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Introduction

Fraïssé theory was originally invented by Rolland Fraïssé in [5]. It is a topic in model
theory where a bijective correspondence between certain classes consisting of finitely
generated structures and countable structures with a certain homogeneity property is
established. The classes and homogeneous structures in this context are called Fraïssé
classes and Fraïssé limits respectively.

We shall illustrate this theory with an example. Let

A1 A2 A3 · · ·

be an inductive system of finite totally ordered sets and order-preserving embeddings.
Then its limit is a countable totally ordered set, and obviously all the countable totally
ordered sets can be obtained in this way; and here, we wonder whether every countable
totally ordered set appears equally often.

In order to make our question meaningful, we shall assume that the inductive system
above is constructed in the following way. The first totally ordered set A1 is a singleton
with the trivial ordering. At step n, we obtain the inclusion An�1 ! An by adding
a point, say an, to An�1 and extending the order on An�1 to An�1 [ {an} at random.
Then, since the ordering of the limit structure is determined by the successive random
choices of extensions, the tendency of appearance of a countable totally ordered set
can be measured in terms of probability. Now, one can easily verify that an inductive
system which is obtained as above will almost surely satisfy the following property:
For any two elements a, b 2 An with a < b, there exist m > n and c, d, e 2 Am with
c < a < d < b < e. Therefore, if

B1 B2 B3 · · ·

is another inductive system, then by passing to subsystems if necessary, one can construct
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a commuting diagram as follows.

A1 A2 A3 · · ·

B1 B2 B3 · · ·

'1 '2 '3
 1  2  3

The order-preserving embeddings 'n and  n induce embeddings between the inductive
limits, which are clearly inverses to each other and so are isomorphisms. In other words,
almost all inductive systems have the same limit (up to isomorphisms). Moreover, since
the first embedding '1 above can be chosen fairly arbitrarily, one can see that the limit
has the following homogeneity property: If A and B are finite subsets of the limit, and
if ' : A ! B is an order-preserving bijection, then there exists an automorphism ↵ of
the limit which extends '. On the other hand, since the limit is clearly a self-dense
countable totally ordered set without the minimum or the maximum, it is isomorphic to
the rationals (Q, <), and we notice that it is the unique countable totally ordered set with
this homogeneity property.

Similar arguments appear here and there in mathematics. For example, instead of
totally ordered sets, one can use undirected finite simple graphs in the above argument,
in which case the resulting inductive limit will be almost surely what is called the Rado
graph. One may also use finite dimensional extensions of a fixed countable field K , and
he will obtain the algebraic closure K as the limit. Fraïssé realized that these arguments
can be formulated in terms of model theory.

By definition, a Fraïssé class is a class K of finitely generated first order structures
which satisfies the following axioms.
• Up to isomorphisms, K contains only countably many structures.
• HP: A substructure of a member of K is itself a member of K.
• JEP: Any two members of K can be embedded into a third one.
• AP: If ◆1 : A ! B1 and ◆2 : A ! B2 are embeddings of members of K, then there

are embeddings ⌘1, ⌘2 of B1,B2 into some member C of K such that the diagram

A B1

B2 C

◆1

◆2 ⌘1

⌘2

commutes.
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In the case of totally ordered sets, the class of all finite totally ordered sets satisfies
these properties, so it is a Fraïssé class. One can show that every Fraïssé class admits a
“Q-like” structure as above: If K is a Fraïssé class, then there exists a unique countable
structure M such that a generic inductive system of members of K has M as its limit.
Moreover, the structure M is ultra-homogeneous in the sense that every isomorphism
between finitely generated substructures extends to an automorphism of M. Conversely,
if M is an ultra-homogeneous structure, then the class AgeM of all finitely generated
structures embeddable into M is a Fraïssé class.

Fraïssé theory has been, among the rest, a target of generalization to the setting
of metric structures. Roughly, a metric structure is a complete metric space together
with continuous operations and relations. Typical examples are Banach spaces and
Banach algebras. In [1], Itaï Ben Yaacov concisely gave a general theory for them. In
his theory, the generic limit structures are the approximately ultra-homogeneous ones.
Here, a separable metric structure M is said to be approximately ultra-homogeneous
if every isomorphism between finitely generated substructures can be approximated by
automorphisms of M with respect to the point-distance topology. Corresponding to
this di�erence, the axioms for Fraïssé classes is also modified. First, the axiom AP
is replaced with its approximate version, which is called NAP. Also, the countability
condition is replaced with what is called PP, which claims that the class is separable and
complete with respect to a variant of Gromov–Hausdor� distance. Finally, concerning
with the continuity of the equipped operations and relations, an axiom called CP is
added. He showed the similar results within this framework and pointed out that the
Urysohn universal space, the separable infinite dimensional Hilbert space, the atomless
standard probability space and the Gurariı̆ space can be recognized as Fraïssé limits of
suitable classes. In [3], a relaxed version of Itaï’s theory has been considered and applied
to several examples of operator algebras. In this version, HP is omitted and PP and CP
are replaced with weaker versions called WPP and CPP respectively.

In this thesis, we consider a generalization of these theories, which can be also
applied to categories of first order metric structures and embeddings between them.
Then we apply it to two instances of operator algebras, i.e., UHF algebras and the Jiang–
Su algebra. We note that these operator algebras are also dealt with in [3], but our
approach is quite di�erent.

A UHF algebra is defined as a C*-algebra which is obtained as an inductive limit of
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a sequence of the form

Mn1 Mn2 Mn3 · · · ,

where Mn denotes the C*-algebra of all n ⇥ n matrices and the maps are unital ⇤-
homomorphisms. To each such inductive system, one can assign the formal least
common divisor of {ni}, which is a formal product of the form

⌫ =
÷

p: prime
pmp,

where mp is either non-negative integer or 1. James G. Glimm proved in [6] that this
formal product is a complete invariance for the UHF algebras. We shall denote the
UHF algebra corresponding to ⌫ byM⌫.

The Jiang–Su algebra Z was introduced in [8] as the unique simple monotracial
inductive limit of what we call prime dimension drop algebras. It is a nuclear infinite
dimensional C*-algebra which is KK-equivalent to the complex numbers C and ten-
sorially self-absorbing (i.e., Z ⌦ Z ' Z), so that it plays a key role in the Elliott’s
classification program of separable nuclear C*-algebras via K-theoretic invariants (for
the detail, see [4] for example).

In our approach, we consider categories of C*-algebras of continuous matrix-valued
functions on cubes with distinguished faithful traces and unital trace-preserving ⇤-
homomorphisms. Model theoretically, these C*-algebras are dealt with as unital tracial
C*-algebras. For a UHF algebra M⌫, we consider a category K⌫, and for the Jiang–Su
algebra, we consider a category KZ. It is shown that these are Fraïssé category the
generic limit of which is the corresponding C*-algebra with the unique trace.

This thesis is organized as follows. The first chapter is devoted to the Fraïssé theory
for categories of metric structures. In Sections 1.1 and 1.2, we introduce approximate
isometries and approximate isomorphisms. The existence and uniqueness of a Fraïssé
limit is proved in Section 1.3. In the second chapter, we deal with the applications of the
theory to UHF algebras and the Jiang–Su algebra. The contents of Section 1.1 are from
Itaï’s paper [1], while the others are from the author’s papers [10, 11, 12].
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Chapter 1

Fraïssé theory for metric structures

1.1 Approximate isometries
Let X and Y be metric spaces. We denote by JE(X,Y ) the set of all pairs (◆, ⌘), where
◆ : X ! Z and ⌘ : Y ! Z are isometries into some metric space Z . Each element of
JE(X,Y ) is called a joint embedding of X and Y .

Definition 1.1.1. (1) Let X be a metric space. A map ' : X ! [0,1] is said to be
Kat�tov if it satisfies the inequalities

'(x)  dX(x, x0) + '(x0), dX(x, x0)  '(x) + '(x0)

for all x, x0 2 X .
(2) Suppose that X and Y are metric spaces. An approximate isometry from X to Y is a
map ' : X ⇥ Y ! [0,1] which is separately Kat�tov:

'(x, y)  d(x, x0) + '(x0, y), d(x, x0)  '(x, y) + '(x0, y),
'(x, y)  d(y, y0) + '(x, y0), d(y, y0)  '(x, y) + '(x, y0).

The class of all approximate isometries from X to Y is denoted by Apx(X,Y ). Note that,
being a closed subset of [0,1]X⇥Y , the space Apx(X,Y ) is compact and Hausdor� with
respect to the topology of pointwise convergence.

Intuitively, an approximate isometry is a condition to be imposed on joint embed-
dings. A joint embedding (◆, ⌘) 2 JE(X,Y ) is considered to satisfy an approximate
isometry ' from X to Y if the inequality

d
�
◆(x), ⌘(y)

�
 '(x, y)
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1.1. APPROXIMATE ISOMETRIES

holds for all x 2 X and y 2 Y . We shall denote by JE'(X,Y ) the class of all joint
embeddings satisfying '. Clearly, the condition ' ⌘ 1 is the weakest condition. Note
that if an approximate isometry ' from X to Y takes a finite value at some point, then it
is real-valued, because if '(x0, y0) < 1, then

'(x, y)  dX(x, x0) + '(x0, y0) + d(y0, y) < 1.

Example 1.1.2. (1) If (◆, ⌘) is a joint-embedding of X and Y , then the map

(x, y) 7! d
�
◆(x), ⌘(y)

�
is an approximate isometry. We shall denote this approximate isometry by '◆,⌘. In the
case that ◆ is an isometry from X into Y and ⌘ is equal to idY , the approximate isometry
'◆,⌘ is simply written as '◆.

We shall show that every approximate isometry is of this form unless it is equal to 1.
To see this, let ' : X ⇥ Y ! [0,1) be an approximate isometry and define a symmetric
function � : (X ›

Y )2 ! [0,1) by

�(z, z0) =
8>>><
>>>:

dX(z, z0) if z, z0 2 X,
'(z, z0) if z 2 X and z0 2 Y,
dY (z, z0) if z, z0 2 Y .

Then it is easy to see that � is a pseudo-metric. If ◆ and ⌘ are canonical embeddings of X
and Y into the quotient metric space X

›
'Y , then d

�
◆(x), ⌘(y)

�
= '(x, y), as desired. It

follows that, for any approximate isometries ' and  from X to Y , the inequality '   

holds if and only if JE'(X,Y ) is included in JE (X,Y ), so the order  completely
reflects the strength of conditions.

Note that a net {◆↵} of isometries from X into Y converges pointwise to an isometry
◆ if and only if {'◆↵} converges to '◆. Indeed, if {◆↵} converges to ◆, then

'◆↵(x, y) = d
�
◆↵(x), y

�
! d

�
◆(x), y

�
= '◆(x, y)

for all x 2 X and y 2 Y . Conversely, if {'◆↵} converges to '◆, then for any x 2 X we
have

d
�
◆↵(x), ◆(x)

�
= '◆↵

�
x, ◆(x)

�
! '◆

�
x, ◆(x)

�
= d

�
◆(x), ◆(x)

�
= 0.

(2) For an approximate isometry ' from X to Y , we set

'⇤(y, x) := '(x, y).
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1.1. APPROXIMATE ISOMETRIES

Then clearly '⇤ is an approximate isometry from Y to X . We call '⇤ the pseudo-inverse
of '.
(3) Given ' 2 Apx(X,Y ) and  2 Apx(Y, Z), we define their composition by

 '(x, z) := inf
y2Y

�
'(x, y) +  (y, z)

�
.

Here, we shall check that  ' is an approximate isometry from X to Z . Indeed, if x and
x0 are points of X , then

 '(x, z) = inf
y2Y

�
'(x, y) +  (y, z)

�
 inf

y2Y

�
d(x, x0) + '(x0, y) +  (y, z)

�
= d(x, x0) +  '(x0z)

and

d(x, x0)  inf
y,y02Y

�
'(x, y) + d(y, y0) + '(x0, y0)

�
 inf
y,y02Y

�
'(x, y) +  (y, z) + '(x0, y0) +  (y0, z)

�
=  '(x, z) +  '(x0z),

so  '( · , z) is Kat�tov for all z 2 Z . By symmetry,  '(x, · ) is also Kat�tov for all x 2 X ,
so  ' is an approximate isometry.

It is worth noting that if (◆1, ◆2) 2 JE'(X,Y ) and (◆2, ◆3) 2 JE (Y, Z), then (◆1, ◆3) 2
JE '(X, Z), and  ' is the smallest approximate isometry satisfying this property. Also,
it can be easily seen that the equality '◆,⌘ = '⇤⌘'◆ holds for any joint embedding (◆, ⌘).
(4) Let X0 ✓ X and Y 0 ✓ Y be subspaces. If ' is an approximate isometry from X to
Y , then its restriction '|X 0⇥Y 0 is an approximate isometry from X0 to Y 0. Note that, if
◆ : X0 ! X and ⌘ : Y 0 ! Y are the canonical embeddings, then '|X 0⇥Y 0 is equal to '⇤⌘''◆.
Now suppose that  is an approximate isometry from X0 to Y 0. The trivial extension of
 to X ⇥ Y is defined by  |X⇥Y := '⌘ '⇤◆ . It is easy to show that  |X⇥Y is the largest
approximate isometry such that the restriction to X0 ⇥ Y 0 is equal to  . More generally,
an approximate isometry ✓ from X to Y satisfies ✓   |X⇥Y if and only if ✓ |X 0⇥Y 0   .
(5) If ' is an approximate isometry from X to Y and " is a non-negative real number,
then the relaxation of ' by " is defined by (x, y) 7! '(x, y) + ". We simply denote this
approximate isometry by ' + ". Note that the operation of taking relaxations commutes
with that of taking compositions.

3



1.1. APPROXIMATE ISOMETRIES

Definition 1.1.3. An approximate isometry ' from X to Y is said to be
• "-total if '⇤'  'idX + 2".
• "-surjective if '⇤ is "-total.
• "-bijective if ' is "-total and "-surjective.

If ' and  are approximate isometries from X to Y with   ', then clearly
 ⇤  '⇤'. Therefore, if ' is "-total, then so is  . Similarly, if ' is "-surjective, then
so is  .

Proposition 1.1.4. An approximate isometry ' from X to Y is "-total if and only if
any (◆, ⌘) 2 JE'(X,Y ) satisfies d

�
◆(x), ⌘[Y ]

�
 " for each x 2 X . In particular, if Y

is complete and ' is "-total for any ", then it is of the form '◆ for a unique isometry
◆ : X ! Y .

