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Abstract

Community effect of cardiomyocytes is investigated in silico by changing number

and features of cells as well as configurations of networks. The theoretical model

is based on experimental data and accurately reproduces the recent experimental

results about coupled two cultured cardiomyocites that proved the fact that the

synchronized beating of two coupled cells is tuned not to the cell with faster beating

rate but to the one with more stable rhythm. In a network of cardiomyocytes,

not a high frequency cell but a cell with low fluctuation becomes a pacemaker and

stabilizes the beating rhythm. Beating fluctuation rapidly decreases with increase of

the number of cells, N , almost irrespective of the configuration of the network, and

comes to have natural stable beating rhythms even for N ≈ 10. The universality

of this community effect lies in the fluctuation dissipation theorem in statistical

mechanics.

1 Introduction

Synchronization of biological cycles is indispensable to life activity [1, 2]. The heartbeat

is the representative phenomenon of synchronization in physiology in which spontaneous

pulsations of cardiomyocytes are tuned to a certain beating rate. Extensive work has

been devoted to understanding the mechanism of regularity in beating of cardiac cells

both experimentally and theoretically [3–9]. Contraction of a cardiomyocyte is caused

by complex electrophysiological processes, and the detailed analyses require elaborated

mathematical models composed of a huge number of equations [10,11]. To understand the

essence of synchronization, however, a small number of simultaneous ordinary equations

of membrane currents and action potentials, such as the Hodgkin-Huxley equation or its

reduced form, the FitzHugh-Nagumo equation and the Van der Pol equation, are enough

to capture the key phenomenon of the cell dynamics (see, for example, [12, 13]). Most
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mathematical models for interacting cardiac cells are based on these equations [14–18].

Then a network of cardiomyocytes is regarded as a system of interacting self-sustained

(nonlinear) oscillators. To explain the essence of synchronization in such a system of

oscillators, phase equations have been used extensively and successfully [19,20]. A variety

of work with phase equations on a network of cardiac cells has been reported such as

synchronization of cardiac pacemaker cells to the external periodic stimuli, phase resetting

properties of cardiac cells [21], oscillation regularity depending on the cell networks [22],

and so on.

Recently, an on-chip single-cell-based culture system has been developed. Small ar-

tificial networks of cardiomyocytes can be constructed and measured their spontaneous

beating rhythms in terms of the effects of number of cells, configurations and kinds of

cells [23, 24]. Although isolated cardiomyocytes are quite heterogeneous and their beat-

ing rhythms are inconsistent, even a pair of cardiomyocytes tend to synchronize when

connected with each other. Since the features of an individual beating cell are now mea-

surable and the configuration of a cellular network, which affects cell-to-cell interactions

significantly, is flexibly constructible, it would be of considerable importance to examine

how heterogeneity of cells and cell-to-cell interactions influence on synchronization in a

small cluster of cardiomyocytes. There are two important observable quantities in a car-

diomyocyte; One is its cell cycle (beating rate) and the other is its refractory period. In

particular, a cardiomyocyte has quite a long refractory period comparing with that of a

neuron, and the difference of the refractory periods among cardyomyocytes is expected

to affect the behavior of synchronization. In case cardiomyocytes are isolated, they will

just beat independently, while if they come into contact and interact with each other,

their beating rhythms become synchronized. It was conjectured for a long time that,

in a network of cardiomyocytes, firing of one cardiomyocyte triggers induced firing of

the adjacent cardiomyocytes and all the cardiomyocytes start beating synchronously, and

that the beating rate is tuned to the fastest one [5]. However, recent experiments have

revealed that other cells are synchronized not to the fastest one but to the one with the

least fluctuation of the beating rhythm [25].

The aim of the present article is to investigate the community effect of cardiomyocytes

in different configurations of networks constituted by cells with specified characteristics of

beating rhythms and to clarify how an assembly of cells acquires stability, one of the most

important universal features in biological systems. Since it is quite difficult in a vitro

experiment to prepare a cardiomyocyte with given properties, we develop a mathematical

model which explains this behavior of cardiomyocytes with high reliability.
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2 Summary of results in Chapter 2

Let us consider a simple system of two cardiomyocytes beating with regular cycles. We

call the two cardiomyocytes cell-1 and cell-2 respectively. Each cardiomyocyte has its

own cell cycle which coincides with the period of pulsation. In case cell-1 and cell-2 are

isolated, they will just beat independently, while they are connected with each other, firing

of cell-1 can influence cell-2 through the membrane potentials, and vice versa. Although

a number of cell-to-cell interactions may take place when two cardiomyocytes come into

contact, we discuss only the effect of firing of the adjacent cell.

We construct the phase equations for the dynamics of the two cardiomyocytes. The

model is described by the phase variable ϕi(t) (0 ≤ ϕi(t) ≤ 2π, i = 1, 2) which denotes

the state of cell-i at a time t and is defined over modulo 2π. We suppose that cell-i

fires (beats) when ϕi(t) = 0 (≡ 2π). This firing takes place either ϕi(t) reaches 2π or the

following conditions are satisfied; ϕi(t − 0) ≥ θi and cell-j (1 ≤ j ̸= i ≤ 2) connected to

cell-i fired retardation time τ ago, that is, ϕj(t− τ) = 0. Otherwise, that is, if cell-i is in

the refractory period or cell-j does not fire, ϕi(t) is governed by the following differential

equation: dϕi(t) = ωidt. The equations for cell-i are given as{
dϕi(t) = ωidt (0 ≤ ϕi(t− 0) ≤ θi or ϕj(t− τ) ̸= 0)

ϕi(t) = 0 (θi ≤ ϕi(t− 0) ≤ 2π and ϕj(t− τ) = 0)
(2.1)

where ωi is an average phase velocity of the cell-i, θi is a phase corresponding to the

refractory period of the cell-i (0 < θi < 2π), and τ is a delay time of signal propagation

in adjacent cardiomyocytes.

