let us here gather fundamental facts without proofs in order to use in a proof of
Theorem 5.2.

Lemma 5.3 (Cell problems). Assume (A1)-(A3). Then for each (t, x, P ) ∈ (0, T )× Ω× Rd

there exists a unique constant H̄(t, x, P ) ∈ R such that

(5.2.4) H(t, x,Dyv(y) + P ) = H̄(t, x, P ) in Td

admits a solution v ∈ C(Td).

This is a well-known fact; see [11].

Lemma 5.4 (Comparison principle for (SC)). Assume (A1),(A2) and (A4). Let u and v be a
subsolution and a supersolution of (SC), respectively. If u(0, ·) ≤ v(0, ·) on Ω, then u ≤ v on
[0, T )× Ω.

This lemma can proved similarly as [8, Theorem 7.3]. Note that there is no diffi-
culty to state the similar for (SC)ε. The following proposition is easily established from
Lemma 5.4.

Proposition 5.5 (Uniformly boundedness). Let uε be a solution of (SC)ε. Then {uε}ε is
uniformly bounded in [0, T )× Ω.

Proof of Theorem 2.1.1. Let u+ and u− be the upper half-relaxed limit and the lower half-
relaxed limit for the family {uε}ε of solutions of (SC)ε. More precisely, they are defined
by

u+(t, x) = lim
δ↘0

sup{uε(s, y) | (s, y) ∈ Bδ(t, x) ∩ ([0, T )× Ω), ε < δ}

and u− = −(−u)+. Here Bδ(t, x) is an open ball with radius δ centered (t, x). Note that
both of them are real-valued functions on [0, T ) × Ω thanks to Proposition 5.5. More-
over, u+ is an upper semicontinuous function and so u− is a lower semicontinuous
function; see, e.g., [?]. By the definition of u+ and u−, we see u− ≤ u+ on [0, T ) × Ω.
Thus, if u+ and u− are respectively a subsolution and a supersolution of (5.2.1)-(5.2.2),
Theorem 5.2 concludes. That is why u+ = u− =: u on [0, T ) × Ω by Lemma 5.4 (com-
parison principle for (SC)) and hence u is a solution of (SC). It is proved by the almost
same argument as [6, Theorem 3] that u+ and u− are a subsolution and a supersolution
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of (5.2.1), respectively. Therefore it is enough to prove that u− satisfies the boundary
condition (5.2.2). A proof is a slightly modification of [7, Proof of Proposition 1.7 and
Theorem 1.2].

Assume that u− − ϕ attains a strict local minimum at (t0, x0) ∈ (0, T ) × ∂Ω for
ϕ ∈ C1((0, T )× Ω). Then we shall show that

∂tϕ(t0, x0) + H̄(t0, x0, Dϕ(t0, x0)) ≥ 0.

Let v be a solution of (5.2.4) with (t, x, P ) = (t0, x0, Dϕ(t0, x0)); see Lemma 5.3. By
the definition of u−, there are subsequences {εn}n=1,2,··· and {(tn, xn)}n=1,2,··· such that
(5.2.5){

(εn, tn, xn, u
εn(tn, xn)) → (0, t0, x0, u

−(t0, x0)) as n→ ∞,

(t, x) 7→ uεn(t, x)− ϕ(t, x)− εnv(x/εn) attains a local minimum at (tn, xn).

From (A4), we get a unit vector ηεn ∈ Rd and a constant cεn ∈ (0, 1) such that

(5.2.6) B(x+ τηεn , τcεn) ⊂ Ω for x ∈ Ω ∩B(xn, 2cεn) and 0 < τ ≤ cεn .

Fix any n = 1, 2, · · · . Consider the auxiliary function

(5.2.7) Φ(t, x, y) := uεn(t, x)−ϕ(t, x)−εnv
(
y

εn

)
+

∣∣∣∣y − x

δ
− ηεn

∣∣∣∣2+ |t− tn|2+ |x−xn|2

on [0, T ] × Ω × Ω, where δ > 0. Let (tδ, xδ, yδ) be a minimum point of Φ over [0, T ] ×
(Ω∩B(xn, cεn))× (Ω∩B(xn, cεn)). We hereafter assume that δ ≤ cε so that xn + δηεn ∈
Ω ∩B(xn, cεn) from (5.2.6).

The inequality Φ(tδ, xδ, yδ) ≤ Φ(tn, xn, xn+δηεn) implies that (tδ, xδ, yδ) → (tn, xn, xn)

and (yδ − xδ)/δ → ηεn as δ → 0. Hence we may choose δ so small that

max

{
|tδ − tn|, |xδ − yδ|, |xδ − xn|,

∣∣∣∣yδ − xδ

δ
− ηεn

∣∣∣∣} <
cεn
2
.

This implies that yδ ∈ B(xδ + δηεn , δcεn) from the fourth value in the left-hand side,
whence xδ + δηε, y

δ ∈ Ω by (5.2.6). From the above Φ attains a local minimum at the
interior point (tδ, xδ, yδ) ∈ (0, T )× Ω× Ω over [0, T ]× Ω× Ω.

Since uεn is a supersolution of (SC)ε, it holds that

∂tϕ(t
δ, xδ)−2(tδ−tn)+H

(
tδ, xδ,

xδ

εn
, Dϕ(tδ, xδ)− 2

δ

(
yδ − xδ

δ
− ηεn

)
− 2(xδ − xn)

)
≥ 0.

Also, since v is a subsolution of (5.2.4),

H

(
x0,

yδ

εn
, Dϕ(t0, x0)−

2

δ

(
yδ − xδ

δ
− ηεn

))
≤ H̄(t0, x0, Dϕ(t0, x0)).
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Thus, from (A4), we obtain that

0 ≤∂tϕ(tδ, xδ)− 2(tδ − tn) +H

(
tδ, xδ,

xδ

εn
, Dϕ(tδ, xδ)− 2

δ

(
yδ − xδ

δ
− ηεn

)
− 2(xδ − xn)

)
≤∂tϕ(tδ, xδ)− 2(tδ − tn) +H

(
t0, x0,

yδ

εn
, Dϕ(t0, x0)−

2

δ

(
yδ − xδ

δ
− ηεn

))
+ L

(
|xδ − x0|+

|yδ − xδ|
εn

+ 2|xδ − xn|+ |Dϕ(tδ, xδ)−Dϕ(t0, x0)|
)

≤∂tϕ(tδ, xδ)− 2(tδ − tn) + H̄(t0, x0, Dϕ(t0, x0))

+ L

(
|xδ − x0|+

|yδ − xδ|
εn

+ 2|xδ − xn|+ |Dϕ(tδ, xδ)−Dϕ(t0, x0)|
)
.

Passing to the limit δ → 0 implies that

∂tϕ(tn, xn) + H̄(t0, x0, Dϕ(t0, x0)) ≥ L(|xn − x0|+ |Dϕ(tn, xn)−Dϕ(t0, x0)|).

Since this inequality holds for all n = 1, 2, · · · , we get the desired inequality when
sending n→ ∞.
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