Proof. Suppose that ' is "-total and let (◆, ⌘) be in JE'(X,Y ). Then, for any x 2 X , we
have

2 inf
y2Y

d
�
◆(x), ⌘(y)

�
 inf

y2Y

�
'(x, y) + '⇤(y, x)

�
= '⇤'(x, x)

 'id(x, x) + 2" = 2",

so d
�
◆(x), ⌘[Y ]

�
 ".

Conversely, suppose that d
�
◆(x), ⌘[Y ])  " holds for any (◆, ⌘) 2 JE'(X,Y ) and any

x 2 X . Then ' . 1, so it is of the form '◆,⌘, and

'⇤'(x, x0) = inf
y2Y

�
d
�
◆(x), ⌘(y)

�
+ d

�
⌘(y), ◆(x0)

� �
 d(x, x0) + 2 inf

y2Y
d
�
◆(x), ⌘(y)

�
 'id(x, x0) + 2".

⇤

Let ' be an approximate isometry from X to Y . We set

Apx'(X,Y ) := { 2 Apx(X,Y ) |   '}.

We also denote by ApxC'(X,Y ) the interior of the closed subset Apx'(X,Y ) of the
compact Hausdor� space Apx(X,Y ), and write  C ' or ' B  if  belongs to
ApxC'(X,Y ). If ApxC'(X,Y ) is nonempty, then ' is said to be strict. The class of all
strict approximate isometries is denoted by Stx(X,Y ).

4



1.1. APPROXIMATE ISOMETRIES

It can be easily verified that the relation C is preserved under restrictions and trivial
extensions. In particular, restrictions and trivial extensions of a strict approximate
isometries are strict.

Proposition 1.1.5. For ', 2 Apx(X,Y ), the following are equivalent.

(i) The relation  C ' holds.
(ii) There exist finite subsets X0 ✓ X and Y0 ✓ Y and a positive real number " such that
the inequality

' � ( |X0⇥Y0)|X⇥Y + "

holds.
(iii) Same as (ii), with � replaced by B.

Moreover, if these conditions are satisfied, then there exist finite subsets X0 ✓ X and
Y0 ✓ Y and a rational-valued approximate isometry ⇢ 2 Apx(X0,Y0) such that the
relation  C ⇢|X⇥Y C � holds.

Proof. First, suppose (i) holds. Then there exist finite subsets X0 ✓ X and Y0 ✓ Y and a
positive real number " such that the open neighborhood

U :=
�
 0 2 Apx(X,Y )

�� | 0(x, y) �  (x, y)| < 2" for any x 2 X0, y 2 Y0
 

is included in Apx'(X,Y ). Clearly ( |X0⇥Y0)|X⇥Y + " belongs to U, so (iii) follows.
It is trivial that (iii) implies (ii). Now assume (ii). Since C is preserved under trivial

extensions, the relation  |X0⇥Y0 C  |X0⇥Y0 + " implies

  ( |X0⇥Y0)|X⇥Y C ( |X0⇥Y0)|X⇥Y + "  ',

so (i) holds.
Finally, in order to find ⇢ as in the statement, suppose  C '. Let X0,Y0 be as in

the proof of (i) ) (iii) above, and F1, . . . , Fn be the partition of X0 ⇥ Y0 induced by
 . Without loss of generality, we may assume  |F1 < · · · <  |Fn . Take a function
� : X0 ⇥ Y0 ! (0, ") so that

• � is constant on each Fi;
• � |Fn <  |Fn �  |Fn�1;
• � |Fi < min{� |Fi+1, |Fi �  |Fi�1} for i = 2, . . . , n � 1;
• � |F1 < min{� |F2, |F1}; and
• ⇢ :=  |X0⇥Y0 � � + " is a rational valued function on X0 ⇥ Y0.
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1.2. METRIC STRUCTURES AND APPROXIMATE ISOMORPHISMS

We shall check that ⇢ is separately Kat�tov so that it is an approximate isometry. The
inequality

d(x, x0)  ⇢(x, y) + ⇢(x0, y)

is obvious, because ⇢ �  |X0⇥Y0 . On the other hand, for (x, y) 2 Fi and (x0, y) 2 Fj with
i < j, we have

⇢(x, y) =  |Fi + " � � |Fi

=  |Fj + " � � |Fj �
⇥ �
( |Fj �  |Fi ) � �Fj

�
+ � |Fi

⇤
  |Fj + " � � |Fj = ⇢(x0, y)
 d(x, x0) + ⇢(x0, y)

and

⇢(x0, y) =  (x0, y) + " � � |Fj

 d(x0, x) +  (x, y) + " � � |Fi

= d(x0, x) + ⇢(x, y),

so ⇢( · , y) is Kat�tov for each y 2 Y0. By symmetry, ⇢(x, · ) is also Kat�tov, whence ⇢ is
an approximate isometry. Since clearly

 |X0⇥Y0 C ⇢ C '|X0⇥Y0,

the conclusion follows. ⇤

1.2 Metric structures and approximate isomorphisms
By definition, a language is a set L such that each element of L is either a function
symbol or a relation symbol. To each symbol S is associated a natural number nS which
is called the arity of S, and a symbol with arity n is called an n-ary symbol. A 0-ary
function symbol is often called a constant symbol.

An L-structure M is a complete metric space M , which is called the domain of M,
together with an interpretation of symbols of L:
• to each n-ary relation symbol R is assigned a continuous map RM from Mn to R; and
• to each n-ary function symbol f is assigned a continuous map f M from Mn to M .
For an L-structure M, we shall denote its domain by |M|.

An L-embedding of an L-structure N into another L-structure M is an isometry ◆
from |N | into |M| such that

6



1.2. METRIC STRUCTURES AND APPROXIMATE ISOMORPHISMS

• for any n-ary relation symbol R and any elements a1, . . . , an 2 |N |, the equation

RN(a1, . . . , an) = RM �
◆(a1), . . . , ◆(an)

�
holds, and

• for any n-ary function symbol f and any elements a1, . . . , an 2 |N |, the equation

◆
�

f N(a1, . . . , an)
�
= f M

�
◆(a1), . . . , ◆(an)

�
holds.

For an L-embedding ◆ : N ! M and a tuple ā = (a1, . . . , an) 2 |N |n, we shall write the
tuple

�
◆(a1), . . . , ◆(an)

�
2 |M|n as ◆(ā).

For a subset E of an L-structure M, the L-substructure generated by E is denoted
by hEi. Note that the domain of an L-structure is assumed to be complete, so if DE

is the set of all elements of the form g(a1, . . . , an) where g is a composition of the
functions equipped with M and a1, . . . , an are elements of E , then hEi is equal to the
closure of DE . The subset E is said to be a generator of M if hEi coincides with
M, and M is said to be finitely generated if there exists finite E with hEi = M. A
tuple ā = (a1, . . . , an) 2 |M|n is called an ordered generator if {ai | i = 1, . . . , n} is a
generator of M.

In the sequel, we fix a language L and a category K of finitely generated L-structures
and L-embeddings. Embeddings and isomorphisms in Mor(K) are often referred to as
K-embeddings and K-isomorphisms respectively. A joint K-embedding is a joint
embedding (◆, ⌘) such that both ◆ and ⌘ are K-embeddings. We denote by JEK(A,B)
the class of all joint K-embeddings of A and B.

In the preceding section, approximate isometries were explained as conditions to be
imposed on joint embeddings. In the setting of metric structures, we are interested in
approximate isometries which can be (approximately) satisfied by joint K-embeddings,
which lead us to the following definition.

Definition 1.2.1. (1) Let A,B be objects of K and ◆ : A d B be a finite partial
isometry, that is, an isometry between finite subsets of |A| and |B|. Then ◆ is called a
finite partial K-isomorphism if
• the L-substructures hdom ◆i and hran ◆i are objects of K;
• the canonical embeddings hdom ◆i ! A and hran ◆i ! B are K-embeddings; and
• ◆ extends to a K-isomorphism from hdom ◆i onto hran ◆i.
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1.2. METRIC STRUCTURES AND APPROXIMATE ISOMORPHISMS

(2) Let A,B be objects of K. We denote by Apx2,K(A,B) the set of all approximate
isometries from |A| to |B| which are of the form '◆,⌘ |A⇥B , where ◆ : A d C and
⌘ : B d C are finite partial K-isomorphisms into some object C of K.
(3) A K-structure is an L-structure M together with an inductive system of K-
embeddings

A1 A2 A3 · · ·◆1 ◆2 ◆3

such that the inductive limit of the system isM. We often writeM =
–

n An, identifying
each An as the corresponding L-substructure of M. Note that M is not necessarily an
object of K.
(4) For K-structures M =

–
n An and N = –

m Bm, we define

ApxK(M,N) := cl
⇣ÿ

n,m

�
 

�� 9' 2 Apx2,K(An,Bm),  � '|M⇥N  ⌘

and call its elements approximate K-isomorphisms. Also, we set

Apx'K (M,N) := ApxK(M,N) \ Apx'(|M|, |N |),
ApxC'K (M,N) := ApxK(M,N) \ ApxC'(|M|, |N |).

An approximate K-isomorphism ' from M to N is said to be strict if ApxC'K (M,N) is
nonempty. We denote the set of all strict approximate K-isomorphisms from M to N
by StxK(M,N).
(5) An L-embedding ◆ of a K-structure M =

–
n An into another K-structure N =–

m Bm is said to be K-admissible if the corresponding approximate isometry '◆ belongs
to ApxK(M,N). Two K-structures are understood to be isomorphic if there exists a
K-admissible isomorphism between them.

An object A of K can be canonically identified with the K-structure obtained from
the inductive system A A · · · ,id id so that we can consider ApxK(A,B)
for objects A,B of K. If A,B, C are objects of K and ◆ : A ! C and ⌘ : B ! C are
K-embeddings, then '◆,⌘ belongs to ApxK(A,B), because it is the limit of

�
('◆,⌘ |A0⇥B0)|A⇥B �� A0 ✓ |A|, B0 ✓ |B| are finite generators

 
✓ Apx2,K(A,B).

In particular, every K-embedding is K-admissible. On the other hand, note that there
might be a K-admissible isomorphism between objects of K which is not a morphism
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1.2. METRIC STRUCTURES AND APPROXIMATE ISOMORPHISMS

of K. There can be even a K-admissible ◆ : A ! B such that no net of K-embeddings
of A into B converges to ◆.

For any approximate K-isomorphism ' from M to N , the set ApxC'K (M,N) is
obviously included in the relative interior of Apx'K (M,N) in ApxK(M,N). The
opposite inclusion also holds, because any relative interior point  in Apx'K (M,N)
satisfies (ii) in Proposition 1.1.5.

Given a subset A of Apx(X,Y ), we shall define

A" := { 2 Apx(X,Y ) | 9' 2 A,  � '}.

Then it can be shown that cl(A") is still upward closed, that is, cl(A")" = cl(A"). Indeed,
if ' � '0 for '0 2 cl(A"), then for any " > 0 and any finite subsets X0 ✓ X and Y0 ✓ Y ,
we can find an approximate isometry  2 A" such that the inequality | � '0| < " on
X0 ⇥ Y0 holds. It follows that ('|X0⇥Y0)X⇥Y + " is in A", so ' is in cl(A"). In particular,
ApxK(M,N) is upward closed for any K-structuresM =

–
n An andN = –

m Bm. This
argument also implies that StxK(M,N) is topologically dense in ApxK(M,N), since
for any approximate K-isomorphism ', it automatically follows that the approximate
isometries of the form ('|M0⇥N0)M⇥N+" are indeed strict approximate K-isomorphisms,
where M0 ✓ |M| and N0 ✓ |N | are arbitrary finite subsets and " is any positive real
number.

Definition 1.2.2. The category K is said to satisfy
• the joint embedding property (JEP) if JEK(A,B) is nonempty for any objects A,B

of K.
• the near amalgamation property (NAP) if for any objects A,B1,B2 in K, any K-

embeddings ◆i : A ! Bi, any finite subset F ✓ |A| and any " > 0, there exists a joint
K-embedding (⌘1, ⌘2) of B1 and B2 such that the inequality

d
�
⌘1 � ◆1(a), ⌘2 � ◆2(a)

�
< "

holds for all a 2 F.

The following two propositions are essential in proving the existence and uniqueness
of Fraïssé limits in the next section. The first one claims that every strict approximate
K-isomorphism can be satisfied by joint K-embeddings, while the second one claims
that one can freely consider compositions of approximate K-isomorphisms.

9



1.2. METRIC STRUCTURES AND APPROXIMATE ISOMORPHISMS

Proposition 1.2.3. Suppose that K satisfies NAP. Then for any objects A,B of K and
any strict approximate K-isomorphism ' from A to B, there exists a joint K-embedding
(◆, ⌘) of A and B which satisfies '◆,⌘ C '.

Proof. Since ' is strict, ApxC'K (A,B) is an open nonempty subset of ApxK(A,B).
Therefore, it intersects with Apx2,K(A,B), as Apx2,K(A,B)" is a dense subset. In other
words, there exist an object C0 of K and finite partial K-isomorphisms ◆0 : A d C0

and ⌘0 : B d C0 such that the relation

'◆0,⌘0 |A⇥B + " C '

holds for some " > 0. Put A0 := hdom ◆0i and B0 := hdom ⌘0i. By the definition of
finite partial K-isomorphisms, the canonical embeddings A0 ! A and B0 ! B are
K-embeddings.

Now, by NAP there exist K-embeddings ◆1 : A ! CA and ◆01 : C0 ! CA such that
the inequality

d
�
◆1(a), ◆01 � ◆0(a)

�
< "/3

holds for all a 2 dom ◆0. Similarly, there are K-embeddings ⌘1 : B ! CB and ⌘01 : C0 !
CB with

d
�
⌘1(b), ⌘01 � ⌘(b)

�
< "/3

for all b 2 dom ⌘0. Then, again by NAP, there exist K-embeddings ◆2 : CA ! C and
⌘2 : CB ! C with

d
�
◆2 � ◆01(c), ⌘2 � ⌘01(c)

�
< "/3

for any c 2 ran ◆0 [ ran ⌘0.