We found that if cardiomyocytes have tight refractory periods, they eventually start

synchronizing and their beating rate is equal to that of the faster beating cariomyocyte,

which explains the postulations by Goshima. While, we found that if cardiomocytes have

flexible refractory periods, under the assumption that the ratio of the refractory period

to the firing period is the same in the two cardiomyocytes, their beating rhythms come

to be synchronized or harmonized. Thus, modeling this system by the integrate and fire

model with refractory period, we prove the postulations by Goshima for normal cells and

get the phase diagram with complicated bifurcations of harmonization for abnormal cells.

These phase diagrams indicate that cardiac arrhythmias can be caused by the transition

of the phase.
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3 Summary of results in Chapter 3

In chapter 2, we considered the model for two cardiomyoctes with regular cycles. The ex-

amination showed that a cardiomyocyte with lower beating fluctuation act as a pacemaker

and the beating rhythm after synchronization is tuned to the stable cardiomyocyte [25].

It is difficult for this model to reproduce the experimental results because it does not

take into account the biological noise. Here, we aim at a construction of a mathematical

modeling reproducing the observation by extending the phase model(2.1).

Let us consider a network of two cardiomyocytes beating with irregular cycles. We

propose an extended phase model which contains stochastic process and cell-to-cell inter-

action: then, the phase variable ϕi(t) is governed by the following interacting stochastic

diffrential equation.{
dϕi(t) = ωidt+ dW (σi) + σ2

i V (ϕi, ϕj)dt (0 ≤ ϕi(t− 0) ≤ θi or ϕj(t− τ) ̸= 0)

ϕi(t) = 0 (θi ≤ ϕi(t− 0) ≤ 2π and ϕj(t− τ) = 0)
(3.1)

where dW (σ) is a stochastic process with mean deviation σ, and V (ϕi, ϕj) denotes the

weak interaction through the membrane potential which we assume as the following form

V (ϕi, ϕj) := µ sin(ϕj − ϕi). (3.2)

Here µ is a positive constant. Note that ωi, θi and σi can be determined by single

cell experiments for each cardiomyocyte. We utilize an extended random walk as the

stochastic process W (σ). The positive constant µ is the only parameter in our model

which cannot directly measured by experiments. By defining an evaluation function, we

are able to determine the free parameter µ to minimize the function.

In the experiments [25], the mean beating rate and its fluctuation before and after

synchronisation were observed for 14 pairs of cardiomyocytes. We applied our model to

determine whether it could reproduce the results of these pairs of cardiomyocytes. Except

for pair No. 14, the simulated values accurately agree with the experimental values.

Fluctuation in beating of a pair of synchronized cardiomyocytes almost coincided with

that of less fluctuating cardiomyocytes, while the mean beating rate after synchronization

was widely distributed. Some synchronized cardiomyocytes coincided with faster rates,

some with slower rates, and others with intermediate rates. The experimental result of

pair No.14 is exceptional because it is the only pair in which fluctuation increased after

synchronization.
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4 Summary of results in Chapter 4

We consider a network of N cardiomyocytes. Let k cells (cell-i1, cell-i2,. . . ,cell-ik) be

connected to cell-i. Define Si as the set of the index of cells connected to cell-i; Si :=

{i1, i2, ..., ik}. Similar to Chapter 3, the phase variable ϕi(t) is governed by the following

stochastic differential equation.dϕi(t) = ωidt+ dW (σi) + σ2
i

∑
j∈Si

V (ϕi, ϕj)dt (0 ≤ ϕi(t− 0) ≤ θi or
∀j ∈ Si, ϕj(t− τ) ̸= 0)

ϕi(t) = 0 (θi ≤ ϕi(t− 0) ≤ 2π and ∃j ∈ Si, ϕj(t− τ) = 0)
(4.1)

where V (ϕi, ϕj) := µ sin(ϕj−ϕi). As an application of our mathematical modeling, we then

performed two numerical experiments on networks of cardiomyocytes and investigated the

community effect of cadriomyocytes.

First, we investigated the dependence of fluctuation in beating rhythm of cardiomy-

ocytes on the size and configuration of the system. The configurations that we considered

were star, 2D lattice and 1D lattice networks. In all configurations, fluctuation rapidly

decreased with an increase in the size of the system. Among the three configurations, a

reduction in fluctuation was most rapid in the 2D lattice network, and fluctuation in the

1D lattice network was always larger than that in the other two configurations. For an

ordinary stochastic ensemble, such as an independently identical distributed ensemble,

the dependence of standard deviation of fluctuation on system size N was proportional to

N−1/2. However, the data of fluctuation considerably deviated from the line of N−1/2 and

the feature of beating fluctuation was relatively different from that of ordinary stochastic

ensembles.

We then investigated the change in beating rhythms after connecting two subsystems

of cardiomyocytes. we composed referential subsystems of four model cells and nine

model cells so that these subsystems had the property of a standard beating rhythm

(mean beating rate 1.20 ∼ 1.30 s; fluctuation 15.0 ∼ 20.0 [CV %]). As for the subsystems

which are connected to referential subsystems, we considered subsystems consisting of

four types of cardiomyocytes: (i) first and stable cell, (ii) first and unstable cell, (iii) slow

and stable cell, and (iv) slow and unstable cell. For networks, we considered the three

types of configurations; star, 2D lattice and 1D lattice networks. As a result, every cell

started synchronizing after connection and fluctuation of the cells became equal in the

combined system. Even a single stable cardiomyocyte could lower fluctuation of a network

consisting of some cardiomyocytes.
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