A0 A

B0 C0 CA

B CB C

◆0 ◆1

⌘0 ◆01

⌘01 ◆2

⌘1 ⌘2

Set ◆ := ◆2 � ◆1 and ⌘ := ⌘2 � ⌘1. Then for a 2 dom ◆0 and b 2 dom ⌘0, we have

d
�
◆(a), ⌘(b)

�
= d

�
◆2 � ◆1(a), ⌘2 � ⌘1(b)

�
 d

�
◆2 � ◆01 � ◆0(a), ⌘2 � ⌘01 � ⌘0(b)

�
+ 2"/3

 d
�
◆2 � ◆01 � ◆0(a), ◆2 � ◆01 � ⌘0(b)

�
+ " = d

�
◆0(a), ⌘0(b)

�
+ ",
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1.2. METRIC STRUCTURES AND APPROXIMATE ISOMORPHISMS

so
'◆,⌘  '◆0,⌘0 |A⇥B + " C ',

as desired. ⇤

Proposition 1.2.4. Suppose that K satisfies NAP, and let M1 =
–

l Al , M2 =
–

m Bm

and M3 =
–

n Cn be K-structures. If ' and  belongs to ApxK(M1,M2) and
ApxK(M2,M3) respectively, then the composition  ' is in ApxK(M1,M3).

Proof. First, assume that both ' and  are strict and M1, M2, M3 are objects of
K. Then, by Proposition 1.2.3, there exist objects D and E of K and K-embeddings
◆i : Mi ! D (i = 1, 2) and ⌘ j : M j ! E ( j = 2, 3) such that '◆1,◆2 C ' and '⌘2,⌘3 C  . It
follows from Proposition 1.1.5 that there exist a finite subset F0 ✓ |M2 | and a positive
real number " > 0 with

('◆1,◆2 |M1⇥F0)|M1⇥M2 + " C ', ('⌘2,⌘3 |F0⇥M3)|M2⇥M3 + " C  .

By NAP, we can find K-embeddings ✓1 : D ! F and ✓2 : E ! F such that the
inequality

d
�
✓1 � ◆2(b), ✓2 � ⌘2(b)

�
< 2"

holds for all b 2 F0.
M1

M2 D

M3 E F

◆1

◆2

⌘2 ✓1

⌘3 ✓2

For a 2 |M1 | and c 2 |M3 |, we have

d
�
✓1 � ◆1(a), ✓2 � ⌘3(c)

�
 inf

b2F0

h
d
�
✓1 � ◆1(a), ✓1 � ◆2(b)

�
+ d

�
✓1 � ◆2(b), ✓2 � ⌘3(c)

� i

< inf
b2F0

h
d
�
✓1 � ◆1(a), ✓1 � ◆2(b)

�
+ d

�
✓2 � ⌘2(b), ✓2 � ⌘3(c)

�
+ 2"

i

=
�
'⌘2,⌘3 |F0⇥M3 + "

� �
'◆1,◆2 |M1⇥F0 + "

�
(a, c),

so

'✓1�◆1,✓2�⌘3 
h �
'⌘2,⌘3 |F0⇥M3 + "

�
|M2⇥M3

i h �
'◆1,◆2 |M1⇥F0 + "

�
|M1⇥M2

i
  '.
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Since '✓1�◆1,✓2�⌘3 is in ApxK(M1,M3), so is  '.
Next, assume that both ' and  are still strict, but M1, M2 and M3 are general

K-structures. Then there exist su�ciently large l,m,m0, n 2 N and approximate K-
isomorphisms '0 from Al to Bm and  0 from Bm0 to Cn with '0|M1⇥M2 C ' and
 0|M2⇥M3 C  . We may assume without loss of generality that m is equal to m0, since
in general, if ◆ : A ! A0 and ⌘ : B ! B0 are K-embeddings, then one can directly
check from the definition that the trivial extension of an approximate K-isomorphism
in Apx2,K(A,B) via these K-embeddings belong to Apx2,K(A0,B0). Also, we may
assume that both '0 and  0 are strict by Proposition 1.1.5. By what we proved in the
preceding paragraph,  0'0 is in ApxK(Al, Cn). By direct computation, one can check
that ( 0|M2⇥M3)('0|M1⇥M2) is equal to ( 0'0)|M1⇥M3 , so  ' is in ApxK(M1,M3).

Finally, let ' and  be general approximate K-isomorphisms between general K-
structures. Then there exist nets {'↵} and { �} of strict approximate K-isomorphisms
which converge to ' and  respectively, and

 ' = (lim
�
 �)(lim

↵
'↵) � lim

↵,�
( �'↵) 2 ApxK(M1,M3),

so  ' belongs to ApxK(M1,M3). ⇤

Corollary 1.2.5. Trivial extensions and restrictions of approximate K-isomorphisms
via K-admissible embeddings are approximate K-isomorphisms.

1.3 Fraïssé categories and their limits
Let L be a language and K be a category of finitely generated L-structures and L-
embeddings which satisfies JEP and NAP. For each n 2 N, we denote by Kn the class
of all pairs hA, āi, where A is an object of K and ā is an ordered generator of A. We
simply write hāi instead of hA, āi when there is no danger of confusion.

We shall consider a variant of the Gromov–Hausdor� distance on Kn. Define a
pseudo-metric dK on Kn by

dK �
hāi, hb̄i

�
:= inf

�
max

i
'(ai, bi)

�� ' 2 ApxK
�
hāi, hb̄i

�  
= inf

�
max

i
'(ai, bi)

�� ' 2 StxK
�
hāi, hb̄i

�  
= inf

�
max

i
d
�
◆(ai), ⌘(bi)

� �� (◆, ⌘) 2 JEK
�
hāi, hb̄i

�  
,
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where ai and bi denotes the i-th component of ā and b̄ respectively. The fact that dK is
indeed a pseudo-metric easily follows from JEP and NAP.

Definition 1.3.1. The category K is said to satisfy
• the weak Polish property (WPP) if Kn is separable with respect to the pseudo-metric

dK for each n.
• the Cauchy continuity property (CCP) if

(i) for any n-ary predicate symbol P in L, the map
⌦
A, (ā, b̄)

↵
7! PA(ā)

from Kn+m into R sends Cauchy sequences into Cauchy sequences; and
(ii) for any n-ary function symbol f in L, the map

⌦
A, (ā, b̄)

↵
7!

⌦
A,

�
ā, b̄, f A(ā)

� ↵

from Kn+m into Kn+m+1 sends Cauchy sequences into Cauchy sequences.

Remark 1.3.2. If K satisfies CCP, then dK(hāi, hb̄i) is equal to zero if and only if there
exists a K-admissible isomorphism from hāi onto hb̄i which sends ai to bi. To see this,
first suppose that the map ai 7! bi extends to a K-admissible isomorphism ◆. Then
('◆ |ā⇥b̄)|hāi⇥hb̄i + " belongs to StxK

�
hāi, hb̄i

�
, and

dK �
hāi, hb̄i

�
 ('◆ |ā⇥b̄)|hāi⇥hb̄i(ai, bi) + " = "

for arbitrary " > 0. Conversely, suppose dK �
hāi, hb̄i

�
= 0. Let Dā be the set of

all elements of hāi of the form g(ā), where g is a composition of functions equipped
with hāi, and Db̄ be the set obtained from hb̄i by the same way. Then it follows
from CCP that the map ai 7! bi extends to an isometry from Dā onto Db̄ and the
interpretations of the symbols can be identified via this isometry, so that it extends to an
L-isomorphism ◆ from hāi onto hb̄i. If c̄ =

�
g1(ā), . . . , gn(ā)

�
and d̄ =

�
g1(b̄), . . . , gn(b̄)

�
,

then dK �
hā, c̄i, hb̄, d̄i

�
= 0 by CCP, so there exists a joint K-embedding (⌘1, ⌘2) of hā, c̄i

and hb̄, d̄i such that the ⌘1(ā, c̄) and ⌘2(b̄, d̄) are arbitrarily close to each other, whence ◆
is K-admissible.

Definition 1.3.3. (1) A category K of finitely generated separable L-structures is called
a Fraïssé category if it satisfies JEP, NAP, WPP and CCP.
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1.3. FRAÏSSÉ CATEGORIES AND THEIR LIMITS

(2) Let K be a Fraïssé category. A K-structure M is called a Fraïssé limit of K if for
any K-structure N and any strict approximate K-isomorphism ' 2 StxK(N,M), there
exists a K-admissible embedding ◆ : N ! M with '◆ C '.

We shall begin with characterizing Fraïssé limits. Fix a Fraïssé category K.

Definition 1.3.4. A K-structure M is said to be
• K-universal if for any object A of K, there exists a K-admissible embedding of A

into M.
• approximately K-ultra-homogeneous if for any hāi 2 Kn, any " > 0 and any K-

admissible embeddings ◆, ⌘ : hāi ! M, there exists a K-admissible automorphism ↵

of M with
max

i
d
�
↵ � ◆(ai), ⌘(ai)

�
 ".

Theorem 1.3.5. For a K-structure M, the following are equivalent.

(i) The structure M is a Fraïssé limit of K.
(ii) For any object A of K and any ' 2 StxK(A,M), there exists a K-admissible
embedding ◆ : A ! M with '◆ C '.
(iii) If hāi is in Kn and ' is a strict approximate K-isomorphism from hāi to M, then
for any " > 0 there is an approximate K-isomorphism  2 StxC'K

�
hāi,M

�
such that  

is "-total on ā, that is,  |ā⇥M is "-total.
(iv) The structure M is K-universal and approximately K-ultra-homogeneous.

Moreover, if a Fraïssé limit exists, then it is unique up to K-admissible isomorphisms.

Proof. First, assume thatM =
–

n An andN = –
m Bm are K-structures satisfying (iii).

We shall show that if ' is a strict approximate K-isomorphism from M to N , then there
exists a K-admissible isomorphism ↵ from M onto N with '↵ C '. Since ' is strict,
there exist an approximate K-isomorphism  from M to N , finite subsets E ✓ –

n |An |
and F ✓ –

m |Bm |, and a positive real number "  1 with

( |E⇥F)|M⇥N + " C '.

Take increasing sequences {Xi} and {Yj} of finite sets such that
• X0 = E and Y0 = F;
• Xi ✓

–
n |An | and Yj ✓

–
m |Bm | for all i, j; and

•
–

i Xi and
–

j Yj are dense in |M| and |N | respectively.
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We claim the existence of a sequence { l} of strict approximate K-isomorphisms from
M to N with the following properties.

• each  l is of the form (✓ |Xi(l)⇥Yj(l) )|M⇥N + �l for some ✓ 2 ApxK(M,N), where
�l  2�l and i(l), j(l) " 1;

•  l+1 C  l ; and
•  l+1 |Xi(l)⇥N is �l-total if l is even, while  l+1 |M⇥Yi(l) is �l-surjective if l is odd.

The construction of such a sequence proceeds as following. Set

 0 := ( |X0⇥Y0)|M⇥N + ".

Assume l is even and  l is given. Then, by assumption on N , one can find ✓ C  l

such that ✓ |Xi(l)⇥N is �l/2-total. Since (✓ |Xi⇥Yj )|M⇥N + � converges to ✓ as i, j ! 1 and
� ! 0, for su�ciently large i(l + 1) > i(l) and j(l + 1) > j(l) and su�ciently small
�l+1 < �l/2, we have

 l B (✓ |Xi(l+1)⇥Yj(l+1) )|M⇥N + �l+1.

We let  l+1 be the right-hand side. Then it is clear that  l+1 |Xi(l)⇥N is �l-total. The case l
is odd is similar, and the description of the construction of { l} is completed. Now the
sequence being decreasing, there exists the limit  1 2 ApxC'K (M,N), which is clearly
of the form '↵ for some isomorphism ↵ : M ! N by Proposition 1.1.4, as desired.

(iii) ) (i) can be verified by similar arguments. Also, (i) ) (ii) ) (iii) is trivial.
(iii) ) (iv). It follows from (iii) ) (ii) that M is K-universal. Let ◆, ⌘ : hāi ! M

be K-admissible embeddings and " be a positive real number. Then

' :=
�
('⌘'⇤◆ )|◆(ā)⇥⌘(ā)

�
|M⇥M + "

is in StxK(M,M), so by what we proved in the first paragraph, one can find a K-
admissible automorphism ↵ of M with '↵ C '. Since '

�
◆(ai), ⌘(ai)

�
= ", the inequality

d
�
↵ � ◆(ai), ⌘(ai)

�
 "

follows.
(iv) ) (ii). Suppose that A is an object of K and ' is a strict approximate K-

isomorphism from A to M. By assumption, there exists a K-admissible embedding
◆ : A ! M =

–
n An, so it su�ces to show that there is a K-admissible automorphism

↵ of M with '↵�◆ C ', or equivalently, '↵ C ''⇤◆ . To see this, find su�ciently large n
and finite partial K-isomorphisms ◆1, ◆2 from An into some object C of K with

('◆1,◆2)|M⇥M + " C ''⇤◆ .
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Since there exists a K-admissible embedding of C intoM, and sinceM is approximately
K-ultra-homogeneous, there exists a K-admissible embedding ⌘ : C ! M with

d
�
b, ⌘ � ◆2(b)

�
< "/2

for b 2 dom ◆2. Again by the K-ultra-homogeneity of M, one can find a K-admissible
automorphism ↵ of M such that the inequality

d
�
↵(a), ⌘ � ◆1(a)

�
< "/2

holds for all a 2 dom ◆1. Then

d
�
↵(a), b

�
 d

�
↵(a), ⌘ � ◆1(a)

�
+ d

�
⌘ � ◆1(a), ⌘ � ◆2(b)

�
+ d

�
⌘ � ◆2(b), b

�
 d

�
◆1(a), ◆2(b)

�
+ " = '◆1,◆2(a, b) + ",

which completes the proof. ⇤

Next, we shall prove the existence of the Fraïssé limit. For this, we need the following
lemma which claims that, in order to see (iii) in Theorem 1.3.5, we only have to check a
countable dense part.

Lemma 1.3.6. Let M be a K-structure and M0 be a countable dense subset of |M|.
Suppose that, for each n 2 N, a countable dense subset Kn,0 of Kn is given. Then, in
order forM to be the Fraïssé limit of K, it is su�cient that, for any n 2 N, any hāi 2 Kn,0,
any finite subset F ✓ M0 and any ' 2 StxK

�
hāi,M

�
which is rational-valued on ā ⇥ F,

there exists  2 Apx'K

�
hāi,M

�
such that  is "-total on ā.

Proof. Let B be an object of K and ' be a strict approximate K-isomorphism from B
to M, and take '0 2 StxC'K (B,M). Then there exists an arbitrarily large finite subsets
F 2 |B|n and G ✓ M0 and arbitrarily small " > 0 with

'00 := ('0|F⇥G)|B⇥M + " C '.

Without loss of generality, we may assume that F is a generator ofB. Let b̄ = (b1, . . . , bn)
be an enumeration of F. Take hāi 2 Kn,0 with dK �

hāi, hb̄i
�
< "/4 and find a joint

K-embedding (◆, ⌘) of hāi and hb̄i satisfying maxi '◆,⌘(ai, bi) < "/4. Then, being
a restriction of an extension of a strict approximate K-isomorphism, '00'◆,⌘ is strict,
so there exists  0 2 StxK

�
hāi,M

�
which is rational-valued on ā ⇥ F and satisfies
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 0 C '00'◆,⌘, by Proposition 1.1.5. By assumption, we can take  00 2 Apx 
0

K

�
hāi,M

�
such that  00|ā⇥M is "/4-total. Then, ( 00'⌘,◆)|b̄⇥M is "/2-total, and

( 00'⌘,◆)|b̄⇥M  ('00'◆,⌘'⌘,◆)|b̄⇥M  '00|b̄⇥M + "/2,

since '⌘,◆ |b̄⇥hāi is "/4-total. Now take a finite subset H ✓ |M| such that G is included in
H and ( 00'⌘,◆)|b̄⇥H is 3"/4-total, and put

 :=
�
( 00'⌘,◆)|b̄⇥H

�
|B⇥M + "/4.

Then  |b̄⇥|M| is "-total, and

  ('00|b̄⇥H)|B⇥M + 3"/4  ('0|F⇥G)|B⇥M + " C '.

Since this shows that (iii) in Theorem 1.3.5 holds, it follows that M is the Fraïssé limit
of K. ⇤

Theorem 1.3.7. Every Fraïssé category has its limit.

Proof. Take a countable dense subset Kn,0 ✓ Kn for each n. In view of Proposition 1.2.3,
we can inductively find a K-structure Ak , a K-embedding ◆k�1 : Ak�1 ! Ak and a
countable dense subset Ak,0 ✓ |Ak | so that, if hāi is in Kn,0, if F is a finite subset of Ak,0,
and if ' is a strict approximate K-isomorphism from hāi to Ak which is rational-valued
on ā⇥F, then there exists a K-embedding ◆ : hāi ! Al for some l > k with '◆ C '◆l,k',
where ◆l,k denotes the composition of ◆k, . . . , ◆l�1. Then the K-structure obtained from
the inductive system satisfies the assumption in the previous lemma, so we are done. ⇤
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Chapter 2

Applications to operator algebras

In this chapter, we give two applications of the theory presented in the preceding chapter.
The first section is devoted to the application to UHF algebras: it is shown that a category
of C*-algebras of matrix-valued continuous functions with distinguished traces and
diagonalizable ⇤-homomorphisms is a Fraïssé category the limit of which is a UHF
algebra. In the second section, we prove a similar result for a category of dimension
drop algebras with distinguished traces and ⇤-homomorphisms, in which case the limit
is the Jiang–Su algebra. In both cases, the structures under consideration are unital
tracial C*-algebras, so the appropriate language for them is LTC⇤ which consists of the
following symbols:
• two constant symbols 0 and 1;
• an unary function symbol � for each � 2 C, which are to be interpreted as multiplication

by �;
• an unary function symbol ⇤ for involution;
• a binary function symbol + and · ;
• an unary predicate symbol tr.
Every unital C*-algebra with a distinguished trace can be canonically considered as a
metric LTC⇤-structure. Note that the distance we adopt is the norm distance, and that a
map between unital C*-algebras with fixed traces are L-embeddings if and only if it is a
trace-preserving injective ⇤-homomorphism.
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2.1. UHF ALGEBRAS

2.1 UHF algebras
In the sequel, we denote byMn the C*-algebra of all n⇥n matrices. Also, for non-negative
integer p and positive integer n, we shall denote by Ap,n the C*-algebra C([0, 1]p,Mn) of
all n⇥ n matrix-valued continuous functions on [0, 1]p. We note that there are canonical
isomorphisms C([0, 1]p,Mn) ' C([0, 1]p) ⌦ Mn, C([0, 1]p) ⌦ C([0, 1]q) ' C([0, 1]p+q)
andMn ⌦Mm ' Mmn, so that Ap,n ⌦ Aq,m is canonically isomorphic to Ap+q,mn. Now,
for a probability Radon measure µ on [0, 1]p, we can define a trace (which is still denoted
by µ) on Ap,n by

µ( f ) :=
π

tr
�

f (t)
�

dµ(t),

where tr is the normalized trace onMn. It can be easily verified that every trace on Ap,n

is of this form, so that we can identify the traces on Ap,n with the probability Radon
measures on [0, 1]p. Since the group Homeo([0, 1]p) of all homeomorphisms of [0, 1]p

acts on the set of probability Radon measures on [0, 1]p, it also acts on the traces of Ap,n.
In this section, we only consider the traces which are in the Homeo([0, 1]p)-orbit of �,
where � is the Lebesgue measure. Note that such traces are faithful.

By definition, a supernatural number is a formal product

⌫ =
÷

p: prime
pnp,

where np is either a non-negative integer or 1 for each p such that
Õ

p np = 1. Given a
supernatural number ⌫, we shall define a category K⌫ as following. Let N⌫ be the set of
all natural numbers which formally divides ⌫.
• Obj(K⌫) is the class of all the pairs hAp,n, ⌧i, where n is in N⌫ and ⌧ is in the

Homeo([0, 1]p)-orbit of �.
• MorK⌫

�
hAp,n, ⌧i, hAp0,n0, ⌧0i

�
is the set of all (unital trace-preserving injective) diag-

onalizable ⇤-homomorphisms from hAp,n, ⌧i to hAp0,n0, ⌧0i.
Here, a ⇤-homomorphism ◆ from Ap,n to Ap0,n0 is said to be diagonalizable if there exist
a unitary v 2 Ap0,n0 and continuous functions t1, . . . , tk : [0, 1]p0 ! [0, 1]p such that

◆
�

f
�
(s) = Ad(vs)

⇣
diag

⇥
f (t1(s)), . . . , f (tk(s))

⇤ ⌘

for f 2 Ap,n and s 2 [0, 1]p0, where Ad(v) denotes the inner automorphism of Ap0,n0

associated to v, and diag[a1, . . . , an] is the block diagonal matrix with ai as its i-th
block. Note that for each diagonalizable ◆, the choice of the unitary v and the continuous
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functions t1, . . . , tk in the above expression is not unique in general. Nevertheless, we
often have to consider the diameters of the ranges of the functions t1, . . . , tk . For the
sake of convenience, we shall set

V(t1, . . . , tk) := max
l

diam Im tl .

Remark 2.1.1. Here, we shall give an example of LTC⇤-morphisms between objects of
K⌫ which cannot be approximated by diagonalizable ones with respect to point-norm
topology. We assume that 2 is in N⌫ and use D := {z 2 C | |z |  1} instead of [0, 1]2.
Define t1, t2 : D! D by

t1(rei✓) := rei✓/2, t2(rei✓) := �rei✓/2 �
r 2 [0, 1], ✓ 2 [0, 2⇡)

�
.

Also, let u : D! M2 be a unitary-valued function defined by

u(rei✓) :=

8>>><
>>>:

 
ei✓/4 cos ✓

4 sin ✓
4

�ei✓/4 sin ✓
4 cos ✓

4

! �
r , 0, ✓ 2 [0, 2⇡)

�
1M2 (r = 0),

and note that u(r) = 1M2 while

lim
✓!2⇡�0

u(rei✓) =
 
0 1
1 0

!

if r , 0. Now, given f 2 C(D), consider a matrix-valued function

'( f ) : z 7! Ad(u(z))
�
diag[ f (t1(z)), f (t2(z))]

�
.

Clearly this is continuous on the complement of the non-negative part of the real axis.
It is also continuous on the positive part of the real axis, as the switch of the eigenvalues
is o�set by the unitary. Finally, it is continuous at the origin, because it converges to the
scalar matrix f (0)12. Therefore, this matrix-valued function belongs to C(D,M2), so
that ' defines a ⇤-homomorphism from C(D) into C(D,M2). We can also easily verify
that this is unital, injective, and trace-preserving with respect to µ, where µ corresponds
to the normalized Lebesgue measure on D.

We shall show that the map ' is not approximately diagonalizable. Indeed, if ' is
approximately diagonalizable, then there is a ⇤-homomorphism  : C(D) ! C(D,M2)
of the form

 ( f ) = Ad(v)
�
diag[ f � t01, f � t02]

�
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for some continuous maps t01, t
0
2 : D! D and a continuous unitary-valued map ⌫ which

satisfies k'(idD) �  (idD)k < 1/2. It follows that the Hausdor� distance between
{t1(z), t2(z)} and {t01(z), t02(z)} is less than 1/2 for all z with |z | = 1, but this is impossible.
We note that this is also a counterexample of [9, Theorem 6.3] claiming that any unital ⇤-
homomorphism from C(X) to C(Y,Mn) is approximately diagonalizable if X is a compact
metrizable locally absolute retract and Y is a compact metric space with dimY  2.

Lemma 2.1.2. (i) For any object hAp,n, ⌧i of K⌫, there exists a K⌫-isomorphism from
hAp,n, ⌧i onto hAp,n, �i.
(ii) For any p, there exists a K⌫-embedding from hAp,n, ⌧i into hA1,n, �i.

Proof. (i) Let ↵ be the homeomorphism of [0, 1]p with ↵⇤(�) = ⌧. Then the induced
⇤-homomorphism ↵⇤ : f 7! f � ↵ is the desired one.

(ii) We may assume ⌧ = � by (i). It su�ces to give a proof for the case p = 2.
Let � : [0, 1] ! [0, 1]2 be the Hilbert curve [7], which is a surjective continuous map
such that any interval of the form [k/4l, (k + 1)/4l] is sent to a square of the form
[k1/2l, (k1 + 1)/2l]⇥ [k2/2l, (k2 + 1)/2l], so that �⇤(�) = �. Then the ⇤-homomorphism
�⇤ : f 7! f � � is the desired one. ⇤

Lemma 2.1.3. Suppose that ◆1, ◆2 : hAp,n, ⌧i ! hAp0,n0, ⌧0i are K⌫-embeddings of the
form

◆i( f ) = diag[ f � t1,i, . . . , f � tk,i].

If V(t1,i, . . . , tk,i) is less than � for i = 1, 2, then there exists a permutation � 2 Sk such
that the inequality

ktl,1 � t�(l),2k < 2�

holds for all l.

Proof. For each l, let Sl be the set of all l0 with Im tl,1 \ Im tl 0,2 , ú. Then, for any
F ✓ {1, . . . , k}, we have

���ÿ
l2F

Sl

��� = k
’

l 02–l2F Sl

⌧
�
Im tl 0,2

�
� k⌧

⇣ÿ
l2F

Im tl,1
⌘
� |F |,

since both ◆1 and ◆2 are trace-preserving. By Hall’s marriage theorem there exists a
permutation � 2 Sk with t�(l),2 2 Sl for all l. Now the inequality ktl,1 � t�(l),2k < 2� is
clear. ⇤

21



2.1. UHF ALGEBRAS

Theorem 2.1.4. The category K⌫ is a Fraïssé category.

Proof. JEP is a direct consequence of Lemma 2.1.2 and the fact that if n divides n0, then
there exists a K⌫-embedding from hA1,n, �i to hA1,n0, �i defined by

f 7! diag[ f , . . . , f ].

For NAP, let ◆i be a K⌫-embedding from hAp0,n0, ⌧0i into hApi,ni, ⌧ii for i = 1, 2, and
suppose that a finite subset F of Ap0,n0 and a positive real number " > 0 are given. Our
goal is to find K⌫-embeddings ⌘i from hApi,ni, ⌧ii into some object hAp3,n3, ⌧3i such that
the inequality

k⌘1 � ◆1( f ) � ⌘2 � ◆2( f )k < "

holds for all f 2 F. To see this, take � > 0 so that |t � t0| < � implies k f (t)� f (t0)k < "
for all f 2 F. Apply JEP to find K⌫-embeddings ⌘0i from hApi,ni, ⌧ii into some object
hAp0,n0, ⌧0i. By Proposition 2.1.2, we may assume without loss of generality that ⌧0 = �
and p0 = 1. Now, Since ⌘0i � ◆i is a K⌫-isomorphism, it is of the form

⌘0i � ◆i( f ) = Ad(v0i )
�
diag[ f � t01,i, . . . , f � t0k 0,i]

�
.

Take su�ciently large natural number m such that n0m is inN⌫ and |s� s0| < 1/m implies
|t0l,i(s) � t0l,i(s0)| < �/2 for all l and i. Define rc : [0, 1] ! [0, 1] by

rc(x) :=
x + c � 1

m
(c = 1, . . . ,m),

and let ⇢ be a K⌫-embedding from hA1,n0, �i into hA1,n0m, �i of the form

⇢( f ) = diag[ f � r1, . . . , f � rm].

Then ⇢ � ⌘0i � ◆i is of the form

⇢ � ⌘0i � ◆i( f ) = Ad(vi)
�
diag[ f � t1,i, . . . , f � tk,i]

�
,

where V(t1,i, . . . , tk,i) is less than �/2 for i = 1, 2. By Lemma 2.1.3, we may assume
without loss of generality that the inequality ktl,1�tl,2k < � holds for all l. It can be easily
verified that ⌘1 := ⇢ � ⌘01 and ⌘2 := Ad(v1v

⇤
2) � ⇢ � ⌘02 are the desired K⌫-embeddings.

WPP is clear, because up to K⌫-isomorphisms, there are only countably many
objects in K⌫, by Lemma 2.1.2. Also, CCP automatically follows from the fact that all
the relevant functions are 1-Lipschitz on the unit ball. ⇤
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We shall find a concrete description of the limit of K⌫. For this, the following
proposition is useful.

Proposition 2.1.5. Let K be a Fraïssé category and M =
–

n An be a K-structure.
Denote by ◆k, j the canonical K-embedding from A j into Ak . Suppose that the following
two conditions hold:

(a) Any object C of K is K-embeddable into An for some n.
(b) Given a finite subset F ✓ |Ai |, a positive real number " and a K-embedding
⌘ : Ai ! A j for some j > i, one can find k > j and a K-automorphism ↵ 2 Aut(Ak)
such that the inequality

d
�
↵ � ◆k, j � ⌘(a), ◆k,i(a)

�
< "

holds for all a 2 F.

Then M =
–

n An is the Fraïssé limit of K.

Proof. We shall check (iii) in Theorem 1.3.5. Let " be a positive real number, B be an
object of K and ' be in StxK(B,M). Then one can find finite subsets F1 ✓ |B| and
F2 ✓ |Ai |, an object C of K, and K-embeddings ◆ : B ! C and ⌘ : Ai ! C such that
the relation �

'◆,⌘ |F1⇥F2

�
|B⇥M C '

holds. By assumption (a), there exists a K-embedding ✓ of C into some A j with j > i.
Then one can find a K-automorphism ↵ 2 Aut(Ak) for some k > j such that the
inequality

d
�
↵ � ◆k, j � ✓ � ⌘(a), ◆k,i(a)

�
< "

holds for all a 2 F2, by assumption (b). Now, for b 2 F1 and a 2 F2, we have

d
�
↵ � ◆k, j � ✓ � ◆(b), ◆k,i(a)

�
< d

�
↵ � ◆k, j � ✓ � ◆(b), ↵ � ◆k, j � ✓ � ⌘(a)

�
+ "

= d
�
◆(b), ⌘(a)

�
+ ",

whence
'↵�◆k, j�✓�◆ 

�
'◆,⌘ |F1⇥F2

�
|B⇥M C ',

which completes the proof. ⇤

Corollary 2.1.6. LetM =
–

j hApj,nj, ⌧ji be a K⌫-structure and ◆k, j denote the canonical
K⌫-embedding from hApj,nj, ⌧ji into hApk,nk, ⌧ki. Suppose the following conditions hold:
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(a) pj � 1.
(b) For any n 2 N⌫, there exists j 2 N such that n divides nj .
(c) For any j 2 N and " > 0 there exists k > j such that ◆k, j is of the form

◆k, j( f ) = Ad(v)
�
diag[ f � t1, . . . , f � tm]

�
,

where V(t1, . . . , tm) is less than ".

Then M =
–

j hApj,nj, ⌧ji is the Fraïssé limit of K⌫.

Proof. This is immediate from Lemmas 2.1.2 and 2.1.3 and Proposition 2.1.5. ⇤

Take an increasing sequence {nj} ✓ N⌫ so that (b) in Corollary 2.1.6 is satisfied.
Define ◆i : A1,nj ! A1,nj+1 by

◆i( f ) = diag[ f � r1, . . . , f � rm],

where m is equal to nj+1/nj and r1, . . . , rm are as in the proof of Theorem 2.1.4. Then
the diagram

hA1,n1, �i hA1,n2, �i hA1,n3, �i · · ·

hMn1, tri hMn2, tri hMn3, tri · · ·

◆1 ◆2 ◆3

commutes, where Mnj is canonically identified with the C*-subalgebra of constant
functions on the interval [0, 1]. Since the upper inductive system satisfies the assumption
of Corollary 2.1.6 and the limit of the lower inductive system is clearly dense in that of
the upper one, it follows that the Fraïssé limit of K⌫ is isomorphic to what is called the
UHF algebra of type ⌫ as C*-algebras.

We conclude this section by showing that all LTC⇤-embeddings into the Fraïssé limit
of K⌫ is indeed K⌫-admissible. To see this, we use the following lemmas [2, Exercise II.8
and Lemma III.3.2].

Lemma 2.1.7. Let f be a continuous function on a compact subset X of C. Then, for
any " > 0, there exists � > 0 such that if a and b are normal elements of a C*-algebra
A with ka � bk < �, then k f (a) � f (b)k < ".
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Lemma 2.1.8. For any " > 0 and n 2 N, there exists � > 0 such that if A and B are
C*-subalgebras of a unital C*-algebra D, if dimA is less than n, and if {e(k)i j } is a
system of matrix units which spans A and satisfies d(e(k)i j ,B) < �, then there exists a
unitary u in D with ku � 1k < " and Ad(u)[A] ✓ B.

Lemma 2.1.9. Let {ei j} be the system of standard matrix units ofMn and a be an element
ofMm ⌦Mn satisfying

ka(1 ⌦ ei j) � (1 ⌦ ei j)ak < ".

Then the inequality
ka �

�
1 ⌦ tr

�
(a)k < n2"

holds.

Proof. If a is represented as
Õ

ai j ⌦ ei j , then one can easily verify the inequality
���ai j ⌦ ei j �

�i j

n

’
k

akk ⌦ ekk

��� < ",
from which the conclusion follows. ⇤

Theorem 2.1.10. Every L-embedding from an object of K⌫ into the Fraïssé limit of K⌫

is K⌫-admissible.

Proof. LetM be the Fraïssé limit of K⌫ and ◆ : hAp,n, ⌧i ! M be an L-embedding. Our
goal is to show that ◆ can be approximated by K-admissible embeddings with respect
to the topology of pointwise convergence. For simplicity, we only show the case p = 1
and ⌧ = �. Set

G := {1 ⌦ ei j | i, j = 1, . . . n} [ {id[0,1] ⌦1} ✓ C[0, 1] ⌦Mn ' A1,n,

where {ei j} is the system of standard matrix units ofMn, and note that G is a generator
of A1,n. Given " > 0, it su�ces to find a K-admissible embedding ⌘ of hA1,n, �i into
M satisfying k◆(g) � ⌘(g)k < " for all g 2 G. For this, take N 2 N with 1/N < "/6 and
nN 2 N⌫. For c, d 2 N with 0  c < d  N , define a continuous function fc,d on [0, 1]
by

fc,d(t) :=

8>>>>><
>>>>>:

0 (t < [(c � 1)/N, (d + 1)/N])
1 (t 2 [c/N, d/N])
Nt � c + 1 (t 2 [(c � 1)/N, c/N])
�Nt + d � 1 (t 2 [d/N, (d + 1)/N]).
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Then by Lemma 2.1.7, there exists positive � < "/2 such that if a is a normal element
of M with ka � ◆(id[0,1] ⌦1)k < �, then the inequality

k fc,d(a) � ◆( fc,d ⌦ 1)k < 1
N

holds for all c, d 2 N with 0  c < d  N . Take such � and set �0 := �/(6n2 + 1).
Let

hA1,n1, �i hA1,n2, �i hA1,n3, �i · · ·

hMn1, tri hMn2, tri hMn3, tri · · ·

◆1 ◆2 ◆3

be the inductive system we saw before Lemma 2.1.7. Then, by Lemma 2.1.8, there exists
a unitary u in M with ku � 1k < �0 and e0i j := u

⇥
◆(1 ⌦ ei j)

⇤
u⇤ 2 –

kMnk . We shall
denote by B the finite dimensional simple C*-subalgebra generated by {e0i j}. Note that
the inequality

k◆(1 ⌦ ei j) � e0i j k < 2�0  "

holds for all i, j. Also, if B is included in Mnk , then Mnk is canonically isomorphic to
B ⌦ Mnk/n. Now, take a 2 –

kMnk with ka � ◆(id[0,1] ⌦1)k < �0. By Lemma 2.1.7, we
may assume without loss of generality that a is a positive element with kak  1. Then

kae0i j � e0i j ak < 6�,

so by Lemma 2.1.9, there exists a positive element a0 2 –
kMnk which commutes with

every element of B and satisfies the inequalities

ka0 � ◆(id[0,1] ⌦1)k < (6n2 + 1)�0  �, ka0k  1.

By definition of �, we have

k fc,d(a0) � ◆( fc,d ⌦ 1)k < 1
N

for 0  c < d  N .
Let k0 be su�ciently large so that both B and a0 is included inMnk0

and m := nk0/n
is a multiple of N . Since the commutant B0 \Mnk0

is canonically isomorphic toMm, the
positive element a0 can be identified with a diagonal matrix ofMm, say diag[t1, . . . , tm].
Without loss of generality, we may assume t1  · · ·  tm. Then we have

tr
�
diag

⇥
fc,d(t1), . . . , fc,d(tm)

⇤ �
= trM

�
fc,d(a0)

�
� �( fc,d ⌦ 1) � 1

N
=

d � c
N
.
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This inequality together with Hall’s marriage theorem implies that the real numbers
tmc/N+1, . . . , tm(c+1)/N are included in [(c � 1)/N, (c + 2)/N]. Consequently, the element

a00 := diag[r1, . . . , rm] ⌦ 1 2 C([0, 1],Mm) ⌦ B ' A1,nk0

satisfies
ka00 � a0k  3

N
<
"

2
,

where r1, . . . , rm are as in the proof of Theorem 2.1.4. One can easily check that the
K-embedding ⌘ : A1,n ! A1,nk0

defined by

⌘(1 ⌦ ei j) := e0i j, ⌘(id[0,1] ⌦1) = a00

has the desired property. ⇤

2.2 The Jiang–Su algebra
For natural numbers p and q, the dimension drop algebra Zp,q is defined by

Zp,q := { f 2 A1,pq | f (0) 2 Mp ⌦ 1q & f (1) 2 1p ⌦Mq},

where we took over the notation Ap,n := C([0, 1]p,Mn) from the preceding section. It
is said to be prime if p and q are coprime. In the sequel, we frequently use the fact that
every ideal of Zp,q is of the form

I = { f 2 Zp,q | f |⌃ ⌘ 0}

for a unique closed subset ⌃ of [0, 1].
We denote by cp,q

p the map from Mp ⌦ 1q to Mp defined by a ⌦ 1 7! a. The map
cp,q

q : 1p ⌦ Mq ! Mq is defined similarly. When no confusion arises, these maps are
simply denoted by c. Also, for t 2 [0, 1], we denote by evt the evaluation map at t.

We shall define the category KZ as following.
• Obj(KZ) is the class of all the pairs hZp,q, ⌧i, where p, q are coprime and ⌧ is a faithful

tracial state on Zp,q.
• Every LTC⇤-embedding between objects of KZ is a morphism of KZ.
We note that every trace on a dimension drop algebra bijectively corresponds to a
probability Radon measure on [0, 1], as in the case of Ap,n.
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In [8], Xinhui Jiang and Hongbing Su constructed the so-called Jiang–Su algebra
as an inductive limit of prime dimension drop algebras, and proved that it is the unique
monotracial simple C*-algebra among such inductive limits. Our goals here are to show
that KZ is a Fraïssé category the limit of which is a simple C*-algebra with a unique
tracial state (so it is the Jiang–Su algebra), and to give a Fraïssé theoretic proof of the
uniqueness result above by Jiang and Su.

The first step is to show that every unital ⇤-homomorphism between dimension drop
algebras are approximately diagonalizable in the following sense.

Proposition 2.2.1. Let ◆ : Zp,q ! Zp0,q0 be a unital ⇤-homomorphism. Then the follow-
ing statements hold.
(1) There exist integers a, b with 0  a < q and 0  b < p, continuous maps t1, . . . , tk

from [0, 1] into [0, 1] and a family {vs}s2[0,1] of unitary matrices of size p0q0 such that ◆
is of the form

◆
�

f
�
(s) = Ad(vs)

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t1(s)), . . . , f (tk(s)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘

for f 2 Zp,q and s 2 [0, 1].
(2) Suppose that t1, . . . , tk are as in (1). Then for any finite G ✓ Zp,q and any " > 0, there
exists a continuous path u : [0, 1] ! Mp0q0 of unitaries such that the ⇤-homomorphism
◆0 : Zp,q ! Zp0,q0 defined by

◆0
�

f
�
(s) = Ad(u(s))

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t1(s)), . . . , f (tk(s)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘

satisfies k◆(g) � ◆0(g)k < " for all g 2 G.

Proof. (1) For each s 2 [0, 1], the map evs �◆ is a unital ⇤-homomorphism from Zp,q

into the finite dimensional C*-algebraMp0q0, so there exist non-negative integers as, bs,
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a unitary vs and real numbers ts
1, . . . , t

s
ks 2 [0, 1] such that the equation

evs �◆( f ) = Ad(vs)
⇣
diag

⇥ asz                   }|                   {
c( f (0)), . . . , c( f (0)),

f (ts
1), . . . , f (ts

ks ), c( f (1)), . . . , c( f (1))|                   {z                   }
bs

⇤ ⌘

holds for all f 2 Zp,q. Without loss of generality, we may assume ts
1  · · ·  ts

ks .
Let T s be the multiset

{0, . . . , 0|  {z  }
pas

, ts
1, . . . , t

s
1|    {z    }

pq

, . . . , ts
ks, . . . , t

s
ks|      {z      }

pq

, 1, . . . , 1|  {z  }
qbs

},

and note that T s is equal to the spectrum of evs �◆(id[0,1] ⌦1). By continuity, if s1 and
s2 are close to each other, then so are Ts1 and Ts2 with respect to the Hausdor� distance,
whence in particular pas and qbs must be constant modulo pq. Since

diag
⇥ qz                   }|                   {
c( f (0)), . . . , c( f (0))

⇤
⇠ f (0),

diag
⇥
c( f (1)), . . . , c( f (1))|                   {z                   }

p

⇤
⇠ f (1),

we may assume from the outset that as, bs, ks are independent of s, so we shall simply
write a, b, k for them. Also, by the same reason, we may assume a < q and b < p.

Now set
ti(s) := ts

i (i = 1, . . . , k).

Then, since the inequality ts
1  · · ·  tk holds and the map s 7! T s is continuous, the

functions t1, . . . , tk are continuous. Clearly, we have

◆
�

f
�
(s) = Ad(vs)

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t1(s)), . . . , f (tk(s)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘
,

as desired.
(2) Without loss of generality, we may assume that G is included in the unit ball.

Fix s0 2 [0, 1]. We first claim that there exists �(s0) > 0 with the following property: if
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|s � s0 | < �(s0), then there exists a unitary ws0 2 Mp0q0 with kvs � ws0 k < " such that
the equation

◆
�

f
�
(s0) = Ad(ws0)

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t1(s0)), . . . , f (tk(s0)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘

holds for all f 2 Zp,q. To see this, let {x1, . . . , xl} be the set of distinct eigenvalues
of evs0 �◆(id[0,1] ⌦1), and take mutually orthogonal non-negative continuous functions
f1, . . . , fl such that fi is constantly equal to 1 on some neighborhood of xi for each i. Note
that if {ei

lm} is the system of standard matrix units of evti [Zp,q], then {evs0 �◆( fi⌦ei
lm)}i,l,m

forms a system of matrix units which spans Im(evs0 �◆), and if s is su�ciently close to
s0, then {evs �◆( fi ⌦ ei

lm)}i,l,m is a system of matrix units in Im(evs �◆) which is close to
{evs0 �◆( fi ⌦ ei

lm)}i,l,m. Hence, as in the proof of [2, Lemma III.3.2], we can find a unitary
w with kw � 1k < " such that

w
�
evs0 �◆( fi ⌦ ei

lm)
�
w⇤ = evs �◆( fi ⌦ ei

lm),

and ws0 := vsw has the desired property.
Now take �0 > 0 su�ciently small so that the inequalities

��g(ti(s)) � g(ti(s0))
�� < "/4, ��◆�g� (s) � ◆�g� (s0)�� < "/4

hold for all g 2 G whenever |s � s0| < �0, and consider an open covering

U :=
�
U�(s)

�� s 2 [0, 1] & � < min{�(s), �0}
 

of [0, 1], where U�(s) denotes the open ball of radius � and center s. Since [0, 1] is
compact, there exists a finite subcovering, say {I1, . . . , Ir}. We denote the center of Ij

by cj , and without loss of generality, we may assume c1 < · · · < cr and Ij \ Ij+1 , ú
for all j. Take small � > 0 and bj 2 Ij \ Ij+1 \ (cj + �, cj+1 � �) for each j, and find a
unitary u 2 Ap0q0 such that

• u(bj) is equal to vbj for all j;
• u(0) and u(1) are equal to v0 and v1 respectively;
• the image of u on [cj + �, cj+1 � �] is included in the "/4-ball of center u(bj) = vbj ;
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• the images of u on [0, c1 � �] and [cr + �, 1] are included in the "/4-balls of center
u(0) = v0 and u(1) = v1 respectively; and

• the image of u on [cj � �, cj + �] is included in the path-connected subset
�
w

�� ◆� f
�
(cj) = Ad(wv⇤cj )

�
◆
�

f
�
(cj)

�  

of unitaries,
which is possible by the claim we proved in the previous paragraph.

We shall set

◆0
�

f
�
(s) = Ad(u(s))

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t1(s)), . . . , f (tk(s)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘

and show that this ◆0 has the desired property. For g 2 G and t 2 [cj + �, cj+1 � �], we
have ��◆0 �g� (s) � ◆�g� (s)�� 

��◆0 �g� (s) � ◆�g� (bj)
�� + ��◆�g� (bj) � ◆

�
g
�
(s)

��
<

3"
4
+
"

4
= ".

The same inequality holds if t is in [0, c1 � �] or [cr + �, 1]. On the other hand, if
t 2 [cj � �, cj + �], then

��◆0 �g� (s) � ◆�g� (s)�� 
��◆0 �g� (s) � ◆�g� (cj)

�� + ��◆�g� (cj) � ◆
�
g
�
(s)

��
<
"

4
+
"

4
< ".

Consequently, it follows that
k◆0(g) � ◆(g)k < "

for all g 2 G, which completes the proof. ⇤

The family t1, . . . , tk of continuous maps and the integers a and b that appeared in
Proposition 2.2.1 are called an eigenvalue pattern and the remainder indices of the ⇤-
homomorphism ◆. An eigenvalue pattern t1, . . . , tk is said to be normalized if it satisfies
the inequality t1  · · ·  tk . Note that the normalized eigenvalue pattern is unique for
each ⇤-homomorphism. Also, if Zp,q is prime, then the remainder indices depend only

31



2.2. THE JIANG–SU ALGEBRA

on the integers p, q, p0 and q0. Indeed, if ⌘ is another ⇤-homomorphism from Zp,q into
Zp0,q0, and if a⌘ and b⌘ are the remainder indices of ⌘, then the congruence equation

pa + qb ⌘ p0q0 ⌘ pa⌘ + qb⌘ (mod pq)

holds, so that
a ⌘ a⌘ (mod q), b ⌘ b⌘ (mod p),

as p and q are coprime.
Let ◆ be a ⇤-homomorphism between dimension drop algebras with an eigenvalue

pattern t1, . . . , tk . As in the preceding section, we shall denote by V(t1, . . . , tk) the
maximum of the diameters of the images of t1, . . . , tk , and call it the variation of the
eigenvalue pattern. The infimum of the variations of all the eigenvalue patterns of ◆ is
clearly equal to the variation of the normalized eigenvalue pattern, which is called the
variation of ◆ and denoted by V(◆).

Proposition 2.2.2. Let p, q 2 N be coprime and " be a positive real number. Then there
exists M 2 N such that if p0, q0 are larger than M , then there exists a unital embedding
of Zp,q into Zp0,q0 with its variation less than ".

Proof. Since p and q are coprime, there exists M 2 N with M � pq(1/" + 2) such that
if p0, q0 > M , then

pa + pqk + qb = p0q0

for some a, b, k 2 N. We shall show that this M has the desired property. For this,
suppose p0, q0 > M and a, b, k 2 N satisfy the equality above. Without loss of generality,
we may assume 0  a < q and 0  b < p. Also, one can find l0,m0 2 [0, q) and
l1,m1 2 [0, p) such that

pl0 ⌘ p0 (mod q), pm0 ⌘ q0 (mod q),
ql1 ⌘ p0 (mod p), qm1 ⌘ q0 (mod p).

Then,
pq0l0 ⌘ pp0m0 ⌘ p0q0 ⌘ pa (mod q),
qq0l1 ⌘ qp0m1 ⌘ p0q0 ⌘ qb (mod p),

so
q0l0 ⌘ p0m0 ⌘ a (mod q), q0l1 ⌘ p0m1 ⌘ b (mod p).
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We set
n0

0 :=
q0l0 � a

q
, n1

0 :=
q0l1 � b

p
,

n0
0 :=

p0m0 � a
q

, n1
0 :=

p0m1 � b
p

.

so that
a + qn0

0 ⌘ b + pn1
0 ⌘ 0 (mod q0),

a + qn0
1 ⌘ b + pn1

1 ⌘ 0 (mod p0).
We claim that

• n0
0 + n1

0 and n0
1 + n1

1 are smaller than k;
• k � n0

0 � n1
0 and k � n0

1 � n1
1 are multiples of q0 and p0 respectively; and

• (k � n0
0 � n1

0)/q0 and (k � n0
1 � n1

1)/p0 are larger than 1/".
Indeed, we have

n0
0 + n1

0 =
q0l0 � a

q
+

q0l1 � b
p

=
q0(pl0 + ql1) � pa � qb

pq

<
2q0pq � p0q0 + pqk

pq
< k .

Also, note that

pq(k � n0
0 � n1

0) = p0q0 � pq0l0 � qq0l1 = q0(p0 � pl0 � ql1).

Since p and q divide p0 � ql1 and p0 � pl0 respectively, and since p and q are coprime,
it follows that pq divides p0 � pl0 � ql1, so q0 divides k � n0

0 � n1
0; and

k � n0
0 � n1

0
q0

=
p0 � pl0 � ql1

pq
>

p0 � 2pq
pq

>
1
"
.

Similarly, it follows that n0
1 + n1

1 is smaller than k, that p0 divides k � n0
1 + n1

1, and that
(k � n0

1 � n1
1)/p0 is larger than 1/".

From the claim in the previous paragraph, one can easily construct a family t1, . . . tk

of continuous maps from [0, 1] into [0, 1] such that
• the union of the images of t1, . . . , tk is equal to [0, 1];
• the diameter of the image of ti is smaller than " for all i;
• #{i | ti(x) = y} = ny

x for x, y = 0, 1; and
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• for each y with 0 < y < 1, the integers q0 and p0 divide #{i | ti(0) = y} and
#{i | ti(1) = y} respectively.

If we define a ⇤-homomorphism ⌘ from Zp,q into A1,p0q0 by

⌘
�

f
�
(s) =

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t1(s)), . . . , f (tk(s)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘
,

then one can easily verify from the construction of t1, . . . , tk that the images of ev0 �⌘
and ev1 �⌘ are included in isomorphic copies ofMp0 ⌦ 1q0 and 1p0 ⌦Mq0 respectively, so
there is a unitary u 2 A1,p0q0 with Im

�
Ad(u) � ⌘

�
✓ Zp0,q0. ⇤

Note that the integers a and b in the proof of the previous proposition is the reminder
indices of the embedding that is constructed. In particular, both of the indices are equal
to 0 if pq divides p0q0.

For the next proposition, we shall introduce a terminology. By definition, a modulus
of uniform continuity of a function f on [0, 1] is a map � f : (0, 1] ! (0, 1] such that
|s � s0| < � f (") implies k f (s) � f (s0)k  ".

Proposition 2.2.3. Let p, q be coprime positive integers, ◆1, ◆2 : Zp,q ! Zp0,q0 be unital
⇤-homomorphisms with eigenvalue patterns t1

1, . . . t
1
k and t2

1, . . . , t
2
k respectively, G be a

finite subset of Zp,q, and " be a positive real number. If the inequality

max
i

kt1
i � t2

i k1 < min
g2G
�g(")

holds, where �g is a modulus of uniform continuity of g, then there exists a unitary
w 2 Zp0,q0 with ���Ad(w) � ◆1

�
(g) � ◆2(g)

�� < 5"

for all g 2 G.

Proof. By Proposition 2.2.1, we may assume without loss of generality that ◆ j is of the
form

◆ j
�

f
�
(s) = Ad(uj(s))

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t j
1(s)), . . . , f (t j

k(s)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘
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for f 2 Zp,q, where uj 2 A1,p0q0 is a unitary and t j
1  · · ·  t j

k . Also, we may assume
that kgk  1 for all g 2 G.

Let n0
0 and n1

0 be the least non-negative integers such that

a + qn0
0 ⌘ b + pn1

0 ⌘ 0 (mod q0).

Then, from the condition ◆ j( f ) 2 Mp0 ⌦ 1q0, it easily follows that

0 = t j
n0

0
(0)  t j

n0
0+1

(0) = · · · = t j
n0

0+q0(0)

 t j
n0

0+q0+1
(0) = · · · = t j

n0
0+2q0(0)

 · · ·  t j
k�n1

0+1
(0) = 1,

so there exists a unitary v j
0 2 Mp0 such that

c
�
◆ j
�

f
�
(0)

�
= Ad(v j

0)
⇣
diag

⇥ a0z                   }|                   {
c( f (0)), . . . , c( f (0)),

f
�
t j
n0

0+q0(0)
�
, f

�
t j
n0

0+2q0(0)
�
, . . . , f

�
t j
k�n1

0
(0)

�
,

c( f (1)), . . . , c( f (1))|                   {z                   }
b0

⇤ ⌘

for some non-negative integers a0 and b0. Similarly, for suitable non-negative integers
n0

1, n
1
1, a

00 and b00 and a unitary v j
1 2 Mq0, we have

c
�
◆ j
�

f
�
(1)

�
= Ad(v j

1)
⇣
diag

⇥ a00z                   }|                   {
c( f (0)), . . . , c( f (0)),

f
�
t j
n0

1+p0
(1)

�
, f

�
t j
n0

1+2p0
(1)

�
, . . . , f

�
t j
k�n1

1
(1)

�
,

c( f (1)), . . . , c( f (1))|                   {z                   }
b00

⇤ ⌘
.

Thus, if v is a path of unitaries connecting
⇥
v2

0(v1
0)⇤

⇤
⌦ 1q0 to 1p0 ⌦

⇥
v2

1(v1
1)⇤

⇤
, then v

is in Zp0,q0 and
�
Ad(v) � ◆1

� �
f
�
(s) =

�
Ad(u2(u1)⇤) � ◆1

� �
f
�
(s) for s = 0, 1. Therefore,

considering Ad(v) � ◆1 instead of ◆1 if necessary, we may assume from the outset that
u2(0)u1(0)⇤ and u2(1)u1(1)⇤ commutes with every matrix in the image of ev0 �◆1 and
ev1 �◆1.
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Now, take � > 0 so that |s � s0| < � implies

|t j
i (s) � t j

i (s
0)| < min

g2G
�g("), kuj(s) � uj(s0)k < ".

Let w : [0, 1] ! Mp0q0 be a path of unitaries such that
• w |[0,�/2] connects 1p0q0 to u2(0)u1(0)⇤ within the commutant of the image of ev0 �◆1;
• w(s) = u2(2s � �0)u1(2s � �)⇤ for s 2 [�/2, �];
• w(s) = u2(s)u1(s)⇤ for s 2 [�, 1 � �];
• w(s) = u2(2s � 1 + �)u1(2s � 1 + �)⇤ for s 2 [1 � �, 1 � �/2]; and
• w |[1��/2,1] connects u2(1)u1(1)⇤ to 1p0q0 within the commutant of the image of ev0 �◆1.

Then it is not di�cult to see that this w has the desired property. ⇤

Lemma 2.2.4. If µ is an atomless faithful probability measure on [0, 1], then for any
faithful probability measure ⌫ on [0, 1], there exists a non-decreasing continuous surjec-
tion � from [0, 1] onto [0, 1] with �⇤(µ) = ⌫, so that �⇤ is a trace-preserving embedding
of hZp,q, ⌫i into hZp,q, µi.

Proof. We first assume that the measure µ is equal to the Lebesgue measure � and set
↵(t) := ⌫([0, t)). Note that ↵ is a strictly increasing lower semi-continuous function from
[0, 1] into [0, 1]. Let � be the unique non-decreasing function extending ↵�1. Then,

�⇤(�)
�
[0, t)

�
= �

�
��1 ⇥[0, t)⇤ � = � �

[0, ↵(t))
�
= ↵(t) = ⌫

�
[0, t)),

so �⇤(�) is equal to ⌫. Also, if ⌫ is atomless, then ↵ is continuous, whence � = ↵�1 is a
homeomorphism.

For the general case, let �µ, �⌫ be the non-decreasing continuous functions such that
(�µ)⇤(�) = µ and (�⌫)⇤(�) = ⌫. Then �µ is a homeomorphism and � := �⌫ � ��1

µ satisfies
�⇤(µ) = ⌫, which completes the proof. ⇤

Theorem 2.2.5. The category KZ is a Fraïssé category.

Proof. In view of Lemma 2.2.4, one can easily modify the proof of Proposition 2.2.2
to show the following claim: For any coprime integers p and q and any faithful tracial
state ⌧ on Zp,q, there exists a natural number M such that if p0 and q0 are larger than M
and pq divides p0q0, then we can construct a trace-preserving ⇤-homomorphism from
hZp,q, ⌧i into hZp0,q0, �i, where � is the Lebesgue measure. So KZ satisfies JEP. Also,
a combination of Propositions 2.2.1, 2.2.2 and 2.2.3 immediately yields a proof of NAP:
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The proof is essentially the same as that of Theorem 2.1.4. Since any object hZp,q, ⌧i
of KZ can be embedded into hZp,q, �i by Lemma 2.2.4, WPP holds. Finally, CCP
is automatic, since all the relevant functions and relations are 1-Lipschitz on the unit
ball. ⇤

Henceforth, we shall denote by hZ, tri the Fraïssé limit of KZ. From Theorem 2.2.13
below, it follows that the C*-algebraZ is the same as the one constructed in [8, Section 2],
the so-called Jiang–Su algebra.

We shall say an inductive system of prime dimension drop algebras with distinguished
traces is regular if its inductive limit is isomorphic to hZ, tri. In the sequel, we shall
establish a method of recognizing regular systems.

Lemma 2.2.6. Suppose that p and q are coprime and Zp,q is embeddable into Zp0,q0.
Then there exists a tracial state �p0,q0 on Zp,q with the following properties.
(1) There exists a trace-preserving embedding from hZp,q, �p0,q0i into hZp0,q0, �i.
(2) If ⌧ is a tracial state on Zp,q of the form ◆⇤(⌧0) for some embedding ◆ of Zp,q into
Zp0,q0 and some faithful tracial state ⌧0 on Zp0q0, then there exists a non-decreasing
continuous map � from [0, 1] onto [0, 1] with �⇤(�p,q) = ⌧.

Proof. Since Zp,q is embeddable into Zp0,q0, there is an embedding ⇢ of Zp,q into Zp0,q0

of the form

⇢
�

f
�
(s) = Ad(u(s))

⇣
diag

⇥ az                   }|                   {
c( f (0)), . . . , c( f (0)),

f (t1(s)), . . . , f (tk(s)), c( f (1)), . . . , c( f (1))|                   {z                   }
b

⇤ ⌘
,

where t1, . . . , tk are piecewise strictly monotone functions such that the union of the im-
ages is equal to [0, 1]. We shall set �p0,q0 := ⇢⇤(�). Note that if �p0,q0 = �d

p0,q0+�c
p0,q0 is the

Lebesgue decomposition, then the discrete measure �d
p0,q0 is equal to (ap�0+ bq�1)/p0q0,

where �0 and �1 are the Dirac measures supported on {0} and {1} respectively, and the
support of the atomless measure �c

p,q is [0, 1].
If ⌧ is of the form ◆⇤(⌧0) for some embedding ◆ of Zp,q into Zp0,q0 and some faithful

tracial state ⌧0 on Zp0,q0, then necessarily ⌧ = �d
p0,q0 + µ for a suitable measure µ on [0, 1],

and k�c
p0,q0 k = kµk. Since �c

p0,q0 is continuous, there exists a non-decreasing continuous
map � from [0, 1] onto [0, 1] with �⇤(�c

p0,q0) = µ, so �⇤(�p0,q0) = ⌧, as desired. ⇤
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Lemma 2.2.7. Let ◆ : Zp,q ! Zp0,q0 be a unital ⇤-homomorphism, � : [0, 1] ! [0, 1] be
a non-decreasing continuous surjection, G be a finite subset of Zp,q, and " be a positive
real number. Suppose that the inequality

V(◆) < min
g2G
�g(")

holds, where �g denotes a modulus of uniform continuity of g. Then there exists a
unitary w 2 Zp,q with ���Ad(w) � �⇤ � ◆

�
(g) � ◆(g)

�� < 5"

for all g 2 G.

Proof. Note that if t1  · · ·  tk is the normalized eigenvalue pattern of ◆, then

kti � ti � �k1 < min
g2G
�g(").

Thus, the claim is immediate from Proposition 2.2.3. ⇤

At first sight, the proof of the following proposition might seem to be complicated.
However, the underlying idea is very simple; see Remark 2.2.9.

Proposition 2.2.8. An inductive system {hZpn,qn, ⌧ni, ◆n,m} of prime dimension drop
algebras with distinguished traces is regular if

lim
n!1

V(◆n,m) = 0

for all m.

Proof. We shall apply Theorem 1.3.5(iii), or more precisely, a weaker version of
Lemma 1.3.6. Let hZp,q, ⌧i be a prime dimension drop algebra with a fixed faithful
trace, F be a finite subset of Zp,q, and ' be a strict approximate KZ-isomorphism from
hZp,q, ⌧i to hZpn,qn, ⌧ni. Our goal is to find an approximate KZ-isomorphism  from
hZp,q, ⌧i to hZpN ,qN , ⌧Ni for some N > n such that

•  ( f , g)  '( f , g) for f 2 Zp,q and g 2 Zpn,qn , and
•  is "-total on F for a given " > 0.

By the definition of strict approximate isomorphisms, there exist finite subsets G1 ✓ Zp,q

and G2 ✓ Zpn,qn , morphisms ✓1, ✓2 from hZp,q, ⌧i and hZpn,qn, ⌧ni into some hZr,s,�i,
and a positive real number � such that

' � ('✓1,✓2 |G1⇥G2)|Zp,q⇥Zpn,qn + �.

Here, we may assume the following. Fix an arbitrary positive real number �.
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(1) The subset G1 includes F. This is because we may replace G1 with a larger subset.
(2) There exist m < n and a finite subset G0

2 ✓ Zpm,qm such that ◆n,m[G0
2] = G2 and

V(◆n,m) < �g(�) for all g 2 G0
2, where �g is a modulus of uniform continuity for g. This

is because, taking our goal into account, we may replace ' with '|Zp,q⇥Zpl,ql for l > n,
and we have

'|Zp,q⇥Zpl,ql �
⇥
('✓1,✓2 |G1⇥G2)|Zp,q⇥Zpn,qn + �

⇤
|Zp,q⇥Zpl,ql

= ('✓1,✓2 |G1⇥◆l,n[G2])|Zp,q⇥Zpn,qn + �.

(3) The embedding ✓1 satisfies V(✓1) < � f (�) for all f 2 G1, by Proposition 2.2.2.
(4) The tracial state � is atomless, by Lemma 2.2.4.

Now, take su�ciently large N so that there exists an embedding ⇣ of Zr,s into ZpN ,qN

with V(⇣) < �g(�) for all g 2 ✓i[Gi]. Let � be the tracial state on ZpN ,qN corresponding
to the Lebesgue measure, ↵ be the nondecreasing surjective continuous map from [0, 1]
to [0, 1] with ↵⇤(�) = ⌧N , and ⌃↵ be the closed subset of [0, 1] such that f 2 ZpN ,qN is
in the image of ↵⇤ if and only if f is constant on ⌃↵. Also, let �pN ,qN be the tracial state
on Zpn,qn as in Lemma 2.2.6, and set

�0 := ⇣⇤(�), ⌧0 := ✓⇤1(�0), ⌧0n := ✓⇤2(�0).

By Lemmas 2.2.6 and 2.2.7 and assumption (2) in the first paragraph, there exists a
morphism ⌘ from hZpn,qn, ⌧ni to hZpn,qn, �pN ,qN i with

k⌘(g) � gk < 5� (g 2 G2).

Similarly, there exists a morphism ⌘0 from hZpn,qn, ⌧
0
ni to hZpn,qn, �pN ,qN i with

k⌘0(g) � gk < 5� (g 2 G2).

Also, by Lemmas 2.2.4 and 2.2.7 and assumption (3) in the first paragraph, there exists
a morphism ⇢ from hZr,s,�0i to hZr,s,�i with

k⇢( f ) � f k < 5� ( f 2 ✓1[G1]).

Finally, by Lemma 2.2.6, one can find a morphism ◆ from hZpn,qn, �pN ,qN i to hZpN ,qN , �i.
Here, by Proposition 2.2.3 and assumption (2) in the first paragraph, we can modify ◆
and ⇣ by inner automorphisms so that

k↵⇤ � ◆N,n(g) � ◆ � ⌘(g)k < 5�, k⇣ � ✓2(g) � ◆ � ⌘0(g)k < 5� (g 2 G2).
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Furthermore, by Proposition 2.2.1, we may assume that ⇣ is of the form

⇣
�

f
�
(s) = Ad(u(s))

⇣
diag

⇥
c( f (0)), . . . , c( f (0)),

f (t1(s)), . . . , f (tk(s)),c( f (1)), . . . , c( f (1))
⇤ ⌘
,

where t1, . . . , tk is the normalized eigenvalue pattern of ⇣ . Since V(⇣) < �g(�) for all
g 2 ✓i[Gi], and since

k⇣ � ✓2(g) � ↵⇤ � ◆N,n(g)k
< k⇣ � ✓2(g) � ◆ � ⌘0(g)k + k◆ � ⌘0(g) � ◆ � ⌘(g)k + k◆ � ⌘(g) � ↵⇤ � ◆N,n(g)k
< 20�,

for all g 2 G2, one can easily modify the unitary u as in the last paragraph of the proof
of Proposition 2.2.3 so that u is constant on ⌃↵ while ⇣ still satisfies the inequality

k⇣ � ✓2(g) � ↵⇤ � ◆N,n(g)k < 100� (g 2 G2).

Then, since u is constant on ⌃↵ and V(⇣) < � f (�) for all f 2 ✓1[G1], the inequality

inf
g2ZpN ,qN

k⇣ � ✓1( f ) � ↵⇤(g)k < �

holds for all f 2 G1.

hZpn,qn, ⌧
0
ni

hZp,q, ⌧0i hZr,s,�0i

hZpn,qn, �pN ,qN i hZpN ,qN , �i

hZp,q, ⌧i hZr,s,�i

hZpn,qn, ⌧ni hZpN ,qN , ⌧Ni

✓2

⌘0
✓1

⇣

⇢
◆

✓1

⌘ ✓2

◆N,n

↵⇤

Set  := '⇣,↵⇤'✓1,⇢. Then, for f 2 G1 and g 2 G2, we have

 
�

f , ◆N,n(g)
�
 '✓1,⇢

�
f , ✓1( f )

�
+ '⇣,↵⇤

�
✓1( f ), ◆N,n(g)

�
= k✓1( f ) � ⇢ � ✓1( f )k + k⇣ � ✓1( f ) � ↵⇤ � ◆N,n(g)k
 k⇣ � ✓1( f ) � ⇣ � ✓2(g)k + 105�

= '✓1,✓2( f , g) + 105�.
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Also, since k✓1( f )� ⇢�✓1( f )k < 5� and infg k⇣ �✓1( f )�↵⇤(g)k < �, one can easily see
that  is 6�-total on G1. Since � was arbitrary, we may assume � < min{"/6, �/105}
so that  has the desired property. ⇤

Remark 2.2.9. Here, for the reader’s better understanding, we shall present a simpler
version of the proof above in a certain special case. Let ' be a strict approximate KZ-
isomorphism from an object hZp,q, ⌧i of KZ to hZpn,qn, ⌧ni and F be a finite subset of
Zp,q. Then there exist finite subsets G1 ✓ Zp,q and G2 ✓ Zpn,qn , a joint K-embedding
(✓1, ✓2) of hZp,q, ⌧i and hZpn,qn, ⌧ni into some hZr,s,�i and � > 0 such that

' � ('✓1,✓2 |G1⇥G2)|Zp,q⇥Zpn,qn + �.

Without loss of generality, we may assume that G1 includes F.
Now, assume that there happens to be a trace-preserving ⇤-homomorphism ⇣ 0 from

hZr,s,�i to hZpN ,qN , ⌧Ni for su�ciently large N . Since V(◆N,m) ! 0 as N ! 1 for
each m, we may assume that both V(◆N,n) and V(⇣ 0 � ✓2) are smaller than �/5, whence
there is a unitary u in ZpN ,qN with

��(Ad(u) � ⇣ 0 � ✓2
�
(g) � ◆N,n(g)

�� < �
for all g 2 G2. Now, set  := '⇣ 0�✓1 . Then we have

 
�

f , ◆N,n(g)
�
= k⇣ 0 � ✓1( f ) � ◆N,n(g)k
 k⇣ 0 � ✓1( f ) � ⇣ 0 � ✓2(g)k + k⇣ 0 � ✓2(g) � ◆N,n(g)k
< '✓1,✓2( f , g) + �,

so   '|Zp,q⇥ZpN ,qN . Clearly,  is "-total for any " > 0, since

inf
g2ZpN ,qN

 ( f , g) = 0

for all f . This was what we would like to show, in view of Theorem 1.3.5.
In general, hZr,s,�i is not necessarily embeddable into some hZpN ,qN , ⌧Ni, however.

This is why we need to approximate the measures ⌧N and � by � and �0 in the original
proof above, which causes all the other additional steps.

In the sequel, we fix an inductive system {◆n,m : Zm ! Zn} of prime dimension drop
algebras and write its limit by Z0. Note that every ⇤-homomorphism between prime
dimension drop algebras is automatically unital and injective, and Z0 admits a tracial
state. We also let tm,n

1  · · ·  tm,n
k(m,n) be the normalized eigenvalue pattern of ◆n,m.
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Lemma 2.2.10. The following two conditions are equivalent.
(1) The limit Z0 is simple.
(2) For any " > 0, any y 2 [0, 1] and any m 2 N, there exists n > m such that
if x 2 [0, 1] satisfies tm,n

i (x) = y for some i, then the Hausdor� distance between
{tm,n

1 (x), . . . , tm,n
k(m,n)(x)} and [0, 1] is less than ".

Proof. (1) ) (2). Suppose that (2) does not hold. Then there exist " > 0, y0 2 [0, 1]
and m0 2 N such that for any n > m0 there is xn 2 [0, 1] with tm0,n

i (xn) = y0 for some i
and

d
�
{tm0,n

1 (xn), . . . , tm0,n
k(m0,n)(xn)}, [0, 1]

�
� ".

Take N 2 N so that 1/N < "/2. For each n > m0 there is a(n) 2 {0, . . . , N} with

U1/N (a(n)/N) \ {tm0,n
1 (xn), . . . , tm0,n

k(m0,n)(xn)} = ú,

where U�(z) denotes the open ball of center z and radius �. Passing to a subsystem if
necessary, we may assume that a(n) is constant, say a. Put U := U1/N (a/N).

For each m, n 2 N with m0  m  n, set

Cm0,n := {x 2 [0, 1] | tm0,n
i (x) < U for any i},

Cm,n := {tm,n
i (x) | x 2 Cm0,n},

Cm :=
Ÿ
n�m

Cm,n.

Note that Cm0,n is nonempty, since xn is in Cm0,n. Also, if y is in Cm,n+1, then there exists x
in Cm0,n+1 with tm,n+1

i (x) = y for some i. Now, since ◆n+1,m = ◆n+1,n � ◆n,m, there are some
j, j0 with tm,n+1

i (x) = tm,n
j

�
tn,n+1
j 0 (x)

�
. On the other hand, tm0,n

l

�
tn,n+1
j 0 (x)

�
is not in U for

any l, because x is in Cm0,n+1. Therefore, tn,n+1
j 0 (x) is in Cm0,n, whence y = tm,n

j

�
tn,n+1
j 0 (x)

�
is in Cm,n. Consequently, {Cm,n}n is a decreasing sequence of nonempty closed subsets,
so Cm is a nonempty closed subset of [0, 1].

We shall show

Cm =

k(m,n)ÿ
i=1

tm,n
i [Cn]. (⇤)

Clearly, the right-hand side is included in the left-hand side. To see the opposite
inclusion, let y be in Cm. Then, for each l � n, there is zl in Cn,l with tm,n

i (zl) = y for
some i. By the pigeonhole principle, there is i0 with tm,n

i0
(zl) = y for infinitely many l.

Let z be a limit point of such zl’s. Then clearly z is in Cn and tm,n
i0

(z) = y.
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For each m � m0, set

Im := { f 2 Zpm,qm | f |Cm ⌘ 0} ( Zpm,qm .

Then, by (⇤), we have ◆m+1,m[Zpm,qm]\Im+1 = ◆m+1,m[Im], so the sequence {Im} defines
a closed ideal I of Z0. Since Im0 includes { f | supp f ✓ U}, the ideal I is nontrivial,
so Z0 is not simple.

(2) ) (1). Let I be a proper ideal of Z0, and set

Im := I \Zpm,qm,

Cm := {x | f (x) = 0 for all f 2 Im}

It su�ces to show that Cm coincides with [0, 1]. For this, let y be in Cm. By assumption,
for any " > 0 there is n0 > m such that if tm,n0

i (x) = y, then

d
�
{tm,n0

1 (x), . . . , tm,n0
k(m,n0)(x)}, [0, 1]

�
< ".

However, since Cm =
–k(m,n0)

i=1 tm,n0
i [Cn0] by construction, we can find x 2 Cn0 with

tm,n0
i (x) = y for some i, and

{tm,n0
1 (x), . . . , tm,n0

k(m,n0)(x)} ✓ Cm.

Consequently, it follows that the Hausdor� distance between Cm and [0, 1] is less than
arbitrary ", so Cm = [0, 1]. ⇤

For y 2 [0, 1] and " > 0, we set

am,n(y, ") :=max{i | max tm,n
i  y + "},

bm,n(y, ") :=max{i | min tm,n
i < y � "}

cm,n(y, ") :=max{bm,n(y, ") � am,n(y, "), 0}
=#{i | min tm,n

i < y � " & max tm,n
i > y + "}.

Lemma 2.2.11. The following are equivalent.
(1) The limit Z0 is monotracial.
(2) For any y, any " and any m,

lim
n!1

cm,n(y, ")
k(m, n) = 0.
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Proof. (1) ) (2). Suppose (2) does not hold. Then, passing to a subsystem if necessary,
we may assume that there exist y 2 [0, 1], " > 0 and � > 0 with cm,n(y, ")/k(m, n) � �

for all n > m. Let x1
m,n, x

2
m,n 2 [0, 1] be such that

tm,n
am,n(y,")+1(x

1
m,n) > y + ", tm,n

bm,n(y,")+1(x
2
m,n) < y � ",

and ⌧1, ⌧2 be limit points of the tracial states ◆⇤n,m(�x1
m,n

), ◆⇤n,m(�x2
m,n

) respectively. We note
that these are restrictions of some tracial states on Z0. Now, if f 2 C[0, 1] is taken so
that

f |[0,y�"] ⌘ 0, f |[y+",1] ⌘ 1, 0  f  1,

then
⌧1( f ) � lim


1 � am,n(y, ")

k(m, n)

�
,

⌧2( f )  lim

1 � bm,n(y, ")

k(m, n)

�
,

whence
⌧1( f ) � ⌧2( f ) � lim

cm,n(y, ")
km,n(y, ")

� �.

Consequently, Z0 is multitracial.
(2) ) (1). Suppose (2) holds. We shall first show that, given m 2 N, � > 0 and

" > 0, one can find n > m with

#
�
i
�� diam Im tm,n

i > �
 

k(m, n) < ".

Indeed, take N 2 N with 1/N < �/3, and let n( j) be su�ciently large so that

cm,n( j)( j/N, 1/N)
k(m, n( j)) <

"

N
( j = 1, . . . , N � 1).

Set n := max j n( j). If diam Im tm,n
i > �, then

min tm,n
i <

j � 1
N
, max tm,n

i >
j + 1

N

for some j, so the desired inequality follows.
We shall next show that, for f 2 C[0, 1], m 2 N and " > 0, there exists n > m with

sup
x,x02[0,1]

�� ⇥◆⇤n,m(�x) � ◆⇤n,m(�x0)
⇤
( f )

��  ".
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For this, we may assume k f k  1. Take � > 0 so that |y�y0| < � implies k f (y)� f (y0)k 
"/3, and put J := {i | diam Im tm,n

i > �}. By what we proved in the preceding paragraph,
there exists n > m with #J/k(m, n) < "/3. Then, for x, x0 2 [0, 1], we have�� ⇥◆⇤n,m(�x) � ◆⇤n,m(�x0)

⇤
( f )

��
 1

k(m, n)

���’
i

f
�
tm,n
i (x)

�
� f

�
tm,n
i (x0)

� ���
 1

k(m, n)
⇣’

i2J

+
’
i<J

⌘ �� f �tm,n
i (x)

�
� f

�
tm,n
i (x)

� ��
 ",

as desired.
Finally, we shall show that Z0 is monotracial. Let ⌧, ⌧0 be tracial states on Z0. Fix

an element f in the center of Zpm,qm , which is canonically identified with an element of
C[0, 1], and take su�ciently large m > n so that

sup
x,x02[0,1]

�� ⇥◆⇤n,m(�x) � ◆⇤n,m(�x0)
⇤
( f )

��  "

3
.

Since the convex combinations of the Dirac measures are weakly* dense in the set of
probability measures, we can find x1, . . . , xl, x01, . . . , x

0
l in [0, 1] with

���⇣⌧ |Zpn,qn
� 1

l

’
j

�xj

⌘
( f � tm,n

i )
��� < "

3
,

���⇣⌧0|Zpn,qn
� 1

l

’
j

�x0j

⌘
( f � tm,n

i )
��� < "

3

for all i. Consequently,

|⌧( f ) � ⌧0( f )|

 1
k(m, n)

���’
i

⌧ |Zpn,qn
( f � tm,n

i ) � ⌧0|Zpn,qn
( f � tm,n

i )
���

 2
3
" +

1
k(m, n) · l

���’
i, j

�xj ( f � tm,n
i ) � �x0j ( f � tm,n

i )
���

=
2
3
" +

1
l

���’
j

⇥
◆⇤n,m(�xj ) � ◆⇤n,m(�x0j )

⇤
( f )

���
 ".

Since " was arbitrary, ⌧( f ) = ⌧0( f ), and so ⌧ = ⌧0. ⇤
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Proposition 2.2.12. The inductive limit C*-algebra Z0 is simple and monotracial if and
only if limn V(◆n,m) = 0 for each m.

Proof. It is clear from Lemmas 2.2.10 and 2.2.11 that if limn V(◆n,m) = 0 for all m,
then Z0 is simple and monotracial. For the opposite implication, first note that if Z0 is
simple, then

lim
n

diam Im tm,n
1 = 0

for each m. Indeed, for any " > 0, there exists su�ciently large n such that if tm,n
i (x) = "

for some i and x 2 [0, 1], then

d
�
{tm,n

1 (x), . . . , tm,n
k(m,n)(x)}, [0, 1]

�
< ",

by Lemma 2.2.10. This implies that " < Im tm,n
1 , and since 0 2 Im tm,n

1 , it follows that
tm,n1 ✓ [0, ").

Next, for each m, n 2 N, let �m,n be a map from (0, 1] to (0, 1] such that |x � x0| 
�m,n(") implies |tm,n

i (x) � tm,n
i (x0)|  " for all i. Passing to a subsystem if necessary, we

may assume that Im tn,n+1
1 is included in [0,�n�1,n("/2)]. For a fixed m 2 N, set

Fn := Im tm,m+1
1 � · · · � tn,n+1

1

and take y0 2 —
n Fn. By Lemma 2.2.10, there is n > m such that if x 2 [0, 1] satisfies

tm,n
i (x) = y0 for some i, then the distance between {tm,n

1 (x), . . . , tm,n
k(m,n)(x)} and [0, 1] is

less than "/2. On the other hand, by definition of Fn, we can find x 2 Im tn,n+1
1 ✓

[0,�n,n+1("/2)] with tm,n
i (x) = y0 for some i. Consequently, it follows that for any

y 2 [0, 1] there exists i with Im tm,n
i � tn,n+1

1 ✓ [y � ", y + "].
Now, let f : [0, 1] ! [0, 1] be a continuous map such that the image of f includes

[y � ", y + "] for some y 2 [0, 1]. We shall show the existence of � > 0 such that if a
continuous map g : [0, 1] ! [0, 1] satisfies Im f �g ◆ [y� ", y+ "], then diam Im g � �.
Indeed, let (an)n and (bn)n be enumerations of the boundaries of f �1(y�") and f �1(y+")
respectively. If the image of f � g includes [y � ", y + "], then the image of g must
contain an0 and bn00 such that there is no an or bn between an0 and bn00. However, there
can be only finitely many such pairs (n0, n00), because otherwise f cannot be uniformly
continuous. Thus,

� := min
�
|an0 � bn00 |

�� ön, an0 7 an 7 bn00 or an0 7 bn 7 bn00
 

has the desired property.
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Finally, suppose that there is m 2 Nwith limn V(◆n,m) > 0. Without loss of generality,
we may assume m = 1. Also, by passing to a subsystem if necessary, we may assume
that there is y 2 [0, 1] and " > 0 with the following property: For any n, there exists
i such that the image of t1,n

i includes [y � ", y + "]. By what we proved in the second
paragraph, it is easy to find n0, i1, i2 2 N with

Im t1,2
i1

� t2,n0
i2

� tn0,n0+1
1 ✓ [y � "/2, y + "/2].

We may assume n0 = 3. Set

F :=
�
t1,2
h � t2,3

i � t3,4
j

�� Im t1,2
h � t2,3

i � t3,4
j ◆ [y � ", y + "]

 
and take � > 0 so that if f is in F and if the image of f � g includes [y � ", y + "], then
diam Im g � �. Since Z0 is monotracial, we may assume

#
�
t4,5
k

�� diam Im t4,5
k � �

 
k(4, 5) <

1
#F
,

by Lemma 2.2.11. Then

#
�
t1,2
h � t2,3

i � t3,4
j � t4,5

k

�� Im t1,2
h � t2,3

i � t3,4
j � t4,5

k ◆ [y � ", y + "]
 

 #F ⇥ #{t4,5
k | diam t4,5

k }  k(4, 5)
 #

�
t1,2
h � t2,3

i � t3,4
j � t4,5

k

�� Im t1,2
h � t2,3

i � t3,4
j � t4,5

k ✓ [y � "/2, y + "/2]
 
.

However, this implies that there is no i with Im t1,5
i ◆ [y � ", y + "], which is a contra-

diction. ⇤

Combining Propositions 2.2.8 and 2.2.12, we obtain the following result.

Theorem 2.2.13. For an inductive system {◆n,m : Zm ! Zn} of prime dimension drop
algebras, the following are all equivalent.
(1) The inductive limit of {◆n,m : Zm ! Zn} is isomorphic to Z.
(2) The equality limn V(◆n,m) = 0 holds for all m.
(3) The inductive limit of {◆n,m : Zm ! Zn} is simple and monotracial.

It was shown by Jiang and Su that every unital ⇤-endomorphism ofZ is approximately
inner. We shall conclude this section by partially recovering this result.

Proposition 2.2.14. Every KZ-admissible endomorphism of hZ, tri is approximately
inner.
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Proof. Let

hZp1,q1, ⌧1i hZp2,q2, ⌧2i hZp3,q3, ⌧3i · · ·◆2,1 ◆3,2 ◆4,3

be a regular sequence with the following property, the existence of which follows from
Theorem 2.2.13:
(1) pnqn divides pn+1qn+1 and ⌧n is atomless for all n.
(2) For any natural number a, there exists su�ciently large n such that a divides pnqn.
We shall first show that if ⇢ is a KZ-admissible endomorphism of hZ, tri, then for any
finite subset F ✓ Zpn,qn and any " > 0, there exists a morphism ◆ from hZpn,qn, ⌧ni to
hZpN ,qN , ⌧Ni with

k⇢( f ) � ◆( f )k < " ( f 2 F).
Take su�ciently large m and so that for any f 2 F, there exists f 0 2 Zpm,qm with
k⇢( f )� f 0k < "/4. We shall fix such f 0 for each f 2 F and set F0 := { f 0 | f 2 F}. Put

 := ('⇢ |F⇥F 0)|Zpn,qn⇥Zpm,qm +
"

4
and note that this is a strict approximate KZ-isomorphism, as ⇢ is K-admissible. Since
 is strict, there exists a joint K-embedding (✓1, ✓2) of hZpn,qn, ⌧ni and hZpm,qm, ⌧mi into
some object hZr,s,�i with '✓1,✓2   , whence

k✓1( f ) � ✓2( f 0)k  "

2
.

Now by Proposition 2.2.2, one can embed Zr,s into Zpm0,qm0 for some m0 > m. By
assumption (2), we may assume that rs divides pm0qm0, so the remainder indices vanish.
Consequently, since ⌧m0 is atomless by assumption (1), one can easily find a morphism
⌘ from hZr,s,�i to hZpm0,qm0, ⌧m0i. Since V(◆N,m00) ! 0 as N ! 1 by Theorem 2.2.13,
one can find N > m00 and a unitary u in ZpN ,qN with���Ad(u) � ◆N,m0 � ⇣ � ✓2

�
( f 0) � ◆N,m( f 0)

�� < "

4
for all f 0 2 F0, by Proposition 2.2.3. We set

◆ := Ad(u) � ◆N,m0 � ⇣ � ✓1.

Then, for f 2 F, we have

k⇢( f ) � ◆( f )k  k⇢( f ) � f 0k
+

��◆N,m( f 0) �
�
Ad(u) � ◆N,m0 � ⇣ � ✓2

�
( f 0)

��
+

���Ad(u) � ◆N,m0 � ⇣ � ✓2
�
( f 0) �

�
Ad(u) � ◆N,m0 � ⇣ � ✓1

�
( f )

��
< ",
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as desired.
Now, since V(◆M,N ) ! 0 as M ! 1, there exists su�ciently large M and a unitary

v in ZpM,qM with ���Ad(v) � ◆
�
( f ) � f

�� < "
for all f 2 F, by Proposition 2.2.3 This implies

k⇢( f ) � Ad(v⇤)( f )k < 2",

so ⇢ is approximately inner, which completes the proof. ⇤
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